
An Online Agent-Based Search Approach in Automated
Computer Game Testing with Model Construction

Samira Shirzadehha-

jimahmood

Utrecht University

the Netherlands

S.shirzadehhajimahmood@uu.nl

I. S. W. B. Prasetya

Utrecht University

the Netherlands

S.W.B.Prasetya@uu.nl

Frank Dignum

Umeå University

Sweden

fpmdignum@uu.nl

Mehdi Dastani

Utrecht University

the Netherlands

M.M.Dastani@uu.nl

ABSTRACT
The complexity of computer games is ever increasing. In this setup,

guiding an automated test algorithm to find a solution to solve a

testing task in a game’s huge interaction space is very challenging.

Having a model of a system to automatically generate test cases

would have a strong impact on the effectiveness and efficiency of

the algorithm. However, manually constructing a model turns out

to be expensive and time-consuming. In this study, we propose an

online agent-based search approach to solve common testing tasks

when testing computer games that also constructs a model of the

system on-the-fly based on the given task, which is then exploited

to solve the task. To demonstrate the efficiency of our approach, a

case study is conducted using a game called Lab Recruits.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Interactive games.

KEYWORDS
automated game testing, model-based game testing, agent-based

testing, agent-based game testing

ACM Reference Format:
Samira Shirzadehhajimahmood, I. S.W. B. Prasetya, FrankDignum, andMehdi

Dastani. 2022. An Online Agent-Based Search Approach in Automated Com-

puter Game Testing with Model Construction. In Proceedings of the 13th
International Workshop on Automating Test Case Design, Selection and Evalu-
ation (A-TEST ’22), November 17–18, 2022, Singapore, Singapore. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3548659.3561309

1 INTRODUCTION
Recently, the computer games industry has seen the emergence

of advanced 3D games. These are often complex software due to

their high level interactivity and realism. There is already a large

body of research in automated software testing, proposing various

methods to decrease the manual effort. However, game testing is

more complex in comparison to more traditional software testing.

In games, the search space is huge, with no obvious structure.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

A-TEST ’22, November 17–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9452-9/22/11. . . $15.00

https://doi.org/10.1145/3548659.3561309

In automated game testing, computer controlled player-characters

(agents) are used to test various aspects of a game, e.g. to verify

that a certain objective in a given game level is achievable and is

in the correct state. It would benefit testers if testing tasks can be

formulated abstractly. We then rely on the agent to automatically

execute such a task by searching for a ’solution’: a right sequence
of interactions that would bring the agent to the task objective, to

subsequently verify the objective’s state. Shirzadehhajimahmood

et al. showed that such a test is also robust (can cope better with

development time changes) [20], because the solution is searched

dynamically, rather than manually prescribed. To make this works,

the searching part is crucial. However, it is also the harder part to

automate, due to the huge interaction space, navigability, various

game rules (e.g. limited vision, players cannot see nor walk through

a solid wall), and long and complex game scenarios.

In computer games, solving a testing task requires a specific

sequence of actions to be taken; just randomly or greedily trying

them out does not work. In addition, games typically have elements

that resist the player, e.g. obstacles and hazards. When trying to

solve a task, an agent must also deal with these elements, which is

non-trivial as it may involve searching certain game objects and

controlling them e.g. to unblock some obstacles. Solving this by

applying the usual search based testing algorithm, such as evo-

lutionary [24], directly on the game under test is not a workable

option due to excessive computation time. Having a behavioral

model of the system under test would help. Ferdous et al. applied

model-based testing to automate the generation and the execution

of test cases from an Extended Finite State Machine (EFSM) model

[5]. However, constructing a model has to be done manually, and

hence costly. A major challenge faced by the game industry is the

lack of automated approaches for generating a model of the system

under test (SUT).

In this paper, we propose an online agent-based search approach

to do automated testing on modern computer games. Being an

on-line search approach, it does not require a full pre-constructed
model of the game under the test. Rather, given a model (EFSM)

that is only partially specified to capture only general properties

of the game, the remaining part of the model is constructed on
the fly during the search and exploited to aid the search process.

The approach is implemented on top of the agent-based testing

framework iv4XR [19]. Using agents is an appropriate approach to

deal with the high-level interactivity of computer games [19, 20]

thanks to agents’ inherent reactive programming model. We also

benefit from other agents’ related features such as goal-oriented

behavior and the possibility to do autonomous planning to make

the programming of test automation more abstract.

ar
X

iv
:2

21
1.

06
93

6v
1

 [
cs

.S
E

]
 1

3
N

ov
 2

02
2

https://orcid.org/0000-0002-3421-4635
https://orcid.org/0000-0002-5103-8127
https://orcid.org/0000-0002-5148-3685
https://doi.org/10.1145/3548659.3561309
https://doi.org/10.1145/3548659.3561309

A-TEST ’22, November 17–18, 2022, Singapore, Singapore Samira Shirzadehhajimahmood, I. S. W. B. Prasetya, Frank Dignum, Mehdi Dastani

Paper structure. This paper is organized as follows. Section 2

describes the setup of our approach. Section 3 discusses the kind of

models that our algorithm constructs. Section 4 presents our online

agent-based search approach. Section 5 describes how to construct

the aforementioned model. Section 6 discusses the agent-based

implementation that we used. Section 7 discusses experiments we

conducted to asses the effectiveness of our approach. Section 8 and

9 cover related and future work, respectively.

2 PROBLEM SETUP
We assume an agent-based setup, e.g. a la iv4XR [19], where a test

agent is available to take the role of the player to control the game.

We can abstractly treat a game as a structure:

𝐺𝑎𝑚𝑒 = (𝑁𝑎𝑣,𝑂, 𝐿) (1)

where 𝑁𝑎𝑣 is a structure describing the navigable terrain of the

game world [13],𝑂 is a set of game objects, and 𝐿 is a set of actions

available to the test agent. Game objects have properties such as

their positions, and being interactable or hazardous. The agent also

has its own properties, such as its position, and what it currently

sees. Objects such as doors are called blockers; they can block access

to other objects. Objects that can change the state of blockers are

called enablers, for example switches and keys. The overall game

state, also called configuration, comprises of the properties of the

objects and the agent.

The test agent is bound by typical game physics: it can only

travel over navigable terrain (𝑁𝑎𝑣), and it can only observe objects
and parts of𝑁𝑎𝑣 that it physically can see (e.g. it cannot see through

a wall). So, initially 𝑁𝑎𝑣 usually contains only a part of the terrain

where the agent starts. Typically, primitive actions available to

the agent are: moving in any direction for a small distance, and

interacting with an object 𝑜 . From these we assume the following

high level actions can be constructed, which comprise the set 𝐿 in

(1); the construction was described e.g. in [18].

• 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜 (𝑜), to travel to the position of 𝑜∈𝑂 . This can be

done by implementing a path finding algorithm such as A*

[7, 13], applied on 𝑁𝑎𝑣 .

• 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 () incrementally explores the game world. It stops

when new terrain is sighted (and added to 𝑁𝑎𝑣). A graph-

based exploration algorithm such as [18] can be used.

• 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 (𝑜), to interact with 𝑜 as mentioned above.

