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Tidal amplification and salt
Intrusion in the Mekong Delta
driven by anthropogenic sediment
starvation

Sepehr Eslami'*, Piet Hoekstral, Nam Nguyen Trung?, Sameh Ahmed Kantoush?,
DoanVan Binh®?3*, Do Duc Dung?, Tho Tran Quang? & Maarten van der Vegt?

Natural resources of the Mekong River are essential to livelihood of tens of millions of people. Previous
studies highlighted that upstream hydro-infrastructure developments impact flow regime, sediment
and nutrient transport, bed and bank stability, fish productivity, biodiversity and biology of the basin.
Here, we show that tidal amplification and saline water intrusion in the Mekong Delta develop with
alarming paces. While offshore M, tidal amplitude increases by 1.2-2 mmyr— due to sea level rise, tidal
amplitude within the delta is increasing by 2cmyr— and salinity in the channels is increasing by 0.2-0.5
PSU yr—1. We relate these changes to 2-3 m bed level incisions in response to sediment starvation,
caused by reduced upstream sediment supply and downstream sand mining, which seems to be four
times more than previous estimates. The observed trends cannot be explained by deeper channels

due to relative sea level rise; while climate change poses grave natural hazards in the coming decades,
anthropogenic forces drive short-term trends that already outstrip climate change effects. Considering
the detrimental trends identified, it is imperative that the Mekong basin governments converge to
effective transboundary management of the natural resources, before irreversible damage is made to
the Mekong and its population.

The Mekong River (MR) springs from the Tibetan-Qinghai Plateau, runs across six countries and it forms the
Vietnamese Mekong Delta (VMD). The lower Mekong basin (LMB) is home to over 70 million people and
Mekong riverine resources are indispensable to food and job security of this population'2 In the southern end
of LMB, the VMD (4 Mha?®) accommodates 22% of Vietnam’s population (17 M) and supplies 50% of the nation’s
food*. The Mekong River Basin (MB), pristine until two decades ago®, is now “divided between multiple lib-
eralized economies”® and competition ground over natural resources and disputable infrastructure projects.
Consequently, in response to upstream developments and downstream interventions, the VMD experiences river
bed’, bank®'° and coastal erosion®, alarming land subsidence rates''2, flooding'*-'® and frequently-reported
excessive saline water intrusion (SWI)!*?. While many studies?'~? relate SWI within the VMD to global climate
change (CC) and project it as a long-term hazard in response to sea level rise (SLR), other estuarine systems
around the world have shown SWT increase in response to anthropogenic morphological changes®. By studying
a comprehensive dataset, supported by models and observations, this study unveils that anthropogenic channel
bed degradation and its corresponding tidal amplification results in increasing SWI trends within the VMD
estuarine system.

LMB is characterized by monsoon-dominated seasonal climate with rainfall differentiating between the wet
(July-October, SW monsoon) and dry (December-May, NE monsoon) seasons’. While Mekong transports 300~
550 G m’yr~! fresh water®”*%, monthly average discharge at Kratie can vary between 2-36 10° m’ s~! from April
to September®. Figure 1 shows the VMD elevation®’, much of which is below 1 m and susceptible to flooding
and SWI. During the wet season, SW1 is limited to only a few kilometres versus tens of kilometres during the dry
season’!, affecting 1.3 Mha***2. Currently, there are 6 operational mainstream dams along the Lancang-Mekong
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Figure 1. Digital elevation map of the Mekong Delta®, including the salinity increase rates at multiple stations,
the estimated sand mining volumes (scaled with surface area of the circles); The sand mining figures upstream

of the VMD are extracted from previous publications'’, but updated within the VMD; the top right panel shows
three examples of salinity measurement and the P95 trend lines over 20 years; the top panel shows the names of
the lower estuarine distributary channels of the Mekong Delta for reference (coord. system WGS84-UTM 48 N).

