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5.2 Non-holomorphic deformations of special geometry? 29

6. The STU model 31

6.1 Macroscopic evaluation of the BPS entropy 32

6.2 Small black holes 36

6.3 Comparison with microstate degeneracies 39

7. Conclusion 41

1. Introduction

The degeneracy of BPS states of certain wrapped brane/string configurations defines a

microscopic entropy which, in quite a number of cases, has been successfully compared

to the macroscopic entropy of supersymmetric black hole solutions in the corresponding

effective supergravity theories. Agreement is usually obtained in the limit where charges

are large [1], because in that limit one can make use of the Cardy formula for the under-

lying conformal field theory. The macroscopic entropy is not necessarily identified with a

quarter of the horizon area, since there are corrections associated with higher-derivative

couplings [2 – 4]. More recently, it was proposed that the entropy of four-dimensional BPS

black holes with N = 2 supersymmetry is related to a partition function based on a mixed

ensemble defined in terms of magnetic charges and electrostatic potentials. Discarding

non-holomorphic corrections this partition function equals the modulus square of the topo-

logical string partition function [5]. On the basis of this relation it was concluded that the

microscopic black hole degeneracies can be retrieved from the topological string partition

function by an inverse Laplace transform. This observation gave new impetus to studying
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the relation between microscopic and macroscopic descriptions of black holes on the one

hand, and the relation between black hole degeneracies and the topological string on the

other. (See, for instance, [6 – 15].)

As was readily understood the proper definition of the inverse Laplace integral is subtle

for reasons of convergence and in view of ambiguities in choosing the integration contours.

The issue of non-holomorphicity did not enter into the original proposal. Early discussions

can be found in [16 – 18]. Non-holomorphic terms are essential for duality invariance,

and indeed such terms were encountered when confronting the asymptotic results from

microstate counting with macroscopic results based on effective actions [19, 20, 11]. They

involve terms originating from higher-order interactions that contain the square of the

Riemann tensor, such as the ones that were determined in [21 – 23], which are part of the

effective field theory. The presence of non-holomorphic corrections can also be inferred

from the relation with the topological string, where they are encoded in the so-called

holomorphic anomaly equations [24].

At an early stage there were strong indications that the inverse Laplace transform

must involve a non-trivial integration measure (which will contribute to the subleading

entropy corrections for large black holes in the limit of large charges), so that (subleading)

non-holomorphic corrections can always be factored out from the mixed partition function

and absorbed into this measure. Therefore a further understanding of these matters will

ultimately depend on how well the measure factor can be understood. A strong argument

in favour of the measure was based on the invariance under duality, as the partition func-

tion for the mixed ensemble does not transform simply under electric/magnetic duality.

An alternative starting point [25, 11] can be based on an ensemble of electric and mag-

netic charges, which is manifestly invariant under duality. From this set-up the previous

formulation based on the mixed partition function can be reobtained in the semiclassical

approximation, but, as it turns out, it is now accompanied by a non-trivial measure factor.

Independently, a direct evaluation of the mixed partition function from specific microscopic

degeneracy formulae also revealed the presence of a measure factor [9], and it was shown

that for large charges these measure factors were in fact equal [11, 26].

Somewhat unfortunately, the examples studied in [19, 9, 20, 11] did not pertain to

genuine N = 2 supersymmetric string compactifications (the work reported in [2 – 4] is an

exception to this), but to compactifications with N = 4 supersymmetry. The latter were

then treated in the context of an N = 2 supersymmetric truncation with minor modification

such as to account for the four extra graviphotons (leading to eight extra charges) and

moduli provided by the two additional gravitino supermultiplets.1 The purpose of the

present paper is to study applications that pertain to genuine N = 2 supersymmetric

models in four space-time dimensions, where such modifications are unnecessary. The

problem with generic N = 2 supersymmetric compactifications is, however, that there are

not many cases where it is possible to make direct comparisons with microstate counting

and, at the same time, exact duality invariance is rather rare. There are a few models

which stand out in this respect, such as the FHSV model [28] and the STU model [29, 30],

1This is in contrast with the work on small black holes reported in [27].
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which exhibit both exact S- and T-dualities and for which microstate degeneracy formulae

have recently been proposed [31]. For N = 2 models based on compact Calabi-Yau spaces,

the measure factor has recently been evaluated at strong topological string coupling [15].

We will show that this result disagrees with the semiclassical prediction relevant at weak

coupling. We will comment on this at the end of section 4, where we also compare to

results for the measure factor in N = 4, 8 models.

Special attention is devoted to the issue of non-holomorphic corrections, which con-

tribute to the measure factor. As it turns out, the existence of a semiclassical free energy for

BPS black holes (which plays an important role in the variational principle for the attractor

equations) indicates that these corrections must be encoded in a single real homogeneous

function. For N = 4 black holes this form of the free energy has been used success-

fully [19, 11], but in that case the non-holomorphic corrections are severely restricted, so

that the consequences of this approach were rather minor. Therefore we further investigate

the consequences of this approach in the context of the FHSV model by concentrating on

the requirements posed by the exact dualities of this model. As an example we derive

the subleading corrections to the function that encodes the effective action and explicitly

compare the result to the topological string for the genus-1 and genus-2 contributions. As

it turns out the results are clearly different.

Hence the precise relationship between the non-holomorphic terms in the effective

action and those in the topological string partition functions is not entirely clear. In fact

we will present further evidence that the relation between the functions that encode the

effective action and the partition functions of the topological string is more subtle than

has previously been envisaged. In [32, 24] it was shown that certain string amplitudes are

related to the twisted partition functions of the topological string. These results, however,

do not necessarily imply that the effective action should also have such a direct relationship,

in view of the fact that the effective action encompasses only the one-particle irreducible

diagrams and not the connected diagrams. As is well known the relation between these

two sets of diagrams proceeds through a Legendre transform. Interestingly enough, a

Legendre transform is also involved when one wishes to realize the duality transformations

in a manifest way in a field-theoretic context. Here it is important to realize that the

action is not manifestly invariant under symmetries that are induced by electric/magnetic

duality [33, 34]. In order to obtain manifestly invariant quantities, one may, for instance,

apply a Legendre transform and consider the Hamiltonian instead. However, in the context

of special geometry it is suggestive to consider the Legendre transform that leads from

complex to real special geometry. In that case one obtains the so-called Hesse potential,

which is related to the black hole free energy and which is manifestly duality invariant (this

was discussed in [11]). The above scenario for explaining the discrepancy is admittedly a

bit speculative and it is beyond the scope of this paper to try and work this out further.

Obviously, this aspect has a bearing on the original conjecture of [5].

Returning to the black holes, there are two aspects that have come under intense

scrutiny lately which will not enter into our analysis. The first aspect concerns the depen-

dence of the microstate degeneracies on the asymptotic values of the scalar moduli, i.e., on

the values of the scalar fields at spatial infinity (see, for instance, [35, 15, 36 – 38]). This
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dependence is associated with the appearance or disappearance of multicentered black hole

configurations [39, 40] for a given total charge. The second aspect concerns the so-called

entropy enigma, a surprising phenomenon that may arise at weak topological string cou-

pling [15]. It is based on the fact that there exist multicentered black hole solutions that

carry an entropy that is vastly larger than the entropy of singlecentered solutions carrying

the same charges. The occurence of this phenomenon would imply a breakdown of the

conjecture of [5], which was supposed to work at weak coupling. It would be difficult to

reconcile this with the fact that the predictions for large black holes have always been in

agreement with semiclassical reasoning. Evidence against such a breakdown has recently

been given in [41]. The approach followed in this paper will not take into account the two

aspects just described and we will assume that semiclassical arguments do make sense.

This paper is organized as follows. Section 2 contains a brief review of the derivation of

the measure factor from a duality invariant perspective. Subsequently the non-holomorphic

corrections are incorporated in the black hole free energy and we discuss the semiclassical

approximation. Section 3 describes the consequences of S- and T-duality invariance for a

class of models that contain in particular the FSHV and the STU models. In section 4

the measure factors for the mixed partition function are evaluated for these models in the

semiclassical approximation. In section 5 non-holomophic corrections are studied for the

FHSV model and compared to the results for the topological string. Subsequently non-

holomorphic deformations of special geometry are discussed. Section 6 deals with the STU

model and describes an attempt to reconcile the macroscopic and microscopic results for

the BPS black hole entropy in that model. Section 7 presents our conclusions.

2. The BPS black hole free energy and the partition function

At the field-theoretic level it is known that the attractor equations that determine the

values of the moduli at the black hole horizon [42 – 44], follow from a variational principle.

This variational principle is described in terms of a so-called entropy function. There

exists an entropy function for extremal black holes [45, 46], where the attractor mechanism

is induced by the restricted space-time geometry of the horizon, and one for BPS black

holes [11], where the attractor mechanism follows from supersymmetry enhancement at the

horizon. For N = 2 supergravity the relation between these entropy functions has been

clarified in [47]. To preserve the variational principle when non-holomorphic corrections

are present, it follows that these corrections must enter into the BPS free energy in a well-

defined way. Requiring the existence of a free energy seems desirable from the point of view

of semiclassical arguments and the relation with black hole thermodynamics, and it should

be interesting to derive this result directly from an effective action. However, no effective

N = 2 supersymmetric action is known to date that incorporates the non-holomorphic

terms, although partial results are known for N = 1 [48] and from the string amplitudes

that are related to the topological string [32]. We will discuss this last relationship in

section 5. At any rate, the results of this paper indicate that, indeed, one can safely

proceed by checking the internal consistency at the level of the entropy function, guided
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by the (partially established) relation with the full effective action. This is the underlying

strategy of this paper.

In the first subsection we discuss the definition of the free energy, and its relation

with the black hole partition function and the BPS entropy function, for a given set of

degeneracies and a corresponding locally supersymmetric effective action. The second

subsection describes the non-holomorphic contributions to the free energy, and the third

subsection deals with the semiclassical approximation.

2.1 BPS free energy and partition functions

We consider charged black holes in the context of N = 2 supergravity in four space-time

dimensions, which contains n + 1 abelian vector gauge fields, labeled by indices I, J =

0, 1, . . . , n, so that black hole solutions can carry 2(n + 1) possible electric and magnetic

charges. The theory describes the supergravity fields and n vector multiplets (the extra

index I = 0 accounts for the gauge field that belongs to the supergravity multiplet), and

possibly a number of hypermultiplets which will only play an ancillary role. A partition

sum over a canonical ensemble of corresponding BPS black hole microstates is defined

as follows,

Z(φ, χ) =
∑

{p,q}

d(p, q) eπ[qIφI−pIχI ] , (2.1)

where d(p, q) denotes the degeneracy of the black hole microstates with given magnetic

and electric charges equal to pI and qI , respectively. This expression is consistent with

electric/magnetic duality, provided that the electro- and magnetostatic potentials (φI , χI)

transform as a symplectic vector, just as the charges (pI , qI), while the degeneracies d(p, q)

transform as functions of the charges under the duality. In case that the duality is realized

as a symmetry, then the d(p, q) should be invariant.

Viewing Z(φ, χ) as an analytic function in φI and χI , the degeneracies d(p, q) can be

retrieved by an inverse Laplace transform,

d(p, q) ∝
∫

dφI dχI Z(φ, χ) eπ[−qIφI+pIχI ] , (2.2)

where the integration contours run, for instance, over the intervals (φ − i, φ + i) and (χ −
i, χ + i) (we are assuming an integer-valued charge lattice). Obviously, this makes sense as

long as Z(φ, χ) is formally periodic under shifts of φ and χ by multiples of 2i.

Identifying the logarithm of Z(φ, χ) with a free energy, it is expected that this expres-

sion has a field-theoretic counterpart, because the electrostatic and magnetostatic fields

appear as some of the scalar moduli in the field-theoretic description. Indeed, such a free

energy function exists and it is contained in the so-called BPS entropy function. Station-

ary points of this entropy function are subject to the attractor equations which fix the

value of the moduli at the black hole horizon, and the value of the entropy function at the

stationary point equals the macroscopic entropy. The latter is a function of the charges

and it equals the Legendre transform of the free energy. The BPS entropy function was

originally proposed in [49] for actions that are at most quadratic in space-time derivatives

and its generalization to higher derivatives was discussed in [11]. It is natural to identify
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the partition function (2.1) with the exponent of the relevant free energy, which is con-

tained in the entropy function. In the case at hand, where one considers functions of real

potentials (φI , χI), this free energy equals twice the so-called Hesse potential H, which

depends on the holomorphic function that encodes the N = 2 supergravity theory of the

vector multiplet sector [50]. In the notation of [11], we write

∑

{p,q}

d(p, q) eπ[qIφI−pIχI ] ∼
∑

shifts

e2π H(φ/2,χ/2) . (2.3)

The Hesse potential is a macroscopic quantity which does not in general exhibit the period-

icity that is characteristic for the partition function. Therefore, the right-hand side of (2.3)

requires an explicit periodicity sum over discrete imaginary shifts of the φI and χI .
2 In

the inverse Laplace integral (2.2) we expect that this periodicity sum can be incorporated

into the integration contour.

It is in general difficult to find an explicit representation for the Hesse potential. The

standard way to encode the effective supergravity theory (as far as the vector multiplet

sector is concerned), is in terms of a holomorphic function of the complex scalar fields Y I ,

and the resulting geometric structure is known as special geometry. Here one identifies

a symplectic vector by combining the scalars Y I with the holomorphic derivatives FI of

the function F (Y ), which transforms under duality precisely as the charges (pI , qI). Of

course, this leaves several options for parametrizing the models, and the obvious one that

leaves the symplectic structure intact is to choose real variables equal to the electro- and

magnetostatic potentials [51],

φI = Y I + Ȳ I , χI = FI + F̄Ī . (2.4)

In these variables one obtains the Hesse potential as a Legendre transform of the imaginary

part of F (Y ) with respect to the imaginary part of the Y I . This is precisely equal to

one-half of the free energy F(Y, Ȳ ), defined in complex coordinates, that we will discuss

momentarily. Substitution of these relations leads to,

∑

{p,q}

d(p, q) eπ[qI (Y I+Ȳ I )−pI(FI+F̄I)] ∼
∑

shifts

eπ F(Y,Ȳ ) , (2.5)

but now the definition of the shifts has become very subtle as they still refer to imaginary

values of φI and χI . This subtlety should again be reflected in the choice of the integration

contours in the inverse Laplace transform. We emphasize that at this point we are assuming

that F (Y ) is a holomorphic function which is homogeneous of second degree, although so

far we did not make use of this. The equation (2.5) is the conjectured relation between

the microscopic data, defined in terms of the degeneracies d(p, q), and the field-theoretic

data, encoded in the free energy F . In this section we will derive the expression for this

free energy in terms of derivatives of the function F in the presence of subleading and

non-holomorphic corrections, and discuss some consequences of this result. The expression

2In case that the Hesse potential exhibits a periodicity with a multiple of the periodicity interval, then

the sum over the imaginary shifts will have to be modded out appropriately such as to avoid overcounting.
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for the free energy follows from the requirement that the attractor equations are based on

a variational principle. The reason for adopting this procedure is that in the presence of

non-holomorphic corrections, the effective action is not fully known and hence cannot be

used directly to define the free energy. We already discussed this strategy at the beginning

of this section.

