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1

Introduction

Any comprehension is only the placing of the essence of life under the
laws of reason.

Leo Tolstoi, War and Peace

But men love abstract reasoning and neat systematization so much that
they think nothing of distorting the truth, closing their eyes and ears to
evidence to preserve their logical constructions.

Fyodor Dostoevsky, Notes from the Underground

Consider the act of parricide. Its infamy is so widespread that Fyodor Dos-
toevsky used the theme of killing one’s own parent to write a novel that would
explore the depths of human morality. Dostoevsky’s Brothers Karamazov tells the
story of Mitya Karamazov, a tempestuous man accused of having murdered his
father, Fyodor Karamazov. The question of whether Mitya was in fact respon-
sible is what drives the arches of the novel’s major characters, each confronted
with—and somewhat tortured by—the urge of figuring out who should be pun-
ished for the killing. For instance, Mitya’s brother—Ivan—loses his mind trying
to decide his own degree of responsibility. Likewise, the trial of Mitya forces the
other characters—and us readers with them—to reflect on the significance of a
defendant’s mental states in the ascription of culpability.

Now consider the other side of the spectrum. Think of Irena Sendler, Eugene
Lazowski, Nicholas Winton, or Oskar Schindler. These people devised efficient
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methods to save Jewish citizens from the Nazi during the Holocaust.1 Most of
us deem their deeds commendable if not heroic, and all were decorated for their
humanitarianism. Although none operated individually, history has come to see
them as responsible for having saved many lives in World War II.

These two examples say something important about human societies: some
acts unavoidably call for the investigation of the people responsible for performing
them.2 In this thesis, I study the concept of responsibility. Addressing such
a complex phenomenon is no easy task, and over the years a wide variety of
approaches have taken up the challenge. The one adopted here is of a formal
nature. This means that I use Mathematics and Logic to analyze the immensely
broad, immensely pervasive notion of responsibility. To clarify the targets (and
limits) of my work, the present introductory chapter is devoted to discussing the
following points:

(a) The thesis’s main topics: responsibility, agency, knowledge, belief, inten-
tions, and obligations.

(b) The goal underlying my treatment of the main topics: creating a theory of
responsibility.

(c) The tools and methodology used: logics with sound and complete proof
systems.

(d) My motivation: to help in the design and verification of symbolic ethical AI.

1Irena Sendler was a Polish nurse that smuggled Jewish children out of the Warsaw Ghetto and
sheltered them with local families or in orphanages. Although she was arrested and tortured by
the Gestapo, she never revealed the children’s location. Eugene Lazowski was a Polish doctor who
inoculated the population of the town of Rozwadów with a strain of bacteria that made them test
positive for typhus without actually having the disease. Thus, he faked an outbreak of typhus in said
town and led the Germans to enforcing a quarantine of its people. This saved around 8000 persons
from being sent to concentration camps. Nicholas Winton was a British banker that led an operation
to rescue 669 children, mostly Jewish, from Czechoslovakia right before the start of World War II. He
allocated the children with foster families and arranged for their safe travel to the UK. Oskar Schindler
was a German company-owner that saved the lives of 1200 Jews in occupied Poland. These people
were employees at enamelware factories that he owned, and he managed to save them by bribing SS
officials in order to prevent their execution.

2To ascribe responsibility of an act to a person often implies one of two social intents: the intent
to reprimand the person—if the act is generally condemned—or the intent to honor them—if the act
is appreciated. When someone is held responsible for a deplorable act, that person is thought of as
being blameworthy, and when someone is held responsible for a commendable act, they are thought
of as being praiseworthy. Blameworthy people are sanctioned for whatever activity they engaged in
that led to their being blamed, and praiseworthy people are decorated accordingly. This is part of
a scheme, common to most human societies, where some kinds of actions are discouraged—by the
sanctions given to blameworthy actors—and some kinds of actions are promoted—by the decorations
awarded to praiseworthy actors.
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(e) The overall position of the thesis in the academic literature.

In short, I aim to build a formal theory of responsibility. The main tool used
toward this aim is Logic—and, more specifically, modal logic. The underlying
motivation is to provide theoretical foundations for symbolic techniques in the
development of ethical AI. Thus, this work means a contribution to the research
fields known as formal philosophy and symbolic AI.

1.1 Components of Responsibility

As for point (a), the main topic of this thesis is responsibility. Being an intricate
concept, I opt to work with the following operational definition:

Responsibility: a relation between the agents and the states of affairs of
an environment, such that an agent is responsible for a state of affairs iff
the agent’s degree of involvement in the realization of that state of affairs
warrants blame or praise (in light of a given normative system).3

As such, I focus on what the literature refers to as backward-looking responsibility
(van de Poel, 2011), where an agent is considered to have produced a state of affairs
that has already ensued and lies in the past. For instance, when a judge is trying
a murder case and wants to find out who is responsible for doing the killing, the
kind of responsibility considered is backward-looking responsibility. In contrast,
forward-looking responsibility is responsibility that an agent has when expected to
comply with the duty of bringing about a state of affairs in the future. When a
student has to write an essay before its due date, this is the kind of responsibility
that is being considered. My analysis of backward-looking responsibility, then,
starts with a basic proposal of (i) decomposing its operational definition into specific
components, and (ii) classifying different kinds of responsibility according to the
decomposition.

As for the decomposition, consider the following list of components of respon-
sibility:

– Agents within an environment: the so-called bearers of responsibility, the
authors of actions, the actors. While agents are typically assumed to be

3A normative system is a system of unified norms that guides some activity—for instance, judicial
law, that guides social life, or the rules of football. For the definition of the concept ‘normative system’
used in this thesis, the reader is referred to Raz (1999). For formal treatments of normative systems in
the same tradition of my work, the reader is referred to Ågotnes, van der Hoek, Rodríguez-Aguilar,
Sierra, and Wooldridge (2007) and Boella, van der Torre, and Verhagen (2006), for instance.
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persons, computer programs, or robots, the environment is thought of as
the physical and temporal stage on which agents interact—for instance, the
world, the universe, or a specific domain of states. Thus, my interpretation
of the term agent is best identified with what scholars have called intentional
systems (van der Hoek & Wooldridge, 2008), meaning goal-directed entities
whose activity (and presence) changes the environment and is accompanied
by mental states.4

– Actions: the processes by which agents bring about states of affairs in the en-
vironment. For a given action, the states of affairs that it causes are known as
the action’s effects, and they typically change the environment in some way.
In the philosophical literature, it is common to refer to the phenomenon by
which agents choose and perform actions—with the accompanying mental
states—as agency (see, for instance Schlosser, 2019). Thus, from here on,
whenever I use the term ‘agency,’ I will be referring to this phenomenon.

– Knowledge and belief: mental states that concern the information available
in the environment. These states are components of responsibility insofar
as they explain agents’ particular choices of action, and they provide justi-
fications for situations in which an agent cannot comply with some rule of
a normative system.

– Intentions: mental states that determine whether an action was done with
the purpose of bringing about its effects. The idea is that, even if an action
was consciously performed by an agent, it might still have been out of the
agent’s will to perform it, something that happens, for instance, if someone
else forced the agent’s hand. Intentions are components of responsibility
insofar as agents can be excused for doing something when their actions
were unintentional.

– Ought-to-do’s: the actions that agents should perform, complying to the
codes of a normative system. Such a normative system can be moral, judicial,
or legal, for instance, and it is according to its tenets that agents can be either
blamed or praised for bringing about some state of affairs. In other words,
obligations or oughts-to-do’s make up a context that provides a criterion for
deciding whether an agent should be blamed or praised. The intuition is

4In the context of computer science and AI, Jennings (2000, p. 280) wrote: “an agent is an en-
capsulated computer system that is situated in some environment and that is capable of flexible,
autonomous action in that environment in order to meet its design objectives.”
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that agents are praiseworthy only if they complied with a deontic obligation
and blameworthy only if they failed to comply. I refer to such a context as
the deontic context of responsibility.

These components are the sub-topics that I study in the thesis’s chapters. The
idea is to integrate them into a formalism that characterizes responsibility in clear
terms and that offers a paradigm of systematic blame-or-praise assignment.

As for the classification of different kinds of responsibility, it follows Broersen’s
(2011a) proposal of three categories of responsibility (see also Duijf, 2018, Introduc-
tion), where the different categories directly correlate with the components of the
decomposition:

1. Causal responsibility: an agent is causally responsible for a state of affairs
iff the agent is the material author of the state of affairs, meaning that the
agent has physically caused it.5 The component of responsibility that this
category involves is agency.

2. Informational responsibility: an agent is informationally responsible for a state
of affairs iff the agent is the material author and it behaved knowingly, or
consciously, while bringing about the state of affairs. The components that
this category involves are agency, knowledge, and belief.

3. Motivational responsibility: an agent is motivationally responsible for a state
of affairs iff the agent is the material author and it behaved knowingly and
intentionally while bringing about the state of affairs. The components that
this category involves are agency, knowledge, belief, and intentions.

1.2 Logic-Based Formalization of Responsibility

Let me proceed with this introductory chapter’s points (b) and (c), that respec-
tively concern the thesis’s main goal and the tools/methodology employed toward
reaching this goal.

The Goal

Simply stated, the goal is to provide a logic-based framework to reason about re-
sponsibility. More specifically, I intend to use logic-based languages and models
to characterize Broersen’s three categories of responsibility as formulas evaluated

5This terminology follows criminal law’s usual distinction between material/immediate and intel-
lectual/mediate authors (see, for instance, van Sliedregt, 2012, Chapter 6).
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on the models. The idea is to treat each component of responsibility (agency,
knowledge, belief, intention, and obligation) as a modality of modal logic. For
instance, if φ is a formula and α is an agent, then modalities of the form [α]φ,
Kαφ, Iαφ, and ⊙αφ will be used to express that α does φ, α knows φ, α intends
φ, and α is obligated to do φ, respectively. Semantics for these modalities will
be given on mathematical models designed to capture essential properties of the
components—or at least properties that the philosophical literature has consid-
ered to be significant. Then, adopting a compositional approach, these basic
modalities will be used to build complex formalizations of the categories of re-
sponsibility.

The Tool

As implied in the statement of my goal, the thesis’s main tool is Logic. What
do I mean when I say Logic? Well, I refer to a family of syntax-and-semantics
systems and to the discipline of using this family to study a target phenomenon.
In what follows, I use the term Logic—with capital ‘L’—to refer to the full family
of systems, and the term logic—with lowercase ‘l’—to refer to a particular system
within the family, where in this case I usually modify the term with an article
(for example, ‘a logic of. . . ,’ or ‘the logic of. . . ’). Any such syntax-and-semantics
system is defined as follows:

Definition 1.1. A logic (or logic system) is a tuple of the form ⟨L,C⟩, where

• L is a set of linguistic expressions, known as the logic’s object language. The
elements of this set are known as formulas. These formulas are combinations of
symbols according to a specific grammar, meaning a set of rules that determines
which combinations of symbols are part of the language and which are not.

• C is a class of mathematical structures (such as sets, orders, trees, topological spaces,
etc.) known as models, on which the formulas of the logic’s object language are
interpreted or evaluated. To clarify, for a modelM ∈ C, an interpretation assigns
to each formula in L a set of elements inM, according to specific rules—known as
truth conditions—that are designed to give meaning to the formulas.

Narrowing down the description, I focus on modal logic. Modal logic is a sub-
family of Logic where the languages include expressions that are built by applying
operators to formulas in order to characterize diverse modalities. According to
Garson (2021) “[a] modality is an expression (like ‘necessarily or ‘possibly’) that
is used to qualify the truth of a judgement.” For instance, suppose that p denotes
a proposition—with a particular truth value on a given model. One can apply
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the operator □ on p to express the alethic modality of p, so that □p stands for
‘p is necessary.’ Then, one can test for □p’s truth value, on the same model, by
checking whether the model meets a predetermined semantic rule that reflects
the notion of necessity.6

Narrowing down the discussion even further, my study relies on a class of
modal logics that is widely known as stit theory. Developed in a series of important
papers during the late twentieth century (Belnap & Perloff, 1988; Belnap, Perloff,
& Xu, 2001; Chellas, 1969, 1992; Perloff, 1991; von Kutschera, 1986), stit theory—
where the acronym ‘stit’ stands for ‘seeing to it that’—was introduced with the
purpose of formalizing agency. Although Chapter 2 is dedicated in its entirety to
the presentation of stit theory, it should be enlightening to already mention why I
chose this class to formalize responsibility.

The question ‘why this tool?,’ however, can encompass more than just stit the-
ory. It also applies to my choice of modal logic and even of Logic itself. Giving an
answer, then, will help me voice an intuition that is generally taken for granted
in most works of applied logic: that the formalization of complex phenomena
using logic-based languages and mathematical models is highly beneficial for the
understanding of such phenomena. It is not about “preserving logical construc-
tions” just for the sake of it (as one of this introduction’s epigraphs says). It is
about aiding in the comprehension of multifaceted, involute concepts. Thus, let
me address the following three questions: ‘why Logic?,’ ‘why modal logic?,’ and
‘why stit theory?’

As for the first question, the fundamental reason for using Logic is that this
discipline takes to its purest form the processes of (a) describing a phenomenon
representation’s and (b) making inferences based on these descriptions. As hu-
mans, we are faced with a wide variety of phenomena for whose understanding
we find an equally wide variety of motives. In the task of understanding these
phenomena, we typically first engage in a series of representations of them—for
example, mental, linguistic, or mathematical. We then use linguistic constructs
(for example, any human language) to describe these representations, combining
representations in a compositional procedure for which certain conventions (for
example, the rules of grammar for any language) prevail. The linguistic descrip-
tions take meaning in those representations and in the entities that they make
reference to. Thus, a description can be true or false, accurate or inaccurate, and
likely or unlikely, in our physical world. On the basis of this scheme of repre-

6Other typical modalities in the literature on modal logic are epistemic modalities (‘it is known
by. . . that. . . ’), temporal modalities (‘it has always been the case that. . . ,’ ‘it will be the case that. . . ’),
and deontic modalities (‘it ought to be the case that. . . ’) (see, for instance Ballarin, 2017; Blackburn,
De Rijke, & Venema, 2002).
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sentation, description, and meaning, we build inferences about the phenomenon
at hand, and we communicate said descriptions and inferences with the aim of
furthering our understanding of it.7

It is my firm conviction that Logic, understood as the aforementioned fam-
ily of syntax-and-semantics systems, is a powerful abstraction of these human
processes. For a target phenomenon, (a) the representations are given by math-
ematical models, (b) the descriptions are given in terms of formulas of an object
language, and (c) the inferences are built according both to standard laws of
formal reasoning and to sets of axiomatic rules. I see three main advantages
of this abstraction, and I cite them as reasons for my choosing Logic to study
responsibility:

1. Wide range of applicability: Logic is an enormous family of systems, and each
of these systems admits a high degree of flexibility in terms of (a) possible
instantiations of formulas and (b) possible interpretations for the elements
in the system’s models. Therefore, Logic can be applied to reason about an
enormous amount of phenomena.8

2. Generalization & automation: once that we have settled on the phenomenon
to be studied using Logic, the apparatus of mathematical modelling (the
semantic component) allows us to draw conclusions about any instance of
the phenomenon. In other words, statements that are shown to be valid for
a specified class of models will be statements that are appropriate for, per-
tinent to, or significant in any instance of the phenomenon that we manage
to represent with one of the models of the class. Therefore, Logic is a tool of
outstanding power for doing generalizations and for automating processes.

To illustrate the benefits for generalization, consider the general theory of
relativity. In essence, it says that we can model the universe as a fourth-
dimensional pseudo-Riemannian manifold whose curvature is affected by

7To illustrate the processes mentioned in this paragraph, think of an apple. When we think of an
apple, we inevitably resort to a mental representation of an entity that we associate with the word
‘apple.’ To better understand this apple, we describe its representation. Consider the phrases ‘the
apple is red’ and ‘the apple was green at the beginning of its cycle,’ for instance. They are descriptions
of the apple, they involve representations other than that of the apple, and they are built using
the conventions of natural language. Relative to the particular apple that these phrases pretend to
describe, we assign some meaning to them and regard them as either true or false. Now consider the
phrases ‘all apples are green at the beginning of their cycle’ and ‘all apples become red before falling
from trees.’ They are inferences made on the basis of the first descriptions, and they also take meaning
in the form of truth or falsity.

8Some areas of applied logic are, for instance, philosophical logic (to reason about philosophical
issues and doctrines), computational logic (to reason about computation), and any theory involving
formal modelling—such as formal methods in computer science, logic-based decision- and game
theory, epistemic game theory, etc.
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matter according to Einstein’s field equations. Therefore, any knowl-
edge that we have about pseudo-Riemannian manifolds, about Lorentzian
manifolds (i.e., pseudo-Riemannian manifolds whose metric tensor has a
signature similar to the one of the spacetime continuum), about fourth-
dimensional Lorentzian manifolds, and about systems of partial equations,
to say the least, is bound to yield some knowledge about the universe—or
at least about the representation of the universe given by general relativity.

To illustrate the benefits for automation, consider the Monte Carlo Tree Search
algorithm for chess-playing computer programs. Here, the possibilities in a
game of chess are modelled as a tree, where nodes represent board positions.
The branches of the game-tree are valued according to whether they promote
winning, and on the basis of those values a chess-playing program optimizes
its performance by following certain rules. Thus, the rules underlying the
program automate its behavior into that of a competent chess player.

3. Clarity: once that we have settled both on the phenomenon to be studied
and on the logic to be used, one of the greatest benefits of explicitly spelling
out the syntax and the semantics of this logic is the minimization of ambi-
guity. The specification of a logic implies the rigorous definition of three
aspects: (1) the grammar of its language—that determines how to construct
admissible linguistic expressions, (2) the models on which said linguistic
expressions are interpreted, and (3) the truth conditions that make up a par-
ticular interpretation. In other words, we rule out (1) expressions that are
not built according to the system’s grammar, (2) representations that do not
meet the conditions of the system’s class of models, and (3) interpretations
of the linguistic expressions that do not adhere to the truth conditions. All
these exclusions amount to a razor-sharp definition of the logic, with little
room for ambiguity regarding its components. And this directly translates
into little room for ambiguity regarding the knowledge rendered about the
phenomenon at hand.

To illustrate Logic’s benefits for clarity, consider once again the general
theory of relativity. To decrease ambiguity in the expression of the physi-
cal consequences that a body with mass has in the universe, the physical
magnitude known as ‘mass’ was identified with a component of a tensor
(called the energy-momentum tensor). A tensor is an algebraic construct
with inherent mathematical properties, and the formulation of the theory
of gravitation that comes with general relativity is given precisely in the
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terminology of tensors. Thus, once the rigorous mathematical definitions
for the terms ‘manifold’ and ‘tensor’ are established, there is little room for
ambiguity as to what ‘mass’ means in said theory of gravitation.

As for the second question, the main reason for my choice of modal logic is,
to put it bluntly, tradition. Many twentieth century philosophers realized that
symbolic modal logic is suitable for characterizing the agentive qualities that I
listed as components of responsibility (see, for instance, Fagin, Moses, Halpern,
& Vardi, 1995; Hintikka, 1962; Perloff, 1991; Prior & Prior, 1955; von Wright, 1951).
Much work has been done in this line of research, and I considered it an act of
wisdom to ‘stand on the shoulders of giants,’ so to speak, and take advantage of
the intuitions, methods, and results of applied modal logic.9

As for the third question, there are three main reasons for my choice of stit
theory. The first is of a conceptual nature, the second revolves around the rep-
resentational power of stit-theoretic semantics, and the last involves stit theory’s
connections with other fields:

1. Agency is central to responsibility: as implied by the decomposition on p. 3,
agency and its effects lie at a basic level in the analysis of responsibility.
Thus, my study demands a powerful—and expressive—logic of agency.
Stit theory fits the bill.

2. Simplicity, flexibility, and specificity of the models: stit models are simple because
they largely rely on standard modal logics—including temporal logics (see
Chapter 2 for the detailed definition of stit models); they are flexible as they
can be extended to include epistemic and deontic concepts; and they are
specific as they can be used to model fine-grained details in scenarios of
interdependent decision-making and/or multi-agent interaction (something
that is illustrated by all the examples in this thesis).

3. Connection with other theories: it is well-known that stit theory bears a close
connection, both conceptually and technically, with many other formalisms.
This leads to a fruitful back-and-forth exchange of results, viewpoints, and
applications. To clarify, over the last two decades researchers have shown
that one can draw bridges between stit theory and theories such as dy-
namic logic (Canavotto, 2020; Herzig & Lorini, 2010; Horty, 2019; van Ben-
them & Pacuit, 2014), coalition logic (Broersen, Herzig, & Troquard, 2006b),

9A historical note seems suitable: Hintikka (1962) was the first to apply Kripke’s modal logic in
the formalization of knowledge and belief, thus giving birth to the class of the so-called epistemic and
doxastic logics; von Wright (1951), for his part, adapted basic modal logic into a theory of oughts, that
signified the birth both of deontic logic and of the family of logics of action. In the broadest sense,
these are the fields that constitute the basis of this thesis.
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alternating-time temporal logic (Broersen, Herzig, & Troquard, 2006a), and
decision- & epistemic game theory (Abarca & Broersen, 2021a; Duijf, 2018;
Tamminga, 2013), among others. Consequently, one can incorporate the
concepts native to these fields into stit-theoretic analyses. For instance, due
to the mentioned connections, stit theory has enough room to incorporate
labelled actions and programs (from dynamic logic), the notion of ability of
a group of agents (from coalition- and alternating-time temporal logic), the
process of information disclosure in interdependent decision contexts (from
epistemic game theory), the choice rules for decision makers (from decision
theory), etc.10 To be sure, all these ideas are highly relevant when it comes
to formalizing responsibility.

The Methodology

How will I use stit theory to formalize responsibility, then? My methodology
consists in the development of stit logics to reason about the interplay between
the components of responsibility given on p. 3. Afterwards, these logics will be
integrated into a framework that is rich enough to provide characterizations for
Broersen’s three categories of responsibility. If responsibility is the topic, formaliza-
tion the goal, and Logic the tool, then the basis of the methodology lies in studying
the properties of the components of responsibility by means of formulas that are
valid (and some that are invalid) with respect to specific classes of stit models. A
formula is valid with respect to a class of models iff it is true at every point in every
model of the class, and it is invalid iff it is not valid. Thus, suppose that one man-
ages to characterize the components of responsibility with modalities evaluated
on (semantically appealing) stit models; then valid formulas are general truths
that capture essential attributes of the modalities, and invalid formulas set down
limits that distinguish the characterization from other possible formalizations.

One major contribution of this thesis is finding sound and complete proof
systems for the aforementioned logics. The reason is that sound and complete
systems enhance the analysis (and exposition) of valid/invalid formulas.11 For a
given modal logic, a proof system—also known as axiom system—is a collection
of formulas of the logic’s language such that (a) it includes a set of axioms, and such
that (b) it is closed under so-called rules of inference. The axioms are a selection of
formulas that capture basic qualities of the modalities, and the rules of inference
allow us to prove new formulas, called theorems. A proof system is said to be

10I elaborate on these extensions in Chapter 2’s Section 2.4.
11In the examination of a philosophical concept’s main properties, the development of sound and

complete proof systems is one of the most common practices of applied logic (Garson, 2021).
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sound with respect to a class of models if every theorem is a valid formula on the
class of models; a proof system is said to be complete with respect to a class of
models if every valid formula on the class is a theorem of the proof system—i.e.,
provable from the axioms. In other words, for a class of models, a sound proof
system generates only valid formulas, and a complete proof system generates all
the valid formulas. For a given modal logic, a sound and complete proof system
is known as an axiomatization of the logic, so that finding an axiomatization is
otherwise known as axiomatizing the logic.

For most works of applied logic, one of the two following alternatives ap-
plies: either (i) a justification for why axiomatizations are appropriate is over-
looked, because there exists a mostly silent and unchallenged agreement that
“[d]emonstrating soundness & completeness of formal systems is a logician’s
central concern” (Garson, 2021); or (ii) authors shy away from axiomatization and
soundness & completeness, most likely under a not unpopular view that in theo-
retical philosophy these practices have “become largely ‘l’art pour l’art’” (Enqvist,
2005, p. 1, emphasis in original). Therefore, in what follows I explicitly mention
why axiomatization is important in my study of responsibility.

The significance of soundness & completeness results in the literature on Logic
highlights the weight that logicians give to the relation between syntax and se-
mantics. For a given logic, a soundness result provides a guarantee that whenever
one applies a rule or uses an axiom from the sound proof system then the result
will be a valid formula. In turn, a completeness result is a guarantee that all valid
formulas are provable. Thus, a sound and complete proof system includes only
truths and all the truths (that can be expressed with the logic’s language) about
the class of models at hand. In the discipline of Logic (and specially in modal
logic), the usefulness of having sound and complete systems is considerable, and
although some benefits are more akin than others to formalizing responsibility, the
common thread between them is that soundness & completeness results connect
different classes of models ‘through’ the proof systems.

A brief historical note seems suitable. According to Blackburn et al. (2002,
Chapter 1), there are three phases in the development of modal logic: the syntac-
tic era (1918-1959), the classical era (1959-1972), and the modern era (1972-present).
The prevalence, fame, and alleged significance of soundness & completeness re-
sults arose with the transition between the syntactic era and the classical era. As
its name implies, during the syntactic era the approach to doing modal logic—and
this can be said about Logic in general—was syntactic. Researchers and philoso-
phers would reason about systems in terms of their language. Starting from
“intuitions as to what follows from what, at the level of language,” they would
formalize these intuitions by means of axioms and rules of inference (Enqvist,
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2005, p. 13). Thus, even if axioms and rules were devised to characterize some
philosophical notion or some phenomenon of nature, the task of studying and
comparing proof systems was purely linguistic. When in the late 1950’s Kripke
(1959, 1963) and Hintikka (1962) presented relational semantics for modal logics
(introducing the notion of model), this marked a game-changing event that gave
birth to the classical era of modal logic (Blackburn et al., 2002). Modal logicians
realized that one can differentiate proof systems using the classes of models with
respect to which they are sound and complete, and a novel tradition of exploring
proof systems through models ensued. Achieving soundness & completeness
results became a trend thereafter, and the constant feedback between syntax and
semantics began to be seen as one of the strongest suits of applied modal logic.

It is hard to dissociate the relevance of soundness & completeness results in
applied modal logic from the historical evolution of ideas about syntax, semantics,
and axiomatization. Even if during the syntactic era syntax was most important,
the intuitions behind axioms and rules still depended on the intent of formalizing
a target concept—for instance, necessity, knowledge, or belief.12 With the dawn of
the classical era, semantically driven insight started to grow. Since for any target
concept some form of representation is unavoidable, logicians aimed to have a
clear grasp on the relation between the representations (the models), on the one
hand, and the formal linguistic expressions concerning the target concept, on
the other. This led to the practice of rigorously defining classes of mathematical
models so that the truth conditions for the evaluation of formulas would admit
sound and complete axiomatizations. In particular, completeness results ensured
that one could take the discussion about the target concept to the level of models,
knowing that whatever was found to be valid would also be provable in the proof
system.

A popular opinion in applied logic is that, when constructing a logic to for-
malize a target concept, people either (a) start with a proof system and then
find a “matching interpretation that explains and motivates the system” or (b)
start with a semantic structure and then “try to construct a language to reason
about the imagined structure” (Enqvist, 2005, p. 13) (see also Blackburn et al.,
2002; Hansson & Gärdenfors, 1973). In my view, however, there is an important
reciprocity between linguistic and semantic intuitions. To illustrate how semantic
considerations affect the development of proof systems, consider, for instance, the
axiom (p→ (q→ p)) in Mendelson’s (1964) axiomatization of propositional logic.

12The same can be said about propositional logic and first-order logic: they were axiomatized
linguistically, but the properties of their respective languages—their grammar, their axioms, and
their rules—were always meant to represent the process of having a correct argument for reaching a
conclusion from specific premises.
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This axiom clearly reflects both the idea of entailment and the truth condition for
logical implication (given by the truth table for connective →). To illustrate the
influence of syntax while devising semantic interpretations, consider Hintikka’s
(1962) use of possible-world structures to express agentα’s knowledge as a modal-
ity of the form Kαφ. Hintikka based Kαφ on a reflexive and transitive ordering on
a set of possible worlds, precisely so that the principles of factivity of knowledge
(Kαφ → φ) and positive introspection (Kαφ → KαKαφ) were validated. Showing
that a proof system is sound and complete with respect to a class of models, then,
is all about ensuring that the reciprocity between syntax and semantics is correct.
In other words, soundness & completeness results ensure that one can safely move
back and forth between syntactically and semantically driven arguments.

Without digressing further into the philosophy of soundness & completeness
results, I list some important practical reasons for devoting so much work in
this thesis to achieving sound and complete proof systems for the components of
responsibility:

• Clarity (once again): I reinstate that my aim is to study properties of the
components of responsibility by means of formulas that are valid (and some
that are invalid) with respect to a relevant class of stit models. Thus, the most
immediate advantage of spelling out a (sound and complete) proof system
is being transparent: anyone who carefully goes over the list of axioms and
rules of inference is bound to get a better picture of what the fundamental
tenets and inherent limitations of the logic are.

• Soundness & completeness as tools for connecting different classes of models: for
a given proof system, consider the different classes of models such that the
system is sound and complete with respect to each one of them. Formulas
that are found to be valid on one of these classes will also be valid on the rest.
This is very useful, since some of these classes might be (a) easier to work
with than others, (b) smaller in cardinality than others, or (c) simpler than
others. Therefore, one can always use the easier, smaller, or simpler classes—
if any—to reason about (and also generate) valid formulas for the particular
class that one is working with. An example of this can be found in epistemic
logic. The typical proof system for knowledge (commonly known as S4)
is sound and complete with respect to the class of reflexive and transitive
Kripke structures. However, it is also sound and complete with respect to
the class of topological spaces with a straightforward semantics known as
the interior semantics. In particular, it is sound and complete with respect
to the class that includes only the real line (van Bethem & Sarenac, 2004).
Thus, to check whether a formula is valid on the class of all reflexive and
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transitive Kripke-structures, one can show that it is valid on the real line.
Someone experienced in topology of the real line, then, is likely to prefer
working with this single model over considering the whole class of reflexive
and transitive orders.

• Soundness & completeness as a measure of a proof system’s appropriateness for
studying a target concept: when reasoning syntactically about the properties
of a target concept (such as each component of responsibility), it is important
to have a measure of what the set of theorems embodies. A soundness &
completeness result makes it “possible to give a precise and natural meaning
to claims that a proof system generated everything it ought to (for exam-
ple, S4 could now be claimed complete in a genuinely interesting sense: it
generated all the formulas valid on reflexive and transitive frames)” (Black-
burn et al., 2002, Chapter 1, p. 42, terminology adapted). In other words, if
for a target concept a proof system is given without a class of models with
respect to which the system is sound and complete, then it will be hard to
grasp what the theorems are exactly about. Any such class of models is “a
tool for analyzing proof systems: soundness results could distinguish proof
systems, and completeness results could give them nice characterizations”
(Blackburn et al., 2002, Chapter 1, p. 44, terminology adapted).

• Completeness as explanation and as evaluation: paraphrasing Enqvist (2005) and
Hansson and Gärdenfors (1973), a completeness result plays two distinct—
but correlated—roles: (a) it explains a logic, by giving an interpretation that
clarifies the meaning of the proof system’s theorems (see previous point),
and (b) it evaluates the logic, in the sense that if a “strong semantic inter-
pretation” (easy to work with, simple, elegant, etc.) is provided then this
is typically seen as a “virtue of the logic” (Enqvist, 2005, p. 13, terminology
adapted). These two roles are correlated, since a logic whose interpreta-
tions are more explanatory can be seen as better than one with obscure (or
ambiguous) interpretations. To illustrate both roles, suppose that two log-
ics formalizing responsibility are being compared. Their respective proof
systems are similar, but whereas for one of these logics the class of models
that makes its respective proof system complete includes only simple and
straightforward models, for the other logic the class includes only overtly
complicated models. Thus, the former logic can be seen as explaining re-
sponsibility in a simpler and more straightforward manner, so that it is
better suited to formalizing responsibility than the latter.
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Having thus exposed the reasons for my choice of tools and methodology, I
sum up the main ideas of this subsection: with the goal of developing a formal
theory of responsibility, in this dissertation I will provide stit logics for the com-
ponents of responsibility—with sound and complete axiomatizations. I will then
use these logics to characterize Broersen’s three categories of responsibility, thus
building a paradigm for systematic blame-or-praise assignment.

1.3 Responsible Intelligent Systems

Let me address this introductory chapter’s point (d), referring to the motivations
that underlie my approach.

The Motivation

The reader might be wondering why I am invested in developing logic-based
characterizations of responsibility. The main reason is that my work is part of a
research project whose main objective was to create a framework for performing
computational checks on responsibilities of artificially intelligent systems. An
interdisciplinary enterprise lying in the intersection of artificial intelligence, legal
theory, and philosophy, the REINS project (where ‘REINS’ stands for ‘REspon-
sible Intelligent Systems’) (Broersen, 2014b) was part of a growing venture in
modern times: the automation of responsibility-checking in AI. The core idea of
this particular project, then, was that an AI system can be modelled so that its
specifications are fed to checking algorithms in the form of formulas expressing
obligations, risks, abilities, plans, etc.

Both at the level of design and at the level of verification, developing for-
mal characterizations of responsibility is a topic of increasing importance in AI
(see, for instance, Arkoudas, Bringsjord, & Bello, 2005; Calegari, Ciatto, Denti,
& Omicini, 2020; Coeckelbergh, 2020; Pereira & Saptawijaya, 2016). A repre-
sentative of such trends, the REINS project was an ambitious attempt to create
and implement logics of responsibility, tailored to the demand of harnessing au-
tomated/autonomous/intelligent decision-making in cases where decisions have
moral implications.13 The REINS project was divided in three sub-projects, whose
respective goals were (1) creating formal theories of responsibility, (2) integrating

13In broad terms, implementing a logic refers to the practice of designing computer programs
based on the syntax and the semantics of the logic. The goal is to tackle specific problems of said logic,
such as, for instance, checking whether a formula is satisfied, resp. is valid, on a particular model.
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these theories into logic-based approaches to normative systems (such as those
provided by deontic logic), and (3) implementing the resulting formalisms, using
model-checking techniques, to perform automated responsibility-checks.

The contents of this thesis belong to the efforts of sub-projects (1) and (2).
Therefore, the underlying motivation refers to laying theoretical groundwork for
the implementation of logics of responsibility in the development of ethical AI.

1.4 Interdisciplinarity

Finally, I address this introductory chapter’s point (e): the position of the thesis in
the academic literature. Although much of what has been discussed so far should
give the reader an idea about it, it is important to highlight that one of the main
attributes of my research is its interdisciplinary character. In broad terms, this
thesis lies in the intersection between formal philosophy and symbolic AI.

Pelletier (1977, p. 320, terminology adapted) wrote that formal philosophy’s
“methodology can be seen as two-fold: to apply results of Logic in the solution
of philosophical problems, and to extend the apparatus of Logic and Metamathe-
matics so that it can comprehend under its purview more philosophical matters.”
From the field of formal philosophy, then, my work draws heavily on action theory
& logics of action (for aiding in the conceptualization of stit-theoretic agency), formal
epistemology (for modelling knowledge and belief) deontic logic (for incorporating
logics of obligations and ought-to-do’s into stit theory), and decision- & epistemic
game theory (for analyzing interdependent decision contexts).14

Symbolic AI (see, for instance, Calegari et al., 2020; Flasiński, 2016; Haugeland,
1985; Nilsson & Nilsson, 1998) refers to techniques that use explicit models of
knowledge and action in the development of AI systems. To clarify, an intelli-
gent system is typically defined as an entity that can perceive its environment,
can autonomously take actions toward the realization of some goal, and can en-
hance its performance by learning facts about the environment (see, for instance,
Molina, 2020). Symbolic AI’s intuition, then, is that one can create intelligent
systems through the rule-based manipulation of symbols that encode knowledge
and action. In other words, in symbolic AI the rendering of intelligence is gov-
erned by rules that are expressed using particular logics. Within this brand of

14For background texts on action theory & logics of action, the reader is referred to Segerberg (1992),
Segerberg, Meyer, and Kracht (2017), Anscombe (1963), and Belnap et al. (2001). For formal epistemology,
the reader is referred to Fagin et al. (1995), Halpern and Fagin (1989), Hintikka (1962), Stalnaker (2006),
and van Ditmarsch, van der Hoek, Halpern, and Kooi (2015). For deontic logic, the reader is referred to
von Wright (1951), Chellas (1980), and Horty (2001). For decision- & epistemic game theory, the reader is
referred to Osborne and Rubinstein (1994), Perea (2012), Savage (1954), Luce and Raiffa (1957), Pacuit
and Roy (2017), and Steele and Stefánsson (2016).
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artificial intelligence, the paradigm that most influences my work is known as
the agent-oriented—or agent-based—approach (see, for instance, Russell & Norvig,
1995; Shoham, 1993; Wooldridge & Jennings, 1995). Different types of agents are
relevant in AI: intelligent agents (able to perceive, change, and learn about their
environment with some objective), autonomous agents (able to control their be-
havior), and multi-agent systems or MAS (multiple intelligent agents that work
together to achieve an objective). Thus, from agent-based symbolic AI my work
draws heavily on the sub-fields known as agentive knowledge representation (for
representing information that a computational agent can use to solve complex
tasks), agent-based modelling (to simulate the behavior of interacting agents), and
logics for multi-agent systems (to model a group of agents’ concurrent/sequential
interaction in the solution of concrete problems).15

All the mentioned sub-fields—from both formal philosophy and symbolic
AI—share a central aspect of this thesis’s methodology: the practice of formal
modelling. According to Duijf (2018, Chapter 1, p. 9), this practice refers to build-
ing “mathematical models that are intended to represent relevant features and
their interplay, relying on a back-and-forth interaction between such models and
educated intuitions.” Even if these models are idealizations of particular cases,
they are immensely helpful in analyzing complex scenarios. In the present study,
formal models are used to clarify philosophical ideas, to ground and illustrate
conceptual theories, and to provide a tool that would help in the design and
verification of AI.

1.5 Outline

The thesis is organised as follows:

Chapter 2: Agency
This chapter presents and discusses at length stit theory, the powerful logic

of action that is the bedrock of all other logics in the thesis. Thus, after a brief
review of the main philosophical ideas about actions and agency, stit theory’s basic
syntax and semantics are thoroughly examined. On the one hand, the language
of the logic includes atomic propositions and formulas induced by applying two
modalities to them: [α]φ to express that α has seen to it that φ, and □φ to express
thatφ is historically settled. On the other hand, the models are based on the theory
of indeterministic branching time (Prior, 1967; Thomason, 1970). Branching time’s
indeterminism relies on the idea that at any moment there are different possible

15For detailed descriptions of these sub-fields of symbolic AI, the reader is referred to Calegari et
al. (2020), Markman (2013), Helbing (2012), and van der Hoek and Wooldridge (2008).
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paths in which the world evolves. Stit theory’s semantics for action, then, assumes
that an agent acts by constraining these possibilities to a definite subset. In this
chapter I illustrate such a semantics with examples, using these examples to also
explain traditional stit-theoretic notions such as ability, refraining, interdependent
decisions in a group of agents, and deliberatively bringing a state of affairs that is
not inevitable.

After exploring these notions, the chapter puts forward a review of the main
logic-based properties of stit theory—in terms of valid/invalid formulas. To en-
hance the analysis, proof systems for both the full logic and its important restric-
tions are introduced. I scrutinize the main metalogic results (soundness, com-
pleteness, decidability) for said proof systems, and I elaborate on a prominent
alternative semantics for stit theory: Kripke semantics.

Finally, the chapter reviews famous extensions of stit theory that are relevant
in the context of modelling responsibility and that provide a background for the
stit-theoretic logics that appear in the rest of the thesis. Each extension highlights
a connection between stit theory and other disciplines in the literature, namely
propositional dynamic logic, coalition logic, alternating-time temporal logic, deontic logic,
epistemic game theory, and epistemic logic.
Chapter 3: Agency & Knowledge

In recent years logicians in AI have argued that any comprehensive study
of responsibility attribution should include a proper treatment of the interplay
between agency and four kinds of agentive knowledge: ex ante knowledge, ex
interim knowledge, ex post knowledge, and know-how (Broersen, 2011a; Duijf,
2018; Horty, 2019; Lorini, Longin, & Mayor, 2014). The first three kinds are
standard from game-theoretical analyses on the stages of information disclosure
across the decision making process (Pacuit & Roy, 2017), and the fourth has gained
prominence both in logics of action and in deontic logic as a means to formalize
ability (Herzig & Troquard, 2006; Horty & Pacuit, 2017).

The goal of this chapter, then, is to clarify previous stit-theoretic formalizations
of the four kinds and to propose alternative interpretations that are more akin to
my study of responsibility. For the latter purpose, the chapter introduces an ex-
pressive logic that extends atemporal basic stit theory with knowledge modalities
(Kαφ), modalities for ‘next’ and ‘last’ states (Xφ and Yφ), and the modality for
agency of the grand coalition ([Ags]φ). As for the semantics, the formulas are
evaluated on branching discrete-time structures. To illustrate the use of this logic
in the formalization of the four kinds of knowledge, the chapter also includes and
carefully dissects a complex example.

