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Abstract

In this work, we give a structural lemma on merges of typical sequences, a notion that
was introduced in 1991 [Lagergren and Arnborg, Bodlaender and Kloks, both ICALP
1991] to obtain constructive linear time parameterized algorithms for treewidth and
pathwidth. The lemma addresses a runtime bottleneck in those algorithms but so far
it does not lead to asymptotically faster algorithms. However, we apply the lemma to
show that the cutwidth and the modified cutwidth of series parallel digraphs can be
computed in polynomial time.

Keywords Typical sequences - Treewidth - Series parallel digraphs - Cutwidth -
Modified cutwidth

1 Introduction

In this paper we revisit an old key technique from what currently are the theoreti-
cally fastest parameterized algorithms for treewidth and pathwidth, namely the use of
typical sequences, and give additional structural insights for this technique. In partic-
ular, we show a structural lemma, which we call the Merge Dominator Lemma. The
technique of typical sequences brings with it a partial order on sequences of integers,
and a notion of possible merges of two integer sequences; surprisingly, the Merge
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Dominator Lemma states that for any pair of integer sequences there exists a sin-
gle merge that dominates all merges of these integer sequences, and this dominating
merge can be found in linear time. On its own, this lemma does not lead to asymptoti-
cally faster parameterized algorithms for treewidth and pathwidth, but, as we discuss
below, it is a concrete step towards such algorithms.

The notion of typical sequences was introduced independently in 1991 by Lager-
gren and Arnborg [17] and Bodlaender and Kloks [8]. In both papers, it is a key
element in an explicit dynamic programming algorithm that given a tree decompo-
sition of bounded width £, decides if the pathwidth or treewidth of the input graph
G is at most a constant k. Lagergren and Arnborg build upon this result and show
that the set of forbidden minors of graphs of treewidth (or pathwidth) at most k
is computable; Bodlaender and Kloks show that the algorithm can also construct
a tree or path decomposition of width at most %, if existing, in the same asymp-
totic time bounds. The latter result is a main subroutine in Bodlaender’s linear time
algorithm [3] for treewidth-k. If one analyses the running time of Bodlaender’s algo-
rithm for treewidth or pathwidth < k, then one can observe that the bottleneck is
in the subroutine that calls the Bodlaender-Kloks dynamic programming subrou-
tine, with both the subroutine and the main algorithm having time (’)(20(]‘3)11) for
treewidth, and O(ZO(kz)n) for pathwidth. See also the recent work by Fiirer for path-
width [13], and the simplified versions of the algorithms of [3, 8] by Althaus and
Ziegler [1]. Now, over a quarter of a century after the discovery of these results, even
though much work has been done on treewidth recognition algorithms (see e.g. [2,
5, 11-13, 16, 18, 19]), these bounds on the function of k are still the best known,
i.e., no O(Z”<k3)n0(1)) algorithm for treewidth, and no (9(2"(1‘2)110(1)) algorithm for
pathwidth is known. An interesting question, and a long-standing open problem in
the field [4, Problem 2.7.1], is whether such algorithms can be obtained. Possible
approaches to answer such a question is to design (e.g. ETH or SETH based) lower
bounds, find an entirely new approach to compute treewidth or pathwidth in a param-
eterized setting, or improve upon the dynamic programming algorithms of [17] and
[8]. Using our Merge Dominator Lemma we can go one step towards the latter, as
follows.

The algorithms of Lagergren and Arnborg [17] and Bodlaender and Kloks [8] are
based upon tabulating characteristics of tree or path decompositions of subgraphs
of the input graph; a characteristic consists of an intersection model, that tells how
the vertices in the current top bag interact, and for each part of the intersection
model, a typical sequence of bag sizes.! The set of characteristics for a join node
is computed from the sets of characteristics of its (two) children. In particular, each
pair of characteristics with one from each child can give rise to exponentially (in k)
many characteristics for the join node. This is because exponentially many typical
sequences may arise as the merges of the typical sequences that are part of the char-
acteristics. In the light of our Merge Dominator Lemma, only one of these merges has

IThis approach was later used in several follow up results to obtain explicit constructive parameterized
algorithms for other graph width measures, like cutwidth [23, 24], branchwidth [9], different types of
search numbers like linear width [10], and directed vertex separation number [7].
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to be stored, reducing the number of characteristics arising from each pair of charac-
teristics of the children from 29®) to just 1. Moreover, this dominating merge can be
found using O(k) integer operations (which translates to time linear in the size of the
sequence) with no large hidden constants.

Merging typical sequences at a join node is however not the only way the number
of characteristics can increase throughout the algorithm, e.g. at introduce nodes, the
number of characteristics increases in a different way. Nevertheless, the number of

intersection models is O(ko(k)) for pathwidth and O(ko(kz)) for treewidth; perhaps,
with additional techniques, the number of typical sequences per part can be better
bounded — in the case that a single dominating typical sequence per part suffices,
this would reduce the number of table entries per node to O (k©®)) for pathwidth-k,
and to OkO®) for treewidth-k, and yield Ok°®n) and O*P* ") time algo-
rithms for the respective problems. Concretely, suppose one could prove an analogue
to the Merge Dominator Lemma for introduce nodes, stating that given a character-
istic stored at their child, there is a single characteristic that dominates all the others
that could potentially arise. Then the above mentioned bound of a single dominating
typical sequence per part in the intersection model would follow and therefore, so
would the improved algorithms for computing treewidth and pathwidth.

We give direct algorithmic consequences of the Merge Dominator Lemma in the
realm of computing width parameters of directed acyclic graphs (DAGs). Specif-
ically, we show that the (WEIGHTED) CUTWIDTH and MODIFIED CUTWIDTH
problems on DAGs, which given a directed acyclic graph ask for the topological order
that minimizes the cutwidth and modified cutwidth, respectively,” can be solved in
polynomial time on series parallel digraphs. Note that the restriction of the solution
to be a fopological order has been made as well in other works, e.g. [6].

Our algorithm for CUTWIDTH of series parallel digraphs has the same structure
as the dynamic programming algorithm for undirected CUTWIDTH [6], but, in addi-
tion to obeying directions of edges, we have a step that only keeps characteristics that
are not dominated by another characteristic in a table of characteristics. Now, with
help of our Merge Dominator Lemma, we can show that in the case of series paral-
lel digraphs, there is a unique dominating characteristic; the dynamic programming
algorithm reverts to computing for each intermediate graph a single ‘optimal partial
solution’. This strategy also works in the presence of edge weights, which gives the
algorithm for the corresponding WEIGHTED CUTWIDTH problem on series parallel
digraphs. Note that the cutwidth of a directed acyclic graph is at least the maximum
indegree or outdegree of a vertex; e.g., a series parallel digraph formed by the paral-
lel composition of n — 2 paths with three vertices has n vertices and cutwidth n — 2.
To compute the modified cutwidth of a series parallel digraph, we give a linear time
reduction to the WEIGHTED CUTWIDTH problem on series parallel digraphs.

2For a topological order vy, ..., v, of a DAG, its cutwidth is the maximum, over all i € {1,...,n — 1},
of the number of arcs whose tail is in {vy, ..., v;} and whose head is in {vj41, ..., v, }, while its modified
cutwidth is the maximum, over all i € {2, ..., n — 1}, of the number of arcs whose tail is in {vy, ..., vi—1}
and whose head is in {vjy1, ..., v}
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This paper is organized as follows. In Section 2, we give a number of preliminary
definitions, and review existing results, including several results on typical sequences
from [8]. In Section 3, we state and prove the main technical result of this work,
the Merge Dominator Lemma. Section 4 gives our algorithmic applications of this
lemma, and shows that the directed cutwidth and directed modified cutwidth of a
series parallel digraph can be computed in polynomial time. Some final remarks are
made in Section 5.

2 Preliminaries

We use the following notation. For two integers a, b € Z witha < b, we let [a..b] :=
{a,a+1,...,b} and for a > 0, we let [a] := [1..a]. If X is a set of size n, then a
linear order is a bijection w: X — [n]. Given a subset X’ C X of size n’ < n, we
define the restriction of w to X' as the bijection 7w |x/: X’ — [n’] which is such that
forall x', y' € X', w|x'(x") < w|x/(y') if and only if 7 (x) < 7 (y').

Integer Operations In this work, the runtime of several algorithms is stated in terms
of the number of required integer operations. Here, by integer operations we mean
basic manipulations such as adding two integers, or comparing two integers. For inte-
gers whose absolute value is at most some n € N, such operations can be performed
in O(logn) time. Moreover, whenever we give the runtime of an algorithm in terms
of the number of integer operations, then the time it takes to execute the algorithm is
also upper bounded in terms of the time it takes to execute these integer operations.
For instance, an algorithm that ‘uses O(f (n)) integer operations’ where the value of
each integer in the instance is upper bounded by m runs in O(f (n) log m) time.

Sequences and Matrices We denote the elements of a sequence s by s(1), ..., s(n).
We denote the length of s by I(s), i.e., [(s) := n. For two sequences a =
a(l),...,a(m)and b = b(1), ..., b(n), we denote their concatenation by a o b =
a(l),...,a(m),b(1), ..., b(n).For two sets of sequences A and B, welet AQ B :=
{aob|a e AADb e B}. Forasequence s of length n and a set X C [n], we denote
by s[X] the subsequence of s induced by X, i.e.,let X = {x1, ..., x;,} be such that
foralli € [m — 1], x; < xj41; then, s[X] := s(x1), ..., s(x;). For x1, xo € [n] with
x1 < xo, we use the shorthand ‘s[x;..x2]" for ‘s[[x1..x2]]".

An (integer) matrix M € Z"™*" is said to have m rows and n columns.? For sets
X C [m]and Y C [n], we denote by M[X, Y] the submatrix of M induced by X
and Y, which consists of all the entries from M whose indices are in X x Y. For
X1, X2 € [m] with x; < xp and y1, y» € [n] with y; < y,, we use the shorthand
‘M[x1..x2, y1..y2]" for ‘M[[x1..x2], [y1..y2]]’. For a sequence s(1), s(2), ..., s(£) of
indices of a matrix M, we let

Mls] == M[s(D], M[s(2)], ..., M[s(£)] (1)

3Since all matrices considered in this work are integer matrices, we will simply refer to them as matrices.

@ Springer



56 Theory of Computing Systems (2023) 67:52-88

be the corresponding sequence of entries from M.

For illustrative purposes we enumerate the columns of a matrix in a bottom-up
fashion throughout this paper, i.e., we consider the index (1, 1) as the ‘bottom left
corner’ and the index (m, n) as the ‘top right corner’.

Integer Sequences Let s be an integer sequence of length n. We use the shorthand
‘min(s)’ for ‘min;ep,) s(7)° and ‘max(s)’ for ‘max;e[,)s(i)’; we use the following
definitions. We let

argmin(s) := {i € [n] | s(i) = min(s)} and argmax(s) := {i € [n] | s(i) = max(s)}

be the set of indices at whose positions there are the minimum and maximum element
of s, respectively. Whenever we write i € argmin(s) (j € argmax(s)), then the
choice of i (j) can be arbitrary. In some places we require a canonical choice of the
position of a minimum or maximum element, in which case we will always choose
the smallest index. Formally, we let

argmin®(s) := min argmin(s), and argmax*(s) := min argmax(s).

The following definition contains two notions on pairs of integer sequences that
are necessary for the definitions of domination and merges.

Definition 2.1 Let r and s be two integer sequences of the same length .

(i) Ifforalli € [n], r(i) <s(i), then we write ‘r < s’.
(ii)) We write ¢ = r + s for the integer sequence g(1), ..., g(n) withq(@i) =r(@) +
s() foralli € [n].

