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Abstract
Healthy nutrition contributes to preventing non-communicable and diet-related dis-
eases. Recommender systems, as an integral part of mHealth technologies, address
this task by supporting users with healthy food recommendations. However, knowl-
edge about the effects of the long-term provision of health-aware recommendations in
real-life situations is limited. This study investigates the impact of a mobile, personal-
ized recommender system namedNutrilize. Our system offers automated personalized
visual feedback and recommendations based on individual dietary behaviour, pheno-
type, and preferences. By using quantitative and qualitativemeasures of 34 participants
during a study of 2–3months, we provide a deeper understanding of how our nutri-
tion application affects the users’ physique, nutrition behaviour, system interactions
and system perception. Our results show that Nutrilize positively affects nutritional
behaviour (conditional R2 = .342) measured by the optimal intake of each nutrient.
The analysis of different application features shows that reflective visual feedback has
a more substantial impact on healthy behaviour than the recommender (conditional
R2 = .354). We further identify system limitations influencing this result, such as a
lack of diversity, mistrust in healthiness and personalization, real-life contexts, and
personal user characteristics with a qualitative analysis of semi-structured in-depth
interviews. Finally, we discuss general knowledge acquired on the design of personal-
ized mobile nutrition recommendations by identifying important factors, such as the
users’ acceptance of the recommender’s taste, health, and personalization.
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1 Motivation and objective

The research in recommender systems has been recently interested in food recom-
mender systems addressing, among others, nutritional healthwith different approaches
(Trattner and Elsweiler 2018). These systems have the potential to help users navigate
the growing amount of multimedia food content (Min et al. 2019a) while fostering
healthy eating patterns. Conventional recommender systems learn the users’ prefer-
ences and try to cater to them, which might enforce recommendations for unhealthy
food as well (Elsweiler and Harvey 2015; Schäfer et al. 2017b). Thus, health-aware
recommender systems need to also incorporate different parameters related to taste
and health into their systems (Elsweiler et al. 2015a, 2016; Ge et al. 2015a). The use
of nutrition assistance systems is promising since previous studies have shown that
persuasive technologies can help people to eat healthier (Orji and Moffatt 2016).

Existing national and international dietary guidelines constitute important infor-
mational sources for nutrition (Painter et al. 2002) but are often based on guidelines
for a whole population instead of dealing with individual requirements. Yet, efforts
towards personalised nutrition recommendations have beenmade byZeevi et al. (2015)
and within the Food4Me study (Celis-Morales et al. 2015). Zeevi et al. (2015) incor-
porated different individual aspects into their algorithm based on machine-learning
techniques like dietary behaviour, anthropometrics, blood biomarkers and the gut
microbiome. Based on this, they could successfully predict the post-prandial glucose
response (PPGR) that varies greatly between different individuals for the same meal.
Celis-Morales et al. (2015) examined in their 6-month study the effectiveness of per-
sonalised nutrition advice, which was based on dietary, phenotypic and genotypic
information. Their results showed higher effectiveness in changing nutrition habits
through personalised dietary advice than conventional dietary advice.

Evaluations of recommender systems often focused on measuring algorithmic
accuracy, which is insufficient in explaining user experience (Knijnenburg et al.
2012). Further, studies on recommendations and mobile applications frequently cover
short-term usage, i.e. think-aloud lab studies of multiple hours or surveys comparing
recommender algorithms on a quantitative level. Especially in the context of health
recommender systems, it is important to not only evaluate recommendation accuracy.
Since healthy recommendations might contrast user preferences, it is crucial to eval-
uate user satisfaction and changes in behaviour and health over a longer period of
time, i.e. multiple weeks, (Schäfer et al. 2017b). Traditional nutrition interventions
require months to show lasting effects on nutritional behaviour and physique. There-
fore, we evaluate our proposed system, Nutrilize, based on a 2–3 months study using
a mixed-methods evaluation of the system effects and the user experience. It is our
goal to show how long-term usage of a nutrition assistance system influences the
users’ (a) physique, (b) nutrition behaviour, (c) system interaction and (d) system
perception. Furthermore, we want to gain insights into the reasons for observations
appearing in long-term but not in short-term usage by analysing semi-structured in-
depth interviews.
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2 Background

This section discusses related work in four different areas relevant to the application
and study design of the presented work: Personalized Nutrition, Food Recommender
Systems, Behaviour Change Interfaces, and Evaluation of Recommender Systems.
Additionally, we present how our prior work on this system fulfils different prerequi-
sites of the layered evaluation framework of Paramythis et al. (2010).

2.1 Personalized nutrition

Food recommendations for nutrition personalized according to individual health
requirements are a major research gap identified by several food recommender sys-
tems surveys (Trattner and Elsweiler 2017a; Mauch et al. 2018; Min et al. 2019a, b;
Theodoridis et al. 2019). One of the most prominent studies on personalized nutri-
tion is the Food4Me study (Celis-Morales et al. 2015). Over an intervention time of
six months, 1607 participants across multiple European study-centres received four
types of advice via e-mail: 1) a control group receiving conventional advice, 2) a group
receiving personal advice based on dietary intake, 3) a group receiving personal advice
based on dietary intake and phenotype, 4) a group receiving personal advice based on
dietary intake, phenotype, and genotype. Regarding the impact on dietary behaviour,
the study shows higher scores according to the MedDiet Mediterranean diet (Med-
Diet) (Davis et al. 2015) for the personalized advice group than for the control group
(Food4Me Study 2016). The phenotypic and genotypic groups showed no significant
difference to the group with personalized feedback based on dietary intake (Food4Me
Study 2016). While the personalization was more effective, the overall improvement
in MedDiet scores was only modest (Food4Me Study 2016). The authors suggest
continuous internet-based delivery of advice to increase the impact (Food4Me Study
2016). Similarly, a second evaluation focused on the improvement of the Healthy-
Eating-Index shows that participants receiving personalized feedback consumed less
redmeat, less salt, less saturated fat, more folate, and had higher Healthy-Eating-Index
scores at month six than the control arm (Celis-Morales et al. 2016), with no signifi-
cant difference between the personalization branches. In line with these insights, the
Nutrilize system is integrating personalization according to intake history, phenotype,
and blood measures.

2.2 Food recommender systems

Food recommender systems have been implemented and evaluated using many dif-
ferent algorithms and evaluation methods. Most algorithmic solutions are based on
standard content-based or collaborative filtering methods, as shown in the overview
by Trattner and Elsweiler (2017a). While work with smaller user samples concludes
that content-basedmethods are of superior performance (Freyne andBerkovsky 2010a;
Harvey et al. 2013), experiments on larger samples show a higher performance of
collaborative approaches (Trattner and Elsweiler 2019). In general, different food
recommender systems tested by Trattner and Elsweiler (2019) show lower perfor-
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mance, i.e. area under the ROC curve, than similar systems addressing movies or
e-commerce tested by Rendle et al. (2012). Approaches to health-focused food rec-
ommender systems have used energy balancing (Ge et al. 2015b), distance from an
estimated nutritional requirements (Elsweiler et al. 2015b), or re-weighting accord-
ing to health metrics (Trattner and Elsweiler 2017b). Beyond prediction of ratings
or ranking based on an existing set of recipes, other efforts have been focused on
suggesting healthier ingredient substitutes (Achananuparp and Weber 2016) or on
generating healthier pseudo recipes (Chen et al. 2019). The implemented algorithm in
the Nutrilize system is a content-based approach for both health and taste estimation
that integrates both energy balancing and nutritional requirements.

2.3 Behaviour change interfaces

Beyond the accurate ranking of personalized healthy and tasty recipes, the design of
the user interface is a crucial element determining the acceptance of recommenda-
tions and the change in behaviour. According to Chen et al. (2017), it is beneficial
from a nutritional care perspective to provide information on nutrients and energy
in apps. Current commercial nutrition apps mostly focus on the provision of calorie
counting and macronutrient distributions such MyFitnessPal (Google LLC 2019a),
Yazio (Google LLC 2019f), MyNetDiary (Google LLC 2019b) or MyPlate (Google
LLC 2019e). Only a few use colour- and category-based information to ease the food
item choices of users and provide educational content on nutrients such as Foodu-
cate (Google LLC 2019c) or LifeSum (Google LLC 2019d). Nutrilize goes beyond
common mHealth systems for balanced nutritional advice because of its level of per-
sonalization included in the underlying algorithm for generating nutritional advice
and its design of feedback. Our concept for developing feedback strategies in Nutrilize
relies on several practical as well as theoretical considerations. We draw on scientific
experience from Front-of-pack nutrition labelling (FoPL) schemes using traffic light
schemes that proved to be effective for food item choice support in shopping envi-
ronments (Malam et al. 2009; Dunford et al. 2014; Koenigstorfer et al. 2014; Julia
and Hercberg 2017). From a theoretical perspective, our implementation of (visual)
feedback bases on the principles of reflective practice as proposed by Schön (1983) in
terms of feedback offering reflection on ongoing food choices as well as past nutrition
behaviour to optimally support dietary choices. The offered types of (visual) feed-
back in Nutrilize according to Schön (1983) are reflection-in-action implemented in
the home screen through colour-coded advice symbols and the food details screen
through simulative/predictive feedback on how selected food intake affects individual
critical nutrients. The concept of reflection-on-action is offered by different retrospec-
tive views on single individual nutrient levels and overall energy in a daily, weekly,
and monthly view. Additionally, the system design is oriented by Persuasive Sys-
tem Design as proposed by Oinas-Kukkonen and Harjumaa (2009). Based on their
model of persuasive system design (PSD model), Nutrilize implements the following
PSD elements in its system components: personalization, self-monitoring, suggestion,
and simulation (Terzimehić et al. 2016). We further introduce our considerations for
feedback implementation in the context of recommender systems by the taxonomy of
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Nunes and Jannach (2017). They conducted a review on explanations in recommender
and decision support systems and ranked visualization of input parameters after nat-
ural language-based texts to the second-most used explanation. Further, they rank
different purposes of using explanations in studies according to use frequency. The
most frequent purpose is transparency, followed by effectiveness, trust, persuasiveness,
satisfaction, and education. By integrating textual and visual explanations into our sys-
tem Nutrilize, we tried to increase healthier dietary decisions (efficiency) as well as to
make the parameters for calculating recipe suggestions visible (transparency), which
again should result in higher levels of trust towards the automated suggestions of the
system. Since Nutrilize offers nutrient information on a very fine-grained level, with
textual and visual feedback, it provides educational potential towards an improved
understanding of foods and relating nutrients.