After the new characterizations of the four kinds of knowledge are discussed
and compared to previous approaches, I turn my attention to the logic-based
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properties of the presented formalism. Thus, I introduce a sound and complete
proof system for the logic. As it happens, the metalogic results of soundness
and completeness are the main technical contributions of the chapter, where
completeness involves a long, step-by-step procedure with novel steps that are
reminiscent of some results by Schwarzentruber (2012).

The conclusion explores an extension of the presented logic with a modal-
ity for belief (whose semantics is probabilistic). Thus, the chapter serves as an
analysis of the interplay between agency and knowledge/belief as components of
responsibility.
Chapter 4, Agency, Knowledge, and Obligation

Horty’s (2001) seminal act-utilitarian stit theory of ought-to-do can be extended
so that it deals with situations in which agents’ knowledge plays a key role. Such
an extension paves the way for a formalization of responsibility where agents
can be excused for not complying with an obligation if they did not not know
how to comply. Thus, this chapter is devoted to the introduction of an epistemic
extension of act-utilitarian stit theory—on the road to building a nuanced theory
of responsibility.

In particular, the epistemic extension leads to the disambiguation of two senses
of ought-to-do: an objective one and a subjective one. While objective ought-to-
do’s only require the possibility of successfully complying with them, subjective
ones require the possibility of both successfully and knowingly complying with
them. Thus, the chapter examines two deontic modalities: ⊙αφ for agent α’s
objective ought-to-do’s, and ⊙Sαφ for α’s subjective ought-to-do’s. The semantics
for these modalities are based on measures of optimality for an agent’s actions,
where an agent objectively, resp. subjectively, ought to have seen to it thatφ iffφ is
an effect of all the optimal, resp. subjectively optimal, actions for that agent. Just
as in Horty’s (2001) approach, the measures of optimality are based on dominance
solution concepts from game theory.

The starting point of my study lies in Horty’s (2019) attempt to formalize an
epistemic sense of ought. Such an attempt was inspired by three puzzles that
pose a problem for merely extending act-utilitarian stit theory with epistemic
modalities. The chapter carefully reviews Horty’s (2019) proposal and builds my
own as a reply to it. To illustrate my models, I use them to offer solutions to the
problems posed by Horty’s puzzles. To show the adequacy of my logic in the
study of agency, knowledge, and obligation, I present a correspondence result
between the models of Horty’s solution and a limited sub-class of my own.

Furthermore, the chapter explores the logic-based properties of the logic of
objective and subjective ought-to-do’s in terms of valid/invalid formulas. I in-
troduce a sound and complete proof system for objective ought-to-do’s and a
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sound and complete proof system for subjective ought-to-do’s. Once again, the
metalogic results of soundness and completeness are the main technical—and
novel—contributions.

The conclusion scopes out an extension of the full logic of objective and sub-
jective ought-to-do’s with a modality for belief (whose semantics is probabilistic)
that leads to a new, doxastic sense of obligation based on expected-deontic-utility
maximization. Thus, the chapter serves as an analysis of the interplay between
agency, knowledge/belief, and ought-to-do as components of responsibility.

Chapter 5, Agency, Knowledge, and Intentionality

Ascribing responsibility for a state of affairs to someone typically involves
discussions of whether they acted intentionally and/or had an intention to bring
about such a state. On the road to formalizing motivational responsibility, this
chapter extends epistemic stit theory with intentions and with intentional actions.
The concepts of intention and intentional action involve long-standing debates in
philosophy. Therefore, the chapter opens with a review of usual interpretations
of these concepts across the philosophical literature, paying special attention to
previous logic-based approaches.

Afterwards, my proposal for a logic of intentionality is addressed. I extend
epistemic stit theory with modality Iαφ, meant to express that at a given point in
time agent α had a present-directed intention toward the realization of φ. The
semantics for this modality is based on special topologies, assigned to agents, that
are added to stit-theoretic frames. For a given agent, the non-empty open sets of
the associated topology are interpreted as present-directed intentions, so that if
an open set is included in the set of indices whereφ holds then this means that the
agent had a present-directed intention toward the realization of φ. The choice of
using topologies of intentions is rooted on the simplicity and straightforwardness
of topological semantics. Importantly, such a semantics allowed me to deliver
an intelligible characterization of intentional action in terms of present-directed
intentions, namely with the conjunction [α]φ∧ Iα[α]φ. A characterization like this
is an essential step for the formalization of motivational responsibility.

To illustrate my topological semantics, the chapter includes and discusses
some examples. Afterwards, the formalism’s logic-based properties, in terms of
valid/invalid formulas, are addressed (pointing out where my theory stands with
respect to the interplay between future-directed intentions, intentional action, and
intention-with-which). To enhance the analysis, I present a sound and complete
proof system for the developed logic. The metalogic results of soundness and
completeness are the main technical contributions of the chapter, with a proof of
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completeness that implies drawing a bridge between relational and topological
semantics (see, for instance Baltag, Bezhanishvili, Özgün, & Smets, 2016; Özgün,
2017).

The conclusion proposes a way of modelling future-directed intentions using
temporal stit theory, and also comments on the extension of my framework with
belief. Thus, the chapter serves as an analysis of the interplay between agency,
knowledge/belief, and intentionality as components of responsibility.

Chapter 6, Responsibility

In this chapter I finally introduce a rich stit logic to analyze responsibility. My
logic of responsibility is obtained by merging all the frameworks of the previous
chapters, so that its language expresses agency, epistemic notions, intentionality,
and different senses of obligation. The chapter characterizes the components of
responsibility given on p. 3 using particular formulas of this language. Then,
adopting a compositional approach—where complex modalities are built out of
more basic ones—these characterizations of the components are used to formalize
modes of responsibility, where by ‘modes of responsibility’ I mean combinations
of sub-categories of Broersen’s three categories (causal, informational, and moti-
vational), cast against the background of particular deontic contexts.

On the one hand, the sub-categories correspond to the different versions of re-
sponsibility that one can consider according to the active and passive forms of the
notion, where active responsibility concerns contributions and passive responsi-
bility concerns omissions. Thus, with respect to a given state of affairs φ, the sub-
categories are causal-active & causal-passive responsibility for φ, informational-
active & informational-passive responsibility for φ, and motivational-active &
motivational-passive responsibility for φ. On the other hand, the deontic context
of a mode, given in terms of agents’ ought-to-do’s (with respect to φ), establishes
whether and to what degree the combination of sub-categories involves either
blameworthiness or praiseworthiness—under the premise that complying with
an ought-to-do warrants praise and failing to comply warrants blame.

Using typical stit-like examples, the chapter discusses the resulting modes
of responsibility, their formulaic characterizations, and the system of blame-or-
praise assignment that they lead to. Afterwards, a proof system for the logic of
responsibility (as well as for a technical extension of it) is presented, addressing
the status of soundness & completeness results.

The conclusion (a) comments on an extension with belief and with doxastic
obligations, (b) offers characterizations for the modes of mens rea, and (c) mentions
possibilities for future work in the context of collective responsibility.



§ 1.6. A Reader’s Guide · 23

Conclusion
The thesis ends with an investigation of my work’s position in symbolic ethical

AI, stating possible paths for future work in this field.

Sources of the Original Material
Chapters 3–6 are based on articles that either have already been published or

are currently in preparation. Below, I list these sources, chapter by chapter:

– Chapter 3 is based on my joint work with Jan Broersen (Abarca & Broersen,
2021b). Additionally, its conclusion includes a restriction of a framework
that was introduced in another article with Jan Broersen (Abarca & Broersen,
2021a).

– Chapter 4 is based on an idea from an extended abstract (Broersen &
Abarca, 2018a), that was later fully developed across two articles (Abarca
& Broersen, 2019; Broersen & Abarca, 2018b). It is also highly influenced
by my joint work with Hein Duijf, Jan Broersen, and Alexandra Kuncová
(Duijf, Broersen, Kuncová, & Abarca, 2021). Additionally, its conclusion
includes a restriction of a framework that was introduced in another article
with Jan Broersen (Abarca & Broersen, 2021a).

– Chapter 5 is based on my work with Jan Broersen (Abarca & Broersen, 2023).

– Chapter 6 is an elaboration of a framework that was presented in an extended
abstract developed with Jan Broersen (Abarca & Broersen, 2022).

1.6 A Reader’s Guide

The only real prerequisite for reading this thesis is familiarity with modal logic.
In particular, for all the logics in this work, the notions of validity, logical con-
sequence, satisfiability, theoremhood, deducibility, and consistency are defined
in the standard way. Likewise, I use the standard naming conventions for basic
modal proof systems such as K, KD, KD45, and S5. For a background text on
modal logic that includes all the concepts used here, the reader is referred to
Blackburn et al. (2002).

Let me comment on the overall structure of the thesis, then. First, Chapter 2
introduces stit theory and thus lays out the basic groundwork for the remaining
chapters. In principle, an expert reader can skip Chapter 2, but the examples
are fun, and the clear statement of my interpretation of stit models will clarify
my exact usage of stit semantics and terminology. In turn, Chapters 3–6 work
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as an original and coherent whole that is best read in that order. Although each
of these chapters includes cross-references that would make it possible for them
to be read independently, the reader is advised to at least go through their basic
outlines in order. To be sure, Chapter 6 should not be read independently, because
it amalgamates the previous chapters into a formal theory of responsibility.

Since each chapter comprises a wide variety of intuitions, interpretations,
constructions, and conceptual arguments, each chapter includes an introduction
and a conclusion. The introductions are meant to (a) motivate the discussions and
sketch the chapter’s goals and methodology, and to (b) help the reader keep track
of the chapter’s structure, providing an outline that summarizes the contents of its
sections and subsections. The conclusions, for their part, are meant to (a) situate
the chapter within the thesis’s overall structure, and to (b) investigate potential
paths for future work (rather than sum up the chapter’s contents in what would
feel like repetitive statements).

As mentioned above, the metalogic results for each logic in Chapters 3–6 are the
thesis’s main technical contributions. All the proofs of completeness involve long,
step-by-step procedures that make use of Kripke semantics, canonical models,
correspondence results, standard techniques of modal logic (for whose review the
reader is once again referred to Blackburn et al. (2002)), and also novel techniques.
For the sake of readability, every long proof in Chapters 3–6—including those for
metalogic results—is relegated to an appendix.



2

Agency

‘Time forks, perpetually, into countless futures. In one of them, I am
your enemy.’

Jorge Luis Borges, The Garden of Forking Paths

Every man lives for himself, uses his freedom to achieve his personal
goals, and feels with his whole being that right now he can or cannot do
such-and-such action; but as soon as he does it, this action, committed
at a certain moment in time, becomes irreversible and makes itself the
property of history...

Leo Tolstoi, War and Peace

‘Give me your hand. What’s done cannot be undone.’

William Shakespeare, Macbeth

2.1 Introduction

Consider the act of parricide—yet again. At the beginning of Chapter 1 I men-
tioned that it is a terrible circumstance that drives people to want to find out who

1An expert reader should skip this chapter.
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is responsible. If we ask ourselves why parricide is so terrible, we would probably
answer in terms of an arbitrary division between right and wrong. This division
would separate certain actions from others. So, before diving into discussions
about the boundary of such a division (with all its implications for responsibility),
let us talk about the domain in which the division arises: the domain of actions,
acts, activity, actors, authors, active agents, etc.

In everyday life, the elements of this domain are very primal notions, and
people rarely discuss their ontology in depth. However, actions and agents are
the first elements in my list of components of responsibility (p. 3), so it is al-
most mandatory to spend some pages addressing the philosophical viewpoint,
concerning them, that this work adopts. Virtually every logic in this thesis is
an extension of the logic of action known as stit theory, where the acronym ‘stit’
stands for ‘seeing to it that.’ Thus, a thorough introduction to what one can call
‘the conceptual building blocks of stit theory’ is necessary. This chapter is devoted
to such demands.

The concept of action is ever-present both in natural language and in phi-
losophy. As for natural language, the category of verbs appears in all human
languages, reflecting that the ways in which entities (designated by nouns) af-
fect other entities is central to human understanding. As for philosophy, the
starting point for my treatment of action is Aristotle’s Nicomachean Ethics III. This
famous treatise focuses on the processes, carried out by agents, that bring about
changes in the world. Although Aristotle was thinking only of human agents
when he presented his theory of action,2 I use the term agent to refer to any au-
thor of actions. With a bit of circularity, then, I interpret actions as events that
are caused—and performed—by agents, that bring about changes in the environ-
ment. Because of this definition, rather than ‘action,’ the word ‘agency’ fits better
with the phenomenon lying at the core of my study.

The so-called standard conception of action (SCA), emerging from Anscombe’s
and Davidson’s seminal works (Anscombe, 1963; Davidson, 1963), serves as the
broadest philosophical background for my standpoint on agency. The SCA bases
agency on a notion known as intentional action—referring to events that are per-
formed under some intention or for some reason. An action, then, is taken as any
event that is an intentional action under some description. The typical example
behind this intuition is as follows: suppose that I wake up in the middle of the
night and turn on a light, thus alerting a burglar that is robbing my house. If I do
not know that there is a burglar there, then ‘alerting the burglar’ is definitely an
unintentional action of mine, even if ‘turning on the light’ is clearly an intentional

2In Nicomachean Ethics (III, 1113b17–19), Aristotle wrote that “a human being is a first principle or
the begetter of his actions as he is of children” (see Crisp, 2014, p. 45).
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one. However, both actions refer to the same event, so that ‘alerting the burglar’
is indeed an intentional action under some description, namely the description
‘turning on the light.’ Thus, ‘alerting the burglar’ is also an action of mine: I alert
the burglar.

It is evident that intentionality is central to the SCA. However, I will not discuss
the ontology of intentions at this point, nor will I explicitly state my subscription
to any particular philosophical account of what intentions are. Rather, I opt to
take the category of intentions as accommodating a variety of agentive proper-
ties that—at least intuitively—motivate the choice and performance of actions.
Reasons, beliefs, desires, goals, objectives, and plans, for instance, all distinguish
intentional actions from unintentional ones. Thus, they provide a criterion for de-
ciding whether or not an event is an intentional action under some description.3

Even with the definition provided by the SCA, agency is still an elusive con-
cept. As pointed out by Austin (1961), ‘doing an action’ is a very abstract expres-
sion in the philosophical literature. To answer the question of how one is using
the term agency, then, one should “reply by explaining its syntactics and demon-
strating its semantics” (Austin, 1961, p. 28). In this chapter I will do precisely
this, by introducing—and extensively discussing—the basic aspects of stit theory.
An outline is included below.

• Section 2.2 explains the syntax and semantics of basic stit theory (BST), il-
lustrating the models with simple examples. Afterwards, my interpretation
of stit models is put forward, clarifying potential doubts regarding the use
of stit theory throughout the thesis.

• Section 2.3 introduces the fundamental logic-based properties and metalogic
results for temporal and atemporal BST, reviewing (a) the validity, resp.
invalidity, of special formulas, (b) standard proof systems, (c) soundness &
completeness results, and (d) alternative semantics for the logics.

• Section 2.4 reviews famous extensions of BST that are relevant in the context
of modelling responsibility: extension with group agency, extension with
action types, extension with utilities and obligations, and extension with
epistemic notions. This section is mostly an exercise of foreshadowing,
setting the tone for the discussions and examples that are widely adopted
in succeeding chapters.

3It is important to remark that intentions are included as a quality separate from agency in the list
of components of responsibility from Chapter 1 (p. 3). There, they represent the explicit and particular
intentions that determine when a specific action is intentional and when it is not (see Chapter 5).
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2.2 Stit Theory

To see to it that φ. This is stit theory’s main modality. As in any intensional
logic characterizing a philosophical concept, the semantics for the modality mat-
ter very much. In this case, the original—and most widespread—semantics was
developed in a series of influential papers that appeared during the late twentieth
century (Belnap & Perloff, 1988; Belnap et al., 2001; Chellas, 1969, 1992; Perloff,
1991; von Kutschera, 1986). Together, these papers gave rise to a full-fledged
modal logic of agency, whose formulation answers Austin’s aforementioned de-
mands of explaining the syntactics and demonstrating the semantics of actions
and agency.

The original semantics concerns agency in the world over an indeterministic
conception of time known as branching time. A model proposed by Prior (1967)
and polished by Thomason (1970), branching time’s indeterminism is based on
the idea that at any moment there are different possible paths in which the world
evolves. Stit theory’s semantics for action, then, assumes that an agent acts
by constraining these possibilities to a definite subset. Directly quoting Belnap
et al. (2001), “these ideas are in some part rooted in common sense. Without
help, however, common sense cannot seem to pull them together into a coherent
whole. One of our principal aims is to carry out that job by articulating them in
a completely intelligible exact theory.” Therefore, perhaps it is best to cut to the
chase and introduce in all formality the original stit logic. I will henceforward
refer to this logic as basic stit theory (BST), and I follow Horty and Belnap (1995)
(see also Horty, 2001) for its formulation.

2.2.1 BST’s Syntax & Semantics

As for the syntactic aspect of BST, the language of the logic is defined as follows:

Definition 2.1 (Syntax of BST). Given a finite set Ags of agent names and a countable
set of propositions P, the grammar for the formal language L is given by

φ ::= p | ¬φ | φ ∧ φ | □φ | [α]φ | Gφ | Hφ,

where p ranges over P and α ranges over Ags.

In this language, □φ is meant to express the historical necessity of φ or, in
other words, that φ is settled at a given moment; ^φ abbreviates ¬□¬φ, and it
encodes the historical possibility of φ; [α]φ expresses that ‘agent α has seen to it
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that φ’ (and ⟨α⟩φ abbreviates ¬[α]¬φ); Gφ expresses ‘φ is always going to be the
case in the future’; and Hφ expresses that ‘φ has always been the case in the past’
(where Fφ abbreviates ¬G¬φ and Pφ abbreviates ¬H¬φ).

As for the semantic aspect of the logic, the mathematical structures on which
the formulas of L are evaluated are called branching-time frames:

Definition 2.2 (Bt-frames & models). A tuple
〈
M,⊏,Ags,Choice

〉
is called a

branching-time frame (bt-frame for short) iff

• M is a non-empty set of moments and⊏ is a strict partial ordering on M satisfying
no backward branching: for all m,m′,m′′ ∈ M such that m′ ⊏ m and m′′ ⊏ m,
either m′ = m′′ or m′ ⊏ m′′ or m′′ ⊏ m′. Each maximal⊏-chain is called a history,
and the set of all histories is denoted by H. For m ∈ M, Hm := {h ∈ H; m ∈ h}.
Tuples ⟨m, h⟩ such that m ∈ M, h ∈ H, and m ∈ h, are called indices, and the set
of indices is denoted by I(M ×H).

Ags is the finite set of agent names from Definition 2.1.

• Choice is a function that maps each agent α and moment m to a partition Choicem
α

of Hm, where the cells of such a partition represent α’s available choices of action at
m. For m ∈ M and h ∈ Hm, Choicem

α (h) denotes the cell that includes h. This cell
represents the choice of action that α has performed at index ⟨m, h⟩, and I refer to it
as α’s current choice of action at ⟨m, h⟩. Choice satisfies two conditions:

– (NC) No choice between undivided histories: for all α ∈ Ags and h, h′ ∈
Hm, if m′ ∈ h ∩ h′ for some m′ ⊐ m, then h ∈ L iff h′ ∈ L for every
L ∈ Choicem

α .

– (IA) Independence of agency: a function s : Ags → 2Hm is called a
selection function at m if it assigns to each α a member of Choicem

α . If
Selectm denotes the set of all selection functions at m, then, for all m ∈ M
and s ∈ Selectm,

⋂
α∈Ags s(α) , ∅.

This condition establishes that concurrent actions by distinct agents must be
independent: the choices of action of a given agent cannot affect the choices
available to another (see Belnap et al., 2001; Horty & Belnap, 1995, for a
discussion of this property).

A bt-modelM, then, is a tuple that results from adding a valuation functionV to a
bt-frame, whereV : P→ 2I(M×H) assigns to each atomic proposition a set of indices.

In short, bt-frames are tree-like structures. The nodes are called moments
because they represent precisely that: points in time. Thus, these moments are
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ordered by a strict partial ordering that represents the before-after relation. To
reflect the indeterminacy of the future, this ordering admits forward branching;
to reflect the determinacy of the past, the ordering does not admit backward
branching. Each maximal chain is known as a history, which represents a complete
temporal evolution of the world.

The semantics for agency—relative to bt-models—is based on the idea that
when an agent acts the agent is constraining the possible paths in which the
world might evolve to those in which the agent has performed the action at hand.
Therefore, the set of actions that are available to an agent at some moment is
taken to be a partition of the histories passing through said moment, where each
available action is identified with a cell of such a partition. In most formulations
of BST, this modelling of agency involves the concept of choice—hence the name
Choice for the function assigning to each agent and moment a partition of the
histories passing through that moment. The intuition is that choices ground the
actions that agents perform, so that Belnap et al. (2001, p. v), for instance, wrote:

Before an event of choosing, there are multiple alternatives open to the
agent. Furthermore, since the choice is real, so must be the alternatives,
and each alternative must be as real as any other. All we can say before
the moment of choice is that the agent will make one of the open
choices, leaving behind the unchosen alternatives. After the choice,
it is correct to say that they were once possible, but are no longer
possible.4

As is customary in modal logic (see, for instance, Blackburn et al., 2002), bt-
models allow us to evaluate the formulas of L:

Definition 2.3 (Evaluation rules for stit modalities). Let M be a bt-model. The
semantics on M for the formulas of L are recursively defined by the following truth

4As pointed out by Duijf (2018, Chapter 1), stit theorists are typically ambiguous when it comes to
the concepts of choice and action. The idea is to represent the “possible constraints that an agent is able
to exercise upon the course of events at a given moment,” and that such constraints can colloquially
be seen as the “actions or choices open to the agent at that moment” (Horty, 2001, p. 12). However,
there is no ontological consensus about whether these forms of constraining the course of events are
deliberate choices. In fact, Belnap et al. (2001, p. 18) wrote that “[s]tit theory has the advantage that it
permits us to postpone attempting to fashion an ontological theory, while still advancing our grasp of
some important features of action, obligation, and so on.” In my experience, this room for different
interpretations sometimes creates confusion among non-experts. Therefore, I settle my interpretation
of the partitions given by the function Choice: the cells in such partitions are the available choices
of action that an agent has at a given moment, where these choices of action are not necessarily
deliberate choices of explicitly intentional actions. To illustrate this, when I raise my arm, I might
not be consciously choosing to raise my arm, but it is still an action of mine, and therefore it will be
taken as an available choice of action. I elaborate on this matter Subsection 2.2.2, where I illustrate the
evaluation of L’s formulas on bt-frames and explore my particular interpretation of the semantics for
modality [α]φ.
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conditions, evaluated at index ⟨m, h⟩:

M, ⟨m, h⟩ |= p iff ⟨m, h⟩ ∈ V(p)
M, ⟨m, h⟩ |= ¬φ iff M, ⟨m, h⟩ ̸|= φ
M, ⟨m, h⟩ |= φ ∧ ψ iff M, ⟨m, h⟩ |= φ andM, ⟨m, h⟩ |= ψ
M, ⟨m, h⟩ |= □φ iff for all h′ ∈ Hm,M, ⟨m, h′⟩ |= φ
M, ⟨m, h⟩ |= [α]φ iff for all h′ ∈ Choicem

α (h),M, ⟨m, h′⟩ |= φ
M, ⟨m, h⟩ |= Gφ iff for all m′ ∈ h such that m ⊏ m′,M, ⟨m′, h⟩ |= φ
M, ⟨m, h⟩ |= Hφ iff for all m′ ∈ h such that m′ ⊏ m,M, ⟨m′, h⟩ |= φ.

Satisfiability, validity, and general validity are defined as usual: let M be a bt-model;
then a formula φ of L is satisfiable onM iff there exists an index ⟨m, h⟩ inM such that
M, ⟨m, h⟩ |= φ; φ is falsifiable or refutable onM if its negation is satisfiable; φ is valid
onM iffM, ⟨m, h⟩ |= φ for every ⟨m, h⟩ inM; and φ is invalid onM iff it is not valid.
For a class C of bt-models, φ is satisfiable—resp. invalid—with respect to C iff there
exists a modelM in C such that φ is satisfiable—resp. invalid—onM; φ is valid with
respect to C iff it is valid on every model of C. At the level of frames, a formula φ of L is
valid on a bt-frame F iff it is valid on every bt-model based on F ; and φ is invalid on F
iff it is not valid.

2.2.2 Some Examples

It is important to comment on the implications that Definition 2.3 has for my
treatment of agency. Simple examples will help me in doing so.

First, let me address the topic of the indices of evaluation, meaning those
moment-history pairs of the form ⟨m, h⟩ such that m ∈M and h ∈ Hm. A history h
represents a full temporal evolution of the world, so that the assumption that m ∈ h
implies that m is a moment that occurs in history h—or that h passes through m.
Throughout the rest of the thesis, for a given index ⟨m, h⟩ in any stit model, I will
say that index ⟨m, h⟩ is based on moment m and anchored by history h. Whenever I
refer to the satisfaction of a formula at ⟨m, h⟩, I will use the expressions ‘at index
⟨m, h⟩. . . ’ and ‘at moment m and along history h. . . ’ interchangeably.

The fact that multiple histories can pass through a single moment is the essence
of branching time’s indeterminism. The use of indices as points of evaluation
(for the formulas of L), then, brings to the fore that in bt-models time has two
fundamental dimensions:

1. The chronological dimension: for m,m′ ∈ M, m′ lies in the future of m iff
m ⊏ m′, and m′ lies in the past of m iff m′ ⊏ m. Thus, one needs to focus on
this dimension to decide whether Gφ or Hφ holds at some index.
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2. The possible-futures dimension: for m ∈ M, this dimension is given by the
set Hm—the set of all the different histories that pass through m. Once again,
the histories in Hm represent different temporal evolutions of the world at
m, and one has to refer to this dimension to check whether □φ holds at some
index.

Having introduced these two dimensions, let me illustrate instances of the
evaluation of formulas involving operators □, G, and H. Consider the bt-modelM
depicted in Figure 2.1.

m1

m3

h3

m2

h2h1

¬a¬a

¬aa ¬a

Figure 2.1: A simple bt-modelM.

Here, m1,m2, and m3 are moments, and H = {h1, h2, h3}. As implied by the
diagram, m1 ⊏ m2 and m1 ⊏ m3. In all the diagrams for stit models in this thesis,
the chronological dimension is reflected by the vertical axis, so that a moment that
appears below another in the same history lies in the past of the first. Thus, in
Figure 2.1 m2 and m3 lie in the future of m1. As for the possible-futures dimension,
observe that Hm1 = {h1, h2, h3}, that Hm2 = {h1, h2}, and that Hm3 = {h3}.

Let a denote the atomic proposition ‘my arm is raised’ in Figure 2.1. Then the
diagram shows that the valuation V of M is such that V(a) = {⟨m2, h1⟩}. This
implies thatM, ⟨m1, h1⟩ |= □¬a ∧ Fa: at moment m1 and along history h1 my arm is
not raised (and necessarily so), but at a future moment it will be the case that my arm
is raised. Now, even if at ⟨m2, h1⟩ my arm is raised, the fact thatM, ⟨m2, h2⟩ |= ¬a
implies that it could have been otherwise. Thus,M, ⟨m2, h1⟩ |= a∧^¬a: at moment
m2 and along history h1 my arm is raised, but it could have been the case that my arm were
not raised. As for other examples, consider the following: M, ⟨m3, h3⟩ |= □¬a: at
⟨m3, h3⟩ it was settled that my arm is not raised; andM, ⟨m2, h1⟩ |= a∧□P¬a: at ⟨m2, h1⟩

both my arm is raised and, for all histories passing through m2, there was a moment in
the past of m2 for which my arm was not raised at the corresponding past indices.
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Observe, then, that one can use formulas to encode both the determinacy of the
past and the indeterminism of the future. The determinacy of the past is reflected
by the validity—with respect to the class of all bt-models—of formula Pφ→ □Pφ.
The indeterminism of the future is reflected by the fact that Fφ→ □Fφ is invalid
(as shown by the model in Figure 2.1, whereM, ⟨m1, h1⟩ |= Fa ∧^¬Fa).

In my interpretation of stit models, each index is a ‘way that things could
have been.’ More precisely, an index is identified with the sum of all the states of
affairs—or formulas, if you will—that hold at it.5 Both dimensions of branching
time affect any index, so that if one wants to find out which formulas hold at ⟨m, h⟩
then one has to consider all those indices based on moments m′ such that either
m′ = m or there exists a common predecessor between m and m′. For instance, let
m′,m′′ be moments such that m′′ ⊏ m and m′′ ⊏ m′. IfM, ⟨m′, h′⟩ |= φ, then this
has a repercussion on ⟨m, h⟩, since it implies thatM, ⟨m, h⟩ |= P^Fφ.6

If the chronological dimension of branching time is most natural, the possible-
futures dimension is the one on which branching depends. Modality^φ encodes
historical possibility, so thatM, ⟨m, h⟩ |= ^φ iff there exists an alternate temporal
evolution of the world, given by a history h′, such that φ holds at ⟨m, h′⟩. Now,
suppose that at index ⟨m, h⟩ both φ holds and it is historically possible that ¬φ. In
my interpretation of stit theory, this does not mean that at ⟨m, h⟩ someone can do
something to realize ¬φ. State of affairs φ is the case, and the historical possibility
of ¬φ should be seen only as counterfactual.7 Thus, when ^φ holds at ⟨m, h⟩, I
will use the expression ‘φ was historically possible at ⟨m, h⟩.’ To clarify, at a given
index either φ or ¬φ has already been obtained, according to the valuationV. If
φ holds, ¬φ cannot be the case anymore, unless it is thought of as a counterfactual
possibility. Hence the use of the past tense, where this should not be confused
with any allusion to the past operator P (see Remark 2.4).

As for the dual modality, a consistent usage of tense implies that I will say
thatM, ⟨m, h⟩ |= □φ iff at ⟨m, h⟩ φ was settled (or historically necessary)—that is,
iff φ holds at all indices based on moment m. Since φ’s being settled at an index
implies that φ was settled at all the other indices based on the same moment, I
will henceforward use the expressions ‘φ was settled at index. . . ’ and ‘φ was
settled at moment. . . ’ interchangeably.

5Much like in the abstractionist view on possible worlds (see Menzel, 2017), an index can be thought
of as a total and possible state of affairs.

6Indeed, it can be shown that, for a given bt-model M and an index ⟨m, h⟩, the generated sub-
model M⟨m,h⟩ has the set {⟨m′, h′⟩ ; m′ = m or there exists m′′ s. t. m′′ ⊏ m & m′′ ⊏ m′} as its domain
(see Blackburn et al., 2002, Chapter 2, for the precise definitions of generated sub-models).

7‘Counterfactual’ is a loaded term in the philosophical literature. Here, I use it in its intuitive
interpretation, by which one can describe a circumstance that is not so—in ‘reality,’ ‘actuality,’ ‘at the
present moment,’ or any other expression that indicates the actual situation—but such that it could
have been so.
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To avoid possible confusions down the line, I want to be explicit about the
consequences that my interpretation—both of indices and of the evaluation of
formulas on them—has on the notion of agency provided by modality [α]φ. For
α ∈ Ags and m ∈M, the elements of partition Choicem

α represent choices of action
that are available to agent α at moment m. I write ‘at moment. . . ’ and not ‘at
index. . . ’ because, when a particular history h ∈ Hm is specified, I regard that
the choices that are different from Choicem

α (h) are not available anymore—or at
least not available in any fashion other than counterfactually. At ⟨m, h⟩ α has
both chosen and performed the choice of action represented by Choicem

α (h), and
α cannot change its choice to any other.8 Thus, choices of action are available at
the level of moments, and only counterfactually available at the level of indices.
To clarify, consider the following disambiguation:

• At the level of moments, an agent first arrives to a moment in branching time.
There, the agent is faced with options for constraining the possible futures,
given by its available choices at the moment. After possibly deliberating
about these options, the agent ‘decides’ upon a course of action—where the
quotation marks are used to emphasize that there is no explicit identification
of such a decision with a conscious or intentional decision. By performing
this choice at that moment, the agent indeed constrains the possible futures
and brings about effects in the world.9

• At the level of indices, when a full index is specified, an agent has already
deliberated, chosen, and performed one of the actions that were available at
the moment on which the index is based. Furthermore, the effects of such
an action have already been brought about in the world.10

What does it mean that α has seen to it that φ at an index, then, in my
interpretation? Well, I take it that, after the performance of a choice of action

8It is not so much that the choice and the performance are taken to be simultaneous; rather, α has
performed the action that had already been chosen, and it is by such a performance that the choice
becomes evident.

9Each moment can be thought of as a choice scenario, with stages of choice and performance of
actions. To clarify, van Benthem and Pacuit (2014) stated that there are four main stages in a choice
scenario: deliberation, decision, action, and observation. “In a first deliberation stage, we analyze our
options, and find optimal choices. Next, at the decision stage, we make up our mind and choose an
action of our own. Then at the action stage, everyone acts publicly, and this gets observed, something
that we can also model as a separate observation stage, though things happen simultaneously”(van
Benthem & Pacuit, 2014, p. 309). These ideas are very important for the conceptual discussions in all
the thesis’s chapters.

10In my experience, it is tricky to pronounce oneself regarding the verb tense of the modality ‘to
see to it that’ in stit-theoretic models. However, this is precisely what I am trying to do with this
disambiguation. After presenting some examples, I discuss the verb tense that I prefer to use, in
Remark 2.4.
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at ⟨m, h⟩, consequences of such a choice—meaning effects that the action brings
about in the world—are reflected by formulas φ such that M, ⟨m, h⟩ |= [α]φ.
These formulas hold at all the possible indices anchored by histories h′ lying
within Choicem

α (h). Observe that “such an action still leaves room for a good deal
of variation in the course of events, and so cannot determine a unique history”
(Horty, 2001, p. 12). Like Horty and Belnap (1995) (see also Horty, 2001), I
interpret the histories in Choicem

α (h) as the possible outcomes that result from the
performance of Choicem

α (h).

The idea thatφ such thatM, ⟨m, h⟩ |= [α]φ can be seen as an effect of Choicem
α (h)

comes from the following reasoning. Suppose thatM, ⟨m, h⟩ |= φ, and that there
exists h′ ∈ Choicem

α (h) such thatM, ⟨m, h′⟩ |= ¬φ. By Definition 2.3, this implies
that M, ⟨m, h⟩ |= ¬[α]φ. Therefore, although φ is the case at ⟨m, h⟩, there is a
possibility—given by ⟨m, h′⟩—such that α’s performance of the same choice of
action does not lead to φ. It is in this sense that φ should not be taken to be a
material consequence, or an effect in the world, of Choicem

α (h).

To illustrate these claims, consider the simple bt-model M depicted in Fig-
ure 2.2.

L1 L2 L3

Choicem1
Mitm1

h6h5h4h3h2h1

a a a ¬a a ¬a

Figure 2.2: An example of individual agency.

Here, Mitya is an agent, m1 is a moment, and {hi; 1 ≤ i ≤ 6} is the set of histories
passing through m1 (denoted by Hm1 ). Partition Choicem

Mit is the set {L1,L2,L3},
whose elements represent choices of action that are available to Mitya at m1. The
diagram shows that L1 = {h1, h2, h3}, that L2 = {h4}, and that L3 = {h5, h6}.
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Let a denote the atomic proposition ‘the arm of Mitya is raised’ in Figure 2.2.
Then the diagram shows thatV(a) = {⟨m1, h1⟩ , ⟨m1, h2⟩ , ⟨m1, h3⟩ , ⟨m1, h5⟩}.

At m1 the available action L1 constrains the possible futures to histories that
anchor indices at which a holds. Therefore,M, ⟨m1, hi⟩ |= [Mitya]a for all 1 ≤ i ≤ 3:
at indices ⟨m1, h1⟩, ⟨m1, h2⟩, and ⟨m1, h2⟩, Mitya has seen to it that his arm is raised.
For this reason, a can be seen as an effect of L1. Choice L2, in turn, constrains
the possible futures to histories anchoring indices where a does not hold, namely
⟨m1, h4⟩. Therefore,M, ⟨m1, h4⟩ |= [Mitya]¬a: at ⟨m1, h4⟩Mitya has seen to it that his
arm is not raised. Finally, L3 constrains the possible futures to histories anchoring
indices such that a does not hold at all of them. Therefore,M, ⟨m1, hi⟩ |= ¬[Mitya]a
for all 5 ≤ i ≤ 6: at these indices Mitya has not seen to it that his arm is raised. In other
words, there is a temporal evolution of the world where Mitya has performed L3

and his arm was not raised. Thus, a should not be seen as an effect of L3.

Remark 2.4. In the stit-theoretic literature, people use different verb tenses for
the natural-language usage of the modality to see to it that. While the typical
presentation of the theory (Belnap & Perloff, 1988) used the present-progressive
tense, with expressions of the form ‘at ⟨m, h⟩ α is seeing to it that φ,’ I follow the
view of Singh (1999) and claim thatM, ⟨m, h⟩ |= [α]φ iff at ⟨m, h⟩ α has just seen
to it that φ (with the present-perfect tense of the expression ‘to see to it’). Under
this view, at ⟨m, h⟩ φwas achieved through α’s performing of Choicem

α (h).11 Three
important points must be made:

1. Within a logic that admits temporal operators such as G and H, using the
present-perfect tense for the expression ‘to see to it’ might lead to contro-
versy. If I write ‘at ⟨m, h⟩ α has seen to it that φ,’ someone might think that
formula H[α]φ holds at ⟨m, h⟩, according to which at all indices based on
moments in the past of m α has seen to it that φ. This is not what I mean.
My usage of the present-perfect tense—as well as the frequent use of the
past tense for associated modalities—is based on the idea that the states
of affairs that hold in the world at an index are definitive: they cannot be
changed or be stopped from happening anymore. If [α]φ holds at ⟨m, h⟩, I
take it that the obtaining of φ is an effect of α’s performing a choice, and
that φ is definitive in the world at ⟨m, h⟩. It is not that α is bringing about φ,
or—using the still more elusive present tense—that α brings about φ. Agent

11Singh (1999, p. 18, emphasis in original) wrote: “Intuitively, STIT is about the actions that have
just been performed. In fact, we find the progressive misleading, and believe a better gloss for STIT
would be has just seen to it that. This gives its formal logic some characteristics different from the logics
of ability or opportunity. Indeed, the concept is better understood as a form of high-level action.”
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α has already brought about φ, and this happened precisely at the index of
evaluation. The use of the present-perfect and past tenses, then, does not
involve temporal operators.

2. If φ such thatM, ⟨m, h⟩ |= [α]φ represents an effect of the choice that α has
made at ⟨m, h⟩, then it is evident that, in BST, effects are instantaneous: they
ensue at the same moment at which the choice is exerted, and not in further
ones. Because of this, it is not uncommon to refer to BST as instantaneous
stit logic (see, for instance, Broersen, 2008a, 2011a; Payette, 2014).

3. BST does not include terms for actions in the logic’s language. To be sure,
modality [α]φ does not syntactically refer to any action that α carried out
to bring about φ. The conceptualization of actions, then, occurs only at a
semantic level—in terms of the choice-partitions. It is because of this that
BST is typically seen as a “logic of actions without actions” (Horty & Pacuit,
2017; Lindström & Segerberg, 2007).

2.2.3 Ability & Refraining

With the semantics for agency and historical possibility, one can account for two
important concepts that are closely related to agency: ability and refraining. These
two are prominent both in the literature on stit theory and in the rest of the thesis,
so let me address their characterizations in BST:

• Ability: at this point, without any explicit formalization of intentions, con-
sciousness, or beliefs, I refer to the—very general—ability that an agent can
have to cause a certain effect in the world. Therefore, it is best identified
with the term causal ability.12 Semantically, causal ability relies on the avail-
ability of choices of action: I am able to see to it that my hand is raised iff at
this moment there exists a choice of action, available to myself, such that if
I choose and perform such an action then one of its effects is that my arm is
raised.

In my interpretation of BST, the choices of action are available at the level
of moments—and only counterfactually available at the level of indices.
Thus, when a history h is specified in an index ⟨m, h⟩, I will say that at ⟨m, h⟩
an agent was causally able to bring about the effects of any of its available

12In Chapter 3 I address the notion of ability in the epistemic sense and its relation to know-how.
In Chapter 4 the differences between causal ability and ability in the epistemic sense are brought to
the fore in an investigation of deontic notions. In Chapter 6 I explore the relations between causal
ability and causal responsibility, on the one hand, and ability in the epistemic sense and informational
responsibility, on the other.
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choices, to reinforce the idea that the agent cannot change the current choice
(Choicem

α (h)). For instance, suppose that at a given index I have seen to it
that King Duncan is dead. At such an index I was also causally able to not
see to it that King Duncan is dead. I was causally able in theory, but not
in practice, since “what’s done cannot be undone.” In any case, I will use
the expressions ‘at index. . . α was able to. . . ’ and ‘at moment. . . α was able
to. . . ’ interchangeably. Once again, the use of the past tense does not refer
to past moments; it is meant to evoke that at the level of indices states of
affairs are definitive.