Definition 2.2 (Extensions) Let s be a sequence of length n. We define the set E(s)
of extensions of s as the set of sequences that are obtained from s by repeating each
of its elements an arbitrary number of times, and at least once. Formally, we let

E(s):={s10s00---0s, | Vi € [nl: I(si) > 1 AYj € [I(s)]: si(j) = s(0)}.

Definition 2.3 (Domination) Let r and s be integer sequences. We say that r dom-
inates s, in symbols ‘r < s’, if there are extensions r* € E(r) and s* € E(s) of
the same length such that r* < s*. If r < s and s < r, then we say that r and s are
equivalent, and we write r = s.

If r is an integer sequence and S is a set of integer sequences, then we say that r
dominates S, in symbols ‘r < §°,ifforalls € S, r < s.

Remark 2.4 (Transitivity of ‘<’) In [8, Lemma 3.7], it is shown that the relation ‘<’
is transitive. As this is fairly intuitive, we may use this fact without stating it explicitly

throughout this text.

A merge of two integer sequences r and s is the sum of an extension of r and an
extension of s of the same length.
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Definition 2.5 (Merges) Let r and s be two integer sequences. We define the set of
all merges of r and s, denoted by r @ s, asr & s := {r* +s* | r* € E(r),s* €
E(s), [(r*) = I(s)}.

2.1 Typical Sequences

We now define typical sequences, show how to construct them using linearly many
integer operations, and restate several lemmas due to Bodlaender and Kloks [8] that
will be used throughout this text.

Definition 2.6 Lets = s(1), ..., s(n) be an integer sequence of length n. The typical
sequence of s, denoted by t(s), is obtained from s by an exhaustive application of
the following two operations:

Removal of Consecutive Repetitions If there is an index i € [n — 1] such that s(i) =
s(i + 1), then we change the sequence s from s(1),...,s@),s@ + 1),...,s(n) to
s(D),...,50),s(G§+2),...,s5(n).

Typical Operation If there exist i, j € [nr] such that j — i > 2 and for all
i <k < j,s() < stk) < s(j),orforalli <k < j,s@) = stk)y > s(j),

then we change the sequence s from s(1),...,s@),s@ + 1),...,5(),...,s(n) to
s(1),...,50),5(j),...,s(n),ie., we remove all elements (strictly) between index i
and j.

To support intuition, we illustrate the rough shape of a typical sequence in Fig. 1.
It is not difficult to see that the typical sequence can be computed using a quadratic
amount of integer operations, by an exhaustive application of the definition. Here
we discuss how to do it using a linear amount of integer operations. We may view a
typical sequence 7(s) of an integer sequence s as a subsequence of s. While 7 (s) is
unique, the choice of indices that induce 7 (s) may not be unique. We show that we
can find a set of indices that induce the typical sequence with help of the following
structural proposition.

0

\J

Fig. 1 Illustration of the shape of a typical sequence
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Proposition 2.7 Let s be an integer sequence and let i* € {argmin*(s), argmax*(s)}.

Let1 =: jo < j1 < jo < ...< ji < Ji+1 := i* be pairwise distinct integers, such

that s(jo), - .., S(ji4+1) are pairwise distinct. If for all h € [0..1],

— i sG> sGas) then ji = argmax*(s(l.japi]) and juy1 =
argmin*(s[1..jp+1]), and

= if sGn) < sGnt1) then j, = argmin®*(s[l.jp1]) and jpt1 =

argmax* (s[1.. jy11),

then the typical sequence of s restricted to [i*] is equal to s(jo),s(j1),---,
$(je)s s Gr1)-

Proof First, we observe that by the choice made in the definition of argmin® and
argmax™,

for each h € [0..(t 4+ 1)] there is no i < jj such that s(i) = s(j). 2)

We prove the following statement. Under the stated conditions, for a given h €
[0..£ 4+ 1], the typical sequence of s restricted to [ j;..i*] is equal to s (jz), S (Jr+1)> - - -
§(jr+1)- The proposition then follows from the case # = 0. The proof is by induction
ond := (t+1)—h.Ford = 0, it trivially holds since the minimum and the maximum
element are always part of the typical sequence, and since [ jy41..i*] = {i*}.

Now suppose d > 0, and for the induction hypothesis that the claim holds for
d — 1. Suppose that s(j;) > s(jn+1), meaning that j, = argmax*(s[1..j,41]), and
Jn+1 = argmin*(s[1..jz+1]), the other case is symmetric. By the induction hypothe-
sis, the typical sequence of s restricted to [ ji4+1..i*] is equal to s(jr+1)s - - - S(Jr+1)>
in particular it implies that s (j,+1) is an element of the typical sequence. To prove the
induction step, we have to show that the typical sequence of s restricted to [ .. jn+1]
is equal to s(ji), s(jr4+1). We first argue that if there is an element of the typical
sequence in [ jj..(jn+1 — 1)], then it must be equal to s(j). By (2), we have that there
isnoi < jp4 suchthat s(i) = s(jn+1), and together with the fact that s(j,41) is the
minimum value of s[1..j,41], we conclude that [j;..(jn+1 — 1)] cannot contain any
element of the typical sequence that is equal to s(jn41). Next, since the typical oper-
ation removes all elements i € [(j, + 1)..(jr+1 — D] with s(ji) > s@) > s(rt1),
and since j, = argmax*(s[1..j;+1]), the only elements from [ jj..(jn+1 — 1)] that the
typical sequence may contain have value s(jp,).

It remains to argue that s (jj) is indeed an element of the typical sequence. Suppose
not, then there are indices i, i’ with i < j, < i’, such that either s (i) < s(j) < s(i’),
or s(i) > s(jn) > s(i’), and we may assume that at least one of the inequalities is
strict in each case. For the latter case, since j; = argmax*(s[1..j+1]), we would
have that s(i) = s(j), which is a contradiction to (2). Hence, we may assume that
s(i) < s(jn) < s(i"). There are two cases to consider: i’ € [(ji + 1)..jp+1], and i’ >
Jnt1 0" € [Gn + D jn+1], then s @) = s(jn), as s(jn) = argmax(s[L..jn+11). We
can conclude that in this case, the typical sequence must contain an element equal to
s(i"), and hence equal to s(j). If i’ > j,11, then the typical operation corresponding
to i and i’ also removes s(j,+1), a contradiction with the induction hypothesis which
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asserts that s(jp41) is part of the typical sequence induced by [j,+1..i*]. We can
conclude that s(jj,) is part of the typical sequence, finishing the proof. O

From the previous proposition, we have the following consequence about the
structure of typical sequences ending in the minimum element, which will be useful
in the proof of Lemma 3.10.

Corollary 2.8 Let t be a typical sequence of length n such that n € argmin(z).
Then, for each k € [L%J], n —2k + 1 € argmax(¢[1..(n — 2k + 1)]) and n — 2k €
argmin(¢[1..(n — 2k)]).

Equipped with Proposition 2.7, we can now proceed and give the algorithm that
computes a typical sequence of an integer sequence using linearly many integer
operations.

Lemma 2.9 Let s be an integer sequence of length n. Then, one can compute T(s),
the typical sequence of s, in O(n) integer operations.

Proof First, we check for each i € [n — 1] whether s(i) = s(i + 1), and if we
find such an index i, we remove s(i). We assume from now on that after these
modifications, s has at least two elements, otherwise it is trivial. As observed above,
the typical sequence of s contains min(s) and max(s). A closer look reveals the
following observation.

Observation 2.9.1 Let i* := min argmin(s) U argmax(s) and k* := max argmin(s) U
argmax(s).

(1) If i* € argmin(s) and k* € argmax(s) or i* € argmax(s) and k* € argmin(s),
then T (s) restricted to [i*..k*] is equal to s(i*), s(k*).
) If {i*,k*} < argmin(s), then t(s) restricted to [i*.k*] is equal to
s(i*), max(s), s(k*).
Gii) If {i*,k*} < argmax(s), then t(s) restricted to [i*..k*] is equal to
s(@@*), min(s), s (k*).

Let i* := min argmin(s)Uargmax(s) and k* := max argmin(s)Uargmax(s). Using
Observation 2.9.1, it remains to determine the indices that induce the typical sequence
on s[1..i*] and on s[k*..n]. To find the indices that induce the typical sequence on
s[1..i*], we will describe a marking procedure that marks a set of indices satisfying
the preconditions of Proposition 2.7. Next, we observe that n — k* is the smallest
index of any occurrence of min(s) or max(s) in the reverse sequence of s, therefore a
symmetric procedure, again using Proposition 2.7, yields the indices that induce 7 (s)
on s[k*..n].
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Algorithm 1 The algorithm of Lemma 2.9 that computes the set M of indices that
induce the typical sequence of s between the first element and the first occurrence
of the minimum and maximum of s.

1 Jmin < argmin*(s[1..2]), jmax < argmax*(s[1..2]), M <« {1};

2 forj=3,...,i*do

3 if s(j) < 5(jmin) then

4 Jmin < J3

5 M <~ M U {jmax} // mark the current value of jmax
6 if s(j) > $(jmax) then

7 Jmax < J;

8 M < M U {jmin} // mark the current value of jnin
9 M < M U {jmin, jmax};

We execute Algorithm 1, which processes the integer sequence s[1..i*] from the
first to the last element, storing two counters jyin and jmax that store the leftmost
position of the smallest and of the greatest element seen so far, respectively. When-
ever a new minimum is encountered, we mark the current value of the index jmax, as
this implies that s (jmax) has to be an element of the typical sequence. Similarly, when
encountering a new maximum, we mark jni,. These marked indices are stored in a set
M, which at the end of the algorithm contains the indices that induce 7 (s) on [1..i*].
This, i.e., the correctness of the procedure, will now be argued via Proposition 2.7.

Claim 2.9.2 The set M of indices marked by the above procedure induce t(s) on
[1..i*].

Proof Let M = {jo, j1, ..., ji+1} besuchthatforall 4 € [0..¢], j, < jn+1. We prove
that jo, ..., j;+1 meet the preconditions of Proposition 2.7. First, we observe that the
above algorithm marks both the index 1 and index i*, in particular that jo = 1 and
Jir1 =10"

We verify that the indices jo, ..., ji+1 satisfy the property that for each i €
[0..(¢ + 1)], the index jj, is the leftmost (i.e., smallest) index whose value is equal
to s(jn): whenever an index is added to the marked set, it is because in some itera-
tion, the element at its position was either strictly greater than the greatest previously
seen element, or strictly smaller than the smallest previously seen element. (This also
ensures that s(jp), ..., s(j;+1) are pairwise distinct.)

We additionally observe that if we have two indices £ and ¢; such that ¢; is the
index that the algorithm marked right after it marked £, then either £ was juyi, and
£> Was jmax Or vice versa: when updating jmin, we mark jmax, and when updating
Jmax, we mark jmin. This lets us conclude that when we have two indices jj, jr+1
such that s(j,) < s(jn+1), then j, was equal to jymin when it was marked, and jj41
was jmax When it was marked.

We are ready to prove that jo, ..., j;41 satisfy the precondition of Proposition 2.7.
Suppose for a contradiction that for some 4 € [0..t + 1], j, violates this property.
Assume that s(j;) < s(jr+1) and note that the other case is symmetric. The previous
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paragraph lets us conclude that j, was equal to jmij; when it was marked, and that
Jh+1 Was jmax When it was marked.

