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Abstract. This paper presents a new language called APSL for for-
mally describing protocols to facilitate automated testing. Many real
world communication protocols exchange messages whose structures are
not trivial, e.g. they may consist of multiple and nested fields, some could
be optional, and some may have values that depend on other fields. To
properly test implementations of such a protocol, it is not sufficient to
only explore different orders of sending and receiving messages. We also
need to investigate if the implementation indeed produces correctly for-
matted messages, and if it responds correctly when it receives different
variations of every message type. APSL’s main contribution is its sub-
language that is expressive enough to describe complex message formats,
both text-based and binary. As an example, this paper also presents a
case study where APSL is used to model and test a subset of Courier
IMAP email server.

Keywords: model based testing, testing protocols with complex messages, au-
tomated testing of protocols

1 Introduction

Modern communication protocols are often quite complex. Implementing one is
always tricky and error prone, and therefore an implementation should be thor-
oughly tested before it is used. The complication lies not only in the interactions
between the communicating parties, but also in the format of the messages. A
message can be a quite complex record structure with multiple fields, some could
be optional, and some could have delicate dependencies, which in turn are prone
to errors. Testing a protocol implementation can be made much more system-
atic if people first construct a formal model of the protocol. In practice, people
often do not do this. They derive test cases directly from the natural language
document that describes the protocol. Although there are standards for such
documents, e.g. RFC [30], and guides on how to write a good description [32], a
natural language description can still be deceiving and ambiguous.

Attempts to provide formal languages to model protocols have been mostly
focused on describing the interaction parts, e.g. the languages SDL [5], Estelle
[7], and even UML [23] (in particular the MSC part of UML). A protocol is
typically described as a system of participating actors, each is described by
some form of labelled transition systems. However, these languages ignore the
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complexity of message formats, which make them not really usable for describ-
ing many real world protocols with complex messages. Model-based automated
testing tools for protocols, e.g. TorX [38,17], TGV [15], and Phact [20], follow
the same trend. These tools can generate test cases from a formal model of a
protocol, but they too focus on testing the interaction aspect of the protocol. So,
conformance validated by these tools does not imply that we have covered all
possible message structures. For example, we may still be left uncertain whether
an implementation under test would respond correctly if it gets a message with
a certain optional field voided.

To address this gap, this paper contributes a language called APSL (A Proto-
col Specification Language) to formally describe how the messages in a protocol
are formatted and how parties in the protocol interact by exchanging these mes-
sages. APSL tries to be a light weight language while still be expressive enough to
describe real world text-based as well as binary protocols. A text-based protocol
is a protocol whose messages are human readable strings, whereas the messages
of a binary protocol consist of low level bitstrings. FTP, SMTP, and IMAP are
examples text-based protocols. WebSocket is an example of a binary protocol.

From an APSL description of a protocol, an implementation of different par-
ties in a protocol can be automatically tested. Under the hood, APSL provides
two basic testing functionalities: (1) its generator can randomly generate mes-
sages of a correct format, and (2) its parser will check if the messages sent by an
Implementation Under Test (IUT) have a correct format. Just having these func-
tionalities saves testers much effort —else, they would have to write a custom
message generator and parser for each protocol they test, or to find a third party
dedicated generator and parser for the protocol. APSL’s test engine is built on
top those functionalities. When invoked invoked, it will automatically traverse
the IUT’s interaction model and in doing so test the IUT. To provide flexibility,
the engine can be parameterized by a traversal strategy to control how the IUT
is to be tested.

This paper is structured as follows. Section 2 introduces APSL. Due to limited
space, we will only present a subset of APSL. A description of its full syntax can
be obtained from [34]. Then, Section 3 explains how APSL test engine works.
We have studied several examples to investigate the feasibility of using APSL for
testing real world protocols. Section 4 will highlight one of them: we show that
we can use APSL to describe a subset of the IMAP protocol and test a server-
side implementation of it. Section 5 discusses related work. Section 6 concludes
and discusses some future work.