2.4 Evaluation of recommender systems

Food recommender systems are most frequently evaluated in offline comparisons of
algorithms on a benchmark dataset (e.g. Trattner and Elsweiler 2019). Such offline
evaluations often assess a combinationof different evaluationmetrics for recommender
systems (Vargas andCastells 2011) such as accuracy, diversity, and novelty. For recom-
mendations in the food domain, diversity is of special importance for user satisfaction
since food choices are recurrent and frequent. Nutrilize generates new recommenda-
tions each day for all meals. These recommendations should provide diversity on two
different levels: within a recommendation and between recommendations over time.
A similar evaluation of diversity within and between recommendations has been con-
ducted by van Schaik (2019), who proposed package recommendations for healthy
meal plans. Intra-List Diversity (ILD) (Vargas and Castells 2011) is a fitting met-
ric to measure diversity in the context of meal recommendations. The diversity of
recommendations over time is relevant in the food context since food decisions are
recurrent. To measure diversity over time, we use the Self-System Diversity (SSD)
(Vargas and Castells 2011). The SSD considers two subsequent recommendations,
which corresponds to two subsequent days in the case of Nutrilize recommendations.
We additionally propose the Weighted Self-System Diversity (WSSD). It considers
more subsequent recommendations and employs the weighting approach proposed
by Ding and Li (2005) to model the gradual forgetting of past experiences, a notion
presented by Koychev and Schwab (2000). While offline evaluation is frequent and
important, online evaluation such as surveys (Musto et al. 2020) and user studies (Mas-
simo et al. 2017) have becomemore common in the area of food recommender systems.
While many user studies on food recommender systems are conducted in shorter ses-
sions (Massimo et al. 2017), the health-context often requires longer durations to show
the behavioural and physical impact. One limitation of studying the behaviour within
such a setting is that many users behave differently when they are part of a study
(known as the Hawthorne effect (McCarney et al. 2007)). Two similar approaches to
Nutrilize are provided by Alrige and Chatterjee (2018) and Fallaize et al. (2019). To
date, Alrige and Chatterjee (2018) have conducted a quality assessment of the mobile
app without measuring the health-impact. The eNutri app from Fallaize et al. (2019)
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which addresses the level of personalization in nutrition-related apps as proposed by
Chen et al. (2018) and Franco et al. (2016) is close to ours in using the validated
Food4Me Food Frequency Questionnaire (FFQ) (Food4Me 2016) as a basis for offer-
ing automated personalized nutrition advice. However, the eNutri app does not offer
an automated personalized recipe or food item recommendations but only a personal-
ized report. The eNutri app (Fallaize et al. 2019) has been evaluated by asking users
for input and feedback as well as comparing the output to nutrition expert advice. We
evaluated Nutrilize in several focus groups, simulations, user tests, and a pilot study to
verify its validity before showing its impact on perception and interaction in a short-
term study. The work continues this line of evaluation by focussing on behavioural
and physical changes in a long-term study.

2.5 Prior work

The components of the Nutrilize system have been evaluated in several unpublished
pre-studies, a published design concept (Terzimehić et al. 2016), a published pilot
study (Leipold et al. 2018) and a published short-term study on ability-based person-
alization (Schäfer and Willemsen 2019). This incremental validation of Nutrilize can
be presented in terms of the framework of layered evaluation by Paramythis et al.
(2010). This framework consists of five layers: (a) Collection of input data (CID),
(b) Interpretation of the collected data (ID), (c) Modelling of the current state of the
“world" (MW), (d) Deciding upon adaptation (DA), and (e) applying (or instantiating)
adaptation (AA). Beyond these five layers, Paramythis et al. (2010) present sugges-
tions for evaluating adaptation as a whole. Regarding the first layer, the Nutrilize
application collection input data on the food behaviour of users and on the interac-
tions with the different screens. Regarding the quality of food items, we compared
three different nutritional databases regarding the accuracy and variety of nutritional
information. Regarding the nutritional values of recipes, we tested our matching of
recipes to the BLS database with a test set of ground truth samples provided by nutri-
tion scientists. For the tracking of user interactions, we verified the completeness and
validity of our tracking system during our pilot study (Leipold et al. 2018). Regarding
the second layer of interpretation of the collected data, we simulated both the health
recommendations as well as the taste recommendations for prototypical user inputs
and let the results be verified by a potential user, in the taste case, and nutrition sci-
entists, in the health case. For the third layer of accurately modelling the world, we
used focus groups, interviews, and user tests using the think-aloud method to verify
the appropriateness and understandability of our system. On the fourth layer of choos-
ing the fitting form of adaptation, we performed to date only one comparative study
that tests the effectiveness and perception of two different levels of personalization
(Schäfer and Willemsen 2019). Finally, for the fifth layer, we conducted a full pilot
study over three weeks to measure the systems robustness as well as the user’s inter-
actions and perceptions (Leipold et al. 2018). The long-term study presented in this
paper can either be described as an evaluation of the system as a whole instead of a
layer-wise or piece-wise evaluation of specific factors. Many of the components of our
system are interconnected and cannot be measured holistically in separate evaluations.

123



Effects and challenges of using a nutrition assistance… 929

For example, the quality of real user input influences the predictive quality, which in
turn changes the impact of the persuasive and personalized feedback that the system
provides. Thus, during our long-term study we want to collect a variety of in-detail
assessments of a real-life usage scenario.

3 The Nutrilize application

We examined our research questions using the nutrition assistance system Nutrilize.
The early design and background of Nutrilize is described by Terzimehić et al. (2016)
and a pilot study on the general usage of Nutrilize is reported in Leipold et al. (2018).
Schäfer andWillemsen (2019) show the most current version of the system, but with a
Rasch-based tailoring and a Dutch target group. This section will shortly describe all
the features of the current system version used during our long-term study. First, we
describe all features required for tracking the daily dietary intake of the participants,
namely the food-search, food-details, sports-search, and diary. Second,we describe the
recommendation features. Third, we describe all visual feedback screens, namely the
statistics screen, nutrition status screen, home screen, and energy overview. Finally, we
show all the administrative features such as the preference screen, the profile screen,
the login screen, and the settings screen.

3.1 Tracking features

The diet tracking of each user is done using a search interface (Fig. 1a). The user can
either perform a free text search, select the food item from a tree structure, or select
one of his/her recent or favourite items. When choosing a food item, the user can
either directly add the default amount by clicking on the plus button, or first, click on
the food item to receive some more detailed information on the food’s nutrients and
choose a custom portion size to add to the diary (Fig. 1b). The same mechanism is
given for entering physical activity (Fig. 1c). Instead of portion sizes, here the user
should choose the amount of time for the performed physical activity. Finally, the user
can review and update all his entered food items in the diary. Here he can also enter
food for past days or delete wrong entries (Fig. 1d).

3.2 Recommendation features

The recommendation feature shows a list of recommended recipes split by meal type
to the user (Fig. 2a). The ranking of the recipes is based on a weighted average rating
based on 75% of the predicted health rating and 25% of the predicted taste rating of
the user, as described in more detail in Sect. 4. The health rating prediction process is
described in our previous work (Leipold et al. 2018). The taste rating is based on the
relative amount of food types in the user’s dietary history. The user can scroll through
the recommendations and get an explanation of why the recipe was recommended
when clicking the respective button (Fig. 2b). The user can furthermore open the
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Fig. 1 Tracking screens
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Fig. 2 Recommendation screens
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recipe and see related information on ingredients (Fig. 2c), instructions (Fig. 2d), and
the nutritional content of the recipe (Fig. 1b).

3.3 Visualization features

The user can receive visual feedback on his nutritional behaviour in different ways.
The most prominent feature is the home screen, which is shown every time the user
opens the application (Fig. 3a). Here the user sees the six most critical nutrients and
how he should improve their balance in his diet. It also shows a message about how
many of the tracked nutrients are currently in an optimal intake state. The user then
has two options for getting more detailed insights. He either clicks on one nutrient
to access the nutrient-details screen (Fig. 3b). Here he can see his progress over the
last three days and receive information on the nutrient itself, such as the food it is
prominent in, and the effects it has on the body. Additionally, the user can click
on the middle bubble of the home screen to get the nutrition status of all nutrients
(Fig. 3c). All three views are based on the average intake of the previous three days,
excluding the current day. In addition to the immediate feedback, the user can seemore
detailed information on his history in the energy screen and the statistics screen. The
energy screen offers a combined overview of the energy intake and the bonus calories
gained through physical activity over the previous week (Fig. 3d). The statistics screen
offers a visualization of the nutritional history of the day, week, and month (Fig. 3e).
Additionally, it shows the history of profile changes such as weight, physical activity,
or waist-to-hip ratio.

The visual displays of the home, food detail and statistics screen in Nutrilize are
influenced by the theoretical concept of reflective practice by Schön (1983). According
to that, we distinguish between the two concepts of reflection-in-action and reflection-
on-action, whereas we offer reflection-in-action in two different ways. First, when
the user enters the screen, she is provided by the entry screen and a display of the
six critical nutrients. This screen aims at triggering reflection-in-action on individ-
ual nutrient states according to colour codes and advice for action that should be
set into focus when engaging with Nutrilize to plan or search future food items or
recipes.

Furthermore, Nutrilize provides a visualization feature offering a simulation of
future intake based on the current nutrient status of the user. This feature aims at
supporting the user with decision help on his individual nutrition choices besides
the recommendation items. The screen can be entered after using the search through
clicking on search result items—either when searching a single food item through
the search bar, or alternatively when clicking on a recipe offered in the search
result list. The screen content presents the six critical nutrients that are also shown
on the home screen. However, here the colouring of the nutrients indicates if the
critical nutrients would be influenced by the selected food when intaken. Simu-
lated information is shown by three different states of influence—red (containing
exclamation mark for negative influence), green (containing checkmark for pos-
itive influence), and grey (indicating no influence) as shown in an explanatory
legend (Fig. 4c). The simulation screen exists in two variants, a quick overview
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Fig. 3 Visualization screens

screen as described above (Fig. 4a) and an expanded variant (Fig. 4b). The
expanded screen offers simulative information on all 27 nutrients that are consid-
ered within Nutrilize. While only showing simulative colour codes and symbols
on the quick view, the expanded view presents further information for the user,
such as quantity per portion and percentage of the recommended daily require-
ment.
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Fig. 4 Visualization feature offering decision support by simulation

3.4 Administration features

The administrative screens enable the user to configure his experience with the appli-
cation. First of all, the login screen is used to identify the user. After a successful login,
the application should remember the current user when reopening the system. How-
ever, technical changes such as server maintenance might lead to the need of a new
login after a while. Once logged in, the user can administer his application usage in the
settings screen. Here he can change his username and password or switch his tracking
of physical activity to a non-daily basis. In the profile screen, the user can also update
his personal characteristics, such as weight, height, hip measure, waist measure, and
his personal motto/goal. Finally, the preference screen enables the user to exclude cer-
tain food items or food groups from his recommendations, to facilitate special needs
such as vegetarian, kosher, halal, or simply dislike of a specific ingredient.