Postponing the discussion of various subtleties and generalizations, we consider a vari-

able change from the real variables (χI , φI) to the complex variables Y I in the integral (2.2),

replacing Z(φ, χ) by exp[2π H(φ/2, χ/2)], and subsequently by exp[π F(Y, Ȳ )] when chang-

ing variables. This leads to the integral,

d(p, q) ∝
∫

d
(

Y + Ȳ
)I

d
(

F + F̄
)

I
eπ Σ(Y,Ȳ ,p,q)

∝
∫

dY I dȲ I ∆
(

Y, Ȳ
)

eπ Σ(Y,Ȳ ,p,q) ,

(2.6)

where ∆(Y, Ȳ ) denotes the Jacobian associated with the change of integration variables

(φ, χ) → (Y, Ȳ ),

∆(Y, Ȳ ) = |det[ Im 2FKL]| , (2.7)

and Σ denotes the BPS entropy function which decomposes according to

Σ
(

Y, Ȳ , p, q
)

= F
(

Y, Ȳ
)

− qI

(

Y I + Ȳ I
)

+ pI
(

FI + F̄I

)

. (2.8)

Here pI and qI couple to the corresponding magneto- and electrostatic potentials (c.f. (2.4))

at the horizon in a way that is consistent with electric/magnetic duality. Furthermore,

F(Y, Ȳ ) represents the free energy alluded to earlier. In the following we will consider

its definition.

The free energy F has the property that its variations take the form,

δF = i
(

Y I − Ȳ I
)

δ
(

FI + F̄I

)

− i
(

FI − F̄I

)

δ
(

Y I + Ȳ I
)

, (2.9)

so that the variation of the entropy function Σ with respect to the Y I , while keeping the

charges fixed, yields the black hole attractor equations,

Y I − Ȳ I = ipI , FI (Y ) − F̄I

(

Ȳ
)

= iqI . (2.10)

These equations determine the values of the Y I at the black hole horizon in terms of the

charges. Under the mild assumption that the matrix NIJ = 2 Im FIJ is non-degenerate, it

thus follows that stationary points of Σ must satisfy the attractor equations.

One can now evaluate the integral (2.6) in the semiclassical approximation and show

that the answer takes the form,

d(p, q) = eSmacro(p,q) , (2.11)

where Smacro(p, q) equals the value of π Σ taken at the saddle point. This is a gratifying

result as we correctly recover the classical result, provided a free energy function exists with

the required properties. In principle, we should have included the measure factor (2.7) when
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expanding around the saddle point but these contributions are suppressed in the limit of

large charges, where all the charges and the fields Y I are scaled uniformly.

Before continuing and discussing the free energy in further detail, we wish to empha-

size that the scalar fields belonging to the vector multiplets are projectively defined in

the underlying superconformal framework used for constructing the effective supergravity

theory. On the other hand, the fields Y I must have been given an intrinsic normalization

as follows from the observation that both sides of the attractor equations scale differently

in view of the fact that the charges are constant. This is also obvious from the equation

qIY
I − pIFI = −i(Ȳ IFI − Y IF̄I), which holds generally at the attractor point. Indeed

we have adopted a normalization condition on the Y I such that they are no longer sub-

ject to these projective redefinitions.3 In the case that the function F (Y ) is holomorphic

and homogenous of second degree, the expression for the free energy is known and equal

to F(Y, Ȳ ) = −i(Ȳ IFI − Y IF̄I). Indeed this expression satisfies (2.9) by virtue of the

homogeneity of the function F (Y ) [49].

However, in reality, the function F (Y ) will depend also on an extra complex field Υ

which is equal to the lowest-dimensional component of the square of the Weyl multiplet.

The presence of this field encodes interactions in the effective field theory proportional to

the square of the Weyl tensor. Supersymmetry requires the function F (Y,Υ) to remain

holomorphic and homogeneous of second degree,

F
(

λY, λ2Υ
)

= λ2 F (Y,Υ) . (2.14)

The BPS free energy takes the following form in the presence of Υ-dependent terms,

F
(

Y, Ȳ ,Υ, Ῡ
)

= −i
(

Ȳ IFI − Y I F̄I

)

− 2i
(

ΥFΥ − ῩF̄Υ

)

, (2.15)

where FΥ = ∂F/∂Υ. And again, this free energy satisfies (2.9) by virtue of the (modified)

homogeneity property (2.14), where F (Y ) and FI(Y ) are everywhere replaced by F (Y,Υ)

and FI(Y,Υ), and where Υ is kept fixed under the variation. Note that the definition (2.15)

is consistent with electric/magnetic duality [52]. Furthermore, an encouraging feature is

that the expression (2.15) follows directly when evaluating the Hesse potential based on

the holomorphic function F in the presence of Υ-dependent terms, without making any

reference to the attractor equations [11].

The BPS attractor equations impose a constant real value for Υ, namely Υ = −64. This

implies that the terms proportional to positive powers of Υ encode subleading contributions

3To be specific, the original (projectively defined) fields XI and the normalized fields Y I are related

by [49],

Y I =
Z̄ XI

p

i (X̄IFI(X) − F̄I(X̄)XI)
, (2.12)

where

Z =
pIFI(X) − qIXI

p

i (X̄IFI(X) − F̄I(X̄)XI)
. (2.13)

This latter quantity is sometimes referred to as the holomorphic BPS mass. Note that the Y I are invariant

under uniform complex rescalings of the underlying variables XI .
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to the entropy. The reason for this is that the attractor equations and the entropy function

scale uniformly under simultaneous scale transformations of the Y I and Υ fields according

to (2.14), provided we scale the charges accordingly. The fact that the attractor equations

fix Υ to a constant affects this scaling property. This phenomenon has been successfully

demonstrated in [4], following earlier work in [2, 3].

2.2 Non-holomorphic corrections

A more subtle issue concerns the non-holomorphic corrections to the entropy function.

Already at an early stage [16] it was clear that non-holomorphic corrections were required

for manifest S-duality in N = 4 supersymmetric heterotic string compactifications, which

have dual realizations as type-II string theory on K3×T2, or M-theory on K3×T2 × S1.

Non-holomorphic modifications signal departures from the Wilsonian action and are caused

by integrating out the massless modes. These modifications are required in order to preserve

the physical symmetries which cannot be fully realized at the level of the Wilsonian action.

An early example of this can be found in [48], where it was shown that the gauge coupling

constants become moduli dependent with non-holomorphic corrections. Applying the N =

2 attractor equations to this particular situation reveals the need for non-holomorphic

modifications [16]. Specifically, requiring the vector (Y I , FI) to transform consistently

under S-duality monodromies, an S-duality invariant entropy was obtained. The results of

this analysis were also in accord with the results for the non-holomorphic terms found in

the corresponding effective action [21]. Subsequently, but much later, it was demonstrated

in [19] how these results emerge from a semiclassical approximation of the microscopic

degeneracy formula for N = 4 dyons [53 – 58]. However, as we already alluded to in

section 1, the N = 4 supersymmetric models are of limited use for studying the general

situation as their Υ-dependence in F (Y,Υ) is severely restricted.

Nevertheless, there is one question that can be addressed already at this stage, namely,

whether one can still derive the attractor equations from a variational principle in the

presence of the non-holomorphic corrections and define a closed expression for the BPS

entropy function and the free energy introduced earlier. To investigate this question let us

evaluate the variation of the free energy F defined in (2.15) minus the right-hand side of

its expected variation (2.9), without making any further assumptions on the function F ,

δF − i
(

Y I − Ȳ I
)

δ
(

FI + F̄I

)

+ i
(

FI − F̄Ī

)

δ
(

Y I + Ȳ I
)

=

−i
(

2ΥδFΥ + Y I δFI − FI δY I
)

+ h.c. . (2.16)

The right-hand side of the above equation should either vanish, or become proportional to

the variation of a new term, which can then be absorbed into F . Inspection shows that

there are two obvious solutions. When the function F is homogeneous of second degree

and holomorphic, (2.14) implies,

2ΥFΥ + Y IFI = 2F , (2.17)

so that 2Υ δFΥ +Y I δFI −FI δY I = 0. In that case the right-hand side of (2.16) vanishes,

confirming the result quoted earlier for the holomorphic case. Alternatively, we may relax
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the holomorphicity requirement and assume that F (or part of F ) is not holomorphic but

purely imaginary, so that we can write F = 2 iΩ(Y, Ȳ ,Υ, Ῡ) with Ω a real homogeneous

function of second degree, which therefore satisfies 2ΥΩΥ + 2 ῩΩῩ + Y IΩI + Ȳ ĪΩĪ = 2Ω.

In that case the right-hand side of (2.16) vanishes as well. Hence we may write,

F = F (0)(Y,Υ) + 2iΩ(Y, Ȳ ,Υ, Ῡ) , (2.18)

where the attractor equations (2.10) retain the same form, irrespective of the presence of

the non-holomorphic terms. The decomposition (2.18) is not unique. When the function

Ω is harmonic, i.e. when it can be written as the sum of a holomorphic and an anti-

holomorphic function, then one may absorb the holomorphic part into the first term. The

anti-holomorphic part will then not contribute as it will vanish under the holomorphic

derivatives which enter the attractor equations and the free energy. In practice we will

require that F (0) is independent of Υ.

We are not aware of any other general solutions. These two solutions are the ones that

have been discussed before and are consistent with all known cases. The second option

seems to take the form of a consistent non-holomorphic deformation of special geometry,

as we shall further discuss in section 5.

2.3 Semiclassical approximation

Having determined the free energy with possible non-holomorphic deformations we return

to the inverse Laplace integral (2.6). This integral, defined in the first line of (2.6), is

expressed in terms of Σ given in (2.8) with the associated free energy given in (2.15) with

Υ = −64. In the presence of non-holomorphic corrections, the function F appearing in

these expressions is the non-holomorphic one introduced in (2.18). These non-holomorphic

modifications will also introduce an explicit modification in the integration measure ∆,

as follows,

d(p, q) ∝
∫

d
(

Y I + Ȳ Ī
)

d
(

FI + F̄Ī

)

eπ Σ(Y,Ȳ ,p,q)

∝
∫

dY I dȲ Ī ∆−
(

Y, Ȳ
)

eπ Σ(Y,Ȳ ,p,q) ,

(2.19)

where we now introduce two Jacobian factors, ∆±
(

Y, Ȳ
)

, defined by

∆±
(

Y, Ȳ
)

=
∣

∣det
[

Im[ 2FKL ± 2FKL̄]
]∣

∣ . (2.20)

Observe that the mixed derivative satisfies,

FIJ̄ = −F̄J̄I . (2.21)

because of the fact that the non-holomorphic terms are characterized by the real function

Ω. Obviously, the mixed derivatives vanish when the function Ω(Y, Ȳ ,Υ, Ῡ) is harmonic.

When this is not the case, we must adopt indices Ī , J̄ , . . . to refer specifically to non-

holomorphic coordinates and derivatives.
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Subsequently one evaluates the semiclassical Gaussian integral that emerges when ex-

panding the exponent in the integrand to second order in δY I and δȲ I about the attractor

point. As it turns out [11], this can be done in two steps, because at the saddle point the

semiclassical determinant factorizes into two sub-determinants, one associated with the

real and another one with the imaginary values of the Y I . These two sub-determinants are

precisely equal to ∆+ and ∆−, respectively, defined in (2.20). Performing the integral only

over the imaginary parts of the Y I partially cancels the Jacobian factor in (2.19), and one

is left with the integral,

d(p, q) ∝
∫

dφ
√

∆−(p, φ) eπ[FE(p,φ)−qIφI ] , (2.22)

where

Y I =
1

2

(

φI + ipI
)

. (2.23)

Hence this result takes the form of the OSV integral [5], with an extra integration measure√
∆−. In view of the original setting in terms of the Hesse potential, we expect that the

integration contours in (2.22) should be taken along the imaginary axes. The free energy

associated with the mixed ensemble, FE(p, φ), reads as follows,

FE(p, φ) = 4
[

Im F (Y, Ȳ ,Υ, Ῡ) − Ω(Y, Ȳ ,Υ, Ῡ)
]

Y I=(φI+ipI)/2
. (2.24)

The remaining attractor equations read, qI = ∂FE/∂φI . We note the presence of the term

proportional to Ω, which partially cancels the Ω-dependence in the function F . The reader

may verify that, when Ω is harmonic, everything can be expressed in terms of the imaginary

part of the properly modified holomorphic function F .

It remains to complete the semiclassical approximation and perform the integral over

the φI . This gives the result,

d(p, q) =

√

∣

∣

∣

∣

∆−(Y, Ȳ )

∆+(Y, Ȳ )

∣

∣

∣

∣

attractor

eSmacro(p,q) . (2.25)

In the absence of non-holomorphic corrections the ratio of the two determinants is equal

to unity and one recovers precisely the macroscopic entropy, as in (2.11).

Inverting (2.22) to a partition sum over a mixed ensemble, one finds,

Z(p, φ) =
∑

{q}

d(p, q) eπ qIφI

∼
∑

shifts

√

∆−(p, φ) eπ FE(p,φ) . (2.26)

The function FE is not duality invariant and the invariance is only recaptured when com-

pleting the saddle-point approximation with respect to the fields φI . Therefore an evalua-

tion of (2.22) beyond the saddle-point approximation will most likely give rise to a violation

of (some of) the duality symmetries.

To discuss the validity of the semiclassical approximation, we recall that the entropy

function is homogeneous of degree two under uniform rescalings of the charges, (pI , qI), and
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the fields Y I and
√

Υ and their complex conjugates. However, Υ will take a fixed value as a

result of the attractor equations. Therefore Υ-dependent terms affect the uniform scaling

and, under the assumption that only positive powers of Υ appear, are associated with

subleading corrections. The leading terms in the BPS entropy function scale quadratically,

and so does the entropy. On the other hand, the leading contributions to the determinant

factors scale with zero weight. Hence the latter terms do not have to be expanded about

the saddle point as they would yield contributions with negative scaling weights. The

semiclassical approximation thus pertains to all terms that scale with non-negative scaling

weights. Therefore subleading corrections to the entropy function with zero weight are

comparable to the leading terms in the determinant factors. Assuming that Ω is at least

proportional to Υ or its complex conjugate, we have to include the terms in Ω that are

linear in Υ, but we can suppress them in the determinants. In that case the prefactor

in (2.25) equals unity.

Hence we expect that the semiclassical approximation is reliable for the leading and

subleading terms in the entropy. The consistency of this approach has been verified in many

cases, but mainly for large black holes in N = 4 supersymmetric string compactifications

based on an N = 2 supersymmetric description [16, 19, 9, 20, 11]. Obviously this result is

not compatible with the so-called entropy enigma, found in [15]. In the case of small black

holes, where the leading contribution is absent, the above arguments do not quite apply

and the semiclassical approximation breaks down, although the next-to-leading part in the

entropy can still be calculated reliably [16, 6, 27].

3. Constraints on Ω due to exact duality symmetries

In this section we consider specific N = 2 models with exact duality symmetry groups. Two

such models are the FHSV [28] and the STU model [29, 30]. Their symmetries constrain the

form of the real homogeneous function Ω in (2.18), because the corresponding monodromies

imply specific transformation rules for the derivatives of Ω. We begin by discussing exact

duality symmetries in the context of a larger class of models, which will enable us to

make contact with previous work on BPS black hole entropy applied to various string

compactifications invariant under 8 or 16 supersymmetries. The results of this section will

then be used in later sections.