2 Describing Protocols in APSL

To describe a protocol in APSL we define a message module and an interaction
module. The first describes different types of messages that the protocol use, and
how they are formatted. The second abstractly describes which actors (parties)
take part in the protocol and how they interact by exchanging messages.
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message module MyP
message Ask with h is Header(flag=1) end
message Done with h is Header(flag=3) end
message Data with ...
record Header with ...

end

interactions module MyP
actor Client with ...
actor Server with ...

end

Fig. 1. MyP protocol, with two actors, a server and a client, and its top level APSL
description.

As a running example, consider a protocol called MyP shown in Figure 1,
with a server and a client as actors, interacting as visually shown by the cor-
responding Labelled Transition Systems (LTS’s). A transition in the LTS of an
actor represents either an action by the actor to send a message (denoted by
’ !’), or the receipt of a message (denoted by ’?’), or a non-observable internal
action by the actor (denoted by τ). Each send and receive transition is labelled
by the type of the message that is to be sent or received. There are three types
of messages in the protocol. ’Data’ messages are sent by the server to the client;
they carry payload. The client sends an ’Ask’ message to the server to ask for
an instance of Data, and a ’Done’ message if it decides that it has enough.

Figure 1 also shows the top level APSL description of MyP. The message
module declares the above mentioned three types of messages, whereas the in-
teraction module declares the two actors (server and client). Messages are basi-
cally records. A record is composed from fields, which comprise the core building
blocks of an APSL specification. In the example, the message types Ask and Done

are both defined to have a single field named h of a type called Header.

2.1 Specifying complex messages

Each field in a record has a name and a type, e.g. Integer or Text. In typical
specification languages, e.g. OCL [8] or Z [33], we do not have to care about
how types are implemented. In protocol engineering we need to. Ultimately,
messages are exchanged in bits. A protocol may insist on a specific way in which
values are encoded in bits. E.g. it may require a certain integer field to be
represented in a 4-bits big-endian, while another integer field should be 32-bits,
and so on. So in addition to specifying the type of a field, in APSL we also
need to specify a so-called codec to describe how instances of the type should be
formatted/represented in bitstrings. The general syntax of a field declaration is:

fieldname is type as codec

APSL comes with a range of common codecs. For example a codec called BoolBits

is used to translate boolean true and false to specific bit patterns. The codec



TerminatedText can be used to format a variable length text. It additionally ap-
pends a terminator to indicate where the text ends. Alternatively, if the length
of the text is fixed, the codec FixedCountText can be used (when this codec is
used, the receiver is thus assumed to know where in the received bitstring such
a field ends). Almost all codecs have parameters to further specify its format.
E.g. BoolBits requires us to specify the bit patterns to use to represent true and
false, whereas all text codecs such as FixedCountText require the used character
set to be specified.

As an example, below we define the record type Header, to be used in the Ask

and Done messages of MyP. We define it to be a record with two fields:

record Header with
flag is Integer as BigEndian(signed=false,length=2)
reserved is Binary(value=b’000000’)

end

The field flag is of type integer. The codec says that the integer will be
represented by two bits in the unsigned big-endian format. The field reserved

is of type Binary, which means it is simply a bitstring. For such, no codec is
required.

Types can be primitive (such as Integer), records, or user defined types. APSL
also supports variant records (union types) —see the documentation in [34].
APSL supports dependent types. These are types that are parameterized by
value-level expressions used to specify a subset of such a type. For example, the
type expression Binary(value=b′000000′) above specifies a subset consisting of a
single value, namely the bitstring 000000 (so, this is the only allowed value of the
field reserved). As another example, Integer(min=0,max=500) specifies a subset of
integers, from 0 up to 500.

An important principle in protocol design is that the receiver of a message
should be able to efficiently determine when a message ends, and similarly, when
each field within a message ends. One way to achieve this is to end a field with
a specific bit pattern (e.g. as in the TerminatedText codec). Another common
convention used in various protocols is to have a field that specifies the length of
the next field or fields. Dependent types are essential to capture such dependency.
This is shown by the example below that defines a record type called DataItem:

record DataItem with
n is Integer(min=0,max=500) as BigEndian(signed=false,length=32)
data is Binary(length=8∗n)
padding is Binary(length=8∗(4 − n%4), char8 pattern=/\0∗\1/)

