Highly Relevant Routing Recommendation Systems for
Handling Few Data Using MDL Principle and Embedded
Relevance Boosting Factors

Diyah Puspitaningrum I.S.W.B. Prasetya P.A. Wicaksono
University of Bengkulu Utrecht University University of Bengkulu
Bengkulu, Indonesia Utrecht, the Netherlands Bengkulu, Indonesia

diyahpuspitaningrum@gmail.com S.W.B.Prasetya@uu.nl P.A.Wicaksono@gmail.com
ABSTRACT routing distance. The user then selects one of them, and the
.) system will then displays the corresponding route to the selected
A route recommendation system can provide Dbetter

recommendation if it also takes collected user reviews into
account, e.g. places that generally get positive reviews may be
preferred. However, to classify sentiment, many classification
algorithms existing today suffer in handling small data items such
as short written reviews. In this paper we propose a model for a
strongly relevant route recommendation system that is based on
an MDL-based (Minimum Description Length) sentiment
classification and show that such a system is capable of handling
small data items (short user reviews). Another highlight of the
model is the inclusion of a set of boosting factors in the relevance
calculation to improve the relevance in any recommendation
system that implements the model.

CCS CONCEPTS

* Retrieval tasks and goals — Clustering and classification;
Sentiment analysis; Recommender systems ¢ Evaluation of
retrieval results — Relevance assessment;

KEYWORDS

MDL classification, relevance scoring, boosting factor

ACM Reference format:

Diyah Puspitaningrum, I.S.W.B. Prasetya, and P.A. Wicaksono. 2018.
Highly Relevant Routing Recommendation Systems for Handling Few
Data Using MDL Principle and Embedded Relevance Boosting Factors. In
ACM SIGIR 2018 Workshop on Learning from Limited or Noisy Data
(LND4IR’18). Article 1, 8 pages.'

1 INTRODUCTION

A route recommendation system is a system that helps users to
find nearest places of interest. The system allows the user to type
in a query to find a place, e.g. a restaurant. The system locates all
the places within some preset distance that match the query, and
then presents them in a ranked list, usually ordered by their

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).

LNDA4IR’18, July 12, 2018, Ann Arbor, Michigan, USA

© 2018 Copyright held by the owner/author(s).

place. Nowadays, people also write reviews on places they visited.
These comments are often available for public. Exploiting them
can improve the relevance of the routes recommended by such a
system, e.g. by preferring places with generally positive reviews.
To be able to do this, the system must first be able to analyze the
'sentiments' of the reviews, e.g. whether a given comment
indicates an excited user, or otherwise a bored one. However, one
of main obstacles in applying sentiment analysis on user reviews
is that these documents are small (most user reviews consist only
of one or two sentences), and hence the information they
individually convey is very limited as well.

One way to infer the sentiment that a piece of information
conveys is by classifying the information into some domain of
sentiments. So, it can be seen as a classification problem.
Previously, the work by Sigurbjornsson and van Zwol (2008)[13]
proposed to handle small data items by using pairwise tag co-
occurences. The approach is both accurate and fast, but it needs
larger sets of co-occuring tags to do the tagging; fagging here
means assigning keywords or terms to a piece of information
about an object. The work by Menezes et al. (2010)[9] used
association rules instead and showed that exploiting association
rules with more than two tags can improve accuracy. The
association rule is employed to a database of sets of tags
collection. Using a pattern selection method which is based on a
compression technique such as Minimum Description Length
(MDL) can further improve the accuracy [7]. A pattern here refers
to a set of tags/terms, as the representation of documents viz.
visitor reviews, that usually go together. A data structure such as
code table can be used to store patterns' relative frequencies [15]
and turns out to be able to accurately summarize a database.
Alternatively, wusing a classification technique based on
association rules mining, one can use MDL to mine very frequent
patterns [8] in a sentiment database. This method [8] assigns more
associated tags (two or more tags) and is slightly faster due to the
use of code tables acting as summary databases to classify a data
item.

In general, existing classifications techniques are either based
on rules induction or based on association rules. A NaiveBayes
(NB) technique [4] is frequently used for text classification
because it is easy to implement but the drawback is that it tends to
be slower and more complex because we must a priori specify the

LND4IR’18, July 12, 2018, Ann Arbor, Michigan, USA

setting of model parameters, i.e. the prior probability. Even then,
computing a posterior may be extremely difficult and this often
leads to computationally infeasible situation. Another well-known
technique is SVM [2] that has good performance but suffers in
careful set up of key parameters. SVMs are also very sensitive to
the problem that they are handling, so we end up needing different
setups for different problems. An MDL-based classification
technique is an NB-like algorithm, but it takes advantages of the
availability of the distribution of sample data, encoded in a so-
called 'code table'. If the database is an i.i.d. sample of some
underlying data distribution, using an optimal code table of this
distribution will well compress any arbitrary sample of
records/transactions from the database. The MDL technique is
expected to mine and select item-sets that are very characteristic
for the data.