The FHSV model [28] is a model with 8 supersymmetries. Its type-II realization cor-

responds to the compactification on the Enriques Calabi-Yau three-fold, which is described

as an orbifold (T2 × K3)/Z2, where Z2 is a freely acting involution. Its holonomy group

equals SU(2)×Z2, which implies that the type-II string compactification is described by an

effective four-dimensional theory with N = 2 supersymmetry. The Enriques Calabi-Yau is

self-mirror with Hodge numbers h(2,1) = h(1,1) = 11, so that its Euler number χ vanishes,

and the massless sector of the four-dimensional theory comprises 11 vector supermultiplets,

12 hypermultiplets and the N = 2 graviton supermultiplet. In what follows we concen-

trate on the vector multiplet sector, whose classical moduli space, which is not affected by
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quantum corrections, equals the special-Kähler space,

Mvector =
SL(2)

SO(2)
× O(10, 2)

O(10) × O(2)
. (3.1)

Its two factors are associated with T2/Z2 and the K3 fiber, and the special coordinates for

these two spaces will be denoted by S and T a, respectively.4 In the limit (S + S̄) → ∞
one recovers the perturbative result of the dual realization on the corresponding heterotic

string orbifold.

Obviously the classical moduli space (3.1) is invariant under the continuous group

SL(2)×O(10, 2). However, at the quantum level the model is invariant under the product

of two discrete groups, namely the Γ(2) subgroup of SL(2;Z), and the group O(10, 2; Z).

These groups must be realized as the invariance group of a more complete effective field

theory description. We will call those the S- and T-duality groups, respectively, although

this nomenclature is not quite appropriate in the type-II context.

Another model with 8 supersymmetries is the STU model [29, 30], which may be

regarded as a truncation of the FHSV model, based on 3 vector multiplets and 4 hyper-

multiplets. Note that the STU model is also self-mirror and has χ = 0. Its corresponding

special-Kähler space equals,

Mvector =
SL(2)

SO(2)
× SL(2)

SO(2)
× SL(2)

SO(2)
. (3.2)

The duality group of this model is the product of the discrete Γ(2) subgroups of each of

the three SL(2) groups.

For reasons of comparison we will also consider the so-called CHL models [59], which are

invariant under 16 supersymmetries and whose S-dualities belong to the Γ1(Ñ ) subgroup of

SL(2; Z). Here Ñ is an integer parameter and the models with Ñ = 1, 2, 3, 5, 7, have been

studied in the literature [20]. The case Ñ = 1 corresponds to the toroidal compactification

of heterotic string theory. The rank of the gauge group (corresponding to the number of

abelian gauge fields in the effective supergravity action) is then equal to r = 28, 20, 16, 12

or 10, respectively, and the corresponding number of N = 2 matter vector supermultiplets

equals n = 48/(Ñ + 1) − 1. Many of the studies of BPS black holes in CHL models have

been carried out based on an effective N = 2 supergravity description.

Let us now consider the underlying holomorphic function F (Y,Υ) in terms of which the

Wilsonian action for the vector multiplet sector is encoded. As explained in the previous

section the dependence on the field Υ induces the presence of certain higher-order derivative

interactions, which, among others, involve the square of the Weyl tensor. The definition

of the n + 1 complex fields Y I was also discussed in the previous section.5 The number

n will depend on the particular model that one is considering. For example, the FHSV

model and the STU model have n = 11 and n = 3, respectively. Usually one assumes that

4The hypermultiplet moduli space contains the type-II dilaton and is of no concern to us. Its classical

moduli space is given by the quaternion-Kähler space O(12, 4)/[O(12)×O(4)], as follows from the c-map [28].
5See footnote 3. Note that Υ has been subject to a similar rescaling.

– 13 –



J
H
E
P
0
2
(
2
0
0
9
)
0
0
6

the function can be expanded in positive powers of Υ. For type-II compactifications on

Calabi-Yau three-folds that are K3 fibrations, the expansion takes the form

F (Y,Υ) = −Y 1Y aηabY
b

Y 0
+

∞
∑

g=1

Υg F (g)(Y ) , (3.3)

where a, b = 2, . . . , n, and the symmetric matrix ηab is an SO(n − 2, 1) invariant metric of

indefinite signature. Obviously this expression can be parametrized by

F (Y,Υ) = i(Y 0)2 S T aηabT
b + Υ F (1)(S, T ) +

∞
∑

g=2

Υg

(Y 0)2g−2
F (g)(S, T ) , (3.4)

where

S = −iY 1/Y 0 , T a = −iY a/Y 0 , (3.5)

denote the special coordinates that parametrize the moduli space of the Calabi-Yau three-

folds. We stress that the classical moduli space described by the first term of (3.4) is

exact for the models that we discuss in this paper. The function F (Y,Υ) takes the form

of a loop expansion with Y 0 as a loop-counting parameter. This is the form that is used

for the topological string where Y 0 is regarded as the inverse topological string coupling

constant and the functions F (g)(S, T ) are the genus-g twisted partition functions.6 The

latter acquire non-holomorphic corrections encoded by the holomorphic anomaly equation,

whose structure is such that the holomorphic dependence on the topological string coupling

constant is preserved [24].

On the other hand it is well known that non-holomorphic corrections are also required

to realize the relevant symmetries of the effective action [48]. In this context the holomor-

phic contributions encode the Wilsonian effective action which is supposed to arise from

integrating out massive degrees of freedom. The Wilsonian action does not necessarily

reflect all the symmetries of the theory and those are recovered upon including the con-

tributions from the massless fields. These contributions contain non-holomorphic terms.

As we mentioned already in section 1, it turns out that the non-holomorphic corrections

to the effective action are not quite identical to the non-holomorphic contributions to the

genus-g partition functions of the topological string, at least for g > 1. This will be further

discussed in section 5.

Equivalence classes of the holomorphic function F (Y,Υ) are governed by Sp(2n+2, Z)

rotations of the 2(n+1)-component period vector of the underlying Calabi-Yau holomorphic

three-form, corresponding to (Y I , FI), where FI = (F0, F1, Fa) denotes the derivatives

of F with respect to Y 0, Y 1 and Y a, respectively. For the models based on (3.4) the

invariance group is embedded into an SL(2;Z)×O(n−1, 2; Z) subgroup of these monodromy

transformations. In this section it is not necessary to precisely specify this embedding. At

the classical level, where one retains only the first term in (3.4), the continuous version

of these monodromy transformations generate the isometries of the moduli spaces. At the

6Hence F (g)(Y ) = (Y 0)−2g+2 F (g)(S, T ); when refering to the genus-g partition functions in the text, we

usually do not make a distinction between F (g)(Y ) and F (g)(S, T ).
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level of the four-dimensional effective action these transformations are accompanied by

electric/magnetic duality transformations.

The period vector (Y I , FI) plays a central role in the so-called attractor equations for

BPS black holes, which express their imaginary parts (taken at the black hole horizon) in

terms of the black hole charges (c.f. (2.10)). Rather than concentrating on the properties

of the function (3.4), we will therefore focus attention on the properties of this period

vector. On the period vector, invariance transformations are characterized by the fact that

the variations of the Y I induce the action on the FI(Y,Υ) according to the monodromy

matrix that also acts on the black hole charges. Because the BPS attractor equations

require Υ to take a specific value at the horizon (namely Υ = −64), it is possible that the

invariance arguments are not valid for arbitrary Υ. Based on previous work, it seems at

least necessary to restrict Υ to a real number. However, in this section this aspect does

not yet play a role. Furthermore, because the action of the monodromies on the charges is

not subject to corrections, the action of the symmetry on the period vector must remain

unchanged upon introducing non-holomorphic corrections.

In view of the above it is of interest to define the monodromies associated with the

group SL(2; Z)×O(n−1, 2; Z), a subgroup of which is expected to leave the model invariant.

The action of the S-duality group is defined as follows,

Y 0 → dY 0 + c Y 1 ,

Y 1 → aY 1 + b Y 0 ,

Y a → dY a − 1
2c ηab Fb ,

F0 → aF0 − b F1 ,

F1 → dF1 − cF0 ,

Fa → aFa − 2b ηab Y b ,

(3.6)

where a, b, c, d are integer-valued parameters that satisfy ad− bc = 1 which parametrize (a

subgroup of) SL(2; Z).

For the T-duality group, general transformations are most easily generated by prod-

ucts of a number of specific finite transformations. Those transformations that belong to

the O(n − 2, 1; Z) subgroup are manifest in the above description and do not have to be

considered. Then there are n − 1 abelian transformations generated by

Y 0 → Y 0 ,

Y 1 → Y 1 ,

Y a → Y a − λa Y 0 ,

F0 → F0 + λaFa + λaηabλ
b Y 1 ,

F1 → F1 + 2λaηabY
b − λaηabλ

b Y 0 ,

Fa → Fa + 2 ηabλ
b Y 1 ,

(3.7)

where the λa are integers. Finally the full O(n − 1, 2; Z) group is generated provided one

also includes the following transformation,

Y 0 → F1 ,

Y 1 → −F0 ,

Y a → Y a ,

F0 → −Y 1 ,

F1 → Y 0 ,

Fa → Fa .

(3.8)

Observe that the square of this transformation equals the identity.

In the case that the higher-order genus terms in (3.4) are suppressed, it is straightfor-

ward to evaluate the behaviour of these transformations on the special coordinates S and

T a. Under S-duality we find the well-known results,

S → aS − ib

ic S + d
, T a → T a . (3.9)
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The T-duality transformations (3.7) and (3.8) lead to, respectively,

S → S , T a → T a + iλa , T a → T a

T bηbcT c
. (3.10)

However, these S- and T-duality transformations become much more complicated in the

presence of higher-genus contributions in (3.4). Insisting on the same symmetry (i.e., char-

acterized by the same monodromy matrix) will restrict these higher-genus contributions.

This was demonstrated, for instance in [16], in a simpler situation.

In what follows we concentrate on the periods and thus consider holomorphic deriva-

tives of the function F , which is itself not holomorphic,

F = −Y 1 Y aηabY
b

Y 0
+ 2iΩ(Y, Ȳ ,Υ, Ῡ) , (3.11)

where Ω encodes the non-classical contributions in accordance with (2.18). We will still

be assuming that Ω depends only on positive powers of Υ and Ῡ compensated by negative

even powers of Y 0 and/or Ȳ 0 so as to make (3.11) homogeneous of second degree (but

not necessarily holomorphic). Furthermore we expect that Ω vanishes for Υ = 0. In the

case studied before [19], where the F (g) vanish for g > 1, it turns out that Ω could be

written as a real function. As long as Ω is harmonic, which implies that it can be written

as the difference of a holomorphic and an anti-holomorphic function, this modification

has no consequences when considering the periods, as the latter will remain holomorphic.

Irrespective of these precise properties the FI can be written as follows,

F0 =
Y 1

(Y 0)2
Y aηabY

b − 2i

Y 0

[

−Y 0 ∂

∂Y 0
+ S

∂

∂S
+ T a ∂

∂T a

]

Ω ,

F1 = − 1

Y 0
Y aηabY

b +
2

Y 0

∂Ω

∂S
,

Fa = − 2
Y 1

Y 0
ηabY

b +
2

Y 0

∂Ω

∂T a
, (3.12)

where we regard Ω as a function of Y 0, S and T a (and possibly their complex conjugates).

With these results the S-duality transformations (3.6) take the form,

Y 0 → ∆S Y 0 ,

Y 1 → aY 1 + b Y 0 ,

Y a → ∆S Y a − c

Y 0
ηab ∂Ω

∂T b
, (3.13)

with

∆S = d + ic S . (3.14)

On the special coordinates S and T a these transformations extend the previous result (3.9),

S → aS − ib

ic S + d
, T a → T a +

ic

∆S (Y 0)2
ηab ∂Ω

∂T b
, (3.15)

and we note the useful relations

∂S′

∂S
= ∆S

−2 ,
1

S + S̄
→ |∆S|2

S + S̄
=

∆S
2

S + S̄
− ic∆S . (3.16)
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Assuming that the above transformations constitute an invariance of the model, we

require that the S-duality transformations of the Y I induce the expected transformations

of the FI upon substitution. This leads to the following result,7

(

∂Ω

∂T a

)′

S

=
∂Ω

∂T a
,

(

∂Ω

∂S

)′

S

− ∆S
2 ∂Ω

∂S
=

∂(∆S
2)

∂S

[

−1

2
Y 0 ∂Ω

∂Y 0
− ic

4∆S (Y 0)2
∂Ω

∂T a
ηab ∂Ω

∂T b

]

,

(

Y 0 ∂Ω

∂Y 0

)′

S

= Y 0 ∂Ω

∂Y 0
+

ic

∆S (Y 0)2
∂Ω

∂T a
ηab ∂Ω

∂T b
. (3.17)

It is instructive to consider the consequences of these equations in case that the dependence

on the T -moduli is suppressed (i.e., ∂Ω/∂T a = 0) and non-holomorphic terms are absent

(so that we may use the decomposition (3.4)). The result is that the functions F (g)(S, T )

are modular forms of weight 2g − 2, as the above equations take the form,

∂SF (1)(S, T ) −→ ∆2
S ∂SF (1)(S, T ) ,

F (g)(S, T ) −→ ∆2g−2
S F (g)(S, T ) , (g > 1)

DSF (g)(S, T ) −→ ∆2g
S DSF (g)(S, T ) , (g > 1) (3.18)

where DSF (g)(S, T ) ≡ [∂S − 2(g − 1)∂S ln η2]F (g)(S, T ) with η(S) the Dedekind function.

Here ∂S ln η2 acts as a connection, in view of its transformation law,

∂S ln η2 → ∆2
S ∂S ln η2 +

1

2
∂S∆2

S , (3.19)

but alternative connections exist that will lead to identical results. In the holomorphic case

the first derivative with respect to Υ of Ω is known to be an invariant function [52], and

this is consistent with the second equation of (3.18).

The same reasoning applies to T-duality. Under the transformation (3.7) it follows

from (3.12) that all the derivatives ∂Ω/∂Y 0, ∂Ω/∂S and ∂Ω/∂T a must be invariant under

integer shifts T a → T a + iλa. For the T-duality transformation (3.8) the analysis is more

subtle. Using (3.12) we derive,

Y 0 → ∆T Y 0 ,

Y 1 → ∆T Y 1 +
2i

Y 0

[

−Y 0 ∂Ω

∂Y 0
+ T a ∂Ω

∂T a

]

,

Y a → Y a , (3.20)

with

∆T = T aηabT
b +

2

(Y 0)2
∂Ω

∂S
. (3.21)

7(O)′S,T denotes the change of O under S- or T-duality induced by the transformation of all the arguments

on which O depends.
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On the special coordinates the transformation (3.20) extends the previous result (3.10),

S → S +
2

∆T(Y 0)2

[

−Y 0 ∂Ω

∂Y 0
+ T a ∂Ω

∂T a

]

,

T a → T a

∆T
. (3.22)

Again we assume that the above transformations constitute an invariance of the model,

and require that the T-duality transformation (3.20) of the Y I induces the expected trans-

formations of the FI upon substitution. This leads to

(

∂Ω

∂S

)′

T

=
∂Ω

∂S
,

(

∂Ω

∂T a

)′

T

=
(

∆T δa
b − 2 ηacT

cT b
) ∂Ω

∂T b
+ 2 ηabT

b Y 0 ∂Ω

∂Y 0
,

(

Y 0 ∂Ω

∂Y 0

)′

T

= Y 0 ∂Ω

∂Y 0
+

4

∆T (Y 0)2
∂Ω

∂S

[

−Y 0 ∂Ω

∂Y 0
+ T a ∂Ω

∂T a

]

. (3.23)

To appreciate the first term on the right-hand side of the second equation we note

∂T ′a

∂T b
=

1

∆T

[

δa
b −

2T a ηbcT
c

∆T
− 2T a

∆T(Y 0)2
∂2Ω

∂T b∂S

]

. (3.24)

In case that the S-dependence is suppressed so that we can drop the terms proportional

to ∂SΩ, (3.24) is precisely the inverse of the term appearing in the second equation (3.23).