end

A DataItem basically carries some binary data. The length of this data is
encoded in the field n, which should be an integer between 0 and 500. Its cor-
responding codec specifies how this n is encoded in bits. The field data contains
the actual data, its type parameter specifies that its length should be exactly 8n

bits. The field padding is more complicated. Sometimes, a protocol requires that
a message, or a part of the message, to have a length which is a multiple of a
certain number. Suppose we want the total length of a DataItem to be a multiple



interactions module MyP
actor Client with
init state Starting where anytime do send Ask next Waiting or do quit end
state Waiting where on Data do send Ask continue

or do send Done next Starting end
end
actor Server with
init state Serving where on Ask do send Data continue

on Done do continue end
end

Fig. 2. The full interaction module of MyP.

of 32 bits. The field padding is used to pad it if that was not the case. The type
parameter length = 8 ∗ (4 − n%4) specifies how long the padding should be. The
type Binary can also be parameterized by a regular expression to specify allowed
bitstrings. Above, the regular expression in char8 pattern = /\0∗\1/ specifies that
a bitstring of zero or more 0’s closed by a 1 should be used as the padding.

For MyP, we still have to define the message type Data. The definition below
shows an example of a more complicated message type involving optional fields.
Let’s define the type Data whose instances are records that contain a header and
an optional footer. The latter is specified by the type Optional, which is another
example of a dependent type: the occurrence of the footer is made to depend
on the boolean value of another field, namely hasfoot (a footer exists of hasfoot

contains a value that represents true, else there is no footer).

message Data with
h is Header(flag=0)
payload is List(elem=DataItem,max length=4)

as CountPrefixList(count codec=Word32Codec)
hasfoot is Bool as BoolBits(falsehood string=X’00’,truth string=X’ff’)
foot is Optional(is empty=!hasfooter,subject=Text) as ... # some codec

end

Instances of Data also contain a field called payload, which is a list of up to four
instances of DataItem (defined above) as the messages’ payload. APSL provides
several standard codecs for translating a list (such as the field payload above)
to bitstrings. The codec CountPrefixList used above will prepend the list with an
integer stating the length of the list and then sequentially write out the items of
the list to bitstring.

2.2 Specifying interactions

In APSL, the interaction between the actors of a protocol is described in an
interaction module, by modeling each actor as an LTS a la [37] —more precisely,
as an input-output LTS (IOLTS) [15], which is an LTS where we distinguish be-
tween send and receive actions. The IOLTS describes how the actor exchanges
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Fig. 3. The architecture of APSL automated testing.

messages with its environment. The latter represents, from the actor’s perspec-
tive, all the other actors. The top level of the interaction module for the example
protocol MyP was shown in Figure 1. Now, Figure 2 shows the full code of this
interaction module; it reflects the graphical IOLTS in Figure 1. A send M ex-
pression in an actor’s description represents an action by the actor to send a
message of type M to the environment, whereas an onM expression represents
the receipt of a message of type M from the environment. For example, the
module in Figure 2 states that the Client has two named states, Starting and
Waiting; the first is also the initial state. When in the state Starting, Client can
at any time either quit, or send an Ask message (an APSL model can thus be
non-deterministic). If it does the latter, it will also move to the state Waiting. If
it receives a Data message while in the state Waiting, it will either send another
Ask, or send a Done message, after which it moves back to the Starting state.

Let’s call the APSL description of an actor an interaction model of the actor.
Being a pure LTS, such a model only describes how the behavior of the actor
depends on its LTS state and on the current message type. In particular, the
model does not specify what the content of the message should be, nor how the
behavior of the actor depends on this content. For example, when the Client of
MyP receives a Data it can either respond with an Ask or a Done. The decision
could depend on the content of Data. This is however abstracted away from the
model in Figure 2. To some extent, such dependency is still expressible by an
LTS, namely by defining different message types to represent instances of Data

with different kinds of content. This works as long as the number of the latter
is finite.