River®, the Xayaburi dam was recently commenced along the mainstream in Laos, and other 170 hydropower
and 180 irrigation dams over the Mekong tributaries®. Due to hydropower operation, dry season discharge has
increased®*?, the onset of the wet season is delayed® and the peak of the flood pulse is regulated®*”. General
consensus is that despite large uncertainties in projecting CC, both seasonal and annual discharge increase under
most of the scenarios'®*$-%, Furthermore, it is expected that the frequency of extreme high flow events increases
and the frequency of extreme low flow conditions reduces*. Although both hydropower operations and CC lead
to increase in freshwater supply and act against dry season SWI, yet, SWI seems to be an every-year concern
to the authorities. While various CC adaptation plans are being implemented?>%, tidal amplification and SWI
are addressed as long term trends attributed to SLR. However, after the 2016 record SWI?, following the El
Nifio of 2015-2016 and frequent reports of high-tide flooding*'~*, there is an urgent need to introduce another
perspective.

Changes in salinity and tide. Mann-Kendall test of the highest 5% (P95) salinity measurements during
the dry season shows an average 0.2 PSU yr~! temporal increase over the last two decades at multiple stations
(average 50% increase along estuarine channels, in cases up to 100%). The magnitudes of the trends, estimated by
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Figure 2. Various tidal and non-tidal hydrodynamic properties of the Mekong Delta during the peak of the
dry season (March and April); cumulative discharge at different stations (a); 5" percentile (P05) of average
discharge (b); amplitude of M, tidal discharge relative to the year 2000 (c); M, amplitude of tidal water level
relative to offshore M, tidal amplitude (d).

Theil-Sen slope (see methods), are shown in Fig. 1. They show a spatial asymmetry in SWI increase; i.e., except
Dinh An distributary of Hau River, all channels show temporal increase in SWI. In principle, SWT is the outcome
of the competition between fluvial (discharge) and marine (tidal mixing) forces within a given geometry*-45,
Figure 2a shows that dry season cumulative discharge upstream of the VMD at Kratie, Cambodia, as well as the
measurement stations within the VMD, do not show any declining trend in the last two decades. In fact, over a
longer period, discharge in Kratie is increasing'®*>*-4 (see supplementary information). Furthermore, P05 of
discharge, indicating lowest discharge (Fig. 2b), also follows the cumulative discharge trend, suggesting that SWI
is increasing despite an increase in freshwater supply to the VMD.

The M, tidal discharge amplitude (horizontal tide, Fig. 2¢) relative to the year 2000 shows a consistent and
significant increasing temporal trend in all stations, varying from 40% in Can Tho and My Thuan with larger tidal
discharge, to 100% in Tan Chau with lower tidal discharge. At the same time, M, tidal water level amplitude (ver-
tical tide, Fig. 2d) relative to offshore (see methods, Harmonic Analysis) shows substantial increase, except in Can
Tho. While offshore M, tidal amplitude increases by c. 1.2-2 mmyr~! due to SLR¥, tidal amplification within the
VMD, especially within the Tien River, dramatically deviates from that trend and in the past decade, it has
increased by c. 1.5-2cmyr™! (also see supplementary information). This implies that although riverine force
(discharge) has increased in time, the strength of the mixing processes has increased significantly due to tidal
dynamics within the VMD. In addition, Fig. 3 shows consistent reduction of M, tidal propagation time along
different branches of the estuarine system over the past decade (except downstream of Can Tho). The increased
tidal propagation speed substantiates attribution of the increased tidal amplitudes to channel incision and rules
out impact of other physical properties (e.g., roughness). As the first order shallow water wave celerity scales with
@ (g = gravitational acceleration, h = depth), following the linearized asymptotic solution for phase speed in a
long, intermediate-depth, near-equilibrium estuary*’, the reduced phase speed between various stations implies
that the channels, on average, have deepened between 2 to 3 m (see also supplementary information).