In our work, we are interested in the research question of
whether a highly relevant route recommendation system can be
built on top of an MDL-based sentiment analysis. This paper
presents a model of such a system and an evaluation of the
performance of an implementation of the model. In addition to an
MDL back-end the model also incorporates a scoring function a la
[6] that has been boosted with factors that include sentiment. We
measured the performance of our recommendation system on
standard benchmarks: SVM, NB, C4.5 [11] for classification
techniques on sentiment analysis tasks. The results were
promising. Furthermore, we also experimented with various
routing algorithms (A* [10], Yen's [16], and Dijkstra [3]) used to
rank the places' distances. We evaluated how they affect the
relevance of search results in terms of the F-measure, G-measure
[5], and M-measure [1].

2 MODEL DESCRIPTION

== positive DB
N = £

~ Noise Keyword a MDL-based e

request —_ removal extraction classification e~ 2t
““u';“’sl ‘ no%&;ive

LJ
Sentiment analysis

gf Y

G 1

o

(_ e Latitude

Query boosting on
scoring fund
© - -
Route generation Routing algorithm Road network Longitude

\]

L
Recommend relevant places

Figure 1: The proposed highly relevant

recommendation system model

routing

Fig. 1 illustrates the schema of our proposed route
recommendation system model. We have implemented this model
and evaluated its performance later (see Section 3 for
experimental setup and Section 4 for the results). There are two
main stages in the system: first is the sentiment analysis and
second is the recommendation stages. In the first stage, the

2

D. Puspitaningrum et al.

database of visitor reviews as the knowledge source of the
recommendation system is classified into two sentiments: either
positive sentiment or negative sentiment. This process of
classifying knowledge source can be done offline. The
corresponding information retrieval process involves: noise or
stopword removal, keyword extraction using RAKE [12], and
sentiment classification. In order to do the last part, a classifier
must have proper vocabularies of positive, negative, and negation
words. In the recommendation stage, the user poses a query to
find a place. His/her position (latitude and longitude) is then
detected and a road network within some predefined radius is
generated. A shortest path routing algorithm is used to compute
distances for each candidate place that meets the query's criteria.
A scoring function is then used to score the candidates. Finally,
the system returns a visualization of the routes to the user.

We highlight some points about the proposed routing
recommendation system model: 1) a classification technique that
can handle small sized data such as user reviews, 2) query
boosting to improve recommendation quality, and 3) a proper
selection of the routing algorithm. The first two will be described
in the following subsections in this Section 2. The last one will be
discussed in the Section 6 on our experiments' results.

2.1 Sentiment Analysis

We will use an MDL-based classification to do the sentiment
analysis; more specifically the Krmvp algorithm [15]. The
algorithm mines frequent patterns of itemsets in a database.
Different from Apriori, in Krivp the frequent itemsets are mined

by only picking frequent patterns that compress the database best
(see Fig. 2, left).

Database Krame select pattern

3

O add to
- code table
accept /
reject . DBs. 7 e i

|

w) E o=

— B g

compress database

—

Code table

Many many
patterns

CT, code table per class
() The KRimPp association rules

mining process () CTy « Krimp(D)

Figure 2: Preprocessing activities

All frequent patterns are put in a code table, which in a sense is
a representative of the original database, but smaller in size. To
use Krivp as a classifier, a training database 4 which has been
tagged with the used class labels is needed. Then @ is split to
construct a partition @y for each class k, to derive the
corresponding code table CTj, see Fig. 2 (right). All class labels
are then removed from all transactions (rows). After some pruning
process, all CTj is incremented by 1 to ensure that their code
length can be calculated, thus a transaction can be encoded. For
pruning, KRIMP uses post-acceptance pruning. That is, KrRivp only
prunes when a candidate pattern F is accepted. F' is accepted when

Highly Relevant Routing Recommendation Systems for Handling Few Data

the candidate code table CT. = CT U F' is better than CT, i.e.
L(D,CT.) < L(D,CT).

Each code table CT} will act as the classifier for k. Algorithm 1
shows the classification algorithm. Line 2 constructs all the code
tables. For now we should ignore line 3 and pretend that @" is the
database of user reviews. To classify each transaction z € D", we
first calculate the encoding of ¢ according to all code tables. By
the MDL property of Krivp, ¢ has a higher probability to belong to
a class £ if the length of its encoding according to CTy is shorter.
So, we can classify ¢ by assigning it to the class whose code table
yields the shortest encoding of ¢. This is determined by the loop in
lines 7-14.