3 Testing

Figure 3 shows the architecture of APSL automated testing framework. Given
a pair of message and interaction modules that describes a protocol, APSL test
engine can automatically test implementations of the protocol’s actors. The ac-
tors are tested one at a time. Consider an Implementation under Test (IUT)
IA that implements an actor A in the interaction module. When invoked, the
test engine generates a test in the form of a traversal over the IOLTS induced
by A. So essentially, APSL does model-based testing. The test engine takes the
role of A’s environment. A traversal starts at A’s initial state, and step-wisely
extends itself by following a transition to the next state. If the transition requires
a message of some type M to be sent to the IUT, the test engine will invoke
the message generator to produce a random but correctly formatted message of



1: procedure test(A : Actor) . the top level procedure to test an actor
2: traverse(A, τ∗({ A’s initial state }), [ ]) . generate a traversal
3: end procedure
4:
5: procedure traverse(A,S, trace) . S is the set of possible current states
6: if some end condition then throw Done
7: status← parse(receive())
8: case status of
9: ValidFormat : msgType← getMsgTypeOf(getMsg(status))

10: InvalidFormat : throw invalidFormatError

11: TimeOut : . the IUT did not send anything
12: do
13: � calculate which types of messages can currently be sent to the IUT:

14: V ← { α | s∈S ∧ (∃t. s ?α→ t) }
15: if V=∅ then traverse(A,S)
16: � invoke a ’strategy’ to decide which message type to send:
17: msgType← strategy(S, V )
18: � generate an instance of the message type, and send it to IUT:
19: send(generateMsgInstance(msgType))
20: end
21: end
22: trace← trace.addLast(msgType) . extend the trace

23: S ← { t | s∈S ∧ s
msgType−→ t } . calculate the possible next states

24: if S=∅ then throw invalidTraceError(trace)
25: traverse(A, τ∗(S), trace) . recursively extend the traversal
26: end procedure

Fig. 4. APSL’s traversal algorithm. In the algorithm, s
a→ t means that the actor A

contains a transition from the state s to t, labelled with a. The expression τ∗(S) means
the set of states that can be reached through zero or more τ -transitions from some state
in S. This set always includes S itself.

type M , and send it to the IUT. Conversely, if the transition is triggered by
the receipt of a message from the IUT, the message parser will first check if the
message has a valid format.

In model-based testing it may seem sufficient to just generate model-level
test cases. However, note that to actually test an IUT we still need a message
generator and a message parser to convert model-level test cases to concrete
interactions with the IUT. These components are tedious and error prone to
write. Fortunately, they are built in APSL, without which testers will have to
write them themselves for each protocol they test.

Figure 4 shows APSL’s traversal algorithm. The algorithm keeps track of
the trace of the types of the messages exchanged with the IUT so far. It also
keeps track of the actor’s current state, so that it knows which transitions can be
traversed to get to the next state. Since an APSL actor can be non-deterministic,
the algorithm may not be able to uniquely determine IUT’s current state. It
therefore maintains a set S of of possible current states. If σ is a trace of message



types, let s
σ⇒ t means that there exists a path in the actor’s LTS, to go from

the state s to the state t, such that if we remove all the τ labels from the trace
of labels induced by this path, the trace is equal to σ. Let s0 be the actor’s
initial state, and suppose S is the set of current states according to the traversal
algorithm, and trace is the traversal’s trace so far. The algorithm maintains the
following property of S:

S = { t | s0
trace
=⇒ t }

If no error is found, line 6 decides when the traversal is ended, e.g. it could
impose a limit of N transitions. When in the current states there are multiple
receive transitions possible (note that these are thus transitions where the test
engine can send a message to the IUT), the algorithm invoke a ’strategy’ to chose
which one to follow (line 17). The default strategy simply randomly chooses a
transition, thus inducing a random traversal over the LTS. APSL provides a
hook that allows this strategy to be redefined.

During a traversal, the test engine checks for two correctness aspects: (1)
the IUT should produce messages that conform with the format defined in the
message module (line 10), and (2) the trace of the messages exchanged with the
IUT should conform with A (line 24). The latter means, more precisely, that:

{ t | s0
trace
=⇒ t } 6= ∅

The engine itself will not send a message that would violate the trace confor-
mance, so if it is violated, the IUT is to blame.