We either have that j, # argmin®(s[1..j,+1]) or that j 4| # argmax*(s[1..jz+1]).
Suppose the latter holds. This immediately implies that there is some j* € [jp+1 —1]
such that s(j*) > s(jp+1), which implies that jn,x would never have been set to
Jn+1 and hence j,41 would have never been marked. Suppose the former holds, i.e.,
Jn # argmin*(s[1..jn41]), for an illustration of the following argument see Fig. 2.
Let j* := argmin®(s[1..jp+1]). If j* < jp, then at iteration ji, s (jmin) < s(jn), SO
Jmin Would never have been set to jj, and hence, j, would never have been marked.
We may assume that j* > j,. Since j, was marked, there is some ¢ > jj that
triggered j, being marked. This also means that at that iteration s(£) was greater
than the previously observed maximum, so we may assume that s(£) > s(jj). We
also may assume that £ < jpy1. If j* € [(jn + 1)..(¢£ — 1)], then the algorithm
would have updated jyi, to j* in that iteration, before marking jj, and for the case
j*¥ e[+ 1)..(jn+1 — 1)] we observe that £ # j,41, and that the algorithm would
mark £ as the next index instead of j,41.

This establishes the correctness of the algorithm. We observe that each iteration
takes O(1) comparisons of numbers in s, and that there are O(n) iterations.

We summarize several lemmas from [8] regarding integer sequences and typical
sequences that we will use in this work. O

Lemma 2.10 (Bodlaender and Kloks [8]) Let r and s be two integer sequences.

(i) (Cor. 3.11 in [8]). We have that r < s if and only if T(r) < 7(5).

(i1) (Lem. 3.13 in [8]). Suppose r and s are of the same length and let y = r + s.
Let ro < r and so < s. Then there is an integer sequence yy € ro @ so such
that yo < y.

(iii) (Lem. 3.14 in [8]). Let ¢ € r @ s. Then, there is an integer sequence q' €
(r) ® t(s) such that q’ < q.

(iv) (Lem. 3.15in[8]). Let g € r ® s. Then, there is an integer sequence q' € r ® s
witht(q') = 1(q) and 1(¢") <1(r) +1(s) — 1.

J, I J, I J, I
I I I I I I
----r---rFr---rF---r -r---m
I I I I I I
I I I | I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
----r-—--"BR---F---F---r---
I I I I I I
m . T, = .
I I
Jh Jh+1

Fig.2 Illustration of the final argument in the proof of Claim 2.9.2. We assume that s(j;) < s(jn+1), and
mark the possible positions for j* = argmin*(s[1..j,+1]) with j* # jj
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(v) (Lem. 3.19 in [8]). Let r’ and s’ be two more integer sequences. If r' < r and
s’ <s,thenr' os’ <ros.

2.2 Directed Acyclic Graphs

A directed graph (or digraph) G is a pair of a set of vertices V (G) and a set of ordered
pairs of vertices, called arcs, A(G) € V(G) x V(G). (If A(G) is a multiset, we call
G multidigraph.) We say that an arc a = (4, v) € A(G) is directed from u to v, and
we call u the tail of a and v the head of a. A sequence of vertices vy, . .., v, is called
awalk in G if for all i € [r — 1], (vi, vi+1) € A(G). A cycle is a walk vy, ..., v,
with v; = v, and all vertices vy, ..., v._ pairwise distinct. If G does not contain
any cycles, then we call G acyclic or a directed acyclic graph, DAG for short.

Let G be a DAG on n vertices. A topological order of G is a linear order
m: V(G) — [n] such that for all arcs (u, v) € A(G), m(u) < m(v). We denote the
set of all topological orders of G by I1(G). We now define the width measures stud-
ied in this work. Note that we restrict the orders of the vertices that we consider to
topological orders.

Definition 2.11 Let G be a directed acyclic graph and let & € IT1(G) be a topological
order of G.

(1) The cutwidthof m iscutw(rr) :=maX;c[p—1] {1, v) € A(G) | m(W)<iAm(v) >1i}.
(i) The modified cutwidth of m is mecutw(r) = maX;ep) [{(u,v) € A(G) |
w(u) <i Ax(v) >i}.

We define the cutwidth and modified cutwidth of a directed acyclic graph G as the
minimum of the respective measure over all topological orders of G.

We now introduce series parallel digraphs. Note that the following definition
coincides with the notion of ‘edge series-parallel multidigraphs’ in [25]. For an
illustration see Fig. 3.

Definition 2.12 (Series Parallel Digraph (SPD)) A (multi-)digraph G with an

ordered pair of distinct terminals (s,t) € V(G) x V(G) is called series parallel
digraph (SPD), often denoted by (G, (s, 1)), if one of the following hold.

(H)
5 e Tl ey D) D D D

Fig.3 A series parallel digraph G on the left, and a decomposition tree that yields G on the right
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(i) (G, (s,1)) is a single arc directed from s to ¢, i.e., V(G) = {s,t}, A(G) =
{(s,0)}.

(i) (G, (s, 1)) can be obtained from two series parallel digraphs (G, (s, f1)) and
(G2, (52, 12)) by one of the following operations.

(a) Series Composition. (G, (s, t)) is obtained by taking the disjoint union of
G1 and G», identifying #; and s,, and letting s = s1 and ¢t = t,. In this case
we write (G, (s, 1)) = (G, (51, 11)) e (G2, (52, 1)) or simply G = G1eGa.

(b) Parallel Composition. (G, (s, t)) is obtained by taking the disjoint union
of G and G, identifying s and s, and identifying #; and f,, and let-
ting s = s; = s2 and t = t; = 1. In this case we write (G, (s, 1)) =
(G1, (s1,11))//(G2, (52, 1)), or simply G = G1//G>.

It is not difficult to see that each series parallel digraph is acyclic. One can nat-
urally associate a notion of decomposition trees with series parallel digraphs as
follows. A decomposition tree T is a rooted and ordered binary tree whose leaves are
labeled with a single arc, and each internal node ¢ € V(T') with left child £ and right
child r is either a series node or a parallel node. We then associate an SPD G, with
each node r € V(T). If ¢ is a leaf, then G, is a single arc oriented from one termi-
nal to the other. If ¢ is an internal node, then G, is G, e G, if ¢ is a series node and
G¢//G, if t is a parallel node. It is clear that for each SPD G, there is a decomposi-
tion tree T with root t such that G = G.. In that case we say that T yields G. Valdes
et al. [25] have shown that one can decide in linear time whether a directed graph G
is an SPD and if so, find a decomposition tree that yields G.

Theorem 2.13 (Valdes et al. [25]) Let G be a directed graph on n vertices and m
arcs. There is an algorithm that decides in time O(n + m) whether G is a series
parallel digraph and if so, it outputs a decomposition tree that yields G.

3 The Merge Dominator Lemma

In this section we prove the main technical result of this work. It states that given
two integer sequences, one can find a merge that dominates all merges of those two
sequences using linearly many integer operations.

Lemma 3.1 (Merge Dominator Lemma) Let r and c be integer sequence of length
m and n, respectively. There exists a dominating merge of r and c, i.e., an integer
sequencet € r @ c such thatt < r @ c, and this dominating merge can be computed
using O(m + n) integer operations.

Outline of the Proof of the Merge Dominator Lemma First, we show that we can
restrict our search to finding a dominating path in a matrix that, roughly speaking,
contains all merges of r and ¢ of length at most [(r) + [(c) — 1. The goal of this step
is mainly to increase the intuitive insight to the proofs in this section. Next, we prove
the ‘Split Lemma’ (Lemma 3.7 in Section 3.2) which asserts that we can obtain a

@ Springer



64 Theory of Computing Systems (2023) 67:52-88

dominating path in our matrix M by splitting M into a submatrix M that lies in the
‘bottom left” of M and another submatrix M5 in the ‘top right’ of M along a minimum
row and a minimum column, and appending a dominating path in M> to a dominat-
ing path in M;. In M1, the last row and column are a minimum row and column,
respectively, and in M>, the first row and column are a minimum row and column,
respectively. This additional structure will be exploited in Section 3.3 where we prove
the ‘Chop Lemmas’ that come in two versions. The ‘bottom version’ (Lemma 3.10)
shows that in M1, we can find a dominating path by repeatedly chopping away the
last two rows or columns and remembering a vertical or horizontal length-2 path. The
‘top version’ (Corollary 3.12) is the symmetric counterpart for M>. The proofs of the
Chop Lemmas only hold when r and ¢ are typical sequences, and in Section 3.4 we
present the ‘Split-and-Chop Algorithm’ that computes a dominating path in a merge
matrix of two typical sequences. Finally, in Section 3.5, we generalize this result to
arbitrary integer sequences, using the Split-and-Chop Algorithm and one additional
construction.

3.1 The Merge Matrix, Paths, and Non-Diagonality
Let us begin by defining the basic notions of a merge matrix and paths in matrices.

Definition 3.2 (Merge Matrix) Let r and ¢ be two integer sequences of length m and
n, respectively. Then, the merge matrix of r and c is an m x n integer matrix M such
that for (i, j) € [m] x [n], M[i, j1 =r(@) + c()).

We would like to point out that the following definition of a path in a matrix can
be viewed as a special case of the notion of lattice paths, see [22], or [14] for a related
application.

Definition 3.3 (Path in a Matrix) Let M be an m x n matrix. A path in M is a
sequence p(1), ..., p(£) of indices from M such that

(i) p)=(1,1) and p(¢) = (m, n), and
(i) forh e [€—1],1et p(h) = (i, j);then, p(h+ 1) € (G + 1, j), (i, j + 1), (i +
1,j+ D

We denote by P(M) the set of all paths in M. A sequence p(1), ..., p(£) that satis-
fies the second condition but not necessarily the first is called a partial path in M. For
two paths p, g € P(M), we may simply say that p dominates q, if M[p] dominates
M[q].* We also write p < P(M) to express that for each path ¢ € P(M), p < q.

A (partial) path is called non-diagonal if the second condition is replaced by the
following.

(iiy Forh e [ —1],let p(h) = (i, j); then, p(h + 1) € {(i + 1, j), (i, j + D)}

4Recall that by (1) on page 4, for a (partial) path p in a matrix M, M[p] =
M[p(D], M[p2)], ..., M[p(p)]

@ Springer



Theory of Computing Systems (2023) 67:52-88 65

An extension e of a path p in a matrix M is as well a sequence of indices of M,
and we again denote the corresponding integer sequence by M[e]. A consequence of
Lemma 2.10(i) and (iv) is that we can restrict ourselves to all paths in a merge matrix
when trying to find a dominating merge of two integer sequences: it is clear from the
definitions that in a merge matrix M of integer sequences r and ¢, P(M) contains all
merges of r and ¢ of length at most /(r) +[(c) — 1. Furthermore, suppose that there is
amergeq € r@s suchthatg < rédsandl(g) > I[(r)+1(s)— 1. By Lemma 2.10(iv),
there is a merge ¢’ € r @ s such that [(¢") <I(r) +1(s) — 1, and (¢") = t(g). The
latter yields t(¢’) = t(g) and therefore, by Lemma 2.10(i), ¢’ = ¢, in particular,
qg <q=<rds.

Corollary 3.4 Let r and c be integer sequences and M be the merge matrix of r and
c. There is a dominating merge inr @ c, i.e., an integer sequence t € r @ c such that
t <r ®@c, if and only if there is a dominating path in M, i.e., a path p € P(M) such
that p < P(M).