Algorithm 1: Classifying degenerated data with MDL
Input: D: database, t: transaction, §: percentage of truncated
factor, class: class labels in D
Output: D" set of degenerated transactions per class
1 def TruncateClassification(D,t,5):

2 CTy « Krimp(Dy), for all k € class

3 D" « truncate(D,5)

1 forallt € D" do

5 Lnin « oo

6 winner « —1

5 forall k € class do

8 forall ¢ € CT;. do

. L ler, (¢) = -log(—I")

deCTy,

10 LeT (t) = 2 let, (c)
cecover(t,CTy)

1 It — Ler (1)

12 if It < Lnin then

13 Imjn = lt

1 L winner <« k

15 L D“wirmer — D”wirmer U {t}

16 return D", for all k € class

More precisely, line 9 calculates the optimal code length of
each code in each code table. If freq(c) is the frequency of itemset
¢ in an code table CTj, then we normalize it with the total
frequency of all itemsets in the table. Since frequency determines
probability of tag co-occurences in the database, the more
frequent an itemset reduces the size of the databases the higher
probability it has. This is the use of -log in Step 9. Step 10-14
aims to find the shortest code length among the CT7}’s. The winner
class is the class & whose CT; yields the shortest code length.
Finally @" is partitioned according to the classification, to yield
partitions @", for each class k (line 15).

For the purpose of the experiments in Section 6 we want to
simulate a database containing short user reviews. So in line 3 we
introduce a truncation step. We create a degenerated database 2"
by randomly dropping some tags of every transaction ¢ in 4. Only
a percentage of (1-6) of the lexicographically ordered tags of ¢

LND4IR’18, July 12, 2018, Ann Arbor, Michigan, USA

will be picked; 6 is data degeneration factor or truncated factor. A
tag can be a term or a word phrase that represent subset of a
document (e.g. visitor reviews database).

2.2 The Recommendation Step

During the recommendation step we need to rank/score the
resulting candidates that match the given query. As the starting
point, we use the scoring function as in [6] as it allows us to give
more weight to the more interesting documents and to documents
that contain query phrases rather than individual query terms.
More precisely, given a user query ¢g and a result document d, this
scoring function is defined by:

score(q,d) = queryNorm(q) * coord (q,d) *
i(;f(z,,d) *(idf (1,))" * boost(t,,d)* norm(t,,d)\t € q) M

i=1
where queryNorm(q) is the query normalization used to find the
most interesting documents that meet the user query; coord(q,d) is
the query coordination used to give more importance on phrases
than individual terms. Field-length normalization norm(#,d) is

used to measure the importance of a term ¢ € ¢ in the document d,
with regards to their field length. Other scoring elements are: ff,
idf, and boosting factors. To support the goal of building a model
for highly relevant recommendation systems that can suggest
desired nearest place to the user, we must also assign a robust
classification technique to handle few data, we must also take
other supporting factors into account such as: the distance and the
place's popularity to improve the quality of information.

Boosting Factors. To improve the scoring we propose the
following boosting function, capturing several key aspects such as
the physical routing distance between a candidate place and the
user (we would prefer closer candidates) and, importantly, the
place's sentiment as inferred from its reviews:

boost (t;,d) = Wi (4>d)* Wpnipen (1;,d)*

@
Wdist (q9 d) * Wpop (ti > d) * W‘/ield _ matching (ti H d)

where each boosting component is defined as below. The scores
of boosting factors are in the range of 0-3 as the average number
of component query terms in searching system is 3 terms [14].

The five proposed boosting factors are as follow:

(1) Length of Matching Boosting. Wiengin(q,d) is the weight
of the length of matching boosting with its score equal to
the number of unique query terms ¢, for all #; € ¢ found in
the document d, capped at three.

(2) Sentiment Boosting. Wsensiment(ti,d) is the weight of the
sentiment of document d: it can be upgraded if d has
positive sentiment or otherwise downgraded by half of
Wiength(q,d). Since Wsentiment(ti,d) 1s influenced by the
quality of the classification technique that is used on the
knowledge database (e.g. on visitors' comments), then
transactions (or rows) in the database need to be classified
correctly to the class they belong to --Section 2.1 describes
the process.

LND4IR’18, July 12, 2018, Ann Arbor, Michigan, USA

(3) Distance Boosting. waisi(q,d) is the weight of the distance
boosting, where the score of 3 corresponds to a distance of
< 1 km, score=2 to 1 < distance < 2 km, and score=1 to 2
< distance < 5 km. We assume that the first situation
represents "walking distance", and the other two represent
"driving distance". Finally, the score is set to O if the
distance > 5 km to indicate “too far away”.

(4) Popularity Boosting. wyp(ti,d) is the user's of popularity
boosting built under the assumption that popular public
places are usually indicated by the user's statement of a
place name and/or a street name. Thus if the term #
matches in both d.name and d.address than score=3, if ¢
only matches in either d.name or d.address then score=2,
if # only matches in d.review then score=1, and if no
match score=0.

(5) Field Matching Boosting. Wieid marching(ti,d) is the weight
of field matching boosting with score=3 if # is matched in
d.name, score=2 if t; is matched in d.review, score=1 if ¢; is
matched in d.address, and score=0 if no match.

All in the boosting factors were built under assumption
that a typical review consists of place name, address of the
place, and what a visitor comment about the place.