At the end of a traversal, the test engine reports two kinds of coverage:
the coverage over the transitions IUT’s LTS model, and the coverage over the
messages. For the latter, the engine checks if every field (of every message type
and the underlying record types) and every value of every enumeration type has
been tested. Recall that fields are declared in a message and record definitions. In
addition, APSL also supports variant records and enumeration type (not shown
in the paper). A field is considered as covered by a traversal if it ever occurs in
some message during the traversal. For an optional field, its absence also counts
a coverage goal.

4 Case Study

To investigate whether APSL is expressive enough to describe and provide at
least basic automated testing of implementations of real world protocols we
conducted two case studies: Courier email server [13] and Autobahn WebSocket
server [1]. On a smaller scale, we have also used APSL to describe NTP time
format [26], BSON data format [6], and DNS message format [36].

This section will present selected highlights of the email server case study.
The full account of the case study, as well as that of the Autobahn WebSocket
case study, can be found in [35]. Other mentioned examples can be found in
APSL’s home [34]. A Courier email server is used to store emails. Clients can



connect to it to access and manage the stored emails. The server implements the
Internet Message Access Protocol (IMAP) protocol, more precisely version 4rev1
defined in RFC 3501 [11], that defines how an IMAP server should communicate
with its clients. The following subset of the protocol is considered in the case
study:

– The client can log-in with a username and password.

– In reply, the server greets the client. There are three different greetings,
to indicate that the user is either required to log in, or has already been
authenticated, or has no access.

– The client can examine, create, delete and rename mailboxes.

– The client can select a mailbox, after which emails within can be fetched,
altered or copied. Entire emails can be fetched, or only their metadata, or
only their size and flags (e.g. whether an email has been read). The client
can close the mailbox, allowing the client to continue opening another.

In this case study we want to know whether APSL is able to describe the part
of the IMAP’s server side protocol that covers the above functionalities. Section
4.1 below shows that the answer is ”yes”. Then, we then want to know if APSL
can actually be used to test the Courier server; this is discussed in Section 4.2.

4.1 Modeling IMAP

Client commands Within IMAP, messages sent from the client to the server
are called commands and messages from the server are called responses. A com-
mand starts with a tag, an arbitrary string of alphanumeric characters chosen by
the client, followed by the command name, and the command’s arguments whose
types depend on the command. These parts are separated by a single space, and
the command always ends with a line terminator. Since the first two fields are
the same for every command, we can describe them as follows in APSL:

record CommandStart(commandName) with
tag is Tag as SpaceTerminated
name is Identifier(value=commandName) as SpaceTerminated

end

APSL supports user defined types and codecs. Tag and Identifier above are user
defined types, whereas SpaceTerminated is a user defined codec. Their definitions:

type Identifier is Text(charset=’ascii’, pattern=/[!−˜]+/,
exclude pattern=/ |\r\n|\∗/,max count=20)

type Tag is Identifier(pattern=/[0−9a−zA−Z]+/)
codec SpaceTerminated is TerminatedText(encoding=’ascii’,terminator=’ ’)



An Identifier is thus a text of maximum 20 characters which should not contain
any space, line break, nor the ’*’ character, whereas a Tag is a purely alpha-
numeric Identifier. The SpaceTerminated codec formats a given text by appending
a single space to its end.

The are 11 commands that correspond to the previously listed IMAP func-
tionalities. They all start with a CommandStart followed by one or more command
specific arguments. For example, the structures of the command to delete a mail-
box is shown below:

message DeleteCmd with
start is CommandStart(command=’DELETE’)

mailbox is MailboxId as LineTerminated
end

The last field in a command must be terminated by a line break. This is specified
by the LineTerminated codex, whose definition is analogous to SpaceTerminated.

The field mailbox in the DeleteCommand poses however a challenge for auto-
mated testing. It contains a value of the type MailboxId, which is text representing
the name of an existing mailbox. APSL’s message generator will have a very hard
time generating such a name. Any generic generator will have the same problem.
Fortunately, this can be mitigated in APSL over-specifying the type MailboxId,
e.g. as follows: type MailboxId is Identifier(pattern=/INBOX|NOBOX/).