We now consider a type of merge that corresponds to non-diagonal paths in the
merge matrix. These merges will be used in a construction presented in Section 3.5,
and in the algorithmic applications of the Merge Dominator Lemma given in
Section 4. For two integer sequences r and s, we denote by r B s the set of all
non-diagonal merges of r and s, which are not allowed to have ‘diagonal’ steps: we
have that for all t € r Hs and all i € [I(#) — 1], if t(i) = r(i,) + s(iy), then
t@+1) ef{rG +1)+s@s), r@r) +s@is + 1)}. As each non-diagonal merge directly
corresponds to a non-diagonal path in the merge matrix (and vice versa), we can con-
sider a non-diagonal path in a merge matrix to be a non-diagonal merge and vice
versa. We now show that for each merge that uses diagonal steps, there is always a
non-diagonal merge that dominates it.

Lemma 3.5 Let r and s be two integer sequences of length m and n, respectively.
For any merge q € r @ s, there is a non-diagonal merge q' € r B's such that q' < q.
Furthermore, given q, q' can be found using O(m + n) integer operations.

Proof This can be shown by the following local observation. Let i € [I(g) — 1] be
such that ¢ (i), g(i 4+ 1) is a diagonal step, i.e., there are indices i, € [[(r) — 1] and
is € [I(s) — 1] suchthatq(i) = r(i,) + s(is) and g(i + 1) = r(@ + 1) + s(isy + 1).
Then, we insert the element x := min{r(i,) + s(iy + 1), r(i, + 1) + s(i5)} between
q(i) and g(i + 1). Since

x <max{r@i,) +s(s), r@i, + 1) +s@; + D} =y,

we can repeat y twice in an extension of ¢ so that one of the occurrences aligns
with x, and we have that in this position, the value of ¢’ is at most the value of the
extension of ¢.

Let ¢’ be the sequence obtained from ¢ by applying this operation to all diagonal
steps, then by the observation just made, we have that ¢’ < ¢. It is clear that this can
be implemented using O (m + n) integer operations. O
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Next, we define two special paths in a matrix M that will reappear in several places
throughout this section. These paths can be viewed as the ‘corner paths’, where the
first one follows the first row until it hits the last column and then follows the last
column (p_(M)), and the second one follows the first column until it hits the last row
and then follows the last row (pr(M)). Formally, we define them as follows:

p.(M) :=({1,1),(,2),...,(,n),2,n),..., (m,n)
pr(M) =({1,1),2,1)...,(m,1),(m,2),...,(m,n)

We use the shorthands ‘p,’ for ‘p (M)’ and ‘pr’ for ‘pr (M)’ whenever M is clear
from the context.

For instance, these paths appear in the following special cases of the Merge
Dominator Lemma, which will be useful for several proofs in this section.

Lemma 3.6 Let r and c be integer sequences of length m and n, respectively, and let
M be the merge matrix of r and c. Let i € argmin(r) and j € argmin(c).

(i) Ifi = 1and j = n, then p_, dominates all paths in M, i.e., p, < P(M).
(i) Ifi =mand j = 1, then pr dominates all paths in M, i.e., pr < P(M).

Proof (1) For an illustration of this proof see Fig. 4. Let ¢ be any path in M and let
t* := argmax*(g). Let furthermore ¢ (t*) = (¢*, t*). We divide p, and ¢ in three

r>-c
consecutive parts each to show that p_, dominates g.

- Welet pﬂ =p,(1),...,p,(t¥ =1 and g :=¢q(1),...,q(¢t*" —1).
— Welet p? :=p.(t}),..., p.(n+ 1t — 1) and g2 := q(t*).
- Welet pi =p,n+t),...,p,m+n—1)and g3 :=q(t*+1),...,q91(g)).

Fig.4 Situation in the proof of
Lemma 3.6(i). The dot
(light/dark) within each element
of the corner path p , indicates
with which elements of the path
q itis ‘matched up’ in the
extensions constructed in the
proof

min—»
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Since r(1) is a minimum row in M, we have that for all (k, ¢) € [m] x [n],
M][1, €] < M|k, £]. This implies that there is an extension ej of pﬂ of length t* — 1
such that M[e1] < M|[q1]. To clarify, the extension e; can be obtained as follows.
For each h € [t* — 1], let g(h) = (h,, h.). Then, at position £, e; contains (1, h).
Since g is a path, e is indeed an extension of pL. Similarly, there is an extension e3
of pf of length I(g) — t* such that M[e3] < M|q3]. Finally, let f> be an extension
of ¢ that repeats its only element, ¢ (t*), n — t} 4 ¢ times. Since M[q(¢*)] is the
maximum element on the sequence M[g] and r(1) is a minimum row and c(n) a
minimum column in M, we have that M[p%] < M[f2]: for all h € [t}..n], there
is some hy € [l(g)] such that g(hy) = (j, h) for some row j, so M[p (h)] =
M[1,h] < M[j, h] = Mlq(hy)] < M[q(t*)] (similarly forall & € [n..(n+1} — D]).

We define an extension e of p_ ase := e o p% o e3 and an extension f of g as
fi=gqio frogs. Notethatl(e) =I(f) =1l(q) +n+1t]— (tF + 1), and by the above
discussion, we have that M[e] < M[ f]. (ii) follows from a symmetric argument. []

3.2 The Split Lemma

In this section we prove the first main step towards the Merge Dominator Lemma. It
is fairly intuitive that a dominating merge has to contain the minimum element of a
merge matrix. (Otherwise, there is a path that cannot be dominated by that merge.)
The Split Lemma states that in fact, we can split the matrix M into two smaller
submatrices, one that has the minimum element in the top right corner, and one that
has the minimum element in the bottom left corner, compute a dominating path for
each of them, and paste them together to obtain a dominating path for M.

Lemma 3.7 (Split Lemma) Let r and c be integer sequences of length m and n,
respectively, and let M be the merge matrix of r and c. Let i € argmin(r) and j €
argmin(c). Let My := M[1..i, 1..j] and My := MJi..m, j..n] and for all h € [2],
let pp, € P(My) be a dominating path in My, i.e., p, < P(My). Then, py o pyisa
dominating path in M, i.e., p1 o po < P(M).

Proof Let g be any path in M. If g contains (7, j), then g has two consecutive parts,
say g1 and g2, such that g1 € P(M;) and g2 € P(M>). Hence, p; < g1 and p2 < g2,
so by Lemma 2.10(v), p1 o p2 < g1 © 2.

Now let p := pjops and suppose g does not contain (i, j). Then, g either contains
some (i, j') with j/ < j, or some (i’, j) with i’ < i. We show how to construct
extensions of p and ¢ that witness that p dominates ¢ in the first case, and remark
that the second case can be shown symmetrically. We illustrate this situation in Fig. 5.

Suppose that ¢ contains (i, j) with j* < j. We show that p < ¢. First, ¢ also
contains some (i, j), where i’ > i. Let i be the index of (i, j') in q, i.e., g(h|) =
(i, j'), and hy denote the index of (i’, j) in g, i.e., g(h2) = (i, j). We derive the
following sequences from q.

~ Weletq) :=q(1),...,q(h) and ¢} :=qi1oG, j + 1), ..., 3G j).

- Weletqiz :=q(hy), ..., q(h2).
~ Weletqy :=q(ha),...,q((g)) and g5 := (@i, j), (i + 1, ), ..., (", ) oqa.
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Fig.5 Situation in the proof of |
Lemma 3.7

D2

M3

—>>

pr

Since q;r € P(Mj) and p; < P(Mp), we have that p; < qfr, similarly that
p2 < ¢, and considering M3 := M[i’..i, j..j']l, we have by Lemma 3.6(i) that

pr2:i=p.(M3) =@, j), G j+D,....,0 ), GE+1,j),...,(, j)dominates g15.
Consequently, we consider the following extensions of these sequences.

(I Welete; € E(p1) and f1 € E(qr) such that I(e;) = I(f1) and M[e(] <
M f1].
(II) We let e;p € E(p12), and f1o € E(qi2) such that I(e;2) = [(f12) and
Mlei2] < M| f12].
(III) Welet ey € E(p2), and fr € E(q;) such that /(e3) = I(f2) and M[ez] <
M[f2].

We construct extensions ¢’ € E(p) and f’ € E(q). The idea of this construction
is that we stretch e o ey, the extensions of p; and p; to obtain ¢’ and we stretch the
extensions of the the three parts of ¢, namely g1, g2, and g3, to obtain f’ in such a
way that the relations between these extensions can be used to guarantee that in the
end, M[e'] < M[f']. The most crucial step uses the fact that qr shares a horizontal
subpath with pj and that q;r shares a vertical subpath with pj;. Since q1+ is a path
in My, p1 < qf , and since p12 < g2 this allows for ‘transferring’ the domination
property of p; over qr to a part of g2, via the subpath that qr shares with pis.
Similar for the other part of p12, using p».

Let z be the last index in g of any element that is matched up with (i, j) in the
extensions of (II). (Following the proof of Lemma 3.6, this would mean z is the index
of max(gq2) in g.) We first construct a pair of extensions e;. € E(p1), and f ]’ €
E(q[1..z]) with l(e}) = l(f/f) and M[e}] < M[f;]. With a symmetric procedure, we
can obtain extensions of p; and of g[(z+ 1)../(g)], and use them to obtain extensions
of p=pj1oprand g = ¢q[l..z] o q[(z + 1)..(g)] witnessing that p < q.
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We give the details of the first part of the construction. Let a be the index of the last
repetition in f] of g(h; — 1), i.e., the index that appears just before ¢ (h) = (i, j’)
in fi. We let e;.,_l[l..a] :=eq[1..a] and f]f,_l[l..a] = fi[1..a]. By (D), M[e},_l] <
MLf)_,]

Forx = j', j'+1, ..., j, we inductively construct ¢/ and f; using e/, and f]_,,
for an illustration see Fig. 6. We maintain as an invariant that / (e;_l) =1( f;_l) and
that M[eﬁﬁl] < M[f;fl]. Let ay, ..., a. denote the indices of the occurrences of
(i, x) in f1, and by, ..., by denote the indices of the occurrences of (i, x) in ej2. If
¢ = d, meaning that fi and e, repeat (i, x) the same number of times, then we can
append ej[a..ac] to e, to obtain e, and fi2[b;..bg] to f_, to obtain f,. This way,
we append the same number of elements to ¢/, and to f,_,; furthermore we know
for each @ € [ay..a.] and each B € [b;..bg] that M[e ()] < M[i, x] < M[f12(8)]
by the properties of the extensions that we use. Therefore, M[e,.] < M[f]].

If ¢ # d, then we repeat the last element of the shorter one of eq[aj..a.] and
f12[b1..b4] the corresponding number of times to obtain extensions of the same
length. The argument that M[e,] < M][f]] after this step is the same as the one
outlined in the previous case. Formally, we let:

e)/( = e;_l (o] el[al..ac] and fx/ = f);—l (o] flz[bl..bd], ifc=d
d—c times
—
e, :=¢e _ oellar.aloer(ar), ..., ei(ar) and f == f/_, o fia[b1..bg], ifc<d
c—d times

e; = e;_l oeqlaj..a.] and f; = f;—l o f1alby.-bal o f12(ba), ..., f12(ba), ifc>d

In each case, we extended e;_ , and f;_l by the same number of elements; fur-
thermore we know by (I) that for y € {ay,...,a.}, Mle;(y)] < M[fi(y)], by
choice we have that for all y’ € {by,...,bg}, f1(y) = e12(y") and we know that
Mle2(y)] < M f12(y")] by (II). Hence, M[e,.] < M[f,] in either of the above

cases. In the end of this process, we have e’, € E(py) and fjf € E(g[l..z]), and by

construction, /(e;) = I(f}) and M[e/;] < M[fj{]' -
fio | — i | |
\/ fo="Tfiao
€192 I b b I
1 d
fl - - i

Fig.6 Constructing extensions in the proof of Lemma 3.7
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3.3 The Chop Lemmas

Assume the notation of the Split Lemma. If we were to apply it recursively, it only
yields a size reduction whenever (i, j) ¢ {(1, 1), (m, n)}. Motivated by this issue,
we prove two more lemmas to deal with the cases when (i, j) € {(1, 1), (m, n)},
and we coin them the ‘Chop Lemmas’. It will turn out that when applied to typical
sequences, a repeated application of these lemmas yields a dominating path in M.
This insight crucially helps in arguing that the dominating path in a merge matrix can
be found using linearly many integer operations. Before we present their statements
and proofs, we need another auxiliary lemma.