3 EXPERIMENTAL DESIGN

3.1 Data

We use nearest restaurant recommendation as the case study,
using the datasets from FourSquare? and Yelp Dataset Challenge’.
In particular, we collected restaurant dataset from FourSquare
from 6 February 2016 - 7 April 2016 which results in a text
corpus of 2800 words from 699 transactions and restaurant review
datasets from Yelp, resulting in a text corpus with more than
267450 words from 7999 transactions. All is compressed in MDL
with minimum support equal to 1. It has a very low score since we
want to capture more associations but only few corpora exists on
many transactions in the databases.

3.2 Evaluation

Classification results were measured using several metrics:
precision, recall (sensitivity), Fi, true negative rate (specificity),
accuracy, and predicted positive condition rate (ppcr).

To measure database dissimilarity in classification of sentiment
analysis of user reviews, we hold that: given two CTs, e.g. CT
and CT2 respectively, then CTa(t) - CTi(t) measures how
characteristic ¢ is for database @1; see [15].

Search results ranking were measured using F, G, and M
measures. F-measure [5] is an extension of Kendall's tau that is
used to handle when the compared recommendation systems use
routing algorithms that rank non-identical sets of elements (URL
of restaurants). F attains the value 1 when the two lists are

%https://developer.foursquare.com/docs/api/venues/explore
3http://www.ics.uci.edu/~vpsaini/

D. Puspitaningrum et al.

identically ranked and the value 0 when the lists appear in the
opposite order. G-measure works contrarily to F. G altogether
with M is used to know if the lists are in high positions. F, G, M
all have scores in the range 0-3.

F-measure [5] is defined by extension [1]:

F*'z,,1,) = 2(k—z)(k+1)+

PUENOEENOIEDRACED NG ®)

ieZ ie§ ieT
where k is length of comparing list, Z is the set of overlapping
elements, z is the size of Z, S is the set of elements that only
appear in the first list of two comparing lists, and 7 is the set of
elements that only appear in the second list. k+/ symbolized the
extended case in which the two comparing lists are not identical,
so by F®(T;,T5) there is an arbitrary placement larger than the
length of the list to documents appearing in one of the lists but not
in the other. T;(i) is the Kendall's tau for S, and T2(i) is the
Kendall's tau for 7. G-measure [5] is a normalization of F**V,
over all lists of queries and search routing algorithms, defined by:

FD

Gr=l- max(F*) S

Let:

, 1 1 1 1 1 1
= - + - + -
gz:(rankI (i) rank,(i) ; rank, (i) (len, + 1)) Z<ran/\’:(i) (len, +1)) (5)

ier

where rank;(i) is the rank of element i in the first set and rankz(i)
is its rank in the second set. Jen; and len; each is a length of /ist;
and /ist2. S is the set of elements that appear in the first list but not
in the second list. T'is the set of elements that appear in the second
list, but not in the first list. M is normalization of M’ and defined
by w [1]. M has the advantage of handling documents
403975
that are not indexed at all by other search routing algorithm.

4 RESULTS

Three experiments were conducted. The first two evaluate the
performance of MDL-based sentiment analysis. The third
experiment investigates the interplay with the used routing
algorithm. In Table 1 we used Krivp algorithm with small
minimum support (minsup=3) to compress the database. We set
the minsup with small number to have representative frequent
pattern item sets of the original database. As Fig. 2 stated, we
divide the database into two classes of user reviews' sentiment
analysis, the positive class and the negative class. By MDL
compresion (KriMP) we obtain the code table (CT) from each
classes that later they are used to measure the distance of a user
review (or a "transaction") to each of the classes. The transaction
will belong to a class with shorter distance. The typical Krivp
output is a CT consists of non singleton and singleton item
sets.The optimal set of frequent item sets is defined as the item
sets in which its CT can minimizes the total compressed size of
CT and the size of the database (J@[+|CT)). It is clear from Table 1
that the Yelp databases contains more data than the FourSquare
database, with maximum length up to 292 tags per transaction,

Highly Relevant Routing Recommendation Systems for Handling Few Data

whereas in FourSquare it is a very small database with maximum
length of 10 tags per transaction. To simulate small data items we
apply truncation on the used evaluation databases. This is as
explained in Section 2.1 ---see again the explanation of line 3 in
Algorithm 1. To simulate increasingly lower information density
(in user reviews), we try different truncation/degeneration factors,
namely &= {0%, 25%, 33%, 50%, 67%}.