Formally, at ⟨m, h⟩ α was able to see to it that φ iff M, ⟨m, h⟩ |= ^[α]φ—
that is, iff it was historically possible for α to see to it that φ. Therefore,
BST’s individual causal ability is given by a composition of the modality
for historical possibility and the modality for agency. Such a composition
successfully reflects the semantic idea of availability of choices at a moment:
if ^[α]φ holds at ⟨m, h⟩, then at m there is a choice of action, available to α,
that brings about φ.13

To illustrate causal ability, consider Figure 2.2. Observe thatM, ⟨m1, h1⟩ |=

^[Mitya]¬a: at ⟨m1, h1⟩ Mitya was causally able to see to it that his arm is
not raised. However, at ⟨m1, h1⟩ Mitya has seen to it that his arm is raised
(M, ⟨m1, h1⟩ |= [Mitya]a). Therefore, the most precise phrase describing this
situation is the following: at ⟨m1, h1⟩ Mitya has seen to it that his arm is
raised, and he was causally able to see to it that his arm was not raised right
before making his choice of action.

• Refraining: broadly speaking, to refrain from doing an action can be iden-
tified with not doing the action. However, as pointed out by von Wright
(1963) and by Horty (2001), to refrain intuitively implies something more
than merely not doing. An example of this argument is that if I do not fly
to the moon right this second it is not because I refrain from doing so; it is
because it is virtually impossible for me to fly to the moon right this second.

One can engage in a philosophical enquiry as to what refraining exactly
means, and most likely the concepts of conscious choice, intentions, and in-

13The ∃∀ pattern in the clause that defines causal ability is very reminiscent of Brown’s (1988)
formalization of the “can of ability” as a modality. Just as in Brown’s account, the combination of
modalities presented here escapes Kenny’s (1976a; 1976b) well-known objections to identifying ability
with a kind of possibility (see Horty & Belnap, 1995, for a reply). Indeed, the idea of using compositions
of modalities to formalize attitudes closely related to agency carries over nicely to many discussions in
succeeding chapters. In particular, the formalization of different modes of responsibility that I present
in Chapter 6 is based on conjunctions of compositions of modalities.
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tentional action will make an appearance in such discussions. Even without
intentions or conscious choices in the picture, BST allows us to formalize
two forms of refraining:

– Von Wright’s kind of refraining (Horty, 2001, Chapter 2): at ⟨m, h⟩ α has
von-Wright-refrained from seeing to it that φ iffM, ⟨m, h⟩ |= ¬[α]φ ∧
^[α]φ—that is, iff at ⟨m, h⟩ α has not seen to it thatφ and it was possible
for α to see to it that φ (where, according to our discussion on ability,
the last clause means that αwas causally able to see to it thatφ). As will
be discussed in the next subsection, I also refer to this kind of refraining
as deliberative refraining (see Footnote 22).

– Not doing: at ⟨m, h⟩αhas refrained from seeing to it thatφ iffM, ⟨m, h⟩ |=
¬[α]φ—that is, iff at ⟨m, h⟩ α has not seen to it that φ.14

Observe that both kinds of refraining are illustrated by Figure 2.2. At
⟨m1, h5⟩ Mitya has both von-Wright-refrained and refrained from seeing
to it that his arm is raised, even though at such an index his arm has
indeed been raised (perhaps by somebody else, for instance): M, ⟨m1, h5⟩ |=

¬[Mitya]a ∧^[Mitya]a ∧ a.

An alternative terminology for refraining—that I will use in my formaliza-
tion of responsibility—involves the expression omission. Therefore, if at a
given index agent α has refrained from seeing to it that φ, I take it that at
such an index α has omitted seeing to it that φ, or that φwas an omission of
α.15 A related concept is that of preventing. In the present framework, I will
say that at an index agent α has prevented φ iff [α]¬φ holds at the index.
Similarly, I will say that at an index agent α has refrained from preventing
φ iff ¬[α]¬φ holds.

14It is important to clarify that in some of the examples in this thesis (see Figure 6.2 and the
surrounding discussion, for instance) the concept of refraining appears as a label given to a choice
of action in the choice-partition Choicem

α (for some agent α and some moment m). This label is
nothing more than a name, so that to refrain from doing any of the other available actions is explicitly
interpreted as one such choice. In this sense, when at an index an agent has chosen the choice labelled
as ‘refrain,’ the agent will have refrained from seeing to it that φ for any φ that would have been an
effect of the other available choices.

15As will be discussed in Chapter 6, I refer to this particular type of omission, where there is no
reference to the other components of responsibility (such as knowledge, beliefs, or intentions), as
causal omission. In this context, if at an index an agent has seen to it that φ, I take it that φ was a causal
contribution of that agent.
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2.2.4 Interdependent Decision Contexts

An important feature of BST is that it allows us to model multi-agent situations.
Up to now, I have addressed this logic focusing only on single-agent cases, but Ags
can include various members. In the multi-agent case, it is adequate to interpret
the moments of bt-models as interdependent decision contexts. Much like normal-
form games, these decision contexts underlie a group of agents’ interaction at
some point in time. Indeed, the scheme of choice-partitions and frame condition
independence of agency ensure that each moment of a bt-model looks very similar
to a normal-form game that models concurrent choices of action. Since one can
use bt-models to also represent sequential choices, then stit models can—at least
in principle—also generalize aspects of the theory of extensive-form games.16

Let me present a simple example to illustrate BST’s account of concurrent
and sequential multi-agent choices. Carrying on with the Dostoevsky-inspired
examples, a scene from Brothers Karamazov might help.

Example 2.5 (Brothers Karamazov). On the night of Fyrodor Karamazov’s murder,
Mitya Karamazov—Fyodor’s son—went to Fyodor’s residence in search for his lover,
Grushenka, and with a burning desire to fight his father. The reason was that Grushenka
was having an affair with Mitya and also with Fyodor, and the two had fallen in love
with her. Mitya thought that he would find Grushenka at his father’s house. Fyodor,
for his part, had lately become terribly afraid of the possibility that Mitya would act on
his jealousy and hurt him. Therefore, each night, including this fatal one, he would lock
himself up tightly in his bedroom.

Smerdyakov, Fyodor’s bastard and lackey, was also sick of Fyodor and wanted him dead.
However, Fyodor trusted him more than anyone and thus had delegated to Smerdyakov
the nightly task of alerting him about whether Grushenka or Mitya had come to the
household. For this, they had agreed on a ‘secret code’ of door knocks; if Grushenka
showed up, Smerdyakov would knock on Fyodor’s bedroom door one way, and if it was
Mitya, he would do it some other way, letting Fyodor know who it was.

On the particular night of the murder, Smerdyakov already knew that Mitya would
show up, and he had planned for Mitya to go into Fyodor’s bedroom and kill the old man.
Smerdyakov intended to switch the door knocks so that Fyodor would think that Grushenka
had arrived and thus unlock his bedroom door. Then Mitya could go in easily and fight
Fyodor. Without knowing that this was Smerdyakov’s plan, since they had not agreed
on anything and Mitya did not know about Smerdyakov’s intentions, Mitya weighed his
options when arriving to the household. He could either break into the bedroom through
the window or leave. In the end, the tormented Mitya decided to run away. Smerdyakov,

16In Section 2.4 I explore further the relation between BST and game theory.
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however, did trick Fyodor into thinking that Grushenka had come, so that when Mitya
did not go into the bedroom, Smerdyakov was forced to take matters into his own hands,
so that it was he who killed Fyodor.

To formalize this scene using BST, consider the bt-modelM depicted in Fig-
ure 2.3.

B K
m1 Choicem1

Gru

F
F L

L

m3

h8h7h6h5

W
D L
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m2

Choicem2
Mit

Choicem2
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h4h3h2h1

b b

b

b

Figure 2.3: An example of interaction.

Here, Ags =
{
Grushenka,Mitya,Smerdyakov

}
, and m1,m2, and m3 are moments,

where⊏ is defined so as to be represented by the diagram. Observe, then, that H =
{hi; 1 ≤ i ≤ 8}, that Hm1 = H, that Hm2 = {h1, h2, h3, h4}, and that Hm3 = {h5, h6, h7, h8}.

At m1 Grushenka is faced with choosing between two actions: going to a ball (B)
or going to the Karamazov household (K). Thus, Choicem1

Gru = {B,K}. According
to Grushenka’s choice, the world evolves toward either m1 or m2. Since Mitya
and Smerdyakov cannot actually choose anything at m1, their available actions are
taken to lie within the trivial partition of Hm1 : Choicem1

Mit = Choicem1
Smer =

{
Hm1

}
.

Both m2 and m3 include interdependent decision contexts involving Mitya and
Smerdyakov. Intuitively, m1 and m2 occur at a same chronological instant—in
the future of m1—but they represent different alternatives in the possible-futures
dimension of branching time.17 As mentioned before, the layouts of choice-

17The idea of moments lying in same chronological instants can be formally factored into bt-frames.
The reader is referred to Xu (2015) for details.
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partitions at m2 and m3 look like normal-form games. Therefore, Mitya can be
seen as the row player, and Smerdyakov as the column player. Since Grushenka
cannot actually choose anything at m2 and m3, Choicemi

Gru =
{
Hmi

}
for all i ∈ {2, 3}.

At m2 the choices available to Mitya are either breaking into his father’s
bedroom through the window (W) or leaving (L), and the choices available to
Smerdyakov are either knocking on Fyodor’s door (D) or leaving (L). Thus,
Choicem2

Mit = {W,L} and Choicem2
Smer = {D,L}. At m3 the choices available to Mitya are

either fighting his father (F) or leaving (L), and the choices available to Smerdyakov
are also either fighting Fyodor (F) or leaving (L). Thus, Choicem3

Mit = {F,L} and
Choicem3

Smer = {F,L}.
Let b denote the atomic proposition ‘Fyodor Karamazov is badly hurt’ in

Figure 2.3. The diagram then shows that

V(b) = {⟨m2, h1⟩ , ⟨m2, h2⟩ , ⟨m2, h3⟩ , ⟨m3, h6⟩} .

Thus, the indices representing what actually happened in Brothers Karamazov
are ⟨m1, h1⟩ and ⟨m2, h1⟩. At ⟨m2, h1⟩Mitya has refrained from breaking into Fyo-
dor’s bedroom and Smerdyakov has knocked the secret code, ultimately leading
to Fyodor’s death. Although intuitively there is still a long sequence of actions
that should occur between the moment at which Fyodor hears the code of door
knocks and the moment when he gets badly hurt (namely Smerdyakov going into
the bedroom and knocking Fyodor down with a paper-weight) in this abstraction
M, ⟨m2, h1⟩ |= b.

Besides the actual situation, I wanted to add alternatives in the possible-futures
dimension of branching time. As such, the indices anchored by h5–h8 concern
what would have happened if that night Grushenka had gone to the Karamazov
residence. A likely scenario is that Fyodor would not have locked himself up in
his bedroom. Therefore, in Figure 2.3 the actions available to Mitya at m3 are either
fighting Fyodor for Grushenka’s love (F) or leaving (L), and the actions available
to Smerdyakov are also either fighting Fyodor (F) or leaving (L). My reasoning for
the possible outcomes at m3 is that, since Grushenka was watching, Fyodor would
have fought back hard. Thus, only if both Mitya and Smerdyakov had chosen F
would have Fyodor been badly hurt: M, ⟨m3, hi⟩ |= ¬b for all i ∈ {5, 7, 8}.

Now, let me exemplify the evaluation of formulas concerning agency. Observe,
on the one hand, thatM, ⟨m2, h1⟩ |= ¬[Mitya]b∧ [Smerdyakov]b: at the actual index it
was not Mitya but Smerdyakov who hurt Fyodor. Thus, according to our discussion
on refraining (p. 38), at the actual index Mitya has von-Wright-refrained from see-
ing to it that Fyodor gets hurt, because he did not hurt Fyodor and was (causally)
able to do so: M, ⟨m2, h1⟩ |= ¬[Mitya]b ∧ ^[Mitya]b. On the other hand, observe
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thatM, ⟨m2, hi⟩ |= ¬^[Smerdyakov]¬b ∧ ¬^[Mitya]¬b for all 1 ≤ i ≤ 4: at all indices
based on m2 neither Mitya nor Smerdyakov was causally able to prevent that Fyodor got
hurt. Other interesting cases appear in the non-actual situations given by Hm3 . For
instance, observe thatM, ⟨m3, h6⟩ |= b∧¬[Mitya]b∧¬[Smerdyakov]b: at ⟨m3, h6⟩ Fy-
odor has been badly hurt, but neither Mitya nor Smerdyakov did independently see to it
that Fyodor got hurt. Furthermore,M, ⟨m3, hi⟩ |= ¬^[Mitya]b∧¬^[Smerdyakov]b for
all 5 ≤ i ≤ 8: at all indices based on m3 neither Mitya nor Smerdyakov was causally able
to hurt Fyodor. Thus, although there is no explicit modelling of collaboration, one
could in principle say that at ⟨m3, h6⟩ Mitya and Smerdyakov collectively, but not
individually, hurt Fyodor (see Duijf, 2018, Chapters 4 & 5, for discussions on joint
collaboration and the relation between individual and collective responsibility).

This example highlights one of the benefits of stit theory that was mentioned
in Chapter 1 (p. 10): the flexibility and specificity of the models. Although some
might say that formalizing a scene of Brothers Karamazov as a case of sequential
and concurrent decision-making can be a bit of a stretch, bt-models allow us to
model a wide variety of scenarios.18 Moreover, this small example also bears
a nice connection with the discussions on responsibility that I will engage in in
succeeding chapters. For instance, one could say that at ⟨m2, h1⟩ Smerdyakov is
causally responsible for the damage done to Fyodor.19

2.2.5 Deliberative Agency

The operator [α]—with the semantics for formulas of the form [α]φ stated in
Definition 2.3—is known as the Chellas-stit operator. The reason for this name
is that [α] works as an analog of an operator that Chellas (1969) introduced to
formalize agency (see Horty, 2001; Horty & Belnap, 1995). Due to its importance
in the context of the formal theory of responsibility that I develop in Chapter 6, it
will prove helpful to introduce a well-known variant of the Chellas-stit operator,
known as the deliberative-stit operator:

Definition 2.6 (Deliberative-stit operator). Denoted by [α]d, the semantics for for-
mulas involving the deliberative-stit operator are obtained by extending the recursive
definition in Definition 2.3 with the following clause:

M, ⟨m, h⟩ |= [α]dφ iff for all h′ ∈ Choicem
α (h),M, ⟨m, h′⟩ |= φ,

and there is h′′ ∈ Hm s. t. M, ⟨m, h′′⟩ ̸|= φ.
18In fact, the idea behind using such a scene is that any course of events that involves multi-agent

choice can be modelled with stit theory. In the modelling endeavor, then, the modeller can be either
as idealistic or as realistic as they please.

19See Chapter 1’s Section 1.1 for an informal definition of causal responsibility. A formal account of
this kind of responsibility is presented in Chapter 6’s Section 6.3.
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The idea is that at a given index agent α has brought about φ—by performing
some action—only ifφwas not already settled. Otherwise, state of affairsφdid not
really depend on α’s choice and therefore should not be thought of as an effect of
any such choice. For [α]dφ to hold at some index, then, there are two requirements:
(1) φ must be an effect of the choice that α has performed at the index, known
as the positive condition; and (2) ¬φ must be historically possible, known as the
negative condition. According to (Horty, 2001, Chapter 2), the conjunction of
these two conditions is what characterizes a deliberative choice, where the term
‘deliberative’ comes from Thomason’s (1981) notion of deliberative obligation and
goes back to Aristotle’s observation in Nicomachean Ethics (1139b7) that one can
properly be said to deliberate only about what is “capable of being otherwise” (see
Crisp, 2014). The deliberative-stit operator was first introduced by von Kutschera
(1986) and independently by Horty (1989). For a comprehensive review of its
features, the reader is referred to Horty and Belnap (1995).

Importantly, Xu (2015) pointed out that one should not confuse deliberative
action with deliberate action. Modality [α]dφ does not mean to express that α has
deliberately seen to it that φ, since such a claim is intuitively related to conscious
or intentional choices. Rather than expressing any of these, [α]dφ captures the idea
that φ can be seen as a true consequence of some choice available to α, whether
conscious or unconscious, or intentional or unintentional.20

To illustrate how [α]d works, consider the bt-modelM depicted in Figure 2.3.
Observe that M, ⟨m2, h1⟩ |= [Smerdyakov]db: at ⟨m2, h1⟩ Smerdyakov has delibera-
tively seen to it the Fyodor is badly hurt. The positive condition is given by the choice
of D, and the negative condition is witnessed by h4: sinceM, ⟨m2, h4⟩ |= ¬b, then
M, ⟨m2, h1⟩ |= ^¬b: at ⟨m2, h1⟩ it was not settled that Fyodor would get hurt.

Now, there is a specific relation between the Chellas-stit operator and the
deliberative-stit operator. From Definition 2.6, one can see that [α]dφ holds at
some index iff [α]φ and ^¬φ hold at the index.21 Indeed, these operators are
interdefinable: using a language with only Chellas-stit operators, one can set
[α]dφ := [α]φ ∧ ^¬φ; and using a language with only deliberative-stit operators,
one can set [α]φ := [α]dφ ∨ □φ.22

20Of course, these considerations are extremely significant in responsibility attribution (see, for
instance, Lorini et al., 2014). To clarify, a fair question to ask is whether an agent should be held
responsible for a state of affairs that was already settled. The intuitive answer is ‘no,’ and this implies
that the formal account of deliberative action will play an important role in Chapter 6’s formalization
of responsibility.

21This means that if one extendsL so that formulas of the form [α]dφ are also included then formula
[α]dφ↔ [α]φ ∧^¬φ would be valid with respect to the class of bt-models.

22Horty (2001, Chapter 2) characterized von Wright’s kind of refraining in terms of the deliberative-
stit operator, namely through formula ¬[α]dφ ∧^[α]dφ. In light of the equivalence given by [α]dφ :=
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2.3 Logic-Based and Metalogic Properties of BST

I have overemphasized that an essential aim of this thesis’s methodology is to
reason about a philosophical concept’s properties by means of valid/invalid for-
mulas. I refer to such properties as logic-based properties. Furthermore, a very
important aspect of said methodology is to develop sound and complete proof
systems (otherwise known as axiomatizations) for the logics that formalize the
philosophical concepts studied here. This aspect refers to the so-called meta-
logic properties of said logics. In this section I discuss important logic-based and
metalogic properties of BST.

From here on, I will use the term atemporalL to refer to the fragment ofL that
does not include the temporal modalities Gφ and Hφ. Thus, the name atemporal
BST will be used to refer to the logic that is obtained by evaluating the formulas
of atemporal L over bt-models, and the name temporal BST will be used to refer
to the logic whose language does include Gφ and Hφ.

An outline of this section should help the reader identify its purposes and
contents:

• Subsection 2.3.1 explores logic-based and metalogic properties of atemporal
BST.

• Subsection 2.3.2 discusses Kripke semantics for atemporal BST, comparing this
semantics’ ontology of agency with that of other well-known formalisms in
branching-time logic.

• Subsection 2.3.3 introduces a proof system for temporal BST and addresses
its soundness & completeness results (with respect to Kripke models). To
provide a background for topics addressed later on in the thesis, a special
temporal stit-theoretic formalism known as xstit theory is also reviewed.

2.3.1 Proof Systems for Atemporal BST

The experienced reader will notice that [α] is an S5 modal operator for every
α ∈ Ags. This means that the following formulas—known as the S5 schemata—

[α]φ ∧ ^¬φ, ¬[α]dφ ∧ ^[α]dφ translates into a formula that is logically equivalent to ¬[α]φ ∧ ^[α]φ.
The latter formula is precisely the one that was presented to characterize von-Wright-refraining in the
present chapter (p. 39).
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are valid with respect to the class of bt-models:

[α](φ→ ψ)→ ([α]φ→ [α]ψ) (K)
[α]φ→ φ (T)
[α]φ→ [α][α]φ (4)
¬[α]φ→ [α]¬[α]φ (5).

It is a matter of routine to show that, for each α ∈ Ags, these formulas are valid
with respect to the class of bt-models.23 The reason is that any modal operator
based on an equivalence relation on a set of indices implies their validity. Let me
discuss what the validity of the S5 axioms for [α] says about BST’s agency:

• The validity of (K) implies that at an index an agent will always have brought
about all the logical consequences of the effects of its choice of action.

• The validity of (T) means that if at an index an agent has seen to it that φ
then φ must be true at the index.

• The validity of (4) means that if at an index an agent has seen to it thatφ then
all the histories within the agent’s current choice anchor indices at which
the agent has also seen to it that φ. In other words, to have seen to it that φ
is an effect of having seen to it that φ.

• The validity of (5) means that if at an index an agent has refrained from
seeing to it that φ then such a refraining was also an effect of the agent’s
current choice.

As for the historical-necessity operator □, it is easy to see that it is also an S5
operator.24 The philosophical implications of the validity of the S5 axioms for □,
then, can be summarized as follows: since (K) is valid, all the logical consequences
of whatever was settled at an index were also settled at that index. The validity
of (T) implies that if φ was settled at an index then φ must hold at any index
based on the same moment. The validity of (4) implies that if φ was settled at an
index then φ’s being settled was also settled at that index. Finally, the validity
of (5) implies that if φ was historically possible at an index then this historical
possibility was settled at the index.

23When the S5 schemata are valid for a modal operator, one often refers to the operator as an S5
operator.

24Furthermore, one can see □ as being based on an equivalence relation. For bt-modelM, let R□
be a relation defined on I(M × H) by the following rule: ⟨m, h⟩R□ ⟨m′, h′⟩ iff m′ = m. Let us define a
modality∆φ as follows: M, ⟨m, h⟩ |= ∆φ iffM, ⟨m′, h′⟩ |= φ for every ⟨m′, h′⟩ such that ⟨m, h⟩R□ ⟨m′, h′⟩.
ThenM, ⟨m, h⟩ |= ∆φ iffM, ⟨m, h⟩ |= □φ for every index ⟨m, h⟩.
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Much more interestingly, atemporal BST includes principles governing the
interplay between agency and historical necessity. These principles are given as
non-trivial formulas that involve both modalities and that are valid with respect
to bt-models. For instance, the semantics of □φ and [α]φ found in Definition 2.3
imply that □φ → [α]φ is valid for every α ∈ Ags. Thus, whatever was settled at
an index has been brought about by every agent at said index. I refer to the family
of formulas of the form □φ→ [α]φ (where α ranges over Ags) as (SET).

Doubtlessly, the most important principle governing the interplay between
[α] and □ is given by a family of formulas that I refer to as (IA). The reason for
this label is that the validity of this family (with respect to bt-models) is closely
related to frame condition independence of agency. This family of formulas (IA) is
defined as follows:

For all m ≥ 1 and pairwise distinct α1, . . . , αm ∈ Ags,∧
1≤i≤m

^[αi]φi → ^

( ∧
1≤i≤m

[αi]φi

)
(IA)

One can easily show that (IA) is valid with respect to bt-models. As mentioned
above, the argument involves independence of agency. It can also be shown that
(IA) defines this frame condition, since (IA) is valid on a frame iff the frame sat-
isfies independence of agency (see Blackburn et al., 2002, Chapter 3, for the precise
definitions of frame definability through modal formulas). Therefore, one can say
that (IA) characterizes syntactically that for each agent the availability of choices
at a given moment does not depend on the choices of other agents.

As for metalogic properties, there is a Hilbert-style proof system for atemporal
BST that is sound and complete with respect to bt-models. This proof system was
first presented by Xu (1994), who showed it to be sound and complete, as well as
decidable.25 I define a pertinent variation of such a system below, in terms of the
operators that have been introduced so far.

Definition 2.7 (Proof system for atemporal BST). Let Λ be the proof system defined
by the following axioms and rules of inference:

• (Axioms)

– All classical tautologies from propositional logic.

– The S5 schemata for □ and [α] (for each α ∈ Ags).
25On the basis of Wölfl’s (2002) axiomatization of temporal BST (where the language includes

formulas involving two extra modal operators besides □, [α], G, and H), one can produce an alternative
axiomatization for atemporal BST. Two further axiomatizations for atemporal BST, equivalent to the
one proposed by Xu (1994), were given by Balbiani, Herzig, and Troquard (2008). Additionally, a
complete tableaux calculus for this logic was provided by Wansing (2006b).
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– The family of schemata (SET).

– The family of schemata (IA).

• (Rules of inference) Modus Ponens, Substitution, and Necessitation for the modal
operators.

The main metalogic result for Λ, then, is given by the following theorem:

Theorem 2.8 (Soundness & Completeness of Λ, Xu, 1994). The proof system Λ is
sound and complete with respect to the class of bt-models. Furthermore, it is decidable.

In Xu’s proof of soundness & completeness, the spotlight falls on axiom (IA).
Since (IA) is valid with respect to bt-models, soundness of Λ is a straightforward
result. As for the proof of completeness, it will prove useful to review Xu’ strategy,
since it is similar to those underlying all the proofs of completeness in this thesis.
Xu’ strategy involves the following steps:

• (Step 1) A canonical frame F for Λ is built just as in modal logic. Therefore,
this canonical frame is a Kripke structure based on a domain of possible
worlds. Each possible world is aΛ-MCS, where ‘MCS’ stands for ‘maximally
consistent set of formulas.’ Equivalence relations R□ and Rα (for each α ∈
Ags) are defined on said domain so that, for world w, □φ ∈ w iff φ ∈ v for
every v such that wR□v, and, for α ∈ Ags, [α]φ ∈ w iff φ ∈ v for every v such
that wRαv.

• (Step 2) For a world w in the canonical frame, a bt-model Mw is built as
follows: the domain of Mw includes a root moment mw = {w} and all the
worlds v that lie in the R□-class of w. Each v in the R□-class of w corresponds
to an index of the form ⟨mw, hv⟩ (where history hv = {mw, v}). Function
Choice is then defined on the basis of the Rα’s. This definition, coupled
with the fact that (IA) ∈ v for every world v, ensures that frame condition
independence of agency is satisfied inMw. Therefore,Mw is a bt-model in all
the sense of the word. The valuation function V forMw is defined so that
M, ⟨mw, hv⟩ |= φ iff φ ∈ v. For each Λ-consistent formula φ, Lindenbaum’s
Lemma (Blackburn et al., 2002, Chapter 4, p. 199) implies that φ is included
in some w′ in the domain of the canonical frame. Thus, for eachΛ-consistent
formula φ there exists a bt-modelMw′ such thatMw′ , ⟨mw′ , hw′⟩ |= φ. This
means that Λ is complete with respect to the class of bt-models.

As for Xu’s proof of decidability, it is based on the finite model property. The
existence of a finite model is shown with a standard argument in modal logic:
filtration (see Blackburn et al., 2002, Chapters 2, 4, 6, for an exposition of finitary
methods, filtrations, and the decidability of a variety of modal logics).
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As is often the case, interesting valid formulas result from soundness of a proof
system. For instance, an important consequence of the validity of (SET), (IA), and
the S5 schemata for □ and [α] is that the modality for historical necessity can be
expressed in terms of the modalities for agency, provided that Ags includes more
than one agent. In other words, the validity of the mentioned schemata implies
that, for all α, β ∈ Ags such that α , β, □φ ↔ [α][β]φ is valid. This formula
says that an agent has seen to it that other agent brings about φ iff φ was already
settled. To put it colloquially, an agent cannot have forced another agent to bring
about any state of affairs unless such a state was already settled. To illustrate the
deduction of Λ-theorems, a derivation of □φ↔ [α][β]φ is included below, where
‘Subs.’ abbreviates ‘Substitution.’26

1. ⊢Λ □[β]φ↔ [β]□φ (4) for□, subs. of (SET),
subs. of (T) for□,
subs. of (T) for [β]

2. ⊢Λ ^
〈
β
〉
φ↔

〈
β
〉
^φ Contrapositive of 1

3. ⊢Λ ^φ→
〈
β
〉
^φ Subs. of (T) for [β]

4. ⊢Λ ^φ→ ^
〈
β
〉
φ 3, 2, prop. logic

5. ⊢Λ ^φ ∧ [α][β]¬φ→ ^
〈
β
〉
φ ∧ [α][β]¬φ 4, prop. logic

6. ⊢Λ ^
〈
β
〉
φ ∧ [α][β]¬φ→ ^

〈
β
〉
φ ∧^[α][β]¬φ Subs. of (T) for□,

prop. logic

7. ⊢Λ ^
〈
β
〉
φ ∧^[α][β]¬φ→ ^[β]

〈
β
〉
φ ∧^[α][β]¬φ Subs. of (5) for [β],

modal logic

8. ⊢Λ ^[β]
〈
β
〉
φ ∧^[α][β]¬φ→ ^([β]

〈
β
〉
φ ∧ [α][β]¬φ) Subs. of (IA)

9. ⊢Λ ^([β]
〈
β
〉
φ ∧ [α][β]¬φ)→ ^(

〈
β
〉
φ ∧ [β]¬φ) Subs. of (T) for [β],

Subs. of (T) for [α],
modal logic

10. ⊢Λ ^(
〈
β
〉
φ ∧ [β]¬φ)→ ^⊥ Modal logic

11. ⊢Λ ^φ ∧ [α][β]¬φ→ ⊥ 5–10, prop. logic

12. ⊢Λ ^φ→ ⟨α⟩
〈
β
〉
φ 11, prop. logic

13. ⊢Λ [α][β]φ→ □φ Contrapositive of 12

14. ⊢Λ □φ→ [α][β]φ (4) for□, subs. of (SET)
15. ⊢Λ □φ↔ [α][β]φ 13, 14, prop. logic

26Of course, one can show that formula □φ ↔ [α][β]φ is valid using only a semantic argument.
Unsurprisingly, the proof relies on independence of agency. Completeness ofΛwith respect to bt-models
then yields that such a formula is a Λ-theorem.
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2.3.2 Kripke Semantics for Atemporal BST

In Xu’s (1994) proof of completeness, the first step points to the possibility of
giving an alternative semantics to the formulas of atemporal L, namely in terms
of relations on Kripke structures of possible worlds. Indeed, such a semantics,
which I will henceforward refer to as Kripke semantics for atemporal BST, has been
extensively explored in the literature, for a variety of reasons. Since it plays an
important role in this thesis, let me address the basic ideas behind it.

First formally introduced by Balbiani et al. (2008), and independently by Kooi
and Tamminga (2008), Kripke semantics for atemporal BST has often been used to
work with simpler models (see, for instance, Broersen, 2011a; Duijf, 2018; Herzig
& Schwarzentruber, 2008; Schwarzentruber, 2012). Indeed, one can express all the
logic-based properties of atemporal BST in terms of Kripke semantics, since—as
discussed below—the proof systemΛ (Definition 2.7) is sound and complete with
respect to certain classes of Kripke structures.

Although the works mentioned in the previous paragraph introduced Kripke
semantics for atemporal BST in slightly different ways, they all presuppose do-
mains of possible worlds and accessibility relations on them. The following
definition of Kripke-stit frames closely follows the presentation of Balbiani et al.
(2008) (see also Broersen, 2011a; Duijf, 2018).

Definition 2.9 (Kripke-stit-frames & models). A tuple
〈
W,Ags,R□, Choice

〉
is called

a Kripke-stit-frame iff

• W is a non-empty set of possible worlds. R□ is an equivalence relation over W. For
w ∈W, the class of w under R□ is denoted by w.

• Choice is a function that assigns to each α ∈ Ags and □-class w a partition
Choicew

α of w given by an equivalence relation denoted by Rw
α . Choice must

satisfy the following constraint:

– (IA)K For all w ∈ W, each function s : Ags → 2w that maps α to a member
of Choicew

α is such that
⋂
α∈Ags s(α) , ∅ (where, mirroring Definition 2.2,

the set of all functions s that map α to a member of Choicew
α is denoted by

Selectw).

For α ∈ Ags, w ∈W, and v ∈ w, the class of v in the partition Choicew
α is denoted

by Choicew
α (v).

A Kripke-stit-modelM, then, is a tuple that results from adding a valuation function
V to a Kripke-stit-frame, whereV : P → 2W assigns to each atomic proposition a set of
possible worlds (recall that P is the set of propositions in atemporal L).
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Kripke-stit-models are used to evaluate the formulas ofLwith semantics that
are analogous to those provided using bt-models:

Definition 2.10 (Evaluation rules on Kripke models). LetM be a Kripke-stit-model.
The semantics onM for the formulas of L are defined recursively by the following truth
conditions, evaluated at world w:

M,w |= p iff w ∈ V(p)
M,w |= ¬φ iff M,w ̸|= φ
M,w |= φ ∧ ψ iff M,w |= φ andM,w |= ψ
M,w |= □φ iff for all v ∈ w,M, v |= φ
M,w |= [α]φ iff for all v ∈ Choicew

α (w),M, v |= φ.

Satisfiability, validity, and general validity are defined as usual.

As reviewed by Duijf (2018, Chapter 1), these Kripke-stit-models are very
similar to (a) Kooi and Tamminga’s (2008) choice structures , to (b) van Benthem
and Pacuit’s (2014) STIT choice structures, and to (c) Ciuni and Horty’s (2014) choice
Kripke models.

Kripke-stit-models are most commonly used to simplify—and also clarify—
the logic-based and metalogic properties of (temporal and atemporal) BST. As an
example, all the proofs of completeness in this thesis make heavy use of these
models, following the seminal works that presented completeness results for BST
(Balbiani et al., 2008; Broersen, 2011a; Herzig & Schwarzentruber, 2008; Lorini,
2013; Schwarzentruber, 2012; Xu, 1994). In the case of atemporal BST, the fact
that one can ‘safely’ use Kripke-stit-models to explore the logic comes from the
important proposition below.

Theorem 2.11 (Soundness & Completeness of Λ (w. r. t. Kripke models)). The
proof systemΛ of Definition 2.7 is sound and complete with respect to the class of Kripke-
stit-models.

The proof of this result is well-known. Soundness is routine, and completeness
follows from ordinary techniques of modal logic.27 In turn, Theorem 2.11 implies
the following standard results:

Proposition 2.12. A formula φ of atemporal L is valid with respect to the class of
bt-models iff φ is valid with respect to the class of Kripke-stit-models.

27In fact, these techniques appear in most of the works that I have mentioned above. They refer
to canonical models and Sahlqvist correspondence results (see Blackburn et al., 2002, Chapter 4, for an
exposition of these techniques).
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Proposition 2.13. A formula φ of atemporal L is satisfiable with respect to the class of
bt-models iff φ is satisfiable with respect to the class of Kripke-stit-models.

More interestingly, certain nuances in the relation between bt-models, on
the one hand, and Kripke-stit models, on the other, can be seen in Herzig and
Schwarzentruber’s (2008) proof of Proposition 2.13. In this proof, it is shown that
(a) for a formula φ of atemporalL that is satisfied at an index of a given bt-model,
one can use this bt-model and said index to construct an associated Kripke-stit-
model such that φ is satisfied at a corresponding world within it; and (b) (the
other way round) for a formula φ of atemporal L that is satisfied at a world of a
given Kripke-stit-model, one can construct an associated bt-model such that φ is
satisfied at a corresponding index within it. For (a), the histories passing through
the pertinent index of the bt-model are seen as worlds of the associated Kripke-
stit-model. For (b), the elements in the R□-class of the pertinent world are seen as
terminal nodes of histories passing through the corresponding index, such that
each world in said R□-class corresponds to a unique history.28

One may gather a specific insight, concerning the ontology of Kripke semantics
for atemporal BST, from the discussion above. In the Kripke-stit-models of Def-
inition 2.9, each possible world can be identified with a history passing through
a moment. Therefore, if one is to adapt the conceptual ideas of agency—in terms
of partitions of the set of histories passing through a moment—to Kripke-stit-
models, then the actions available to agents would involve partitions of the set
of possible worlds. As explained by Duijf (2018), this implies that each possible
world should be taken to include a full temporal evolution of the world—even in
this setting without temporal operators.

Let me briefly elaborate on this matter. Even without temporal operators,
atemporal BST’s notion of agency depends on branching time. As explained by
Zanardo (1996), there is an important ontological difference between modelling
branching time as a set of moments and modelling it as a set of possible worlds.
Although in Kripke semantics the formulas of atemporal L are evaluated at
possible worlds, each possible world should be seen as a complex entity that
includes a representation of a full course of events.29 Only in this way can the

28In Chapter 4, a similar—and a bit stronger—result is shown in the context of an extension of
atemporal BST both with epistemic and deontic operators. Definition C.43 and Propositions C.44 and
C.46 imply that every Kripke-stit-model can be used to construct an associated bt-model such that
there exists a bijective correspondence between the domain of the Kripke-stit-model and the set of
histories in the associated bt-model, where φ is satisfied at a world in the Kripke-stit-model iff φ is
satisfied at an index anchored by the history corresponding to said world in the associated bt-model.

29The worlds in Kamp frames for branching-time logic (Thomason, 1984; Zanardo, 1996, 2006), for
instance, are based on this ontological premise. Each world, then, is associated with a complete flow
of time. I will briefly return to this discussion when addressing Kripke semantics for temporal BST,
in the next subsection.
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concept of agency successfully carry over to Kripke structures. Indeed, this
ontological distinction led Duijf to using the term dynamic world to refer to the
elements in the domains of Kripke-stit-models. Such a term “highlights that we
can speak of the action preformed by an agent at a dynamic world, whereas
this would be fallacious or elusive for standard possible worlds” (Duijf, 2018,
Chapter 1, p. 34).

2.3.3 Proof Systems for Temporal BST

The logic-based and metalogic properties of temporal BST (whose language in-
cludes modalities □φ, [α]φ, Gφ, and Hφ) have also been explored in the literature
(see, for instance, Ciuni & Lorini, 2017; Lorini, 2013; Wölfl, 2002). To discuss them,
I present a logic that is based on Lorini’s (2013) framework, where the semantics
are given on special Kripke structures that I refer to as Kripke-tstit-frames.30

Definition 2.14 (Kripke-tstit-frames & models). A tuple〈
W,Ags,R□,RG,RH, Choice

〉
is called a Kripke-tstit-frame iff

•
〈
W,Ags,R□, Choice

〉
is a Kripke-stit-model (Definition 2.9).

• RG is a relation on W, representing the future relation, with the following proper-
ties:

– Seriality: for all w ∈W, there is w′ ∈W such that wRGw′.

– Transitivity: for all w, x, y ∈W, if wRGx and xRGy, then wRGy.

– Linearity: for all w, x, y ∈ W, if wRGx and wRGy, then either xRGy or yRGx
or x = y.

– Chronological irreflexivity: for all w, x ∈W, if wR□x, then it is not the case
that wRGx.

• RH is a relation on W, representing the past relation, with the following properties:

– Inverse: RH = R−1
G

.

– Linearity: for all w, x, y ∈ W, if wRHx and wRHy, then either xRHy or yRHx
or x = y.

• Furthermore, Choice, RG, and R□ are such that the following condition is satisfied:

30The logic presented here is not exactly the same as Lorini’s. The main difference is that, while
Lorini’s language includes an extra modality—[Ags]φ—expressing agency of the grand coalition
of agents (meaning the full set Ags), the logic addressed here is obtained over the language L of
Definition 2.1. Thus, I work by restricting Lorini’s language to formulas that do not involve [Ags].
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– (NC)K No choice between undivided ‘histories’: for all α ∈ Ags, if wRGv
and vR□x, then there exists y ∈ Choicew

α (w) such that yRGx.

A Kripke-tstit-modelM, then, is a tuple that results from adding a valuation function
V to a Kripke-tstit-frame, whereV : P→ 2W assigns to each atomic proposition a set of
possible worlds (recall that P is the set of propositions in L).

Definition 2.15 (Evaluation rules for temporal BST on Kripke models). LetM be
a Kripke-tstit-model. The semantics on M for the formulas of L is defined recursively
just as in Definition 2.10, with the following additional clauses:

M,w |= Gφ iff for all v such that wRGv,M, v |= φ
M,w |= Hφ iff for all v such that wRHv,M, v |= φ.

Carrying on with the discussion on the ontology of Kripke semantics for BST,
observe that Kripke-tstit-models explicitly account for the chronological dimen-
sion of time, with RG and RH. RG’s properties of seriality, transitivity, linearity, and
chronological irreflexivity ensure that, for each w ∈ W, RG behaves just as linear
temporal logic’s future relation on the set RG[w] = {v ∈W; wRGv} (see Blackburn
et al., 2002, Chapter 2). The same goes for RH as the past relation, for which
the fact that RH = R−1

G
ensures that RH is also transitive.31 For w ∈ W, a flow

of time associated with w is given by the strict linear order RH[w] ∪ {w} ∪ RG[w].
Moments, then, are identified with the R□-equivalence classes. To clarify, if the set
{w; w ∈ W} is ordered by an ordering ⊏ defined by w ⊏ w′ iff wRGw′, then RG’s
properties ensure that ⊏ is a well-defined strict partial ordering, where condition
(NC)K implies that ⊏ has no backward branching. Therefore, ⊏ behaves just as the
orderings underlying bt-models.32

31Notice, however, that RH might not be serial, so that there could be a ‘first’ moment.
32Kripke-tstit-frames are very similar to Zanardo’s (1985) Ockhamist frames for branching-time logic.

Indeed, an Ockhamist frame is a Kripke structure of possible worlds, where a union < of disjoint
irreflexive linear orders on the domain represents the chronological dimension of branching time, and
where an equivalence relation ∼ on the domain (disjoint from <) represents moments as classes of
possible worlds such that, for a given class, the members of this class embody the starting points of
possible histories passing through the moment that the class represents. Thus, Kripke-tstit-frames are
essentially obtained by extending Ockhamist frames so that they include choice partitions.