Bed level changes. While morphological changes take place in complicated patterns of bed and bank ero-
sion, a crude image of these changes can be inferred from developments of tidal signal. Vertical and horizontal
tidal amplification at My Thuan and Tan Chau with increased tidal propagation speed along the Tien River and its
estuarine distributaries imply that bed levels of the Tien River within the VMD and upstream in Cambodia have
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Figure 3. M, phase difference (tidal travel time) between consecutive downstream and upstream stations
(coord. system WGS84-UTM 48 N).
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Figure 4. Cross-sections measured in 2014 versus 2017, showing channel deepening at various locations along
the Tien River.

deepened significantly. This was also shown in previous research’ by comparing 1998 and 2008 bathymetries. The
new evidence underscores continuity of the previously identified trends with even higher paces. From the tidal
variation changes it can be concluded that the main changes between 1998-2008 occurred between 2004 and
2008. As further evidence for the extreme trends, Fig. 4 shows changes in several cross-sections, measured during
2014 and 2017 surveys (see methods). The cross-sections are measured at multiple pools along the meandering
river, showing large incisions that may exceed average bed level changes along the river. Nevertheless, this com-
plements the hypothesis of rapid and significant bed level changes within the VMD. Within the Hau River system,
vertical tide has increased at Chau Doc but not at Can Tho. Tidal propagation speed has increased upstream of
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Figure 5. Observed® SWI, during High Water Slack (HWS) and when available Low Water Slack (LWS),
modelled longitudinal salinity profile in two different distributary channels of the Tien River in April 2005,
compared to the expected longitudinal salinity profiles, given the new bed levels and the corresponding
hydrodynamic response.
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Table 1. Summary of systemic decadal changes in different estuarine distributaries leading to SWI.

Can Tho and tidal discharge amplitude has increased at both Can Tho and Chau Doc. Therefore, we conclude
that channel bed levels have deepened substantially upstream of Can Tho but not significantly downstream of
Can Tho, which is also in-line with recent bathymetric surveys®! that find limited sources of modern sediment
in lower Hau River. Hereafter, we show that the combined effect of deeper channels and amplified tides leads to
increased SWI.

Modelling tidal amplification and SWI. In absence of a complete recent morphological survey of the
VMD, we used a calibrated state of the art barotropic model*? with 2006-2008 geometry (see methods) to phys-
ically replicate the observed tidal variations in response to bed level changes. The resulting hydrodynamic forces
of the model were then used as boundary condition to an analytical SWI model’. In a number of geometri-
cally schematised numerical experiments, the estuarine tidal response to bed level incision was quantified. To
approximate the observed tidal amplifications, e.g., 20% and 50% increase of M, tidal amplitude at My Thuan
and Tan Chau (between 2005 and 2016) and 22 minutes’ reduction of tidal travel time between My Thuan and
Tan Chau (Ch1 in Fig. 3), average bed levels must be lowered by up to 3m (also see Methods and Supplementary
Information). While in reality, morphological changes take place in sophisticated forms, with irregular combina-
tions of bed and bank erosions, this exercise provides further evidence on how the Mekong tidal system adapts
to bed level incision. Furthermore, due to complications of tidal dynamics in the multi-channel estuarine system,
amplitude of tidal velocity changes asymmetrically among distributary channels. Using previous observations®
and the updated tidal forcing in the analytical model¥’, we demonstrate the combined impact of bed level change
and tidal amplification on SWI.

Two SW1longitudinal profiles® during high water slack (HWS), from 2005, were reproduced using the analyt-
ical model (see Fig. 5). From the barotropic model we calculated that a 2m deeper Co Chien-Cung Hau channel
experiences 5% smaller tidal velocity (see Supplementary Information), leading to 5km further SWIand c. 1.5
PSU higher salinity at the measurement station (about 20 km from the estuary mouth) during high water slack.
Similar analysis in the 20% deeper Ham Luong channel results in 7% larger tidal velocity, hence, c. 10km longer
SWTI and 2.5 PSU higher salinity 20 km from the sea. These estimates are close to the observed SWI trends of
Fig. 1 (from 2005 to 2016) and systematically demonstrate how SWI responds to the combined effects of bed level
changes and tidal amplification (also see Table 1). Note that Ham Luong has higher SWI increase rates than Co
Chien-Cung Hau. The barotropic modelling shows that the two channels react differently to increasing depth.
While normally tidal velocity amplitude decreases due to increasing depth, in Ham Luong, due to interaction with
adjacent estuarine channels, tidal velocity amplitude increases. As larger depth increases SWI, the depth effect is
moderated by tidal velocity amplitude drop in Co Chien-Cung Hau but magnified in Ham Luong.
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Figure 6. A summarizing diagram on the effect of various processes on SWI within the VMD.