Table 1: Database Characteristics

Database Class | #Transac | #Tags | Max | #Candi | #Used | #Item 1D ICT| totalSize= | min
tions Length | dates | Tags | sets |D|+[CT| | sup
Yelp_1 Pos 345 16794 260 86127 | 12171 243 | 257145 | 351637 608781 3
Yelp_1 Neg 55 16794 233 1512 2566 26 36525 | 60021 96546 3
[Yelp 2 | Pos | 330 | 16983 | 202 | 56458 | 11313 | 227 | 238653 | 324230 | 562883 | 3
Yelp_2 Neg 70 16983 184 3940 3762 53 58013 | 93125 151139 3
Yelp_3 Pos 350 17075 269 96013 | 12369 | 248 | 258549 | 358035 616584 3
[Yelp_3 Neg 50 | 17075 | 164 | 1623 | 2635 | 34 | 37542 | 62114 | 99656 | 3 |
FourSquare | Pos 630 2800 10 7089 296 315 5806 18588 24394 1
FourSquare | Neg | 59 | 2800 | 7 | 580 | 26 | 33 | 347 | 1275 | 1622 1

4.1 MDL-based Classification on Large Size
Database

The first experiment assumes that we have access to a large
amount of user reviews. For this experiment we use the Yelp
challenge dataset. Table 2 shows the result, the MDL technique
Krivp is very strong. It outperforms linear and RBF SVM in terms
of accuracy, precision, and F; measure, implying that the code
tables produced by Krivp form a very good model of the original
database. Further, we can see that classification performance of
Krivp is mostly influenced by &: the performance decreases as 6
increases. In MDL, a transaction ¢ is assigned a class label
belonging to the code table with the minimal encoded length.
Therefore the predicted positive condition rate (PPCR) of Krivp is
lower than SVM, since it uses code tables (models), not the total
percentage of the total population. This is also the case why
MDL-based classification has lower scores than the SVMs on
terms of sensitivity and specificity.

If Table 2 shows results where the evaluation sets are the same
with the training sets, in Table 3, we further investigate the effect
of different coverage testing area, denoted by the cross-validation
training sets parameter, given seen and unseen evaluation data on
certain percentages of truncation. In Table 3, we divide training
and testing datasets separately with 80:20 percentages
(seen:unseen percentages) of total number of transactions in the
database. Then for training set we take the cross-validation set up
(or CV for short) into account. If the CV=1 means that we use all
the 80% of total number of transactions in the database as the
training dataset, while CV={2,5,10} means we divide the training
database (viz. the 80% of total database) into either 2, or 5, or 10
splits respectively and used the CV-1 splits that combined
together as the training set whereas the testing set is taken from
the remain one split.

From Table 3, it clearly shows that the accuracy of the data will
be dropped as the percentage levels of the data degeneration were
increased. The situation mostly to occur in unseen testing data.
From Table 3, we also observe that although RBF SVM is better

LND4IR’18, July 12, 2018, Ann Arbor, Michigan, USA

than KrRiMP on seen testing data but RBF SVM's performance
decrease as the truncation factor increase. The Table 3 shows that
the RBF SVM is not as stable as KriMp performance when
handling data degeneration. The Krimp, in other hand, is still
maintain very high accuracy on unseen testing data regardless the
truncated factors. Fig. 3 gives a closer look of Table 3. From
Table 3 and Fig. 3, it shows that the more training instances
trained to the system the better the accuracy of the classification.

Table 2: The Sentiment Analysis Classification Performance
on Large Size Database

Database | Classifier | Degenera- | Precision | Recall | F; TNR | Accuracy | PPCR
tion(%) W | @ | ®]| ® % (%)
Yelp Krime 0 98.986 98.58 | 98.78 | 14.054 97.934 85.037
Yelp Krimp 25 98.949 98.05 | 985 | 14.082 97.446 84.613
Yelp Krimp 33 98.966 96.95 | 97.94 | 14.138 96.527 83.751
Yelp Krimp 50 99.082 95.28 | 97.14 | 14.805 95.212 81.851
Yelp linear SVM | 0,25,33,50 85.4 100 92.11 0 854 100
Yelp RBF SVM 0,25,33,50 89.295 99.98 | 94.25 | 27.56 89.415 95.94

Table 3: The Sentiment Analysis Classification Performance
on Large Size Database with Diverse Testing Area

R Evaluation Accuracy (%) on Data Degeneration
Drtsbase | OV | Aleerithm Type | 5=0% 5:251(7“) 32355 [5-505 | 5578
Yelp 1 RBF_SVM Seen 100 100 100 100 100
Yelp 1 | Linear_SVM Seen 85 85 85 85 85
Yelp 1 | Krivp Seen 99 100 99 99 99
Yelp 2 | Krivp Seen 79 78 77 72 52
Yelp 5 | Krmvp Seen 80 77 77 75 58
Yelp 10 | Krimp Seen 80 77 77 72 59
Yelp 1 | RBF_SVM Unseen 100 89 87 87 85
Yelp 1 Linear_SVM Unseen 85 85 85 85 85
Yelp 1 | Krive Unseen 100 100 100 100 100
Yelp 2 | Krmvp Unseen 77 68 65 52 40
Yelp 5 | Krmvp Unseen 74 68 73 56 43
Yelp 10 | Krivp Unseen 76 70 74 58 45