4 Algorithm for personalized recipe recommendations

The recommender algorithm was reviewed, tested, and refined in collaboration with
nutrition science experts in multiple iterations. Significant extensions compared to
our prior work are the addition of blood value personalization, taste preference, and
explanations. These will be explained in more detail below.
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4.1 Health recommender system

Formal nutrition models need to cover the user profile, food information, and advice
functions. The user profile variables that were considered are: (1) the BMI (Body-
Mass-Index) calculated from the user’s height and current weight, (2) the waist to hip
ration calculated from the hip-measurement and waist measurement, (3) the user’s
basal metabolic rate calculated from age and gender, (4) the total energy expenditure
calculated from the physical activity level and basal metabolic rate, and (5) the user’s
risk for diseases based on blood values. The variables from the user profile are later
used to weight different nutrients in a personalized way. While BMI andWHR (waist-
to-hip ratio) influence the recommended portion sizes, gender and age are parameters
used in the advice functions. The food diary builds a bridge between pure food and
pure user-related information. It is a crucial part of the personalization to consider
previous dietary intake. Regarding the information on food items, two types of input
need to be distinguished. The most critical decision for accurate nutritional feedback
is the choice of a nutritional database. Between the popular options BLS, FDDB, and
FatSecret, only the BLS (Hartmann et al. 2005) offered sufficient types of nutrients
and adequate accuracy. Single ingredients such as an apple are retrieved from the
BLS database (Hartmann et al. 2005) where all nutritional values and information
on the item’s food group are stored. Items in the BLS database consist of multiple
variants (e.g. cooked, baked, raw) of basic food items (e.g. apple), food products (e.g.
milk, yoghurt), and even ready-made meals (e.g. spaghetti bolognese). Recipes can be
crawled from different online sources but need to be matched to the BLS database to
extract their nutritional values (Müller et al. 2012). The final set of recipes is obtained
from the KochWiki (Koch-Wiki 2019) which is licensed under Creative Commons
Attribution - ShareAlike 3.0 (Creative Commons 2020). The KochWiki offers 11.360
recipes focused on everyday cooking, including base recipes for sauces, doughs, or
mixtures for drinks. The recipes used in the application were matched to the BLS with
an adapted version of the matching algorithm presented in Müller et al. (2012). The
final selection of recipes in Nutrilize was screened for both correctness of matching
and usefulness in everyday cooking.

The advice functions used in the Nutrilize system are based on the dietary reference
intake (DRI) from the Institute of Medicine (Institute of Medicine 2000) and the D-
A-CH reference values (D-A-CH 2008).

The general idea of the advice functions is to map the previous intake of nutrients
to a value range from strong increase via maintain to strong decrease. For this, we use
the classification of the DRI curve into five areas shown in Fig. 5. In our algorithm, no
intake, if below the EAR (estimated average requirement), is mapped to 1 for a strong
increase. Intake above the UL (upper limit) is mapped to values below−1 for a strong
decrease. All other values are mapped in a continuous way around the optimal intake
(0 maintain) for values between EAR and RDA (recommended daily allowance). For
example, iron has a value of 1 for high increase when no intake has happened yet.
Once the intake reaches the EAR value, it is represented by a value of 0.5 for increase.
If the intake is above the RDA value, but below the UL, the value is returned as 0 for
maintain. If the intake surpasses the UL, the value will decrease into negative values.
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Fig. 5 Nutrient response curve
of the DRI concept by Otten
et al. (2006)

The recipe value calculation comprises four core components: an intake vector,
a weighted advice vector, a recipe efficacy vector, and the final ranking. The intake
vector is calculated by averaging the consumed amount of each nutrient over a window
of the past three days. Additionally, the amount of intake from each food group was
accumulated in the same way.

Let fd ′, j,p be the value in gram for a food property p on day d ′ of a food item j
with j being the index over all jd ′ food items on day d ′. The cumulated intake vector
ind ′ for a specific day d ′ is then derived as following:

⎡
⎢⎣

fd ′,1,p1 . . . fd ′, jd′ ,p1
...

. . .
...

fd ′,1,pn . . . fd ′, jd′ ,pn

⎤
⎥⎦ ⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

jd′∑
j=1

fd ′, j,p1

...
jd′∑

j=1
fd ′, j,pn

⎤
⎥⎥⎥⎥⎥⎥⎦

= ind ′ (1)

The above-calculated vectors are afterwards put together to get the intake history
matrix.Basedon the cumulated intake historymatrix,we can then calculate theaverage
intake history vector. This vector will contain the average intake ain p for each food
property p ∈ Food Properties over a given window of d days (Eq. 2).

[
in1 . . . ind

] =
⎡
⎢⎣

in1,p1 . . . ind,p1
...

. . .
...

in1,pn . . . ind,pn

⎤
⎥⎦ ⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

1

d

d∑
j=1

in j,p1 = ain p1

...

1

d

d∑
j=1

in j,pn = ain pn

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

For each average intake ain p of food property p, a personalized advice function
ap(ain p) is applied to map the values to a range from -n to 1. The unbounded negative
range is needed to encode increasing harm with increasing intake of nutrients beyond
the upper limit. This advice ap is personalized by gender and age. After generating
all advice values, the number of nutrients multiplied by the weights wu,p based on the
groups a user u is attributed to by blood measures. If users are in multiple groups, such
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as high cholesterol and triglyceride, their nutrients will receive an average weighting
wu,p based on the nutrient weights in each group. The two vectors ap and wp are
multiplied using the Hadamard product. The final advice vector contains the weighted
advice wau,p with values ranging from 1 (increase intake), via 0 (maintain intake) to
−n (decrease intake, unbounded).

⎡
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ap1(ain p1) = ap1
...

apn (ain pn ) = apn

⎤
⎥⎦ ◦

⎡
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wp1
...

wpn

⎤
⎥⎦ =

⎡
⎢⎣
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...

wapn

⎤
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The recipe efficacy vector summarizes the contribution of a recipe r to each nutrient
advice. The recipes are scaled to the portion size according to the users personalized
recommended energy intake before comparing their nutritional content. The recipe
efficacy is calculated by multiplying (Hadmard) the recipe food properties with the
user’s weighted advice wau,p.
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The final health rating is based on the weighted sum of recipe efficacy values,
wherein all nutrients are additionally boosted (u3) to further emphasize the most
critical nutrients (highest/lowest weights). Rankings are based on a weighted average
of both the final predicted health rating and the predicted taste rating, with higher
values indicating a better ranking split between meal types.

n∑
i=1

u3
r ,u′,pi

< · · · <
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i=1

u3
r ,u′,pi

(5)

Finally, the algorithm was used to generate explanations for each recommended
recipe based on the most influential nutrient in this recipe’s final rating. The explana-
tion texts were handcrafted by collaborating nutrition experts from the enable project
(enable cluster 2017) and emphasized positive attributes of the respective nutrient.

4.2 Personalization by blood parameters

To further personalize the dietary recommendations, we included dried blood spot
parameters, such as whole blood levels of omega-3 fatty acids (Mashavave et al. 2016;
Sarter et al. 2015), cholesterol (Corso et al. 2016; Lakshmy et al. 2010, 2012), triglyc-
eride (Lakshmy et al. 2010, 2012), and homocysteine (Gempel et al. 2000; McCann
et al. 2003). If levels were normal, dietary recommendations would not change. If lev-
els were slightly suboptimal (orange) or critical (red), certain nutrients were weighted
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stronger in the recommendations. Fruit and vegetable (Aune et al. 2017), as well as
red meat (Wolk 2017), were included in each food item as an additional non-nutrient
food property because they seem beneficial or harmful beyond their nutrient content.
To integrate this into the algorithm, we created the following groups:

• Group 1: Omega-3 index between 4 and 8 (orange)
• Group 2: Omega-3 index below 4 (red)
• Group 3: Cholesterol levels between 200 and 240 mg/dl (orange)
• Group 4: Cholesterol levels above 240 mg/dl (red)
• Group 5: Triglyceride levels between 150 and 200 mg/dl (orange)
• Group 6: Triglyceride levels above 200 mg/dl (red)
• Group 7: Homocysteine levels between 15 and 30 micromol/l (orange)
• Group 8: Homocysteine levels above 30 micromol/l (red)

Suboptimal levels in the omega-3 index (eicosapentaenoic acid (EPA) and docosahex-
aenoic acids (DHA) expressed as a percentage of total fatty acids) would only affect
recommendations on omega-3 fatty acid intake (Harris et al. 2009). Group 1 having
only a slightly suboptimal omega-3 index would get an increased weight on recipes
with high omega-3 fatty acid content. Group 2 would get a higher weight than group
1 on recipes with a high omega-3 fatty acid content, as they have a critical omega-3
index. Suboptimal cholesterol levels are linked to energy intake, saturated fatty acid
intake (Hooper et al. 2020), cholesterol intake (Lin et al. 2018) and intake of dietary
fibres (Sima et al. 2018), as well as fruit and vegetable intake. The total energy of
the recommended dishes would be reduced, recipes with high saturated fatty acid and
cholesterol content would be ranked lower, while recipes with high fibre and fruit and
vegetable content would be ranked higher in the recommendations. Modifications in
group 4 are similar to group 3 but more pronounced. Suboptimal levels of triglycerides
(c.f. groups 5 and 6) would change the recommendations towards a reduction of satu-
rated fat intake (Hooper et al. 2020) and increases of omega-3 fatty acid, dietary fibre,
and fruits and vegetables. Recipes with high saturated fat would be ranked lower in the
recommendations, while recipes with a high content of omega-3 fatty acids, dietary
fibre, or fruit and vegetable content would be ranked higher. Suboptimal homocysteine
levels (c.f. groups 7 and 8) would change the recommendations to advise increased
intake of the vitamins folate, vitamin B6, and B12 (Clarke and Armitage 2000) as well
as increased intakes of fruits and vegetables (Martí-Carvajal et al. 2017). Accordingly,
recipes or foods rich in these nutrients or food groups would be ranked higher for par-
ticipants in group 7 and even more pronounced in group 8.