As before it is instructive to consider the consequences of these equations in case that

non-holomorphic terms are absent (so that we use the decomposition (3.4)), assuming this

time that the dependence on the S modulus can be ignored, so that ∂SΩ = 0. The result

is that the F (g)(S, T ) are holomorphic automorphic forms of weight 2g − 2, as the above

equations reduce to (note that ∆T = T aηabT
b in this case),

∂T aF (1)(S, T ) −→
(

∆T δa
b − 2 ηacT

cT b
)

∂T bF (1)(S, T ) ,

F (g)(S, T ) −→ ∆ 2g−2
T F (g)(S, T ) , (g > 1)

DT aF (g)(S, T ) −→
(

∆T δa
b − 2 ηacT

cT b
)

∆ 2g−2
T DT bF (g)(S, T ) , (g > 1) (3.25)

where DT aF (g)(S, T ) ≡ [∂T a + (g − 1)∂T a ln ∆T]F (g)(S, T ). Again this result is consistent

with the fact that the first derivative with respect to Υ must be an invariant function in

the holomorphic case. Here we made use of a connection −1
2∂T ln ∆T, as

−1

2
∂T a ln ∆T →

(

∆T δa
b − 2 ηacT

cT b
)

[

−1

2
∂T b ln ∆T + ∂T b ln ∆T

]

. (3.26)

However, other (less trivial) connections are possible. For instance, in the FHSV model

one may use 1
4∂T lnΦ(T ), where Φ(T ) is the holomorphic automorphic form of weight 4

(c.f.(4.5)). A non-holomorphic connection is given by −∂T ln[(T + T̄ )aηab(T + T̄ )b], which
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is invariant under imaginary shifts of the T a. Note that, in the same approximation as

above, the T-duality transformation (3.20) acts as

(

T + T̄
)a

ηab

(

T + T̄
)b → 1

|∆T|2
(

T + T̄
)a

ηab

(

T + T̄
)b

. (3.27)

We refer to [60] for further discussion.

Returning to the more general case it follows that both ∂SΩ and Y 0 ∂Ω
∂Y 0 − 2S ∂Ω

∂S are

T-duality invariant, whereas ∂T aΩ is S-duality invariant. Furthermore, the combination

Y 0 ∂Ω
∂Y 0 −T a ∂Ω

∂T a turns out to be invariant under S-duality, while, under the T-duality (3.20),

it is invariant up to a sign change. We also note the relations,

∆T
T−→ 1

∆T
,

∆T
S−→ ∆T +

2 i c

∆S (Y 0)2

[

−Y 0 ∂Ω

∂Y 0
+ T a ∂Ω

∂T a

]

,

∆S
T−→ ∆S +

2 i c

∆T (Y 0)2

[

−Y 0 ∂Ω

∂Y 0
+ T a ∂Ω

∂T a

]

. (3.28)

This completes the review of S- and T-duality transformations in the FHSV model

and in similar models, such as the STU model. We stress once more that the central

results, (3.17) and (3.23), hold in the presence of non-holomorphic modifications. Fur-

thermore, it should be clear that Ω is not an invariant function. While the fields Υ and

Ῡ do not enter explicitly into the monodromies (3.6), (3.7) and (3.8), the corresponding

transformations induced on Y 0, S, and T a depend in a complicated way on Υ and Ῡ. In

the next two sections we will discuss how to solve these equations iteratively in Υ = Ῡ.

In section 4, we restrict ourselves to terms linear in Υ = Ῡ with the aim of studying the

subleading corrections to the mixed black hole partition function. These terms coincide

with the genus-1 partition functions of the topological string. Then, in subsection 5.1,

we analyse higher-order terms in Υ = Ῡ, related to the genus-2 partition function of the

topological string. As we intend to demonstrate the result no longer agrees directly with

the topological string. The underlying reason for this different result resides in the fact

that the transformation rules depend on Υ, Ῡ, unlike in the case of the topological string.

4. The measure factor for the mixed partition function

The consequences of the duality symmetry, which are expressed by the equations (3.17)

and (3.23) for the function Ω defined in (3.11), can be studied by iteration in powers of Υ

and Ῡ. Therefore it is convenient to expand Ω as follows,

Ω(Y, Ȳ ,Υ, Ῡ) =

∞
∑

g=1

Ω(g)(Y, Ȳ ,Υ, Ῡ) , (4.1)

where Ω(g) may in general contain various monomials in Υ and Ῡ of degree g. As Ω(g) must

be a real function that is homogeneous of degree two, the coefficients of these monomials

take the form of functions of S and T a, as well as of their complex conjugates, divided
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by homogeneous polynomials of Y 0 and Ȳ 0 of degree 2(g − 1). In particular Ω(1)(S, T ) is

known for a large variety of models.

In the context of large black holes, only Ω(1)(S, T ) is expected to contribute to the

mixed partition function (2.26) in the semi-classical approximation, as discussed at the

end of section 2. Therefore we restrict ourselves here to the case g = 1. This result will

enable us to evaluate the effective measure factor for the mixed partition function at the

end of this section.

We study the constraints imposed by S- and T-duality invariance for the terms linear in

Υ and/or Ῡ, and their non-holomorphic corrections, proceeding by iteration and assuming

that the duality invariance will be realized order-by-order in Υ (subject to Ῡ = Υ). We

consider both the FHSV and STU models, which have N = 2 supersymmetry, as well as

the N = 4 supersymmetic CHL models. Considering this variety of models will be helpful

in callibrating the normalization of Ω. All these models share the property that the first

term in (3.4) is not modified by quantum corrections. In this iterative procedure the term

Ω(1), which is linear in Υ or Ῡ, is subject to relatively simple equations,

∂Ω(1)

∂T a

S−→ ∂Ω(1)

∂T a
,

∂Ω(1)

∂S

S−→ ∆ 2
S

∂Ω(1)

∂S
,

∂Ω(1)

∂S

T−→ ∂Ω(1)

∂S
,

∂Ω(1)

∂T a

T−→
(

ηcdT
cT d δa

b − 2 ηacT
cT b
) ∂Ω(1)

∂T b
. (4.2)

These equations are obviously satisfied by assuming that Ω(1) is the sum of an S-duality

invariant function of S, and a T-duality invariant function of T a. Such invariant modular

and automorphic functions are usually quite rare, so that invariance under the duality

group will pose strong restrictions.

The solutions of the above equations are known for the FHSV model, where the con-

tribution linear in Υ or Ῡ takes the following form [22, 61],

Ω
(1)
FHSV(S, S̄, T, T̄ ,Υ, Ῡ) =

1

256π

[

1

2
Υ ln[η24(2S)Φ(T )] +

1

2
Ῡ ln[η24(2S̄)Φ(T̄ )]

+ (Υ + Ῡ) ln[(S + S̄)3(T + T̄ )aηab(T + T̄ )b]

]

. (4.3)

For real values of Υ, this result is indeed invariant under S-duality.8 The S-duality trans-

formations of this model constitute the Γ(2) subgroup of SL(2; Z), defined by a, d = 1

8Here and in the following we make use of the modular transformation rule and the asymptotic expansion

of the Dedekind eta function,

ln η24(S) → ln η24(S) + 12 ln∆S ,

ln η(S) ≈ −
1

12
πS − e−2πS + O(e−4πS) . (4.4)
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mod 2 and b, c = 0 mod 2 in (3.9). The result is also T-duality invariant in view of the

fact that Φ(T ) is a holomorphic automorphic form of weight 4 [62],

Φ(T ) =
∏

r>0

(

1 − e−2π r·T

1 + e−2π r·T

)2c1(r2)

, (4.5)

transforming under the T-duality transformation (3.20) (suppressing the S-dependence) as

Φ(T ) → ∆ 4
T Φ(T ) . (4.6)

Indeed, (4.3) can be written as the sum of two invariant functions, one of S and S̄ and one

of T a and T̄ a, respectively, which for large real values of S and T a satisfies,

Ω
(1)
FHSV ≈ −Υ S + Ῡ S̄

128
. (4.7)

It contains non-holomorphic terms, which are crucial for the duality invariance, equal to

Ω
(1) nonholo
FHSV =

Υ + Ῡ

256π
ln
[

(

S + S̄
)3 (

T + T̄
)a

ηab

(

T + T̄
)b
]

. (4.8)

Observe that the duality invariance of Ω
(1)
FHSV is only realized for real values of Υ. Therefore

we do not know a priori whether to write Υ or its complex conjugate. The way in which

this potential ambiguity has been resolved, is by assuming that purely holomorphic terms

are always accompanied by a power of Υ and purely anti-holomorphic terms by a power of

Ῡ, whereas for the mixed terms we assign Υ and Ῡ such as to preserve the reality properties

of Ω for complex Υ. At this point, it is not quite clear how this procedure will work out at

higher orders in Υ and Ῡ, but we know from the explicit evaluation of Ω(2) for the FHSV

model, which we will present in the next section, that no problems are encountered.

Subsequently we turn to the STU model, based on the function

F (0)(Y ) = −Y 1Y 2Y 3

Y 0
= i

(

Y 0
)2

STU , (4.9)

corresponding to η12 = η21 = 1
2 and η11 = η22 = 0. In this case, we have [30],

Ω
(1)
STU(S, S̄, T, T̄ , U, Ū ,Υ, Ῡ) =

1

256π

[

4Υ ln [ϑ2(S)ϑ2(T )ϑ2(U)] + 4 Ῡ ln
[

ϑ2

(

S̄
)

ϑ2

(

T̄
)

ϑ2(Ū)
]

+ (Υ + Ῡ) ln[(S + S̄)(T + T̄ )(U + Ū)]
]

, (4.10)

where

ϑ2(S) =
2 η2(2S)

η(S)
. (4.11)

For large real values of S, T and U , this result yields

Ω
(1)
STU ≈ −Υ(S + T + U) + Ῡ(S̄ + T̄ + Ū)

256
, (4.12)
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and its non-holomorphic contribution equals,

Ω
(1) nonholo
STU =

Υ + Ῡ

256π
ln
[(

S + S̄
) (

T + T̄
) (

U + Ū
)]

. (4.13)

Assuming that the real part of S is much larger than that of T and U , the two results (4.7)

and (4.12) coincide up to a factor 2. This is related to the fact that the STU model has

been defined on the type-II side. The relation between the field S and the heterotic dilaton

must involve a factor 2. When this is taken into account the two results are in fact equal,

in agreement with [63].

It is instructive to confront some of the previous results with the solution of the holo-

morphic anomaly equation for Ω(1) for generic Calabi-Yau compactifications,

4π Ω(1) nonholo
∣

∣

∣

Υ=−64
= −1

2
ln
∣

∣

∣
det[ Im 2F

(0)
KL]
∣

∣

∣
+
( 1

24
χ − 1

)

ln
K(0)

|Y 0|2 , (4.14)

where we adjusted the proportionality constant to have agreement with previous results.

The quantity K is generally defined by

K = i(Ȳ IFI − Y I F̄I) . (4.15)

Here FI and FIJ refer to the derivatives of the general function F and may thus contain

non-holomorphic contributions. However, F
(0)
IJ and K(0) refer only to the corresponding

expressions for Υ = 0, so that non-holomorphic terms are absent. Then the Kähler potential

K and the determinant of the special-Kähler metric in the standard representation [50] (see

also [64]), are given by

K = − ln
[

K(0)/|Y 0|2
]

, g = − e(n+1)K det
[

Im 2F
(0)
KL

]

. (4.16)

In the case at hand, where the function F (0) coincides with (3.11) in the Υ = 0 limit,

the expression for the Kähler potential and Ω(1) are given by

K = − ln
[

K(0)/|Y 0|2
]

= − ln
[

(S + S̄)(T + T̄ )aηab(T + T̄ )b
]

,

4π Ω(1) nonholo
∣

∣

∣

Υ=−64
=

(

χ

24
− 2 − n − 3

2

)

ln(S + S̄)

+
( χ

24
− 2
)

ln
[

(T + T̄ )aηab(T + T̄ )b
]

, (4.17)

where we used the relation,

det
[

Im 2F
(0)
KL

]

= 2n−1(S + S̄)n−3 det[−ηab]

[

K(0)

|Y 0|2

]2

, (4.18)

which holds for the same class of functions. For the Enriques Calabi-Yau three-fold, n = 11

and χ = 0, so that (4.14) coincides with (4.8), provided we set Υ = −64. Similarly for the

STU model, where one has χ = 0 and n = 3, the result coincides with (4.13).
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One may also consider the class of CHL models which have N = 4 supersymmetry [59]

and which we already mentioned in section 3. These models are invariant under the S-

duality group Γ1(Ñ) ⊂ SL(2; Z), which is generated by (3.15) with the transformation

parameters restricted to c = 0 mod Ñ and a, d = 1 mod Ñ . They contain no higher-

genus contributions beyond genus-1. As discussed in [20] the function Ωk can be expressed

in terms of the unique cusp forms of weight k + 2 associated with the S-duality group

Γ1(Ñ) ⊂ SL(2; Z), defined by f (k)(S) = ηk+2(S) ηk+2(ÑS) where,

f (k)(S′) = ∆ k+2
S f (k)(S) . (4.19)

The result for Ωk then takes the following form [11],

Ωk(S, S̄,Υ, Ῡ) =
1

256π

[

Υ ln f (k)(S) + Ῡ ln f (k)(S̄) +
1

2
(Υ + Ῡ) ln(S + S̄)k+2

]

. (4.20)

Note that this result agrees with the terms obtained for the corresponding effective actions

(see, for instance, [21, 23]).

For large real value of S we obtain the same result (4.7) as for the FHSV model.

The non-holomorphic terms in (4.20) can also be confronted with (4.14) and one finds

agreement (again, modulo a factor 4π) provided n = 2(k + 2) + 3 (here we have included

the four gauge fields associated with the extra N = 2 gravitino multiplets) and χ = 48.

However, this seems a numerical coincidence and we stress that (4.14) is strictly speaking

only applicable to N = 2 supersymmetric models.

As an application we can now give the expressions of the measure for the mixed par-

tition function as it appears in (2.26). Because the mixed partition function usually refers

to the holomorphic part of FE, we extract the non-holomorphic contribution from (2.24)

and absorb it into measure, so that the factor
√

∆− is replaced by
√

∆− exp[4π Ω(1)nonholo].