Server responses After receiving a command, the server answers with a tagged
status response to indicate whether the commanded operation succeeds. This
status response may however be preceded by a number of untagged responses
providing some relevant information depending on the command. A tagged status
response starts with a tag, followed by a status text indicating the result of the
triggering command, and another text with additional information. There are
three types of statuses to indicate: (1) the received command was successful, (2)
the command failed, and (3) the command was incorrectly formatted. As before,
fields should be separated by a single space; the last one should end with a line
break. The formalization in APSL is shown below. We capture the three types
of status responses with three different message types, each is just a wrapper
over the underlying StatusResponse record type that contains the actual fields
mentioned above.

message OkResp with resp is StatusResponse(response=ok) end
message NoResp with resp is StatusResponse(response=no) end
message BadResp with resp is StatusResponse(response=bad) end
record StatusResponse(response) with

tag is Tag as SpaceTerminated
id is StatusResponseId(value=response) as SpaceTerminated

text is Text(charset=’ascii’, pattern=/[ −˜]∗/, exclude pattern=/\r\n/)
as LineTerminated

end
enum StatusResponseId of Text with ok as ’OK’ no as ’NO’ bad as ’BAD’ ... end



There are actually two additional statuses not shown above: PREAUTH (a
server greeting indicating the client is already authenticated) and BYE (sent
when logging out). These are used in certain untagged responses.

As said, the server may precede a tagged status response with a series of
untagged responses. There are two types of untagged responses: those that also
report some status, and those that do not. Untagged status response has the same
structure as a tagged response, except that the tag is replaced by a ’*’. It may
report an intermediate status of an operation. In addition to OK or NO statuses,
some may report PREAUTH or BYE statuses. Non-status untagged responses
always start with a message number (since they always relate to a specific e-
mail), followed by an identifier indicating their type. They are expressed by
wrapping a message type around the underlying record type below:

record UntaggedResponse(kind) with
asterisk is Text(value=’∗’) as SpaceTerminated

msg id is MessageId as TextInteger(text codec=SpaceTerminated)
response type is Identifier(value=kind) as SpaceTerminated
info is Text(charset=’ascii’, pattern=/[ −˜]∗/, exclude pattern=/\r\n/)

as LineTerminated
end

The interaction The server-side protocol works as follows. Upon establishing
a connection, the initial state is called the ServerGreeting state, where the server
will then send a greeting to the client in the form of an untagged response. The
response can be: (1) an OK, after which the server moves to the NotAuthenticated

state; (2) a PREAUTH response, after which the server moves to the Authenticated

state; or a BYE after which the server closes the connection.
In the NotAuthenticated state, the server can receive a request from the client

to use a specific authentication method. In this case study we only consider a
simple LOGIN command with a username and password as the authentication
method; when it succeeds, the server moves to the Authenticated state. In the
Authenticated state, the server can receive commands that relate to the manage-
ment of mailboxes. For example after receiving a SELECT command, and if the
command is successful, the server moves to another state where commands such
as storing and fetching emails are possible. Capturing those interactions in APSL
is straightforward. As an illustration, below we show how transitions from the
states ServerGreeting and Authenticated are modeled in APSL. The full interaction
model, consisting of 7 states and 31 transitions, can be found in [34].

actor IMAPServer with
init state ServerGreeting where
anytime do send UntaggedOknext NotAuthenticated

or do send PreAuthGreeting next Authenticated or do send Bye quit
end
state Authenticated where
anytime do send UntaggedOk continue



on SelectCmd do next Selecting or do send NoResp continue
on CreateCmd do send OkResp continue or do send NoResp continue
on RenameCmd do send OkResp continue or do send NoResp continue
...

end ...