To test something the agent must be given a ’testing task’. An

elementary type of tasks is to simply verify whether certain states

of a game object 𝑜 , characterized by a predicate 𝜙𝑜 , are reachable
from the game initial configuration 𝑐𝑖𝑛𝑖𝑡 , and furthermore satisfy a

certain correctness assertion 𝜙 . For example, 𝜙𝑜 can be "a treasure
chest becomes visible", and𝜓 asserts that the agent should by then

collect enough game-points. Abstractly, this can be formulated as:

𝜙𝑜︸︷︷︸
situation required to be reachable

⇒ 𝜓︸︷︷︸
assertion

(2)

Complex tasks can be built by composing elementary tasks.

The problem to solve is to automatically perform a testing task,

given only a description as above. Note that this is a search problem:

the executing test agent needs to find a right series of actions that

reaches a state satisfying 𝜙𝑜 , while respecting the game rules. This

search is far from trivial. Checking the assertion part is usually easy.

Our automated approach will consist of these two key elements:

On-the-fly Model. The search would be more effective if we

have a model as in model-based testing. However, since we do not

actually have a model, our search algorithm builds one on-the-fly,

and exploits it to help the search. We use Extended Finite State

Machine (EFSM) as the model, with a twist so that the EFSM also

captures physical navigability over 𝑁𝑎𝑣 .

Online search. The proposed search approach, presented in

Section 4, is an online search, where the agent directly explores the

game under test. The benefit is that the agent can access accurate

state information from the game. A key element of the approach

is dealing with obstacles, which can have a great impact towards

solving the reachability part (the 𝜙-part) of a testing task.

3 HYBRID MODELS OF GAMES
As mentioned, our search algorithm constructs a model as it goes.

More precisely, an Extended Finite State Machine (EFSM) model

will be constructed. EFSM is expressive and commonly used for

modelling software systems [2]. This model should capture not

only the logic of a game, but also relevant physical aspects of the

world. This poses an additional challenge. Consider a simple ’game

level’ shown in Fig. 1, taken from a maze-like 3D game called

Lab Recruits
1
. To interact with an in-game button, e.g. 𝑏4, the

player should be close enough to it, which means the button should

also be reachable. So, when modelling a transition between states,

in addition to considering what it does, the transition must be

physically possible in the game world as well. Since the standard

use of EFSM does not capture physical navigability, we define a

’hybrid’ variation of EFSM that also captures this. Also, games

often have a concept of ’zone’, so we add this as well. A zone is an

’enclosed’ part of 𝑁𝑎𝑣 where the player can travel freely. Traveling

to another zone has to pass through an open blocker, such as a door,

that connects zones, or unblock it first, if it is blocked.

Figure 1: A screenshot of a level in a game called Lab Re-
cruits. The level’s objective is to open the treasure door.

Deviating from [2], we will represent our EFSM by a tuple:

𝑀 = (𝑆, 𝑇 , Σ, 𝑃︸ ︷︷ ︸
𝑡𝑜 𝑏𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

, 𝛼, 𝑐0︸︷︷︸
𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟

) (3)

1
https://github.com/iv4XR-project/labrecruits

An Online Agent-Based Search Approach in Automated Computer Game Testing with Model Construction A-TEST ’22, November 17–18, 2022, Singapore, Singapore

The last two components should be provided by the game devel-

oper; the rest is learned/constructed on the fly. 𝑆 and𝑇 ⊆ 𝑆 × 𝐿 × 𝑆
describe the states and transitions of 𝑀 , as known to the agent

so far. 𝐿 is the set of available actions listed in Section 2. Mem-

bers of 𝑆 are also members of 𝑂 in (1). Being in the state 𝑜∈𝑆 is

to be interpreted as: the agent is currently at the game object 𝑜’s
location. As mentioned, objects have their own properties; their

values define the EFSM’s extended state. Transitions in𝑇 represent

physical travel on 𝑁𝑎𝑣 : when two different states are connected by

a transition, it means that there is a path in 𝑁𝑎𝑣 between the two

game objects represented by the states, that does not go through a

blocker in between.𝑀’s other components:

• Σ is a set of aforementioned ’zones’ in the game.

• 𝑃 ⊆ 𝑆×𝑆 ; when (𝑖, 𝑜) ∈ 𝑃 it means that the agent has learned

that interacting with 𝑖 affects the object 𝑜 .

• 𝛼 is a function that models the effect of 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 (𝑖) on the

objects in 𝑂 , given the knowledge in 𝑃 .

• 𝑐0 is the initial ’configuration’ of the system when it starts.

A configuration describes a concrete state of𝑀 (as opposed

to ’abstract’ states 𝑆). It is represented by a pair (𝑠, 𝐷) where
𝑠 ∈ 𝑆 (describing the agent’s current physical location) and
𝐷 is a vector of all objects’ properties in 𝑆 .

An example of as model is shown in Fig. ??. The search algorithm
in Section 4 does not need to do on-model execution; it relies only

on the knowledge built in the first four components of𝑀 . However,

we want to note that the constructed𝑀 can be given to an off-line

model based testing (MBT) algorithm such as in [5] for generating

test sequences. For this, on-model execution is needed. Off-line

approaches are however outside this paper’s scope.

𝑏1 (𝑅1)

𝑏2 (𝑅1)

𝑏3 (𝑅2)

𝑏4 (𝑅3)

𝑑1 (𝑅1, 𝑅2)

𝑑2 (𝑅2, 𝑅3)

𝑑𝑇 (𝑅1, 𝑅4)

𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜

𝑛
𝑎
𝑣
𝑖𝑔
𝑎
𝑡𝑒𝑇

𝑜

𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜

𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜

𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 ↦→ {𝑑1 }
𝑛𝑎𝑣

𝑖𝑔𝑎
𝑡𝑒𝑇

𝑜

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 ↦→ {𝑑1, 𝑑2 }

𝑛𝑎𝑣
𝑖𝑔𝑎

𝑡𝑒𝑇
𝑜

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 ↦→ {𝑑𝑇 }

𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜

Figure 2: An EFSM model of the level shown in Fig.1 The
notation e.g. 𝑏1 (𝑅1) in a state means that the state repre-
sents the object 𝑏1, and furthermore 𝑏1 is in zone 𝑅1. The
𝑃-component of the model is described by an extra annota-
tion e.g. ↦→ {𝑑1} on 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 transitions. E.g. on 𝑏2 it means
that (𝑏2, 𝑑1) ∈ 𝑃 . So, toggling 𝑏2 affects 𝑑1.

4 ONLINE AGENT-BASED SEARCH
In this section, we provide the details of our automated online

search algorithm to solve testing tasks. The algorithm takes three

parameters shown in line 1 in Algorithm 1. The first, 𝜙𝑜 ⇒ 𝜓 , is a

testing task as in (2). The algorithm interacts with the game under

tests, searching for a sequence of interactions that brings the game

to a state satisfying 𝜙0, and then it checks (line 17) if𝜓 is satisfied. If

it is, the test succeeds, and else a violation is concluded. Because the

algorithm is implemented on an agent-based framework (Section 6),

and in the agent terminology 𝜙𝑜 is treated as a goal, the algorithm
can also be thought as an algorithm for solving a goal.

The parameter𝑀 = (𝑆,𝑇 , Σ, 𝑃, 𝛼, 𝑐0) is an EFSM with the struc-

ture as in Section 3, intended to model the game under test. The

last parameter 𝑁𝑎𝑣 is the navigable terrain of the game world men-

tioned in Section 2. The (𝑆,𝑇 , Σ, 𝑃) part of 𝑀 is treated as a state-

graph describing the game world; it will be denoted by𝑀𝑠𝑡𝑎𝑡𝑒𝑔𝑟𝑎𝑝ℎ .