Evaluating the expression based on (4.14), we find the following universal result,

√
∆− e4π Ω(1)nonholo ∝

[

K(0)

|Y 0|2

]χ/24−1

, (4.21)

where we only kept the leading terms which scale with zero weight in the large-charge

limit, and we dropped an irrelevant proportionality constant. This result applies to N = 2

only. For the CHL models one can perform the same calculation, employing an N = 2

description. Provided that one chooses n = 2(k + 2) + 3, accounting again for the extra

four gauge fields belonging to the N = 2 gravitino multiplets, one obtains,

√
∆− e4π Ω(1)nonholo ∝

[

K(0)

|Y 0|2

]

. (4.22)

This latter result has been confirmed for the CHL models [9, 11] based on the corresponding

microscopic degeneracy formulae [53 – 55, 20]. Observe that for the FHSV and STU models,

χ = 0, so that the semiclassical measure factors for these models and for the CHL models

are inversely proportional. In contrast with the N = 4 models the semiclassical prediction

for the N = 2 and N = 8 models does not agree with other results in the literature. The
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N = 2 results of [15] for compact Calabi-Yau manifolds are qualitatively different as they

apply to large topological string coupling, whereas the semiclassical results refer to small

coupling. Hence these two results apply to different regimes. Actually the measure factor

of [15] will diverge when uniformly taking the charges and the Y I large, which reflects the

so-called entropy enigma. We expect the semiclassical results to apply to singlecentered

solutions, which are insensitive to the entropy enigma. For the N = 8 result of [9] the

situation is rather different, because here the measure factor is subleading as compared

to semiclassical arguments. This seems to indicate that the semiclassical contribution will

actually vanish in this particular case, presumably as the result of the high degree of

symmetry of the N = 8 model.

We evaluate Ω(2) for the FHSV model in the next section. Obviously these results will

only be determined up to invariant functions, just as the non-holomorphic anomaly equa-

tion of the topological string enables the determination of the genus-g partition functions

up to holomorphic terms. We will demonstrate that the results for Ω(2) do not coincide

with the corresponding expressions found for the topological string in [60].

5. Non-holomorphic corrections and the topological string

In this section we solve the constraints posed on Ω(2) for the FHSV model, and compare the

result with that for the genus-2 partition function of the topological string. As we already

indicated previously, the two results do not agree. Obviously the discrepancy raises a

variety of questions. First of all, it is important to realize that the transformations depend

on Υ, so that we are dealing with an iteration in Υ, both in the function Ω as well as in the

transformation rules. This situation is crucially different from the setting in which the non-

holomorphic terms arise for the topological string, and this explains why the two results

are different. As is well known, Ω(2) encodes certain terms in the full effective action that

are not necessarily local, which arise upon integrating out the massless modes. These terms

affect the holomorphicity that underlies the Wilsonian effective action. The full effective

Lagrangian must reproduce the physically relevant invariances, and for that the presence of

the non-holomorphic corrections can be crucial. Indeed we will demonstrate that the free

energy (2.15) is invariant up to second order in Υ in the presence of the non-holomorphic

corrections. This will be discussed for the FHSV model in subsection 5.1.

A second, even more subtle, issue concerns the electric/magnetic duality transfor-

mations. Electric/magnetic duality is defined at the level of the effective action and its

consequences are not a priori restricted to the Wilsonian action. This duality is not nec-

essarily a statement about invariances, but about equivalence classes: the same physics

can be described in the context of different electric/magnetic duality frames with differ-

ent corresponding Lagrangians. These equivalence classes are well understood for N = 2

supersymmetric theories at the level of the Wilsonian action, based exclusively on the holo-

morphic contributions. It is reasonable to expect that the full effective action that includes

the effect of the non-holomorphic terms remains subjected to electric/magnetic duality, so

that the functions in terms of which the full effective Lagrangian can be encoded, should

still fall into similar equivalence classes. This requires that one can establish the existence
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of a different function encoding a different Lagrangian which is related to the former by

an electric/magnetic duality transformation induced by symplectic rotations of the period

vector. In subsection 5.2 we show that this situation is indeed realized in certain cases.

We prove that upon electric/magnetic duality, there are indeed equivalence classes of func-

tions. Furthermore, for the class of functions that we consider in this paper, the free energy

transforms as a function under duality. In this way the results of subsection 5.1 can be

understood in a more general context.

5.1 Duality constraints on Ω(2)(S, S̄, T, T̄ , Y 0, Ȳ 0)

In this subsection we consider the duality constraints at second order in Υ and Ῡ. We

concentrate on the FHSV model, but the corresponding result for the STU model can be

derived along the same lines. For the CHL models the Ω(g) vanish for g > 1 so that (4.20)

represents the complete result.

We start by solving the constraints imposed by S-duality, which are given in (3.17).

Because the ∂Ω/∂T a are S-duality invariant, we can solve the second and third equation

and write ∂Ω/∂S and Y 0∂Ω/∂Y 0 in terms of two functions transforming homogeneously

under S-duality. To this end we employ the holomorphic function G2(2S) = 1
2∂S ln η2(2S),

which transforms under S-duality as,

G2(2S) → ∆2
S G2(2S) +

1

2
ic∆S . (5.1)

Observe that to G2(2S) one can always add a modular form of weight two but this ambi-

guity will be absorbed in the various functions that we will introduce shortly. We stress

that we cannot assume holomorphicity for these functions in view of the non-holomorphic

corrections noted previously. The choice for the argument 2S in (5.1) is made in view of

the S-duality transformations which constitute the group Γ(2). We now solve the third

equation (3.17) by writing,

Y 0 ∂Ω

∂Y 0
= w(0) +

2G2(2S)

(Y 0)2
∂Ω

∂T a
ηab ∂Ω

∂T b
, (5.2)

where w(0) is invariant under S-duality. Substituting this result into the second equa-

tion (3.17), we obtain the following expression for ∂Ω/∂S,

∂Ω

∂S
= w(2) − 2G2(2S)w(0) − 2 [G2(2S)]2

(Y 0)2
∂Ω

∂T a
ηab ∂Ω

∂T b
, (5.3)

where w(2) is now a function transforming under S-duality as w(2) → ∆2
Sw

(2).

The above two equations should be integrated to yield a solution for Ω. In order to do

so we first note the identity

[G2(2S)]2 =
1

2

∂G2(2S)

∂S
+ G4(2S) , (5.4)

where G4 is a modular form of weight four, which is proportional to the corresponding

Eisenstein function G4(S) = (π/6)2E4(S). This identity enables one to write the square of
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G2 in the last term of (5.3) as an S-derivative of G2, because the term proportional to G4

transforms under S-duality in such a way that it can be absorbed into the function w(2).

Furthermore the second term proportional to w(0) can also be related to an S-derivative,

as can be seen by writing it as a power series in Y 0,

w(0)(S, S̄, T, T̄ , Y 0, Ȳ 0) =
∑

m6=0

vm(S, S̄, T, T̄ , Ȳ 0)

(Y 0)m
, (5.5)

where the functions vm transform under S-duality as modular forms,

vm → ∆m
S vm . (5.6)

The reason that the contribution with m = 0 is not included, is related to the fact that

such a term can not show up in (5.2) in the context of a power expansion in Y 0. Using the

definition of the covariant holomorphic derivative DSvm = (∂S − 2mG2(2S))vm, we can

write 2G2(2S)w(0) as

2G2(2S)w(0) =
∑

m6=0

(∂S − DS)vm

m (Y 0)m
. (5.7)

The terms proportional to DSvm transform under S-duality exactly as w(2), and can thus

be absorbed into it. Hence we are left with,

∂Ω

∂S
= w(2) −

∑

m6=0

1

m (Y 0)m
∂vm

∂S
− 1

(Y 0)2
∂G2(2S)

∂S

∂Ω

∂T a
ηab ∂Ω

∂T b
. (5.8)

The two equations (5.2) and (5.8) can be integrated provided the following condition holds,

∂Ω

∂T a
ηab

[

4
G2(2S)

Y 0

∂2Ω

∂S∂T b
+ 2

∂G2(2S)

∂S

∂2Ω

∂Y 0∂T b

]

= (Y 0)2
∂w(2)

∂Y 0
. (5.9)

Now we concentrate on the terms Ω(g) with g = 1, 2, which depend at most quadrat-

ically on Υ and/or Ῡ. In that case the T -derivatives of Ω in the above formulae can

be restricted to the corresponding derivatives of Ω(1) and thus follow from the results of

the previous subsection. In particular, these T -derivatives depend only on T a and T̄ a.

According to (5.9) it then follows that w(2) does not depend on Y 0.

We are thus left with the first equation (3.17), which implies that the T -derivatives of

Ω are S-duality invariant. Since the derivative of Ω(1) was invariant under the first term in

the S-duality variation of the T a specified in (3.15), this equation leads to,

(

∂Ω(2)

∂T a

)′

S

+
ic

∆S(Y 0)2
∂2Ω(1)

∂T a∂T b
ηbc ∂Ω(1)

∂T c

− ic

∆̄S(Ȳ 0)2
∂2Ω(1)

∂T a∂T̄ b
ηbc ∂Ω̄(1)

∂T̄ c
=

∂Ω(2)

∂T a
. (5.10)

Note that, in the approximation that we are working, the S-duality transformation on the

left-hand side will not involve any variations of the T a as those would be of even higher
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order in Υ or Ῡ. Furthermore we make use of the fact that Ω(1) is real, so that we extract

an overall T a-derivative and establish that,

Ω(2)(S, S̄, T, T̄ , Y 0, Ȳ 0) = −G2(2S)

(Y 0)2
∂Ω(1)

∂T a
ηab ∂Ω(1)

∂T b
−G2(2S̄)

(Ȳ 0)2
∂Ω(1)

∂T̄ a
ηab ∂Ω(1)

∂̄T̄ b
+u(0) , (5.11)

where u(0) is an S-duality invariant function quadratic in Υ, Ῡ. Its S-derivative must

obviously coincide with the first two terms on the right-hand side of (5.8) as far as they

are of the same order in Υ, Ῡ.

Further constraints follow from imposing the T-duality equations (3.23), where we will

now deal exclusively with contributions of second order in Υ, Ῡ. We first consider the third

equation of (3.23) and note that the term proportional to Y 0∂Ω/∂Y 0 on the right hand

side of the third equation can be dropped in this order. Using that ∂Ω/∂S is invariant

under T-duality we find that third equation is solved by

Y 0 ∂Ω(2)

∂Y 0
= r(0) +

1

2(Y 0)2
∂ log Φ(T )

∂T a
ηab ∂Ω(1)

∂T b

∂Ω(1)

∂S
, (5.12)

where 1
4∂T log Φ(T ) acts as a connection for T-duality, as discussed below (3.26). Here r(0)

denotes a T-duality invariant function. The first equation of (3.23), on the other hand,

results in
(

∂Ω(2)

∂S

)′

T

+
2

∆T(Y 0)2
∂2Ω(1)

∂S2
T a ∂Ω(1)

∂T a
+

2

∆̄T(Ȳ 0)2
∂2Ω(1)

∂S∂S̄
T̄ a ∂Ω(1)

∂T̄ a
=

∂Ω(2)

∂S
, (5.13)

where we used again that Ω(1) is real. Following the same steps as before, this equation is

solved by

∂Ω(2)

∂S
= s(0) − 1

4(Y 0)2
∂2Ω(1)

∂S2

∂ ln Φ(T )

∂T a
ηab ∂Ω(1)

∂T b

− 1

4(Ȳ 0)2
∂2Ω(1)

∂S∂S̄

∂ ln Φ̄(T̄ )

∂T̄ a
ηab ∂Ω(1)

∂T̄ b
, (5.14)

where s(0) denotes a T-duality invariant function. Observe that (5.14) is consistent with

the expression (5.8) for ∂Ω/∂S following from S-duality invariance. Namely, the last term

in (5.8) is of the type s(0), while the second and third term in (5.14) are of the type v2 and

w(2), respectively.

All results obtained so far give rise to the following expression for Ω(2), up to an S-

and T-duality invariant function,

Ω(2) = −G2(2S)

(Y 0)2
∂Ω(1)

∂T a
ηab ∂Ω(1)

∂T b
− 1

4(Y 0)2
∂ ln Φ(T )

∂T a
ηab ∂Ω(1)

∂T b

∂Ω(1)

∂S
+ c.c . (5.15)

The reader may verify that all previous results (5.2), (5.11), (5.12) and (5.14) are repro-

duced. Furthermore, the result is consistent with the assumption that Ω(2) is real.

The result (5.15) can be confronted with the manifestly duality invariant expression,

F (2)(Y ) ∝ 1

(Y 0)2
Ĝ2(2S, 2S̄)

∂Ω(1)

∂T a
ηab ∂Ω(1)

∂T b
, (5.16)
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where Ĝ2(S, S̄) = G2(S) + [2 (S + S̄)]−1. Note that the right hand side of (5.16) is non-

holomorphic. This latter expression is the one obtained for the topological string [60], which

is clearly invariant under the lowest order S- and T-duality transformation by virtue of the

non-holomorphic terms in Ĝ2 and Ω(1). It is clear that the real part of (5.16) and (5.15)

are quite different. Indeed, Ω(2) is not duality invariant in leading order of Υ and Ῡ. It

varies as follows under S- and T-duality,

(

Ω(2)
)′

S
= Ω(2) −

(

ic

2∆S(Y 0)2
∂Ω(1)

∂T a
ηab ∂Ω(1)

∂T b
+ c.c.

)

,

(

Ω(2)
)′

T
= Ω(2) −

(

2

∆T(Y 0)2
T a ∂Ω(1)

∂T a

∂Ω(1)

∂S
+ c.c.

)

. (5.17)

The lack of invariance poses no problem as the function Ω(1) is invariant in lowest order

of Υ or Ῡ, but still receives corrections from variations of S and T and their complex

conjugates that are themselves linear in Υ or Ῡ. This leads to the following variations,

quadratic in Υ, Ῡ,

(

Ω(1)
)′

S
= Ω(1) +

(

ic

∆S(Y 0)2
∂Ω(1)

∂T a
ηab ∂Ω(1)

∂T b
+ c.c.

)

,

(

Ω(1)
)′

T
= Ω(1) +

(

4

∆T(Y 0)2
T a ∂Ω(1)

∂T a

∂Ω(1)

∂S
+ c.c.

)

. (5.18)

Observe that ∆T can be replaced by its lowest-order value T aηabT
b in the second equation

of (5.17) and of (5.18). With these results one can verify that (5.15) also satisfies the second

equation in (3.23). This follows directly from the second equations in (5.17) and (5.18),

taking into account that all fields T a, S and Y 0, as well as their complex conjugates,

transform under T-duality. Hence we have established that Ω satisfies the restrictions

posed by the dualities to second order in (real) Υ.

While Ω(1) +Ω(2) is not invariant, the quantity Im[Υ∂ΥF ] ∝ [Υ∂Υ +Ῡ∂Ῡ]Ω is invariant

for real values of Υ at this level of approximation. Therefore it follows that the free energy

defined in (2.15) is indeed invariant under S- and T-duality to second order in real Υ!

For genus g > 2 the deviations between the functions that encode the full effective ac-

tion and the topological string twisted partition functions will persist. The reason is that

both the function Ω and the duality transformation rules depend on Υ, which is in striking

contrast to the situation in the topological string, where the duality transformations are

independent of Υ and determined, once and for all, by the classical contribution of the

function F . Therefore the twisted partition functions, F (g), of the topological string must

be different from the contributions appearing in Ω. The former are invariant under the du-

alities whereas the latter are not invariant, but they are determined by the requirement that

the corresponding periods transform according to the correct monodromy transformations.

In section 1 we have already pointed out how this discrepancy can possibly be resolved.