4.3 Taste recommender system

While the target of our system is clearly to provide healthy recipe recommendations
and our target user group is also focused on this goal, we added a taste component
after feedback from our pilot study (Leipold et al. 2018). Since taste preferences
often conflict with health recommendation, the final ranking is based on 75% of the
predicted health rating and only 25% of the predicted taste rating. Additionally, both
ratings are shown in the list of ranked recipes, and each recipe is colour-coded by
the health rating. Besides the taste recommendation, any dietary restrictions can be
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modelled by filter preferences. The user can exclude individual food items of full food
groups from all recommended recipes. Since the user already has a high task load,
asking for ratings might further decrease engagement and adherence. We thus built an
algorithm to derive preferences from past consumption patterns. The recommendation
strategies are based on the user’s intake tracking over the past seven days, separated
by meals. For instance, if a user always eats strawberry yoghurt for breakfast, the
algorithm would rank breakfast recipes with fruit and milk products higher. All food
items in the BLS and all recipe ingredients have a BLS identifier. This identifier
indicates the type of food items with 20 main categories, such as “bread", and ten
subcategories such as “tropical fruits". The items in a user’s food diary are aggregated
by their category or subcategory and weighted according to their frequency over the
past seven days. We chose a moving window of seven days to accommodate changed
behaviour into the preference modelling. Otherwise, old habits would be incorporated
into the recommended recipes and impede the acceptance of new healthier choices.
The recipe rating from 1 to 5 is predicted according to its ingredients. Several pre-
studies have been conducted to test the performance of our taste-recommender against
different collaborative filtering methods. An initial offline experiment was conducted
with 38 overlapping ratings from 6 users on 22 recipes chosen at random from a
total set of 171 recipes. A set of seven standard algorithms was evaluated with NDCG
(NormalizedDiscountedCumulativeGain) andMAP (MeanAveragePrecision) acting
as comparative evaluation metrics according to Said and Bellogín (2014). The best
performance in NDCG was achieved with an implicit matrix factorization method
by Hu et al. (2008). In a follow-up user study, 13 users rated a subset of 50 recipes
from a total set of 171 recipes. The participants’ task was to simulate ratings from
a 29-year old male, of which they had a 7-day diary. The participants were eight
women and five men aged between 20 and 60. This evaluation aimed to see whether
a diary-based rating prediction would show similar results compared to average user-
generated ratings. The taste rating showed a high overlap between the top 6-8 recipes
from the ratings and the diary-based list. Due to the artificial situation of simulating
ratings from a diary, a second user study focused on diaries and ratings from the same
person. The study collected more than 100 ratings from each of the three participants
on 240 recipes. The same three participants were asked to fill in their food diaries for
seven days. The resulting top three rankings for four meal types from both diary-based
strategies and the best three standard rating-based algorithms were shown to the three
users for evaluation. Overall, the users preferred the diary-based lists to the standard
algorithms, with the implicit matrix factorization method by Hu et al. (2008) again
being the best performing algorithm.

5 Evaluation

This study uses both effect differences between group and effects within subjects.
It is split into two waves of participants with slightly adapted conditions. The first
wave consists of 11 application users (I) and 11 control group users (C) and has a
duration of 3months. The first wave is important to note the difference to a control
group and to see the long-term effect of both groups. The application group of this
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wave could furthermore volunteer for an interview at the end of the study. The second
wave consisted only of application users and had a duration of 2 months. Part of the
participants had previously conducted the control group of the first wave and thus gave
detailed insights into changes of users over time. The second wave of participants had
to additionally conduct an interview after four weeks and another one after the full
eight weeks. We thus call this group the qualitative group (Q) or, if previously in
the control group and the control qualitative group (CQ). We expect the application
group to show higher improvements than the control group. At the same time, we
monitor the system interactions, the nutritional behaviour, and several questionnaire-
based outcome measures of all participants. We expect the interview data to give more
background information and input on the rationale of the quantitative analysis of the
data.

5.1 Study procedure and participants

An overview of the study flow is given in Fig. 6. Before starting the study, we had
the proposal reviewed by the data protection commission of TUM (accepted on 9th of
May 2017) and the Ethics committee of the Klinikum Rechts der Isar (ID 477/16 S).
The study is subdivided into 4 phases. The first phase is the screening process. Every
participant had to complete a screening survey. If they fitted all the criteria, they had to
send in their informed consent form. The second phase consisted of different surveys
to collect the pre-study condition of the participants. The third phase consisted of 2–
3months of application usage or, in case of the control group, general nutritional advice
via email. The third and final phase consisted of different surveys to collect the post-
study condition of the participants. In the second wave, the participants additionally
conducted interviews after four weeks and eight weeks. Figure 6 shows the number of
participants completing the different studymeasurement points in eachgroup.Between
the initial recruitment and the final survey, we observed a dropout of 20–50%. The
dropout in application usage might differ from the dropout in survey participation.
The high dropout was expected for a realistic usage of this type of application since
none of the participants was paid for conducting the study. As a small reward, any
participant that conducted all measurements would receive a personal report on his
nutrition during the study.

The participants were recruited using different articles and announcements in news-
papers, such as the newspaper “Südddeutsche Zeitung" (Südddeutsche Zeitung GmbH
2019), the local newspaper of Freising, an online article in the magazine “Ernährung-
sumschau" (Ernährungsumschau 2019), and an article in the university’s news media
(TUMWZW 2019). The targeted user group is slightly overweight and not yet obese,
who want to improve their health and well-being without much emphasis on weight
loss. However, participants with other BMI values were not excluded from partici-
pation. The screening was accessed by around 70 interested participants, of which
around 40 finished the full screening survey. The screening excludes any participants
that are minors, that have food allergies or intolerances, that suffer from illnesses
which are influenced by diet (e.g. diabetes, liver, kidneys, lungs, heart disease, thy-
roid disease, anaemia), that are currently pregnant, that are following a strict diet, that
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Fig. 6 Flowchart of the study procedure in each group. Overall measurements retrieved from 34 unique
users in two different waves. Five users participated first in the control and then in the qualitative group
leading to 39 participation datasets. Detailed measurements at each time-point are listed in Table 1

have no Android device, and that have no internet access. Any participants that passed
the screening received the informed consent form. As discussed above, the study was
conducted by 34 of these participants who have each given their consent to the partici-
pation beforehand. As in previous studies (Leipold et al. 2018; Schäfer andWillemsen
2019), we have a strong bias towards female participants (29/34). The average age is
higher than in the previous studies with a maximum average of 41 in the intervention
group and a minimum average of 33 in the qualitative group. The average BMI is very
similar in the intervention and control group (around 29). The two qualitative groups
(CQ/Q) have a slightly lower average BMI of 28 for the purely qualitative group and
26 for the participants that already did the control group. It is interesting to note that
the control-qualitative group has the lowest BMI indicating either a bias of which
people want to continue the study or the effects of the previous control intervention.
Since the final questionnaire was only filled in by some participants, the data on user
characteristics should be viewed with caution. While in the intervention group, three
of the four final questionnaires indicate a university degree, less than half of the final
questionnaires do so in the other groups. The average number of interactions with the
application range from 18342.64 per user in the 3-month group (I) to 14585.71 per
user in the 2-month groups (CQ and Q).
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5.2 Data collection

An overview of the assessed measurements if given in Table 1. We had five different
measurement types in this study. First, we measured the changes in physiology and
eating behaviour using three standardized questionnaires (Norman (Norman et al.
2001), Baecke (Baecke et al. 1982), FFQ (Food4Me 2016)). Second, we measured
the users eating habits throughout the study using the apps dietary diary. Third, we
measured the users’ interaction with the system using a tracking Matomo, formerly
named Piwik (Matomo 2020). Fourth, wemeasured the users’ subjective perception of
the system [SUS (Brooke 1996), questionnaire from Schäfer and Willemsen (2019)],
their dietary change [based on Shannon et al. (1997)], and their personality (Kaptein
et al. 2009; Rammstedt et al. 2013). Finally, we interviewed the participants on their
interaction, their system perception, their dietary change, their motives and the effects
of the application.

5.2.1 Standardized surveys on nutrition and physiology

All participants had to fill out three standardized surveys at the beginning and the end
of the study to be able to compare the changes. The first survey is a food frequency
questionnaire (FFQ) (Food4Me 2016) that covers the approximate intake of 150 typ-
ical food items over the past months. The items are connected to their nutritional
information in the BLS, and each portion size (chosen by image) is recorded in grams.
To ease the usability of this survey, the standard portion size is used for items that are
only rarely eaten. The second survey is a Norman questionnaire (Norman et al. 2001)
that investigates the physical activity level of a person. In combination with the normal
questionnaire, we also asked the user for a repeated entry of his weight, height, waist
circumference and hip circumference. Finally, the Baecke survey (Baecke et al. 1982)
gives a more detailed insight into the physical activity a user is doing during work,
leisure time and physical activity.

5.2.2 Daily eating habits

All the non-control group users were tracking their nutrition using our application.
Therefore, we have measures of any food item being consumed, their portion size, and
their nutritional values. Furthermore, we track which of the nutrients were focused in
the home-screen on the day an item was consumed. The six nutrients shown on the
current day are called “focused" nutrients, while all others are “unfocused" for this
day.

5.2.3 User interaction

Using the Matomo tool (Matomo 2020), we tracked the timing and duration of each
interaction with the screens described in Sect. 3. Furthermore, we can extrapolate the
number of interactions with each screen on a daily basis.
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Table 1 Overview of variables assessed and questionnaires used in this study

Scales and references Values Timing

Demographics Age, Gender, Job, Education,
Cooking

Pre and Post

Anthropometrics Weight, Height, Waist, Hip, bmi,
whr

Pre and Post

Norman (Norman et al. 2001) Physical Activity Level Pre and Post

Baecke (Baecke et al. 1982) Leisure, Work, and Sport Activity
Index

Pre and Post

ffq (Food4Me 2016) Amount of Food Items, kcal,
Nutrients

Pre and Post

Daily Tracking Daily Amount of Meals, Food
Items, kcal, Nutrients, Physical
Activity

During

Logging Screen, Action, Items During

Dietary Change questionnaire
(Shannon et al. 1997)

Fibre, Sugar, Fat, Salt, Fruit,
Vegetables, Portion Size

Post

bfi10 (Rammstedt et al. 2013) Neuroticism, Openness,
Diligence, Extraversion,
Compatibility

Post

stps (Kaptein et al. 2009) Reciprocation, Scarcity,
Authority, Commitment,
Consensus, Liking

Post

Screens Liked 5 Point Likert Scale per Screen Post

Helpful Screens 5 Point Likert Scale per Screen Post

Perceived Usefulness (Venkatesh
and Bala 2008)

Score Post

sus (Brooke 1996) Score Post

Intention of Use and Payment Yes/No, Payment Type, Payment
Sum

Post

Visualization Screens Understandable, Informative,
Appealing, Unnecessary,
Helpful, Learning, Helpful
Changing, Motivating

Post

Recommender System Perception Healthiness, Tastiness,
Personalization, Diversity,
Effort

Post

System Perception Effort, Effectiveness, Choice
Difficulty, Choice Satisfaction

Post

5.2.4 Self-reported measures

In the final survey, after using our application, we ask the users several questions on
their subjective perception. First, we ask about the perception of the system. Besides
a rough estimate the usability of the system with a SUS questionnaire (Brooke 1996),
we ask feedback on each application feature about their helpfulness and likability. We
furthermore ask four questions on the impression of the overall perceived usefulness
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of the system (Venkatesh and Bala 2008), and three questions about the intention of
use in the future. Finally, we surveyed our users on nine subjective constructs. Five
of these constructs focused on the perceptions of the recommendations: perceived
healthiness (5 items, i.e. “the recommended recipes were relevant for my health"),
perceived tastiness (4 items, i.e. “the recommended recipesfittedmy taste preferences",
perceived personalization (4 items, i.e. “the recommended recipes were well adapted
to my eating habits"), perceived diversity (4 items, i.e. “the recommended recipes
were very diverse"), the perceived effort of preparing (4 items, i.e. “the recommended
recipes were hard to prepare"). Four constructs focused on the interaction with the
system: system effort (5 items, i.e. “the Nutrilize app worked very easily"), system
effectiveness (4 items, i.e. “With the app, I make better dietary decisions"), choice
difficulty (4 items, i.e. “Comparing the recommended recipes took a lot of effort")
and choice satisfaction (5 items, i.e. “I am happy with the recipes I have chosen"). For
all survey items, users indicated on 5-point Likert scales to what extent they agreed
with them. Furthermore, we analyse the usefulness of each visualization using 10
items (i.e. “The xx screen helps me understand my personal nutrient status."). Second,
we ask the users about their perceived dietary changes using a standardized dietary
change questionnaire (based on Shannon et al. (1997)). Third, we ask the user about
their personal characteristics (e.g. job, education), their cooking habits (e.g. cooking
type, cooking frequency), and their personality using a 10-item big five questionnaire
(Rammstedt et al. 2013).