As established by Zanardo (2006) and by Ciuni and Lorini (2017), Ockhamist frames are equivalent
for branching-time logic to two kinds of structures: Kamp frames and bundled trees. As for Kamp frames,
I mentioned in Footnote 29 that the elements in the domain of a Kamp frame are called worlds. In a
Kamp frame, each world w is associated with a complete flow of time of the form (Tw, <w), such that <w
is an irreflexive, transitive, and linear ordering on a set Tw of ‘moments.’ The branching dimension
is given by equivalence relations ≈t on the domain, where, for world w and t ∈ Tw, ≈t is defined so
that the equivalence w ≈t w′ is meant to imply that the flow of time associated with w matches the
flow of time associated with w′ up to ‘moment’ t. As for bundled trees, these are built as follows: for a
strict partial order of moments ⟨M,⊏⟩ such that ⊏ does not admit backward branching and such that
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Following Lorini’s (2013) presentation, an axiomatization of temporal BST—
with respect to Kripke-tstit-frames—is given below.

Definition 2.16 (Proof system for temporal BST). Let ΛT be the proof system defined
by the following axioms and rules of inference:

• (Axioms)

– All the axioms and schemata given in Definition 2.7 for the proof system Λ;
the KD4 axioms for G; the K axiom for H; and the following axioms and
schemata:

φ→ GPφ (InG,H)
φ→ HFφ (InH,G)
PFφ→ (Pφ ∨ φ ∨ Fφ) (LinG)
FPφ→ (Pφ ∨ φ ∨ Fφ) (LinH)
[α]Gφ→ G□φ (NCUH)

• (Rules of inference)

– All the rules of inference given in Definition 2.7 for the proof system Λ.

– Necessitation for G and H.

– The rule of irreflexivity: from
(
□¬p ∧ □

(
Gp ∧ Hp

))
→ φ infer φ, provided

that p does not occur in φ.

Therefore,ΛT is obtained by extendingΛwith axioms that syntactically charac-
terize temporal logic’s traditional properties for RG and RH. Additionally, schema
(NCUH) characterizes syntactically frame condition (NC)K (no choice between un-
divided histories). The rule of irreflexivity is a variant of Gabbay’s well-known
irreflexivity rule (Gabbay, Hodkinson, & Reynolds, 1994), which according to
Lorini (2013) has been widely used for proving completeness results for differ-
ent temporal logics in which time is assumed to be irreflexive (see, for instance,
Gabbay et al., 1994; von Kutschera, 1997; Zanardo, 1996).

The main metalogic result for the proof system ΛT is given by the following
theorem:

the set of histories is denoted by H (where H is defined just as in bt-frames), a bundle B is a subset
of H such that for each m ∈ M there is h ∈ B such that m ∈ h. For any bundle B, the tuple ⟨M,B⟩
is known as a bundled tree. Since Kamp frames and bundled trees were shown to be equivalent for
branching-time logic to Ockhamist frames, one may regard Kripke-tstit-frames as extensions of any
of these two kinds of structures with choice partitions, where these partitions refine the equivalents
of R□-equivalence classes in such structures. Indeed, Ciuni and Lorini (2017) already presented such
extensions: agent Kamp frames and choice b-trees, respectively. All these comparisons, then, allow us to
elucidate the temporal nature of Kripke-tstit-frames, for which it seems appropriate to identify worlds
with histories, on the one hand, and R□-equivalence classes with moments, on the other.
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Theorem 2.17 (Soundness & Completeness of ΛT, Lorini, 2013). The proof system
ΛT is sound and complete with respect to the class of Kripke-tstit-models.

A fair question to ask is whether ΛT is also sound and complete with respect
to bt-models. The answer is negative. As implied by Ciuni and Lorini’s (2017)
correspondence results, a formula φ of L is valid with respect to Kripke-tstit-
models iff φ is valid with respect to agent Kamp frames, which in turns happens iff
φ is valid with respect to choice b-trees (see Footnote 32). This means thatΛT is also
sound and complete with respect to both these classes. However, a well-known
fact (see, for instance, Burgess, 1979; Zanardo, 2006) is that there are formulas
of L that are valid with respect to bt-models but invalid with respect to choice
b-trees. An example of one such formula is □G^F□φ→ ^GF□φ. Thus, soundness
of ΛT with respect to choice b-trees implies that ΛT is not complete with respect to
bt-models.33

2.3.3.1 A Special Kind of Temporal Stit Theory: Xstit

Following ideas first presented by Herzig and Troquard (2006), Broersen (2008a)
(see also Broersen, 2011a) introduced a special kind of temporal stit theory to
reason about the relation between knowledge and agency: Xstit. In this logic,
an agent’s choices of action, rather than having instantaneous effects, affect next
moments. I want to include a discussion of Xstit for two reasons:

1. The assumption that actions affect next moments implies that agents’ choices
can be seen as underlying transitions between states in a discrete temporal
structure. To clarify, having seen to it that φ is equated with performing an
action whose transition results in a state at which φ holds. Therefore, Xstit
draws a bridge between stit theory and prominent logics for multi-agent
systems (see Subsection 2.4.2).

2. Xstit is of particular relevance for Chapter 3, where the stages of information
disclosure in interactive decision contexts are factored into stit theory to
complement the theory of agency with epistemic notions from epistemic
game theory (ex ante, ex interim, and ex post knowledge).

33It is worth mentioning that Wölfl (2002) provided an axiomatization of an analog of temporal
BST known as propositional q-logic. Using two extra modal operators besides operators analogous to
the ones of language L, Wölfl showed that propositional q-logic is sound and complete with respect
to T ×W-based agent-frames, which are nothing more than agent Kamp frames where all the flows of
time coincide with a single linear order (Zanardo, 2006). The two extra operators respectively express
that a state of affairs is settled throughout the current instant (see Footnote 17) and that a state of affairs
holds along every history passing through the current moment except the current history (see Xu,
2015, Footnote 11, p. 855).
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As for Xstit’s syntax, Broersen (2008a) introduced modality [α]Xφ to express
that α has seen to it thatφwill occur at the next moment. As for the semantics, the
idea of next moments implies that in the frames used to evaluate Xstit formulas
time is discrete. Therefore, I refer to these frames as branching-discrete-time frames.34

The formal definitions are included below, for which the closest formulation in
the literature is Xu’s (2015).

Definition 2.18 (Syntax of Xstit). Given a finite set Ags of agent names and a countable
set of propositions P, the grammar for the formal language LX is given by

φ ::= p | ¬φ | φ ∧ φ | □φ | Xφ | [α]Xφ,

where p ranges over P and α ranges over Ags.

In LX, □φ has the same meaning as in BST; Xφ expresses that ‘φ holds at the
next moment (along the same history)’; and [α]Xφ expresses ‘α has seen to it that
φ will hold at the next moment, along the same history.’

Definition 2.19 (Bdt-frames & models). A tuple
〈
M,⊏,Ags,Choice

〉
is called a

branching-discrete-time frame (bdt-frame for short) iff

• M is a non-empty set of moments and ⊏ is a strict partial ordering on M satisfying
‘no backward branching.’ In contrast to the frames of Definition 2.2, these structures
are called ‘discrete-time’ because (M,⊏) must meet the following requirement:

– (TD) Time-discreteness: for all m ∈ M and h ∈ Hm, there exists a unique
moment m+h such that m ⊏ m+h and m+h

⊑ m′ for every m′ ∈ h such that
m ⊏ m′. For m ∈M and h ∈ Hm, m+h is known as the successor of m along
h. For an index ⟨m, h⟩, I refer to

〈
m+h, h

〉
as the successor of ⟨m, h⟩.

• Choice is a function defined just as in Definition 2.2.35

A bdt-modelM, then, is a tuple that results from adding a valuation functionV to
a bdt-frame, whereV : P→ 2I(M×H) assigns to each atomic proposition a set of indices.

34Xu (2015) referred to these frames as incremental stit frames.
35Broersen’s (2008a) original formulation of Xstit frames is a bit different. Instead of choice-

partitions, Broersen introduced, for each agent α, a serial relation Rα on I(M × H) such that, for all
m ∈ M and h ∈ H, ⟨m, h⟩Rα ⟨m′, h′⟩ implies that m′ is a successor of m along a history h′ that passes
both through m′ and m and that implicitly lies within the same action as h. Broersen also introduced
a serial and deterministic ‘next-time’ relation RAgs, under the premises that (a) RAgs underlies a single
transition between indices, and that (b) this transition is determined by an action of the full set of
agents Ags, so that RAgs ⊆ Rα for every α ∈ Ags. As such, Rα is the relation underlying modality [α]Xφ,
and RAgs is the relation underlying modality Xφ. As established by Xu (2015), both formulations are
logically equivalent, but in Broersen’s presentation the choice-partitions only “appear (implicitly) as
sets of possible next states” (Broersen, 2008a, p. 50, emphasis in original).
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Definition 2.20 (Evaluation rules for Xstit). LetM be a bdt-model. The semantics on
M for the formulas ofLX are defined by extending the recursive definition in Definition 2.3
with the following clauses:

M, ⟨m, h⟩ |= Xφ iff M,
〈
m+h, h

〉
|= φ

M, ⟨m, h⟩ |= [α]Xφ iff for all h′ ∈ Choicem
α (h),M,

〈
m+h′ , h′

〉
|= φ.

There are alternative presentations of Xstit that treat [α]X as a fused operator of
the traditional [α] with temporal operator X (see, for instance, Herzig & Troquard,
2006; Schwarzentruber, 2012; Xu, 2015). Indeed, if LX is defined by extending
atemporal L with modality Xφ, and if the semantics for this modality is just as
in Definition 2.20 above, then the resulting logic (over bdt-models) is rich enough
to express choices of action both with instantaneous effects—via [α]φ—and with
effects at next moments—via [α]Xφ.36

Definition 2.21 (Alternative syntax for Xstit). Given a finite set Ags of agent names
and a countable set of propositions P, the grammar for the formal language LX is given
by

φ ::= p | ¬φ | φ ∧ φ | □φ | Xφ | [α]φ,

where p ranges over P and α ranges over Ags.

Strictly speaking, this ‘alternative presentation’ of Xstit is in fact a richer logic
than Broersen’s (2008a). To clarify, the latter can be embedded in the ‘alternative’
through a translation Tr such that Tr

(
[α]Xφ

)
= [α]Xφ. Therefore, I refer to the

alternative presentation as basic xstit theory. As for metalogic results for these
logics, they can be summarized as follows:

• The technical results by Broersen (2008a) and by Payette (2014) imply that
there is a proof system for Xstit that is sound and complete with respect to a
class of Kripke models (as well as decidable). These models are extensions
of Kripke-stit-models such that each world in the domain has a next world
under a serial and deterministic relation RX.

• Schwarzentruber’s (2012) results imply that there is a proof system for basic
xstit theory that is sound and complete with respect to bdt-models, as well as
decidable.

36In fact, an extension of such a framework is what is used in Chapter 3 to address the relation
between information disclosure, agency, and know-how.
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2.4 Extensions and Connections of Stit Theory

In this section I describe interesting extensions of BST, where each extension
highlights a connection between stit theory and other disciplines in the literature
on applied logic.37 Since the import-export exchange of ideas with such disciplines
was stated as one of the reasons for choosing stit theory as my main tool in the
formalization of responsibility (see Chapter 1’s Section 1.2), I also discuss these
connections and their usefulness. Such a discussion will clarify stit theory’s
position in the literature of formal philosophy. Once again, an outline of this
section should help:

• Subsection 2.4.1 presents an extension of atemporal BST with groups—or
coalitions—of agents. This extension is the first step toward establishing a
connection between BST and logics for multi-agent systems.

• Subsection 2.4.2 presents an extension of BST with action types, connecting
stit theory with dynamic logic, coalition logic, and alternating-time temporal
logic.

• Subsection 2.4.3 presents an extension of atemporal BST with utilities or
payoffs, connecting stit theory with game theory and deontic logic.

• Subsection 2.4.4 addresses extensions of atemporal BST with epistemic no-
tions, connecting stit theory with epistemic game theory and epistemic logic.

2.4.1 Extension with Group Agency

In the logic-based analyses of interaction and multi-agent settings, how attitudes
of individuals relate to those of groups is doubtlessly one of the focus points. In
the case of stit theory, the discussion boils down to the concept of group agency.
Such a concept was first incorporated into BST in Horty’s (2001) seminal book,
starting a line of research within which considerable progress has been made in
recent years (see, for instance, Broersen, 2011a; Broersen et al., 2006b; Duijf, 2018;
Herzig & Schwarzentruber, 2008; Lorini, 2013; Lorini et al., 2014; Payette, 2014;
Schwarzentruber, 2012; Tamminga, 2013).

BST’s semantics for individual agency relies on choices of action that are
available at some moment. Therefore, it is natural to base group agency on
available joint choices. All the works mentioned above consider these joint choices

37Exploring these extensions is not gratuitous. Each extension implies enriching BST with notions
that are closely related to the components of responsibility that recurrently appear in this thesis (see
the list of components of responsibility on p. 3).
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as distributed processes in a specific relation with the individual choices of the
group’s members (Alur, Henzinger, & Kupferman, 2002; Halpern & Fagin, 1989).
The general agreement among stit theorists is that this specific relation must
meet the following requirements: (a) for every group—or coalition—C ⊆ Ags
and moment m, the set Choicem

C of joint choices of action available to C at m
should partition Hm; and (b) these joint choices must refine the intersections of
the choices available to the members of C at m: for every moment m and h ∈ Hm,
Choicem

C (h) ⊆
⋂
α∈C Choicem

α (h) (where Choicem
C (h) denotes the cell in the partition

Choicem
C that includes h).

Now, with the notable exceptions of Broersen (2011a), Duijf (2018), and Payette
(2014), most of the mentioned authors agree that, as far as point (b) goes, the
other inclusion must also hold, so that Choicem

C =
{⋂

α∈C Choicem
α (h); h ∈ Hm

}
.

Following Schwarzentruber (2012), I use the term super-additivity (SA) to refer to
the following condition for stit-theoretic models: for group C ⊆ Ags, moment m,
and h ∈ Hm, Choicem

C (h) ⊆
⋂
α∈C Choicem

α (h). Following Duijf (2018, Chapter 1), I
use the term intersection property (IP) to refer to the condition that ensues when
the other inclusion also holds: for every moment m and h ∈ Hm, Choicem

C (h) =⋂
α∈C Choicem

α (h). In either case, the elements of Choicem
C are interpreted as the

joint choices available to C at m, and they provide semantics for a modality of the
form [C]φ, meant to express that coalition C has seen to it that φ. The following
definitions make these remarks formal, where I refer to the extension of atemporal
BST with group notions as atemporal group stit theory.38

Definition 2.22 (Syntax for atemporal group stit theory). Given a finite set Ags of
agent names and a countable set of propositions P, the grammar for the formal language
LG is given by

φ ::= p | ¬φ | φ ∧ φ | □φ | [C]φ,

where p ranges over P and C ranges over 2Ags.

[C]φ expresses that ‘coalition C has seen to it that φ’ (and ⟨C⟩φ abbreviates
¬[C]¬φ). In this setting, [α]φ abbreviates [{α}]φ.

Definition 2.23 (Group agency). For a bt-model M such that m ∈ M and h ∈ Hm,
the semantics for the formulas ofLG are obtained by extending the recursive definition in
Definition 2.3 with the following clause:

M, ⟨m, h⟩ |= [C]φ iff for all h′ ∈ Choicem
C (h),M, ⟨m, h′⟩ |= φ.

38Of course, there exist stit logics for group agency whose language also includes the temporal
operators G and H (see, for instance, Lorini, 2013). Although they will not play a prominent role in
what follows, I label the logics of this form under the term temporal group stit theory.



§ 2.4. Extensions and Connections of Stit Theory · 61

For the sake of completeness, let me address the basic metalogic results for
atemporal group stit theory. First shown by Herzig and Schwarzentruber (2008),
it is a well-known fact that, when card(Ags) > 2, the satisfiability problem of
a formula of LG, with respect to bt-models where the intersection property (IP)
holds, is undecidable. The proof in Herzig and Schwarzentruber (2008) also shows
that atemporal group stit theory over the class of bt-models where (IP) holds is not
finitely axiomatizable. However, if one considers the bigger class of models given
by bt-models where only (SA) (super-additivity) holds, then atemporal group stit
theory is indeed finitely axiomatizable with respect to such a class, as well as
decidable (Broersen, 2008a; Schwarzentruber, 2012).

2.4.2 Extension with Action Types

In the logic-based modelling of action and ability, “stit is not the only game in
town” (van Benthem & Pacuit, 2014, p. 292). According to van Benthem and
Pacuit, there are two general views on how to model actions available to an agent
by means of modal logic. One is the view of BST, and the other comes from
dynamic logic (Harel, Kozen, & Tiuryn, 2001). The main ingredients of BST have
already been discussed, so let us turn our attention to the second approach.

Propositional dynamic logic (PDL) (M. J. Fischer & Ladner, 1979; Harel, 1984),
originated as the propositional fragment of Pratt’s (1982) dynamic logic. It is based
on the idea that actions determine transitions between states of a system. These
transitions are typically represented by relations on a set W of possible worlds,
where each w ∈ W represents a state of a system. A transition-relation is labelled
by an action label or action type, so that if all action labels are collected in a set
Types, then, for each label a ∈ Types, the relation Ra ⊆ W × W indicates the
possible executions of basic action—or basic program—a. Basic programs are
then used to construct complex ones according to specific rules.39

As for the syntax of PDL, for a complex program π, the languageLPDL of PDL
includes modalities of the form [π]φ, meant to express that after every possible
execution of program π formula φ holds. As for the semantics, the formulas of
LPDL are evaluated on Kripke structures known as labelled transition systems (see,
for instance, Alur et al., 2002;Blackburn et al., 2002, Chapter 2). It is with respect to
these transition systems that an ontology of action arises. Here, the performance
or execution of an action type is seen as an event that changes the world, in the
sense that it causes a system to transition from some state to another. For instance,

39Thanks to its application to deontic logic (Meyer, 1988) and to philosophy of action (Segerberg,
1992), PDL began being considered as a logic of action.



62 · Agency

if I raise my arm, I am performing a type of the form ‘to raise one’s arm,’ and the
world changes from a state at which my arm is lowered to a state at which my
arm is raised.

As far as comparisons go, it is hard to say whether PDL is better or worse at
formalizing actions than BST. PDL is an interesting framework with a wide variety
of applications (Baltag & Renne, 2016; Harel, 1984; Meyer, 1988; Segerberg, 1992;
Troquard & Balbiani, 2019). Furthermore, it has convenient metalogic properties:
as shown by Blackburn et al. (2002, Chapters 4 & 6), there is a simple proof
system for PDL that is sound and complete with respect to labelled transition
systems, as well as decidable. Thus, it seems appropriate to say that, in the
formalization of actions, favoring BST over PDL or vice versa depends on the
purpose of the formalization. In deciding which logic would be more suitable for
any such purpose, it is convenient to bear in mind that the differences between
these frameworks can be summarized in two main points (which are related to
one another to the extent that one refers to the semantic aspect of the logics and
the other to the syntactic one):

• Conceptually, PDL treats the execution of an action as a transition from a
state to another, where the concept of time is not explicit. In contrast, BST
treats actions as ways in which agents bring about states of affairs in the
world at some moment. In BST, agency depends on the effects caused by
the actions available to agents.

• Syntactically, PDL has a language that includes action types. In contrast,
BST does not explicitly include terms for actions in its language (see the
second bullet point in Remark 2.4). However, unlike PDL, BST does include
terms that refer to agents, as is clear from the exposition in this chapter.

Regardless of these differences, or perhaps because of them, the literature has
taken an interest in exploring hybrid systems. The attempts are divided in two
main categories: those enriching PDL with stit-theoretic notions, and those en-
riching BST with notions from PDL. The latter category serves as background
for reviewing specific connections between stit theory and logics for multi-agent
systems (MAS). Such connections support the claim that one of the biggest ad-
vantages of stit theory, at least regarding the formalization of responsibility, is its
relation to other theories (see Chapter 1’s Section 1.2). Thus, the latter category
will be discussed in far more detail than the former, whose basics I briefly describe
below.
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Incorporating stit-theoretic notions into PDL

In PDL, the execution of action types is not explicitly linked to agents. Therefore,
the main import from stit theory is the notion of agency, seen as a measure of
the control that an agent can have over the execution of an action type (van
Benthem & Pacuit, 2014). The most common technique for incorporating agency
into PDL involves using complex action types of the form (α, π), where [(α, π)]φ
is meant to express that φ will be the case after every execution of program π by
agent α (Canavotto, 2020; Herzig & Longin, 2004; Lorini & Herzig, 2008; Meyer,
van der Hoek, & van Linder, 1999; van Benthem & Pacuit, 2014). A relation
R(α,π) is what underlies modality [(α, π)]φ in labelled transition systems, so that
M,w |= [(α, π)]φ iff for each v such that wR(α,π)v,M, v |= φ. As mentioned by
Canavotto (2020, Chapter 2), unless certain restrictions are applied to R(α,π), this
notion of agency has the following differences with stit theory’s: (a) the available
action types do not necessarily partition the set of transitions starting at some
state, (b) it is not necessary for all agents to execute an action type for a transition
to ensue, and (c) the execution of some type by an agent might not be independent
of the execution of another type by another agent.

Incorporating PDL notions into BST

Just as relations underlie transitions between states in PDL, BST’s semantics
for agency also involves relations, namely the equivalence relations underlying
choice-partitions Choicem

α (with α ∈ Ags). Therefore, there are natural ways of
extending BST with action labels in the tradition of PDL. For instance, one can
incorporate a set of action labels into the models and use it to tag the equivalence
relations in such a way that different relations can be tagged with the same label.
Indeed, this method has been explored by different authors (see, for instance,
Herzig & Troquard, 2006; Horty, 2019; Horty & Pacuit, 2017; Lorini et al., 2014).
These extensions, however, are only semantic in nature; the basic syntax of the
logic remains unchanged. Below, I present the formal definition of the models that
result from incorporating action labels into bt-models, following the exposition of
Horty and Pacuit (2017):

Definition 2.24 (Labelled bt- frames & models). A tuple of the form〈
M,⊏,Ags,Choice,Tps,Lbl,Exe

〉
is called a labelled bt-frame iff

•
〈
M,⊏,Ags,Choice

〉
is a bt-frame (Definition 2.2).

• Tps is a set of action types. For α ∈ Ags and m ∈ M, Tpsm
α denotes the set of

action types that are available to α at m.
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• Lbl is a label function that maps action tokens to action types: for α ∈ Ags, m ∈M,
and L ∈ Choicem

α , Lbl(L) ∈ Tps. For α ∈ Ags, Lblα will denote a function that
maps an index to the action label of the action token performed by α at that index.
In other words, for index ⟨m, h⟩, Lblα (⟨m, h⟩) = Lbl

(
Choicem

α (h)
)
.

• Exe is a partial execution function that maps each action type τ ∈ Tps, m ∈M, and
α ∈ Ags to a particular action token Exem

α (τ) ∈ Choicem
α . Lbl and Exe satisfy the

following conditions:

– (EL) For each α ∈ Ags and index ⟨m, h⟩, Exem
α (Lblα(⟨m, h⟩)) = Choicem

α (h).

– (LE) For each α ∈ Ags, m ∈ M, and τ ∈ Tps, if Exem
α (τ) is defined, then

Lblα(Exem
α (τ)) = τ.

A labelled bt-modelM, then, is a tuple that results from adding a valuation function
V to a labelled bt-frame, whereV : P→ 2I(M×H) assigns to each atomic proposition a set
of indices.

Even if the extension with action labels is only semantic, it leads to interesting
discussions. A famous one—at least in stit theory—concerns the distinction be-
tween action types and action tokens. Paraphrasing Broersen and Abarca (2018b),
the difference between types and tokens is as follows: a token is the single per-
formance of an action by a specific agent at a specific moment; action types, in
contrast, refer to categories or patterns of actions, that can be repeated at differ-
ent moments and that are instantiated in tokens. For instance, when one says ‘I
opened the window of Fyodor’s bedroom at 4 a.m. on Monday,’ this is gener-
ally seen as an action token. The expression ‘to open a window,’ in turn, can be
thought of as a type. The literature on logics of action knows no consensus as to
how specific tokens must be, or how general types must be, so the exact border
between the two concepts is ambiguous. What is usually taken for granted, then,
is that the more specific the conditions of performance are, the more the action
is seen as a token; and the more applicable the term for an action is to many
particular instances, the more the action is seen as a type.

A usual assumption among stit theorists is that the cells of choice-partitions
in bt-models are action tokens rather than types. The reason is that these cells are
specific to each point in time and to each agent. Thus, extending the models with
types typically accompanies the intent of binding several tokens together under a
unifying term. In several recent works (for instance, Horty, 2019; Horty & Pacuit,
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2017; Lorini et al., 2014), the purpose of binding tokens together is the same: to
model the interplay between knowledge and agency so that the same types of
actions are available at indistinguishable moments.40

Therefore, labelled bt-models are interesting by themselves, and although
they narrow the gap between stit theory and PDL, there exist two logic-based
formalisms that resemble the logic of labelled bt-models much more than any
actual dynamic logic.41 These are coalition logic (CL) (Pauly, 2002) and alternating-
time temporal logic (ATL) (Alur, Henzinger, & Kupferman, 1997; Alur et al., 2002;
Goranko & van Drimmelen, 2006).42

On the one hand, CL and ATL share with PDL the semantic, conceptual stand-
point on action. Both logics treat the performance of actions as events in a tran-
sition system. However, neither CL nor ATL uses action labels in the object
language. On the other hand, as exposed by Broersen et al. (2006a, 2006b), there
exist clear metalogic relations between appropriate extensions of BST and the
logics CL and ATL. To clarify, extending BST with action labels (in the mod-
els), next-moment operators, group notions, and strategies yields a framework
that subsumes both CL and ATL. Therefore, it is fair to say that CL and ATL lie
somewhere in the middle between BST and PDL.

To conclude this subsection, it must be mentioned that there are PDL-inspired
extensions of branching-time logic that are not merely semantic extensions. A
technique for incorporating action terms into the syntax of a stit-like frame-
work comes from using propositional constants of the form doα(τ), standing

40This quality is usually referred to as uniformity of available action types (UAAT). To the best of
my knowledge, the usefulness of incorporating action types into BST to account for (UAAT) was first
highlighted by Herzig and Troquard (2006)—in the context of formalizing the epistemic sense of ability,
which is closely related to the concept of know-how. However, Herzig and Troquard (2006) managed
to circumvent the introduction of action types to BST and still succeeded in characterizing (UAAT).
Their method was further developed by Duijf et al. (2021), who showed that types are not necessary
to formalize either (UAAT) or the epistemic sense of ability. All these topics are prominent throughout
this thesis. They are introduced in Chapter 3 and discussed at length in Chapter 4.

41By ‘actual dynamic logic’ I refer to any logic that includes action labels in its models and an
explicit treatment of action terms in the object language.

42First presented by Pauly (2001), coalition logic (CL) is a modal logic to formalize group ability.
Broadly speaking, it provides a logic-based criterion for deciding when a coalition is collectively able
to bring about a state of affairs as a particular outcome of a strategic game. Just as in BST, CL’s notion
of (causal) ability is based on the availability of actions (see Subsection 2.2.3). The exact relation
between CL and BST was first formally explored by Broersen et al. (2006b), whose results imply
that CL can be embedded in an appropriate extension of BST (whose language includes the next-
moment operator X from xstit theory and group-agency operators [C]). For the technical details of the
embedding, the reader is referred to Broersen et al. (2006b); Canavotto (2020). Developed by Alur et
al. (1997, 2002), alternating-time temporal logic (ATL) was presented as an extension of computation tree
logic (CTL), a branching-time temporal logic designed to reason about properties of computations in
a system. While CTL includes modal operators for the universal, resp. existential, quantification over
sets of paths or computations—sequences of states such that each element of the sequence transitions
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for ‘agent α performs an action of type τ’ (see, for instance, Broersen, 2014a;
Canavotto, 2020; Herzig & Lorini, 2010). For a language of branching-time logic
including the operator □ for historical necessity and the next-moment operator
X, the extension of such a language with these propositional constants yields
that one can define modalities for agency so that they work just as stit-theoretic
modalities: for a set Tpsα of action types available to agent α, one can define
[α]Xφ :=

∨
τ∈Tpsα

(
doα(τ) ∧ □

(
doα(τ)→ Xφ

))
. Thus, frameworks of this kind in-

clude actions at the level of the object language, making it is possible to syn-
tactically characterize some intended property of types themselves. This leads
to the development of very interesting logics, to say the least (see, for instance,
Canavotto, 2020, Chapter 3).

2.4.3 Extension with Utilities & Obligations

As mentioned before, the layouts of choice-partitions in bt-frames look very simi-
lar to normal-form games. However, there are subtle differences to bear in mind.
Normal-form games include payoff functions that assign an individual payoff,
or utility, to each outcome and agent—where these outcomes are given by full
‘strategy’ profiles.43 With this scheme of actions and payoffs, game theory allows
us to reason about two questions: (1) how agents can act, given their available
actions and the actions of other agents; and (2) how agents would need to act if their
choices were guided by particular combinations of their preferences with varying
assumptions for their rationality.44

into the next, ATL was introduced to reason about strategies over such transition systems. The main
question was to formalize when a coalition is able to choose and perform a strategy—seen as a set
of alternative paths—such that φ is guaranteed to occur at specific states of all the paths belonging
to the strategy. Goranko (2001) showed that CL is a fragment of ATL. This result made it possible
to think of a formal relation between ATL and stit theory. Broersen et al. (2006a) explored such a
relation and gave the essential ideas to embed ATL into stit theory, but the technical details for such
an embedding are missing in the literature. The interested reader is referred to a preprint of mine
(https://arxiv.org/pdf/2302.07332.pdf), that shows that ATL can indeed be embedded in an
extension of BST with group strategies.

43In game theory, the word ‘strategy’ is used in different ways in different contexts. In normal-form
games, a strategy is a single choice of action available to some player. In extensive-form games, a
player’s strategy is a function that maps chronologically ordered sequences of that player’s actions,
each from the game-tree nodes at which it is the agent’s turn to act, to a next action of that agent (see
Osborne & Rubinstein, 1994, Chapter 6). From here on, I will use the term ‘strategy’ to refer to the
notion as is done in the analysis of extensive-form games (or in ATL, for that matter), and I will use
the term ‘action’ to refer to the notion as is done in the analysis of normal-form games. Therefore, in
normal-form games each outcome is associated with a full action profile.

44These questions imply that game theory is closely related to two other philosophical disciplines:
decision theory and rational choice theory, which respectively study the reasoning processes underlying
specific choices of agents and how these reasoning processes aggregate to social behaviors in the
context of interdependent decision contexts (see Steele & Stefánsson, 2016). These questions also imply

https://arxiv.org/pdf/2302.07332.pdf
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BST shares with game theory the use of models to address question (1) above.
A natural extension of BST, then, would result from adding payoffs or utilities
to bt-models in order to accommodate some philosophical purpose. Starting
with the proposals of Horty (2001) and of Kooi and Tamminga (2008) (see also
Tamminga, 2013; van de Putte, Tamminga, & Duijf, 2017), this kind of extensions
has already appeared in the literature, and the philosophical purpose has mostly
been the same: the formalization of optimality and obligation. Since they serve as
an important background to much of the work done in Chapters 4 and 6, I address
the basic aspects of such extensions below.

Following Duijf’s (2018, Chapter 1) exposition, consider the following class
of bt-frames, resulting from extending the tuples in Definition 2.2 with payoff
functions.

Definition 2.25 (Rich Kripke-stit-frames). A tuple
〈
W,Ags,R□, Choice, {uα}α∈Ags

〉
is called a rich Kripke-stit-frame iff

•
〈
W,Ags,R□, Choice

〉
is a Kripke-stit-frame.

• For all w, v ∈W, it holds that wR□v.

• For all α ∈ Ags, uα : W → R is a utility function assigning a real value uα(w) to
each dynamic world in W.

As reviewed by Duijf (2018, Chapter 1), rich bt-models are very similar to
consequentialist models (Kooi & Tamminga, 2008) and to consequentialist choice Kripke
models (Ciuni & Horty, 2014). Ciuni and Horty’s and Duijf’s correspondence
results imply that the class of strategic normal-form games corresponds to a
specific sub-class of rich Kripke-stit-frames, namely deterministic rich Kripke-stit-
frames.45

Thus, there exists a specific connection between BST and game theory. This
connection brings much conceptual insight on the stit-theoretic modelling of
agency, as discussed both by Ciuni and Horty (2014) and by van Benthem
and Pacuit (2014). To clarify, one can take to stit theory any intuition—about
the decision-making process in interdependent decision contexts—that strategic
normal-form games are able to express.46 In fact, most of this chapter’s discussion
has already taken advantage, at least implicitly, of this incorporation of ideas. As

that, just as with decision theory, game theory can be thought as having two branches: descriptive game
theory, used to reason about how agents can act, and normative game theory, used to reason about how
agents should act if they abode by certain principles.

45A rich Kripke-stit-frame is called determinisic iff for all w ∈W,
⋂
α∈Ags Choice

w
α (w) = {w}.

46A good example of this can be found in Chapter 3, where I incorporate into stit theory epistemic
notions that come from EGT (ex ante, ex interim, and ex post knowledge).
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stated by Ciuni and Horty, stit theory was originally conceived as a logic only
about the contribution of agents to changes in the world, but the similarities of its
models with game-theoretic ones drove stit theorists to also speak about agents’
choices or decisions, notions that have been central to this chapter’s presentation.47

It is following this conceptual connection that adding utilities to stit-theoretic
models has been used to reason about other philosophical concepts. Before, I
mentioned that both Horty’s (2001) and Kooi and Tamminga (2008)’s proposals—
according to which utility functions can be used to formalize obligations in stit
theory—constitute an important background for Chapters 4 and 6. Furthermore,
they imply drawing a bridge between stit theory and yet another discipline: de-
ontic logic. The intuition behind this bridge lies in normative game theory (see
Footnote 44), where assumptions on utilities and on the behavior of decision mak-
ers underlie standards for how agents should act in relation to the circumstances
of a game.48 By letting these circumstances describe ethical, moral, or legal situa-
tions, for instance, and by adopting a utilitarian perspective, the mentioned works
adapt game-theoretic tools into stit theory to formalize the deontic concept of
ought-to-do (Horty, 2001, Chapter 4). The basic idea is that an agent’s choices can
be compared with each other according to the utilities or payoffs that they lead
to, so that the best—or optimal—choices support what the agent ought to have
brought about. I refer to the resulting formalism as act-utilitarian stit theory, and
its detailed exposition can be found in Chapter 4’s Subsection 4.2.1.

2.4.4 Extension with Epistemic Notions

In Footnote 9 I mentioned that, according to van Benthem and Pacuit (2014), one
can recognize four main stages in choice scenarios: deliberation, decision, action,
and observation. Although this chapter has touched upon all these stages, for-

47According to Ciuni and Horty (2014), game-theoretic ideas were very important for stit theory
since the latter’s beginning. This is clearly illustrated by Belnap et al. (2001, Chapter 4, pp. 283, 343–
344), where the matrix representation of games is used to explain frame condition independence of agency,
and where a comparison between extensive-form games and bt-models is briefly addressed. As for
this last point, the definition of an extensive-form game bears plenty similarities with Definition 2.19’s
bdt-frames (for the precise definition of an extensive-form game, the reader is referred to Osborne
and Rubinstein (1994, Chapter 6, p. 89)). In fact, the correspondence between concurrent game
structures and labelled bdt-models in my preprint https://arxiv.org/pdf/2302.07332.pdf can be
used to establish a correspondence result between extensive-form games and rich deterministic labelled
bdt-models, where these last structures result from adding utility functions uα (for each α ∈ Ags) to
deterministic labelled bdt-models so that, for each α ∈ Ags, uα assigns to each history a utility.

48To be more precise, these standards refer to game theory’s solution concepts, according to which
the actions available to an agent in a game can be compared with each other. Thus, ‘preferred,’ ‘better,’
‘optimal,’ or ‘more appropriate’ actions arise. Among the most common solution concepts one finds
Nash equilibrium, iterated elimination of either strictly or weakly dominated actions, iterated elimination of
never best responses, and regret minimization (see, for instance, Osborne & Rubinstein, 1994).

https://arxiv.org/pdf/2302.07332.pdf
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malizations have essentially been limited to action. What about the other three?
Does stit theory have something to say about any of them? Well, stit theory’s
connection with game theory provides a good context for beginning to answer
this question.

Epistemic game theory (EGT) (see Pacuit & Roy, 2017, for an introduction) is a
sub-field of game theory that sees decision making in games as similar to what
decision theorists know as choice under uncertainty. Decision theory states that
to choose rationally is to select the best action in light of one’s beliefs or one’s
information about the world. It is a general assumption that agents do not know
everything about the world, so that their choices are made under varying degrees
of uncertainty. Choosing an action, then, is assumed to involve what agents know,
what they believe, and what they prefer about the world. Now, EGT “can be seen
as an attempt to bring back the theory of decision making in games to its decision-
theoretic roots” (Pacuit & Roy, 2017). Thus, performing an action in a game now
involves what agents know, what they believe, and what they prefer about the game.
Consequently, EGT brings to the table a formal account of knowledge and beliefs
and incorporates it into classic game theory.

Such an incorporation implies studying the aforementioned stages of choice
scenarios. Since at the stage of deliberation “we analyze our options and find
optimal choices,” at the stage of decision “we make up our mind and choose
an action of our own,” and at the stage of observation the actions of others “get
observed” (van Benthem & Pacuit, 2014, p. 309), then these three stages directly
concern agents’ knowledge, beliefs, and preferences across the decision-making
process. Thus, the game-theoretic flavor of stit theory is what set the tone for
incorporating epistemic notions into stit theory itself, and this led to a good
amount of research over the last two decades. As the literature’s ideas in these
respects are important for the rest of the thesis, I present their basics below.

Herzig and Troquard (2006) were the first to add epistemic modalities to the
basic stit languageL, giving rise to what from here on I will refer to as epistemic stit
theory (EST).49 The relationship between knowledge and agency within stit theory
was further explored in a series of papers by Broersen (2008a, 2008b, 2011a). In
turn, the last work in this series opened a line of research connecting EST with
deontic logic (Horty, 2019; Horty & Pacuit, 2017; Lorini et al., 2014), in the same
spirit as the connection discussed in the previous subsection.50

49The goal of Herzig and Troquard (2006) was to use epistemic bdt-frames to characterize an inter-
pretation of know-how as the composition of the modalities for historical possibility, for knowledge,
and for agency: to know how to see to it thatφwas equated to having the possibility of seeing to it that
φ at all epistemically indistinguishable indices. A discussion of this proposal is discussed extensively
in Chapter 3’s Subsection 3.3.4.

50The works in this line of research are the main background of Chapters 3, 4, and 5.



70 · Agency

As for the syntax of EST, it is given by the following definition:

Definition 2.26 (Syntax of EST). Given a finite set Ags of agent names and a countable
set of propositions P, the grammar for the formal language LK is given by

φ ::= p | ¬φ | φ ∧ φ | □φ | [α]φ | Kαφ,

where p ranges over P and α ranges over Ags.

In this language, □φ and [α]φ have the same meanings as in BST; Kαφ, in
turn, expresses that ‘agent α knows φ.’ As for the semantics, the structures on
which the formulas of LK are evaluated are based on what I refer to as epistemic
branching-time frames. The intuition behind this kind of frames is that each moment
is a scenario of choice under uncertainty. In other words, agents make choices at
points in time while having incomplete and imperfect information about the actual
evolution of the world.51

Definition 2.27 (Ebt-frames & models). A tuple
〈
M,⊏,Ags,Choice, {∼α}α∈Ags

〉
is

called an epistemic branching-time frame (ebt-frame for short) iff

•
〈
M,⊏,Ags,Choice

〉
is a bt-frame (Definition 2.2).

• For all α ∈ Ags, ∼α is an equivalence relation on the set of indices, meant to
represent the epistemic indistinguishability relation for α.

An ebt-modelM, then, is a tuple that results from adding a valuation functionV to an
ebt-frame, whereV : P→ 2I(M×H) assigns to each atomic proposition a set of indices.

Definition 2.28 (Evluation rules for EST). Let M be an ebt-model. The seman-
tics on M for the formulas of LK are obtained by extending the recursive definition in
Definition 2.3 with the following clause:

M, ⟨m, h⟩ |= Kαφ iff for all ⟨m′, h′⟩ s. t. ⟨m, h⟩ ∼α ⟨m′, h′⟩ ,M, ⟨m′, h′⟩ |= φ.