Lemma 3.8 Let r and ¢ be two integer sequences of length 3 where for all s € {r, c},
5(3) = s(1) =s5(2).
Let L be the merge matrix of r and c. If L[1, 2] < L[2, 1], then p_ (L) < pr(L).

Proof This can be witnessed by the following extensions ¢ € E(p (L)) and [ €
E(pr(L)):

e : (1,1),(,2),(1,3),(2,3),3,3),3,3),3,3)
f:1,D),2,1,2,D,2,1),3,1),(@3,2),3,3)
We argue that e < f:

L[1,2] < L[2,1] (by assumption)

L[1,3] < L[1,2] < L[2,1] (since c(3) < c(2) and by assumption)
L[2,3] < L[2,1] (since c(3) < c(1))

Vi € [3]: L[3,3] < L[3,i] (sincec(3) <c(1) <c(2)) 0

Remark 3.9 We would like to stress that up to this point, all results in this section
were shown in terms of arbitrary integer sequences. For the next lemma, we require
the sequences considered to be typical sequences. In Section 3.5 we will gener-
alize the results that rely on the following lemmas to arbitrary integer sequences.
The generalization to arbitrary integer sequences is necessary for the applications
in Section 4, since the integer sequences arising there are in general not typical
sequences.

We are now ready to prove the Chop Lemmas for typical sequences. They come
in two versions, one that is suited for the case of the bottom left submatrix after an
application of the Split Lemma to M, and one for the top right submatrix. In the
former case, we have that the last row is a minimum row and that the last column is
a minimum column. We will prove this lemma in more detail and observe that the
other case follows by symmetry with the arguments given in the following proof. For
an illustration of the setting in the following lemma, see Fig. 7b.
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min —>
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(a) (b)

Fig. 7 Visual aides to the proof of Lemma 3.10. (a) Typical sequence ending in the minimum. (b) The
general setting in Lemma 3.10

Lemma 3.10 (Chop Lemma - Bottom) Let r and c be typical sequences of length
m > 3 and n > 3, respectively, and let M be the merge matrix of r and c. Suppose
that m € argmin(r) and n € argmin(c) and let M1 = M[1l..(m — 2), 1..n] and
M, := M[1..m, 1..(n — 2)] and for all h € [2], let pp, < P(Mp). Let pf = p1o
(m—1,n), (m,n) and p; = pro(m,n—1), (m,n).

() IfMim—2,n—1]1< M[m — 1,n — 2], then p| < P(M).
(i) IfM[m—l,n—Z]5M[m—2,n—l],thenp;<(M).

Proof Lets € {r, c}. Since s is a typical sequence and /(s) € argmin(s), we know by
Corollary 2.8 that for all k € [[I(s)/2]],

I(s)—2k+1 eargmax(s[1..({(s)—2k+1)]) and I(s) —2k € argmin(s[1..((s) —2k)]).

Informally speaking, this means that the last element of s is the minimum, the
(I(s) — 1)-th element of s is the maximum, the (/(s) — 2)-th element is ‘second-
smallest’ element, and so on. We will therefore refer to the element at position /(s) —
2k (2k < I(s)) as ‘ming41(s)’ (note that the minimum is achieved when & = 0, hence
the ‘+1°), and elements at position [(s) — 2k + 1 2k + 1 < I(s) — 1) as ‘maxg(s)’.
For an illustration of the shape of s see Fig. 7a and for an illustration of the general
setting of this proof see Fig. 7b. We prove (i) and remark that the argument for (ii) is
symmetric.

First, we show that each path in M is dominated by at least one of p?‘ and p;' .

Claim 3.10.1 Let g € P(M). Then, for some r € [2], p} < q.

Proof We may assume that g does not contain (m — 1, n — 1): if so, we could easily
obtain a path ¢’ from ¢ by some local replacements such that ¢’ dominates ¢, since
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M[m — 1,n — 1] is the maximum element of the matrix M. We may assume that g
either contains (m — 1, n) or (m, n — 1). Assume that the former holds, and note that
an argument for the latter case can be given analogously. Since ¢ contains (m — 1, n),
and since ¢ does not contain (m — 1,n — 1), we may assume that g contains
(m — 2, n): if not, we can simply add (m — 2, n) before (m — 1, n) to obtain a path
that dominates g (recall that n is the column indexed by the minimum of c¢). Now, let
q|m, be the restriction of g to M, we then have that g = g|y, o (m — 1, n), (m, n).
Since pi dominates all paths in My, it dominates ¢ |, and so pi" <q.

The remainder of the proof is devoted to showing that pf’ dominates p; which
yields the lemma by Claim 3.10.1 and transitivity. To achieve that, we will show in a
series of claims that we may assume that p, contains (m — 2, n — 2). In particular,
we show that if py does not contain (m — 2, n — 2), then there is another path in M>
that does contain (m — 2, n — 2) and dominates p;.

Claim 3.10.2 We may assume that there is a unique j € [n — 2] such that p> contains
(m—1, j).

Proof Clearly, p has to pass through the row m — 1 at some point. We show that we
may assume that there is a unique such point. Suppose not and let j, ..., j; be such
that p; contains all (m — 1, j;), where i € [¢]. By the definition of a path in a matrix,
we have that j; 11 = j; +1foralli € [t — 1]. Let p; be the path obtained from p> by
replacing, for each i € [t — 1], the element (m — 1, j;) with the element (m — 2, j;).
Since r(m — 2) < r(m — 1) (recall that m — 1 € argmax(r)), it is not difficult to see
that p/, dominates ps, and clearly, p) satisfies the condition of the claim.

Claim 3.10.3 Let j € [n — 3] be such that py contains (m — 1, j). If j =n —2k + 1
for some k € N with 2k + 1 < n — 1, then there is a path p), that dominates p> and
contains (m — 1, j + 1).

Proof For an illustration see Fig. 8a. First, by Claim 3.10.2, we may assume that j
is unique. Moreover, since j =n —2k+land j+1=n—-2k+2=n—2(k — 1),

min —> m min —>

max —> m—1 max —=

ming —> m—2 ming —>

ming —>

ming —>

=
5
g

(a)

Fig. 8 Visualization of the arguments that lead to the conclusion that we may assume that py contains
(m — 2, n — 2) in the proof of Lemma 3.10. (a) Situation of Claim 3.10.3. (b) Situation of Claim 3.10.4

maxg_—1 —>
ming_; —>

~
=3
=
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we have that ¢(j) = maxg(c) and c(j + 1) = ming(c), respectively, and therefore
c(j +1) < c(j). Hence, we may assume that the element after (m — 1, j) in p» is
(m, j + 1): if py contained (m, j) we could simply remove (m, j) from p, without
changing the fact that p; is a dominating path since M[m, j] > M[m, j + 1].
We modify p, as follows. We remove (m — 1, j), and add (m — 2, j) (if not
already present), followed by (m — 2, j + 1) and then (m — 1, j + 1). For each
x e {M[m-2,j], M[m—2, j+1], M[m—1, j+1]}, we have that x < M[m —1, j]
(recall that r(m — 2) < r(m — 1) and ¢(j + 1) < c(j)). Hence, the resulting path
dominates p, and it contains (m — 1, j + 1).

Claim 3.10.4 Let j € [n —4] be such that p contains (im—1, j).If j =n—2(k—1)
for some k € [3.. L%J], then there is a path p) that dominates py and contains
(m—1,j+2).

Proof For an illustration see Fig. 8b. Again, by Claim 3.10.2, we may assume that j
is unique. Since j = n —2(k — 1), we have that ¢(j) = ming(c). First, if not already
present, we insert (m —2, j) just before (m —1, j) in p;. This does not change the fact
that p; is a dominating path, since M[m —2, j] < M[m—1, j] (recall thatr(m—2) <
r(m — 1)). Next, consider the 3 x 3 submatrix L := M[(m — 2)..m, j..(j +2)]. Note
that L is the submatrix of M restricted to the rows min(r), max(r), and min;(r),
and the columns ming (c), maxx_1(c), and ming_1(c). Furthermore, we may assume
that p; restricted to L is equal to pr(L): We know that p, contains (m — 2, j) and
(m — 1, j), and with Claim 3.10.2, by which we can assume that p, contains no
other element from row m — 1, we can derive that the next element in pj is (m, j) or
(m, j 4 1). In the latter case we can insert (m, j) before (m, j + 1) since M[m, j] <
Mlm, j + 1].

We show that p_ (L) dominates pr (L), from which we can conclude that we can
obtain a path p), from p; that contains (m — 1, j +2) and dominates p; by replacing
pr(L) with p_ (L). By Lemma 3.8, it suffices to show that M[m — 2, j + 1] <
M[m — 1, j], in other words, that max—1(¢) + mina(r) < max(r) + ming(c).

By the assumption of the lemma, we have that M[m —2,n—1] < M[m—1,n—-2],
hence,

max(c)+n12in(r) <max(r) + mzin(c), and so: max(c) — mzin(c) <max(r) — mzin(r).
Next, we have that for all j € [|n/2]],
max(c) — mzin(c) > m]ax(c) — rJnJirll(c).
Putting the two together, we have that
I,?_a{dc) — rr}(in(c) < max(r) — rr12in(r), and so: rp_z?(c)—i—mzin(r) §max(r)+mkin(c),

which concludes the proof of the claim.
We are now ready to conclude the proof.

Claim 3.10.5 p{" < p5.

@ Springer



74 Theory of Computing Systems (2023) 67:52-88

Proof By repeated application of Claims 3.10.3 and 3.10.4, we know that there is a
path p), in M that contains (m — 1, n — 2) and such that p) < p,. Furthermore, we
may assume that p} contains (m — 2, n — 2) as well: we can simply add this element
if it is not already present; since M[m — 2,n — 2] < M[m — 1,n — 2], this does
not change the property that p, < p,. Now, let pJ be the subpath of p) ending in
(m — 2,n — 2). (Note that p'z’ om—2,n—1),(m —2,n) € P(M;).) Then, the
following hold:

p < pyo(m—2,n—1),(m—2,n),(m—1,n),(m,n) 3)
< pho(m,n—1),(m,n) 4
<p; )

Here, (3) is due to p; < (M) and therefore p; < pé’ om—2,n—1),(m —2,n).
Next, (5) is guaranteed since p) < py. We justify (4) as follows: Let L := M[(m —
2)..m, (n —2)..n]. Then, pg om—2,n—1),(m—2,n), (m—1,n), (m, n) restricted
to Lis p (L) and p’ o (m,n — 1), (m, n) restricted to L is pr(L). Since L[1,2] =
M[m —2,n—1] < M[m — 1,n — 2] = L[2, 1] by the assumption of this lemma
(Lemma 3.10) we know that p_ (L) < pr(L) by Lemma 3.8.

This concludes the proof of (i) and (ii) can be shown symmetrically. O]

As the previous lemma always assumes that m > 3 and n > 3, we observe the
corresponding base case which occurs when either m < 2 or n < 2. This base case
is justified by the observation that in the bottom case, the last row and column of M
are minimum.