The sets of interactables and blockers in 𝑆 will be denoted by 𝐼 and

𝐵; so, 𝐼 ∪ 𝐵 ⊆ 𝑆 . Note that𝑀𝑠𝑡𝑎𝑡𝑒𝑔𝑟𝑎𝑝ℎ and 𝑁𝑎𝑣 are initially empty
As the algorithm proceeds; these components will be incrementally

built based on what the agent observes within its visibility range.

The algorithm actually performs a two levels search, though

here we will focus on its higher level part. The lower level is used

to find a path to guide the agent to physically travel over walkable

regions (𝑁𝑎𝑣) of the game world. In the setup defined in Section 2,

this functionality is encapsulated within the procedure 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜 .

The upper level of the search is used to abstractly search at the

game-objects level; Algorithm 1 is formulated at this level. It in-

corporates some heuristics/policy to guide the search, which are

outlined below.

Algorithm 1 Online Search

1: procedure onlineSearch(𝜙𝑜 ⇒ 𝜓,𝑀, 𝑁𝑎𝑣)

2: while ¬𝜙0 do
3: parallel
4: || update𝑀𝑠𝑡𝑎𝑡𝑒𝑔𝑟𝑎𝑝ℎ

5: || if new states observed then
6: 𝑜′ ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑁𝑜𝑑𝑒 ()
7: 𝑚𝑎𝑟𝑘 (𝑜′) ⊲ mark it as visited

8: 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜 (𝑜′) using 𝑁𝑎𝑣

9: if 𝑜′ = 𝑜 & ¬𝜙𝑜 then
10: 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 (𝑜′, 𝜙)
11: else if 𝑜′ is a blocker & 𝑜.𝑖𝑠𝑏𝑙𝑜𝑐𝑘𝑒𝑑 then
12: 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 (𝑜′, 𝑜′. ¬𝑜′.𝑖𝑠𝐵𝑙𝑜𝑐𝑘𝑒𝑑)
13: else if there is terrain unexplored then 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ()
14: else 𝑎𝑏𝑜𝑟𝑡 ()
15: end if
16: end parallel
17: assert𝜓

To move forward from the agent current position, if the agent

sees new states, the heuristic 𝑠𝑒𝑙𝑒𝑐𝑡𝑁𝑜𝑑𝑒 () is invoked to select a

state 𝑜 ′ for the agent to go to. Else, when there is no new observed

state, the agent will invoke 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 () to find new states. If the final

goal 𝑜 is now in 𝑆 , it will be selected as 𝑜 ′. Else, an unmarked 𝑜 ′

from the set 𝐼 ∪ 𝐵 is selected. The selected 𝑜 ′ is then marked to

avoid choosing it again and causing the agent to run in an infinite

loop. The agent then navigate from its current position to 𝑜 ′; using
pathfinding over 𝑁𝑎𝑣 . Additionally,𝑀𝑠𝑡𝑎𝑡𝑒𝑔𝑟𝑎𝑝ℎ is updated in par-

allel the whole time; it will be invoked regardless of which steps

is taken; we will explain this later in Section 6. 𝑁𝑎𝑣 is updated by

𝑒𝑥𝑝𝑙𝑜𝑟𝑒 () in line 13.

If 𝑜 ′ is the final goal 𝑜 , and it does not satisfy 𝜙𝑜 , the heuristic

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 (𝑜 ′, 𝜙𝑜) is invoked to try to change its state to 𝜙𝑜 . Else,
if 𝑜 ′ is a blocker and 𝑜 ′.𝑖𝑠𝐵𝑙𝑜𝑐𝑘𝑒𝑑 is true, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 is invoked

with (𝑜 ′, ¬𝑜 ′.𝑖𝑠𝐵𝑙𝑜𝑐𝑘𝑒𝑑) as a goal, to unblock the blocker. Let us

explain the heuristics used in 𝑠𝑒𝑙𝑒𝑐𝑡𝑁𝑜𝑑𝑒 () and 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 ().

A-TEST ’22, November 17–18, 2022, Singapore, Singapore Samira Shirzadehhajimahmood, I. S. W. B. Prasetya, Frank Dignum, Mehdi Dastani

𝑠𝑒𝑙𝑒𝑐𝑡𝑁𝑜𝑑𝑒 (). To go from one location in the level to another, we

use the transition in 𝑀𝑠𝑡𝑎𝑡𝑒𝐺𝑟𝑎𝑝ℎ . If we can go directly from our

starting state to our goal state 𝑜 , then life is simple. Otherwise we

explore𝑀𝑠𝑡𝑎𝑡𝑒𝐺𝑟𝑎𝑝ℎ to travel through its states. This is done by se-

lecting an intermediate state to go to. To decide which intermediate

state should be selected, we apply a policy.

We give a higher priority to newly observed states. Moreover,

states in 𝐵 have higher priority than states in 𝐼 . Then, the distance

to the approximate location of the goal, if given by developers,

and the distance to the current agent position are considered. The

candidate closest to the goal is preferred, and else the one closest

to the agent. If in the new observation, there is no new blocker but

there is a state in 𝐵 which is in the agent visibility range, the state

from the 𝐵 is selected.

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 (𝑜 ′, [). This procedure can be thought to deploy a

goal to change 𝑜 ′ to a state satisfying [. It would try different

interactables which has not been touched in this endeavour. So,

we keep track of interactables that have been tried for 𝑜 ′; this is
done by𝑚𝑎𝑟𝑘𝑜′ (𝑖). Also note that changes on a state of an in-game

object might not be immediately observable by the agent. That

makes thing more complicated.

Algorithm 2 Dynamic Goal

1: procedure dynamicGoalℎ (𝑜′, [)
2: while 𝑜′does not satisfy [do
3: Δ← {(𝑖, 𝑜′) | (𝑖, 𝑜′) ∈ 𝑃 }
4: if Δ = ∅ then
5: Δ← { 𝑗 | (𝑗, 𝑎, 𝑜′) ∈ 𝑇, 𝑗 ∈𝐼 } ⊲ interactables nearest to 𝑜′

6: if Δ = ∅ then
7: Δ← {𝑖 | 𝑖 ∈ 𝐼 , 𝑖 unmarked} ⊲ find unmarked enablers

8: if Δ = ∅ then
9: if there is terrain unexplored then
10: 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ()
11: else
12: 𝑎𝑏𝑜𝑟𝑡 ()
13: else
14: choose 𝑖 ∈ Δ, which is closest to the agent

15: 𝑚𝑎𝑟𝑘𝑜′ (𝑖) ⊲ mark 𝑖 as touched for 𝑜′

16: 𝑟𝑒𝑎𝑐ℎ (𝑖)
17: 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 (𝑖)
18: 𝑟𝑒𝑎𝑐ℎ (𝑜′)

To minimize the effort spent to change 𝑜 ′ (to make it satisfies

[), firstly, the list of pairs in 𝑃 will be checked to see if there is

an 𝑖 that would affect 𝑜 ′. If not, 𝑖 is selected from the list 𝐼 , if it is

not empty. Interactables in 𝐼 having edges (transitions in 𝑇) to 𝑜 ′

are closer to 𝑜 ′, and are hence preferred over interactables with no

edge to 𝑜 ′. If the above give multiple candidates, the 𝑖 closest to the

agent is chosen. To interact with 𝑖 , the agent typically should be

close enough to 𝑖; 𝑟𝑒𝑎𝑐ℎ(𝑖) will try to guide the agent to 𝑖 . Because

𝑖 is seen before, the agent believes that there is a path to reach

it. However, on the way to 𝑖 it might discover that the path has

become blocked, due to some previous toggling of an interactable.