As for the logic-based properties of this kind of knowledge, basing the se-
mantics of Kαφ on an equivalence relation implies that Kα is a S5 modal operator.
Thus, the validity of schema (K) implies that agents are idealized logical thinkers
with so-called logical omniscience: they know all the logical consequences of their

51Ågotnes, Goranko, Jamroga, and Wooldridge (2015, emphasis in original) wrote: “[i]n game
theory, two different terms are traditionally used to indicate lack of information: ‘incomplete’ and
‘imperfect’ information. Usually, the former refers to uncertainties about the game structure and rules,
while the latter refers to uncertainties about the history, current state, etc. of the specific play of the
game.”
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knowledge.52 The validity of (T) means that knowledge is factive: only truths can
be known. The validity of (4) means that agents have positive introspection: if they
know something, then they know that they know it. Finally, the validity of (5)
implies that agents have negative introspection: if they do not know something,
then they know that they do not know it.53

The topics that are common to all the works that first added epistemic modal-
ities to BST have to a certain extent defined EST. These topics are the following:54

• Knowingly doing: interpreting moments of bt-models as choice scenarios
with incomplete and imperfect information led to a distinction between
what agents do unknowingly and what agents knowingly do. Concepts
first introduced by Broersen (2008a), the literature has somewhat settled on
the stit-theoretic interpretation of knowingly (and unknowingly) doing. On
the one hand, at index ⟨m, h⟩ agent α has knowingly seen to it that φ iff
M, ⟨m, h⟩ |= Kα[α]φ—that is, iff at ⟨m, h⟩ α knew that it has seen to it that
φ. On the other hand, at ⟨m, h⟩ α has unknowingly seen to it that φ iff
M, ⟨m, h⟩ |= [α]φ∧¬Kα[α]φ—that is, iff at ⟨m, h⟩ has seen to it that φ but did
not know this.55

• Epistemic sense of ability and know-how: just as in the above item, adding un-
certainty to bt-models allows us to distinguish an epistemic kind of ability
from mere causal ability (see Subsection 2.2.3). Thus, the ability to know-
ingly see to it that some state of affairs ensues—as opposed to the ability of
just seeing to it that it occurs—has been referred to as the epistemic sense of
ability (Horty & Pacuit, 2017). In terms of formulas of LK, at ⟨m, h⟩ α was
able in the epistemic sense to see to it that φ iffM, ⟨m, h⟩ |= ^Kα[α]φ—that
is, iff at ⟨m, h⟩ it was historically possible for α to knowingly see to it that
φ. Stit theorists have often linked this epistemic sense of ability with the

52This issue is controversial, to say the least, and the reader is referred to Stalnaker (1991) for an
interesting exposition of the problem.

53Negative introspection with respect to knowledge is a highly controversial property in the philo-
sophical literature. It seems unlikely that someone would know that they do not know something.
The reader is referred to Lenzen (1979) for a thorough examination of the matter. That said, one should
also keep in mind that, although much more appealing than its negative counterpart, positive intro-
spection has also been taken to test. Williamson (2002), for instance, advocated interesting reasons for
rejecting the principle.

54All these topics are thoroughly discussed, and further formalized, in Chapter 3.
55Broersen (2008a, p. 53, emphasis in original) wrote that the things that an agent does unknowingly

“vastly outnumber the things an agent knows he does. For instance, by sending an email, I may enforce
many, many things I am not aware of, which are nevertheless the result of me sending the email. All
these things I do unknowingly by knowingly sending the email.”
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so-called know-how (also known as practical or procedural knowledge).56

Although some authors might disagree with a complete identification of
know-how with the epistemic sense of ability, it is hard to disagree with the
argument that in order to know how to do something one must be able in
the epistemic sense to do it.

• Knowledge across the stages of information disclosure: the stages of choice sce-
narios that were mentioned before (deliberation, decision, action, and ob-
servation) admit different types of knowledge, each progressively refining
the one from the previous stage. EGT has come to distinguish three kinds
of knowledge therein (according to the process of information disclosure
in multi-agent decision making): ex ante knowledge, that concerns the in-
formation that is available to agents regardless of their choices; ex interim
knowledge, concerning the knowledge that is private to an agent after choos-
ing an action but before having information about the concurrent choices of
other agents; and ex post knowledge, concerning the information that is dis-
closed after everybody executes their choices. A stit-theoretic formalization
of these kinds of knowledge is presented in Chapter 3.

• Uniformity: adding indistinguishability relations to bt-models led to reason-
ing about agency at indistinguishable states. The idea, common to EGT and
the epistemic extensions of logics for multi-agent systems,57 that an agent
should have the same available actions at indistinguishable states is known
as uniformity.58 In the literature on EST, there have been two ways of mod-
elling uniformity: (a) through uniformity of available action types, for which

56According to Duijf (2018, Chapter 3), Fantl (2008) drew the outlines of know-how by distin-
guishing it from two other kinds of knowledge: knowledge by acquaintance and propositional knowledge
(know-that). Setting aside the concept of knowledge by acquaintance, Duijf proposed that the essential
difference between know-how and know-that lies in the content that they take. Procedural knowledge
takes actions as content, and propositional knowledge takes propositions as content. I agree with this
interpretation, which identifies the know-how studied here with Wang’s (2018) goal-directed know-
how, for instance. Apropos, Ryle (2009) introduced a debate as to whether know-how can be reduced
to know-that or not, where intellectualists think that it can and anti-intellectualists think that it cannot.

57The epistemic extension of ATL is a famous member in this category of epistemic logics for
multi-agent systems. Known in the literature as alternating-time temporal epistemic logic (ATEL), this
framework was developed in a series of papers to reason about imperfect and incomplete information
in concurrent game structures (see Ågotnes, 2006; Ågotnes et al., 2015; Jamroga & Ågotnes, 2007;
van der Hoek & Wooldridge, 2002). Thus, its analysis is similar to that of EGT’s extensive-form games
with information sets.

58According to Horty and Pacuit (2017), the use of the term ‘uniformity’ in this context is due to van
Benthem (2001). The concept is familiar in EGT, where the condition of uniform strategies is captured
by the fact that a strategy for an agent is defined as a function from that agent’s information sets to
actions, rather than from game states to actions. The term uniform strategies is also used in ATEL, to refer
to the analogous property that agents must be able to perform the same in-the-long-run strategies
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the practice of tagging different action tokens under the same type allows us
to describe uniformity across indistinguishable indices in labelled bt-models
(see Definition 2.24); and (b) through uniformity of historical possibility, that
establishes that the same knowledge should be historically possible at in-
distinguishable indices. Both conditions are further explored in Chapters 3
and 4, and they were shown to correspond to one another by Duijf et al.
(2021).59

Of course, all these topics imply drawing a bridge between stit theory and
a huge field in formal philosophy known as formal epistemology. More precisely,
they imply the incorporation into stit theory of ideas from the—also huge—field
known as epistemic logic.60

Now, although the stit-theory community has shown a considerable interest
in exploring the influence of knowledge on agency over the last two decades,
there are relatively few extensions of BST with belief modalities. To the best
of my knowledge, such an extension has been previously addressed only by
Wansing (2006a), by Broersen (2011c), and in my recent joint work with Jan
Broersen (Abarca & Broersen, 2021a). The first study incorporated beliefs into
BST to analyze the concept of doxastic voluntarism—a philosophical premise by
which agents actively decide to acquire certain beliefs. The second one added
probabilities to bt-models to represent the degrees of belief that an agent can have
regarding the bringing about of some state of affairs as an effect of one of its
available actions. Finally, Abarca and Broersen (2021a) picked up the connection
between game theory (EGT, in particular) and act-utilitarian stit theory to explore
the interplay between beliefs, agency, and obligations. In fact, the conclusions
of Chapters 3, 4, and 6 explore a version of this last proposal, to account for the
importance of belief as a component of responsibility.

2.5 Conclusion

This long chapter was devoted to a logic-based characterization of agency. The
basic syntactic and semantic aspects of stit theory—the logic of action lying at

at epistemically indistinguishable states (where these strategies should assign the same choices to
indistinguishable states). A well-known issue is that uniform strategies lead to complications in ATEL
(see Herzig & Troquard, 2006, for a brief discussion on the matter).

59To clarify, in our joint paper (Duijf et al., 2021) we show that these two conditions can be thought
of as corresponding conditions in two different classes of stit models: epistemic labelled bt-models,
on the one hand, and ebt-models, on the other.

60For a good introduction to epistemic modal logic, the reader is referred to standard textbooks on
the matter (Blackburn et al., 2002; Fagin et al., 1995; Halpern & Fagin, 1989; Hintikka, 1962).
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the heart of this thesis—were widely discussed and illustrated, with no little em-
phasis on the benefits of using BST in a potential formalization of responsibility.
Similarly, the logic-based and metalogic properties of BST, as well as its connec-
tions with several frameworks in the literature on applied logic, were thoroughly
reviewed. Such discussions, illustrations, logic-based/metalogic properties, and
connections were presented to provide a sturdy conceptual background for the
succeeding chapters.

“The performance is sometimes masterful, extremely clever, but the control
of the actions, their source, is deranged and depends on various morbid impres-
sions,” says the suspicious Zossimov, in Dostoevsky’s Crime and Punishment. By
now, we have covered a lot of ground on agency, discussing a conceptualization
in terms of choice and performance of actions. But what about the sources of
agency? And, perhaps more importantly, what about the implications that these
sources of agency have on agency itself? In my study of responsibility, the other
components in the decomposition’s list (p. 3)—knowledge, beliefs, intentions, and
obligations)—make up particular instances of such sources; they are some of those
‘impressions’ that Zossimov talks about, on which the choice and performance
of actions depends. The rest of this thesis, then, is devoted to the sit-theoretic
analysis of what these sources tell us about agency and about responsibility.



3

Agency & Knowledge

‘... to shed blood in all conscience is to my mind more horrible than if
bloodshed were officially, legally permitted’

Fyodor Dostoevsky, Crime and Punishment

‘But I didn’t realise what I’d done till I heard the sound. Like somebody
drowning. Screaming under water. I handed the knife to Dick. I said,
“Finish him. You’ll feel better.” ’

Truman Capote, In Cold Blood

... they concluded at once that the crime itself could not have occurred
otherwise than in some sort of temporary insanity, including, so to
speak, a morbid monomania of murder and robbery, with no further aim
or calculation of profit.

Fyodor Dostoevsky, Crime and Punishment

3.1 Introduction

In April, 1965 Richard Hickock and Perry Smith were executed by hanging at the
Lansing Correctional Facility, in Kansas. Their sentence came as a result of a trial
that found them guilty of murdering—in cold blood—four members of a well-liked
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family—the Clutters—6 years before. Although it was proven that Hickock and
Smith were responsible for the murders, at some point during a long scheme of
appeals a case was made that the defendants were afflicted by a psychological
impediment that prevented them from knowing what they were doing when they
shot the Clutters. Under the M’Naghten Rule—that prevailed in Kansas law at
the time—the only way of pleading ‘not guilty by reason of insanity’ was with
previous medical certification of an acute mental disease forbidding the defendant
to “know the nature of their act.” In the case of Hickock and Smith, such a mental
disease was dismissed. The appeals failed, and the defendants were sentenced to
death.

This grim account implies that knowledge plays an important role in the legal,
real-life ascription of responsibility to criminals. In turn, for logicians studying
agency and obligation, there is little debate about the intuition that responsibility
has an important epistemic component. This chapter, then, is devoted to the
introduction of epistemic notions to basic stit theory (BST), an essential step in
building my formal theory of responsibility.

Recent years have seen much interest in the role of knowledge when formal-
izing responsibility, precisely to deal with situations like Hickock and Perry’s ex-
ample. Aiming to model the degrees of culpability in juridical systems, Broersen
(2008a, 2011a) introduced a stit logic of knowingly doing. Afterwards, a compre-
hensive, stit-theoretic study of three kinds of game knowledge (ex ante, ex interim,
and ex post) was provided by Lorini et al. (2014), whose goal was to formalize both
responsibility attribution and attribution-emotions related to responsibility (like
guilt, or blame). Horty and Pacuit (2017), for their part, added epistemic modal-
ities to atemporal BST to formalize both ex interim knowledge and an epistemic
sense of ability (or know-how). Even more recently, Horty (2019) used such epis-
temic modalities to create a logic of epistemic obligations. Rather than including
all this in a section for related work, I mention it now because this chapter has
two main objectives, and both depend on the existing literature on epistemic stit
theory (EST) (see Chapter 2’s Subsection 2.4.4):

(i) I want to point out the areas for which the mentioned works overlap, clari-
fying their differences and their potential shortcomings.

(ii) I want to offer new stit-theoretic formalizations for the notions of ex ante, ex
interim, and ex post knowledge, as well as of know-how, targeting components
which I believe are central to any analysis of responsibility.

Within epistemic game theory (EGT) and epistemic logic, there is some degree
of agreement regarding the four kinds of knowledge mentioned above. In broad
terms, their characteristics are the following:
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• Ex ante knowledge concerns information that at a given moment is available
to agents regardless of their choices of action. It is commonly thought of as
knowledge that agents have before they perform any such choice.

• Ex interim knowledge concerns information that is private to an agent
after choosing an action but before having information about the concurrent
choices of other agents. In other words, it includes facts for which an agent
knows that they will occur after the choice and performance of one of its
actions, independently of what other agents choose.

• Ex post knowledge concerns information that becomes available after all
agents execute their choice.

• Know-how concerns an agent’s epistemic sense of ability (Horty & Pacuit,
2017). By ‘epistemic sense of ability’ I mean an agent’s ability to knowingly
perform an action that will bring about a specific outcome. Thus, the ver-
sion of know-how that I work with is closely related to the possibility of
knowingly doing something.

The first three categories are standard in EGT. They refer to an agent’s uncer-
tainty during the stages of information disclosure in the decision-making process.
Know-how, however, is not explicitly related to these stages. There are two main
reasons for including it in the present discussion, then. First, I want to explore
the connection between knowledge and ability. Such a connection is unavoidably
linked to know-how (see, for instance, Broersen, 2011a; Duijf, 2018; Herzig & Tro-
quard, 2006; Lorini et al., 2014). Secondly, and perhaps more importantly, I focus
on knowledge’s influence on ability not just for the sake of it; the goal is to aid in
the formalization of responsibility. As established by Broersen (2011a) (see also
Duijf, 2018; Lorini, 2013), and as illustrated both by Hickock and Smith’s example
and by the example that I will present in Section 3.2, know-how is very relevant
in this matter.1

Now, to express the four epistemic notions in clear terms, I use an extension
of basic xstit theory (see Chapter 2’s Sub-subsection 2.3.3.1). More precisely,
the language of this chapter’s logic extends the atemporal fragment of BST’s
languageL (see Definition 2.1, p. 28) with operators for ‘next’ and ‘last’ moments
and with operators for individual knowledge. As for the semantics, the formulas

1The intuition is that someone can be acquitted of knowingly bringing about an undesirable
outcome if they did not know how to prevent that outcome. Even if they knew that it was possible
to prevent that outcome, maybe they still did not know how to refrain from bringing it about (in the
sense that it was impossible for them to either knowingly refrain from doing so or to knowingly bring
about a different outcome). Clearly, these are good arguments for excusing them.I return to these
points when discussing the version of know-how introduced here (see Subsection 3.3.4).
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are evaluated on a special class of bdt-frames (see Definition 2.19, p. 57), namely
rootless bdt-frames including indistinguishability relations for agents. Thus, the
resulting logic—which I refer to as epistemic xstit theory with the grand coalition
(EXST)—is an extension of Broersen’s (2008a) Xstit and an epistemic extension
both of Lorini and Sartor’s (2016) logic and of a fragment of Payette’s (2014)
logic. In contrast to Broersen’s and Payette’s approaches, here (a) group agency
is defined in terms of the intersections of individual actions,2 and (b) both actions
with instantaneous effects and actions that take effect at next indices are accounted
for. An outline of this chapter is included below.

• Section 3.2 presents an example to illustrate the expressive power of EXST.
This example helps in the formal introduction of EXST’s syntax and seman-
tics.

• Section 3.3 puts forward working definitions for ex ante, ex interim, and ex
post knowledge, and for know-how. The section discusses previous inter-
pretations of these notions in the sit-theoretic literature and presents novel
EXST-based characterizations. These characterizations are then compared
with the previous interpretations, using the example of the preceding section
for illustration purposes.

• Section 3.4 introduces a Hilbert-style proof system for EXST and addresses
its soundness & completeness results, sith respect to Kripke models.

• Section 3.5 (the conclusion) explores an extension of EXST with another
important epistemic notion: belief. Furthermore, an initial characterization
of informational responsibility is mentioned.

3.2 An Example Involving Four Kinds of Knowledge

To illustrate the use of EXST in the study of multi-agent scenarios of choice
under uncertainty—where the four kinds of knowledge play important roles—
this section will be presenting a fun (albeit a bit complex) example. For the sake
of clarity, let me first introduce the syntax and semantics of EXST.

Definition 3.1 (Syntax of EXST). Given a finite set Ags of agent names and a countable
set of propositions P, the grammar for the formal language LKX is given by

φ ::= p | ¬φ | φ ∧ φ | □φ | Xφ | Yφ | [α]φ | [Ags]φ | Kαφ,
2That group agency is defined in terms of the intersections of members’ actions is a condition

that Payette referred to as “complete distributed group action” (Payette, 2014, p. 602). I previously
referred to it as the intersection property (IP) (see the discussion on p. 60).
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where p ranges over P and α ranges over Ags.

In this language, □φ, [α]φ, and Xφ have the same meanings as in basic xstit
theory (see Definition 2.21, p. 58); [Ags]φ expresses ‘the grand coalition Ags
has seen to it that φ,’ and Kαφ expresses ‘agent α knows φ.’ It is important to
emphasize that—just as in all the other chapters of this thesis—the description
of the stit-theoretic modalities will follow my interpretation of the semantics (see
the discussion on p. 34 and Remark 2.4). Therefore, when specifying the points
of evaluation for the formulas—the indices in bt-models—I take it that at those
indices states of affairs are definitive. Because of this, I use the present-perfect
tense for the description of modality [α]φ and say that ‘at index ⟨m, h⟩ α has seen
to it that φ.’ To be consistent, I will use the past tense for modalities □φ and Kαφ
and say that ‘at index ⟨m, h⟩ φ was settled φ,’ and that ‘at index ⟨m, h⟩ α knew φ.’

Observe that LKX is built with the instantaneous-stit operators [α] and [Ags].
Reasons for including these operators are that (a) they allow us to represent
agents’ available choices in a clear way and (b) the resulting language simplifies
the axiomatization for the logic.3 However, when talking about the four kinds of
agentive knowledge, the discussion will be restricted to actions that take effect at
next indices. Such actions are characterized with formulas of the form [α]Xφ
and [Ags]Xφ. Therefore, both in the present section and in the next one, the
fragment of LKX that includes only formulas of this type is used. I abbreviate the
combination [α]X by [α]X and the combination [Ags]X by [Ags]X.

As for the semantics, the structures on which the formulas ofLKX are evaluated
are based on what I call epistemic (rootless) branching-discrete-time frames.4

Definition 3.2 (Epistemic (rootless) branching-discrete-time frames & models).
A tuple

〈
M,⊏,Ags,Choice, {∼α}α∈Ags

〉
is called an epistemic rootless branching-

discrete-time frame (ebdt-frame for short) iff

•
〈
M,⊏,Ags,Choice

〉
is a bdt-frame (Definition 2.19, p. 57), where recall that this

implies that condition (TD) time-discreteness is met: for all m ∈ M and h ∈ Hm,
there exists a unique moment m+h such that m ⊏ m+h and m+h

⊑ m′ for every
m′ ∈ h such that m ⊏ m′. For m ∈M and h ∈ Hm, m+h is known as the successor
of m along h. For index ⟨m, h⟩, I refer to

〈
m+h, h

〉
as the successor of ⟨m, h⟩ or as

⟨m, h⟩’s next index.

3I support claim (a) after introducing the semantics for the formulas. I support claim (b) in Section
3.6, Footnote 38.

4As implied in Chapter 2’s Subsection 2.4.2, these structures are similar to alternating-time tem-
poral logic’s concurrent game structures and to extensive-form games.
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• For all m ∈ M and h ∈ Hm, there exists a unique moment m−h such that m−h ⊏ m
and m′ ⊑ m−h for every m′ ∈ h such that m′ ⊏ m. For m ∈ M and h ∈ Hm, m−h is
known as the predecessor of m along h. For index ⟨m, h⟩, I refer to

〈
m−h, h

〉
as

the predecessor of ⟨m, h⟩ or as ⟨m, h⟩’s previous index.5

• For m ∈M and h ∈ Hm, Choicem
Ags(h) denotes the intersection

⋂
α∈Ags Choicem

α (h).

Thus, Choicem
Ags :=

{
Choicem

Ags(h); h ∈ Hm

}
, which is the partition of actions

available to the grand coalition.

• For all α ∈ Ags, ∼α is an equivalence relation on the set of indices, representing the
epistemic indistinguishability relation for α. At this point, the only extra condition
imposed on these relations is

– (NoF) No forget: for allα ∈ Ags, m ∈M, and h ∈ Hm, if
〈
m+h, h

〉
∼α ⟨m∗, h∗⟩,

then ⟨m, h⟩ ∼α
〈
m−h∗
∗ , h∗

〉
.

An ebdt-modelM, then, consists of the tuple that results from adding a valuation function
V to an ebdt-frame, whereV : P → 2I(M×H) assigns to each atomic proposition a set of
indices (recall that P is the set of propositions in LKX).

Ebdt-models allow us to provide semantics for the formulas of LKX:

Definition 3.3 (Evaluation rules for EXST). LetM be an ebdt-model. The semantics
onM for the formulas of LKX are defined recursively by the following truth conditions,
evaluated at index ⟨m, h⟩:

M, ⟨m, h⟩ |= p iff ⟨m, h⟩ ∈ V(p)
M, ⟨m, h⟩ |= ¬φ iff M, ⟨m, h⟩ ̸|= φ
M, ⟨m, h⟩ |= φ ∧ ψ iff M, ⟨m, h⟩ |= φ andM, ⟨m, h⟩ |= ψ
M, ⟨m, h⟩ |= □φ iff for all h′ ∈ Hm,M, ⟨m, h′⟩ |= φ
M, ⟨m, h⟩ |= Xφ iff M,

〈
m+h, h

〉
|= φ

M, ⟨m, h⟩ |= Yφ iff M,
〈
m−h, h

〉
|= φ

M, ⟨m, h⟩ |= [α]φ iff for all h′ ∈ Choicem
α (h),M, ⟨m, h′⟩ |= φ

M, ⟨m, h⟩ |= [Ags]φ iff for all h′ ∈ Choicem
Ags(h),M, ⟨m, h′⟩ |= φ

M, ⟨m, h⟩ |= Kαφ iff for all ⟨m′, h′⟩ s. t. ⟨m, h⟩ ∼α ⟨m′, h′⟩ ,
M, ⟨m′, h′⟩ |= φ.

Satisfiability, validity, and general validity are defined as usual.

5Observe that the definitions of m−h and m+h, coupled with the fact that histories are linearly

ordered, implies that, for all m ∈M and h ∈ Hm,
(
m−h

)+h
= m and

(
m+h

)−h
= m.
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Following my interpretation of stit theory, I consider that at an index an agent
has already chosen an action and executed it (under some uncertainty). Here, I
focus on the effects that such an action has at next indices. That said, it is important
to stress that the semantics in Definition 3.3 admit actions with instantaneous
effects, with modalities [α]φ and [Ags]φ. As mentioned before, one of the reasons
for including such modalities is that their semantics allow us to explicitly represent
the choices that are available to agents at a given moment (the cells of partitions
Choicem

α and Choicem
Ags).

The decision to focus only on actions that take effect at next indices comes from
the intuition that the chronological dimension of bt-frames helps in characterizing
the relations between the four kinds of knowledge, especially those concerning ex
post knowledge. If this claim is a bit obscure, perhaps a more convenient way to
think about ebdt-models is the following: at index ⟨m, h⟩ all agents have performed
one of their available actions, namely the one that they chose. Even though these
choices may have had instantaneous effects, in this chapter’s discussions we can
dismiss these effects as those that are inherent to the ongoing choice and perfor-
mance of an action. In contrast, the meaningful effects of actions, meaning those
consequences in the world that transcend their mere choice and performance, are
those that hold at next indices.

We are ready to present and dissect this section’s example. Inspired by the
film Mission: Impossible 6, this example can be thought of as a variation of Horty
and Pacuit’s (2017) ones to analyze the epistemic sense of ability.6

Example 3.4. A bomb squad consisting of three members—Ethan, Luther, and Benji—
faces a complex bomb situation. Terrorists have threatened to blow up a facility using
two bombs that are remotely connected to each other. Let me call these bombs L and B,
respectively (the reason for choosing these labels is that Luther will deal with bomb L, and
Benji will deal with bomb B). As background information, the squad knows the following
facts:

6As the reader will see, the example is somewhat involved, and there are three main reasons for
having such a complex layout:

(a) I want to illustrate the flexibility of stit-theoretic models in formalizing uncertainty about actions.
As such, the example includes instances both of sequential action (previous and succeeding actions
at different moments of the same history) and of concurrent action (different agents making their
respective choice at the same moment).

(b) I want to study the four kinds of knowledge with the same example.

(c) I want to model a situation that can be interpreted in a context of responsibility attribution.
Therefore, it should involve undesirable, resp. desirable, outcomes for which agents can deserve
blame, resp. praise, according to (a) their available choices, (b) the knowledge that they had
before, while, and after these choices, and (c) their know-how.
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• If the squad defuses one bomb before the other, then the latter is programmed to set
off. This means that the squads needs to synchronize their actions.

• Each bomb has its own detonator, and each detonator includes a mechanism that
makes it possible to cancel the detonation. Let me denote the action of activating
both mechanisms by DLB, and the action of only activating the mechanism in the
detonator for bomb L, resp. B, by DL, resp. DB. The terrorists who planted the
bombs have triggered both detonators, so there is a countdown to detonation. If the
countdown ends, both bombs go off.

• Each bomb has a central system that controls it, with two main wires: a red one
and a green one. Let me denote the action of cutting the red wire of bomb L, resp.
B, by RL, resp. RB, and the action of cutting the green wire of bomb L, resp. B, by
GL, resp. GB.

• For the squad to defuse the two bombs at the same time, they need to first deal with
the mechanisms in the detonators and afterwards synchronize a specific cutting
of wires. For this last task, the squad has figured out that there are only three ways
to successfully defuse both bombs:

(i) If the squad manages to activate both mechanisms, then afterwards they need
to simultaneously cut the red wires of both bombs’ central systems. For the
sake of clarity—and being informal—we can summarize this by writing that
DLB + (RL and RB) = sa f ety.

(ii) If they manage to activate the mechanism in bomb L’s detonator but not in
bomb B’s, then afterwards they need to simultaneously cut the red wire of L
and the green one of B. Informally, DL + (RL and GB) = sa f ety.

(iii) The reverse situation of the above item in the case that they only manage to
activate the mechanism in bomb B’s detonator. Informally, DB+(RB and GL) =
sa f ety.

• If neither mechanism is activated, then both bombs go off. If the combinations
mentioned above are not met exactly, then one of the bombs goes off. Summing
up, cutting the red wire of a bomb without previous activation of its detonator’s
mechanism makes it go off; cutting the green wire with previous activation of the
mechanism also makes it go off. If any of the bombs goes off, the explosion is so
powerful that it is impossible to ascertain which bomb went off or if both did.

After the countdown starts, Ethan is commissioned with the task of retrieving the
detonators—to activate their mechanisms. Luther and Benji must afterwards synchronize
the cutting of wires in their respective bombs. A malfunction in the squad’s telecom gear
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causes for them to lose all communication with each other, so that Luther and Benji do
not know whether Ethan has retrieved one detonator, both of them, or none. Regardless,
they know that they need to synchronize the cutting of the two bombs’ main wires just
before the countdown ends.

To collate cases for which agents’ knowledge has consequences in responsibility attri-
bution, I explore the following alternatives for the example’s outcome:

(a) Unbeknownst to Luther and Benji, Ethan succeeds in retrieving only the detonator
for bomb B. Luther and Benji synchronize the cutting of wires, and, since it is
statistically better for both to cut the red wires, they do so. Bomb L goes off.

(b) Unbeknownst to Benji, Luther finds out what Ethan did. However, Luther is
actually an undercover associate of the terrorists, so he decides to go on with the
cutting of the red wire, causing bomb L to go off.

The goal is to formalize Example 3.4 using EXST. Thus, one can illustrate
instances of ex ante knowledge: what is the information for Luther and Benji before
they have to choose a course of action?; ex interim knowledge: do Luther and Benji
knowingly choose to set off a bomb?; ability in the epistemic sense: in which cases can
Luther and Benji knowingly choose to set off a bomb?, and ex post knowledge: what is
the information after the decisions have been made and executed?. Therefore, consider
the ebdt-modelM in Figure 3.1.

Here, Ags =
{
Ethan,Luther,Benji

}
, and m1–m21 are moments, where⊏ is defined

so as to be represented by the diagram. Histories h1–h16 represent the different
possibilities in which the world can evolve from the moment the bomb squad
sets out to defuse the bombs onward. For both the alternative endings (case a
and case b), the set of moments can be divided in three levels according to the
chronological dimension ofM:

• Bottom level: at the bottom level we find moment m1. In ebdt-models all
the agents get to choose from their available actions at every moment.
Since Luther and Benji cannot actually choose anything at m1, Choicem1

Luther =

Choicem1
Benji =

{
Hm1

}
. Thus, only the actions available to Ethan are relevant:

Choicem1
Ethan = {DLB,DL,DB,F}, where

– DLB stands for the action of ‘activating the mechanism in both detona-
tors.’

– DL (DB) stands for the action of ‘only activating the mechanism in the
detonator for bomb L (B).’

– F stands for the action of ‘failing to secure a detonator.’
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Figure 3.1: Bomb situation.

• Middle level: at the middle level we find moments m2–m5. These moments
lie in the possible futures of m1, and, intuitively speaking, they occur at
the same chronological instant. The histories passing through each of these
moments are partitioned according to the choices available to Luther and
Benji (after Ethan chose and executed one of his available actions at m1).
Since Ethan cannot choose anything at the moments of the middle level,
Choicemi

Ethan =
{
Hmi

}
for all i in 2–5. Frame condition (IA) independence of

agency ensures that, in Figure 3.1, the layouts of choice-partitions at these
moments look like normal-form games. Therefore, Luther can be thought of
as the row player, and Benji as the column player. The actions respectively
available to them at all the moments of the middle level are the same:

– RL (RB) stands for ‘cutting the red wire of bomb L (B).’

– GL (GB) stands for ‘cutting the green wire of bomb L (B).’
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• Top level: at the top level we find m6–m21, where the actions executed by
Luther and Benji take effect.

Let me now use formulas of LKX to study the bomb situation. In Figure 3.1,
eL, resp. eB, denotes the atomic proposition ‘bomb L, resp. bomb B, explodes’; s
stands for ‘the bombs are defused and safety is achieved’; e abbreviates eL ∧ eB;
and n abbreviates ¬eL ∧ ¬eB. Thus, according to Definition 3.3, two examples of
the evaluation of formulas are: M, ⟨m2, h1⟩ |= □n andM, ⟨m6, h1⟩ |= eL: at ⟨m2, h1⟩ it
was settled that the bombs have not exploded, but at the next index bomb L has exploded.
Thus, M, ⟨m1, h1⟩ |= □n ∧ XXeL: at ⟨m1, h1⟩ it was settled that the bombs have not
exploded, but in the next moment of the next moment of m1, bomb L has exploded along
history h1.

For both cases in Example 3.4, the actual history is h10, where at the bottom
level Ethan only activated the mechanism of bomb L and at the middle level Luther
and Benji both cut the red wires of their respective bombs. Thus, at ⟨m4, h10⟩ Luther
has chosen RL, and Benji has chosen RB, constraining Hm4 to the singleton {h10}.
Observe, then, thatM, ⟨m4, h10⟩ |= n∧ [Ags]XeL: at ⟨m4, h10⟩ bomb L has not exploded
and bomb B has not exploded, but the bomb squad has seen to it that bomb L will explode
at next indices—by cutting the wires in a wrong combination. In contrast, suppose
that at m4 Luther chooses GL, and Benji chooses RB. This means that their actions
constrained Hm4 to {h9}, whereM, ⟨m4, h9⟩ |= [Ags]Xs. at ⟨m4, h9⟩ the bomb squad has
seen to it that both bombs will be defused at next indices—by cutting the wires in a right
combination.

As additional examples to illustrate the evaluation of formulas involving
xstit-theoretic operators, consider the following: M, ⟨m1, h10⟩ |= X[Luther]XeL: at
⟨m1, h10⟩’s next index Luther’s action will cause bomb L to explode (at next indices); and
M, ⟨m3, h7⟩ |= Y^X[Luther]XeL: at ⟨m3, h7⟩’s previous index it was possible that in the
next moment Luther would have seen to it that bomb L would explode (at next indices).

This chapter is concerned with the information available to agents and, more
specifically, with what this information says about (a) agents’ knowledge during
the different stages of the decision-making process, and (b) what agents are able
to knowingly do. To illustrate instances of these two aspects—in a context of
responsibility attribution—let me discuss some examples of the evaluation of
epistemic modalities. I focus on Luther’s epistemic states, since it is because of
them that case a is different from case b in Example 3.4.

In Figure 3.2, resp. Figure 3.3, Luther’s epistemic states for Example 3.4 a,
resp. Example 3.4 b, are represented with the indistinguishability relation given
by dashed lines (where reflexive loops are omitted).
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Figure 3.2: Example 3.4 a with epistemic state of Luther.

In both these figures, the valuation of atomic propositions is explicit only at
the top level. The reason is that I focus on the outcomes to analyze the alternatives
for the epistemic states of Luther. Thus, consider the level-by-level comparison
between Figure 3.2 and Figure 3.3 below.

• Bottom level: in both figures, at every index based on m1 Luther (and Benji,
for that matter) did not know what Ethan had done. This is represented
in the diagram by linking the four clusters of histories passing through m1

with the dashed lines.

• Middle level: in both figures, at every index based on m2–m5 Luther was
able to distinguish between either cutting the red wire or cutting the green
wire of bomb L. Thus, if rL denotes the proposition ‘the red wire of bomb
L is cut,’ then, for all i in 2–5 and h ∈ Hmi , M, ⟨mi, h⟩ |= KLuther[Luther]XrL ∨

KLuther[Luther]X
¬rL: at all indices based on moments of the middle level either

Luther knew that he had cut the red wire of bomb L or he knew that he had not
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Figure 3.3: Example 3.4 b with epistemic state of Luther.

cut the red wire of bomb L (with effects at next indices). Thus, here I assume
that Luther (and Benji) knew which of his available actions was chosen and
executed at a given index.7

Now, in Figure 3.2 for Example 3.4 a, the actual history h10 is such that
M, ⟨m4, h10⟩ |= [Luther]XeL ∧ □¬KLuther[Luther]XeL: at ⟨m4, h10⟩ Luther has seen
to it that bomb L will explode at next indices, but it was impossible for Luther to
have knowingly seen to it that bomb L would explode. In contrast, in Figure 3.3
for Example 3.4 b,M, ⟨m4, h10⟩ |= KLuther[Luther]XeL: at ⟨m4, h10⟩ Luther knew
that he has seen to it that bomb L will explode at next indices.

These are the circumstances that make case a fundamentally different from
case b. In case a, although in the actual situation Luther made bomb L
explode by cutting its red wire, his lack of information regarding Ethan’s
actions implies that there was no way in which he could have known the

7This is related to what epistemic game theorists call knowledge of one’s own action, a property that
will be addressed in Section 3.3. Although it holds in this example, not all ebdt-frames satisfy it.
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consequences of his choice while cutting the red wire. In this sense, one
would say that, although he is causally responsible for making the bomb ex-
plode, he is not informationally responsible (see the discussion on Broersen’s
three categories of responsibility in Chapter 1, p. 5, and Subsection 3.5.2 in
this chapter’s conclusion). Thus, ultimately he should not be blamed for
the unfortunate outcome. In contrast, in case b Luther knew what Ethan had
done, so he was able to distinguish the moment that he and Benji found
themselves at: in Figure 3.3, at all indices based on moments of the mid-
dle level Luther was only uncertain about Benji’s concurrent choice. In the
actual situation, then, Luther knowingly set off bomb L. In this sense, one
would say that Luther was both causally and informationally responsible for
making the bomb explode. Thus, ultimately he should be blamed for the
undesirable outcome.

• Top level: in Figure 3.2 for case a, at m6–m21, although the fate of the bombs
has been decided, Luther can still be uncertain about the exact cause of the
explosion. Observe, for instance, thatM, ⟨m11, h6⟩ |= ¬KLutherY[Benji]XeB: at
⟨m11, h6⟩ Luther did not know that at the previous index Benji had seen to it that
bomb B would explode. In contrast, in Figure 3.3 for case b, at all indices based
on moments of the top level Luther fully knew the state of the world (with
respect to the bomb situation), because Benji’s choice was disclosed. Thus,
Luther’s epistemic states at the top level can be seen to illustrate different
instances of ex post knowledge—as formalized in the next section.

3.3 Ex Ante, Ex interim, Ex Post, and Know-How

In this section I describe several interpretations that stit theorists have given in
the past to our four kinds of knowledge, and I compare them with my proposals.
As mentioned in the introduction, there are two goals in mind: one is to clarify
overlapping intuitions for the work done in EST, addressing potential shortcom-
ings of previous analyses; the other is to present new formal characterizations
that are more akin to modelling responsibility with stit theory.8

As I see it, all the approaches reviewed here—as well as my proposal—intend
to model agents’ uncertainty in strategic interaction. In particular, one can discern
the following levels of uncertainty, in correlation with the four kinds of knowl-
edge studied here: (a) uncertainty about previous actions, correlated with ex ante

8Recent trends in modelling responsibility by means of knowingly doing and of the epistemic sense
of ability base these two notions on the differential knowledge across the stages of decision making
(see, for instance, Abarca & Broersen, 2019; Broersen, 2008a, 2011a; Horty, 2019; Lorini et al., 2014).
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knowledge, (b) uncertainty about the effects of one’s own actions, correlated with
ex interim knowledge, (c) uncertainty about other agents’ actions, correlated with
ex post knowledge, and (d) uncertainty about what an agent can knowingly do,
correlated with know-how.

3.3.1 Ex Ante Knowledge

Ex ante knowledge is commonly thought of as knowledge that an agent has
regardless of both its choice of action and the choices of the other agents (Aumann
& Dreze, 2008; Lorini et al., 2014). Previous formalizations of the concept in EST
all try to model this quality, but from somewhat different viewpoints. To illustrate
the knowledge that I intend to formalize, consider Example 3.4. In case a, at index
⟨m4, h10⟩—the actual situation—neither Luther nor Benji had ex ante knowledge of
the fact that Ethan had activated the mechanism in the detonator for bomb B. In
case b, on the contrary, Luther did know this ex ante. Therefore, if an agent has
some certainty about previous actions, it is easier for that agent to discern things
ex ante.9

Previous versions
Lorini et al. (2014) presented an epistemic stit logic with three modalities for

ex ante, ex interim, and ex post knowledge: K•◦◦α φ,K◦•◦α φ, and K◦◦•α φ, respectively.10

They based the semantics of all three on an indistinguishability relation for agent
α’s ex ante knowledge, given on Kripke structures of possible worlds. The intersec-
tion of this ex ante relation with the relation for individual, resp. grand-coalition,
agency yields their version of ex interim, resp. ex post, knowledge.11 Thus, the
proposal follows EGT’s natural assumption that ex interim knowledge refines ex
ante, and that ex post knowledge in turn refines ex interim.

The main problems with Lorini et al.’s system will be discussed when dealing
with ex interim knowledge. However, the fact that the authors did not enforce any
connection between ex ante knowledge and historical necessity poses an issue for

9By saying that it would be ‘easier’ for an agent to discern things I mean the following: at least
intuitively, if at a given index an agent had certainty about previous actions, then for the agent to
know a formula ex ante the formula would need to hold at fewer indices than the amount at which it
would need to hold if the agent did not have such a certainty.

10As the reader will soon notice, I use different fonts for operator that can be thought of as being
analogous across previous approaches, in order to distinguish them. Since the types of knowledge in
all these approaches are different from one another, I do this with the hope of avoiding confusion.

11Lorini et al.’s models include a set of labels (‘action terms’ or ‘choice names,’ in their own words)
such that the possible worlds in the domain of their structures are mapped to this set of labels using
functions indexed by agents’ coalitions. Intuitively, for a given possible world w and a coalition H,
the image of this mapping AH(w) stands for the action that the coalition H chooses at world w, and
all the worlds of the structure that are mapped to the same label underAH constitute a cell within a
partition that is identified with the partition of H’s available choices.
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identifying what α knows ex ante with knowledge that is present regardless of α’s
choice and the other agents’ choices. In other words, Lorini et al.’s framework
admits situations in which at a world agent α knows φ ex ante, but a change of
action (by either the same agent or one of the others) implies that α no longer
knows φ. In Lorini et al.’s logic, K•◦◦α φ → □K•◦◦α φ is not valid—where I use □φ
to abbreviate Lorini et al.’s [∅ stit]φ. Thus, since the negation of K•◦◦α φ→ □K•◦◦α φ
is consistent with formulas K•◦◦α φ, □(K•◦◦α φ → [α stit]φ), and [α stit]φ ∧ ¬□φ, for
instance, then one can build models of Lorini et al.’s logic where (a) w |= K•◦◦α φ (α
knows φ ex ante at world w), and (b) there exists a world v, that does not lie in the
same action-cell of α as w, such that v ̸|= [α stit]φ and v ̸|= K•◦◦α φ. In cases like this,
α’s ex ante knowledge of φ is not independent of α’s choice of action.12

Horty and Pacuit (2017) addressed a notion of ex ante knowledge in a similar
way to Lorini et al.’s. The semantics for their ex ante modality Kαφ is based on
a primitive indistinguishability relation on the set of moments in a branching-
time structure. It is only under the light of their full system that I criticize their
approach, which will be discussed when dealing with ex interim knowledge and
know-how.
My version: LetM be an ebdt-model and φ a formula of LKX. I take agent α’s ex
ante knowledge to be truths about the next moment that, regardless of all agents’
current choices, α knows to be independent of said choices. Thus, at index ⟨m, h⟩
α had ex ante knowledge of φ iff M, ⟨m, h⟩ |= □Kα□Xφ—that is, iff at ⟨m, h⟩ it
was settled that α knew that φ would hold at every next index. For instance,
consider Example 3.4. If fB denotes the proposition ‘the mechanism of bomb B
has been activated,’ then M, ⟨m4, h10⟩ |= ¬□KLuther□XY fB for case a (Figure 3.2):
at ⟨m4, h10⟩ Luther did not know ex ante that, at the index previous to the next, the
mechanism of bomb B had been activated. In turn, M, ⟨m4, h10⟩ |= □KLuther□XY fB for
case b (Figure 3.3): at ⟨m4, h10⟩ Luther knew ex ante that, at the index previous to the
next, the mechanism of bomb B had been activated.13

Two points must be made. First, observe that my ex ante knowledge is a
single-agent notion, so that the literature on epistemic logic would consider it as
individual or private knowledge (Halpern & Fagin, 1989; van Bethem & Sarenac,

12Lorini et al. (2014, Remark 2.6, p. 1320) actually stated that the they did not intend for agents to
consider all their available choices as epistemically possible in the ex ante sense, but this leads precisely
to having choice-dependent ex ante knowledge.