5.2.5 Interview data

We constructed interview guidelines for different semi-structured in-depth interviews
in the middle of the study and the end of the study. These guidelines were used by the
interviewer to structure the conversation while leaving the user the freedom to move
back and forth between topics. For participants from the intervention study group, we
only conducted one optional interview at the end of the study, where we used most of
the mid-study interview guidelines plus some questions on future system usage. The
first interview guideline is split into four areas of interest. The first area of interest
covers changes in nutrition, with one block focusing on the actual changes and a
second block focusing on difficulties and relapse patterns with these changes. With
these questions, we want to verify the differences between observable nutrient intake
changes and conscious change efforts by the user. The second area of interest covers
the interaction with the application with one block focusing on interaction habits,
one on the effect of the system components, one on difficulties with the system, one
on the visualizations, and one on the recommendations. With these questions, we
want to determine why some features are considered more helpful or more popular
by users. The final area covers either previous experience with nutrition application
(mid-study of the qualitative group) or future usage of nutrition application (end-study
of intervention group). Both variants focus on the comparison of Nutrilize with other
applications and the pro and cons of either system. With these questions, we want
to determine the limitations of our system for future work. The second interview
guideline is again split into four areas of interest. The first area covers changes in
eating motives and habits compared to the first interview with one block focusing on
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changes in eating perception after using the application and a second block focusing
on difficulties and relapse patterns with the eating changes. We hypothesize that more
relapses and difficulties have occurred compared to themiddle of the study. The second
area of interest covers the interaction changes compared to the first interview with one
block focusing on interaction habits, one on the interaction motives. We hypothesize
that interactions have declined and the satisfaction with some features over others
has increased. The third area of interest covers the perceived effects of the study
on nutrition knowledge, physical attributes, and psychological attributes. With these
questions, we want to determine whether measured changes are also perceived by the
user. The final area covers the future usage of nutrition application with one block
focusing on the Nutrilize system and one on other possible replacement systems. All
interviews were fully transcribed. The first run of coding the interview transcription
was done using a deductive method with motives and categories derived from the
literature or the final survey data. The second run of more detailed coding was done
using the inductive methodology by going through the text and refining the deductive
motives/categories with the existent transcription.

5.3 Results

The following result section is structured in line with our research questions on the
influence of the system on the users’ (a) physique, (b) nutrition behaviour, (c) system
interaction, and (d) system perception. The final section gives insights into the context
of these results extracted from semi-structured interviews. We hypothesize the highest
changes in physique and behaviour in the intervention group (I) and the lowest in
the control group (C). We further expect higher dropout in the group with a longer
interaction duration (I) than in the group with a shorter interaction duration (Q/CQ).
Regarding the perception, we expect user to develop a preference for one type of
persuasive feature (feedback, instruction, planning).

5.3.1 Standardized pre-/post-study measurements

This section discusses the change in measurements pre- and post-study. We only
included participants that have all pre-/post-measures covered. This restriction may
bias the analysis toward motivated participants.

The pre-/post-study analysis of dried blood spot measurements was not possible
due to challenges in data retrieval. The participants received a tutorial video and
instruction manual to guide them through the process of taking the dried blood spot
samples at home. Additionally, they received all the equipment for this process via
mail. The experience from the Food4Me study about the quality, compliance, and
feasibility of taking DBS (dried blood spot) samples at home was very positive. At
the starting point of our study, we received DBS samples from 20 participants out
of 22 (I/C) participants. After three months, we only received DBS samples from
12 participants out of 22 (I/C) participants. The quality of the DBS spots was often
questionable. Future studies should develop a clear protocol of DBS quality evaluation
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Fig. 7 Difference in energy intake (in calories) and physical markers after the intervention. No significant
change in BMI (I: t = 0.12, p = 0.91 Q: t = 0.28, p = 0.78 CQ: t = 0.09, p = 0.91 C: t = 0.93, p = 0.85). No
significant change in WHR (I: t = −1.56, p = 0.20 Q: t = 0.06, p = 0.96 CQ: t = −0.64, p = 0.58 C: t =
−0.07, p = 0.95). For intervention group marginally significant difference in kCal (I: t = 2.26, p = 0.06 Q:
t = 0.86, p = 0.41 CQ: t = 0.39, p = 0.73 C: t = 0.53, p = 0.61)

to determine, which ones can be measured and which ones have to be excluded due
to lack of quality. Alternatively, DBS sampling could be done by professionals.

Figure 7a shows how the energy intake decreased after the study according to the
FFQ. The strongest effect is visible in the intervention group, which used the Nutril-
ize systems for 3 months. The weakest effects are visible in the control group and
the control-qualitative group. The qualitative group, which was using the applica-
tion for two months, has a similar but weaker effect compared to the intervention
group, with most participants reducing energy intake. In line with the small changes
in energy intake, the dependent physique measures by BMI and WHR showed almost
no difference. Figure 7b shows the difference in BMI for the different groups after
the intervention. All groups show a slight decrease in the median BMI. There are no
strong differences between the groups. Figure 7c shows there is almost no difference
in WHR for the different groups after the intervention.

The nutrition ability is calculated as shown in Schäfer and Willemsen (2019), by
summing up the Rasch difficulty level of the six worst-performing nutrients of a
particular user’s FFQ. The minimal possible ability would thus be 21 and the maximal
potential ability of 159. In the rare cases where less than six nutrients are critical,
the scale is continued with hypothetical nutrients 24–29. Figure 8 shows the initial
ability, the final ability, and the changes of ability. The user’s abilities spread between
48 and 125 at the beginning of the study (Fig. 8a) and between 52 and 125 at the end
(Fig. 8b). It is interesting to note that the groups that interacted with the application
have a low but positive median change of ability. In contrast, the control group has a
negative median change of ability. However, the small number of participants makes
a statistical estimate of this difference unreasonable.

The physical activity was collected from the Norman and Baecke questionnaires.
Almost all groups have a median change of their physical activity level around 0.
According to the Baecke questionnaire, most groups show a slight increase in activity,
while the intervention group shows a slight decrease in activity with large deviations
for single participants.
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Fig. 8 Nutritional ability over the study in each group. No significant change in ability (I: t = −0.05, p =
0.96 Q: t = −0.17, p = 0.86 CQ: t = −0.43, p = 0.69 C: t = 0.09, p = 0.92)
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Fig. 9 History of energy consumption in the pre-study FFQ, during the study, and in the post-study FFQ

5.3.2 Effects of the system on nutrition behaviour

The daily nutritional data give us a rich insight into the behaviour of each user over
a long-term intervention. First of all, we will compare the energy intake and the
nutritional ability with the data from the standardized FFQ that we discussed in the
previous section.

Figure 9 describes the energy intake in both surveys and from the daily tracking tool.
In this figure, we combine data from all participants that were using the application
(I, Q, CQ). As in our previous studies (Leipold et al. 2018), the energy measurement
is higher in both FFQs than in the daily tracking. While the energy calculated based
on the FFQ shows a decrease between the beginning of the study and the end, the
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daily tracking is much more consistent over time with similar median intakes at the
beginning and end of the study. However, the energy intake seems to fluctuate strongly
between days. Furthermore, the fluctuation changes around day 60, when the group
Q and CQ stopped using the application, and the data only represents the I group or
those participants that have not dropped out at that stage of the study.

Since the nutrient success (daily intake within optimal personal range) is dependent
on a lot of other variables, as shown in Schäfer andWillemsen (2019), we looked at that
dependency. The number ofmeasurements decreases strongly over time. This decrease
was not visible in the short-term study (Schäfer and Willemsen 2019) since it only
covered the first 12 days, which are also quite homogeneous in this study. Nutrients,
which have no determined focus are mostly appearing at the beginning of the study.
This is reasonable since the NoFocus state only appears when there is a lack of data to
determine the focus. Both successful nutrients and unsuccessful nutrients are equally
distributed over the time, indicating that the dropout is not influencing or biasing the
success measurement. The distribution of focused and unfocused nutrients over time,
groups and energy intake is always comparable. The only difference we note is that
unsuccessful nutrients are occurring more strongly in the focused nutrients. This is to
be expected since the algorithm determines the six worst-performing nutrients of the
previous three days for the focus list. We further see that both qualitative and interven-
tion group have more successful than unsuccessful nutrients. The CQ group, however,
has an almost even split between the two. Finally, higher energy intake coincide with
higher success rates as indicated in the daily energy and nutrient timelines.

To get a closer insight into the influence of the different parameters on the overall
success, we built a multilevel logistic regression model. We decided to use a mul-
tilevel model to incorporate user differences without losing the power of modelling
all collected interactions. The logistic regression is due to the binary nature of the
outcome variable of optimal/successful vs non-optimal/-successful intake of a nutri-
ent. We want to show that while on short-term, the application did not yet affect the
nutritional ability over time, it will do so in the long-term. First, we want to prove
the comparability of the short-term and the long-term dataset, in order to exclude any
bias given by the different country, different nutritional database and different recipe
dataset. Thus, we focus on the first 12 days of the dataset and compare the same model
as in our short-term study (Schäfer and Willemsen 2019).