Observation 3.11 (Base Case - Bottom) Let r and ¢ be typical sequences of length
m and n, respectively, and let M be the merge matrix of r and c. Suppose that m €
argmin(r) and n € argmin(c). [f m <2 (n < 2), then®

pr=01,1),0m,1),m,2),...,m,n) (p*:=@0,1,0,n),2,n),...,(m,n))
dominates P(M), i.e., p* < P(M).

By symmetry, we have the following consequence of Lemma 3.10.

Corollary 3.12 (Chop Lemma - Top) Let r and c be typical sequences of length
m > 3 and n > 3, respectively, and let M be the merge matrix of r and c. Suppose
that 1 € argmin(r) and 1 € argmin(c) and let M| := M[3..m, l..n] and M, :=
M[1..m,3..n] and for all h € [2], let pp, < P(M},). Let p]+ =(1,1),2,1)0 p; and
py =1, 1,(1,2)0pa.

() If M[3,2] < MI[2,3], then p|” < P(M).
(i) If M[2,3] < MI[3,2], then p; < P(M).

SNote that in the following equation, if m = 1, then strictly speaking we would have that p* repeats the
element (1, 1) twice which is of course not our intention. For the sake of a clear presentation though, we
will ignore this slight abuse of notation, also in similar instances throughout this section.
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Again, we observe the corresponding base case.

Observation 3.13 (Base Case - Top) Let r and c be typical sequences of length m and
n, respectively, and let M be the merge matrix of r and c¢. Suppose that 1 € argmin(r)
and 1 € argmin(c). If m <2 (n < 2), then

pri=(1,1),(1,2),....,(,n),(m,n (P :=00,1,2,1,...,0n,1), (m,n)
dominates P(M), i.e., p* < P(M).

3.4 The Split-and-Chop Algorithm

Equipped with the Split Lemma and the Chop Lemmas, we are now ready to give the
algorithm that computes a dominating merge of two typical sequences. Consequently,
we call this algorithm the ‘Split-and-Chop Algorithm’.

Algorithm 2 The split-and-chop algorithm.

Input : Typical sequences r(1), ..., r(m) and c¢(1), ..., c(n)

Output: A dominating merge of » and ¢

1 Leti € argmin(r) and j € arg min(c);

2 return Chop-bottom (r[l..i], ¢[1..j]) o Chop-top (r[i..m], c[j..n]);

3 Procedure Chop-bottom (r and ¢ as above)

4 ifm < 2thenreturnr(1)+c(1),r(m)+c(1),r(m)+cQ),...,r(m)+c(n);
5 if n <2 thenreturnr (1) +c(1),r(1)+c(n),r2) +c), ..., r(m)+cn);
6 ifrm—2)+cn—1) <r(m—1)+ c(n — 2) then return
Chop-bottom (r[l..(m — 2)],¢) o (r(m — 1) + c(n)), r(m) + c(n);

7 ifr(m—1)+cn—2) <r(m—2)+ c(n — 1) then return
Chop-bottom (r, c[l..(n — 2)]) o (r(m) 4+ c(n — 1)), r(m) + c(n);

8 Procedure Chop-top (r and c as above)

9 if m <2thenreturn»(1)+c(1),r(1)+c@2),...,r(1)+cm), r(m)+c(n);
10 ifn <2thenreturnr(1)+c(1),r2)+c(1l),...,r(m)+c(1), r(m)+c(n);
11 if 7(3) + c(2) < r(2) + ¢(3) then return
r(1) +c(1), (r(2) + ¢(1)) o Chop-top (r[3..m], ¢) ;

12 if 7(2) + c¢(3) < r(3) + ¢(2) then return
r(1) +c(1), (r(1) + ¢(2)) o Chop-top (r, c[3..1n]) ;

Lemma 3.14 Let r and c be typical sequences of length m and n, respectively. Then,
there is an algorithm that finds a dominating path in the merge matrix of r and c
using O(m + n) integer operations.

Proof The algorithm practically derives itself from the Split Lemma (Lemma 3.7)
and the Chop Lemmas (Lemma 3.10 and Corollary 3.12). However, to make the
algorithm run in the claimed bound, we are not able to construct the merge matrix of r
and c. This turns out to be not necessary, as we can simply read off the crucial values
upon which the recursion of the algorithm depends from the sequences directly. The
details are given in Algorithm 2.
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The number of integer operations in the Chop-subroutines can be computed as
Tm+n) < T@m + n — 2) + O(1), which resolves to O(m + n). Correctness
follows from Lemmas 3.7 and 3.10 and Corollary 3.12 with the base cases given in
Observations 3.11 and 3.13. O

3.5 Generalization to Arbitrary Integer Sequences

In this section we show how to generalize Lemma 3.14 to arbitrary integer sequences.
In particular, we will show how to construct from a merge of two typical sequences
7(r) and 7(s) that dominates all of their merges, a merge of r and s that domi-
nates all merges of r and s. The claimed result then follows from an application of
Lemma 3.14. We illustrate the following construction in Fig. 9.

The Typical Lift Let » and s be integer sequences and let t € 7(r) @ 7(s). Then, the
typical lift of t, denoted by p(z), is an integer sequence p(t) € r @ s, obtained from
t as follows. For convenience, we will consider p(¢) as a path in the merge matrix M
of r and s.

Step 1. We construct ¢’ € t(r) B (s) such that ¢’ < ¢ using Lemma 3.5. Through-
out the following, consider ¢’ to be a path in the merge matrix M, of (r) and
7(s).

Step 2.  First, we initialize p} := ¢/(1) = (1, 1). Fori = {2,...,1(t')}, we pro-
ceed inductively as follows. Let (i,, is) = 7(i) and let (i/, i) = (i — 1). (Note
that (i — 1) and #(i) are indices in M;.) Let furthermore (j,, js) be the index
in M corresponding to (i, is), and let (j/, jI) be the index in M corresponding
to (i/, i!). Assume by induction that p; ' € P(M([1..j, 1..j/1). We show how to
extend pli Ttoa path in pf in M[1..j,, 1..j]. Since ¢’ is non-diagonal, we have
that (i/, i}) € {(ir — 1,is), (ir, is — 1)}, so one of the two following cases applies.

CaseS2.1 (i’ =i, —landi/ =i;). In this case, we let p! := pi7lo
(j;+1ajs)s'-~s(jr9js)' . .
CaseS2.2 (i’ =i, andi/ =i; —1). In this case, we let p! := pi~lo

(jr,jx/‘i‘l),'-w(jr’js)

Fig. 9 Illustration of the typical lift. On the left side, the view of the merge matrix M, with the rows and
columns corresponding to elements of the typical sequences highlighted. Inside there, M, can be seen
as a highlighted submatrix. The merge ¢ is depicted as the large highlighted squares within M; and the

small highlighted squares outside of M, show its completion to the typical lift of . On the right side, an
illustration that does not rely on the ‘matrix view’
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Step 3. Wereturn p(¢) := ,o,l(’,).

Furthermore, it is readily seen that the typical lift contains no diagonal steps: we
obtain it from a non-diagonal path in the merge matrix of 7(r) and t(s) by inserting
vertical and horizontal paths from the merge matrix of » and s between consecutive
elements. Moreover, it is computable using linearly many integer operations, with
Step 1 taking linearly many integer operations by Lemma 3.5. We summarize in the
following observation.

Observation 3.15 Let r and s be integer sequences of length m and n, respectively,
andlett € t(r)®t(s). Then, p(t) € rHs, and p(¢) can be computed using O(m+n)
integer operations.

We now show that if r € 7(r) @ 7(s) dominates all merges of t(r) and 7 (s), then
the typical lift of # dominates all merges of r and s.

Lemma 3.16 Let r and s be integer sequences and let g € r &s. Lett € T(r) ® 1(s)
suchthatt < t(r) ® t(s). Then, p(t) < q.

Proof Let t' € t(r) @ 7(s) be the non-diagonal merge such that #’ < ¢ used in
the construction of p(r). We argue that p(z) < t’. To see this, let M be the merge
matrix of  and s and consider any (j/, j;) and (j, js) as in Step 2, and suppose that
Ji = Jjs. (Note that either j; = j; or j. = j..) As the only elements of the typical
sequence of r in [j/..j.] are r(j/) and r(j, ), we know that either for all i, € [j/..jr],
r(i) < rhy) < rjp). or for all by € [jl..jr). r(j}) = r(hy) = r(jr). Therefore,
in an extension of #/, we can repeat the index that yields max{M[j/, js1, Mjr, js1}
sufficiently many (i.e., j- — j/) times to ensure that the value of the extension of ¢’ is
an upper bound for all values of p(#) in these positions.

To finish the proof, we have by Lemma 2.10(iii) that there existsag’ € T(r)®1(s)
such that ¢’ < g. Since r < t(r) ® 7(s), we can conclude:

pt) <t <t<q <gq. O

We wrap up and prove the Merge Dominator Lemma (Lemma 3.1), stated here
in the slightly stronger form that the dominating merge is non-diagonal (which is
necessary for the applications in Section 4).

Lemma 3.17 (Merge Dominator Lemma) Let r and c be integer sequence of length
m and n, respectively. There exists a dominating non-diagonal merge of r and c, i.e.,
an integer sequence t € r B c such thatt < r & ¢, and this dominating merge can be
computed using O(m + n) integer operations.

Proof The algorithm proceeds in the following steps.

Step 1. Compute t(r) and 7(c).

Step 2. Apply the Split-and-Chop Algorithm on input (z(r), t(c)) to obtain ¢ <
T(r) ® t(c).

Step 3. Return the typical lift p(z) of ¢.
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Correctness of the above algorithm follows from Corollary 3.4 and Lemmas 3.14
and 3.16 which together guarantee that p(t) < r @ ¢, and by Observation 3.15, p(¢)
is a non-diagonal merge, i.e., p(f) € r B c¢. By Lemma 2.9, Step 1 can be done
using O(m + n) integer operations, by Lemma 3.14, Step 2 takes O(m + n) integer
operations as well, and by Observation 3.15, the typical lift of 7 can also be computed
using O(m + n) integer operations. Hence, the overall number of integer operations
needed is O(m + n). ]

4 Directed Width Measures of Series Parallel Digraphs

In this section, we give algorithmic consequences of the Merge Dominator Lemma.
In Section 4.1, we provide a polynomial time algorithm that computes the (weighted)
cutwidth of (arc-weighted) series parallel digraphs. In Section 4.2 we provide a linear
time transformation that allows for computing the modified cutwidth of an SPD on n
vertices in polynomial time using the algorithm that computes the weighted cutwidth
of an arc-weighted SPD.

4.1 Cutwidth

Recall that given a topological order vy, ..., v, of a directed acyclic graph G, its
cutwidth is the maximum over all i € [n — 1] of the number of arcs that have their tail
vertex in {vy, ..., v;} and their head vertex in {v;+1, ..., v,}, and that the cutwidth
of G is the minimum cutwidth over all its topological orders.

To give the algorithm for the corresponding CUTWIDTH OF SERIES PARALLEL
DIGRAPHS problem, we consider a generalized version where the input digraph has
edge weights and we want to find a topological order that minimizes the weighted
cutwidth.

Definition 4.1 Let G be a directed acyclic graph and w: A(G) — N be a weight
function.® For a topological order 7 € T1(G) of G, the weighted cutwidth of (i, )
is defined as

WCUtW (T, @) = MaXicfn—1] Y, wmeac @V, w),
() <i,m(w)>i

and the weighted cutwidth of (G, w) is weutw(G, w) := ming () Weutw(r, ).