The topological string partition functions correspond to certain string amplitudes [32, 24],

which are also encoded in the full effective action that describes all the irreducible graphs.
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On the other hand the latter is not invariant under duality, unlike the partition functions

of the topological string. Therefore the information contained in the topological string and

in the relevant terms of the effective action can certainly be in agreement, although the

corresponding mathematical expressions are different. It is suggestive that the connected

and irreducible graphs are related by a Legendre transform, whereas the action (or its

underlying function) can also be converted to an invariant expression (e.g. an Hamiltonian

or a Hesse potential) by a Legendre transform. Obviously resolving these subtleties is

a challenge.

5.2 Non-holomorphic deformations of special geometry?

Motivated by the results of the preceding section we consider some of the more concep-

tual issues related to the presence of non-holomorphic corrections. Let us consider elec-

tric/magnetic dualities on the periods (XI , FI), which take the form of Sp(2n) rotations.

Here we do not assume that the FI are holomorphic functions or sections. Hence we have

holomorphic and anti-holomorphic coordinates XI and X̄ Ī , while the FI may depend on

both XI and X̄I . To avoid ambiguous notation we will use anti-holomorphic indices Ī

wherever necessary. In this subsection homogeneity properties do not play a role.

Electric/magnetic dualities are defined by monodromy transformations of the periods,

defined in the usual way,

XI → X̃I = U I
JXJ + ZIJFJ ,

FI → F̃I = VI
JFJ + WIJXJ , (5.19)

where U , V , Z and W are the (n + 1) × (n + 1) submatrices that constitute an element

of Sp(2n + 2, R). As a result the relation between the old and the new fields, XI and X̃I ,

will no longer define a holomorphic map, and we note,

∂X̃I

∂XJ
≡ SI

J = U I
J + ZIKFKJ ,

∂X̃I

∂X̄J
= ZIKFKJ̄ , (5.20)

where FIJ = ∂FI/∂XJ and FIJ̄ = ∂FI/∂X̄J . Subsequently we consider the transformation

behaviour of the derivatives FIJ and FIJ̄ induced by electric/magnetic duality (5.19).

Straightforward use of the chain rule yields the relation,

FIJ → F̃IJ = (VI
LF̂LK + WIK) [Ŝ−1]KJ , (5.21)

where

F̂IJ = FIJ − FIK̄ Z̄K̄L̄ F̄L̄J ,

ŜI
J = U I

J + ZIKF̂KJ ,

ZIJ = [S−1]IK ZKJ . (5.22)

As was shown in [34], ZIJ is a symmetric matrix by virtue of the fact that the duality

matrix belongs to Sp(2n + 2, R). For the same reason [Ŝ−1]IK ZKJ is also symmetric in

(I, J). Observe that ZIJ satisfies the equation,

δZIJ = −ZIKδFKLZLJ . (5.23)
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Let us now assume that FIJ is symmetric in I and J . This symmetry implies that

the FI can be written as the holomorphic derivatives of some function F (X, X̄). It is of

interest to determine whether this symmetry is preserved under duality. In general this is

not the case. However, when we assume that

FIJ̄ = ±F̄J̄I , (5.24)

then F̂IJ will also be symmetric. In that case one can derive from (5.21) that F̃IJ must

be symmetric as well, so that the F̃I can be expressed as the holomorphic derivatives of

some function F̃ (X̃, ˜̄X) with respect to X̃I . This is a first indication that non-holomorphic

deformations satisfying (5.24) can be consistent with the special geometry transformations

of the periods. Henceforth we will assume that (5.24) holds. Observe that terms in F that

depend exclusively on X̄ Ī are not determined by the above arguments.

Furthermore one can show that

FIJ̄ → F̃IJ̄ = [Ŝ−1]KI [S̄−1]L̄J̄ FKL̄ . (5.25)

It seems that the holomorphic and anti-holomorphic indices are treated somewhat asym-

metrically in this transformation rule. However, noting the relation

(

S−1Ŝ
)I

J = δI
J −ZIKFKL̄Z̄L̄M̄ F̄M̄J , (5.26)

which follows from (5.22), and upon inverting the above expression and writing it as a

power series, one observes that SK
I S̄L̄

J̄ F̃KL̄ takes a more symmetric form. This enables

one to show that (5.25) can be expressed in two ways,

FIJ̄ → F̃IJ̄ =
[

Ŝ−1
]K

I

[

S̄−1
]L̄

J̄ FKL̄ =
[

S−1
]K

I

[

¯̂S−1
]L̄

J̄ FKL̄ . (5.27)

Let us now assume that the function F depends on some auxiliary real parameter η

and consider partial derivatives with respect to it. A little calculation shows that ∂ηFI

transforms in the following way,

∂ηF̃I =
[

Ŝ−1
]J

I

[

∂ηFJ − FJK̄ Z̄K̄L̄ ∂ηF̄L̄

]

, (5.28)

where the η-derivative in ∂ηF̃I(X̃, ˜̄X; η) is a partial derivative that does not act on the

arguments X̃I and their complex conjugates, and likewise, in ∂ηFI(X, X̄ ; η) the arguments

XI and their complex conjugates are kept fixed. Let us now assume that the function

F (X, X̄ ; η) decomposes into a holomorphic function of XI and a purely imaginary function

that depends on XI , its complex conjugates, and on the auxiliary parameter η,

F (X, X̄ ; η) = F (0)(X) + 2iΩ(X, X̄ ; η) , (5.29)

where Ω is real, just as the functions we have been considering in this paper. For this class

of functions we have the following identities,

FIJ̄ = −F̄J̄I , , ∂ηFĪ = −∂ηF̄Ī , (5.30)
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so that we must adopt the minus sign in (5.24). With this result we can establish that

∂ηF̃ (X̃, ˜̄X; η) = ∂ηF (X, X̄ ; η) , (5.31)

up to terms that no longer depend on XI and X̄ Ī . Ignoring such terms on the ground

that they are not relevant for the vector multiplet Lagrangian, this implies that the first

derivative of the function F with respect to some auxiliary parameter transforms as a

function under electric/magnetic duality. Of course, it is crucial that we assumed the

decomposition (5.29) so that η appears only in the non-holomorphic component Ω of F .

When the electric/magnetic duality defines a symmetry, then it follows that ∂ηF must

be invariant under this symmetry. As we explained previously, S- and T-duality requires

real values of Υ. The above arguments can now be applied to the free energy for BPS

black holes defined in (2.15), with the real Υ playing the role of the auxiliary parameter

η. Therefore the second term in the free energy proportional to the Υ-derivative of F is

duality invariant while the first term equals the symplectic product of the period vector

and its complex conjugate. As a result the free energy is thus duality invariant.

We stress once more that the effective action encoded in a non-holomorphic function

F is not fully known. Although the arguments presented above indicate that, indeed,

non-holomorphic deformations are possible within the context of special gometry, a lot of

work remains to be done in order to establish the full consistency and the implications of

this approach.

6. The STU model

The analysis of the last section can be repeated for the STU model, and undoubtedly

the results will be rather similar. Nevertheless, we still turn to a detailed analysis of

this model to confront our general results with the proposal of [31] for the statistical

degeneracies in the STU model. The STU model is based on four fields, Y 0, Y 1, Y 2 and

Y 3, of which the latter three appear symmetrically. The fields S, T , and U are defined by

S = −iY 1/Y 0, T = −iY 2/Y 0 and U = −iY 3/Y 0. Much of the information has already

been given in section 3. The T-duality group is contained in SO(2, 2) ∼= SL(2) × SL(2),

and the combined S- and T-duality group is the product group Γ(2)S × Γ(2)T × Γ(2)U ,

where Γ(2) ⊂ SL(2; Z) with a, d ∈ 2 Z + 1 and b, c ∈ 2 Z, with ad − bd = 1. Furthermore

there exists a triality symmetry according to which one can interchange Y 1, Y 2, Y 3 or,

equivalently S, T, U . Under this interchange the corresponding Γ(2) factors of the duality

groups are interchanged accordingly.

The distinction between S- and T-duality disappears for this model and in view of

that the set-up adopted in section 3 is not the most convenient one. However, we can

simply start from the S-duality as explained there and recover the other Γ(2) factors upon

interchanging the corresponding moduli. Hence we start from (3.6), which we present on
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the corresponding charges,

p0 → d p0 + c p1 ,

p1 → a p1 + b p0 ,

p2 → d p2 − c q3 ,

p3 → d p3 − c q2 ,

q0 → a q0 − b q1 ,

q1 → d q1 − c q0 ,

q2 → a q2 − b p3 ,

q3 → a q3 − b p2 .

(6.1)

The T-duality (U-duality) transformations are now obtained upon interchanging the labels

1 ↔ 2 (1 ↔ 3). From these transformation rules it follows that the eight charges trans-

form according to the (2,2,2) representation of Γ(2)S × Γ(2)T × Γ(2)U . Consequently the

charge bilinears transform as Γ(2) triplets, (3,1,1) + (1,3,1) + (1,1,3), or in the (3,3,3)

representation. Only the triplets are relevant for what follows and we start by defining the

following three charge bilinears,

〈Q,Q〉s = 2 (q0p
1 − q2q3) ,

〈P,P 〉s = −2 (q1p
0 + p2p3) ,

〈P,Q〉s = q0p
0 − q1p

1 + q2p
2 + q3p

3 , (6.2)

which are invariant under Γ(2)T × Γ(2)U and transform as a vector under Γ(2)S ,

〈Q,Q〉s → a2 〈Q,Q〉s + b2 〈P,P 〉s + 2 ab 〈P,Q〉s ,

〈P,P 〉s → c2 〈Q,Q〉s + d2 〈P,P 〉s + 2 cd 〈P,Q〉s ,

〈P,Q〉s → ac 〈Q,Q〉s + bd 〈P,P 〉s + (ad + bc) 〈P,Q〉s . (6.3)

The Γ(2)S invariant norm of this vector,

D(p, q) ≡ 〈Q,Q〉s 〈P,P 〉s − 〈P,Q〉 2
s , (6.4)

is also invariant under triality, so that the two triplets of charge bilinears that follow

from (6.2) by triality, have the same invariant norm.These two other triplets,(〈Q,Q〉t, 〈P,P 〉t,
〈P,Q〉t) and (〈Q,Q〉u, 〈P,P 〉u, 〈P,Q〉u), transform as a vector under Γ(2)T and ΓU(2), re-

spectively, and are singlets under the two remaining Γ(2) subgroups.

In the next subsections we discuss the macroscopic determination of the entropy of large

and small black holes based on the entropy function (2.8) and the free energy (2.15), which

will include the non-holomorphic corrections. Subsequently we consider the statistical

degeneracy formula for the STU model proposed in [31].

6.1 Macroscopic evaluation of the BPS entropy

Here we apply the results of the preceding sections and determine the attractor equa-

tions and the black hole entropy including the first non-trivial subleading corrections. For
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convenience we recall the relations (3.12) for the STU model,

F0 =
Y 1Y 2Y 3

(Y 0)2
− 2i

Y 0

[

−Y 0 ∂

∂Y 0
+ S

∂

∂S
+ T

∂

∂T
+ U

∂

∂U

]

Ω ,

F1 = − Y 2Y 3

Y 0
+

2

Y 0

∂Ω

∂S
,

F2 = − Y 1Y 3

Y 0
+

2

Y 0

∂Ω

∂T
,

F3 = − Y 1Y 2

Y 0
+

2

Y 0

∂Ω

∂U
, (6.5)

which clearly exhibits the triality symmetry, provided that Ω is triality invariant. Under

Γ(2)S the fields transform as follows (c.f. (3.13)),

Y 0 → ∆S Y 0 ,

Y 2 → ∆S Y 2 − 2 c

Y 0

∂Ω

∂U
,

Y 1 → aY 1 + b Y 0 ,

Y 3 → ∆S Y 3 − 2 c

Y 0

∂Ω

∂T
.

(6.6)

This result leads to the following transformations of the special coordinates (c.f. (3.15)),

S → aS − ib

ic S + d
, T → T +

2ic

∆S (Y 0)2
∂Ω

∂U
, U → U +

2ic

∆S (Y 0)2
∂Ω

∂T
. (6.7)

Requiring these transformations to induce the corresponding variations on the periods,

we obtain (c.f. (3.17)),
(

∂Ω

∂T

)′

S

=
∂Ω

∂T
,

(

∂Ω

∂U

)′

S

=
∂Ω

∂U
,

(

∂Ω

∂S

)′

S

− ∆S
2 ∂Ω

∂S
=

∂(∆S
2)

∂S

[

−1

2
Y 0 ∂Ω

∂Y 0
− ic

∆S (Y 0)2
∂Ω

∂T

∂Ω

∂U

]

,

(

Y 0 ∂Ω

∂Y 0

)′

S

= Y 0 ∂Ω

∂Y 0
+

4ic

∆S (Y 0)2
∂Ω

∂T

∂Ω

∂U
. (6.8)

Corresponding results under T- and U-duality follow directly by triality. Subsequently we

evaluate the free energy,

F = −|Y 0|2(S + S̄)(T + T̄ )(U + Ū) + 4Ω(1)

− 2

{

Ȳ 0

Y 0

[

(S + S̄)
∂Ω(1)

∂S
+ (T + T̄ )

∂Ω(1)

∂T
+ (U + Ū)

∂Ω(1)

∂U

]

+ h.c.

}

, (6.9)

where we dropped all the higher-order Υ contributions. Henceforth we will consistently

restrict Ω to Ω(1), but we will nevertheless keep writing Ω for notational clarity. The above

free energy is invariant under S-, T- and U-duality, up to terms that are quadratic in

Ω(1), as can be verified by explicit calculation. These higher-order terms will eventually be

cancelled by variations of the higher-order Ω(g).

Expressing Y 2 and Y 3 in terms of the charges and the field S,

Y 2 =
1

S + S̄

{

−q3 + iS̄ p2 − 2i

(

∂UΩ

Y 0
− ∂ŪΩ

Ȳ 0

)}

,

Y 3 =
1

S + S̄

{

−q2 + iS̄ p3 − 2i

(

∂T Ω

Y 0
− ∂T̄ Ω

Ȳ 0

)}

, (6.10)
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and imposing the remaining magnetic attractor equations, Y 1 − Ȳ 1 = i p1 and Y 0 − Ȳ 0 =

i p0, one finds,

Σ(S, S̄, p, q) = − 〈Q,Q〉s − i〈P,Q〉s (S − S̄) + 〈P,P 〉s |S|2
S + S̄

+ 4Ω(S, S̄, T, T̄ , U, Ū ), (6.11)

where T and U are no longer independent variables but denote the S-dependent values of

the moduli that follow from (6.10) to first order in Ω. To evaluate those we use the defini-

tions,

Q(S) = q0 + iSq1 ,

P (S) = p1 − iSp0 ,

Q2(S) = q2 + iS p3 ,

Q3(S) = q3 + iS p2 .
(6.12)

transforming under S-duality as P (S) → ∆−1
S P (S), and likewise for Q(S), Q2(S) and

Q3(S). Furthermore we note the expression

Y 0 =
P̄ (S̄)

S + S̄
, (6.13)

so that (6.10) leads to the following S-dependent expressions for T and U ,

T = i
Q̄3(S̄)

P̄ (S̄)
− 2 (S + S̄)

P̄ (S̄)

(

∂UΩ

P̄ (S̄)
− ∂ŪΩ

P (S)

)

,

U = i
Q̄2(S̄)

P̄ (S̄)
− 2 (S + S̄)

P̄ (S̄)

(

∂T Ω

P̄ (S̄)
− ∂T̄ Ω

P (S)

)

. (6.14)

Observe that the S-duality transformation of these equations coincides with the re-

sults (6.7). For what follows we need to evaluate the derivatives of T̄ and Ū with respect

to S,

∂T̄

∂S
= −1

2
〈P,P 〉u P−2(S) + · · · ,

∂Ū

∂S
= −1

2
〈P,P 〉t P−2(S) + · · · , (6.15)

where we suppressed terms proportional to the derivatives of Ω.