Table 2 shows the comparison of the short-term dataset and the first 12 days of
the long-term dataset. Although the estimates are different, in most cases the variables
show the same effect on the success in bothmodels. Schäfer andWillemsen (2019) give
a detailed discussion of these influences and coefficients. One important difference
is that while the recommendations were a significant factor in the Dutch study, they
are not in the German study. Also, in both studies, the time factor was not significant
during the first 12 days. Now that we have shown the data behave in a similar way,
we extend the model to the full long-term study. Table 3 shows the comparison of
the first 12 days of the study with the full duration dataset. We can immediately see
that with the additional available data, all the factors of the model become highly
significant (p<0.001). Thus, we can focus on the direction of the effects. As before,
the Rasch scale is loosely represented in the tracked data, except for the fifth level that
seems to be easier to achieve than expected, but as discussed in Schäfer andWillemsen
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Fig. 10 History of interactions during the study excluding tracking actions. The additional black numbers
on each bar indicate the number of unique users on that day

(2019) also is highly influenced by the energy intake. Most importantly, the effect of
time, that was not visible before is now a strongly significant positive effect. Also,
the recommendation interactions, as the only representative for interactions in this
model, are significant in the long term but not in the short term. As our previous work
(Schäfer and Willemsen 2019) has shown, the recommendations may not be the best
representation of interactions since the system has many more features intervening
with the user’s decision. Thus, the next section will consider the user’s interaction
with these features and their influence on the behaviour change.

5.3.3 Long-term system interaction

Besides the nutrition from the tracking tool of our application, we have tracked the
interactions with the system over time. Since our previous work (Leipold et al. 2018)
shows that the most time-consuming activities are the tracking actions, we first want
to analyse the interactions on a high level and then zoom down into the detailed feature
interactions.

Among the high-level screen categories (Tracking, Recommendations, Visual-
izations and Administration), the tracking feature comprises around 58–93% of all
interactions with an average of 83%. The overall interaction further decreases dras-
tically over time, with only half of the initial actions per day after a period of four
weeks. This is partially due to less than daily usage, and partially due to shorter usage
sessions.

To get a closer look into the distribution of feature usage,wewill exclude all tracking
interactions in Fig. 10. The first thing to note is the continuous decrease of interactions
over time. This decrease behaved differently for the types of activities. While the visu-
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alization interactions decrease very slowly, the tracking activity increases drastically.
The recommendation interactions stay on a similar level over the first weeks but then
decrease into almost no interaction. The administrative screens have most of their
interactions in the first week, which is to be expected due to their functionality. As
shown in our previous work (Leipold et al. 2018), the statistics screen has the most
interaction of all features. Considering the long term changes in interactions, we can
also see that the statistics screen is one of the few to be still used at the end of the
study. From the other visualizations, the nutrient details and the nutrition status, which
are both accessible over the home-screen visualization, have the strongest number of
interactions and even a long persistence over time, while the energy visualization is
of minor importance. The usage of the administrative screens decreases very quickly
after the start of the study. The only screen that has some longer activities is the profile
screen, where users can enter changes in weight and other body measures. Finally, the
recommendations have a fair share in interactions at the beginning of the study but
quickly decrease into a minor percentage of the interactions around the middle of the
intervention.

To see, not only which screens the users liked to interact with most, but also which
screens finally influenced the users’ nutritional behaviour, we excluded the interactions
of the current day into the previous multilevel logistic regression model on nutrition
success. Table 4 shows the results of these models. As with the visual insight, we first
derived a high-level model and then moved into a model considering each screen. The
first thing to note is that all the previous effects of the nutrition Rasch-level, the energy
intake and the nutrient focus have stayed similar to the previousmodel. In the high-level
model, we see that while the tracking and visualization screens have a positive impact
on the nutritional behaviour, the recommendations have no significant impact and the
administrative features have a negative impact. Since the recommendation interactions
are not further distinguished, they still have no significant effect on the behaviour in
the detailed model. Regarding the tracking interactions, the screens responsible for
the positive impact on the nutritional behaviour are the food-search and even more
so the food details. This is to be expected since the food search indicates a diligent
tracking and thus well adjusted nutritional information for the model. In contrast,
the food details might even indicate a planning/ decision process during the tracking
action. Out of the visualization screens, the most influential scenes are, in line with
the number of interactions, the statistics screen, the food-details screen, and the home
screen. The visual feedback interactions are reviewed in more detail in the following
section.

5.3.4 Usage behaviour related to feedback types

The tracked usage data provide us with detailed usage durations for each screen. We
specifically analyse and compare the usage duration for the most influential visual
feedback screens such as the home screen, the food-details screen and the statistics
screen. These screens relate to different visual feedback types rooted in reflective
practise such as reflection-in-action feedback by the home-screen and a specific variant
of reflection-in-actionby the food/recipe details screen thatwe call simulative feedback
as well as reflection-on-action feedback with the statistics screen.
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Fig. 12 Distribution of total home screen usage duration per user

Figure 11 shows all mean values for all feedback types in a timely perspective.
Most obvious from this figure is that all three features are used over the whole period
of study. In the first two-thirds of the study period, there is a more prominent use of
the home screen as well as the food detail screen than of the statistics screen. We
explain this behaviour due to the possible interests of users in their actual status of diet
and potential ways to improve it. While the utilization of the statistics screen remains
relatively low compared to the usage of the other two screens, it starts to increase
with the second half of the study. This behaviour might further be explained by the
increasing amount of tracking data available in the historical self-monitoring later in
time.

We further evaluated the absolute accumulated usage duration from all users for all
three screen types. Primarily, the Figs. 12, 13 and 14 depict a high difference between
usage durations of users within each screen type. All three analysed screen types show
longer usage durations for 4–5 users, but not all screens are used highly by the same
users. User 25 seems to be very active in general (883s (∼ 15min), 471 seconds (∼
8min), and 496s (∼ 8min)), user 7 seems to favor the home screen with 571s (∼
10 minutes), user 20 the statistics screen 350s (∼ 6min), and user 3 the food details
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Fig. 13 Distribution of total food details screen usage duration per user
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Fig. 14 Distribution of total statistics screen usage duration per user

1000s ∼ approx. 17min. Most users have only very short usage durations on all three
screens.

Besides the duration, we can also investigate the type of actions conducted fre-
quently on each of these screens. Looking at the most frequently used features within
the home screen, we can observe that the most used functions are of administrative
nature like the “Add meal button” and “Navigation item”. The visualized features
result in higher frequent use than the “Recommendation button”, but less frequent
than central functions like adding meals or using the navigation menu. The most fre-
quently used function in the food/recipe detail screens scrolling the food details view,
followed by adding the standard or custom portion sizes of a food item. However,
functions related to recipe details or an extended view of influenced nutrients or the
info button appear less frequent. For the statistics screen, no actions besides the time
frame selection were possible, leading to a clear visual feedback intent for all statistics
actions. Regarding this time frame, the most used screen was the weekly overview
with 54.8%, followed by daily with 27.4%, and monthly with 17.8%.

Overall, despite the positive usage duration for the three central visual features, the
attention on the actual visual feedback seems to be limited. We thus want to compare
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how the users perceived the screens which we have shown to be both popular and
influential. The next section shows the system perception that we examined during the
final survey.

5.3.5 Perception of the system after long term usage

System perception was part of our final survey. Since we can only examine the survey
by the participants that both finished the survey and used the application, the number
of samples is reduced to 12.

First, we look at the popularity of the different feature screens. We showed in the
previous sections that the statistics, the nutrient status, and the food details, reachable
over the home screen, are the most used screens. During the survey, the users gave the
following ratings for how much the liked each screen on a 1–5 Likert scale (Table5).
We see that the frequently used screens are also the ones that reached a rating of
around 4. Additionally, the energy overview and the profile were liked but not used
that often. The recommendations were the least popular feature, which might explain
the difference in impact between the model of this study’s first 12 days and the Dutch
study (Schäfer and Willemsen 2019).

Second, we look at the perceived helpfulness of screens.We showed in the previous
sections that the most influential positive screens were the statistics, home-screen, and
the food-details within the food-search. During the survey, the users gave the following
ratings on a 1–5 Likert scale (Table 5). The home screen and the statistics have high
ratings, confirming their helpfulness. Instead of the food-search and food-details, the
users perceived the diary and the nutrient status list as helpful, which had no significant
effect in our model.

Third, we wanted to take an even closer look at the visualizations and how they
were perceived. The users answered several questions to each visualization about per-
spicuity, helpfulness, and similar items. The overall scores are shown in Table 6. As
indicated in the previous measures, all the screens received excellent feedback, with
the highest rating going to the home screen, the nutrient status screen, and the statistics
screen. We draw a relation between the ratings and the usage behaviour in terms of
timely duration on the screens (see Sect. 5.3.4) as the home screen achieves the highest
rating in terms of understanding and helpfulness and further belongs to the screens
with the longest usage duration. Here, we could associate a longer usage duration with
a higher user satisfaction when using the features of the screen. However, this does
not hold true for the food-details screen, which receives the lowest rating for under-
standing/helpfulness compared to the home screen but achieves the second-highest
usage duration after the home screen. Here, a longer usage duration could mean that
users had problems in quickly understanding the screen. Further, the statistics screen
achieved the highest average rating in the quality assessment, although it reached the
last place in the overall usage duration. This could probably mean that users appreci-
ated the screen but did not use it longer since the interface contains commonly known
graphics (trend lines), which mostly every user can interpret quickly.

Fourth, we wanted to take a closer look at the recommendations and how they were
perceived (Table 7). For this, we used the same questionnaire as in Schäfer andWillem-
sen (2019). The highest positive feedback was given to diversity and overall system
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Table 6 Quality assessment of visualization screens with a combination of several items on a 1–5 Likert
scale

Measurement Home screen Nutrient status Nutrient details Statistics Nutrient previewNutrient full review

Average 4.09 4.16 3.79 4.27 3.42 3.6

Minimum 3.3 3.5 2.1 3.7 1.1 2.1

Maximum 4.7 4.7 4.6 4.8 4.9 5

Table 7 Quality assessment of recommendations aspects

Measurement Health Taste Diversity Personalization Difficulty System Effort System Effectiveness

Short-term average 3.20 3.10 3.16 2.99 3.19 3.44 2.87

Long-term average 2.73 2.6 3.5 2.54 3 3.15 3.84

The short-term average shows the recommendation perception from the short-term study (Schäfer and
Willemsen 2019) as a comparison point. The long-term average shows the values in this paper’s study

effectiveness. Indecisive feedback was given to the difficulty of the recommendations
and the system effort, with an average of 3 and a high deviation in answers. Health,
taste, and personalization were all graded slightly negatively with values around 2,5
on a scale of 1–5. These constraints might explain the negative feedback on the rec-
ommendations. We added the recommendation perception from the short-term study
(Schäfer and Willemsen 2019) in Table 7 as a comparison point. Most perceptions
were slightly better in the short-term than in long-term usage. In particular, health,
taste, and personalization were perceived better during the shorter study. However,
the system effectiveness was regarded better in the long-term, which would be in line
with the assessment of behavioural and physical changes.