In this case 𝑢𝑛𝑠𝑡𝑢𝑐𝑘 (𝑖) is called to unblock the path.

After interacting with 𝑖 the agent needs to check if this actually

changes 𝑜 ′ to [. However, note that 𝑜 ′ might be far from the agent.

To check its state the agent needs to travel to it using 𝑟𝑒𝑎𝑐ℎ(𝑜 ′).
The same situation as with 𝑟𝑒𝑎𝑐ℎ(𝑖) may happen which requires

invoking 𝑢𝑛𝑠𝑡𝑢𝑐𝑘 (𝑜 ′).

If all states in 𝐼 have been touched (no more candidates to try),

𝑒𝑥𝑝𝑙𝑜𝑟𝑒 () is invoked to find a new state. The 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 (𝑜 ′, [) is
aborted if none of the states in 𝐼 can change the 𝑜 ′ state and there

is no more space/states to explore.

𝑈𝑛𝑠𝑡𝑢𝑐𝑘 (𝑒). Recall that this is invoked to unblock the path to a

destination object 𝑒 that the agent tries to reach. Note that as the

agent search and explore, it also builds up the model𝑀 . We use𝑀

to see if it gives us a solution in the form of an interactable 𝑖 that

would unblock the path. The agent then interacts with 𝑖 . Section 5

will explain how this is employed to unstuck the agent.

Example. As an example, consider a simple ’level’ shown in Fig. 1

taken from the game Lab Recruits. There are four buttons and three

doors in this level. The player is shown at the bottom left.

Definition 4.1. Imagine a testing task 𝑇0 where an agent has to

verify that the treasure door 𝑑𝑇 is reachable and can be opened.

To verify this, the agent invokes𝑜𝑛𝑙𝑖𝑛𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝜙𝑑𝑇 ⇒ 𝜓,𝑀, 𝑁𝑎𝑣),
where 𝜙𝑑𝑇 = ¬𝑑𝑇 .𝑖𝑠𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔 and just 𝑡𝑟𝑢𝑒 for𝜓 . In the algorithm,

the agent first needs to find a way to reach the treasure door 𝑑𝑇 .

Since the agent has a limited visibility range, it can not see the entire

room. Imagine its visibility range is inside the red circle around the

agent. The agent starts from its starting state (𝑐0). If the agent sees

a state,𝑀𝑠𝑡𝑎𝑡𝑒𝐺𝑟𝑎𝑝ℎ will be updated. In this example, the agent can

see 𝑏1 and 𝑏2; so they are added to 𝑆 . As the treasure door is not in

the current 𝑆 yet, 𝑠𝑒𝑙𝑒𝑐𝑡𝑁𝑜𝑑𝑒 () is invoked to choose a state to move

forward. The distance from the agent position to the both of new

states 𝑏1, 𝑏2 is calculated; 𝑏2 is selected based on the distance. In

the next step, 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒𝑇𝑜 (𝑏2) is called to move the agent from the

current position to 𝑏2. Then, the agent again updates𝑀𝑠𝑡𝑎𝑡𝑒𝐺𝑟𝑎𝑝ℎ

as it can see new states in the new position.

In the new observation, a blocker 𝑑1 is seen. Based on the heuris-

tic in 𝑠𝑒𝑙𝑒𝑐𝑡𝑁𝑜𝑑𝑒 (), the next 𝑜 ′ to move forward is 𝑑1. Since 𝑑1
is in the blocking state/closed, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 (𝑑1,¬𝑑1 .𝑖𝑠𝐵𝑙𝑜𝑐𝑘𝑒𝑑) is
invoked. The agent now switches to solve this intermediate goal

which is opening 𝑑1. Firstly, 𝑃 is checked to find a button 𝑖 such

that (𝑖, 𝑑1) ∈ 𝑃 . However 𝑃 is still empty; so, 𝑇 is checked and

𝑏2, which is the nearest interactable to 𝑑1, is selected and marked

by 𝑚𝑎𝑟𝑘𝑑1 (𝑏2). After interacting with 𝑏2, the agent checks the

state of 𝑑1. Suppose 𝑑1 is now open, the goal that was set by

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 () is then successfully achieved. In the current po-

sition, the agent has entered a new room. It would see more states,

hence increasing the chance of reaching the treasure door. The next

state to move forward is 𝑑2, chosen by 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒 (). Similar to

𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 (𝑑1,¬𝑑1 .𝑖𝑠𝐵𝑙𝑜𝑐𝑘𝑒𝑑), the agent now tries to open 𝑑2.

For this, 𝑏3 would selected, because it is the closest to 𝑑2. The agent

moves to the next room after opening 𝑑2. In the new room, the

agent observes 𝑏4 and moves to it.

In the current position, there is no new state that the agent can

select to move. Therefore, it falls back to exploring the world. Imag-

ine that the previous interaction with 𝑏3 also closed 𝑑1; the agent

is then stuck in the rooms. The aforementioned 𝑢𝑛𝑠𝑡𝑢𝑐𝑘 will be in-

voked to open a path out; re-toggling 𝑏3 opens 𝑑1 again. The agent

can now explore the level; eventually it will see the treasure door.

At that time, the treasure door would be in 𝑆 . However, the testing

task 𝑇0 is not achieved yet. To verify that the treasure door can be

An Online Agent-Based Search Approach in Automated Computer Game Testing with Model Construction A-TEST ’22, November 17–18, 2022, Singapore, Singapore

opened, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 (𝑡𝑟𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑜𝑜𝑟,¬𝑡𝑟𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑜𝑜𝑟 .𝑖𝑠𝐵𝑙𝑜𝑐𝑘𝑒𝑑) is
invoked; similar to 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 (𝑑1,¬𝑑1 .𝑖𝑠𝐵𝑙𝑜𝑐𝑘𝑒𝑑).

5 ON-THE-FLY MODEL CONSTRUCTION
Recall that the 𝑜𝑛𝑙𝑖𝑛𝑒𝑆𝑒𝑎𝑟𝑐ℎ algorithm in Section 4 requires a model

𝑀 , in particular its state-graph component. In our implementation,

this state-graph is represented as Prolog facts. The implementation

in Prolog gives us the flexibility to have rules for reasoning which

is important in the 𝑢𝑛𝑠𝑡𝑢𝑐𝑘 procedure used in the search algorithm.

As it is mentioned before, 𝑀𝑠𝑡𝑎𝑡𝑒𝐺𝑟𝑎𝑝ℎ = (𝑆,𝑇 , Σ, 𝑃) will be
gradually constructed based on what the agent observes during the

search. The first three elements will be immediately updated, if new

states are observed. Firstly, newly observed/seen states 𝑁 are added

in the set of 𝑆 , and tagged if they are interactables or blockers. E.g. if

a state 𝑠 is a button, we register it as an interactable, whereas a door
is registered as a blocker. The next step is to update the transition

set 𝑇 . Let 𝑠𝑐 be the agent’s current state. As the agent can see 𝑁
from the current state, there is thus a straight line path to navigate

and reach them, with no blocker in between. So, transitions 𝑠𝑐 → 𝑡

and 𝑡 → 𝑠𝑐 , for every 𝑡 ∈ 𝑁 , with the transition label ’navigateTo’

are added to 𝑇 . If a state 𝑠1 is interactable, a transition from 𝑠1 to

itself with the transition label ’interact’ will be added as well.