13An important observation to make is that in ebdt-models the primitive indistinguishability re-
lation ∼α characterizes general uncertainty: whatever holds at all epistemically accessible indices is
what α knows. I do not subscribe to any game-theoretic interpretation of the primitive modality Kαφ.
In other words, I do not see Kαφ as either ex ante, ex interim, or ex post knowledge of φ. Rather, I
formalize the levels of uncertainty with a compositional approach, so to speak, where the differences
between the stages of information disclosure are embodied by means of different compositions of the
modalities for knowledge, agency, and historical necessity.
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2004). However, ex ante knowledge has been thought of as arising from strictly
non-private information. Aumann and Dreze (2008, p. 80), for instance, stated
that at the ex ante stage of differential information environments no agent should
have any private knowledge. Since my version should only be viewed as individ-
ual ex ante knowledge, I mention that a good candidate for modelling Aumann
and Dreze’s ex ante knowledge of φ could be formula □C□Xφ, where C denotes
the operator for common knowledge of the grand coalition Ags in an extension
of the language LKX with common-knowledge modalities (see, for instance, Bar-
wise, 1989; Fagin et al., 1995, for a thorough examination of common-knowledge
modalities).

Secondly, Duijf (2018, Chapter 3) mentioned that it is important to account for
the chronological dimension of ex ante knowledge, because the literature usually
considers that is based on information that agents had before they and the others
chose their actions. My proposal does acknowledge the chronological dimension,
to some extent. Observe that an agent has ex ante knowledge of φ only if φ holds
at next indices. Thus, my version concerns information that is available before
the meaningful effects of actions take place. To clarify, since in xstit theory the
meaningful effects of choices ensue at next indices, then next indices are the rele-
vant points of reference for the formulas that agents know ex ante. However, this
is more of a conceptual decision with only subtle, terminological consequences
in my logic. Indeed, the temporal operators X and Y allow agents to have ex ante
knowledge about past and current indices as well. For instance, the aforemen-
tioned formula □KLuther□XY fB is logically equivalent to □KLuther□ fB, and thus it
can be seen to refer to a proposition of the current index.14 In this case, the termi-
nological subtlety refers to the following distinction: for Example 3.4 b, where at
⟨m4, h10⟩ Luther has figured out what Ethan did in the previous moment, it is not
the case that Luther knew fB ex ante at the index; rather, Luther knew Y fB ex ante.15

14From the semantics of Xφ and of Yφ one can see that these modalities are inverses of one another,
in the sense that formulas XYφ ↔ φ and YXφ ↔ φ are valid with respect to the class of ebdt-models
(see Section 3.4).

15A reasonable candidate to characterize ex ante knowledge could be formula□Kα□φ. This formula
is not logically equivalent to □Kα□Xφ in EXST, because this logic does not include restrictions for the
persistence of formulas over time. In other words, I do not stipulate whether a formula that holds at
a given index should or should not hold as well at a determined number of succeeding indices. For
instance, in Example 3.4 a,M, ⟨m4, h10⟩ |= □KLuther□n andM, ⟨m4, h10⟩ ̸|= □KLuther□Xn. If one were to
characterize α’s ex ante knowledge with □Kα□φ, then at a given index agent α would have known φ
ex ante iff, regardless of any choice, α knew that φ was currently true independently of any choice.
Intuitively, such a formula captures both the assumptions that ex ante knowledge must be independent
of choices and that it arises before choices are made and executed. However, unless φ is of the form
Xψ for some ψ, in the present setting this candidate for knowledge would not (necessarily) regard
meaningful facts related to agency of the current moment.
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3.3.2 Ex Interim Knowledge

It is assumed that at the ex interim stage of decision making an agent’s available
information expands its ex ante knowledge by taking into account its own choice,
although not yet the other agents’. If an agent knows φ ex interim, then the agent
is certain about the fact that φ will occur after the performance of its choice of
action and regardless of what other agents choose. For instance, in Example 3.4 b,
at the actual index Luther knew ex interim that bomb L would go off after he chose
RL. Intuitively, if an agent has some certainty about the effects of its own actions,
then it is easier for that agent to discern things ex interim.
Previous versions

For Lorini et al., the information available to an agent ex interim is not only
independent of the other agents’ choices, but also must cause the agent to discern
which action it chooses. In other words, in Lorini et al.’s formalism an agent
always knows ex interim the action that it performs, because the agent can never
be uncertain at the ex interim stage about the difference between actions that have
different labels (see Footnote 11). Such a condition can be syntactically character-
ized using propositional constants encoding the execution of action labels: if, for
action label A, pA

α denotes the proposition ‘the action A is performed by agent α,’
then the following formula is valid in Lorini et al.’s logic: pA

α → K◦•◦α pA
α . Following

Duijf et al. (2021), I refer to this condition as knowledge of one’s own action (KOA).
Although (KOA) is in accordance with EGT, I find it a bit constraining. For

instance, consider a variation of Example 3.4 for which Ethan did not know ex
interim the difference between detonator L and detonator B but still knowingly
activated one of their mechanisms. Using the terminology of Figure 3.1, then,
one would say that Ethan could not ex-interim discern choice DB from choice DL.
According to Lorini et al., however, Ethan’s incapacity to ex-interim discern these
choices is not allowed.16 The constraint is all the more problematic because of
its consequences for Lorini et al.’s treatment of responsibility attribution. In their
formalism, agents will always be morally responsible for performing a given
action, so that claiming that they were uncertain about which action they chose
is not a valid excuse. Moreover, the constraint implies that ex ante certainty of
the current moment forces agents to know ex interim all the effects of their own
actions: formula (□φ → K•◦◦α φ) → ([α stit]φ → K◦•◦α φ) is valid, and this further

16In this chapter I want to have a formal interpretation of uncertainty that admits cases in which
agents could not discern which choice they took even after they have already taken it—in agreement
with, for example, Duijf (2018) and Broersen (2011a). Observe that this does not imply the collapse of
ex interim knowledge to ex ante. The latter still refines the former, but not in the strict way that Lorini
et al.—and both Horty and Pacuit (2017) and Herzig and Troquard (2006), for that matter—proposed.
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restricts options of excusability. On a related note, I refer to the validity in EST of
formula [α]φ → Kαφ as property (AEK) or all-effects knowledge, by which an agent
knows all the effects of its own actions.

When it comes to the relation between ex interim knowledge and action labels,
Horty and Pacuit’s (2017) ideas are similar to Lorini et al.’s. To disambiguate the
epistemic sense of ability from its causal sense, Horty and Pacuit based know-
how on a novel semantics for ex interim knowledge. For the formalization of
this ex interim knowledge, they extended atemporal BST with both syntactic and
semantic components. Syntactically, they incorporated modality [α kstit]φ—
meant to express α’s ex interim knowledge of φ—into a language with modalities
Kαφ for α’s knowledge, [α stit]φ for α’s agency, and □φ for historical necessity.
Semantically, they added action labels to bt-models, precisely for the evaluation
of [α kstit]φ. In Horty and Pacuit’s framework, then, agent α knowingly sees
to it that φ iff at all indices that α cannot distinguish from the one of evaluation
α’s execution of the same action label enforces φ.17 As mentioned by Broersen
and Abarca (2018a) and by Duijf et al. (2021), the use of types brings two limiting
constraints:

1. In order for [α kstit] to be an S5 operator, the primitive indistinguisha-
bility relation—underling modality Kαφ—must ensue not between indices
but between moments. This limits the class of models to those in which
knowledge is moment-dependent and agents cannot discern a non-trivial
action from another.18 Actually, this led Horty and Pacuit to identify Kαφ
with α’s ex ante knowledge of φ, but then a shortcoming is that both in-
stances of knowledge—Kαφ and [α kstit]φ—satisfy the so-called own ac-
tion condition (OAC) (Abarca & Broersen, 2019; Duijf, 2018; Duijf et al., 2021).
This condition is semantically stated by the following rule: for each index
⟨m, h⟩, ⟨m, h⟩ ∼α ⟨m, h′⟩ for every h′ ∈ Choicem

α (h). In Horty and Pacuit’s
formalism, (OAC) implies the validity of formulas Kαφ → [α stit]φ and
[α kstit]φ → [α stit]φ, so that there is no sense whatsoever in which
agents can know more than what they bring about.19

17Formally, M, ⟨m, h⟩ |= [α kstit]φ iff for all ⟨m′, h′⟩ such that ⟨m, h⟩ ∼α ⟨m′, h′⟩,
Exem′

α (Lblα(⟨m, h⟩)) ⊆ |φ|m
′

, where Lblα is a function that maps an index to the action label of the
action token performed by α at that index, Exem′

α is a partial function that maps types to their corre-
sponding tokens at moment m′, and I write |φ|m

′

to refer to the set
{
h′ ∈ Hm′ ;M, ⟨m′, h′⟩ |= φ

}
. This

definition is also discussed in Chapter 4 (see Definition 4.16 on p. 159, the discussion following such
a definition, and Subsection 4.4.3).

18Horty and Pacuit’s models satisfy the following constraint: if ⟨m, h⟩ ∼α ⟨m′, h′⟩, then ⟨m, h∗⟩ ∼α〈
m′, h′∗

〉
for every h∗ ∈ Hm and h′∗ ∈ Hm′ . Under reflexivity of ∼α, the constraint is characterized with

schemaKαφ→ □φ. Therefore, an agent can only know things that are settled.
19To see how this constraint thwarts an analysis of the interplay between knowledge and agency,

consider Example 3.4, and assume that one wants to say that at index ⟨m4, h10⟩ Luther knew in some
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2. The semantics for [α kstit]φ entails that agents cannot have uncertainty
about the actions that they perform at the ex interim stage, just as in Lorini et
al.’s logic. In other words, Horty and Pacuit’s ex interim knowledge satisfies
(KOA): if pA

α denotes the proposition ‘the action A is performed by α,’ then
formula pA

α → [α kstit]pA
α is valid.

Horty and Pacuit’s models meet another important condition that concerns
uniformity: the same action types must be available at indistinguishable mo-
ments.20 Following Duijf et al. (2021), I refer to this condition as uniformity of
available action types (UAAT). Initially thought to be a condition that could not
be syntactically characterized in Horty and Pacuit’s logic without propositional
constants (expressing the performance of a certain action type), Duijf et al. (2021)
showed that (UAAT) can in fact be characterized with formula ^[α kstit]φ →
Kα^[α stit]φ.21

With the same goal as Horty and Pacuit’s—giving semantics for know-how—
Herzig and Troquard (2006) presented a version of ex interim knowledge under the
term dynamic knowledge. For this dynamic knowledge, the authors extended basic
xstit theory’s language with modality [α Kstit]φ. In contrast to the approaches
of Lorini et al. and of Horty and Pacuit, it is for the semantics of [α Kstit]φ that
Herzig and Troquard used a primitive indisinguishability relation, and they de-
fined the truth conditions both for agency—[α Stit]φ—and for static knowledge—
□ [α Kstit]φ—in terms of it. Still, their formalization ends up working in a similar
way to Horty and Pacuit’s. First, their versions of knowledge—both static and
dynamic—satisfy (OAC), so that there is no sense in which agents can know more
than what they bring about. Secondly, their treatment is restricted to situations

sense—not in an ex ante or ex interim sense, though—what Benji would choose. Therefore, Luther must
have somehow distinguished h9 from h12, and h10 from h11. However, in presence of (OAC), this cannot
be the case (see Duijf, 2018, Chapter 3, for a more elaborate discussion). An important observation is
that properties (KOA), (OAC), and (AEK) are all different from one another, a difference that carries over
to all the logics presently reviewed. Property (KOA) (or knowledge of one’s own action) means that an
agent is able to discern which action it is performing, so that—expressed in terms of EST—it can be
identified with the validity of pA

α → KαpA
α (where pA

α denotes the proposition ‘the action A is performed
by α’). Property (OAC) (or own action condition) means that an agent does not know more than what it
brings about, so that it can be identified with the validity of Kαφ→ [α]φ. Property (AEK) (or all-effects
knowledge) means that an agent knows the effects of all its actions, so that it can be identified with the
validity of [α]φ → Kαφ. In all the logics addressed here, (a) (KOA) neither implies (OAC) nor implies
(AEK), (b) (OAC) neither implies (KOA) nor implies (AEK), and (c) (AEK) does not imply (OAC) but does
imply (KOA).

20See Chapter 2’s Subsection 2.4.4 (p. 72) for an initial discussion about the concept of uniformity in
EST. Virtually all the accounts of knowledge that are reviewed in this chapter agree with some version
of this condition. That said, although the examples presented by Lorini et al. (2014) all presuppose
uniformity, the authors neither explicitly enforced it nor referred to it.

21Condition (UAAT), as well as Duijf et al.‘s characterization for it in the logic of Horty and Pacuit
(2017), are discussed in thoroughly in Chapter 4’s Sections 4.3 and 4.4.
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where agents cannot be uncertain at the ex interim stage about the actions that they
choose. Thus, dynamic knowledge satisfies (KOA): if pA

α denotes the proposition
‘the action A is performed by α,’ then formula pA

α → [α Kstit]pA
α is valid. Lastly,

Herzig and Troquard also favored a condition of uniformity, that corresponds to
Horty and Pacuit’s (UAAT), according to which the same kind of choices must be
available at indistinguishable indices.

Duijf (2018, Chapter 3) mentioned an interesting proposal that somewhat
resembles Herzig and Troquard’s. According to Duijf, a primitive indistinguisha-
bility relation that links indices in instantaneous stit theory characterizes a kind of
knowledge that one can already call ex interim. His rationale is that such knowl-
edge can be seen as (a) private for an agent, and (b) dependent on the agent’s
choice. These are two qualities of ex interim knowledge about which there is
no disagreement in the literature, so his approach is substantiated. What dis-
tinguishes his interpretation from Herzig and Troquard’s—and from Horty and
Pacuit’s, for that matter—is that Duijf’s ex interim knowledge is flexible enough to
deal both with uncertainty about one’s own actions (it is not the case that agents
must know their actions ex interim) and with cases for which agents know more
than what they bring about. Thus, instances of both coarse- and fine-grained
knowledge are accounted for.22 However, Duijf’s proposal might be a bit too
flexible: it allows situations where an agent knows ex interim that another agent
is bringing about an effect that is not settled. To be more precise, suppose that φ
is not settled. If φ is an effect of agent β’s action, then α’s knowing this is clearly
dependent on β’s choice. However, denoting Duijf’s operator for ex interim knowl-
edge by Kα and the traditional agency operator by [α], formula Kα[β]φ ∧ ¬□φ
is satisfiable in Duijf’s logic. It might be surprising that Lorini et al.’s ex interim
knowledge also does not satisfy (OAC), so a comparable criticism can be advanced.
In fact, in Lorini et al.’s formalism agents can have ex ante knowledge of what
other agents are bringing about, something atypical.
My version: I identify ex interim knowledge with Broersen’s (2008a) notion of
knowingly doing (see Chapter 2’s Subsection 2.4.4). LetM be an ebdt-model and
φ a formula of LKX. Then at index ⟨m, h⟩ agent α had ex interim knowledge
of φ iff M, ⟨m, h⟩ |= Kα[α]Xφ—that is, iff at ⟨m, h⟩ α has knowingly enforced
φ (at next indices), regardless of what the other agents did. Intuitively, this
captures the idea that whatever was known ex interim by α (a) must have been
known regardless of other agents’ choices, and (b) depended on the epistemic
equivalents, across indistinguishable indices, of α’s choice. For instance, consider

22Duijf did not demand that his models satisfy (OAC). However, and as will be pointed out when
addressing his formalization of know-how, Duijf did enforce a constraint corresponding to Horty and
Pacuit’s (UAAT).
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Example 3.4 b (Figure 3.3). Here, M, ⟨m4, h10⟩ |= KLuther[Luther]XeL: at ⟨m4, h10⟩—
the actual situation—Luther has knowingly seen to it that bomb L will go off, so that
he knew ex interim that bomb L would go off. In contrast, in case a (Figure 3.2),
M, ⟨m4, h10⟩ |= ¬KLuther[Luther]XeL: at ⟨m4, h10⟩ Luther has set bomb L off, but not
knowingly (i.e., without ex interim knowledge about it).

As for how my ex interim knowledge compares with previous proposals, three
important remarks must be made:

1. I do not impose any condition on the primitive indistinguishability rela-
tion ∼α that would exclude uncertainty of one’s own action in the ex interim
stage. In other words, my ex interim knowledge does not satisfy (KOA). Thus,
cases of coarse-grained knowledge—with clear implications for responsi-
bility attribution—are allowed: agents can be excused for bringing about
an undesirable outcome if they were uncertain about the action that they
chose. To illustrate this, consider the variation of Example 3.4 mentioned
on p. 92, where Ethan could not ex interim discern between detonator L and
detonator B. Let pDB

Ethan denote the proposition ‘the action DB is performed
by Ethan’ (i.e., the action of activating the mechanism in the detonator of
bomb B is performed by Ethan), and let ∼Ethan be defined so that, for i, j
in 5–12, ⟨m1, hi⟩ ∼Ethan

〈
m1, h j

〉
. ThenM, ⟨m1, h10⟩ |= ¬KEthan[Ethan]XYpDB

Ethan:
at ⟨m1, h10⟩ Ethan did not know ex interim that he chose action DB.23 Thus, if
Luther and Benji unfortunately cut both red wires and bomb L explodes, the
squad can be excused for failing in their mission if Ethan claims that it was
impossible for him to discern one detonator from the other.

2. As evidenced by the difference between cases a and b of Example 3.4, my
ex interim knowledge does not satisfy (AEK) or all-effects knowledge: in case
a, although Luther saw to it that bomb L exploded, he did so without ex
interim knowledge about it. Furthermore, and in contrast to Lorini et al.’s
version, full certainty about the present moment does not imply that agents
will know ex interim the effects of all their actions. An example of this can
be seen in the situation devised for Ethan in the above item.

3. My framework is flexible enough so that agents can in some sense know
more than what they bring about. Since (OAC) is not imposed, instances of

23Observe that, in the particular case of propositional constants encoding the performance of an
action (such as pDB

Ethan above), these constants are interpreted as instantaneous effects of performing

the action. To be consistent with my exposition of ex interim knowledge, then, I used formula YpDB
Ethan

as an effect (at the next index) of having performed action DB at the current index (see the discussion
of instantaneous effects of actions in Section 3.2, just after Definition 3.3, and also Footnote 15).
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finer-grained knowledge are thus accounted for. However, agents cannot
ex-interim know more than what they bring about: reflexivity of ∼α entails
that Kα[α]Xφ→ [α]Xφ is valid with respect to the class of ebdt-models.24

3.3.3 Ex Post Knowledge

At the last stage of information disclosure, it is revealed to all agents which
actions they chose. Game theorists call the knowledge that arises at this point ex
post knowledge. Although Aumann and Dreze (2008, p. 80) stated that at the ex
post stage “all information is revealed to all,” I take this to refer to information
that results from disclosing Ags’s joint choice. Now, EGT also considers that ex
post knowledge is knowledge that is attained after all agents have performed their
actions, which adds a chronological dimension to the concept. Intuitively, if an
agent has some certainty about the effects of joint action, then it is easier for that
agent to know things ex post. In Example 3.4 a, for instance, I consider that the
fact that Ags caused a bomb to go off, and did so unknowingly, is an instance of
ex post knowledge at ⟨m4, h10⟩. In contrast, I do not consider that it should also be
ex post knowledge that it was Luther who set off the bomb, and that it was bomb
L. In fact, although for Example 3.4 b one would definitely say that at ⟨m4, h10⟩

Luther knew ex post that he set off the bomb, in my opinion Benji should not know,
even ex post, that Luther caused the explosion; what he should know ex post is that
Luther chose RL, and that he himself chose RB.
Previous versions

Out of all the approaches reviewed so far, only Lorini et al. (2014) included
some treatment of ex post knowledge in EST. For them, ex post knowledge concerns
facts that hold after constraining the possible worlds to those joint actions—of the
grand coalition—that are epistemically equivalent to the current joint action of
the grand coalition. The relation that provides semantics for K◦◦•α φ is built by
intersecting the primitive relation of α’s ex ante knowledge with the relation for
group agency of the grand coalition (itself the intersection of the agents’ relations
for individual agency). A point to be made is that the instantaneous nature of
Lorini et al.’s action semantics excludes an analysis of the chronological dimension
of ex post knowledge. For instance, their framework does not allow that agent α
knows ex post that it brought about φ without knowing ex interim that it brought
about φ. In othr words, formula K◦◦•α [α stit]φ→ K◦•◦α [α stit]φ is valid.

24Comparing my ex interim knowledge with Duijf’s (2018), observe that, with mine, an agent could
not have known ex interim that another agent would enforceφ (at next indices) without it being settled
that φ would hold at next indices. In other words, Kα[α]XY[β]Xφ → □Xφ is valid with respect to
ebdt-models. As mentioned before, with Duijf’s version, an agent can know ex interim that another
agent is bringing about an effect that is not settled.
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Duijf (2018, Chapter 3), for his part, merely commented on two possibilities for
the formalization of ex post knowledge. Accounting for its chronological flavor,
he mentioned that a good candidate for the individual case is XKαφ, where, as
before, I useK to denote the operator for Duijf’s ex interim knowledge. Accounting
for the public nature of ex post knowledge, the other good candidate proposed
by Duijf is Dφ, where D is the operator for distributed knowledge of the grand
coalition.25 Although both proposals have benefits, Duijf did not explore them
further in his approach, which includes neither the ‘next’ operator nor an operator
for distributed knowledge. Now, the first account (XKφ) might be a bit too fine-
grained: it implies that an agent’s ex interim knowledge at the next index is the
same as its current ex post knowledge, so that ex post knowledge would take
into account an agent’s choice at the next index. This is something atypical, to
say the least. The only criticism to the second account (Dφ) that I can presently
put forward is that it does not consider the chronological dimension of ex post
knowledge.
My version: I propose a version of individual ex post knowledge as follows: letM
be an ebdt-model and φ a formula ofLKX. Then at index ⟨m, h⟩ agent α had ex post
knowledge of φ iffM, ⟨m, h⟩ |= X Kα Y [Ags]Xφ—that is, iff at ⟨m, h⟩’s next index
α comes to know that the choice of the grand coalition enforced φ at next indices.
Thus, for an index of evaluation, ex post knowledge (a) is attained at the next index,
and (b) concerns the interaction that happened at the index of evaluation. One can
think ofα’s ex post knowledge as facts supported by those joint actions of the grand
coalition that—under α’s view—are indistinguishable from the grand coalition’s
current joint action.26 In this way, in Example 3.4 a (Figure 3.2) M, ⟨m4, h10⟩ |=

X KLuther Y [Ags]X(eL∨eB): at ⟨m4, h10⟩ the fact that either bomb B or bomb L will explode
at next indices is known ex post by Luther. For case b (Figure 3.3), M, ⟨m4, h10⟩ |=

¬X KBenji Y [Ags]X(Y[Luther]XeL): at ⟨m4, h10⟩ Benji did not know ex post that Luther
set off bomb L. Other interesting cases appear in the non-actual situations where
the bombs were defused. In Example 3.4 a, for instance, letting fB denote the

25Distributed knowledge is an instance of group knowledge commonly thought to refer to the
knowledge that results from the members’ sharing of their information (see, for instance, Fagin et al.,
1995; Gerbrandy, 1998; Halpern & Fagin, 1989, for a thorough examination of distributed knowledge).

26Observe that I do not interpret α’s ex post knowledge as facts that the current joint action of the
grand coalition would force α to know. In other words, I do not use formula [Ags]XKαφ to express
agent α’s ex post knowledge at an index. That said, this formula is also a good candidate, since it
represents the knowledge that is supported by the actual joint action. The reason for not using it is
that I interpret the information that results from the disclosure of the grand coalition’s actions in a
very particular way: rather than seeing it as the revelation of the actual index’s interaction (with the
consequent revelation of the actual moment), I see it as those facts for which α knows for certain that
they were caused by the interaction of the grand coalition (i.e., by Ags’s joint action at the previous
index). In other words, ex post knowledge concerns not so much those facts that Ags’s action forces α
to know as those facts about which α knows that they were enforced by Ags.
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proposition ‘the mechanism of bomb B has been activated,’ both M, ⟨m4, h9⟩ |=

¬KLuther(Y[Ethan]X fB) and M, ⟨m4, h9⟩ |= X KLuther Y [Ags]X(Y Y[Ethan]X fB). This
means that Luther—and Benji, for that matter—realized at the ex post stage that
Ethan had secured the detonator for bomb B.

Observe that, contrary to Lorini et al.’s formalization, mine admits cases where
an agent knows ex post that it brought about φ without knowing ex interim that
it would bring about φ. In other words, X Kα Y [Ags]XY[α]Xφ → Kα[α]Xφ is
not valid with respect to ebdt-models. For an example, consider Figure 3.2. Ob-
serve that M, ⟨m2, h1⟩ |= X KLuther Y [Ags]X(Y[Luther]XeL) and that M, ⟨m2, h1⟩ ̸|=

KLuther[Luther]XeL): at ⟨m2, h1⟩ Luther knew ex post that he had set off bomb L, but he
did not know this ex interim.

To deal with the public nature of ex post knowledge, one can think of a collective
version of the proposal above. Inspired by Duijf’s (2018) aforementioned ideas, ex
post knowledge of φ can be characterized with formula X D Y [Ags]Xφ, where D
is the operator for distributed knowledge of the grand coalition Ags.27 Intuitively,
then, at a given index the grand coalition knew φ ex post iff at the next index
the grand coalition’s sharing of their information supports that they would bring
about φ.

Endowed with my three versions of the kinds of knowledge across the stages
of decision making, let me address how they interact with each other. Complying
with the game-theoretic view, ex post refines ex interim, which in turn refines ex
ante:

Proposition 3.5. LetM be an ebdt-frame. Then for all α ∈ Ags and all φ of LKX, the
following items hold:

1. M |= □Kα□Xφ→ Kα[α]Xφ.

2. M |= Kα[α]Xφ→ X Kα Y [Ags]Xφ.

Proof. In Section 3.4 I present a proof system ΛK for EXST (Definition 3.6). Both
items follow from soundness of ΛK with respect to ebdt-models:

1. Follows from the validity of axiom □φ → φ, of schema □φ → [α]φ, and of
schemata (K) for □ and Kα, as well as from preservation of validity under
Modus Ponens and Necessitation for □ and Kα.

2. Follows from the validity of schema [α]φ → [Ags]φ, of axiom XYφ ↔
φ, of schema KαXφ → XKαφ, and of schema (K) for Kα, as well as from
preservation of validity under Modus Ponens and Necessitation for Kα.

27Formally, if one adds Dφ to LKX, then, for ∼Ags:=
⋂
α∈Ags ∼α, M, ⟨m, h⟩ |= Dφ iff for all ⟨m′, h′⟩

such that ⟨m, h⟩ ∼Ags ⟨m′, h′⟩,M, ⟨m′, h′⟩ |= φ.
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□

3.3.4 Know-How

When I talk about know-how I refer to the so-called practical or procedural knowl-
edge of an agent, that takes actions—rather than propositions—as content (see
Chapter 2’s Footnote 56, p. 72). The intuition is that an agent knows how to do
φ iff it has procedural knowledge for bringing about φ. I am not engaging in
a circular argument here, because the second statement can be described with
precise definitions for knowledge, action, and possibility. Still, I acknowledge that
there is a lively debate in the literature as to what being able to bring about φ
exactly means, and the question of what it means to be able in the epistemic sense
adds on further challenges (Ågotnes et al., 2015; Duijf, 2018; Horty & Pacuit, 2017;
Naumov & Tao, 2017, 2018; Wang, 2015).

Presently, the concept of know-how is based on EST’s approach. Much like
Horty and Pacuit (2017), I focus on the differences between what agents can bring
about, on the one hand, and what they can knowingly bring about, on the other.
Consider the different cases in Example 3.4 (a and b). In case a, one would say
that Luther and Benji did not know how to save the facility. Whether their being
able to knowingly save the facility is equal to their knowing how to save it is
very much open to debate, but the reader will agree that at least it is necessary
for their knowing how. All the authors cited in the previous paragraph agree
with this claim, and both Herzig and Troquard and Horty and Pacuit in fact
identified knowing how to do φwith the possibility of knowingly bringing about
φ. In what follows, I focus my study of the previous literature on individual
know-how, leaving its collective counterpart for future work.
Previous versions

Horty and Pacuit (2017) worked on the assumption that an agent is epistemi-
cally able to do φ iff it is possible for the agent to have ex interim knowledge of φ.
Their goal was to formally disambiguate simplified versions of the different cases
in my Example 3.4. Using modality [α kstit]φ (that was reviewed on p. 93), they
characterized know-how with formula ^[α kstit]φ. I have already commented
on the problems of their system (see also Duijf et al., 2021).

A related approach is Herzig and Troquard’s (2006). With their dynamic
knowledge modality [α Kstit]φ, the authors proposed that at ⟨m, h⟩ agent α knows
how to see to it that φ iff ⟨m, h⟩ |= □[α Kstit]^[α Kstit]Xφ—that is, iff ⟨m, h⟩ α has
static knowledge of the possibility of knowingly bringing about φ. Herzig and
Troquard’s treatment of know-how is insightful, but their models are constrained
by (OAC) and by the condition of uniformity that was mentioned before.
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Somewhat related to Herzig and Troquard’s version, Duijf (2018, Chapter 3)
presented a simple and elegant theory of know-how, that ultimately character-
izes individual know-how as follows: at ⟨m, h⟩ agent α knows how to see to it
that φ iff ⟨m, h⟩ |= Kα^Kα[α]φ—where Kα is the operator for Duijf’s ex interim
knowledge. As addressed before, Duijf rejects imposing (OAC), so his logic admits
finer-grained knowledge. However, a condition known as uniformity of histori-
cal possibility, which in Duijf’s system is syntactically characterized with schema
^Kαφ→ Kα^φ, yields that his formula for know-how is equivalent to^Kα[α]φ.28

My version: LetM be an ebdt-model andφ a formula ofLKX. At index ⟨m, h⟩ agent
α knew how to enforceφ at next indices iffM, ⟨m, h⟩ |= □Kα^Kα[α]Xφ—that is, iff it
was settled that α knew that it was possible for itself to know ex interim (or know-
ingly do) φ.29 Thus, in Example 3.4 aM, ⟨m4, h10⟩ |= ¬□KLuther^KLuther[Luther]Xs:
at ⟨m4, h10⟩ Luther did not know how to defuse the bombs. In contrast, in case b
M, ⟨m4, h10⟩ |= □KLuther^KLuther[Luther]XeL: at ⟨m4, h10⟩ Luther did know how to set
off a bomb. Since in both cases Luther ultimately does set off a bomb, I consider
case a as a situation where he should be excused from moral responsibility of the
explosion, while case b is one where he should be held morally responsible for
it.30

28Duijf did not comment on such an equivalence, whose deduction (in Duijf’s system) comes from
the following argument. Let (Uni f − H) denote schema ^Kαφ → Kα^φ in Duijf’s logic. In light of
this schema, one has the following derivation, where ‘Subs.’ abbreviates ‘Substitution’:

1. ⊢ Kα[α]φ→ KαKα[α]φ Subs. of (4) forKα

2. ⊢ ^Kα[α]φ→ ^KαKα[α]φ 1, modal logic
3. ⊢ ^KαKα[α]φ→ Kα^Kα[α]φ Subs. of (Uni f −H)
4. ⊢ ^Kα[α]φ→ Kα^Kα[α]φ 2, 3, prop. logic.

The other direction is straightforward from the validity of schema (T) forKα. A similar derivation can
be provided to ensure that Herzig and Troquard’s □[α Kstit]^[α Kstit]φ is equivalent to ^[α Kstit]φ.

29Observe that modal logic and the validity of formula XYφ ↔ φ with respect to ebdt-
models imply that the proposed formula for know-how—□Kα^Kα[α]Xφ—is logically equivalent to
□Kα□XY^Kα[α]Xφ. Therefore, one can characterize my know-how as follows: agent α knows how
to see to it that φ holds at the next moment if α knows ex ante that at the moment of performing its
actions it is possible for itself to know ex interim (or knowingly do) φ.

30Although I focus on know-how within EST, it is worth discussing some of the approaches in the
epistemic extensions of alternating-time temporal logic and of coalition logic (Ågotnes et al., 2015;
Hoek & Wooldridge, 2003; Naumov & Tao, 2017, 2018). The reason is that these logics’ semantics
for know-how are similar to EST’s. For instance, Naumov and Tao (2018) and Ågotnes et al. (2015)
share many intuitions with Horty and Pacuit (2017). Both approaches characterized know-how as
follows: agent α knows how to bring about φ at state s iff there exists a ‘strategy’ a such that in all
states that are epistemically indistinguishable from s in the eyes of α, ‘strategy’ a will lead to states
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3.4 Axiomatization & Logic-Based Properties

It is time to turn our attention to interesting properties of the logic EXST. Since
they are more akin to the models that appear in the rest of the thesis (as well as to
previous approaches’ models), in what follows I will work with ebdt-models that
meet a constraint of uniformity known as uniformity of historical possibility. These
models are defined just as in Definition 3.2, but they additionally satisfy frame
condition (Unif − H): for all α ∈ Ags and each index ⟨m, h⟩, if ⟨m, h⟩ ∼α ⟨m′, h′⟩,
then for every h∗ ∈ Hm there exists h′∗ ∈ Hm′ such that ⟨m, h∗⟩ ∼α

〈
m′, h′∗

〉
. I refer to

the resulting logic as EXST-u.31

As for the logic-based properties of modalities □φ and [α]φ, they are the same
as the ones reviewed in Chapter 2’s Subsection 2.3.1: both operators are S5, and
they validate the schemata known as (SET) and (IA). Operator [Ags] is also S5, so
that the properties of joint agency of the grand coalition are the same as the ones
reviewed for [α]. Operator Kα is S5 as well, so that the properties of knowledge are
the ones reviewed in Chapter 2’s Subsection 2.4.4: logical omniscience, factivity,
positive introspection, and negative introspection. To address the interplay be-
tween these modalities and those incorporated from basic xstit theory, I consider
it best to first introduce a proof system for EXST-u.

3.4.1 A Proof System for EXST-u

Definition 3.6 (Proof system for EXST-u). Let ΛK be the proof system defined by the
following axioms and rules of inference:

at which φ holds. Naumov and Tao’s interpretation for the word ‘strategy’ is different from Ågotnes
et al.’s. While the former authors refer to an action label in single-step transitions, the latter use the
term as is done in ATL, where strategies are functions that assign to each agent and sequence of states
a pertinent action. Regardless of the difference, their formalization of know-how depends on the
same reasoning: α knows how to do φ iff there exists a uniform strategy such that at all epistemically
indistinguishable states the transition assigned by the strategy leads to a state at which φ holds. Thus,
both accounts involve the idea of uniformity: for Naumov and Tao, their models include a primitive
domain of strategies (action labels) that remains uniform for all agents, so that all agents have the
same available actions at all states (not only at indistinguishable ones); Ågotnes et al., for their part,
admitted the existence of non-uniform strategies and only demanded uniformity as a requirement for
know-how. In this respect, it is to Ågotnes et al.’s approach that my formalization is most similar.
The two essential differences, then, are that (1) I work within EST, where one can model ex interim
knowledge and base know-how on it, and (2) I only deal with single-step actions taking effect at next
indices, leaving the case for long-term strategies/abilities for future work.

31Condition (Unif − H) corresponds syntactically to schema ^Kαφ → Kα^φ (see Duijf et al., 2021,
for details, as well as Chapter 4’s Subsection 4.5). As such, (Unif − H) has two important consequences
in EXST-u: my formula for ex ante knowledge becomes equivalent to □KαXφ, and my formula for
know-how becomes equivalent to ^Kα[α]Xφ.
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• (Axioms) All classical tautologies from propositional logic; the S5 schemata for □,
[α], [Ags], and Kα; axiom (K) for X and Y; and the following schemata:

YXφ↔ φ (In1)
XYφ↔ φ (In2)
Xφ↔ ¬X¬φ (DET.S.X)
Yφ↔ ¬Y¬φ (DET.S.Y)
□φ→ [α]φ (SET)
[α]φ→ [Ags]φ (GA)
[Ags]Xφ→ [Ags]X□φ (NAgs)
For all m ≥ 1 and pairwise distinct α1, . . . , αm,∧

1≤i≤m^[αi]φi → ^
(∧

1≤i≤m[αi]φi
)

(IA)
KαXφ→ XKαφ (NoF)
^Kαp→ Kα^p (Uni f −H)

• (Rules of inference) Modus Ponens, Substitution, and Necessitation for the modal
operators.

For n ∈ N−{0},ΛKn is defined as the proof system constructed by adding axiom (AgsPCn)
to ΛK, where

∧
1≤k≤n

^


 ∧

1≤i≤k−1

¬φi

 ∧ [Ags]φk

→ ∨
1≤k≤n

φk (AgsPCn).

Schemata (In1) and (In2)—where ‘In’ stands for inverse—concern the interac-
tion between the ‘next moment’ operator and the ‘last moment’ operator. These
schemata characterize syntactically that the relations ... is the successor of... and
... is the predecessor of... behave as inverses of each other, meaning that each
point of evaluation is identified with the successor of its predecessor and with the
predecessor of its successor (see Footnote 5). Schemata (DET.S.X) and (DET.S.Y)—
where ‘DET.S’ stands for determinicity and seriality—characterize syntactically that
the successor, resp. predecessor, relation is serial and deterministic (also known
as functional). Thus, a successor, resp. predecessor, always exists (seriality), and
the successor, resp. predecessor, is unique (determinism).

Schemata (SET) and (IA) are standard in BST, and they were discussed in
Chapter 2’s Subsection 2.3.1.

Schema (GA)—where ‘GA’ stands for group additiviy—characterizes syntacti-
cally that effects of individual actions are effects of actions of the grand coali-
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tion. Axiom (NAgs)—where ‘NAgs’ stands for no choice for the grand coalition—
characterizes syntactically frame condition no choice between undivided histories
(with respect to choices of the grand coalition).

Schema (NoF)—where ‘NoF’ stands for no forget—characterizes syntactically
frame condition no forget (NoF): if at an index an agent knew that φ would hold
at the next index, then at the next index the agent will know that φ holds there.32

Schema (Uni f −H)—where ‘Unif-H’ stands for uniformity of historical possibility—
characterizes syntactically frame condition uniformity of historical possibility: if at
an index it was possible for an agent to know φ, then the agent also knew that φ
was possible.

Axiom (AgsPCn) is a version of a standard schema in BST that characterizes
syntactically that the cardinality of the set of available actions of the grand coalition
is at most n, at all indices. The reader is referred to Xu’s (1994) seminal paper for
a discussion of this schema. For elucidation as to how it encodes this cardinality-
property, see the proof of Proposition A.15 (p. 120).

Remark 3.7. Some interesting remarks aboutΛKn (with n ∈ N− {0}) are the follow-
ing:

• Schemata (SET) and (GA) imply that ⊢ΛKn □φ → [Ags]φ, so that schemata
(NAgs) and (T) for [Ags] imply that ⊢ΛKn □Xφ → X□φ, which is a theorem
that I refer to as (NX).

• Necessitation for Y and □, together with schemata (In1) and (In2), entails
that schema (NX) implies that ⊢ΛKn Y□φ→ □Yφ, a theorem that I refer to as
(NY).33

32Observe that frame condition (NoF) roughly corresponds to the property of perfect recall of knowl-
edge in extensive-form games (see, for instance Bonanno, 2004). In presence of the conditions captured
syntactically by schemata (In1) and (In2), it implies that if an agent knew φ at an index then at suc-
cessor indices the agent will have known that φ held at the first index mentioned. Whatever an agent
knows to have been the case at some past index will at future indices also be known to have been the
case (at the mentioned past index). In other words, (NoF), (In1), and (In2) together imply that formula
Kαφ → XnKYnφ is valid, where, for ∆ ∈ {X,Y} and n ∈ N − {0}, ∆nψ denotes the formula that results
from applying n-iterations of operator ∆ behind φ. In the present theory, (NoF) does not imply that an
agent knows the past or knows even its own past actions: Yφ→ KαYφ, resp. Y[α]Xφ→ KαY[α]Xφ, is
not valid with respect to ebdt-models.