Finally the attractor equation for S follows from requiring the S-derivative of (6.11)

to vanish,

〈Q,Q〉s + 2i 〈P,Q〉sS̄ − 〈P,P 〉s S̄2

+ 2(S + S̄)2
{

2 ∂SΩ − 〈P,P 〉u
P 2(S)

∂T̄ Ω − 〈P,P 〉t
P 2(S)

∂ŪΩ

}

= 0 . (6.16)

It is important to check the behaviour of this result under the various dualities. It is

covariant under S-duality, because, in this approximation, the term proportional to the

derivatives of Ω scale under S-duality with the same factor ∆̄−2
S as the other terms in (6.16).

In the following, we will consider large black holes, i.e. black holes with charges such

that D(p, q) > 0, and hence with 〈P,P 〉s 6= 0. In that case the solution of (6.16) takes the
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following form,

S =

√

D

〈P,P 〉 2
s

{

1 +
4

〈P,P 〉s

[

2 ∂S̄Ω − 〈P,P 〉u
P̄ 2(S̄)

∂T Ω − 〈P,P 〉t
P̄ 2(S̄)

∂UΩ

]}

− i 〈P,Q〉s
〈P,P 〉s

, (6.17)

where the arguments in Ω are the leading values of S, T̄ , Ū as our results hold only to first

order of in Ω. At this point it is easy to substitute these values for S into (6.14) and we

find the same equations for the fixed-point values for T and U as in (6.17) upon triality

transformations. These results are the extension of the lowest-order expressions that were

obtained long ago [65].

Before considering the behaviour under T- and U-duality of (6.17), we note the fol-

lowing identities, which hold at the attractor point,

2 〈P,P 〉s |P (S)|2 = −〈P,P 〉t 〈P,P 〉u + · · · ,

2 〈P,P 〉s Q2(S) P̄ (S̄) = 〈P,P 〉t 〈P,Q〉u − 1

2
i 〈P,P 〉s〈P,P 〉t (S + S̄) + · · · ,

T + T̄ = −1

2
〈P,P 〉u

S + S̄

|P (S)|2 + · · · , (6.18)

as well as similar identities obtained by triality. Furthermore we note the transformations,

P (S)
S−→ P (S)

∆S
, P (S)

T,U−→ ∆̄T,U P (S) + · · · . (6.19)

With these equations one establishes that the expression (6.17) for S transforms under T-

and U-duality as,

S
T,U−→ S +

2icT,U

∆T,U (Y 0)2
∂U,T Ω , (6.20)

which is precisely compatible with (6.7) upon triality.

Now we can introduce a modified field Sinv invariant under T- and U-duality by

Sinv =

√

D

〈P,P 〉 2
s

{

1 +
8 ∂S̄Ω

〈P,P 〉s

}

− i 〈P,Q〉s
〈P,P 〉s

, (6.21)

which transforms in the usual way under S-duality as it is the solution of an S-duality

covariant equation,

〈Q,Q〉s + 2i 〈P,Q〉sS̄ − 〈P,P 〉s S̄2 + 4(S + S̄)2 ∂SΩ = 0 . (6.22)

This equation results from the condition that (we set Υ = −64)

ΣS(Sinv, S̄inv; p, q) = − 〈Q,Q〉s − i〈P,Q〉s (Sinv − S̄inv) + 〈P,P 〉s |Sinv|2
Sinv + S̄inv

− 2

π
ln
[

|ϑ2(S
inv)|4(Sinv + S̄inv)

]

, (6.23)
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is stationary. Likewise we can introduce similar equations for fields T inv and U inv which

transform as usual under T- and U-duality respectively, but are invariant under the other

dualities. These fields are the solutions of the equations that follow from (6.22) by triality.

The result for the entropy now follows from substituting the value of S into (6.11).

All the Ω-dependent terms in the solutions for S, T, U cancel generically, and one is left

with (6.11) with S (and thus T and U in Ω) equal to their classical values. Observe that

this is so because we are only considering the first-order corrections to the entropy. In

principle there are higher-order terms which will represent next-to-subleading corrections

to the entropy. The result for the entropy thus takes the form,

SSTU(p, q) = π Σ
∣

∣

∣

attractor

= π
√

D(p, q) − 2 ln
[

|ϑ2(S)|4 (S + S̄)
]

− 2 ln
[

|ϑ2(T )|4 (T + T̄ )
]

− 2 ln
[

|ϑ2(U)|4 (U + Ū)
]

, (6.24)

where, in the last terms S, T and U are fixed to their lowest-order attractor values. Here

we made use of (4.10).

Alternatively, the entropy (6.24) can be obtained from an entropy function Σ̃ that

depends on the invariant fields Sinv, T inv and U inv, where these fields are treated as inde-

pendent. This entropy function is given by

Σ̃(Sinv, S̄inv, T inv, T̄ inv, U inv, Ū inv; p, q) =
1

3

[

Σ̃S + Σ̃T + Σ̃U
]

, (6.25)

where Σ̃S is S-, T- and U-duality invariant and equal to,

Σ̃S(Sinv, S̄inv; p, q) = − 〈Q,Q〉s − i〈P,Q〉s (Sinv − S̄inv) + 〈P,P 〉s |Sinv|2
Sinv + S̄inv

− 6

π
ln
[

|ϑ2(S
inv)|4(Sinv + S̄inv)

]

, (6.26)

and Σ̃T and Σ̃U follow by triality. Extremizing Σ̃ with respect to Sinv, T inv and U inv and

substituting the resulting values into Σ̃ yields the entropy (6.24), where we work in the same

order of approximation as before. Note, however, that Σ̃S does not equal (6.23) so that

the value of the attractor point will be different, although, at this order of approximation,

such a deviation has no effect on the entropy.

6.2 Small black holes

To explore some other aspects of the STU model, we now consider possible small black

hole solutions. Small black holes satisfy D(p, q) = 0, with D given in (6.4). The higher-

curvature corrections encoded in Ω are then crucial to ensure that the moduli are attracted

to finite values at the horizon. For the STU model, the associated Ω(1), given in (4.10),

depends on all three moduli S, T and U , which implies that in order for the three moduli

to take finite values at the horizon, the charges carried by the small black hole have to be

chosen in such a way as to result in three non-vanishing charge bilinears (out of the nine

bilinears introduced earlier). This differs from the situation encountered in N = 4 models,
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where the associated Ω(1) only depends on one modulus, so that only one non-vanishing

charge bilinear is required to construct a small black hole [6].

An obvious possibility consists in choosing charges such that only 〈Q,Q〉s, 〈Q,Q〉t
and 〈Q,Q〉u are different from zero. Such a configuration can be obtained by switch-

ing on the charges q0, q1, q2, q3 while leaving the remaining ones equal to zero, so that

〈Q,Q〉s = −2 q2q3, 〈Q,Q〉t = −2 q1q3 and 〈Q,Q〉u = −2 q1q2. Then, at the horizon,

Y 0, Y 1, Y 2, Y 3 are all real, so that S, T, U are purely imaginary, which does not consti-

tute a well-behaved situation (since, for instance, the non-holomorphic terms contained

in Ω(1) are expressed in terms of the real part of the moduli fields). Therefore, we dis-

card this choice of charges and take instead p0, q2, q3 as non-vanishing charges. Then, the

non-vanishing charge bilinears are,

〈Q,Q〉s = −2 q2q3 , 〈P,P 〉t = −2 p0q2 , 〈P,P 〉u = −2 p0q3 . (6.27)

In that case Y 1, Y 2, Y 3 are real, but Y 0 is not in view of the fact that p0 6= 0. Using the

definition of S, T and U we establish the following expressions for these quantities,

Y 0 = iS̄
p0

S + S̄
,

Y 1 = −S̄S
p0

S + S̄
,

Y 2 = −S̄T
p0

S + S̄
,

Y 3 = −S̄U
p0

S + S̄
,

(6.28)

so that S̄U and S̄T are real. Inserting (6.28) into (6.5) and restricting Ω to Ω(1) gives,

F0 =
1

S̄2

{

p0 STUS̄3

S + S̄
− 2(S + S̄)S̄

p0

[

S∂SΩ + T∂T Ω + U∂UΩ
]

}

,

F1 =
i

S̄

{

p0 TUS̄2

S + S̄
− 2(S + S̄)

p0
∂SΩ

}

,

F2 =
i

S̄

{

p0 USS̄2

S + S̄
− 2(S + S̄)

p0
∂T Ω

}

,

F3 =
i

S̄

{

p0 TSS̄2

S + S̄
− 2(S + S̄)

p0
∂UΩ

}

. (6.29)

Using T̄ = S̄T/S and Ū = S̄U/S, we find that the attractor equations F0 = F̄0̄ and F1 = F̄1̄

yield, respectively,

(S − S̄)S̄2TU =
2

(p0)2
(S + S̄)

(

S2∂SΩ − S̄2∂S̄Ω

+ST∂T Ω − S̄T̄ ∂T̄ Ω + SU∂UΩ − S̄Ū∂ŪΩ
)

,

S̄2TU =
2

(p0)2
(S + S̄)

(

S∂SΩ + S̄∂S̄Ω
)

, (6.30)

while the attractor equations F2 − F̄2̄ = iq2 and F3 − F̄3̄ = iq3 read,

S̄U =
q2

p0
+

2

(p0)2
(S + S̄)

|S|2
(

S∂T Ω + S̄∂T̄ Ω
)

,

S̄T =
q3

p0
+

2

(p0)2
(S + S̄)

|S|2
(

S∂UΩ + S̄∂ŪΩ
)

. (6.31)
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In the absence of higher-curvature corrections, inspection of (6.30) and (6.31) shows that

there are no solutions with finite values of S, T and U . When including higher-curvature

corrections, on the other hand, we deduce from the structure of (6.30) and (6.31) that a

likely solution exists with finite, but small values for T and U , and a large, but finite value

for S. Therefore, we expand Ω around large values of S and small values of T and U .

Using Ω(1) given in (4.10), we obtain accordingly (with Υ = −64),

Ω
(1)
STU =

1

4
(S + S̄) − 1

2π

(

log(S + S̄) + log

(

1

T
+

1

T̄

)

+ log

(

1

U
+

1

Ū

))

. (6.32)

Here we used (4.4) in the expansion of ϑ2. Observe that the non-holomorphic terms in Ω(1)

are crucial for obtaining finite horizon values for T and U .

Using (6.32) we find that the first equation in (6.30) is identical to the second equation

in (6.30) multiplied by S − S̄. This means that S − S̄ does not get determined at the

horizon. The second equation yields

S̄2TU =
2

(p0)2
(S + S̄)

(

1

4
(S + S̄) − 1

2π

)

, (6.33)

while from (6.31) we obtain

S̄U =
q2

p0
+

S + S̄

π (p0)2 S̄T
,

S̄T =
q3

p0
+

S + S̄

π (p0)2 S̄U
. (6.34)

Thus we see that the attractor equations determine the values of S + S̄, S̄U and S̄T , while

the remaining moduli are left undetermined.

In the following, we take p0, q2, q3 to be positive and uniformly large. For large S +

S̄, (6.33) can be approximated by S + S̄ =
√

2p0
√

S̄2TU , while (6.34) implies that S̄U and

S̄T are of order one with approximate values given by

S̄U =
|〈Q,Q〉s|
|〈P,P 〉u|

, S̄T =
|〈Q,Q〉s|
|〈P,P 〉t|

, (6.35)

where we made use of the charge bilinears (6.27). Reinserting this into S + S̄ gives

S + S̄ =
√

|〈Q,Q〉s| . (6.36)

The entropy of this small black hole can be computed using (6.11) at the attractor

point. Its value is entirely determined in terms of (6.35) and (6.36). We obtain, up to an

additive constant,

Smacro = 2π
√

|〈Q,Q〉s| − 2 log

(

|〈P,P 〉t 〈P,P 〉u|
√

|〈Q,Q〉s|

)

. (6.37)

We note that for large charges, the leading term in the entropy depends only on one of

the bilinears (6.27). This is in contrast to what one naively obtains when considering
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the microstate degeneracy proposal of [31] and evaluating the degeneracy integral on an

electric or magnetic divisor. There one expects to obtain a microscopic degeneracy which,

to leading order, is given by the sum of three terms, each involving the square root of one of

the three charge bilinears (6.27). This, however, is in conflict with (6.37), which indicates

the need for a better understanding of the microstate degeneracy proposal of [31].

6.3 Comparison with microstate degeneracies

Recently, a proposal [31] was put forward for the microscopic degeneracies of twisted sector

dyons in the STU model in terms of the residues of certain products of Siegel modular forms,

and it was shown that the leading and subleading results for the entropy of these dyons agree

with the macroscopic analysis that we have presented in subsection 6.1. Here we briefly

review the analysis of the asymptotic degeneracies based on the microscopic formula in

the notation of [11]. It is based on the procedure used earlier in [19, 20]. The degeneracy

of dyons depends on the residues of the inverse of a modular form Φ0(ρ, σ, υ) of weight

zero under a subgroup of Sp(2;Z). The three modular parameters, ρ, σ, υ, parametrize

the period matrix of an auxiliary genus-two Riemann surface which takes the form of a

complex, symmetric, two-by-two matrix. For the STU model the proposed degeneracies

are given by the product of three of the following integrals over appropriate 3-cycles,

I(K,L,M) ∝
∮

dρdσ dυ
eiπ[ρK+σ L+(2υ−1) M ]

Φ0(ρ, σ, υ)
. (6.38)

The quantities K,L,M are integers proportional to the charge bilinears 〈P,P 〉, 〈Q,Q〉 and

〈P,Q〉, and thus transform as triplets under Γ(2). The inverse of the modular form Φ0

takes the form of an infinite Fourier sum with integer powers of exp[πiρ], exp[πiσ] and

exp[2πiυ], and the 3-cycle is then defined by choosing integration contours where the real

parts of ρ and σ take values in the interval (0, 2) and the real part of υ takes values in

the interval (0, 1). The leading behaviour of the dyonic degeneracy is associated with the

rational quadratic divisor D = υ + ρσ − υ2 = 0 of Φ0, near which 1/Φ0 takes the form,

1

Φ0(ρ, σ, υ)
≈ 1

D2

σ2

f (0)(γ′) f (0)(σ′)
+ O(D0) , (6.39)

where

γ′ =
ρσ − υ2

σ
, σ′ =

ρσ − (υ − 1)2

σ
, (6.40)

and f (0)(γ) = ϑ 4
2 (γ). The divisor is invariant under the following Γ(2) transformations,

ρ → a2 ρ + b2 σ − 2 ab υ + ab ,

σ → c2ρ + d2 σ − 2 cd υ + cd ,

υ → − ac ρ − bd σ + (ad + bc)υ − bc , (6.41)

which belong to the invariance group of Φ0. With this information it can be verified

straightforwardly that the function (6.38) is therefore invariant under Γ(2) using that

K,L,M transform precisely as the charge bilinears in (6.3).
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As stated above, the proposal for the dyon degeneracy reads,

dSTU(p, q) = I(Ks, Ls,Ms) I(Kt, Lt,Mt) I(Ku, Lu,Mu) , (6.42)

which is manifestly invariant under triality. When performing an asymptotic evaluation

of the integral (6.38), one must specify which limit in the charges is taken. Large black

holes correspond to a limit where both electric and magnetic charges are taken to be large.