4.2 The testing

After the relevant part of IMAP is modeled in APSL, as discussed in Section 4.1,
we can proceed to testing. We tested the Courier IMAP server [13] version 4.10.0
as the IUT of the IMAPServer model from Section 4.1. The server was configured
to have a mailbox already created, populated with some emails. Since logging-in
successfully to the server would problematical for APSL’s message generator,
we over-specified the username and password fields as we did to MailboxId. In
general, a communication channel is needed to connect APSL test engine to an
IUT. In this case, a TCP/IP channel is needed, but this is already delivered
by APSL itself. No further adapter was needed to facilitate testing. The test
engine was configured to keep traversing the IUT up to a certain maximum
number of steps Tmax. As the test strategy, we simply used the default strategy
that randomly chooses the next transition to follow if there are more than one
possible. This turned out to be sufficient for cover all feasible transitions. Some
transitions turned out to be unfeasible in the case study, e.g. the Courier server
never actually sends the Bye transition (see the partial definition of IMAPServer

actor in Section 4.1) even though this is allowed by the protocol.
Covering all (reachable) messages’ fields and instances of enumeration types

was more challenging, but still possible, with large enough Tmax. For example,
the command to fetch emails has three variations: to fetch the emails’ whole
content, or only their envelope, or only their flags. This is represented appropri-
ately within the corresponding field of the fetch-command message by specifying
it using an enumeration type. We do not however make the distinction visible
at the transition level. That is, in our actor model sending a fetch-command is
represented by one transition rather than a choice of three transitions. The lat-
ter is expressible in APSL, but would make the actor model overly verbose and
hence undesirable. Representing them as a single transition however means that
the traversal strategy in Figure 4 also needs to control the message generator
so specify which variant of a message type it wants to generate. Such control is
currently not possible; this is future work.

No invalid format nor invalid trace error was found during the testing. Man-
ual inspection on the coverage reports of some of the produced traversals did
reveal unexpected behavior. When the test engine sends a command to the email
server to delete a mailbox named INBOX, the server refuses, which is indicated by
sending a NoResp response. This is correct, since IMAP’s specification does not
allow INBOX to be deleted. However, the investigation revealed that subsequent
commands to select INBOX is then rejected (the server replies with a NoResp).
While this is allowed by the interaction model that we constructed, this is ob-
viously a bug. With respect to the model, such a bug cannot be revealed by



APSL, nor by any other purely LTS-based testing, since it is neither an invalid
format nor an invalid trace error. Refining the model where the special status
of INBOX is made explicit as a special message type would reveal the error, but
on the other hand would also make the model much more verbose, which is
undesirable. A better way to deal with this would be to extend APSL so that
transitions can be decorated by post-conditions. This is future work.

5 Related Work

The most used language for describing complex messages in communication pro-
tocols is probably Abstract Syntax Notation One (ASN.1) [22]. It was introduced
in 1984 and has since then underwent several revisions. It is a joint standard of
ISO, IEC, and ITU. ASN.1 is comparable with AMSL without codecs. Transla-
tions to the machine representation (the codec part) is expressed in a different
language; there are some options, e.g. the Basic Encoding Rules (BER) nota-
tion, the XML Encoding Rules (XER) notation, or ITU’s own Encoding Control
Notation (ECN). However ASN.1 has has grown to be rather large and com-
plex: for example, it has more than 10 different string types, many intended for
legacy character encodings. It also has ten expansive standards [21]. These make
it more expensive to build an ASN.1-based tool. Eclipse Titan [2] is an example
of an ASN.1-enabled testing tool. The tool was originally developed by Ericsson
in 2000, but has now been released as an open source project. In Titan, test
cases care abstractly written in TTCN-3 [19]. They will be compiled to concrete
and executable tests. Messages in the test cases can refer to ASN.1 definitions.
Despite its size (over 1.5 million lines of code), Titan is not a model based testing
(MBT) tool. In theory, it is possible to integrate e.g. an existing MBT tool with
Titan, but we have yet to see such an integration. As far as we know, there is
no MBT tool that is ASN.1 enabled out of the box.

In contrast to ASN.1, APSL is a simple language, but it is expressive enough
to model complex messages. It already contains MBT tools out of the box.
Typical testers only need to use the MBT tool. Its test engine also allows a
custom traversal strategy to be hooked, if the default random strategy is not
sufficient. Tools builders may wish to modify the test engine itself. The source
code of APSL consists of less than 4000 lines of Haskell code, which should be
feasible to work with.