33A derivation of (NY) is the following, where ‘Nec.’ abbreviates ‘Necessitation’ and ‘Subs.’
abbreviates ‘Substitution’:

1. ⊢ΛKn φ→ XYφ (In2)
2. ⊢ΛKn □φ→ □XYφ 1, Nec. and schema (K) for □
3. ⊢ΛKn Y□φ→ Y□XYφ 2, Nec. and schema (K) for Y
4. ⊢ΛKn Y□XYφ→ YX□Yφ Nec. and schema (K) for Y on subs. of (NX)
5. ⊢ΛKn YX□Yφ→ □Yφ Subs. of (In1)
6. ⊢ΛKn Y□φ→ □Yφ 3, 4, 5, prop. logic.
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• Schemata (GA) and (NAgs), coupled with schema (4) for [α], imply that,
for all α ∈ Ags, [α]Xφ → [α]X□φ, which is a theorem that I refer to as
(NA), characterizing syntactically that agentα cannot make a choice between
undivided histories.

• Schema (GA) and axiom (AgsPCn) imply that, for all α ∈ Ags,

⊢ΛKn

∧
1≤k≤n

^


 ∧

1≤i≤k−1

¬φi

 ∧ [α]φk

→ ∨
1≤k≤n

φk.

I refer to the corresponding theorem schema as (APCn). This theorem
schema is important in the present axiomatization, because it encodes the
fact that at each moment each agent will have at most n choices of action to
decide from.34

• Necessitation for Y and Kα, together with schemata (In1) and (In2), entails
that (NoF) implies that ⊢ΛKn YKαφ→ KαYφ.35

As for metalogic properties of EXST-u, the following result can be shown
straightforwardly:

Proposition 3.8 (Soundness of ΛKn). For all n ∈ N − {0}, the proof system ΛKn is
sound with respect to the class of ebdt-models that additionally satisfy frame condition
(Unif − H).

While showing soundness is straightforward, completeness with respect to
ebdt-models (with uniformity) is still an open question. However, a completeness
result can be given if one takes the discussion to Kripke semantics.

3.4.2 Kripke Semantics for EXST-u

Following Broersen (2008a), Lorini and Sartor, and Payette (2014), I will show
that the proof systemΛKn is sound and complete with respect to a class of general
multi-modal Kripke-models (see Chapter 2’s Subsection 2.3.2) that I refer to as
Kripke-exs-models.

34A derivation of (APCn) can be obtained as follows: using schema (GA) and the fact that ⊢ΛKn
(p→ q)→ (^p→ ^q), one can show by induction on n that

⊢ΛKn

∧
1≤k≤n

^


 ∧

1≤i≤k−1

¬φi

 ∧ [α]φk

→ ∧
1≤k≤n

^


 ∧

1≤i≤k−1

¬φi

 ∧ [Ags]φk

 .
Then (APCn) follows from (AgsPCn) and propositional logic.

35A derivation of this theorem can be obtained by substituting Kα for □ and (NoF) for (NX) in the
derivation of theorem (NY) in Footnote 33.
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Definition 3.9 (Kripke-exs-frames & models). A tuple〈
W,Ags,R□,RX,RY, Choice, {≈α}α∈Ags

〉
is called a Kripke-exs-frame iff

1. W is a non-empty set of possible worlds and R□ is an equivalence relation over W.
For w ∈W, the class of w under R□ is denoted by w.

2. RX and RY are relations on W that fulfill the following conditions:

• Seriality: for all w ∈ W, there exist w′,w′′ ∈ W such that wRXw′ and
wRYw′′.

• Determinicity (or functionality): for all w ∈ W, if wRXw1 and wRXw2,
then w1 = w2; if wRYw′1 and wRYw′2, then w′1 = w′2. Thus, the unique
element that is RX-related to w is known as w’s successor and is denoted by
w+1; the unique element that is RY-related to w is known as w’s predecessor
and is denoted by w−1.

• (Inverse)K RX ◦ RY = Id and RY ◦ RX = Id.36

3. Choice is a function satisfying the following properties:

• It assigns to each α ∈ Ags a partition Choiceα of W, given by an equivalence
relation Rα. For w ∈W, the class of w in the partition Choiceα is denoted by
Choiceα(w).

• It assigns to the grand coalition Ags a partition ChoiceAgs of W such that
ChoiceAgs(v) =

⋂
α∈Ags

Choiceα(v) for each v ∈ W. The equivalence relation

underlying such a partition is denoted by RAgs.
• (SET)K For all w ∈ W, Choiceα(w) ⊆ w for every α ∈ Ags. This implies

that the set
{
Choiceα(v); v ∈ w

}
is a partition of w for every α ∈ Ags, which

is denoted by Choicew
α . Similarly, it implies that ChoiceAgs(w) ⊆ w, and

that the set
{
ChoiceAgs(v); v ∈ w

}
is a partition of w, which is denoted by

Choicew
Ags.

• (IA)K For all w ∈W, each function s : Ags→ 2w that maps α to a member of
Choicew

α is such that
⋂
α∈Ags s(α) , ∅.

• (NAgs)K For all w ∈W, R□ ◦ RX ◦ RAgs ⊆ RX ◦ RAgs.37

36An important note regarding notation: for relations R,S on a given set, I write R ◦S to denote the
composition of R and S, such that x(R ◦ S)y iff there exists z in the relevant set such that xSz and zRy.

37Observe that this condition, together with reflexivity of RAgs, implies the following conditions:
(NA)K for α ∈ Ags and w ∈ WΛKn , R□ ◦ RX ◦ Rα ⊆ RX ◦ Rα; and (NX)K R□ ◦ RX ⊆ RX ◦ R□. In turn, (NX)K
and (Inverse)K imply (NY)K : RY ◦ R□ ⊆ R□ ◦ RY.
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4. For all α ∈ Ags, ≈α is an (epistemic) equivalence relation on W. The following
conditions must be satisfied:

• (Unif − H)K For all α ∈ Ags, if v,u ∈ W are such that v ≈α u, then for all
v′ ∈ v there exists u′ ∈ u such that v′ ≈α u′.

• (NoF)K For all α ∈ Ags, ≈α ◦RX ⊆ RX◦ ≈α.

Frames for which the group-agency condition in item 3 is relaxed to ChoiceAgs(v) ⊆⋂
α∈Ags

Choiceα(v) (for all v ∈ W) are called super-additive frames. Frames where the

cardinalities of partitions Choicew
Ags and Choicew

α are at most n, for every α ∈ Ags and
w ∈W, are called n-frames.

A Kripke-exs-modelM, then, consists of the tuple that results from adding a valuation
functionV to a Kripke-exs-frame, whereV : P→ 2W assigns to each atomic proposition
a set of worlds (recall that P is the set of propositions inLKX). If one adds a valuation like
this to a tuple defining a super-additive frame, then I refer to the model as super-additive.
If one adds a valuation like this to a tuple defining an n-frame, then I refer to the model as
an n-model.

Definition 3.10 (Evaluation rules on Kripke models). LetM be a Kripke-exs-model.
The semantics onM for the formulas ofLKX are defined recursively by the following truth
conditions, mirroring Definition 3.3:

M,w |= p iff w ∈ V(p)
M,w |= ¬φ iff M,w ̸|= φ
M,w |= φ ∧ ψ iff M,w |= φ andM,w |= ψ
M,w |= □φ iff for all w′ s. t. wR□w′,M,w′ |= φ
M,w |= Xφ iff for all w′ s. t. wRXw′,M,w′ |= φ
M,w |= Yφ iff for all w′ s. t. wRYw′,M,w′ |= φ
M,w |= [α]φ iff for all w′ s. t. wRαw′,M,w′ |= φ
M,w |= [Ags]φ iff for all w′ s. t. wRAgsw′,M,w′ |= φ
M,w |= Kαφ iff for all w′ s. t. w ≈α w′,M,w′ |= φ.

In Chapter 2’s Subsection 2.3.2 I mentioned that evaluating formulas of the
basic stit-theoretic language and of xstit-theoretic languages on Kripke structures
is a standard practice. Actually, Payette (2014) referred to Kripke models for
his xstit theory as ‘irregular,’ using the term ‘regular’ to refer to branching-time
structures that are similar to bdt-models (see Chapter 3’s Definition 2.19, p. 57).

The main metalogic result for ΛKn, then, is given by the following theorem.

Theorem 3.11 (Soundness & Completeness of ΛKn). For all n ∈ N − {0}, the proof
system ΛKn is sound and complete with respect to the class of Kripke-exs-n-models.
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For the proof of this theorem, the reader is referred to Appendix A. Now,
proving completeness is one of the technical challenges—and contributions—of
this chapter. It involves a long, step-by-step procedure that follows a strategy
similar to Lorini and Sartor’s (2016). Although I relegate the details to Appendix
A, a summary and some discussion seem suitable.

The proof of completeness consists of three steps. This is because the technique
of canonical models only yields completeness of ΛKn with respect to a class of
models where RAgs is included in

⋂
α∈Ags Rα (i.e., where the other inclusion is not

guaranteed). For the sake of illustration, assume thatM is a super-additive model
such that RAgs and Rα (where α ranges over Ags) are the only relations defined.
There is a well-known method in modal logic (see, for instance Lorini, 2013;
Lorini & Sartor, 2016; Schwarzentruber, 2012; Vakarelov, 1992) that can be used
to show that, provided that the set of RAgs-equivalence classes is finite (which
under the assumption that RAgs ⊆

⋂
α∈Ags Rα implies that, for all α ∈ Ags, the set

of Rα-equivalence classes is also finite), then one can construct a modelM′ where
RAgs =

⋂
α∈Ags Rα and such that there exists a surjective bounded morphism from

M
′ toM.38

Therefore, completeness of ΛKn with respect to the class of super-additive
models would straightforwardly imply completeness with respect to the class of
actual models. However, to adapt this well-known method to the case of EXST-u
(where the models include many relations other than RAgs and the Rα’s), I make use
of an intermediate step. Thus, in the first step the standard technique of canonical
models is used to prove completeness with respect to Kripke-exs-models that are
super-additive. In the second, intermediate step I prove completeness with respect
to super-additive-models where the temporal relations are irreflexive. In the third
and last step I use a version of the aforementioned well-known method to prove
completeness with respect to the class of actual models.

Now, I mentioned above that completeness with respect to ebdt-models (with
uniformity) is still an open problem. IfLKX did not include modality Yφ, then one
might try to use the technique of Schwarzentruber (2012) (see also Canavotto, 2020,
Appendix A.1.2) to prove that satisfiability on Kripke-exs-n-models—of formulas
of this restricted language—implies satisfiability on ebdt-models.39 However, this

38To successfully apply this particular well-known method, the relations Rα and RAgs must be
equivalence relations. This is the technical motivation for having a language that also allows formulas
expressing instantaneous agency (with semantics based on partitions Choicem

α and Choicem
Ags).

39Schwarzentruber’s (2012) technique can be summarized as follows: for a formula φ of the
restricted language and a Kripke structure that satisfies φ at a given world, one first unravels the
Kripke structure to obtain another Kripke structure where RX is irreflexive and such that it satisfies
φ as well. In order to use this RX-irreflexive Kripke structure to build an ebdt-model—in the style of
Herzig and Schwarzentruber (2008)—one needs to identify worlds with histories (as was addressed in
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technique is not successful when formulas of the full LKX are considered. One
would end up showing that satisfiability on Kripke models implies satisfiability
on ‘weird’ branching-time structures that admit backward branching! That said,
there is an unpublished paper by Payette (2012) in which he showed completeness
of an xstit logic, whose language does include Yφ but includes neither Kαφ nor
the instantaneous-agency modality [α]φ, with respect to his regular models, that
above were described as very similar to bdt-models. The technique used in this
unpublished manuscript is complicated, but it might work to prove completeness
of ΛKn with respect to ebdt-models. Unfortunately, such an attempt will have to
be postponed for future work.

As for the decidability of EXST-u, it is definitely a question worth looking
into, especially because there has been a recent revival of the interest in the
implementation of stit logics in the development and checking of ethical AI (see,
for instance, Arkoudas et al., 2005; Calegari et al., 2020; Pereira & Saptawijaya,
2016, see also the thesis’s Conclusion, p. 311). It is always risky to venture a
conjecture on the decidability of a logic, but I can mention two topic-related results.
First, Payette (2014) showed decidability of his xstit logic (the one mentioned in the
above paragraph) via finite model property. However, the finite model rendered
is only super-additive, meaning that each action available to Ags is included in
an intersection of individual actions but is not necessarily the same as such an
intersection. Secondly, Schwarzentruber (2012) proved that the logic that results
from the fragment of LKX without Kαφ and Yφ is decidable. He used a complex
method to do so, namely a translation and a truth correspondence between a logic
over said fragment and a logic of chains of coalitions.

3.5 Conclusion

This chapter was a stit-theoretic study of the relation between knowledge and
agency as components of responsibility. I want to conclude it with a brief
discussion of two topics: (a) an extension of stit theory with another—equally
important—epistemic component of responsibility: belief, and (b) an initial pro-
posal for formalizing the category of informational responsibility (see the discus-
sion on Broersen’s three categories of responsibility in Chapter 1, p. 5).

Chapter 2’s Subsection 2.3.2). Schwarzentruber achieved a successful identification by first ‘correcting’
the RX-irreflexive Kripke structure: if k is the modal depth of X in φ, then one can build yet another
Kripke structure satisfying φ at a corresponding world w such that, after k RX-steps from w, the
R□-classes of the worlds in this last Kripke structure are singletons. This corrected structure is then
used to build an ebdt-model satisfying φ.
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3.5.1 An Extension with Belief

Suppose that you are a lawyer. You are building the defense for a trial where your
client is being charged with negligent homicide. The case is as follows: a patient
was admitted to a hospital in urgent need of surgery. The nurses drew up a chart
with information for the surgeons, but the figure regarding how long it had been
since the patient last ate had a mistake. Anesthetics for this surgery should have
been supplied only if the patient had had an empty stomach for at least eight
hours, and they were deadly otherwise. Because of the mistake in the chart, the
anesthesiologist believed that it was safe to supply the anesthetics, but in fact the
patient had had a full meal just one hour before admittance. The anesthetics were
supplied, and the patient died. The patient’s family sued the anesthesiologist for
negligent homicide, and you were hired to defend her. On the causal level, she is
responsible for the death. However, as her defense lawyer, you can argue that she
should not be held culpable, since she acted upon the false—but justified—belief
that the patient had an empty stomach before admittance. Therefore, your job is
to prove that the anesthesiologist did not know that the patient had eaten and
that she worked under the justified belief that the patient had not eaten.

This example, based on the 1982 film The Verdict, reifies the idea that doxastic
states should be taken into consideration when deciding whether an agent is
culpable for an undesirable outcome. The intuition, then, is that an agent’s beliefs
amount to reasons for being excused, in those cases where the agent did not
meet an obligation and faces a potential punishment. In the example above, the
anesthesiologist had a justified belief that the patient had not eaten, so she should
be excused for supplying the anesthetics and causing the patient’s death.

Although the last two decades have seen a considerable interest in exploring
the influence of knowledge on stit-theoretic agency, there are relatively few ex-
tensions of BST with belief operators (see, for instance, Broersen, 2011c; Wansing,
2006a). Incorporating beliefs into BST can be done in many ways, among which
I distinguish the following four:

1. Following the tradition of modal epistemic logic (see, for instance, Fagin et
al., 1995; Hintikka, 1962; Stalnaker, 2006), one can base a modality Bαφ—
expressing that α believed φ at an index—on a transitive, serial, and eu-
clidean relation on a bt-frame. Yielding the typical KD45 modal logic of
belief, this is the road that Wansing (2006a) took in his way to formaliz-
ing doxastic voluntarism (a philosophical premise by which agents actively
decide to acquire certain beliefs).
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2. Following the tradition of dynamic epistemic logic (DEL), that accounts both
for belief revision and for the interaction between knowledge and belief
(Baltag & Smets, 2006), one can base Bαφ on a plausibility preorder on bt-
frames, so that agent α believes φ iff φ holds at all worlds that α considers
plausible enough. This is commonly referred to as a qualitative theory of
belief and belief revision.40

3. Following decision theory and epistemic game theory (EGT), one can adopt
a quantitative interpretation of agentive belief and add probability measures
to bt-frames, meant to represent subjective degrees of belief for each agent.
This is what Broersen (2011c) and Abarca and Broersen (2021a) did, for
instance.

4. Related to the previous approach, one can extend the semantics of BST with
Harsanyi type-spaces (Harsanyi, 1967), so that each moment of a bt-frame
would be seen as a type-space.

Given the similarities between epistemic stit theory (EST) and EGT, a most
natural approach to take is the probabilistic one (the third point). According to
my joint work with Jan Broersen (Abarca & Broersen, 2021a), factoring a prob-
abilistic semantics of belief into EST also paves the way for nuanced formaliza-
tions of responsibility, given that it allows to base ideas of belief-driven choice
on expected-utility maximization. Since such ideas underlie the responsibility-
related extensions of EST that are presented in the conclusions of Chapters 4 and
6, I address their basis here.

According to Machina and Viscusi (2013, Chapter 1), the notion that an agent’s
beliefs are quantifiable by probabilities “is as old as the idea of probability itself,
dating back to the second half of the 17th century.” In turn, Bayesian subjective
probability—meaning the interpretation of probability theory as a theory of indi-
vidual belief—became a clear trend in formal philosophy with the seminal works
of Ramsey (1926) and of Savage (1954). Ever since these works appeared, epis-
temic game theorists and decision theorists have done much work on quantitative
(or graded) models of belief. The idea is that an agent’s degrees of belief, with
respect to the truth of φ, are represented by probability distributions on the set of
states at which φ holds (see, for instance, Aumann, 1999; Baltag & Smets, 2008;
Harsanyi, 1967; Pacuit & Roy, 2017).

To transfer this idea to stit theory, one can build probability spaces on a bt-
frame so that subsets of I(M × H) (the set of indices) are events to which agents

40Enriching BST with belief thus allows for a study of the so-called soft informational attitudes,
opening up possibilities for a theory of belief revision (see, for instance, Baltag & Smets, 2006; Board,
2004) in branching time, an interesting line of research for future work.
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assign probability. To simplify both the terminology and the definitions, let me
focus on finite discrete structures, where every subset of I(M × H) is measurable
with respect to α’s probability function µα (for all α ∈ Ags). Thus, for α ∈ Ags
and index ⟨m, h⟩, let me first define πα [⟨m, h⟩] := {⟨m′, h′⟩ ; ⟨m′, h′⟩ ∼α ⟨m′, h′⟩} as
α’s (ex interim) information set at ⟨m, h⟩. Then one can define µα : 2I(M×H)

→

[0, 1] as a classical discrete probability function (satisfying the Kolmogorov axioms
(Kolmogorov, 1956)) such that, for each index ⟨m, h⟩, µα (πα [⟨m, h⟩]) > 0 (Abarca
& Broersen, 2021a).

For α ∈ Ags, function µα can then be used to define a semantics for a
modality of the form Bαφ, expressing α’s belief of φ. Following Baltag and
Smets (2008), here I present the semantics of probability-1 belief. The idea is
that an agent probability-1 believes φ—written ‘p-1 believes φ,’ from here on—
iff the agent assigns probability 1 to the set of indices where φ is true. For-
mally, M, ⟨m, h⟩ |= Bαφ iff µα

(
∥φ∥ | πα[⟨m, h⟩]

)
= 1, where ∥φ∥ denotes the set{

⟨m, h⟩ ∈ I(M ×H);M, ⟨m, h⟩ |= φ
}

and µα(A|B) denotes the probability of A condi-
tional on B. Therefore, one says that at index ⟨m, h⟩ agent α p-1 believed φ iff α
assigned probability 1 to the set of indices at which φ holds, conditional on α’s (ex
interim) information set at ⟨m, h⟩.41

To illustrate this semantics for p-1 belief, consider the model M depicted in
Figure 3.4, which formalizes the anesthesiologist example mentioned above.

Example 3.12. Here, Ags =
{
patient,doctor

}
, and m1–m7 are moments such that

⊏ is defined so as to be represented by the diagram. There are four histories (h1–h4),
representing different possibilities for time to evolve according to the actions available
both to patient and doctor. At m1 we find two choices of action available to patient:
E1, standing for the choice of refusing to eat, and E2, standing for the choice of eating.
According to the action chosen by patient, the world evolves toward either m2 or m3. At
both these moments, it is doctor’s turn to act, and her available choices are the following:
L1 and L3, standing for supplying anesthetics; and L2 and L4, standing for refusing to
supply anesthetics. As implied by the statement of the example, h3 is the actual history.

The epistemic states that I focus on are those of doctor, represented with the indis-
tinguishability relation given by dashed lines in Figure 3.4 (where reflexive loops are
omitted). Thus, at all indices based on m2 and m3 doctor did not know whether the
patient had eaten. The doxastic states of doctor are represented by the discrete proba-
bility function µdoctor : 2I(M×H)

→ [0, 1], given by the rules: µdoctor

(〈
mi, h j

〉)
= 1

4 for

41This definition yields a traditional logic of p-1 belief, where Bα is a KD45 operator and the two
following properties hold: persistence of knowledge (|= Kαφ→ Bαφ) (see, for instance, van Ditmarsch et
al., 2015, Chapter 1) and full introspection of belief (|= Bαφ→ KαBαφ and |= ¬Bαφ→ Kα¬Bαφ) (see, for
instance, Baltag & Smets, 2006, 2008; Stalnaker, 2006).
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e e
µdoctor : 1 µdoctor : 0

Figure 3.4: Anesthesiologist example.

i, j ∈ {1, 2}, µdoctor (⟨m1, hi⟩) = 0 for i ∈ {3, 4}, and µdoctor (⟨m3, hi⟩) = 0 for i ∈ {3, 4}.
In the diagram, this is represented by labelling the left-hand side of the model with tag
‘µdoctor : 1,’ and the right-hand side with tag ‘µdoctor : 0.’

In Figure 3.4, e denotes the atomic proposition ‘the patient has eaten,’ a stands
for ‘anesthetics are supplied to the patient,’ r stands for ‘the patient is ready for
surgery,’ and d stands for ‘the patient will die.’ Thus, for all i ∈ {2, 3} and h ∈ Hmi ,
M, ⟨mi, h⟩ |= ¬Kdoctore ∧ ¬Kdoctor¬e: at all indices based on m2 and m3 doctor did not
know whether the patient had eaten or not. In turn,M, ⟨m3, h3⟩ |= ¬Kdoctor[doctor]Xd:
at the actual index doctor did not knowingly kill the patient.

As for belief, observe that M, ⟨m3, h3⟩ |= Bdoctor¬e: at the actual index doctor
p-1 believed that the patient had not eaten. This is due to the following arguments:
doctor’s information set at the actual index is πdoctor [⟨m3, h3⟩] = {⟨m3, h3⟩ , ⟨m2, h1⟩};
the set of indices in such an information set at which patient has eaten is ∥¬e∥ ∩
πdoctor [⟨m3, h3⟩] = {⟨m2, h1⟩}; at the actual index, then, the probability that doctor
assigned to the event that the patient had not eaten, conditional on her information

set, is µdoctor (∥¬e∥ | πdoctor [⟨m3, h3⟩]) =
µdoctor(∥¬e∥∩πdoctor[⟨m3,h3⟩])
µdoctor(πdoctor[⟨m3,h3⟩])

=
1
4

1+0
4
= 1. Thus, doctor

p-1 believed that the patient had not eaten. Coupled with the facts that doctor
did not know that the patient had eaten and that doctor did not knowingly kill
the patient, this p-1 belief provides a good reason for excusing doctor from having
moral responsibility of the patient’s death, despite having caused it.
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3.5.2 A Glimpse at Informational Responsibility

All the examples in this chapter convey the intuition that for an agent to be held
morally responsible for an undesirable outcome the agent should at the very least
have brought it about knowingly. Recall from Chapter 1 (p. 5) that an agent is
causally responsible for a state of affairs iff the agent is the material author of such
a state. In turn, an agent is informationally responsible for a state of affairs iff the
agent is the material author of such a state and the agent behaved knowingly, or
consciously, while bringing it about. Thus, in the bomb example (Example 3.4),
Luther was causally responsible for detonating a bomb in both case a and case b.
However, while in case a he should not be held informationally responsible, in
case b he should. In the anesthesiologist example (Example 3.12), doctor should
not be held informationally responsible for the patient’s death, because she did
not know that the patient would die after supplying the anesthetics and thus did
not knowingly kill the patient. In contrast, in the example of the Clutters’ murders
the jury dismissed the argument that Hickock and Smith did not act knowingly
when they killed the family. Thus, the defendants were indeed informationally
responsible for the murders.

Following Lorini et al. (2014), one can think of formula [α]Xφ ∧ ^¬[α]Xφ, for
instance, as a good candidate for syntactically characterizing causal responsibil-
ity: agent αwas causally responsible forφ iff α saw to it thatφ held at next indices
and it was possible for α to refrain from seeing to it that φ. In turn, formula
Kα[α]Xφ ∧ ^Kα¬[α]Xφ is a likewise good candidate for syntactically character-
izing informational responsibility: α was informationally responsible for φ iff α
knowingly saw to it thatφ held at next indices—or knewφ ex interim —and it was
possible for α to knowingly refrain from seeing to it that φ. Observe, then, that in
Example 3.4 aM, ⟨m4, h10⟩ |= [Luther]XeL ∧ ¬KLuther[Luther]XeL: at ⟨m4, h10⟩ Luther
was causally responsible for setting off bomb L, but he was not informationally responsible.
In turn, in Example 3.4 bM, ⟨m4, h10⟩ |= KLuther[Luther]XeL ∧ ^KLuther¬[Luther]XeL:
at ⟨m4, h10⟩ Luther was informationally responsible for setting off bomb L.

As a matter of fact, these candidate-formulas greatly influenced Chapter 6’s
(Subsection 6.3.2) proposal for the syntactic characterization of causal, resp. infor-
mational, responsibility, the first two categories in Broersen’s classification (p. 5).
For the third category—motivational responsibility—it is convenient to first have
a formal treatment of the component of responsibility that I have referred to as
intentions. Chapter 5 is devoted to this respect.
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Appendix A Metalogic Results for EXST-u

A.1 Soundness

Proposition A.13 (Soundness of ΛKn (w. r. t. Kripke models)). For all n ∈ N − {0},
the proof system ΛKn is sound with respect to the class of Kripke-exs-n-models.

Proof. Observe that each schema and axiom corresponds to the appropriate rela-
tional property in the definition of Kripke-exs-n-models. Therefore, the proof of
soundness is routine. □

A.2 Completeness

Before diving into the actual proof of completeness, here is a succinct description
of its structure:

• (Step 1) We build a canonical structure from the syntax, where the domain is
the set of allΛKn-maximally consistent sets of formulas ofLKX, and the appro-
priate relations are defined as is usual in canonical models (see Blackburn et
al., 2002, Chapter 4, for details on canonical structures in modal logic). We
prove that the canonical structureM forΛKn is a super-additive Kripke-exs-
n-model and show that, for a ΛKn-consistent formula φ,M,w |= φ, where w
is the ΛKn-maximally consistent set including φ. Thus, completeness of ΛKn

with respect to the class of super-additive Kripke-exs-n-models is shown.

• (Step 2) For any super-additive Kripke-exs-n-modelM, we use a variation of
the unraveling procedure (see Blackburn et al., 2002, Chapter 2, for details on
unraveling) in order to define a structureM′ such thatM′ is a super-additive
Kripke-exs-n-model where the ‘next’ and ‘last’ relations are irreflexive, and
such that there exists a surjective bounded morphism fromM′ toM. Using
the well-known result of invariance of modal satisfaction under bounded
morphisms (Blackburn et al., 2002, Chapter 2), we show completeness of
ΛKn with respect to the class of super-additive Kripke-exs-n-models where
the ‘next’ and ‘last’ relations are irreflexive. As mentioned in the body of the
chapter, the sole purpose of this intermediate step is to produce a structure
that will allow us to adapt the method of Schwarzentruber (2012) (see also
Lorini, 2013; Lorini & Sartor, 2016; Vakarelov, 1992) to build an actual model.

• (Step 3) For any super-additive Kripke-exs-n-modelMwhere the ‘next’ and
‘last’ relations are irreflexive, we use a variation of the mentioned method of
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Schwarzentruber (2012) to define a structureM′ such thatM′ is a Kripke-
exs-n-model, where RAgs =

⋂
α∈Ags Rα (and where the ‘next’ and ‘last’ rela-

tions are irreflexive), and such that there exists a surjective bounded mor-
phism from M′ to M. Using the invariance of modal satisfaction under
bounded morphisms, we show completeness of ΛKn with respect to the
class of Kripke-exs-n-models.

Step 1: Canonical Kripke-exs-n-Models

In Step 1 we show that the proof systemΛKn is complete with respect to the class of
super-additive Kripke-exs-n-models. The strategy is to build a canonical structure
from the syntax.

Definition A.14 (Canonical Structure). For n ∈ N − {0}, the tuple

M =
〈
WΛKn ,R□,RX,RY, Choice, {≈α}α∈Ags ,V

〉
is called a canonical structure for ΛKn iff

• WΛKn = {w; w is a ΛKn-MCS}. R□ is a relation on WΛKn defined by the rule: wR□v
iff □φ ∈ w⇒ φ ∈ v for every φ of LKX. For w ∈ WΛKn , the set

{
v ∈WΛKn ; wR□v

}
is denoted by w. RX is a relation on WΛKn defined by the rule: wRXv iff Xφ ∈ w⇒
φ ∈ v for every φ of LKX. RY is a relation on WΛKn defined by the rule: wRYv iff
for every φ, Yφ ∈ w⇒ φ ∈ v.

• Choice is a function that fulfills the following requirements:

– It assigns to each α ∈ Ags a subset Choiceα of 2WΛKn , defined as follows:
let Rα be a relation on WΛKn such that wRαv iff [α]φ ∈ w ⇒ φ ∈ v
for every φ of LKX; if Choiceα(v) :=

{
u ∈WΛKn ; vRαu

}
, then Choiceα :={

Choiceα(v); v ∈WΛKn
}
.

– It assigns to the grand coalition Ags a subset ChoiceAgs of 2WΛKn , defined as
follows: let RAgs be a relation on WΛKn such that wRAgsv iff [Ags]φ ∈ w ⇒
φ ∈ v for every φ of LKX; ChoiceAgs is then defined analogously to how
Choiceα was defined.

• For α ∈ Ags, ≈α is a relation on WΛKn given by the rule: w ≈α v iff Kαφ ∈ w ⇒
φ ∈ v for every φ of LKX.

• Recall that P is the set of propositions inLKX. ThenV : P→ 2WΛKn is the canonical
valuation, defined so that w ∈ V(p) iff p ∈ w.
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Proposition A.15. For every n ∈ N− {0}, the canonical structureM forΛKn is a super-
additive Kripke-exs-model where the cardinalities of partitions ChoiceAgs and Choiceα
(where α ranges over Ags) are at most n—therefore an n-model.

Proof. We want to show that M is a super-additive Kripke-exs-n-frame, which
amounts to showing that the tuple satisfies the items in the definition of super-
additive Kripke-exs-n-frames (Definition 3.9).

• Observe that R□ is an equivalence relation, sinceΛKn includes the S5 axioms
for □.

• Seriality and determinicity of RX and RY follow from axioms (DET.S.X)
and (DET.S.Y), respectively, by the following arguments. For seriality, take
v ∈ WΛKn . We first show that z′ :=

{
ψ; Yψ ∈ v

}
and x′ :=

{
ψ; Xψ ∈ v

}
are

consistent. Suppose for a contradiction that z′ is not consistent. Then there
exists a set

{
ψ1, . . . , ψm

}
of formulas of LKX such that

{
ψ1, . . . , ψm

}
⊆ z′ and

(a) ⊢ΛKn ψ1 ∧ · · · ∧ ψm → ⊥. Now, the fact that
{
ψ1, . . . , ψm

}
⊆ z′ means that

Yψi ∈ v′ for every 1 ≤ i ≤ m; by Necessitation for Y and its distributivity over
conjunction, (a) implies that ⊢ΛKn Yψ1∧· · ·∧Yψm → Y⊥, which by (DET.S.Y)
implies that ⊢ΛKn Yψ1 ∧ · · · ∧ Yψm → ⟨Y⟩⊥, but this is a contradiction, since
v is a ΛKn-MCS which includes Yψ1 ∧ · · · ∧ Yψm. Therefore, z′ is consistent.
By an analogous argument, x′ is consistent as well. Let z be the ΛKn-MCS
that includes z′, and let x be the ΛKn-MCS that includes x′ (which exist in
virtue of Lindenbaum’s Lemma (Blackburn et al., 2002, Chapter 4, p. 199)).
Observe that vRYz and that vRXx. For determinicity, suppose that, besides
the existent z and x, there exist z∗ and x∗ such that vRYz∗ and vRXx∗. We show
that z∗ = z and that x∗ = x. For all φ of LKX, φ ∈ z∗ iff ⟨Y⟩φ ∈ v iff (using
(DET.S.Y)) Yφ ∈ v iff φ ∈ z. Therefore, z∗ = z. An analogous argument,
using (DET.S.X), shows that x∗ = x. Axiom (In1), resp. (In2), ensures that
RX ◦ RY = Id, resp. RY ◦ RX = Id, according to the following discussion,
where we show that RX ◦ RY = Id and assume an analogous argument for
RY ◦RX: take v ∈WΛKn , and let z be the uniqueΛKn-MCS such that vRYz. We
show that zRXv: assume that Xφ ∈ z. Axiom (DET.S.X) and the fact that z
is a ΛKn-MCS implies that X¬φ < z. Suppose for a contradiction that φ < v.
Since v is a ΛKn-MCS, ¬φ ∈ v, so that axiom (In1) implies that YX¬φ ∈ v. By
definition of z, this implies that X¬φ ∈ z, which is a contradiction. Therefore,
φ ∈ v, and thus zRXv.

• Since ΛKn includes the S5 schemata for [α], Rα is an equivalence relation
for every α ∈ Ags, which implies that Choice, as defined, indeed assigns
a partition of WΛKn to each α. An analogous argument proves that Choice
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also assigns a partition of WΛKn to Ags. Showing that the condition of super-
additivity holds amounts to proving that RAgs ⊆

⋂
α∈Ags Rα. Schema (GA)

entails precisely this, as follows: suppose that wRAgsv, and assume that
[α]φ ∈ w for an arbitrary α. Because of (GA), this implies that [Ags]φ ∈ w as
well, so that the supposition that wRAgsv yields that φ ∈ v. Therefore, wRαv,
but since α was taken arbitrarily, RAgs ⊆

⋂
α∈Ags Rα.

We now verify that Choice satisfies conditions (SET)K (IA)K, (NA)K, and
(NAgs)K:

(SET)K Since ΛKn includes □φ → [α]φ as a schema, then, for all w ∈ WΛKn ,
Choiceα(w) ⊆ w for every α ∈ Ags.

(IA)K We need two intermediate results:

(a) For all w∗ ∈ WΛKn , w ∈ w∗ iff
{
□ψ;□ψ ∈ w∗

}
⊆ w. (⇒) Take w ∈ w∗

(which means that w∗R□w). Take φ of LKX such that □φ ∈ w∗. Since w∗
is closed under Modus Ponens, axiom (4) for □ implies that □□φ ∈ w∗.
By definition of R□, □φ ∈ w. (⇐) Assume that

{
□ψ;□ψ ∈ w∗

}
⊆ w. Take

φ of LKX such that □φ ∈ w∗. By assumption, □φ ∈ w. Since w is closed
under Modus Ponens, axiom (T) for □ implies that φ ∈ w. Thus, w∗R□w
and w ∈ w∗.

(b) If w∗ ∈ WΛKn and s : Ags → 2w∗ maps α to a member of Choicew∗
α such

that world vs(α) ∈ s(α), then w ∈ s(α) iff ∆s(α) =
{
[α]ψ; [α]ψ ∈ vs(α)

}
⊆ w.

(⇒) Take w ∈ s(α) (which means that vs(α)Rαw). Take φ ofLKX such that
[α]φ ∈ vs(α). Since vs(α) is closed under Modus Ponens, schema (4) for [α]
implies that [α][α]φ ∈ vs(α). Therefore, by definition of Rα, [α]φ ∈ w.
(⇐) Assume that ∆s(α) =

{
[α]ψ; [α]ψ ∈ vs(α)

}
⊆ w. Take φ of LKX such

that [α]φ ∈ vs(α). By assumption, [α]φ ∈ w. Since w is closed under
Modus Ponens, schema (T) for [α] implies that φ ∈ w. Thus, vs(α)Rαw
and w ∈ s(α).

Next, we show that, for all w∗ ∈ WΛKn and s : Ags → 2w∗ just as in item b
above,

⋃
α∈Ags ∆s(α) ∪

{
□ψ;□ψ ∈ w∗

}
is ΛKn-consistent. First, we show that⋃

α∈Ags ∆s(α) is consistent. Suppose that this is not the case. Then there exists
a set

{
φ1, . . . , φn

}
of formulas ofLKX such that [αi]φi ∈ vs(αi) for every 1 ≤ i ≤ n

and
⊢ΛKn [α1]φ1 ∧ · · · ∧ [αn]φn → ⊥. (3.1)

Without loss of generality, assume that αi , α j for all j , i such that
j, i ∈ {1, . . . ,n}—this assumption hinges on the fact that any stit operator
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distributes over conjunction. Notice that the fact that [αi]φi ∈ vs(αi) for every
1 ≤ i ≤ n implies that ^[αi]φi ∈ w∗ for every 1 ≤ i ≤ n. Since w∗ is closed
under conjunction, ^[α1]φ1 ∧ · · · ∧^[αn]φn ∈ w∗.

Axiom (IA) then implies that

⊢ΛKn ^[α1]φ1 ∧ · · · ∧^[αn]φn → ^
(
[α1]φ1 ∧ · · · ∧ [αn]φn

)
. (3.2)

Therefore, equations (3.2) and (3.1), imply that

⊢ΛKn ^[α1]φ1 ∧ · · · ∧^[αn]φn → ^⊥. (3.3)

But this is a contradiction, since ^[α1]φ1 ∧ · · · ∧ ^[αn]φn ∈ w∗, and w∗ is a
ΛKn-MCS. Therefore,

⋃
α∈Ags ∆s(α) is consistent. Secondly, we show that the

union
⋃
α∈Ags ∆s(α)∪

{
□ψ;□ψ ∈ w∗

}
is also consistent. Suppose that this is not

the case. Since
⋃
α∈Ags ∆s(α) and

{
□ψ;□ψ ∈ w∗

}
are consistent, there must exist

sets
{
φ1, . . . , φn

}
and {θ1, . . . , θm} of formulas of LKX such that [αi]φi ∈ vs(αi)

for every 1 ≤ i ≤ n, □θi ∈ w∗ for every 1 ≤ i ≤ m, and

⊢ΛKn [α1]φ1 ∧ · · · ∧ [αn]φn ∧ □θ1 ∧ · · · ∧ □θm → ⊥. (3.4)

Let θ = θ1 ∧ · · · ∧ θm. Since □ distributes over conjunction, ⊢ΛKn □θ ↔
□θ1 ∧ · · · ∧ □θm, where the fact that w∗ is a ΛKn-MCS closed under logical
equivalence implies that □θ ∈ w∗. Thus, (3.4) implies that

⊢ΛKn ([α1]φ1 ∧ · · · ∧ [αn]φn)→ ¬□θ. (3.5)

Once again, assume without loss of generality that αi , α j for all j , i such
that j, i ∈ {1, . . . ,n}. By an argument analogous to the one used to show that⋃
α∈Ags ∆s(α) is consistent, (3.5) implies that

⊢ΛKn ^[α1]φ1 ∧ · · · ∧^[αn]φn → ^¬□θ. (3.6)

This entails that ^¬□θ ∈ w∗, but this is a contradiction, since the fact that
□θ ∈ w∗ implies with axiom (4) for □ that □□θ ∈ w∗. Now, let u∗ be the
ΛKn-MCS that includes

⋃
α∈Ags ∆s(α) ∪

{
□ψ;□ψ ∈ w∗

}
, which exists in virtue

of Lindenbaum’s Lemma (Blackburn et al., 2002, Chapter 4, p. 199). By
intermediate result a, u∗ ∈ w∗. By intermediate result b, u∗ ∈ s(α) for every
α ∈ Ags. Therefore, we have shown that, for all w∗ ∈ W, each function s :
Ags→ 2w∗ that maps α to a member of Choicew∗

α is such that
⋂
α∈Ags s(α) , ∅,

which means thatM satisfies (IA)K.
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(NAgs)K We want to show that R□ ◦ RX ◦ RAgs ⊆ RX ◦ RAgs. Take v, o ∈ WΛKn

such that vR□ ◦ RX ◦ RAgso, which means that there exist v′, o′ ∈ WΛKn such
that vRAgsv′, v′RXo′, and o′R□o. By an argument similar to those in the proof
of the second item of the present proposition, we know that z′ :=

{
ψ; Yψ ∈ o

}
is consistent. Let z be theΛKn-MCS that includes z′, which exists in virtue of
Lindenbaum’s Lemma (Blackburn et al., 2002, Chapter 4, p. 199). As shown
in the second item of the present proposition, it is the case that zRXo. Let
us show that vRAgsz. Take [Ags]φ ∈ v. Axiom (In2), schema (K) for [Ags],
and Necessitation for [Ags] imply that [Ags]XYφ ∈ v. Schema (NAgs) then
entails that [Ags]X□Yφ ∈ v, and the assumption that vRAgsv′ then yields that
X□Yφ ∈ v′. The assumption that v′RXo′ implies that □Yφ ∈ o′, so that the
assumption that o′R□o gives that Yφ ∈ o, which by construction of z implies
that φ ∈ z. Therefore, vRAgsz, which with the previously shown fact that
zRXo implies that vRX ◦ RAgso. Thus, R□ ◦ RX ◦ RAgs ⊆ RX ◦ RAgs.