To detect in which zone these states are located, or we are in

a new zone, some steps need to be done. The first step is to get

the current zone based on 𝑠𝑐 . To know that newly observed states

are in the current zone, one state located in the current zone is

randomly selected (𝑠𝑟). Then, pathfinding on 𝑁𝑎𝑣 is invoked to

check if there is a path between 𝑠𝑟 and each one of these states

when all blockers are closed. This is done by temporarily removing

the nodes in 𝑁𝑎𝑣 that are occupied by the blockers in 𝑆 , before

invoking the pathfinder. They are put back after the zone-checking.

If there is a path, the zone of the newly observed state will be the

current zone. If not, a new zone 𝑅 is added to Σwith newly observed

states as a member of 𝑅.

Consider again the example in Fig 1. The first states that are

observable by the agent at the beginning of the game are 𝑏1 and 𝑏2.

So, they will be added to 𝑆 . Because both of the observed states are

interactable, two transitions with the ’interact’ label from each of

these state to themselves are added in 𝑇 ; e.g. 𝑏1
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡−−−−−−−→ 𝑏1. The

next step is to check in which zone they are placed. Because so far

Σ is empty, a new zone with 𝑏1 and 𝑏2 as its member is registered

𝑅1 = {𝑏1, 𝑏2} to Σ.
In the proposed approach in section 4, whenever𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐺𝑜𝑎𝑙 (𝑜 ′)

is invoked, and solved by an interactable 𝑖 , we record this knowl-

edge by adding the entry (𝑖, 𝑜 ′) to 𝑃 . In addition, toggling 𝑖 may

open another blocker 𝑏 which is on the way to 𝑜 ′. So, the pair of
(𝑖, 𝑏 ∈ 𝐵) is added to 𝑃 as well.

As an example of a reasoning rule over the model, expressed in

Prolog, the following states that two rooms/zones are neighbors if

there is a blocker shared by them, and hence connecting them:

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑅1, 𝑅2) :−

𝑅1 ≠ 𝑅2,

𝑖𝑠𝐵𝑙𝑜𝑐𝑘𝑒𝑟 (𝑏),
𝑖𝑛𝑍𝑜𝑛𝑒 (𝑅1, 𝑏), 𝑖𝑛𝑍𝑜𝑛𝑒 (𝑅2, 𝑏)

From this rule, we can define 𝑟𝑜𝑜𝑚𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐾, 𝑅1, 𝑅2) rule
as a 𝐾-step transitive closure of the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 -rule to describe a

condition that two non-neighboring rooms are reachable from each

other because of 𝐾−1 other rooms in between that connect them.

The 𝑢𝑛𝑠𝑡𝑢𝑐𝑘 procedure from Section 4 uses this rule. Imagine the

agent is in some zone 𝑅2 and toggles 𝑖 to unblock 𝑜
′
which is several

rooms away from 𝑅2. After toggling 𝑖 , some blockers 𝑑1 and 𝑑2 in

𝑅2 become closed, causing the agent to become locked in 𝑅2, and

hence unable to find a way back to 𝑜 ′ to check its state. Suppose

𝑑1 is connected to 𝑅1 which leads to 𝑜 ′, and 𝑑2 is connected to 𝑅3,

away from 𝑜 ′. Opening one of these blockers will unstuck the agent.
Using the 𝑟𝑜𝑜𝑚𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 rule allows the agent to choose the

right door to open. Note that simply re-toggling 𝑖 is not always

an efficient way to unlock the agent, e.g. if 𝑖 is far from 𝑑1, while

there is an 𝑖 ′ next to 𝑑2 which can open it. Also, if 𝑖 is the only

interactable that can open 𝑜 ′, re-toggling it closes 𝑜 ′ again.

6 IMPLEMENTATION
We implement our game testing approach using iv4XR

2
, a Java

multi-agent programming framework for game testing. The frame-

work is inspired by the popular Belief-Desire-Intent concept of

agency [8], where agents have their belief which represents infor-

mation the agent has about its current environment and their own

goals representing their desire.

The framework allows tests to be programmed at a high level,

hiding underlying details such as 3D navigation and geometric

reasoning. A* path finding is applied to provide an ability to auto-

explore the environment/world and to auto-navigate to a game-

entity, given its id (rather than its concrete position in the world)

[18]. This ability of auto navigation and exploration in-game world

is used in 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑇𝑜 (𝑜) and 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 () mentioned in Section 2.

Recall the testing task 𝑇0 from Definition 4.1. To solve 𝑇0 the

agent needs to find a right sequence of actions to reach the treasure

door. Such a goal is very hard for an agent to achieve directly. It

needs to be broken into subgoals to help the agent to solve the

original goal, in a way such that each lowest subgoal is simple

enough to be solved automatically. In iv4XR, we can define a ’goal

structure’ expressing such a decomposition using goal-combinators

provided by the framework. More precisely, a goal structure is a
tree containing basic goals as leaves and goal-combinators as nodes.

Each goal at the leaves formulates certain SUT states that wewant to

reach, alongwith a so-called tactic to solve the goal. A tactic is a way

to hierarchically combine basic actions using tactic-combinators.

In our approach, complicated testing tasks can be formulated

purely at the goal level, without having to specify the needed tactics.

The latter were implicitly provided by our implementation as part

of its automation.

7 EXPERIMENT
To evaluate our approach, we conducted a set of experiments. We

use the aforementioned Lab Recruits (LR) game as a case study. It

is a maze-like 3D game; a screenshot was shown in Fig. 1. We have

doors as blockers, and buttons as interactables. Toggling a button

toggles the state of doors that are associated to it. LR allows new

game ’levels’ to be defined, which makes it suitable for experiments.

In gaming, the term levels refers to worlds or mazes that are playable

in the same game.

2
https://github.com/iv4xr-project/aplib

A-TEST ’22, November 17–18, 2022, Singapore, Singapore Samira Shirzadehhajimahmood, I. S. W. B. Prasetya, Frank Dignum, Mehdi Dastani

Research Questions.

• RQ1: How effective is our online agent-based search algorithm
in solving the given testing tasks?
• RQ2: Can the algorithm construct an accurate model of the
game under test?

Toward answering the research questions, we use LR levels that

were used in the Student Competition in theWorkshop on Automat-

ing Test case Design, Selection and Evaluation (A-TEST) in 2021
3
.

Fig. 3 shows the map of one of these levels (𝑅7_3_3).

Figure 3: The layout of the 𝑅7_3_3 level. Lines indicate con-
nections between buttons and doors.

We applied our online search algorithm with two different se-

tups. (1) The setup 𝑆𝑒𝑎𝑟𝑐ℎ uses the algorithm as in Section 4. So, it

exploits the on-the-fly constructed model to help in dealing with

complicated situations. For example, an interaction in the past

might close a door, causing the agent to become locked in a zone.