Sediment starvation. Fluvial sediment supply to world deltas has reduced by 30%°*. Upstream impound-
ments and downstream interventions (e.g., channel fixing with levees, diking the populated areas, sand mining)
suppress delta aggradation rates® 8. Sediment dynamics of the MB are enigmatic due to data deprivation*-*%*°
and its contrasting trends. The effects of sediment trapping by the dams under foreseeable future scenarios are
expected to have already reached or reach the VMD within the next 10-20 years®. Flow regulations, e.g., modi-
fied flood pulse'® and shift of tropical cyclone tracks? further reduce fluvial sediment supply. However, there are
also processes that can still supply sediment to the VMD. Upstream erosion in response to sediment trapping,
bank erosion due to climate variability’ (ENSO cold phases and enhanced intensity of monsoon) and sand min-
ing'® and short term effect of mountain road constructions® can delay downstream consequences, although not
clear to what extent.

The earlier estimates? of total sediment transported by MR were c. 160 Mt yr™!, but recent estimates
range between 40-110 Mt yr—'. While only 13.5% of total VMD discharge springs from upper Mekong basin
(Chinese Lancang-Mekong River), 40-60% of total Mekong sediment load originates from that stretch of the
basin>®. Estimates of sediment reduction rate from Chinese catchments due to 6 mainstream dams range
between 40-90%°%4%_Considering the hydropower development in Mekong tributaries, the aggregate sedi-
ment trapping of the dams are predicted to reduce sediment supply by 36%(moderate) —95%(worst case)®® and a
recent study®” measured 75% reduction in sediment supply to the VMD. Furthermore, although sand export was
banned in Cambodia and Vietnam, domestic consumption persisted. Projections to 2040% show more than 1500
Mm?® demand within the VMD for infrastructure development. Figure 1 shows the spatial distribution of sand
mining within the VMD and upstream in Cambodia. The issued mining licences in Vietnam, in 2015, summed
up to 28 Mm? yr~! (40-50 Mt yr~1), which is four times the previous estimates!'?. Considering that this does not
account for sand mining in Cambodia, Laos and possible illegal sand mining, only in Vietnam, this amount is
likely to be close to 100% (or more) of the total fluvial sediment supply.

27,36,62,63

Discussion

Examples of tidal amplification due to anthropogenic bed level incision, influencing SWI and tidal dynamics
are seen, amongst others, in Ems, Elbe, Loire and Schelde estuaries®. We have related the observed increasing
trends of SWI and tidal amplitudes to anthropogenic bed level degradation in the VMD as it was also envisioned
in previous studies’. While this study does not quantify the contribution from sources of sediment starvation,
we cannot ignore the concordance between bed level changes and the spatial distribution of sheer magnitudes
of sand mining (Fig. 1) within the VMD. Although, temporal development of the observed trends also coincides
with completion of major mainstream Lancang-Mekong dams, it is difficult to assume an immediate morpholog-
ical response of the VMD to upstream dam construction. However, the combined effect of upstream sediment
trapping, and downstream sand mining can lead to large scale channel erosions as it has also been shown for
coastal erosion in various cases™.