More precisely, one takes KL−M2 ≫ 1, and K + L must be large and negative. Under a

uniform scaling of the charges the field Sinv given in (6.21) will then remain finite; to ensure

that it is nevertheless large one must assume that |K| is sufficiently small as compared to√
KL − M2. In this way one can recover the non-perturbative string corrections, as was

stressed in [19].

Clearly, Φ0(ρs, σσ, υs) has double zeros at υs± = 1
2 ± 1

2

√
1 + 4ρsσs on the divisor.

The evaluation of the integral (6.38) proceeds by first evaluating the contour integral for υ

around either one of the poles υs±, and subsequently evaluating the two remaining integrals

over ρs and σs in saddle-point approximation. The saddle-point values of ρs, σs, and hence

of υs±, can be parametrized by

ρs =
i|Sinv|2

Sinv + S̄inv
, σs =

i

Sinv + S̄inv
, υs± =

Sinv

Sinv + S̄inv
, (6.43)

with Sinv given in (6.21).9 The same considerations apply to the other integrals in (6.42)

with identical results. As argued in [19], these values describe the unique solution to

the saddle-point equations for which the state degeneracy d(p, q) takes a real value. The

resulting expression for log dSTU(p, q) precisely equals the expression for the macroscopic

entropy (6.24), with S (and similarly T and U) expressed in terms of the charges through

the first term in (6.17). The result is valid up to a constant and up to terms that are

suppressed by inverse powers of the charges. Other divisors are expected to give rise to

exponentially suppressed corrections to the microscopic entropy Smicro = log dSTU(p, q).

This result is in accordance with the generic features of the semiclassical approximation

that we have outlined in section 2.

The microstate degeneracy proposal of [31] does, however, raise a few questions which

in our mind indicate that a better understanding of the microstate degeneracy is needed.

First of all, the saddle-point equation for Sinv resulting from the asymptotic evaluation

of (6.38), is the one following from (6.26) and therefore it does not agree with the attractor

equation (6.22) derived from the macroscopic analysis. This is in contrast to the situation

encountered in the N = 4 models discussed in [19, 20].

Second, when considering the small black hole discussed in (6.37), it is not clear how

the microstate proposal (6.42) can reproduce the leading term of the entropy of this small

black hole. In the case of a small black hole, the degeneracy integral (6.38) needs to be

evaluated on either an electric or a magnetic divisor, and to leading order this yields a

9Observe that ρ, σ, υ constitute the complex two-by-two period matrix, which appears in the exponential

factor of the integrand in (6.38) sandwiched between the charge vectors. At the divisor, the imaginary part

of this matrix is proportional to the coset representative of SO(2, 1)/SO(2), parametrized by the invariant

dilaton field.
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contribution to the microscopic entropy proportional to the square root of the appropriate

charge bilinear. Since the microscopic degeneracy proposal (6.42) involves three integrals,

with each integral contributing a term of this type, the resulting microscopic entropy

consists of a sum of three terms, each involving the square root of one of the three charge

bilinears (6.27). This, however, is in conflict with (6.37).

Finally, we have considered the computation of the mixed black hole partition function,

as was done in the context of N = 8 [9] and N = 4 [9, 11] models, in the hope of

reproducing (2.26). Hence we start from the definition of the mixed black hole partition

function (2.26) with dSTU(p, q) expressed by (6.42), and with K,L,M given by the charge

bilinears 〈P,P 〉, 〈Q,Q〉 and 〈P,Q〉 (here we omit a proportionality factor between these two

sets of bilinears, for simplicity). The summation over q0 leads to a delta function, whereas

the sum over q1, q2, q3 can be done by a Poisson resummation. In this way we obtain the

following result,

ZSTU(p, φ) =
∑

φ−shifts

∮ ∮ ∮

1√
σsσtσu Φ0(ρs, σs, υs)Φ0(ρt, σt, υt)Φ0(ρu, σu, υu)

(6.44)

× δ
(

φ0 + ip0(2vs + 2vt + 2vu − 3) + 2i(p1σs + p2σt + p3σu)
)

× exp

(

−2πi

[

p2p3ρs + p3p1ρt + p1p2ρu − φs2 + φt2 + φu2 − 2(φsφt + φtφu + φuφs)

16σsσtσu

])

,

where the sum over shifts of φ are by arbitrary integer steps of 2i. The quantities φs, φt

and φu are given by

φs = σsφ
1 − 2ip0ρsσs − ip1σs(2υs − 2υt − 2υu + 1) , (6.45)

with φt and φu related by triality. The resulting integral is supposed to be a function

of φ0, φ1, φ2, φ3, and of the charges p0, p1, p2, p3, but this feature is no longer manifest in

the expression (6.44). Unlike in the N = 4 models, it is a non-trivial task to explicitly

evaluate the integral, although it should, for instance, be possible to use a saddle-point

approximation and make contact with semiclassical predictions.

Note added. Meanwhile this problem has been addressed in [66].

7. Conclusion

In this paper we demonstrated that non-holomorphic corrections are crucial for obtaining

a BPS black hole free energy that is manifestly invariant under duality transformations.

In our approach, these corrections are encoded in a single real homogeneous function Ω,

in order to ensure that the attractor equations will still follow by requiring stationarity

of the free energy. We presented evidence that these corrections describe a consistent

non-holomorphic deformation of special geometry. The precise relationship between the

non-holomorphic terms encoded in Ω and the effective supersymmetric action remains to

be worked out.

In the context of N = 2 models with exact duality symmetries, such as the FHSV and

the STU models, an explicit evaluation of the non-holomorphic corrections to Ω reveals that
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these are related to, but quantitatively different from the non-holomorphic corrections to

the topological string. This difference may be related to the Legendre transformation that

transforms the holomorphic prepotential of complex special geometry into the real Hesse

potential of real special geometry. The latter is related to the BPS black hole free energy

and therefore manifestly duality invariant. It would be very interesting to investigate

this further.

Duality invariance of the black hole partition function also requires the presence of

a non-trivial integration measure when writing the BPS degeneracies in the form of an

inverse Laplace transform over a mixed partition function [5]. We gave a prediction for

the measure factor for a class of N = 2 black holes using semiclassical arguments, which,

however, disagrees with the results for string compactifications based on compact Calabi-

Yau manifolds at strong topological string coupling [15]. A direct test of our semiclassical

prediction for the measure factor requires knowledge of the exact microscopic state degen-

eracy. When confronting our macroscopic results for large and small black holes in the

STU model with the microstate degeneracy proposal of [31], we identify a number of subtle

issues that to us indicate the need for a better understanding of the microstate degeneracy

of the STU model.
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[19] G.L. Cardoso, B. de Wit, J. Käppeli and T. Mohaupt, Asymptotic degeneracy of dyonic

N = 4 string states and black hole entropy, JHEP 12 (2004) 075 [hep-th/0412287].

[20] D.P. Jatkar and A. Sen, Dyon spectrum in CHL models, JHEP 04 (2006) 018

[hep-th/0510147].

[21] J.A. Harvey and G.W. Moore, Fivebrane instantons and R2 couplings in N = 4 string theory,

Phys. Rev. D 57 (1998) 2323 [hep-th/9610237].

[22] J.A. Harvey and G.W. Moore, Exact gravitational threshold correction in the FHSV model,

Phys. Rev. D 57 (1998) 2329 [hep-th/9611176].

[23] A. Gregori et al., R2 corrections and non-perturbative dualities of N = 4 string ground states,

Nucl. Phys. B 510 (1998) 423 [hep-th/9708062].

[24] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and

exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311

[hep-th/9309140].

– 43 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C106007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C106007
http://arxiv.org/abs/hep-th/0405146
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C241301
http://arxiv.org/abs/hep-th/0409148
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2C74%2C311
http://arxiv.org/abs/hep-th/0502211
http://jhep.sissa.it/stdsearch?paper=10%282005%29096
http://arxiv.org/abs/hep-th/0507014
http://jhep.sissa.it/stdsearch?paper=04%282006%29034
http://jhep.sissa.it/stdsearch?paper=04%282006%29034
http://arxiv.org/abs/hep-th/0508174
http://jhep.sissa.it/stdsearch?paper=09%282006%29034
http://jhep.sissa.it/stdsearch?paper=09%282006%29034
http://arxiv.org/abs/hep-th/0512189
http://jhep.sissa.it/stdsearch?paper=03%282006%29074
http://arxiv.org/abs/hep-th/0601108
http://jhep.sissa.it/stdsearch?paper=09%282007%29050
http://arxiv.org/abs/hep-th/0602046
http://arxiv.org/abs/hep-th/0608021
http://jhep.sissa.it/stdsearch?paper=11%282006%29024
http://arxiv.org/abs/hep-th/0608059
http://arxiv.org/abs/hep-th/0702146
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB567%2C87
http://arxiv.org/abs/hep-th/9906094
http://arxiv.org/abs/hep-th/0412139
http://jhep.sissa.it/stdsearch?paper=07%282005%29063
http://arxiv.org/abs/hep-th/0502126
http://jhep.sissa.it/stdsearch?paper=12%282004%29075
http://arxiv.org/abs/hep-th/0412287
http://jhep.sissa.it/stdsearch?paper=04%282006%29018
http://arxiv.org/abs/hep-th/0510147
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD57%2C2323
http://arxiv.org/abs/hep-th/9610237
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD57%2C2329
http://arxiv.org/abs/hep-th/9611176
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB510%2C423
http://arxiv.org/abs/hep-th/9708062
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C165%2C311
http://arxiv.org/abs/hep-th/9309140


J
H
E
P
0
2
(
2
0
0
9
)
0
0
6

[25] B. de Wit, Variational principles for BPS black hole entropy, talk given at Workshop on

gravitational aspects of string theory, May 2 2005; Supersymmetric black hole partition

functions, talk given at Strings 05, Toronto July 11 2005

[http://www.fields.utoronto.ca/audio/05-06/strings/wit/index.html].

[26] B. de Wit, BPS black holes, Nucl. Phys. 171 (Proc. Suppl.) (2007) 16 [arXiv:0704.1452].

[27] A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Exact and asymptotic degeneracies of

small black holes, JHEP 08 (2005) 021 [hep-th/0502157].

[28] S. Ferrara, J.A. Harvey, A. Strominger and C. Vafa, Second quantized mirror symmetry,

Phys. Lett. B 361 (1995) 59 [hep-th/9505162].

[29] A. Sen and C. Vafa, Dual pairs of type-II string compactification, Nucl. Phys. B 455 (1995)

165 [hep-th/9508064].

[30] A. Gregori, C. Kounnas and P.M. Petropoulos, Non-perturbative triality in heterotic and

type-II N = 2 strings, Nucl. Phys. B 553 (1999) 108 [hep-th/9901117].

[31] J.R. David, On the dyon partition function in N = 2 theories, JHEP 02 (2008) 025

[arXiv:0711.1971].

[32] I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Topological amplitudes in string theory,

Nucl. Phys. B 413 (1994) 162 [hep-th/9307158].

[33] M.K. Gaillard and B. Zumino, Duality rotations for interacting fields, Nucl. Phys. B 193

(1981) 221.

[34] B. de Wit, Electric-magnetic duality in supergravity, Nucl. Phys. 101 (Proc. Suppl.) (2001)

154 [hep-th/0103086].

[35] A. Sen, Walls of marginal stability and dyon spectrum in N = 4 supersymmetric string

theories, JHEP 05 (2007) 039 [hep-th/0702141].

[36] A. Dabholkar, D. Gaiotto and S. Nampuri, Comments on the spectrum of CHL dyons, JHEP

01 (2008) 023 [hep-th/0702150].

[37] A. Sen, Two centered black holes and N = 4 dyon spectrum, JHEP 09 (2007) 045

[arXiv:0705.3874].

[38] M.C.N. Cheng and E. Verlinde, Dying dyons don’t count, JHEP 09 (2007) 070

[arXiv:0706.2363].

[39] F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049].

[40] F. Denef, B.R. Greene and M. Raugas, Split attractor flows and the spectrum of BPS

D-branes on the quintic, JHEP 05 (2001) 012 [hep-th/0101135].

[41] M.-x. Huang, A. Klemm, M. Mariño and A. Tavanfar, Black holes and large order quantum

geometry, arXiv:0704.2440.

[42] S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52

(1995) 5412 [hep-th/9508072].

[43] A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996)

39 [hep-th/9602111].

[44] S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514

[hep-th/9602136].

– 44 –

http://www.fields.utoronto.ca/audio/05-06/strings/wit/index.html
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C171%2C16
http://arxiv.org/abs/0704.1452
http://jhep.sissa.it/stdsearch?paper=08%282005%29021
http://arxiv.org/abs/hep-th/0502157
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB361%2C59
http://arxiv.org/abs/hep-th/9505162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB455%2C165
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB455%2C165
http://arxiv.org/abs/hep-th/9508064
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB553%2C108
http://arxiv.org/abs/hep-th/9901117
http://jhep.sissa.it/stdsearch?paper=02%282008%29025
http://arxiv.org/abs/0711.1971
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB413%2C162
http://arxiv.org/abs/hep-th/9307158
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB193%2C221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB193%2C221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C101%2C154
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C101%2C154
http://arxiv.org/abs/hep-th/0103086
http://jhep.sissa.it/stdsearch?paper=05%282007%29039
http://arxiv.org/abs/hep-th/0702141
http://jhep.sissa.it/stdsearch?paper=01%282008%29023
http://jhep.sissa.it/stdsearch?paper=01%282008%29023
http://arxiv.org/abs/hep-th/0702150
http://jhep.sissa.it/stdsearch?paper=09%282007%29045
http://arxiv.org/abs/0705.3874
http://jhep.sissa.it/stdsearch?paper=09%282007%29070
http://arxiv.org/abs/0706.2363
http://jhep.sissa.it/stdsearch?paper=08%282000%29050
http://arxiv.org/abs/hep-th/0005049
http://jhep.sissa.it/stdsearch?paper=05%282001%29012
http://arxiv.org/abs/hep-th/0101135
http://arxiv.org/abs/0704.2440
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C5412
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C5412
http://arxiv.org/abs/hep-th/9508072
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB383%2C39
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB383%2C39
http://arxiv.org/abs/hep-th/9602111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C1514
http://arxiv.org/abs/hep-th/9602136


J
H
E
P
0
2
(
2
0
0
9
)
0
0
6

[45] A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity,

JHEP 09 (2005) 038 [hep-th/0506177].

[46] B. Sahoo and A. Sen, Higher derivative corrections to non-supersymmetric extremal black

holes in N = 2 supergravity, JHEP 09 (2006) 029 [hep-th/0603149].

[47] G.L. Cardoso, B. de Wit and S. Mahapatra, Black hole entropy functions and attractor

equations, JHEP 03 (2007) 085 [hep-th/0612225].

[48] L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to

gauge coupling constants, Nucl. Phys. B 355 (1991) 649.

[49] K. Behrndt et al., Classical and quantum N = 2 supersymmetric black holes, Nucl. Phys. B

488 (1997) 236 [hep-th/9610105].

[50] B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged N = 2

supergravity: Yang-Mills models, Nucl. Phys. B 245 (1984) 89.
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