Using the model might help the agent to find a way to unlock it-

self; by interacting with the corresponding button to unblock the

right blocker. Moreover, exploiting the model can decrease the time

spent to solve a testing task, as the test agent would then know

how to unblock a blocker when it faces it again. (2) In the setup

𝑆𝑒𝑎𝑟𝑐ℎ𝑏𝑎𝑠𝑖𝑐 , the agent runs the same search algorithm, but it does

not have access to the constructed model; it can not thus exploit

the model.

A 𝑅𝑎𝑛𝑑𝑜𝑚 test algorithm is also applied to serve as a baseline.

This 𝑅𝑎𝑛𝑑𝑜𝑚 repeatedly alternates between exploring a given level

to discover game objects, and randomly choosing a pair of button

and door; it then toggles the button to find out if it opens the door.

If so the connection is recorded. This is repeated until its budget

runs out; we set this budget to be 1.2𝑇 where 𝑇 is the time used by

𝑆𝑒𝑎𝑟𝑐ℎ to solve the same testing task. For each level 𝑅𝑎𝑛𝑑𝑜𝑚 is run

ten times.

The testing tasks posed to all levels is to verify that a chosen

closed door 𝑜 is reachable and can be opened. This chosen 𝑜 is

always a door that is important for completing the level, and whose

reachability is non-trivial. This corresponds to the 𝜙-part in (2).

The assertion part 𝜓 is less important for this study, so it is just

𝑡𝑟𝑢𝑒 . To reach 𝑜 , a sequence of actions is required to be done by the

agent. This sequence is not known upfront; only the id of 𝑜 is given

3
https://github.com/iv4xr-project/JLabGym/blob/master/docs/contest/contest2021.md

Table 1: Levels’ features. Each contributes to their complex-
ity. 𝑅, 𝐵, 𝐷 indicate the number of rooms, buttons and doors
in each level; 𝑖𝑛𝑖𝑡 specifies the number of doorswhich are ini-
tially open. The last three columns will be explained later.

level R B D a ` init 𝑆𝑒𝑎𝑟𝑐ℎ 𝑆𝑒𝑎𝑟𝑐ℎ𝑏𝑎𝑠𝑒 𝑅𝑎𝑛𝑑𝑜𝑚

𝑅3_1_1_𝐻 3 6 4 1 1 0 1 0 0.3

𝑅4_1_1 5 8 6 1 1 0 1 1 0.1

𝑅4_1_1_𝑀 4 8 6 1 1 0 1 0 0.7

𝑅5_2_2_𝑀 5 7 4 2 2 0 1 0 0.1

𝑅7_2_2 7 7 6 2 2 0 1 1 0.6

𝑅4_2_2 5 8 6 2 2 >0 1 1 0.9

𝑅4_2_2_𝑀 5 7 4 2 2 >0 1 0 0.4

𝑅7_3_3 7 7 6 3 4 0 1 1 0.9

by developers to the agent; the agent should find the solution (the

aforementioned sequence) by itself.

Levels. The A-TEST levels provide a range of size and complexity

to test the algorithm. For a blocker 𝑜 ∈ 𝑂 , let ` (𝑜) be the number of

interactables that can toggle 𝑜 (in LR, 𝑜 would be a door and ` (𝑜)
is the number of buttons connected to this door). For a game level,

the ` of this level is the greatest ` (𝑜) over all blockers in the level.

Similarly, for an interactable 𝑖 ∈ 𝑂 , a (𝑖) is the number of blockers

that 𝑖 can toggle. The a of a game level is defined as the greatest

a (𝑖). Setups with ` and a higher than 1 are complicated to solve.

The left part of Table 1 shows the features of the LR levels used in

our experiments. These levels have different difficulty for the agent

toward solving the corresponding testing task. For example, some

have a, `>1. Some have doors which are initially open (the column

𝑖𝑛𝑖𝑡), which makes searching for a solution even more complicated,

as during the search the agent needs to try different buttons, and

one of them might actually close a door that was initially open.

7.1 Results
7.1.1 Evaluating the Ability to Find Solutions.

RQ1: How effective is our online agent-based search algorithm

in solving the given testing tasks?

To evaluate this, all levels in Table 1 are tested by an agent.

A testing task to open a door called the treasure door is given

to the agent. As the ground truth, the tasks are solvable and the

corresponding test should pass. The strength of our algorithm in

solving non-trivial tasks is assessed by the number of tests that

pass.

The last three columns in Table 1 show the results for 𝑆𝑒𝑎𝑟𝑐ℎ,

𝑆𝑒𝑎𝑟𝑐ℎ𝑏𝑎𝑠𝑒 , and 𝑅𝑎𝑛𝑑𝑜𝑚; 1 means the corresponding testing task

is passed and 0 means it fails. For 𝑅𝑎𝑛𝑑𝑜𝑚, a value 𝑝 means that it

gives a pass verdict with probability 𝑝 , sampled over 10 runs. 𝑆𝑒𝑎𝑟𝑐ℎ

successfully solves the testing tasks on all levels, including the more

complex levels such as 𝑅4_2_2_𝑀 . In contrast, 𝑆𝑒𝑎𝑟𝑐ℎ𝑏𝑎𝑠𝑒 is not

always successful (Table 1), implying that exploiting the model is

essential for solving the testing tasks. After looking at the failure

cases, we conclude that not only the functional relation between

the objects, but also the physical layout of the level plays a role to

solve a testing task without model exploitation. 𝑅𝑎𝑛𝑑𝑜𝑚 solves the

testing tasks with about 0.5 probability. Note that this also means

that it has 0.5 probability to give a false positive (falsely reporting

a bug) which makes it unfit for actual use.

An Online Agent-Based Search Approach in Automated Computer Game Testing with Model Construction A-TEST ’22, November 17–18, 2022, Singapore, Singapore

7.1.2 Evaluating the Constructed Model.
RQ2: Can our online agent-based search algorithm construct an

accurate on-the-fly model of the game under test?

To verify if the constructed model is accurate, we compare the

model against the actual level definition. In the constructed model,

we have the information about the number of zones, interactables,

blockers, and the 𝑃 component. Also, the information about the

existing objects in each room can be found in the generated model.

The 𝑆 (states), Σ (zones), and 𝑃 components of themodel are checked

manually.

Table 2 shows the results of 𝑆𝑒𝑎𝑟𝑐ℎ and the 𝑅𝑎𝑛𝑑𝑜𝑚 algorithms;

𝑆𝑒𝑎𝑟𝑐ℎ𝑏𝑎𝑠𝑒 is not included as Table 1 already showed that it is

inferior to 𝑆𝑒𝑎𝑟𝑐ℎ. We can see that all but one button-door connec-

tions that 𝑆𝑒𝑎𝑟𝑐ℎ registered in the model are correct in all levels.

In contrast, 𝑅𝑎𝑛𝑑𝑜𝑚 is quite obviously more prone to incorrectly

registering connections. The results of 𝑆𝑒𝑎𝑟𝑐ℎ indicate how reliable

the on-the-fly constructed table 𝑃 is when the agent exploits the

model to solve testing tasks. Also note that despite the inaccuracy,

all testing tasks are still solved (Table 1). Some of the mistakes in 𝑃

are acceptable as the agent can not immediately observe the effect

of toggling an interactable if the corresponding blocker is not in

the agent visibility range.