While sea level is rising at nearly 3 mmyr~'% and consequently, M, tidal amplitude over the Mekong conti-
nental shelf is increasing by 1.2-2 mmyr~'%, the M, tidal amplification within the delta is c. 2cmyr~! (e.g., at
My Thuan), and salinity is rapidly increasing in the delta by 0.2-0.5 PSU yr !, notwithstanding the increased
upstream discharge due to CC and hydropower operations. The way SLR affects salt intrusion is a) by increasing
channel depths, b) increasing offshore tidal amplitudes and c) increasing tidal amplitudes within the estuarine
channels. Furthermore, the anthropogenic land subsidence''? possibly also contributes to deeper channels by c.
1-4cmyr~'. On the other hand, in physical terms, sediment deficit has similar effects as relative SLR; i.e., it results
in deeper channels and larger tidal amplitudes which lead to increased SWI. However, relative SLR (including
land subsidence) in the past 15 years would perhaps sum up to c. 20-30 cm, while our presented evidence in this
study, backed by previous research, indicates bed level incisions in the order of 2-3 m. Therefore, it is inevitable
to conclude that anthropogenic trends outpace climate change trends by an order of magnitude and pose larger
threats in the short term while exacerbating the medium to long term climate change impacts. Figure 6 pro-
vides a summary of various forces acting and influencing SWI within the VMD. While the effect of upstream
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developments is reaching Cambodia and the delta, sand mining seems to simultaneously jeopardize livelihood
of the delta, calling for bold, multilateral and basin-wide management decisions before the consequences are
irreversible or unadaptable.

Methods

Approach. We collected and depurated a large dataset of water level, discharge and salinity for detailed anal-
ysis. First, we assessed possible trends of highest measured salinity at various locations along estuarine network.
Second, we extracted the temporal variation of discharge and tidal amplitudes (vertical and horizontal) at multi-
ple stations as well as the tidal propagation speed along different channels. Next, we used a calibrated barotropic
model of the VMD to relate tidal amplification to bed level changes. Through a number of quasi-synthetic
sensitivity analysis simulations, we studied the barotropic response of the estuarine system to various scenarios
of bed level changes. Eventually, we examined the effect of the barotropic changes on SWI using a widely-used
analytical SWI model?. By looking at upstream sediment trapping and downstream sand mining distribution
and recent morphological surveys in Tien and Hau Rivers, we related the existing trends to anthropogenic forces
ahead of climate change impacts.

Material. Water level, discharge and salinity measurement data within the VMD were originally collected
by the Southern Regional Hydrometeorological Centre (SRHMC), Ho Chi Minh City, part of the Ministry of
Natural Resources and Environment (MONRE), Vietnam. The data was provided by Southern Institute for Water
Resources Planning (SIWRP), Ho Chi minh City, the advisory institute for the Ministry of Agriculture and
Rural Development (MARD), Vietnam. The water level data within the VMD were collected in Hondau datum
(Vietnamese benchmark system). The discharge data were obtained by translation of stationary water level and
velocity data to cross-sectional discharge through rating curves. The rating curves were updated every quar-
ter based on multiple days of continuous ADCP transect measurements. Discharge data of Kratie were equally
generated from rating curves and originally provided by the Mekong River Commission (MRC). The stationary
salinity data are 2-hourly manual over-depth measurement. The measured salinity profiles are then averaged as
1 x (salinity at 20% depth) 42 X (salinity at 50% depth) + 1 x (salinity at 80% depth). Sand mining figures in
Cambodia were extracted with permission from previous publications'’. Sand mining figures within the VMD
were reproduced from licenses issued in 2015 by MONRE and were analysed by SIWRP. The bathymetry data
used for numerical barotropic modelling and analytical baroclinic modelling were provided by SIWRP. This data-
set contains 1340 channels and 4308 cross-sectional profiles, mainly from 2006-2008, updated with more recent
data when available®?.

Time series analysis. The peak of SWI within the VMD takes place in March and April of each year, when
freshwater contribution to the VMD from the Tonle Sap Lake diminishes?, freshwater inflow is at its minimum
and tidal amplitude is largest. Therefore, all time-series analyses were carried out for the period from beginning of
March to end of April. Various parameters presented in the article were calculated as it reads below:

Cumulative discharge. Within the VMD, the hourly discharge signal was first de-tided using the low-pass
Godin-filter”’. Subtidal discharge was then integrated over the period of interest. This was done to minimize
inaccuracies in rating curves, translating water level and point velocity to cross-sectional discharge. At Kratie,
discharge was non-tidal and the daily value (07:00 AM every day) was simply integrated over a day.