Classification Accuracy of Trained and Untrained Instances on Large Dataset

% i e

20 100
x |i 8 85
. |I I

Lingar_ VM

Figure 3: Classification performance on large database

£
93 101

99
Traines

imp,

7

o 5 i 7780 Byt
77 78 80 g 85 @
T P s i A as & 7 7 n_
7 _— i o &)
51 S % 52 % 58
I I I | I] I] I
4 Trained T Untrained nirained rained
Vi Kimp_CV2 10 imp_EV2 Krimg_CVS

REF_SUM Kimp_£v10

Data degeneration L] "o

Fig. 4 is a sample of how the size of the encoded database in
total influences the accuracy score. From Fig. 4 even for the very
few tags database case, such as the FourSquare database with
maximum length of 10 tags per transaction that truncated into
only 33% of data remaining, we can see that the larger coverage
size of the original database it has, denoted by its Total Encoded
Size, the better the average score the MDL model has. Or one can
conclude that the large the size that is covered by the encoded
database, the closer the MDL model to the original database thus
maintaining the good accuracy of the MDL-based classification
system.

Fig. 5 is an example of CT in a small database and its predicted
class given a transaction. It clearly shows that different set up of

LND4IR’18, July 12, 2018, Ann Arbor, Michigan, USA

coverage area on training dataset will create different CT scope
that impact on the code length difference (see Lem(f) in Algorithm
1). The inexistence of some tags on the training dataset impact on
their absence on CT; this kind of situation potential to lead to such
failure in the MDL-based classification (see CTs in the middle of
Fig. 5 that represents a good example of query of set-of-rare tags).

Input: 146 477 488 7623 [Cass?]

cv=1 v=2 Cv=2
fo: fo: fa:
Clizons : CTsom : CTyrora :
146 (1,1) 146 (0,0) 146(1,1)
477 (4,4) 477(2,2) 477(2,2)
488(1,1) 488 (0,0) 488(1,1)
7623 (1,1) 7623 (0,0) 7623(1,1)
CTyzom : CTso7a : CTyrora s
146 (0,0) 146 (0,0) 146 (0,0)
477(0,0) 477 (0,0) 477(0,0)

488(1,1) 488 (1,1) 488 (0,0)
7623 (0,0) 7623 (0,0) 7623(0,0)

Class cy=1 (fo) = [17073], Class cy=; (folfa) = [17073]

Figure 5: An example of CT and class in FourSquare database
while given different coverage area of training set

4.2 MDL-based Classification on Small Size
Database

In the second experiment we evaluate the performance of Krivp
on a smaller database, to simulate the situation where we do not
yet have much user reviews as our base. For this, we use the
FourSquare datasets. Table 4 shows the result, while Fig. 6
provides a visualization derived from Table 4. The results clearly
show that in the first experiments kind, MDL based classification
significantly outperforms other classification techniques.
Following are comparisons of the total running time to do
sentiment analysis tasks: Krmvp:SVM=13:1, Krivp:Naive
Bayes=15:1, and Krivp:C4.5=16:1. Krivp is the slowest one but
still slightly fast (the worst case based on Table 4 is below 11
seconds).

Table 4: The Sentiment Analysis Classification Performance
on Small Size Database

Degenera- Accuracy (%) Time (s)
Database ;
tion (%) | Krimp | SVM | NB | C45 | tguue | tsvm | INB | tcas
fourSquare 0 96.23 | 91.44 | 91.44 | 91.44 | 9.598 0.69 | 0.73 | 0.64
fuuquuare 25 94.19 | 91.44 | 91.44 | 91.44 | 10.588 0.86 | 0.68 0.6
fourSquare 33 92.484 | 91.44 | 91.44 | 91.44 | 10.308 0.83 | 0.65 | 0.74
fourSquare 50 92.134 | 91.44 | 91.44 | 91.44 | 9.508 0.75] 0.61 | 0.57

Accuracy (% Computation Time (seconds)
e I 10.308 10.588
‘ 9.598

1o 9508
u
8
|
6
9144 9144
w WP 4
075 0m
2 0.8:
i 061 0 U.68 oh e
I I N 05 E 115
£ 0 iz} B
50 a3

degeneration (%) degeneratlonﬂ%}
o

33

= KRIMP SVM NaiveBayes ® C4.5 = KRIMP = SVM Nawgﬂayes cas

Figure 6: Classification performance on small database

D. Puspitaningrum et al.

In general, from Table 2, Table 3 and Table 4 show that until
50% of data degeneration, well-known classifiers such as SVM,
Naive Bayes, and C4.5 can maintain their performance. Although
the classifiers show good results but their performances were still
below the MDL-based (viz. Krivp) accuracy, both in large size
database or small database.