The corresponding computational problem is defined as follows.

WEIGHTED CUTWIDTH OF SERIES PARALLEL DIGRAPHS

Input: A series parallel digraph G and an arc-weight function
w: A(G) — N.
Question: What is the weighted cutwidth of (G, w)?

SFor an arc (v, w), we use the shorthand ‘o (v, w)’ for ‘@ ((v, w))’.
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The CUTWIDTH OF SERIES PARALLEL DIGRAPHS problem is the special case of
the WEIGHTED CUTWIDTH OF SERIES PARALLEL DIGRAPHS problem where all
arcs have weight 1. Throughout this section, we refer to arc-weighted directed acyclic
graphs simply as weighted directed acyclic graphs.

Given a weighted series parallel digraph (G, w), our algorithm follows a bottom-
up dynamic programming scheme along the decomposition tree 7' that yields G.
Each node ¢t € V(T) has a subgraph G; of G associated with it, that is also series
parallel. Naturally, we use the property that G is obtained either via series or parallel
composition of the SPD’s associated with its two children.

To make this problem amenable to be solved using merges of integer sequences,
we define the following notion of a cut-size sequence of a topological order of a
directed acyclic graph which records for each position in the order, how many arcs
Cross it.

Definition 4.2 (Cut-Size Sequence) Let (G, w) be a weighted directed acyclic graph
on n vertices and let # € TI(G) be a topological order of G. The sequence
x(1),...,x(n—1), where fori € [n — 1],

x(i) = e w(u, v),

2 poche
is the cut-size sequence of w, and denoted by o (7). For a set of topological orders
I CII(G), weleto (IT') := {o () | ® € IT'}.

Throughout the remainder of this section, we slightly abuse notation: If G| and
G, are SPD’s that are being composed with a series composition, and 7r; € I1(Gy)
and mp € I1(G,), then we consider 7 = | o 7> to be the concatenation of the
two topological orders where f, = s1 only appears once in . Moreover, to simplify
notation, we consider the weight function of the given SPD only implicitly in places
where it does not crucially influence the arguments.

We first argue via two simple observations that when computing the weighted
cutwidth of a weighted series parallel digraph G by following its decomposition tree
in a bottom up manner, we only have to keep track of a set of topological orders that
induce a set of cut-size sequences that dominate all cut-size sequences of G.

Observation 4.3 Let G be a weighted DAG and 7, A € T1(G). If o(7) < 0 (A), then
weutw(r) < weutw(A).

This is simply due to the fact that o(7) < o (A) implies that max(o (7)) <
max(o (A)). Next, if G is obtained from G and G, via series or parallel composition,
and we have 71, A1 € I1(G1) such that o (1) < o (A1), then it is always beneficial
to choose 1 over A1, and A can be disregarded.

Observation 4.4 Let G be a weighted SPD that is obtained via series or parallel
composition from weighted SPD’s G and G;. Let w1, A1 € I1(G1) be such that
o(m1) < o(A1). Let w, A € TI(G) be such that w |y (G,) = 71, AMlv(G,) = A1, and for
all v € V(G3y), m(v) = A(v). Then, o () < o (X).
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The previous observation is justified as follows. Let (A) = x(1),...,x(n — 1)
ando(A) = y(1),..., y(n —1). Then, for each i € [n — 1], the arcs of G, contribute
equally to the values x (i) and y(i) (in particular since G| and G, are arc-disjoint).
Therefore, we can use extensions of o (;r1) and o (1) that witnesses that o (7)) <
o (A1) to construct extensions of o (;r) and o (1) that witness that o (1) < o (X).

The following lemma states that the cut-size sequences of a weighted SPD G
can be computed by pairwise concatenation or non-diagonal merging (depending on
whether G is obtained via series or parallel composition) of the two smaller SPD’s
that G is obtained from. Intuitively speaking, the reason why we can only consider
non-diagonal merges is the following. When G is obtained from G| and G, via
parallel composition, then each topological order of G can be considered the ‘merge’
of a topological order of G and one of G,, where each position (apart from the first
and the last) contains a vertex either from G or from G>. Now, in a merge of a cut-
size sequence of G with a cut-size sequence of G2, a diagonal step would essentially
mean that in some position, we insert both a vertex from G and a vertex of G»; this
is of course not possible.

Lemma 4.5 Let G| and G, be weighted SPD’s. Then the following hold.

) o(I(G1 e G2)) =0(I(G1)) O© o (I1(G2)).
(i) o(II(G1//G2)) = o(II(G) H o (I1(G2)).

Proof (i). Leto () € o (I1(G1eG?)) be such that 7 is a topological order of G1eG».
Then, 7 consists of two contiguous parts, namely 71 := 7|y (g,) € I1(G1) followed
by my := 1|y (G,) € I[1(G2). Since there are no arcs from V (G1)\{f1} to V(G2)\{s2},
we have that o (1) = o (1) o o (2) € o (I1(G1)) © o (I1(G>3)). The other inclusion
follows similarly.

(ii). Let o () € o (I1(G1//G2)) be such that r is a topological order of G1//G>.

Let my := m|v(G,) and w2 := m|y(G,). It is clear that 7; € TI(G1) and that 7, €
I(Gjy).Leto(wr) = x(1),...,x(n—1),0(@r) = y1(1), ..., y1(n1—1),and o (2) =
y2(1), ..., y(ny — 1). Forany i € {l,...,n — 1}, let i; be the maximum index

such that 7 (77 1(i 1)) < i, and define ip accordingly. Then, the set of arcs that cross
the cut between positions i and i 4+ 1 in 7 is the union of the set of arcs crossing
the cut between positions i1 and i1 + 1 in 71 and the set of arcs crossing the cut
between positions i and iy + 1 in ;. Since G and G, are arc-disjoint, this means
that x(i) = y1(i1) + y2(i2). Together with the observation that each vertex at position
i +1 < nin x is either from G or from G,, we have that

x(@+ 1D € {yii1 + D+ y202), y1G1) + y2(i2 + 1)},

in other words, we have that o (;1) € o (1) Ho (;m2) € o (I1(G1)) B o (I1(G2)). The
other inclusion can be shown similarly, essentially using the fact that we are only
considering non-diagonal merges. [

We now prove the crucial lemma of this section which states that we can com-
pute a dominating cut-size sequence of a weighted SPD G from dominating cut-size
sequences of the smaller weighted SPD’s that G is obtained from. For technical
reasons, we assume in the following lemma that G has no parallel arcs.
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Lemma 4.6 Let G be a weighted SPD without parallel arcs. Then there is a topolog-
ical order w* of G such that o (™) dominates all cut-size sequences of G. Moreover,
the following hold. Let G| and G, be weighted SPD’s and for r € [2], let ) be a
topological order of G, such that o (1)) dominates all cut-size sequences of G,.

(i) IfG=G|eGy, thenm* =n{ om;.
(1)) If G = G1//Ga, then * can be found as the topological order of G such that
o (*) dominates o (7}") B o ()).

Proof We prove the lemma by induction on the number of vertices of G. If |V (G)| =
2, then the claim is trivially true (there is only one topological order). Suppose that
|[V(G)] =: n > 2. Since n > 2 and G has no parallel arcs, we know that G
can be obtained from two SPD’s G| and G, via series or parallel composition with
|[V(G1)| =: n1 < nand |V(Gy)| =: ny < n. By the induction hypothesis, for
r € [2], there is a unique topological order 7" such that o (7;) dominates all cut-size
sequences of G,.

Suppose G = G e G. Since o(nl*) dominates all cut-size sequences of G and
o (ng‘) dominates all cut-size sequences of G, we can conclude using Lemma 2.10(v)
that o () o o(n)) dominates o(I1(G1)) © o(I1(G2)) which together with
Lemma 4.5(i) allows us to conclude that o ({") 0 0 (75) = o (] o ;) dominates all
cut-size sequences of G. This proves (i).

Suppose that G = G G», and let 7* be a topological order of G such that o (7*)
dominates o (7r")Ho (7). We show that o (7*) dominates o (I1(G)). Let & € I1(G).
By Lemma 4.5(ii), there exist topological orders m; € I1(G1) and mr € I1(G»3)
such that o (;r) € o (1) H o (;r2). In other words, there are extensions e of o (1)
and e of o (;rp) of the same length such that o () = e; + e>. For r € [2], since
o(r}) < o(m,), we have that o (7)) < e,. By Lemma 2.10(ii),” there exists some
f € o(@f) ® o(x)) such that f < e; + ez, and by Lemma 3.5, there is some
fleo(@)Bo () suchthat f* < f.Since o (7*) < o (n])Bo (75), we have that
o(m*) < f’, and hence (ii) follows:

o)< f' < f<el+e=o0(n). O
We are now ready to prove the first main result of this section.

Theorem 4.7 Let (G, w) be a weighted series parallel digraph on n vertices and m
arcs, and let W := Z(M’U)EA(G) w(u, v). There is an algorithm that computes in time
O((n*+m) log W) the weighted cutwidth of (G, w), and outputs a topological order
that achieves the upper bound.

Proof First, we modify G so that it has no parallel arcs, without changing the
weighted cutwidth. for any pair u,v € V(G) such that G has p > 1 parallel
(u, v)-arcs, say ay, ...,ap, we replace ay, ..., a, with a single arc a* of weight

TTake r = e1, s = e, ro = o (1), and s = o (712).
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> elpl w(a;). It is easy to see that this does not change the cutwidth, and clearly,
the resulting graph is still series parallel. Moreover, this can be done in time at most
O(mlog W), and we may from now on assume that |A(G)| = O(n?).

We use the algorithm of Valdes et al. [25] to compute in time O(n + |A(G)|) =
O(n?) a decomposition tree T that yields G, see Theorem 2.13. We process T in a
bottom-up fashion, and at each node t € V(T), compute a topological order m; of
G, the series parallel digraph associated with node ¢, such that o (77;) dominates all
cut-size sequences of G,. Lett € V(T).

Case 1 (¢ is a leaf node). In this case, G; is a single arc and there is precisely one
topological order of G,; we return that order.

Case 2 (7 is a series node with left child ¢ and right child ). In this case, we
look up me, a topological order such that o(my) dominates all cut-size
sequences of Gy, and 7., a topological order such that o (7,) dominates all
cut-size sequences of G,. Following Lemma 4.6(i), we return 77 o 7.

Case 3 (¢ is a parallel node with left child ¢ and right child r). In this case, we
look up m; and 7, as in Case 2, and we compute 7, such that o (7;) dom-
inates o (7r¢) H o (7,) using the Merge Dominator Lemma (Lemma 3.17).
Following Lemma 4.6(ii), we return ;.

Finally, we return ., the topological order (of G = G) computed for t, the
root of 7. Observations 4.3 and 4.4 ensure that it is sufficient to compute in each
of the above cases a set I} C II(G,) with the following property. For each
;€ TI(Gy), there is a m;" € TIIf such that o () < o (7;). By Lemma 4.6, we
know that we can always find such a set of size one which is precisely what we
compute in each of the above cases. Correctness of the algorithm follows. Since
T has O(n) nodes and each of the above cases can be handled in at most O(n)
integer operations by Lemma 3.17, the total runtime of the algorithm after remov-
ing parallel arcs is O(n”>log W), since the maximum value of any element in a
cut-size sequence is trivially upper bounded by W. Therefore, the total runtime is
O((n* + m)log W). O

We can easily use the algorithm of the previous theorem to solve the (unweighted)
CUTWIDTH OF SERIES PARALLEL DIGRAPHS problem.

Corollary 4.8 Let G be series parallel digraph on n vertices and m arcs. There is an
algorithm that computes in time O((n* + m)logm) the cutwidth of G, and outputs a
topological order that achieves the upper bound.