In addition to ASN.1, there are indeed more recent protocol description lan-
guages, e.g. Google Protocol Buffers [18] and Apache Thrift’s interface descrip-
tion language [3]. Both allow for definitions of protocol messages in terms of
simple data structures, and code can be generated that operates on the de-
scribed data. However, these systems use a particular binary encoding method.
Therefore, the languages can not be used to describe protocols not originally
designed with them. There is also the binpac language [28] which can be used to
generate parsers for binary messages. A binpac definition of messages types are
compiled to parsers in C++. Pieces of additional C++ code can be mixed in to
describe additional parser logic. However, the tool set can only produce parsers.



It does not allow for the construction of messages according to the definition
(which is essential for a testing tool).

APSL relies on random generators to generate messages. Generating valid
messages turns out to be, perhaps unsurprisingly, easy. The most complex form
of constraints on a field is a regular expression. Such an expression can be con-
structively turned into generators. In comparison, the problem is analogous to
generating valid input combinations in automated unit testing of functions or
methods. However, functions’ inputs are often constrained by a first order for-
mula pre-condition that can be hard for a random based testing tool such as
QuickCheck [9] or T3 [31] to solve. If have to deal with a protocol whose mes-
sages are constrained in the similar way, we will face the same problem. Fortu-
nately, there are ways to at least mitigate the problem, e.g. by using a theorem
prover like Z3 [12] to solve the constraint, or, as in [16,39], by employing a search
algorithm [24].

So far we assume the IUT to be a black box. In reality, we may have its
source code which we can instrument. In particular, we can insert code to collect
runtime information. Even if we do not have the source code, some bytecode can
still be instrumented e.g. using tools like ASM [10] or Asil [25]. By collecting
such information we can obtained more in-depth information about a test. E.g.
if the IUT ever throws an internal exception, and if so, which messages triggered
it. We can also use the information to mine common patterns which in turn can
be used as anomaly detectors. E.g. it may be revealed that whenever the IUT
can either send a or b, it seems to always do the first whenever a certain internal
function f returns a 0. An anomaly detector monitors a program at the runtime
and will raise a warning if the current behavior violates the behavior pattern
it is keyed in. Note that this does not immediately mean that the behavior
is erroneous; a human must investigate to decide this. A tool like Daikon can
be used to mine from runtime data [14]. More precisely, it mines ’invariants’
(properties over program variables that hold on certain points in the program).
Alternatively, techniques from data mining such as clustering can also be tried
[29].

6 Conclusion and Future Work

We conclude that APSL is able to express real life protocols with complex mes-
sages such as IMAP and WebSocket and to provide at least basic automated
model-based testing of these protocols. APSL has a test engine that can be
parameterized with a traversal strategy. The default random traversal strategy
was enough for the email server case study to cover all (feasible) transitions and
message fields’ variants. However, other protocols may be more challenging, thus
requiring more powerful traversal strategies to be written. There are approaches
such as combinatorial testing [27], search-based testing [24], or active learning
[4] which can be used as a base for such strategies. It requires however further
study to know what would work best on which classes of protocols.



The email server case study also shows a draw back of pure LTS model-
based testing. The server turned out to contain a real bug which a pure LTS-
based approach would be blind without resorting to capturing certain value-level
dependencies as separate message types. This can be done, but it will lead to an
overly verbose model which is undesired. A better approach would be to extend
the LTS-based approach by allowing transitions to be decorated with pre- and
post-conditions. This is future work.

APSL’s current test engine can only test synchronous protocols. Some proto-
cols, such as WebSocket, are however asynchronous. An actor of such a protocol
can buffer incoming messages and is thus not required to respond immediately
to an incoming message. Although we did a case study with a WebSocket server
[35], we only explored the synchronous behavior of the server by forcing the
test engine to wait long enough before it sends the next message to the IUT,
and thus we can assume that by that time the server would have consumed all
messages in its input buffer. To also test the server’s asynchronous behavior the
test engine needs to be extended. The challenge of asynchronous testing is that
it introduces another aspect of non-determinism [37] that inhibits the test en-
gine’s ability to infer the state or states where the IUT might currently be; the
number of possibilities can grow exponentially. Although this is a well known
phenomenon in asynchronous testing, further study is needed to come up with
strategies to keep this explosion manageable.
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