Harmonic analysis.  Tidal constituents were extracted from the tidal signal by least-square fitting of a tidal
function, formed by leading independent harmonic constituents (satisfying Rayleigh criterion)”" to observed
de-trended hourly tidal time series of water level or discharge. To isolate tidal amplitude changes within the estu-
ary from those associated with marine system (e.g. SLR), for stations along Hau River, Can Tho and Chau Doc,
tidal amplitudes are divided by tidal amplitude at the My Thanh offshore location (estuary mouth). For stations
along the Tien River (Tan Chau and My Thuan), Binh dai station is considered as offshore station.

Trend analysis. To quantify the significance of trends, we performed a linear regression on the values using
a nonparametric Mann-Kendall test and a Theil-Sen estimator’>”*. This estimator computes the median of all
pairwise slopes of values in time. The method is robust, i.e., it is not sensitive to outliers and does not require nor-
mality of the residuals. It is suitable for salinity and tidal amplitude data that are influenced by various processes”
(e.g., upstream discharge). For salinity, we performed a trend analysis on the P95 of salinity, i.e., the concentration
not exceeded by 95% of the observations. We note that, similar trends were observed for P90 and P50 of salinity
observations.

Bathymetric survey. As part of assessing temporal and spatial variation of morphological changes of the
VMD, several cross-sections were measured, during the rising stage of the wet season of 2014 and 2017. These
observations were coordinated by Kyoto University. The boat-based surveys were conducted by RD-Instruments
Workhorse Rio Grande 600 KHz Acoustic Doppler Current Profiler (ADCP), coupled with pole-mounted
Trimble GPS for positioning. ADCP depth measurements were corrected for water level using the network of
water level measurements along the river, operated by SRHMC.

Modelling. Studying tides (de-trended water level fluctuations) instead of absolute water levels, shields the
analysis against inconsistency in data referencing (e.g., due to SLR or land subsidence) providing strong evidence
to changing morphology. We used previously published® detailed barotropic model of the VMD to examine
sensitivity of the estuarine tidal system to bed level changes. For detailed model description, set-up, calibra-
tion and validation we refer to the underlying publications®*7#. While morphological changes take place with
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spatial along and cross-channel variability, in absence of a recent bathymetry, we performed this exercise under
idealized circumstances in order to show how the system responds to bed level changes. The choices for bed
level changes were inspired by the linearized asymptotic solution for phase speed in a long, intermediate-depth,
near-equilibrium estuary®’. We divided the channels into multiple stretches (as tidal propagation time was cal-
culated in Fig. 3). We subsequently calculated the required average bed level changes that result in the observed
reduction in tidal travel time. The bed levels of each stretch were lowered step-wise and in turn in the barotropic
model. The variation of horizontal and vertical tide as well as tidal travel time were then compared to the observa-
tions to arrive at a reasonable comparison to the observations (see supplementary information).

Since SWI trend analysis was carried out for P95, which approximately corresponds to high water slack, it
was possible to apply the Savenije*”** slack tide SWI theory to study the saline water intrusion physical processes.
Savenije*” showed that the steady-state salt balance equation relates maximum SWT to horizontal salinity gradient
and derived a predictive model for the varying along-channel dispersion coefficient. The dispersion coeflicient is
a function of upstream discharge, average depth, channel geometry and tidal excursion (a function of tidal veloc-
ity amplitude). The model?, (perhaps the most calibrated SWI model around the world), using 2005 measure-
ments™, was calibrated for multiple distributaries of the Mekong estuarine system. To show the sensitivity of SWT,
we updated the calibrated analytical model of 2005> by feedback from the bed level changes and the barotropic
response for tidal velocity amplitude (see Fig. 5). Since we aimed to look at the effect of bed level changes and the
associated tidal variations, other boundary conditions were kept constant.

Data availability

The underlying gauge data (observed water level, discharge and salinity) provided by the SIWRP, following the
organizational policy, can only be provided upon request for non-commercial use. DFlow-FM is an open source
numerical model. Nevertheless, all codes, data and models can be provided to the reviewers for any validation or
reproduction.
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