Proof We create a weighted SPD (G', ') as follows. The SPD G’ is obtained from
G by replacing each set of parallel arcs from one vertex to another with a single arc.
We let ' : A(G’) — N, such that for all (u«, v) € A(G’), & (u, v) is the number of
parallel (u, v)-arcs in G. It is clear that the weighted cutwidth of (G’, ') is equal to
the cutwidth of G. We can therefore apply the algorithm of Theorem 4.7 to find the
cutwidth of G via the weighted cutwidth of (G’, ). O
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4.2 Modified Cutwidth

We now show how to use the algorithm for computing the weighted cutwidth of
series parallel digraphs from Theorem 4.7 to give an algorithm that computes the
modified cutwidth of a series parallel digraph in polynomial time. Recall that given a
topological order vy, ..., v, of a directed acyclic graph G, its modified cutwidth is
the maximum over all i € [n — 1] of the number of arcs that have their tail vertex in
{vi, ..., vi—1} and their head vertex in {v; 41, ..., vy}, and that the modified cutwidth
of G is the minimum modified cutwidth over all its topological orders. We are dealing
with the following computational problem.
MODIFIED CUTWIDTH OF SERIES PARALLEL DIGRAPHS

Input: A series parallel digraph G.
Question: What is the modified cutwidth of G?

To solve this problem, we will provide a transformation which allows for applying
the algorithm for the WEIGHTED CUTWIDTH OF SPD’S problem to compute the
modified cutwidth. We would like to remark that this transformation is similar to one
provided in [6], however some modifications are necessary to ensure that the digraph
resulting from the transformation is an SPD.

Theorem 4.9 Let G be a series parallel digraph on n vertices and m arcs. There is
an algorithm that computes in time O((n + m)*logm) the modified cutwidth of G,
and outputs a topological order of G that achieves the upper bound.

Proof We give a transformation that enables us to solve MODIFIED CUTWIDTH OF
SPD’s with help of an algorithm that solves WEIGHTED CUTWIDTH OF SPD’s.

Let (G”, (s, t)) be an SPD on n vertices and m arcs. If G has parallel arcs then we
subdivide all but one of the parallel arcs for each pair of vertices. This does not change
the (modified) cutwidth, and keeps a digraph series parallel. Let (G, (s, ¢)) denote the
resulting SPD which will be the input graph to the MODIFIED CUTWIDTH OF SPD’S
problem that we are solving. Note that |V (G)| = O(n+m) and that |[A(G)| = O(m).
We construct another digraph G’ and an arc-weight function w: A(G') — N as
follows. For each vertex v € V(G) \ {s, t}, we add to G’ two vertices v;, and vgy;.
We add s and ¢ to G” and write s as s,,; and f as t;,. We add the following arcs to
G'. First, for each v € V(G), we add an arc (vi,, Vour) and we let o (Vin, Vour) =
m + 1. Next, for each arc (v, w) € A(G), we add an arc (v, w;,) to G’ and we let
@ (Vout, Win) := 1. For an illustration see Fig. 10.

(Gl UJ) Ain 7 naout 1 Cin 7 Cout

Sout

Fig. 10 Illustration of the transformation given in the proof of Theorem 4.9. Note that in this case, m = 6,
so the arcs between vertices v;, and v,,; have weight 7
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We observe that the size of G’ is linear in the size of G, and then prove that if G’
is obtained from applying the above transformation to a series parallel digraph, then
G’ is itself an SPD.

Observation 4.9.1 Let G and G’ be as above. Then, n’ := |V(G')| < 2|V(G)| and
[A(G)] < |[A(G)| + |V(G)].

Claim 4.9.2 If G is a series parallel digraph, then G’ as constructed above is an SPD.

Proof We prove the claim by induction on n, the number of vertices of G. For the
base case when n = 2, we have that G is a single arc in which case G’ is a single arc
as well. Now suppose n > 2. Since n > 2, G is obtained from two series parallel
digraphs G1 and G via series or parallel composition. Since G has no parallel arcs,
we can use the induction hypothesis to conclude that the graphs G| and G/, obtained
via our construction are series parallel. Now, if G = G1//G», then it is immediate
that G’ is series parallel. If G = G| e G, then we have that in G’, the vertex that
was constructed since #; and s, were identified, call this vertex x, got split into two
vertices x;, and x,,; with a directed arc of weight m + 1 pointing from x;, to xy;.
Call the series parallel digraph consisting only of this arc (X, (xj,, Xout)). We now
have that G’ = G| @ X & G/, so G is series parallel in this case as well.

We are now ready to prove the correctness of this transformation. To do so, we
will assume that we are given an integer k and we want to decide whether the modi-
fied cutwidth of G is at most k.

Claim 4.9.3 If G has modified cutwidth at most k, then G’ has weighted cutwidth at
most m + k + 1.

Proof Take a topological order 7w of G such that mcutw(r) < k. We obtain 7" from 7
by replacing each vertex v € V(G) \ {s, t} by v;, followed directly by v,,,. Clearly,
this is a topological order of G’. We show that the weighted cutwidth of this order is
atmostm + k + 1.

Let i € [n’ — 1] and consider the cut between position i and i + 1 in /. We
have to consider two cases. In the first case, there is some v € V(G) such that
7'71(i) = vip, and 771 (i + 1) = voy;. Then, there is an arc of weight m + 1 from
Vin 10 vy crossing this cut, and some other arcs of the form (u,,;, w;,) for some arc
(u, w) € A(G). All these arcs cross position 7 (v) in 7, so since meutw(rw) < k, there
are at most k of them. Furthermore, for each such arc we have that w ((uy;, win)) = 1
by construction, so the total weight of this cut is at most m + k + 1.

In the second case, we have that 7/~ (i) = v, and 71 + 1) = w;,, for some
v, w € V(G), v # w. By construction, we have that 7 (w) = 7 (v) + 1. Hence, any
arc crossing the cut between i and i + 1 in 7’ is of one of the following forms.

(1) TItis (xour, yin) for some (x, y) € A(G) with 7(x) < w(v) and w(y) > 7w (v),
or
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(i) itis (xour, yin) for some (x, y) € A(G) with 7(x) < 7 (w) and 7 (y) > 7w (w),
or
(i) itis (Vour, Win).

Since meutw(G) < k, there are at most k arcs of the first and second type, and since
G has no parallel arcs, there is at most one arc of the third type. By construction, all
these arcs have weight one, so the total weight of this cutis 2k + 1 <m + k + 1.

Claim 4.9.4 If G’ has weighted cutwidth at most m + k + 1, then G has modified
cutwidth at most k.

Proof Let 7’ be a topological order of G” such that weutw(z’, w) < m + k + 1.
First, we claim that for all v € V(G) \ {s, ¢}, we have that 7" (vo,;) = 7' (vin) + 1.
Suppose not, for some vertex v. If we have that 7' (v;,) < 7/(win) < 7' (Voy;) for
some w € V(G) \ {s, t} and w # v, then the cut between 7’(w;,) and 7’ (w;;) + 1
has weight at least 2m + 2: the two arcs (vj,, Voyr) and (wj,, wyy;) cross this cut,
and they are of weight m + 1 each. Similarly, if 7'(viy) < 7' (Wour) < 7' (Vour),
then the cut between 7’ (wgy:) — 1 and 7/ (w,,s) has weight at least 2m + 2. Since
2m + 2 > m + k + 1, we have a contradiction in both cases.

We define a linear order = of G as follows. We let 7w (s) := 1, 7w (¢) := n, and for
all v,w € V(G) \ {s, 1}, we have 7(v) < m(w) if and only if 7' (v;,) < 7' (wip).
It is clear that  is a topological order of G; we show that 7= has modified cutwidth
at most k. Consider an arc (x, y) that crosses a vertex v in m, i.e., we have that
7(x) < w(v) < w(y). We have just argued that 7/ (vyy:) = 7' (vin) + 1, S0 we have
that the arc (x,,;, Vin) crosses the cut between v;;,, and vy, in 7’. Recall that there is
an arc of weight m + 1 from v;;, to vy, so since weutw(rr’, w) < m + k + 1, we can
conclude that in 7, there are at most (m + k + 1) — (m — 1) = k arcs crossing the
vertex v in 7.

Now, to compute the modified cutwidth of G, we run the above described trans-
formation to obtain (G’, w), and compute a topological order that gives the smallest
weighted cutwidth of (G’, @) using Theorem 4.7. We can then follow the argument
given in the proof of Claim 4.9.4 to obtain a topological order for G that gives the
smalles modified cutwidth of G.

By Claim 4.9.2, G’ is an SPD, so we can indeed apply the algorithm of Theo-
rem 4.7 to solve the instance (G’, w). Correctness follows from Claims 4.9.3 and
4.9.4. By Observation 4.9.1, |V(G")| = O(|V(G)|) = O + m), and |A(G")| <
IV(G)| + |A(G)| = O@m + n), and clearly, (G’, w) can be constructed in time
O(V(G)| +|A(G)]) = O(n + m); since Y., e a(cry @, v) = mOD, the overall
runtime of this procedure is at most O((n + m)? logm). O]

5 Conclusions

In this paper, we obtained a new technical insight in a now over a quarter century old
technique, namely the use of typical sequences. The insight led to new polynomial
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time algorithms. Since its inception, algorithms based on typical sequences give the
best asymptotic bounds for linear time FPT algorithms for treewidth and pathwidth,
as functions of the target parameter. It still remains a challenge to improve upon

these bounds (20(1”“2), respectively 29¢ ws)), or give non-trivial lower bounds for
parameterized pathwidth or treewidth. Possibly, the Merge Dominator Lemma can
be helpful to get some progress here.

As other open problems, we ask whether there are other width parameters for
which the Merge Dominator Lemma implies polynomial time or XP algorithms, or
whether such algorithms exist for other classes of graphs. For instance, for which
width measures can we give XP algorithms when parameterized by the treewidth of
the input graph?

Lastly, we present one more open problem regarding the computation of width
measures of series parallel digraphs. The vertex separation number of a topolog-
ical order is the maximum over all cuts induced by the order of the number of
vertices on the left side that have a neighbor on the right side. Finding a topologi-
cal order that minimizes the vertex separation number corresponds to an important
problem in compiler optimization, specifically to a problem related to register allo-
cation: we are given a set of expressions (a “basic block” or “straight-line code”)
that have certain dependencies among each other and the task is to find a sequence
for executing these expressions, respecting the dependencies, such that the number
of used registers is minimized. The dependencies among these expressions form an
acyclic digraph and any allowed schedule is a topological order. This problem was
shown to be NP-hard by Sethi [20] while Kessler [15] gave a 200 time exact algo-
rithm, improving over the n©™ naive brute-force approach. Sethi and Ullman [21]
showed in 1970 that the problem is linear time solvable if the acyclic digraph is a
tree which (to the best of our knowledge) is the only known polynomial time case.
It seems that with the help of the Merge Dominator Lemma, we might be able to
obtain a polynomial time algorithm for this problem on series parallel digraphs.
However, the application cannot be as immediate as in the case of cutwidth and mod-
ified cutwidth. The vertex separation number counts vertices rather than edges (as it
is the case for cutwidth and modified cutwidth), and in a parallel composition, the
sources of two SPDs are being identified. In a straightforward approach, this results
in overcounting the contribution of the source vertex to several cuts, which is the
main obstacle that needs to be overcome. While at first glance this may look like an
issue that could be solved with rather straightforward techniques, we want to point
out that (in our own experience) such direct approaches are fraught with very subtle
pitfalls.
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