318
51
|

Figure 7: An example of histogram of code length difference
for transaction in FourSquare database (CTy - CT275)

CTo~CTars

Fig. 7 is the code length difference histogram for encoded
length difference between CTo and CTz7s. From Fig. 7, the
distribution of code length is concentrated only on certain large
size of bits that indicates that the two user reviews' sentiment
classes, both positive class and negative class, are easy to classify
due to they are highly distinct in characteristics. If the code length
difference is in small bits range, it means the classes have more
similarity in characteristics.

4.3 Improving The System Performance Using
Embedded Boosting Factors

In the final experiment, we investigate the influence of
incorporating reviews' sentiment to the resulting recommendation.
As comparison, we implemented three routing algorithms:
Dijkstra [3], A* [10], and Yen [16]. They may produce different
routes (and therefore also different distance). We test each one of
them, with the boosting factors described in Section 2.2 turned on
(hence it will take sentiment into account), and compare the
resulting recommendation list with that of using Dijkstra without
the boosting factors (hence ignoring other boosting factors but the
distance factor). As the database we use the FourSquare datasets.
There are 90 queries used in the experiments. We use a different
natural formulation of user queries, for example a query could
mention either the name or address of the inquired restaurant,
instead of just mentioning food names. The motivation is to test if
the retrieval system can retrieve relevant recommendations as user
expects, viz. by considering popularity and nearness of a place,
field and query matching, as well as that the recommended place
must originated from a place that categorized has positive
sentiment.

Fig. 8 and Fig. 9 show the results, with the latter showing more
details. The x-axis represent the number of overlapping elements
(normalized to [0..1.0]); we divide that in five equal length
intervals of size 0.2 in decreasing order. E.g. x=1 represents the
interval [0.8..1], x=2 the interval [0.6..0.8) etc. We compare the
routing algorithms in pairs. The boosting factors are turned on,
except on one variant of the Dijkstra algorithm denoted by
Dijkstrasore, where the boosting factors are turned off. The
compared pairs are: the pair A compares (A*,Dijkstrasore), the
pair D compares (Dijkstra,Dijkstrasors), and E compares (Yen,

Highly Relevant Routing Recommendation Systems for Handling Few Data

Dijkstranorer). Additionally, the pair B compares (A*,Dijkstra), C
= (A*,Yen), and F = (Yen,Dijkstra).

1.00 0.97 100

0.84 0.83 0.86 0.88
0.8
= 0.63
06 056
0.44
0.4 m i
0.2 012 0.14
| 0.00 [
0 || . || — =l =
9 2 a 4 5 #overlap
m avg(F) = avg(G) s avg(M)

Figure 8: System performance on overlapped URLs

Fig. 8 shows that the M-measure is almost always considerably
higher than the G-measure. It means that, in general, the
overlapping elements in search results are in highly ranked.
However, in the overlapping range of [0.6..0.8) G is actually
higher than M, implying that the overlapping elements tend to
appear at the opposite sides of the recommended lists.

Fig. 9 suggests that the best routing algorithm for the
recommendation model is either A* or Yen. The use of
Dijkstrasorer is not suggested because its relevant search results are
in the lower positions. Furthermore, the trend of G movements is
the opposite to F, while F movements are similar to M. By
considering its formula, the M-measure is good in handling
overlapping areas and in handling comparisons of lists with
different length. With M 2 0.71 in average, and with the G scores
mostly lower than the M scores, as well as the high average of the
F scores (F=0.72), these indicate that the proposed routing
recommendation system model is very strong both in returning
highly relevant search results on top positions as well as in
returning most recommended (overlapped) search results. Its total
running time is acceptable (only 11.25 seconds).

S CONCLUSIONS

In this work, we have focused on providing high quality
recommendation system model using boosting factors in scoring
function and the use of MDL principles on classification tasks.
We have shown that using MDL-based classification we can
handle classification on small data items very well. Our findings
indicate that improvements in classification can be achieved by
using code table from large datasets. We have shown that
coverage area in training dataset has strong impact on
classification accuracy. The larger the size that is covered by the
encoded database the closer its MDL model to the original
database thus will result in very good accuracy. For the few or
limited database, although the performance of the MDL-based
classification degrades on when the data items grow shorter,
simulated by increasing degeneration factor 8, it still outperforms
other state of the art classification techniques --we permit up to
67% of data loss. Next, we have found that a proper selection of

LND4IR’18, July 12, 2018, Ann Arbor, Michigan, USA

shortest routing algorithm (e.g. A* or Yen's) can provide further
gains in quality. Finally, adding boosting factors can provide
further gains in quality of the recommendation system model. The
recommendation system model described in this paper can be
implemented in various recommendation projects that use routing
data and face the small data instances problem on its knowledge
source.

ACKNOWLEDGMENTS

The authors would like to thank: Y. Pinata, Julio Fernando, Edo
Afriando, and Rina Rahmadini, for preparing the dataset.

The authors would also like to thank the anonymous referees
for their valuable comments and helpful suggestions.