Finally, we asked users for feedback on the overall application and their intention to
use it further. The SUS score of 59 (min. 30, max. 77) is higher than in the pilot study
(Leipold et al. 2018).While 59 is lower than the average SUS score of 65, Ferrara et al.
(2019) report SUS scores of comparable commercial applications between 46.7 for
MyDietCoach and 89.2 for LifeSum. The users agree the strongest to the application
giving insights into their diet (3.9). They agree slightly (3.4) to the app being a useful
tool and making it easy to eat healthily. The lowest agreement (3.3) is to the fact that
the application improved the diet. This is in line with the standardizedmeasures before
and after the study, which showed little effect on visible measures, but some effect
on the nutrient intake, which would be less tangible. Overall, half of the 12 survey
participants would buy the application. Most of them would agree to pay a one-time
fee of 2–5e.

5.3.6 Evaluation of recommendations

Results from the survey about systemperception indicate that users did not perceive the
recommendations very positively. One of the critiques is the diversity as only partially
diverse, as shown in Table 7. Therefore, we evaluated this diversity quantitatively,
both on the intra- and inter-recommendation level. We considered a total of 1873
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Fig. 15 ILD scores over all recommendations and for the meal categories breakfast, lunch, dinner, and
snack

recommendations divided among 28 users with varying levels of engagement with the
application. We limited the considered recipes per recommendation to top-ten in each
of the four meal categories (breakfast, lunch, dinner, and snack), since depending on
screen size three or four recommendations per category are visible, and we assumed
users did not scroll through the list indefinitely. The system automatically recreates
the recommendation each day, but users could also manually regenerate. Such a new
recommendationwould differ from the first one if the food diary entries of the previous
three days changed in the meantime. Thus, we considered the last recommendation
for each day.

The first consideration was the diversity of items within one recommendation,
which we assessed using the Intra-List Diversity (ILD) (Vargas and Castells 2011). As
distance metric, we used the cosine distance between vector representations of food
itemswhichwere based on a binary encoding of the recipe ingredients’ identifiers in the
BLS database. For this representation, two encoding approaches were used: one only
incorporated the first two digits of the BLS code (e.g. “F2"), indicating category and
subcategory of the item (in this case “fruit" with the subcategory “stone fruit"), while
the other approach considered the entire BLS code, identifying individual food items.
In consequence, the former approach considered a wider range of items as similar, as
all food items within the same subcategory occupy the same vector position.

The resulting ILD scores for the first encoding approach, computed over all recom-
mendations and divided by meal category, can be seen in Fig. 15a. As a comparison,
top-10 ILD in a recent music dataset analysis has reached values between 0.39 and
0.57 depending on the reranking strategy (Lu and Tintarev 2018). The ILD score cal-
culated over all items of a recommendation regardless of their assigned meal is higher
than the scores computed for meal categories separately, indicating that items within
a meal category are more similar to each other. The lower subgroup ILD scores in the
snack category are likely caused by a prevalence of fruit in the recommended snack
items. At the same time, the snack category has a high ILD for individual IDs due to
the majority of snack recommendations consisting of one distinct food item. The ILD
scores are stable across users and over time.
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Fig. 16 Diversity over time over all recommendations and for the meal categories breakfast, lunch, dinner,
and snack

Since users receive recommendations daily, we also consider diversity over time.
First, we calculated the Self-System Diversity (SSD) as proposed by Vargas and
Castells (2011), which represents the diversity between two subsequent recommenda-
tions for a user. Since the SSD score of the first recommendation of each user would be
1.0 due to a lacking previous recommendation, we omit this value to avoid bias. In the
context of meal recommendations, diversity is also essential in a medium-term setting,
so we adjusted the SSDmeasure to incorporate the period of one week. ThisWeighted
Self-System Diversity (WSSD) employs the idea of past recommendations becoming
gradually less important for the current recommendation, which is represented through
a weighting function based on the physical concept of atomic decay. For our setting,
we chose to consider a period of seven days, i.e. seven previous recommendations, and
a half-life of 3 days, meaning that after three days, the weight of the recommendation
has halved. The weight indicates how much overlaps in recommended items penalize
the diversity score. Similarly to the SSD, we do not consider the WSSD score for
the first recommendation of each user, as it has a high positive bias due to missing
previous recommendations.

Overall, our system achieves a mean SSD of 0.30 and a median SSD of 0.2 over all
recommendations. Considering the different meal categories, we can see in Fig. 16a
that dinner recommendations had the highest median SSD with a score of 0.3, while
the other meal categories achieve a mean of 0.2. As a comparison, temporal top-10
diversity analysis onmovie datasets has reached values between 0.1 and 0.4 depending
on the used algorithm (Lathia et al. 2010). The mean values, indicated by red markers,
show that breakfast recommendations are on average less diverse than other categories.
This is less critical since German breakfast habits are generally undiverse as well.
Overall, we see that bothmean andmedian values are rather low, showing that diversity
over time is not as high as the diversity within recommendations. We achieved both a
mean and median WSSD of 0.12 over all categories and can see in Fig. 16b that the
WSSD behaves very similar to the SSD, but is lower in general. This is due to the
larger number of recommendations being considered, and the, therefore, higher chance
of overlaps between recommendations. It indicates that the recommendations of our
application were more repetitive in the long run. Interestingly, when considering meal
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Fig. 17 Comparison of SSD between cleaned set of recommendations and users’ food diaries

categories separately, we see differences to the SSDmetric. While for the SSD, dinner
recommendations achieved a higher median value, the WSSD is not higher compared
to other categories, with median scores rounding to 0.12 for lunch and dinner, and
0.11 for snacks. This indicates that while dinner recommendations are more diverse
in the short term, there are repetitions over longer time periods.

There is a clear relationship between user activity and SSD. When the user’s meal
tracking activity, here measured in food diary entries, stops, the SSD score decreases
with a slight delay, since the recommender system considers the user’s previous nutri-
ent intake over three days. As soon as user activity resumes, the SSD increases again.
Looking at all participants, we also see that users with a higher number of active days
(days on which they tracked at least one meal) also tend to have a higher mean SSD.
TheWSSD decreases in the period of inactivity, albeit more slowly than the SSD score
since the score takes a longer time period into account. The same trend as for mean
SSD scores for all users can also be observed for meanWSSD scores, with more active
users having higher scores.

We have seen that diversity over time is related to user activity, specifically meal
tracking. We have also observed that some users tracked their meals sporadically,
which is bound to impact recommendation diversity. As discussed in Sect. 4, the
recommender system relies on the users’ food diaries to gauge both nutrient intake
and dietary preferences, considering the past three and seven days, respectively. To
illustrate the dependency on users’ meal tracking, we calculate the SSD as before, but
only considering recommendations on days that have at least one food diary entry in
the preceding seven days. This decreases the number of recommendations considered
from 1873 to 1046 for the calculation over all meal categories. Figure 17a shows the
SSD scores per meal category based on the selected recommendations. If we compare
the results in SSD and WSSD scores to the previous ones, we see an increase in both
despite the low minimum requirement of one meal entry within the previous week.
The mean SSD score over all recommendations is 0.44 (previously 0.30), and the
mean WSSD score over all recommendations is 0.18 (previously 0.12). Finally, we
compare this diversity with the diversity of the users’ actual dietary behaviour by
applying the Self-System Diversity to users’ food diaries. Since missing diary entries
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on the previous day would result in an SSD score of 1.0, we only consider entries
with preceding meal entries. Figure 17b shows a generally diverse diet with apparent
differences betweenmeal categories. Revisiting the SSD scores in Fig. 17a, we can see
that the trends in users’ eating habits are reflected by the recommendations’ diversity
score.

5.3.7 Contexts andmotives from interview data

This section describes the interview results. The order of topics is aligned with the
previous sections. This section will name the most frequent and relevant topics from
coding the interviews. Frequencies are always shown as (topicCount/interviewCount).
Additionally, important topics are exemplified by: literal citations translated to
English. First, we want to look into the effects of the application by analysing the
interview data on perceived physical, psychological, and cognitive changes. Second,
we want to look into the users’ dietary change and their perception of it by analysing
the interview data on their nutrition changes and their difficulties in combination with
the dietary change questionnaire (Shannon et al. 1997). Third, we want to look into the
users’ interaction patterns by analysing the interview data on their interaction habits
and their system feedback. Fourth, we want to take a deeper look into the applica-
tion perception and intention of use by analysing the interview data on comparing the
application to previous or future systems.

Regarding the knowledge on nutrition, the users report having learned about their
own nutritional needs (4/8) and the nutritional content of food items (4/8): I noticed
that when you eat a lot of liver or paprika, vitamin A rises brutally. Three participants
(3/8) even gained transfer knowledge on which food items to include into their daily
habits: the consciousness, yes now you could add a spinach, or maybe leave it out,
something like that. For physical changes, (2/8) participants report weight loss, while
(2/8) participants report no changes at all. (3/8) participants report increased physical
activity (“the app also encourages you to do 30minutes instead of 20minutes, and then
you get a few green calories on top of it."). Most participants report no psychological
changes due to the application (5/8). Some participants report being annoyed by the
tracking (4/8). Still, others are reporting (3/4) feelingmore empowered: I think because
of the app I now know sometimes automatically, what is good and what isn’t.

The three most important changes in diet reported in the interviews or surveys are
eating more vegetables (7/13 and 3,6), eating more fruits (6/13 and 3,5), and eating
less food in general (6/13 and 4,1): I always just looked what kind of nutrients were
missing, and if there was any orange there, I ate another orange. After the middle of
the study, almost half of the participants reported having no or minor difficulties with
keeping these changes (4/9). The most common reasons for relapse were different
types of extraordinary situations (4/9) such as events, illness, holidays, and weekends,
favourite food items (3/9), social factors (3/9), and general high effort (3/9): So I
always found it difficult, for example, when we were visiting my parents because there
is always cake and so on. At the end of the study, some participants started to feel
a sense of helplessness when trying to reach healthy nutrition (3/12): And that you
never manage to bring everything into line. This is an impossibility in practice. The
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relapse reasons are also similar to before with (5/12) extraordinary situations, (4/12)
social factors, (3/12) general high effort, and (2/12) favourite food items.

Regarding the interaction timing, the participants are mostly split between enter-
ing their meals directly after the consumption (7/13) and entering everything in the
evening (5/13). Regarding the features, both the tracking (6/13) and the feedback on
the home screen (6/13) are commonly used. Other important features that are men-
tioned bymultiple participants are the energy history (3/13), the food item information
(4/13), and the nutrient history/statistical view (3/13).Most of the participants used the
application for feedback on their past nutrition, mostly with the home screen (7/12):
Well, it wasn’t bad, it always said that you should eat a little more in that area because
I need more calcium, or this and that. So then you were also happy when that maybe
changed from red to yellow. Others used the application to decide on the next meals
with both the recommendations (2/12) and the energy overview (2/12) or for longer-
term planning by looking into the suggested food items for each nutrient (3/12): And
in the evening I always looked again to see where the nutrients were deficient. And
then for the next day, I said, come on, if there is a fish in the canteen, then I have
a fish. The participants report the visualization being helpful as feedback (6/12), as
decisional support on choosing food items (5/12), and as a source of detailed infor-
mation (3/12). The participants used the recommendation either as inspiration (4/13),
as a fitting suggestion (2/13), or as a literal guideline (2/13): Maybe tried two, three,
four things and then I saw that there was a lot with potatoes. Then I thought I’ll have
something with potatoes. You already got ideas like that. Some participants thought
the recipes were strange (6/12), while others said they did not meet their preferences
(6/13): Otherwise I should always eat tarte flambée rolls or something. I haven’t done
that yet, because I don’t quite understand why, I think it’s about a vitamin A story.
Others explained that they could not use the recipes because of external circumstances
(4/13) or lack of understanding (3/13). Regarding changes in interaction, participants
reported having reduced the amount of time they spend with the application both in
the middle of the study (4/8) and at the end (4/13). Almost all participants reported
problems with finding food items in the BLS database (11/13): For example, when
I ate in the restaurant, it was sometimes difficult to enter what I actually ate. Many
(9/13) complained about the general effort of tracking their diet.