Table 2 also shows that most, but indeed not all, objects in each

levels are recorded by 𝑆𝑒𝑎𝑟𝑐ℎ in the model it constructs. Keep in

mind that these data are recorded only by giving one testing task

(reaching and opening the treasure door) to the agent. We can

also see that the number of connections registered by 𝑆𝑒𝑎𝑟𝑐ℎ and

𝑅𝑎𝑛𝑑𝑜𝑚 is often almost the same, while the latter is given 20% more

time budget. Finding all objects and connections is not necessary, as

long the task is solved. However, if desired, we can apply different

testing tasks to obtain a more complete model, e.g. to make sure

that all interesting objects are registered.

To evaluate the efficiency of our algorithm, we measure the total

time to solve each testing task. We also measure the time spent

for purely exploring the level (when the agent does 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ()) and
the number of blockers the agent tried to open until it solves the

task. Table 3 shows that the run-time of 𝑆𝑒𝑎𝑟𝑐ℎ ranges between

one to four minutes. Note that the agent needs to travel between

various locations, e.g. to check them. Such travel simply takes time.

Table 3 also shows that the time spent exploring the game world

ranges between about 15% - 30% of the total time. The remaining

time is basically spent on actually solving the testing task; the more

proportion of time spent for this is the better.

8 RELATEDWORK
Recently, testing has become an increasingly important instrument

for improving the quality of computer games. Research has provided

various methods [10, 15] towards automated game testing, but

they still require substantial manual work, e.g. to prepare models

[10] or to redesign and re-record test sequences when the game

is changed. Hence, researchers have been investigating ways to

combine automated testing and the application of techniques from

machine learning [3, 25, 27] in the context of game testing. E.g. Pfau

et al. [17] developed ICARUS to test and detect bugs in an adventure

game. Using an artificial agents to create player personas and letting

them evolve through playing is another recent approach used in

automated game testing [3, 14]. To approximate different play styles,

Table 2: The accuracy of the constructed model for each
level. The column 𝐵/𝐵 shows the number of registered but-
tons versus the number of all available buttons in each level.
Similarlywehave𝑅/𝑅 and𝐷/𝐷 for rooms and doors.𝐶/𝐶 and
𝑅(𝐶/𝐶) show the number of button-door connections regis-
tered in the 𝑃 component by 𝑆𝑒𝑎𝑟𝑐ℎ and 𝑅𝑎𝑛𝑑𝑜𝑚 respectively.
𝑊𝐶 and 𝑅(𝑊𝑐) are the number of these recorded connections,
by 𝑆𝑒𝑎𝑟𝑐ℎ and 𝑅𝑎𝑛𝑑𝑜𝑚 respectively, which are wrong. For
𝑅(𝐶/𝐶) and 𝑅(𝑊𝑐) the number is the average over ten runs.
𝑊𝑏 and𝑊𝑑 are the number of buttons and doors which are
registered, by 𝑆𝑒𝑎𝑟𝑐ℎ, in wrong rooms.

level R/R B/B D/D C/C R(C/C) W𝑐 R(W𝑐) W𝑏 W𝑑

𝑅3_1_1_𝐻 2/3 5/6 2/4 2/4 2.3/4 0 0 0 0

𝑅4_1_1 4/5 8/8 5/6 5/6 4.8/6 0 0 0 0

𝑅4_1_1_𝑀 3/4 8/8 5/6 5/6 4.5/5 1 0 0 0

𝑅5_2_2_𝑀 5/5 5/7 4/4 5/6 3.1/6 0 0.1 2 1

𝑅7_2_2 5/7 4/7 6/6 7/11 8.3/11 0 1.9 0 0

𝑅4_2_2 4/5 7/8 5/6 1/9 5.2/9 0 0 0 0

𝑅4_2_2_𝑀 5/5 5/7 4/4 5/7 4.3/7 0 0.5 0 0

𝑅7_3_3 4/7 3/7 6/7 7/16 14.9/16 0 2.7 0 1

Table 3: The performance of the algorithm on experiment’s
levels; 𝑡𝑖𝑚𝑒 and 𝑒𝑥𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 show the total run time and the
time spent purely on exploration in 𝑆𝑒𝑎𝑟𝑐ℎ algorithm.

level tried doors time (s) exploration (s)

𝐿𝑅3_1_1_𝐻 3 68 14%

𝑅4_1_1 5 84 22%

𝑅4_1_1_𝑀 5 139 17%

𝑅5_2_2_𝑀 6 140 19%

𝑅7_2_2 4 146 28%

𝑅4_2_2 1 60 33%

𝑅4_2_2_𝑀 4 144 28%

𝑅7_3_3 6 254 22%

Mugrai et al. [14] developed different procedural personas through

the utility function for a Monte Carlo Tree Search (MCTS) agent.

Similarly, Holmgard et al. [9] described a method for generative

player modeling through procedural personas and its application

to the automatic game testing. Agents are used to help playtest

games as well [4, 21, 22]. Zhao et al. tried to build agents with

human-like behaviour, aiming to help with game evaluation and

balancing [26]. However, all such types of AI also require much

training, which could make them impractical to be deployed during

the development time where SUT would undergo frequent changes.

Model-based testing [23] is a well known automated testing ap-

proach which has been used in various studies [1, 16]. However, its

application in computer games has not been much studied. Some

that we can mention is e.g the work of Iftikhar et al. [10] that used a

UML-based model to support automated system-level game testing

of platform games. Ariyurek et al. [3] use a scenario graph, which

is essentially an FSM, for generating asbtract test sequences. A rein-

forcement learning (RL) and MCTS agent is used to find a concrete

sequence of actions that realizes each abstract test sequence. A

more recent study is done by Ferdous et al. [5] that proposed an

EFSM model for modelling game behaviour and combined it with

search-based testing for test generation. Generating and executing

tests are automated. However, models often have to be manually

constructed. which requires a lot of efforts.

A-TEST ’22, November 17–18, 2022, Singapore, Singapore Samira Shirzadehhajimahmood, I. S. W. B. Prasetya, Frank Dignum, Mehdi Dastani

There are techniques that enables a computer to construct mod-

els, e.g. by ’inferring’ them from execution traces as in [6, 11, 12].

In [11], Lo et.al use a two staged inference: first a set of simple tem-

poral properties are statistically mined from the trace, then they

are used to guide the construction of a generalizing FSM. Lorenzoli

et al. [12] present a dynamic analysis technique using Daikon to

automatically generate an EFSM model of the system under test

from the interaction traces that also contain data values. The mod-

els inferred by these approaches are only applicable to trace with

specific characteristic, and depends on the quality of execution

samples used to produced them.

Although these approaches are automated, they use data traces

to capture the EFSM that limit its effect on modeling modern games

with high-level interactivity. On-the-fly model construction, such

as used in our algorithm, is very different from trace-based model

inference. The latter requires multiple executions, whereas in an

on-the-fly construction we only have one execution, though on

the other hand the test agent has control on how the execution

proceeds.

9 CONCLUSION
This paper focused on the challenges of automated testing on mod-

ern computer games. We proposed an online search algorithm on

top of the agent-based testing framework with on-the-fly model

construction. Having an on-line search means a full pre-constructed

model of the game under test is not required. The online algorithm

can deal with dynamic obstacles that can block the agent access to

other objects. In this study we do not consider hazard and mobile

objects and we restrict ourselves to toggling switches; this is done

in a separate study outside the scope of this paper. Based on the

applied heuristics, an agent explores the 3D game world to solve the

given testing task and unblocks the obstacles in its way. To aid the

search, an EFSMmodel is defined to capture only general properties

of the game; the remaining part of the model is constructed on the

fly, which is then exploited to solve the testing task.