REFERENCES

[1] Judit Bar-Ilan, Mazlita Mat-Hassan, and Mark Levene. 2006. Methods for
Comparing Rankings of Search Engine Results. Comput. Netw. 50, 10 (July
2006), 1448-1463. https://doi.org/10.1016/j.comnet.2005.10.020

[2] Nello Cristianini and John Shawe-Taylor. 2000. An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods (1 ed.).
Cambridge University Press.

[3] E. W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs.
Numer. Math. 1, 1 (Dec. 1959), 269-271. https://doi.org/10.1007/BF01386390

[4] Richard O. Duda and Peter E. Hart. 1973. Pattern Classification and Scene
Analysis. Wiley.

[5] Ronald Fagin, Ravi Kumar, and D. Sivakumar. 2003. Comparing Top K Lists.
In Proc. of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’03). Soc. for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 28-36.

[6] Clinton Gormley and Zachary Tong. 2015. Elasticsearch: The Definitive
Guide. O’Reilly.

[7] Matthijs van Leeuwen and Diyah Puspitaningrum. 2012. Improving Tag
Recommendation Using FewAssociations. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[8] Matthijs van Leeuwen, Jilles Vreeken, and Arno Siebes. 2006. Compression
Picks Item Sets That Matter. Springer Berlin Heidelberg, Berlin, Heidelberg,
585-592. https://doi.org/10.1007/11871637_59

[9] Guilherme Vale Menezes, Jussara M. Almeida, Fabiano Belém, Marcos André
Gongalves, Anisio Lacerda, Edleno Silva de Moura, Gisele L. Pappa, Adriano
Veloso, and Nivio Ziviani. 2010. Demand-Driven Tag Recommendation.
Springer Berlin Heidelberg, Berlin, Heidelberg, 402-417.
https://doi.org/10.1007/978-3-642-15883-4_26

[10] Judea Pearl. 1984. Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

[11] J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[12] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. Automatic

Keyword Extraction from Individual Documents. In Text Mining, Applic. and

Theory, Michael W. Berry and Jacob Kogan (Eds.). John Wiley and Sons, Ltd,

1-20. https://doi.org/10.1002/9780470689646.ch1

Borkur Sigurbjornsson and Roelof van Zwol. 2008. Flickr Tag

Recommendation Based on Collective Knowledge. In Proceedings of the 17th

International Conference on World Wide Web (WWW ’08). ACM, New York,

NY, USA, 327-336. https://doi.org/10.1145/1367497.1367542

[14] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz.

1999. Analysis of a Very Large Web Search Engine Query Log. SIGIR Forum

33, 1 (Sept. 1999), 6-12. https://doi.org/10.1145/331403.331405

Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes. 2007. Characterising

the Difference. In Proc. the 13th ACM SIGKDD Int’l Conf. on Knowledge

Discovery and Data Mining (KDD ’07). ACM, New York, NY, USA, 765-

774. https://doi.org/10.1145/1281192.1281274

[16] J.Y. Yen. 1971. Finding the k shortest loopless paths in a network.
Management Science (1971), 712-716.

[3

[15

https://doi.org/10.1016/j.comnet.2005.10.020

Testing Coverage and System Accuracy 37554

33161 33244 33788 33749 33388

29958 29820 29640
25000 23634
20893 20993 21329 21325 21002
20000 18980 18883 18796 17970
13920
15000 12268 12251 12460 12424 12285
10978 10937 10844
10000
6470
o8

5000 I I - ‘ L

clolmlalal=l A alal sl lll S ML TP L] lllll IIIII IIII III

PNPNPNPNPNPNPNPNPNPNFNFNPNPNPNPNPNFPN PN PN PN PN PNPNPNPNPNPNPNPNPNPNPNPNPNPN PNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPN PN PN

Lv 1 w 2 (V:s cv-10 <v~1 cv 2 cv-s cv=10 LV 1 Lv-z n,:s. cv=10

Database Size Code Table Size Total Encoded Size
P = Positive N = Negative

Figure 4: Testing coverage vs system performance. In this example the testing data for the Yelp_3 with data degeneration of 67%
has variety range of accuracy (in average) depend on the coverage area viz. the cross validation testing area. For CV = {1, 2, §, 10}
the average accuracy is {0.9925, 0.53, 0.575, 0.5825} respectively.

1.001.00 1.001.00 1.001.00 1.00 1.001.00 1.00 1.00 1.001.00 1.001.00 1.00 1.00 1.001.00 1.000.99 1.001.00 1.000.99
1 0.8a 094
o.88 o.88
55 5 o.82 0.82
0.8 0zr
071 071
0.67 0.67 0.67
o. o. o.
0.6
o. o. o.
0.4 3 .3 .3:
0.2
01 0.1
& of I I of 0f of
B1 c1 D1 El: F1 Az E2 B3 Cc3 F3 Aa B4 ca D4 E4 F4 A5 B5 c5 D5 ES F5

= avg(F) M avg(G) m avg(M)
Figure 9: System performance on routing algorithm