Most of the participants have not used an application for nutrition before (8/12) since
they either have not used any tracking before the study (4/12) or have trackedmanually
(4/12). The ones that had prior experience list the detailed tracking functionality (3/8)
and the nutrient optimality feedback (3/8), the tracking of physical activity (2/8),
and the statistics overview (2/8) as unique selling points of Nutrilize: So I liked this
(nutrient) optimization very much because I haven’t found it with the other apps until
now. (9/12) participants would use Nutrilize in the future, but less frequently (3/9) or
not always (2/9): Yes, I would very much like to keep making the entries and see how
that develops, with my weight and the other indicators. Suggested improvements are
faster performance (5/12), more content (4/12), and adding own recipes (4/12): But it
would make the whole thing more charming if you could say in one fell swoop, I eat
this cereal every morning, so I can pull it over like that.
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6 Discussion and limitations

The following section discusses the implication of our results on the initial research
questions about the system’s influence on the users’ (a) physique, (b) nutrition
behaviour, (c) system interaction, and (d) system perception, as well as the contextual
limitations in real-life settings.

6.1 Changes in physique

There were only minimal changes in the physique of participants. This is partially
due to the duration of the intervention and partially due to the focus on nutritional
health instead of weight loss.With only minimal changes in energy intake, no physical
changeswere to be expected. The effect is further similar toCelis-Morales et al. (2016),
where the mean BMI at month three is even increased compared to the beginning of
the study.

6.2 Changes in behaviour

Time played an important role in the long-term regression on the optimal nutrient
intake, which was not the case for the short-term study. There is also a difference in
the nutritional ability changes between the control group and the intervention groups.
These observations should be taken with care, though, since the large dropout might
have led to a survivor’s bias in the evaluation, as shown in previous nutrition interven-
tions (Wu et al. 2009; Mateo et al. 2015). The evaluation of optimal intake is further
based on the daily tracking data, which had been shown to deviate largely from the
standardized food frequency questionnaires in both energy and nutritional content.
While the behaviour was adapted, the in-depth interviews revealed that the person-
alized micro-nutrient feedback in both visual and recommendation form was rarely
followed consciously. Instead, participants report changes such as eating more fruits
or lower portion sizes. Such changes could have been suggested to the user without the
need for personalized suggestions that require high user effort. Future systems should
make complex personalized recommendations more operationalizable with explicit
change suggestions based on habits, such as your nutrients would improve if you
leave out the butter in your regular breakfast sandwich, and even stronger explainabil-
ity and transparency features, such as your calcium intake is always too low because
you rarely eat dairy products.

6.3 Interaction with system

The largest part of system interactions is concernedwith the daily tracking of nutrition.
The interactions show thegradual dropout of participantswith only half asmanyunique
users per day after around four weeks. Concerning the feature screens, a strong focus
is set on the visual feedback screens. This is further reflected in the impact of different
screens on the optimal nutrient intake where tracking and visual feedback showed a
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significant positive influence. The home screen, statics screen, and food details screen
had the strongest influence on optimal nutrient intake within the visual feedback.
The timely usage behaviour of the three analysed feedback types showed us that
both feedback types based on reflection-in-action (home screen, food/recipe details)
resulted in a higher overall usage duration than the statistics screen that is based on
reflection-on-action. We see that besides one consistently active user, the preferences
for these visualizations differed between users. We further observed that both the
home-screen and the food-details screen weremainly used for tracking purposes while
only briefly interacting with the actual visualizations. While the statistics showed the
lowest usage duration of all three screen types, it is the only purely visual interaction
and therefore highly relevant. This is reflected very positively in terms of estimated
usefulness in the interviews. While the interactions are in line with the perception
feedback and the impact on behaviour, this in-depth analysis of individual interaction
paths revealed false-positive associations with features that were not consciously used.
Future systems should incorporate visual feedback in an isolated fashion to further
confirm their positive impact on behaviour change.

6.4 Perception of system

Wecanconclude fromour results that the perceivedusefulness of the visualizationswas
higher than of the recommendations, although carefully considering design elements
such as personalization on different levels like personal preferences related to taste
and individual health parameters. Based on our results on system perception, we can
assume that the visualizations represent a proper means to communicate personalized
data related to an individual diet. Rooting the design of visualizations in theory-related
concepts like reflective practice may further contribute to the positive influence on
nutritional ability, positive perceptions, and observed user behaviour. Specifically, the
possibility for reflection onpersonal behaviour through the offered visualizations could
positively influence users’ perception of usefulness since direct feedback on their own
behaviour creates awareness, understanding, and a basis for future actions. Different
visual features as complementary components that support transparency, trust, and
empowerment for the recommender system should be systematically evaluated in the
future.

We can relate the low perceived helpfulness of the recommendations in part to their
diversity evaluation. The measured intra-list diversity is good, which is reflected in
the users’ perception. On the other hand, the diversity between recommendations over
time is low. Some users havementioned this repetitiveness as a reason for not using the
recommendations. However, we could see a relation between diversity over time and
the users’meal tracking activity. Userswho tracked their dietary intakemore diligently
received more diverse recommendations, as the recommender system heavily relies
on knowledge of the user’s dietary intake to recommend personalized meals both in
terms of taste preferences and nutritional needs. Regular tracking of dietary intake
is laborious (Maia and Ferreira 2018). As a result, some users do not maintain their
food diary, which was also shown by drastically decreasing tracking activity in our
study. This does not only lead to a low recommendation diversity over time but also
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reduced personalization, which matches the users’ slightly negative perception of this
aspect. The dependency on well-kept food diaries, albeit theoretically achieving high
degrees of personalization and accuracy, is arguably the main drawback of Nutrilize’s
recommendation feature. Future systems should consider implementing temporal and
intra-list diversitymetrics for long-termusage aswell as approximatingmissingdietary
diary information by default or substitute learning (Liu et al. 2019).

6.5 External influence factors in long-term usage

Dietary preferences are complex and based on diverse and dynamic factors, such as
cookingmethod, cost, availability, and type of cuisine, as well as social, psychological,
cultural, and environmental factors (Freyne and Berkovsky 2010b; Maia and Ferreira
2018; Min et al. 2019a). While the recommendation feature of Nutrilize took dietary
preferences into account, aspects like cost, availability, or social or psychological
context were not incorporated. This might explain why some users stated a mismatch
with their preferences as a reason for not using the recommendations. During our
in-depth interviews, the participants report that factors limiting the app’s success are
stress, tracking effort, social situations, and exceptional events (e.g. holiday/birthday).
All the reported issues lead back to a higher need for personalization and context
awareness, as has been suggested by previous work (Rokicki et al. 2016; Kusmierczyk
et al. 2015). They further stated to not feel constrained by the application and to focus
on substituting individual food items, especially vegetables and fruits, rather than
focusing on improving single nutrients. They felt that the application enhances the
pleasure of eating and their knowledge of nutrition. To avoid relapse and dropout due
to social and resource-based context, future systems should aim at sensing, predicting,
and proactively incorporating such contexts. For example, negotiations ofmeals before
or after the context could be offered based on a predicted event.

6.6 Limitations

The Nutrilize application has constraints regarding usability and feature availability.
First, our aim at high precision nutritional content has led to using the BLS as a food
item database. This has led to issues with non-layman terms and thus low searchability
for certain food items. Furthermore, the restriction to open source data has led to the
integration of recipes from the KochWiki database, which covers many basic recipes,
but not as many “currently popular" ones. We also see in the effect analysis that
the underestimation in daily tracking is propagating errors to the feedback users are
receiving. We try to correct for this in our models by including the daily calorie count.
Additionally, the study we conducted only had a limited number of participants which
does not allow us to conclude or generalize any results with certainty. Finally, while
the duration of the study is uniquely long for mobile applications, it is still relatively
short compared to traditional interventions. Despite these limitations, our study reveals
some systematic challenges in the long-term usage of food recommender systems that
are common to other similar applications.
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7 Conclusion and future work

In this paper, we presented a long-term mixed-method study of the usage of our
nutrition assistance system Nutrilize. Our Nutrilize system provided dietary tracking,
prospective, retrospective, and perspective visual feedback, as well as personalized
recipe recommendations. We investigated the changes in physique, the nutritional
behaviour changes, the system interaction, and the perception of users for 34 partici-
pants (11 control, 11 3-month, 17 2-month).

Our results suggest that the system is effective in changing behaviour but struggles
with high dropout due to different contextual factors. The changes in physique were
minor and without clear differences between the groups due to the low sample size
and short study period. As our results have shown that participants specifically appre-
ciated the visual feedback, we suggest that recommender systems should consider
visual feedback as an integral part to serve awareness, reflection on behaviour, and
educational content to enhancenutrition-related knowledge. Further investigations into
the potential of automated personalized feedback towards users’ action (Rabbi et al.
2015) would be helpful to determine which visual feedback serves users with the most
decisional support. The personalized recommendations provided diverse daily sets of
recipes but were repetitive over time and could not always meet user preferences. The
repetitiveness is partially attributed to the dependency on users’ food diaries, which
were sometimes incomplete due to high tracking effort. Alternative methods to elicit
user information could help mitigate this issue if they are less laborious for users but
might come with a decrease in accuracy. Such a method could, for instance, be dietary
tracking based on photographs of meals, as proposed by Ming et al. (2018). To adapt
the recommendations more to dynamic user preferences, methods to circumvent the
problem of uncertainty andmissing information as presented by Schäfer et al. (2017a),
as well as approaches to model more context factors such as social context could be
incorporated. Alternatively, the system could account for needed flexibility by letting
users choose dishes according to their current preferences and then adapting them
based on individual nutritional needs by substituting ingredients or varying ingredient
quantities. This results in a trade-off between maintaining the recipe’s culinary quality
and achieving a nutritional impact.

In summary, our study shows different challenges that health-focused nutritional
assistance systems face when being used in the long term. Our findings can be used to
improve future system regarding their impact in the long-term and to postulate more
long-term evaluation of recommender approaches.
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