To evaluate our approach, we conducted a set of experiments.

We used benchmarking levels that have different difficulty. It was

observed that the agent can successfully solve the given testing

tasks at all levels using the online search algorithm and exploiting

the constructed model. The constructed model is also verified by

comparing the result of the data set registered in the constructed

model with the actual data defined in each level. The results show

that the generated model is mostly correct and almost complete.

In the future, wewould like to study how to improve the accuracy

of the constructed model to have a full model of the game under

test. Also, we would like to investigate how to exploit the model in

a mixed online and offline search.

REFERENCES
[1] Pelin Akpinar, Mehmet S Aktas, Alper Bugra Keles, Yunus Balaman,

Zeynep Ozdemir Guler, and Oya Kalipsiz. 2020. Web application testing with

model based testing method: case study. In 2020 International Conference on
Electrical, Communication, and Computer Engineering (ICECCE). IEEE, 1–6.

[2] VS Alagar and K Periyasamy. 2011. Extended finite state machine. In Specification
of software systems. Springer, 105–128.

[3] Sinan Ariyurek, Aysu Betin-Can, and Elif Surer. 2019. Automated Video Game

Testing Using Synthetic and Human-Like Agents. IEEE Transactions on Games
(2019).

[4] Igor Borovikov, Jesse Harder, Michael Sadovsky, and Ahmad Beirami. 2019. To-

wards interactive training of non-player characters in video games. arXiv preprint
arXiv:1906.00535 (2019).

[5] Raihana Ferdous, Fitsum Kifetew, Davide Prandi, ISWB Prasetya, Samira Shirzade-

hhajimahmood, and Angelo Susi. 2021. Search-Based Automated Play Testing

of Computer Games: A Model-Based Approach. In International Symposium on
Search Based Software Engineering. Springer, 56–71.

[6] Michael Foster, Achim D Brucker, Ramsay G Taylor, Siobhán North, and John

Derrick. 2019. Incorporating data into efsm inference. In International Conference
on Software Engineering and Formal Methods. Springer, 257–272.

[7] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the

heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics 4, 2 (1968), 100–107.

[8] Andreas Herzig, Emiliano Lorini, Laurent Perrussel, and Zhanhao Xiao. 2017.

BDI logics for BDI architectures: old problems, new perspectives. KI-Künstliche
Intelligenz 31, 1 (2017), 73–83.

[9] Christoffer Holmgård, Michael Cerny Green, Antonios Liapis, and Julian Togelius.

2018. Automated playtesting with procedural personas through MCTS with

evolved heuristics. IEEE Transactions on Games 11, 4 (2018), 352–362.
[10] Sidra Iftikhar, Muhammad Zohaib Iqbal, Muhammad Uzair Khan, and Wardah

Mahmood. 2015. An automated model based testing approach for platform games.

In 2015 ACM/IEEE 18th International Conference on Model Driven Engineering
Languages and Systems (MODELS). IEEE, 426–435.

[11] David Lo, Leonardo Mariani, and Mauro Pezzè. 2009. Automatic steering of

behavioral model inference. In Proceedings of the 7th Joint Meeting Of The Euro-
pean Software Engineering Conference and the ACM SIGSOFT symposium on The
foundations of software engineering. 345–354.

[12] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. 2008. Automatic gen-

eration of software behavioral models. In Proceedings of the 30th international
conference on Software engineering. 501–510.

[13] Ian Millington and John Funge. 2019. Artificial intelligence for games, 3rd edition.
CRC Press.

[14] Luvneesh Mugrai, Fernando Silva, Christoffer Holmgård, and Julian Togelius.

2019. Automated playtesting of matching tile games. In 2019 IEEE Conference on
Games (CoG). IEEE, 1–7.

[15] Michail Ostrowski and Samir Aroudj. 2013. Automated Regression Testing within

Video Game Development. GSTF Journal on Computing 3, 2 (2013).

[16] Laura Panizo, Almudena Díaz, and Bruno García. 2020. Model-based testing

of apps in real network scenarios. International Journal on Software Tools for
Technology Transfer 22, 2 (2020), 105–114.

[17] Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. 2017. Automated game

testing with icarus: Intelligent completion of adventure riddles via unsupervised

solving. In Extended Abstracts Publication of the Annual Symposium on Computer-
Human Interaction in Play. 153–164.

[18] ISWB Prasetya, Maurin Voshol, Tom Tanis, Adam Smits, Bram Smit, Jacco van

Mourik, Menno Klunder, Frank Hoogmoed, Stijn Hinlopen, August van Casteren,

et al. 2020. Navigation and exploration in 3D-game automated play testing. In

Proceedings of the 11th ACM SIGSOFT International Workshop on Automating TEST
Case Design, Selection, and Evaluation. 3–9.

[19] I. S. W. B. Prasetya, Mehdi Dastani, Rui Prada, Tanja EJ Vos, Frank Dignum,

and Fitsum Kifetew. 2020. Aplib: Tactical agents for testing computer games. In

International Workshop on Engineering Multi-Agent Systems. Springer, 21–41.
[20] Samira Shirzadehhajimahmood, ISWB Prasetya, Frank Dignum, Mehdi Dastani,

and Gabriele Keller. 2021. Using an agent-based approach for robust automated

testing of computer games. In Proceedings of the 12th International Workshop on
Automating TEST Case Design, Selection, and Evaluation. 1–8.

[21] Fernando De Mesentier Silva, Igor Borovikov, John Kolen, Navid Aghdaie, and

Kazi Zaman. 2018. Exploring gameplay with AI agents. In Fourteenth Artificial
Intelligence and Interactive Digital Entertainment Conference.

[22] Samantha Stahlke, Atiya Nova, and Pejman Mirza-Babaei. 2019. Artificial play-

fulness: A tool for automated agent-based playtesting. In Extended Abstracts of
the 2019 CHI Conference on Human Factors in Computing Systems. 1–6.

[23] Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A taxonomy of

model-based testing approaches. Software testing, verification and reliability 22, 5

(2012), 297–312.

[24] Xinjie Yu and Mitsuo Gen. 2010. Introduction to evolutionary algorithms. Springer
Science & Business Media.

[25] Imants Zarembo. 2019. Analysis of Artificial Intelligence Applications for Auto-

mated Testing of Video Games. In Proceedings of the 12th International Scientific
and Practical Conference. Volume II, Vol. 170. 174.

[26] Yunqi Zhao, Igor Borovikov, Fernando de Mesentier Silva, Ahmad Beirami, Jason

Rupert, Caedmon Somers, Jesse Harder, John Kolen, Jervis Pinto, Reza Pourabol-

ghasem, et al. 2020. Winning is not everything: Enhancing game development

with intelligent agents. IEEE Transactions on Games 12, 2 (2020), 199–212.
[27] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu,

Ruimin Shen, Yingfeng Chen, and Changjie Fan. 2019. Wuji: Automatic online

combat game testing using evolutionary deep reinforcement learning. In 34th
International Conference on Automated Software Engineering (ASE). IEEE.

	Abstract
	1 Introduction
	2 Problem Setup
	3 Hybrid Models of Games
	4 Online Agent-based Search
	5 On-the-fly Model Construction
	6 Implementation
	7 Experiment
	7.1 Results

	8 Related work
	9 Conclusion
	References