Finally, we show that card
(
ChoiceAgs

)
≤ n. Take w ∈ WΛKn . Suppose for a

contradiction that card
(
ChoiceAgs

)
> n. Take pairwise different c0, . . . , cn ∈

ChoiceAgs, and take wi ∈ ci for each 0 ≤ i ≤ n. Lemma A.16 5 implies
that, for all 1 ≤ i ≤ n, there exists φi of LKX such that [Ags]φi ∈ wi and
φi < w j for every 0 ≤ j ≤ n such that j , i. On the one hand, this im-
plies that (⋆)

∧
1≤i≤n

¬φi ∈ w0. On the other, it implies that [Ags]φ1 ∈ w1,(
¬φ1 ∧ [Ags]φ2

)
∈ w2, . . . ,

(
¬φ1 ∧ · · · ∧ ¬φn−1 ∧ [Ags]φn

)
∈ wn. Thus, one

has that
∧

1≤k≤n
^

(( ∧
1≤i≤k−1

¬φi

)
∧ [Ags]φk

)
∈ w0, which by (AgsPCn) implies

that
∨

1≤k≤n
φk ∈ w0, but this is a contradiction to (⋆).42

• Since ΛKn includes the S5 schemata for Kα, ≈α is an equivalence relation for
every α ∈ Ags. We verify that conditions (Unif − H)K and (NoF)K are satisfied:

(Unif − H)K Take α ∈ Ags, and let v,u ∈ WΛKn be such that v ≈α u. Take
v′ ∈ v. We want to show that there exists u′ ∈ u such that v′ ≈α u′. We
show that u′′ =

{
ψ; Kαψ ∈ v′

}
∪

{
□ψ;□ψ ∈ u

}
is consistent. To do so, we

first show that
{
ψ; Kαψ ∈ v′

}
is consistent. Suppose for a contradiction that

it is not consistent. Then there exists a set
{
ψ1, . . . , ψn

}
of formulas of LKX

such that Kαψi ∈ v′ for every 1 ≤ i ≤ n and (a) ⊢ΛKn ψ1 ∧ · · · ∧ ψn → ⊥.
By Necessitation for Kα and its distributivity over conjunction, (a) implies
that ⊢ΛKn Kαψ1 ∧ · · · ∧ Kαψn → Kα⊥, but this is a contradiction, since v′

is a ΛKn-MCS that includes Kαψ1 ∧ · · · ∧ Kαψn. Next, we show that u′′ =
42Observe that we can use the same argument to show that theorem (APCn) implies that

card (Choiceα) ≤ n for every α ∈ Ags.
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{
ψ; Kαψ ∈ v′

}
∪

{
□ψ;□ψ ∈ u

}
is also consistent. Suppose for a contradiction

that it is not consistent. Since
{
ψ; Kαψ ∈ v′

}
and

{
□ψ;□ψ ∈ u

}
are consistent,

there must exist sets
{
φ1, . . . , φn

}
and {θ1, . . . , θm} of formulas of LKX such

that Kαφi ∈ v′ for every 1 ≤ i ≤ n, □θi ∈ w2 for every 1 ≤ i ≤ m, and (b)
⊢ΛKn φ1 ∧ · · · ∧ φn ∧ □θ1 ∧ · · · ∧ □θm → ⊥. Let θ = θ1 ∧ · · · ∧ θm and φ =
φ1∧· · ·∧φn. Since□ distributes over conjunction, ⊢ΛKn □θ↔ □θ1∧· · ·∧□θm.
Since u is a ΛKn-MCS closed under logical equivalence, then □θ ∈ u, which
by schema (4) for □ and closure of u under Modus Ponens implies that (⋆)
□□θ ∈ u as well. Now, (b) implies that ⊢ΛKn φ → ¬□θ and thus that (c)
⊢ΛKn ^φ → ^¬□θ. Notice that the facts that Kαφi ∈ v′ for every 1 ≤ i ≤ n,
that Kα distributes over conjunction, and that v′ is a ΛKn-MCS imply that
Kαφ ∈ v′. The fact that v′ ∈ v implies that^Kαφ ∈ v, so that (Uni f −H) entails
that Kα^φ ∈ v. Now, this last inclusion implies, with our assumption that
v ≈α u, that^φ ∈ u, which by (c) in turn yields that^¬□θ ∈ u, contradicting
(⋆). Therefore, u′′ is consistent. Let u′ be the ΛKn-MCS that includes u′′,
which exists in virtue of Lindenbaum’s Lemma (Blackburn et al., 2002,
Chapter 4, p. 199). By construction, u′ ∈ u (in virtue of intermediate result a
in the third item), and v′ ≈α u′. With this, we have shown thatM satisfies
condition (Unif − H)K.

(NoF)K Takeα ∈ Ags. We want to show that≈α ◦RX ⊆ RX◦ ≈α. Let w, v ∈WΛKn

be such that w ≈α ◦RXv via y. By similar arguments to the ones used in the
second item of this proof (p. 117), we know that z′ :=

{
ψ; Yψ ∈ v

}
is consistent

and that, if z denotes theΛKn-MCS that includes z′, then zRXv. What remains
to be shown is that w ≈α z, so assume that Kαφ ∈ w. Axiom (In2), schema (K)
for Kα, and Necessitation for Kα imply that KαXYφ ∈ w. Schema (NoF) then
implies that XKαYφ ∈ w. By construction, this implies that KαYφ ∈ y, which
in turn implies that Yφ ∈ v and thus that φ ∈ z. Therefore, z is such that
w ≈α z and zRXv, which means that wRX◦ ≈α v. Thus, ≈α ◦RX ⊆ RX◦ ≈α.

□

As is usual with canonical structures, our objective is to prove the so-called
truth lemma, which says that, for all φ of LKX and w ∈ WΛKn ,M,w |= φ iff φ ∈ w.
This is done by induction on the complexity of φ, and the inductive steps in
the cases of each modal operator require previous results (such as the important
existence lemmas). These existence results are given in Lemma A.16 below.

Lemma A.16 (Existence). LetM be the canonical structure forΛKn. For every w ∈WΛKn

and every φ of LKX, the following items hold:

1. Xφ ∈ w iff φ ∈ v for every v such that wRXv.
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2. Yφ ∈ w iff φ ∈ v for every v such that wRYv.

3. □φ ∈ w iff φ ∈ v for every v ∈ w.

4. [α]φ ∈ w iff φ ∈ v for every v such that wRαv.

5. [Ags]φ ∈ w iff φ ∈ v for every v such that wRAgsv.

6. Kαφ ∈ w iff φ ∈ v for every v such that w ≈α v.

Proof. Take w ∈ WΛKn and φ of LKX. All items are shown in the same way.
Take △ ∈

{
X,Y,□, [α], [Ags],Kα

}
, and let R△ stand for the relation upon which the

semantics of △φ is defined. We show that △φ ∈ w iff φ ∈ v for every v ∈WΛKn such
that wR△v.

(⇒) Assume that △φ ∈ w. Let v ∈ WΛKn be such that wR△v. The definition of
R△ implies that φ ∈ v.

(⇐) We work by contraposition. Assume that △φ < w. We show that there
is a world v in WΛKn such that wR△v and such that φ does not lie within v. For
this, let v′ =

{
ψ;△ψ ∈ w

}
, which is shown to be consistent as follows: suppose

for a contradiction that v′ is not consistent. Then there exists a set
{
ψ1, . . . , ψn

}
of formulas of LKX such that

{
ψ1, . . . , ψn

}
⊆ v′ and (a) ⊢ΛKn ψ1 ∧ · · · ∧ ψn → ⊥.

Now, the fact that
{
ψ1, . . . , ψn

}
⊆ v′ means that △ψi ∈ w for every 1 ≤ i ≤ n.

Necessitation for △ and its distributivity over conjunction yield that (a) implies
that ⊢ΛKn △ψ1 ∧ · · · ∧ △ψn → △⊥, but this is a contradiction, since w is a ΛKn-MCS
that includes △ψ1 ∧ · · · ∧ △ψn. Now, we define v′ := v′ ∪

{
¬φ

}
, and we show

that it is also consistent. Suppose for a contradiction that it is not consistent.
Since v′ is consistent, then there exists a set

{
ψ1, . . . , ψn

}
of formulas of LKX such

that
{
ψ1, . . . , ψn

}
⊆ v′ and ⊢ΛKn ψ1 ∧ · · · ∧ ψn ∧ ¬φ → ⊥, which then implies that

(b) ⊢ΛKn ψ1 ∧ · · · ∧ ψn → φ; By Necessitation for △ and its distributivity over
conjunction, (b) implies that ⊢ΛKn △ψ1 ∧ · · · ∧ △ψn → △φ. Since w is a ΛKn-MCS
closed under conjunction, then △ψ1 ∧ · · · ∧ △ψn ∈ w, so that (b) and closure of
w under Modus Ponens entail that △φ ∈ w, contradicting the initial assumption
that △φ < w. Let v be the ΛKn-MCS that includes v′′, which exists in virtue of
Lindenbaum’s Lemma (Blackburn et al., 2002, Chapter 4, p. 199). By construction,
φ < v and wR△v, by definition of R△.43

□

Lemma A.17 (Truth Lemma). LetM be the canonical structure for ΛKn. For all φ of
LKX and w ∈WΛKn ,M,w |= φ iff φ ∈ w.

43Observe that in the cases of △ ∈
{
[α], [Ags]

}
, schemata (SET) and (GA) render that the found v

actually lies within w (if □θ ∈ w, then [α]θ ∈ w and [Ags]θ ∈ w).
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Proof. We proceed by induction on the complexity ofφ. The cases of propositional
letters and of Boolean connectives are standard. For the cases of modal operators,
both directions follow from Lemma A.16. □

Proposition A.18 (Completeness w.r.t. super-additive n-models). The proof system
ΛKn is complete with respect to the class of super-additive Kripke-exs-n-models.

Proof. Let φ be a ΛKn-consistent formula of LKX. Let w be the ΛKn-MCS includ-
ing φ, which exists in virtue of Lindenbaum’s Lemma (Blackburn et al., 2002,
Chapter 4, p. 199). Then the canonical structure M for ΛKn is a super-additive
Kripke-exs-n-model such thatM,w |= φ, according to Lemma A.17 above. □

Step 2: Irreflexive Super-Additive n-Models

In the next step of our proof of completeness, for a ΛKn-consistent formula φ
of LKX, we build a super-additive n-model that satisfies φ where the transitive
closures of the ‘next’ and ‘last’ relations are irreflexive.

The idea is to adapt the unraveling argument to the class of models character-
ized by the canonical model. If the only relation were RX, the unraveling would be
a straightforward procedure (see Blackburn et al., 2002, Chapter 2, for details on
unraveling). However, our models also include RY, which is serial and determin-
istic. If we were to unravel traditionally, the root would not have a predecessor,
and then RY would not be serial. Therefore, we employ the following strategy:
to take each point of the original model and consider it as a ‘double root,’ that
‘grows’ with RX in one direction and ‘grows’ with RY in the opposite direction.
The resulting models are forests of bi-directional trees, with one bi-directional tree
per world of the original model. These models do not have roots in the traditional
sense of the word (where the term ‘root’ is interpreted as a least element in the
strict partial order that gives rise to a tree.) Rather, each tree has a ‘center,’ given
by the sequence of shortest length—length 1—in the tree. In these models, the
‘next’ and ‘last’ relations abide by the proper conditions of seriality, determinicity,
(Inverse)K, and (NAgs)K.44

Before defining this ‘double unraveling’ formally, we introduce some auxiliary
terminology:

• For w ∈ W, h[w] :=
{
v ∈W; wR∗Yv or v = w or wR∗Xv

}
, where R∗Y, resp. R∗X, is

the transitive closure of RY, resp. RX. Observe that, for all w ∈ W, R∗Y, resp.
R∗X, restricted to h[w] is a linear order on h[w].

44The two directions of the growing trees are respectively marked by the labels 0 and 1 in the tuples
that constitute the model, preventing reflexive loops to arise.
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• For w ∈ W and i ∈ N, w− j denotes the unique element in h[w] such that
w = w−0RYw−1RYw−2RY . . .w−( j−1)RYw− j. Similarly, w+ j denotes the unique
element in h[w] such that w = w+0RXw+1RX . . .w+( j−1)RXw+ j.

Definition A.19 (An unraveling). Let M =
〈
W,R□,RX,RY, Choice, {≈α}α∈Ags ,V

〉
be a super-additive Kripke-exs-n-model, where equivalence relations Rα (with α ranging
over Ags) and RAgs underlie Choice. Consider the following unraveling variation
M

u =
〈
Wu,Ru

□,Ru
X,R

u
Y, Choice

u,
{
≈

u
α

}
α∈Ags ,V

u
〉
, defined as follows:

• Let TW be the set of all finite sequences w0, . . . ,wm such that m ∈ N and wi ∈ W.
We define Wu

⊆ TW
× {0, 1}:

(a) ⟨w0, . . . ,wm, 1⟩ ∈Wu iff m ≥ 0 and wiRXwi+1 for all 0 ≤ i ≤ m − 1.

(b) ⟨w0, . . . ,wm, 0⟩ ∈Wu iff m > 0 and wiRYwi+1 for all 0 ≤ i ≤ m − 1.

• We define Ru
□ on Wu by the rule: ⟨w0, . . . ,wm, a⟩Ru

□ ⟨v0, . . . , vl, b⟩ iff a = b, l = m,
and wmR□vm.

• We define Ru
X on Wu by the rule: ⟨w0, . . . ,wm, a⟩Ru

X ⟨v0, . . . , vl, b⟩ iff either

– a = b = 1, m ≥ 0, l = m + 1, vi = wi for every 0 ≤ i ≤ m, and vl = w+1
m , or

– a = b = 0, m > 1, l = m − 1, vi = wi for every 0 ≤ i ≤ l, and vl = w+1
m , or

– a = 0, b = 1, m = 1, l = 0, v0 = w0 = w+1
1 .

• We define Ru
Y on Wu by the rule: ⟨w0, . . . ,wm, a⟩Ru

Y ⟨v0, . . . , vl, b⟩ iff either

– a = b = 1, m > 0, l = m − 1, vi = wi for every 0 ≤ i ≤ l, and vl = w−1
m , or

– a = b = 0, m > 0, l = m + 1, vi = wi for every 0 ≤ i ≤ m, and vl = w−1
m , or

– a = 1, b = 0, m = 0, l = 1, w0 = v0 = v+1
1 .

• We define Choiceu as follows:

– Forα ∈ Ags, we define Ru
α on Wu by the rule: ⟨w0, . . . ,wm, a⟩Ru

α ⟨v0, . . . , vl, b⟩
iff a = b, l = m, and wmRαvm. We then set Choiceu

α :={
Ru
α[⟨w0, . . . ,wm, a⟩]; ⟨w0, . . . ,wm, a⟩ ∈Wu}, where Ru

α[⟨w0, . . . ,wm, a⟩] de-
notes the set of elements in the domain that are Ru

α-related to ⟨w0, . . . ,wm, a⟩.

– We define Ru
Ags on Wu by the rule: ⟨w0, . . . ,wm, a⟩Ru

Ags ⟨v0, . . . , vl, b⟩
iff a = b, l = m, and wmRAgsvm. We then set Choiceu

Ags ={
Ru

Ags[⟨w0, . . . ,wm, a⟩]; ⟨w0, . . . ,wm, a⟩ ∈Wu
}
.

• For α ∈ Ags, we define ≈u
α on Wu by the rule: ⟨w0, . . . ,wm, a⟩ ≈u

α ⟨v0, . . . , vl, b⟩ iff
wm ≈α vl.
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• Recall that P is the set of propositions in LKX. We define Vm : P → 2Wu by the
rule: ⟨w0, . . . ,wm, a⟩ ∈ Vu(p) iff wm ∈ V(p).

Proposition A.20. IfM is a super-additive Kripke-exs-n-model, thenMu—as defined
in Definition A.19—is a super-additive Kripke-exs-n-model where the transitive closures
of Ru

X and Ru
Y are irreflexive.

Proof. We want to show that
〈
Wu,Ru

□,Ru
X,R

u
Y, Choice

u,
{
≈

u
α

}
α∈Ags

〉
is a super addi-

tive Kripke-exs-n-frame where the transitive closures of Ru
X and Ru

Y are irreflexive,
which amounts to showing that the tuple satisfies the items in the definition
of Kripke-exs-frames (Definition 3.9), that it satisfies the super-additivity, resp.
cardinality-n, conditions, and that the transitive closures of Ru

X and Ru
Y are ir-

reflexive.

1. It is routine to show that Ru
□ is an equivalence relation.

2. The fact that RX, resp. RY, is serial and deterministic implies that Ru
X,

resp. Ru
Y, is serial and deterministic. Observe that the variation of the

traditional unraveling-argument, that we use here, plays an important role
in ensuring that Ru

Y is serial: to have predecessors for one-element sequences,
we introduced a construction that differentiates ascending from descending
sequences. Therefore, for all ⟨w, 1⟩ ∈ Wu, ⟨w, 1⟩Ru

Y

〈
w,w−1, 0

〉
. It is routine

to show that (Inverse)K holds, and the unraveling construction ensures that
the transitive closures of Ru

X and Ru
Y are irreflexive.

3. We show that Choiceu fulfills the requirements of Definition 3.9 in their
version for super-additive frames. It is routine to show that Ru

α and Ru
Ags

are equivalence relations. Therefore, Choiceu, as defined, indeed assigns a
partition of Wu to each α, and to Ags. Super-additivity can be shown by
proving that, for all α ∈ Ags, Ru

Ags ⊆ Ru
α. This follows from the definition

of these relations and the fact that RAgs ⊆ Rα for every α ∈ Ags. Now, the
definition of Ru

α implies that (SET)K holds.

(IA)K Take ⟨w0, . . . ,wm, a⟩ ∈ Wu, and let s : Ags → 2⟨w0,...,wm,a⟩ be a function
that maps each α ∈ Ags to a member of Choiceu

α included in ⟨w0, . . . ,wm, a⟩.
We want to show that

⋂
α∈Ags s(α) , ∅. For α ∈ Ags, take ⟨wα0, . . . ,wαm, a⟩ ∈

s(α), then. We show that there exists ⟨v0, . . . , vm, a⟩ ∈ ⟨w0, . . . ,wm, a⟩ such
that ⟨v0, . . . , vm, a⟩Ru

α ⟨wα0, . . . ,wαm, a⟩ for every α ∈ Ags. Observe that the
definition of s implies that wαm ∈ wm for every α ∈ Ags. Since M satisfies
(IA)K, there exists v∗ ∈ wm such that v∗Rαwαm for every α ∈ Ags. We have two
cases, according to the value of a:
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• (Case a = 1) The finite sequence given by v−m
∗ , . . . , v∗ is such that〈

v−m
∗ , . . . , v∗, 1

〉
Ru
α ⟨wα0, . . . ,wαm, 1⟩ for every α ∈ Ags.

• (Case a = 0) The finite sequence v+m
∗ , . . . , v∗ is such that〈

v+m
∗ , . . . , v∗, 0

〉
Ru
α ⟨wα0, . . . ,wαm, 0⟩ for every α ∈ Ags.

(NAgs)K We want to show that Ru
□ ◦ Ru

X ◦ Ru
Ags ⊆ Ru

X ◦ Ru
Ags. Therefore,

let ⟨w0, . . . ,wm, a⟩ , ⟨v0, . . . , vl, b⟩ ∈ Wu be such that ⟨w0, . . . ,wm, a⟩Ru
□ ◦ Ru

X ◦

Ru
Ags ⟨v0, . . . , vl, b⟩. We have three cases:

(i) (Case a = b = 1,m ≥ 0) The assumption implies that there is〈
w′0, . . . ,w

′
m, 1

〉
∈ Wu such that ⟨w0, . . . ,wm, 1⟩Ru

Ags

〈
w′0, . . . ,w

′
m, 1

〉
and

〈
w′0, . . . ,w

′

m+1, 1
〉

Ru
□ ⟨v0, . . . , vl, 1⟩.45 The first fact yields

that wmRAgsw′m, and the second implies by (NAgs)K that
w′mRAgsvm. Therefore, transitivity of RAgs yields that wmRAgsvm.
Then ⟨w0, . . . ,wm, 1⟩Ru

Ags ⟨v0, . . . , vm, 1⟩, which gives us that
⟨w0, . . . ,wm, 1⟩Ru

X ◦ Ru
Ags ⟨v0, . . . , vm+1, 1⟩.

(ii) (Case a = b = 0, m > 1) Here, there is
〈
w′0, . . . ,w

′
m, 0

〉
∈

Wu such that ⟨w0, . . . ,wm, 0⟩Ru
Ags

〈
w′0, . . . ,w

′
m, 0

〉
and〈

w′0, . . . ,w
′

m−1, 0
〉

Ru
□ ⟨v0, . . . , vl, 0⟩. The first fact yields that wmRAgsw′m,

and the second implies by (NAgs)K that w′mRAgsv−1
l . Transitivity of RAgs

yields that wmRAgsv−1
l . Then ⟨w0, . . . ,wm, 0⟩Ru

Ags

〈
v0, . . . , vl, v−1

l , 0
〉

and
⟨w0, . . . ,wm, 0⟩Ru

X ◦ Ru
Ags ⟨v0, . . . , vl, 0⟩.

(iii) (Case a = 0, b = 1, m = 1) The assumption implies that there exists〈
w′0,w

′

1, 0
〉
∈ Wu with ⟨w0,w1, 0⟩Ru

Ags

〈
w′0,w

′

1, 0
〉

and
〈
w′0, 1

〉
Ru
□ ⟨v0, 1⟩.

The first fact yields that w1RAgsw′1, and the second implies by (NAgs)K
that w′1RAgsv−1

0 . Therefore, transitivity of RAgs yields that w1RAgsv−1
0 ,

which implies that ⟨w0,w1, 0⟩Ru
Ags

〈
v0, v−1

0 , 0
〉
. In turn, this implies that

⟨w0,w1, 0⟩Ru
X ◦ Ru

Ags ⟨v0, 1⟩.

Finally, observe that, since for every w ∈W Rα and RAgs induce partitions of
cardinality at most n on w, then Ru

α and Ru
Ags induce partitions of cardinality

at most n on ⟨w0, . . . ,wm, a⟩ for every ⟨w0, . . . ,wm, a⟩.

4. Observe that, for all α ∈ Ags, ≈u
α, as defined, is an equivalence relation. We

verify thatMu satisfies (Unif − H)K and (NoF)K:

(Unif − H)K Take α ∈ Ags, and let ⟨v0, . . . , vm, a⟩ , ⟨u0, . . . ,ul, a′⟩ ∈ Wu be such
that ⟨v0, . . . , vm, a⟩ ≈u

α ⟨u0, . . . ,ul, a′⟩, which implies that (⋆) vm ≈α ul. Take
45Observe that this last fact implies that ⟨v0, . . . , vl, 1⟩ = ⟨v0, . . . , vm+1, 1⟩.
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⟨x0, . . . , xm, a⟩ ∈ ⟨v0, . . . , vm, a⟩. We want to show that there exists an el-
ement in ⟨u0, . . . ,ul, a′⟩ that is ≈u

α-related to ⟨x0, . . . , xm, a⟩. The fact that
⟨x0, . . . , xm, a⟩ ∈ ⟨v0, . . . , vm, a⟩ implies that xm ∈ vm, so that (⋆) and the
fact that M satisfies (Unif − H)K entail that there exists y ∈ ul such that
xm ≈α y. The finite sequence given by y−l, . . . , y lies within TW , so that〈
y−l, . . . , y, a′

〉
∈ ⟨u0, . . . ,ul, a′⟩ and ⟨x0, . . . , xm, a⟩ ≈u

α

〈
y−l, . . . , y, a′

〉
.

(NoF)K Take α ∈ Ags, and let ⟨w0, . . . ,wm, a⟩ , ⟨v0, . . . , vl, b⟩ ∈ Wu be
such that ⟨w0, . . . ,wm, a⟩ ≈u

α ◦Ru
X ⟨v0, . . . , vl, b⟩. We want to show that

⟨w0, . . . ,wm, a⟩Ru
X◦ ≈

u
α ⟨v0, . . . , vl, b⟩. We have three cases with three sub-

cases each:

(Case a = 1,m ≥ 0) The assumption implies that ⟨w0, . . . ,wm+1, 1⟩ ≈u
α

⟨v0, . . . , vl, b⟩. We have the following sub-cases: (b = 1, l > 0) since M
satisfies (NoF)K, wm ≈α vl−1, so that ⟨w0, . . . ,wm, 1⟩ ≈u

α ⟨v0, . . . , vl−1, 1⟩; (b = 1,
l = 0) here, M’s (NoF)K implies that wm ≈α v−1

0 , so that ⟨w0, . . . ,wm, 1⟩ ≈u
α〈

v0, v−1
0 , 0

〉
; (b = 0, l > 0) here, M’s (NoF)K implies that wm ≈α vl+1, so that

⟨w0, . . . ,wm, 1⟩ ≈u
α ⟨v0, . . . , vl+1, 0⟩.

(Case a = 0,m = 1) The assumption implies that ⟨w0, 1⟩ ≈u
α ⟨v0, . . . , vl, b⟩. We

have the following sub-cases: (b = 1, l > 0) here, M’s (NoF)K implies that
w1 ≈α vl−1, so that ⟨w0,w1, 0⟩ ≈u

α ⟨v0, . . . , vl−1, 1⟩; (b = 1, l = 0) here, M’s
(NoF)K implies that w1 ≈α v−1

0 , so that ⟨w0,w1, 0⟩ ≈u
α

〈
v0, v−1

0 , 0
〉
; (b = 0, l > 0)

here,M’s (NoF)K implies that w1 ≈α vl+1, so that ⟨w0,w1, 0⟩ ≈u
α ⟨v0, . . . , vl+1, 0⟩.

(Case a = 0,m > 1) The assumption implies that ⟨w0, . . . ,wm−1, 0⟩ ≈u
α

⟨v0, . . . , vl, b⟩. We have the following sub-cases: (b = 1, l > 0) here,M’s (NoF)K
implies that wm ≈α vl−1, so that ⟨w0, . . . ,wm, 0⟩ ≈u

α ⟨v0, . . . , vl−1, 1⟩; (b = 1,
l = 0) here, M’s (NoF)K implies that wm ≈α v−1

0 , so that ⟨w0, . . . ,wm, 0⟩ ≈u
α〈

v0, v−1
0 , 0

〉
; (b = 0, l > 0) here, M’s (NoF)K implies that wm ≈α vl+1, so that

⟨w0, . . . ,wm, 0⟩ ≈u
α ⟨v0, . . . , vl+1, 0⟩.

□

Proposition A.21. IfM is a super-additive Kripke-exs-n-model, then F : Mu
→ M,

defined by F (⟨w0, . . . ,wm, a⟩) = wm, is a surjective bounded morphism, whereMu is as
defined in Definition A.19.

Proof. • By construction, F is surjective. Now, the definition ofVu in the last
item of Definition A.19 ensures that ⟨w0, . . . ,wm, a⟩ and F (⟨w0, . . . ,wm, a⟩)
satisfy the same propositional letters for every ⟨w0, . . . ,wm, a⟩ ∈Wu.
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• Take R ∈
{
RX,RY,R□,Rα,RAgs,≈α

}
, and let Ru stand for the corresponding

relation onMu. Definition A.19 ensures that ⟨w0, . . . ,wm, a⟩Ru
⟨v0, . . . , vl, b⟩

implies that wmRvl.

• Take R ∈
{
RX,RY,R□,Rα,RAgs,≈α

}
. Assume that F (⟨w0, . . . ,wm, a⟩) R v for

some v ∈W. We have the following cases:

– (Case a = 1, m > 0) For R ∈
{
R□,Rα,RAgs,≈α

}
,
〈
v−m, . . . , v−1, v, 1

〉
is such that ⟨w0, . . . ,wm, 1⟩Ru

〈
v−m, . . . , v−1, v, 1

〉
. For RX,

⟨w0, . . . ,wm, 1⟩Ru
X ⟨w0, . . . ,wm, v, 1⟩. For RY, v = wm−1, so that

⟨w0, . . . ,wm, 1⟩Ru
Y ⟨w0, . . . , v, 1⟩.

– (Case a = 1, m = 0) For R ∈
{
R□,Rα,RAgs,≈α

}
, ⟨w0, 1⟩Ru

⟨v, 1⟩. For RX,
⟨w0, 1⟩Ru

X ⟨w0, v, 1⟩. For RY, ⟨w0, 1⟩Ru
Y ⟨w0, v, 0⟩.

– (Case a = 0, m = 1) For R ∈
{
R□,Rα,RAgs,≈α

}
, ⟨w0,w1, 0⟩Ru

〈
v+1, v, 0

〉
.

For RX, w0 = v, and therefore ⟨w0,w1, 0⟩Ru
X ⟨v, 1⟩. For RY,

⟨w0,w1, 0⟩Ru
Y ⟨w0,w1, v, 0⟩.

– (Case a = 0, m > 1) For R ∈

{
R□,Rα,RAgs,≈α

}
,

⟨w0, . . . ,wm, 0⟩Ru
〈
v+m, . . . , v+1, v, 0

〉
. For RX, v =

wm−1, so that ⟨w0, . . . ,wm, 0⟩Ru
X ⟨w0, . . . , v, 0⟩. For RY,

⟨w0, . . . ,wm, 0⟩Ru
Y ⟨w0, . . . ,wm, v, 0⟩.

Therefore, F :Mu
→M is a surjective bounded morphism. □

Proposition A.22 (Completeness w.r.t. irreflexive super-additive n-models). The
proof system ΛKn is complete with respect to the class of super-additive Kripke-exs-n-
models where the transitive closures of the ‘next’ and ‘last’ relations are irreflexive.

Proof. Let φ be a ΛKn-consistent formula of LKX. By Proposition A.18, there
exists a super-additive Kripke-exs-n-modelM and a world w in its domain such
that M,w |= φ. By Proposition A.21 and the invariance of modal satisfaction
under bounded morphisms (Blackburn et al., 2002, Chapter 2), Mu—as defined
in Definition A.19—is a such thatMu, ⟨w, 1⟩ |= φ, where, by Proposition A.20,Mu

is a super-additive Kripke-exs-n-model where the transitive closures of the ‘next’
and ‘last’ relations are irreflexive. □

Step 3: Actual Models

In the final step of our proof of completeness, for each ΛKn-consistent formula
φ of LKX, we build a model—in all the sense of the word—that satisfies it. As
mentioned before, we adapt a well-known method from modal logic to produce
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a model where RAgs =
⋂
α∈Ags Rα (Lorini, 2013; Schwarzentruber, 2012; Vakarelov,

1992). The idea is to build a structure—which I refer to as matrix structure—
where the intersections of the agents’ choice-cells include only one RAgs-class.
This is done by creating enough copies of worlds. The method would work just
fine if our models only included the relations for historical necessity, individual
and collective action, and the epistemic relations. However, the ‘next’ and ‘last’
relations, coupled with condition (NAgs)K, considerably complicate things. The
process of copying worlds yields a big amount of them, so we need to be careful
in drawing ‘next’ and ‘last’ relations between these copies. Step 2 comes in
handy, because having a model in which the transitive closures of the ‘next’ and
‘last’ relations are irreflexive allows us to adequately define RX and RY across the
worlds’ copies (see Footnote 46).

First, we introduce some auxiliary sets and terminology that will allow us to
build the matrix structure.

Definition A.23. LetM =
〈
W,R□,RX,RY, Choice, {≈α}α∈Ags ,V

〉
be a super-additive

Kripke-exs-n-model where the transitive closures of the ‘next’ and ‘last’ relations are
irreflexive and where equivalence relations Rα (with α ranging over Ags) and RAgs

underlie Choice. Consider the following definitions and remarks:

• Take w ∈ W and α ∈ Ags. Recall that the cardinality of partition Choicew
Ags is

bounded by n. Let Aw denote the set of all RAgs-equivalence-classes included in⋂
α∈Ags

Choicew
α (w). It is clear that, for all v ∈ w, the cardinalities of the sets Av are

uniformly bounded by n, meaning that, for every v ∈ w, card (Av) ≤ n. For v ∈ w,
let

{
cv

0, . . . , c
v
n−1

}
denote an enumeration of Av with cardinality n (so that repetition

is possible) such that, if u ∈
⋂

α∈Ags
Choicew

α (v) (which happens iff Au = Av), then

the enumeration
{
cu

0 , . . . , c
u
n−1

}
of Au is the same as

{
cv

0, . . . , c
v
n−1

}
.

• For w ∈ W, h[w] :=
{
v ∈W; wR∗Yv or v = w or wR∗Xv

}
, where R∗Y, resp. R∗X, is the

transitive closure of RY, resp. RX. Observe that, for all w ∈ W, R∗X restricted to
h[w] is a strict linear order on h[w], and that h[v] = h[w] for every v ∈ h[w]. For
w ∈W, h−[w] :=

{
v ∈ h[w]; wR∗Yv

}
, and h+[w] :=

{
v ∈ h[w]; wR∗Xv

}
. Observe that

the fact that the transitive closure of RX is irreflexive implies that, for all w ∈ W,
h−[w], {w}, and h+[w] are pairwise disjoint sets.

Lemma A.24. LetM be a super-additive Kripke-exs-n-model where the transitive clo-
sures of the ‘next’ and ‘last’ relations are irreflexive, and where equivalence relations Rα
(with α ranging over Ags) and RAgs underlie Choice. Take w,w′ ∈W such that wR□w′.
For each v ∈ h−[w], there exists v′ ∈ h−[w′] such that vRAgsv′. And vice versa: for each
v′ ∈ h−[w′], there exists v ∈ h−[w] such that v′RAgsv.
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Proof. We show the result for w and assume an analogous argument for w′.
We proceed by induction on j over the enumeration of h−[w] given by the set
{w−1,w−2, . . . }. For w−1, condition (NAgs)K ensures that w−1RAgsw′−1. Suppose that
the property holds for w− j, so that there exists v′ ∈ h−[w′] with w− jRAgsv′. Since
RAgs ⊆ R□, this means that w− jR□v′. Since RAgs is reflexive, this implies that
w−( j+1)R□ ◦ RX ◦ RAgsv′, which by (NAgs)K implies that w−( j+1)RAgsv′−1. □

Definition A.25 (Matrix structure). LetM =
〈
W,R□,RX,RY, Choice, {≈α}α∈Ags ,V

〉
be a super-additive Kripke-exs-n-model where the transitive closures of the ‘next’ and
‘last’ relations are irreflexive, and where equivalence relations Rα (with α ranging over
Ags) and RAgs underlie Choice.

We defineMm :=
〈
Wm,Rm

□ ,Rm
X ,R

m
Y , Choice

m,
{
≈

m
α

}
α∈Ags ,V

m
〉
, a matrix structure

based onM, as follows:

• Let
∏

α∈Ags
{0, . . . ,n − 1} denote the cartesian product of set {0, . . . ,n − 1}, that con-

sists of vectors of natural numbers between 0 and n − 1. The domain Wm is given
by

Wm :=


(f,w) ;

w ∈W,
f : h[w]→

∏
α∈Ags

{0, . . . ,n − 1}maps worlds to vectors,

for all v ∈ h[w], v ∈ cv
(∑α∈Ags(f(v))α) mod n

for all v, v′ ∈ h−[w] s. t. vRAgsv′, f(v) = f(v′)


.

• We define Rm
□ on Wm by the rule: (f,w) Rm

□ (f′,w′) iff wR□w′ and, for all v ∈
h−[w], v′ ∈ h−[w′] such that vRAgsv′, f(v) = f′(v′).

• We define Rm
X on Wm by the rule: (f,w) Rm

X (f′,w′) iff wRXw′ and f′ = f.

• We define Rm
Y on Wm by the rule: (f,w) Rm

Y (f′,w′) iff wRYw′ and f′ = f.

• We define Choicem as follows:

– For α ∈ Ags, we define Rm
α on Wm by the rule: (f,w) Rm

α (f′,w′) iff

* wRαw′,

* for all v ∈ h−[w], v′ ∈ h−[w′] such that vRAgsv′, f(v) = f′(v′),

* (f′(w′))α = (f(w))α, where (·)α denotes the denotes the αth projection of
the vector within the brackets.

We then set Choicem
α =

{
Rm
α [(f,w)] ; (f,w) ∈Wm}

, where Rm
α [(f,w)] denotes

the set of elements in the domain that are Rm
α -related to (f,w).
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– (f,w) Rm
Ags (f′,w′) iff

* wRAgsw′,

* for all v ∈ h−[w], v′ ∈ h−[w′] such that vRAgsv′, f(v) = f′(v′),

* f(w) = f′(w′).

We then set Choicem
Ags =

{
Rm

Ags [(f,w)] ; (f,w) ∈Wm
}
.

• For α ∈ Ags, we define ≈m
α on Wm by the rule: (f,w) ≈m

α (f′,w′) iff w ≈α w′.

• Recall that P is the set of propositions in LKX. We define Vm : P → 2Wm by the
rule: (f,w) ∈ Vm(p) iff w ∈ V(p).

We proceed to show that a matrix structure is an actual model.

Proposition A.26. If M is a super-additive Kripke-exs-n-model where the transitive
closures of the ‘next’ and ‘last’ relations are irreflexive, thenMm—as defined in Defini-
tion A.25—is a Kripke-exs-l-model for some l ∈ N − {0}.

Proof. We want to show that
〈
Wm,Rm

□ ,Rm
X ,R

m
Y , Choice

m,
{
≈

m
α

}
α∈Ags

〉
is a Kripke-exs-

l-frame, which amounts to showing that the tuple satisfies the items in the defini-
tion of Kripke-exs-frames (Definition 3.9), that it satisfies cardinality-l conditions,
and that the transitive closures of Rm

X and Rm
Y are irreflexive.

1. It is routine to show that Rm
□ is an equivalence relation. When checking

for symmetry, resp. transitivity, with respect to the second condition in
the definition of Rm

α—the one that demands that (f,w) Rm
α (f′,w′) only if, for

all v ∈ h−[w], v′ ∈ h−[w′] such that vRAgsv′, f(v) = f′(v′)—it follows from
symmetry, resp. transitivity, of RAgs.

2. Let us show that Rm
X and Rm

Y are serial and deterministic, and that their
transitive closures are irreflexive. We show it for Rm

X and assume analogous
arguments for Rm

Y . Take (f,w) ∈ Wm. Since RX is serial and deterministic,
we know that there exists a unique w+1

∈ W such that wRXw+1. Observe
that w+1

∈ h[w], that w+1
∈ cw+1

(∑α∈Ags(f(w+1))α) mod n
, and that h

[
w+1

]
= h[w].

This implies that the tuple
(
f,w+1

)
is a member of Wm. Moreover, it is the

only member of Wm such that (f,w) Rm
X

(
f,w+1

)
. In turn, the assumption that

the transitive closure of RX is irreflexive straightforwardly implies that the
transitive closure of Rm

X is irreflexive.

For (Inverse)K, take (f,w) ∈ Wm, and let
(
f,w−1

)
,
(
f,w+1

)
be the unique

members of Wm such that (f,w) Rm
Y

(
f,w−1

)
and (f,w) Rm

X

(
f,w+1

)
.
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Assume that
(
f,w−1

)
Rm

X (f′,w′). SinceM satisfies (Inverse)K, w′ = w. Now,

by definition of Rm
X , the assumption that

(
f,w−1

)
Rm

X (f′,w′) implies that f′ = f.
Therefore, (f′,w′) = (f,w), so that RX ◦ RY = Id. A similar argument yields
that if

(
f,w+1

)
Rm

Y (f′,w′), then (f′,w′) = (f,w), so that RY ◦ RX = Id.

3. We show that Choicem fulfills the requirements of Definition 3.9 and sub-
stantiates the fact that the frame underlyingM is an actual frame.

It is routine to show that Rm
α is an equivalence relation for every α ∈ Ags.

Again, when checking for symmetry, resp. transitivity, with respect to
the second condition in the definition of Rm

α—the one that demands that
(f,w) Rm

α (f′,w′) only if, for all v ∈ h−[w], v′ ∈ h−[w′] such that vRAgsv′, f(v) =
f′(v′)—it follows from symmetry, resp. transitivity, of RAgs. Therefore,
Choicem

α is indeed a partition of Wm for every α ∈ Ags. Similarly, Rm
Ags is an

equivalence relation. Therefore, Choicem
Ags is indeed a partition of Wm.

We now show that Choicem
Ags ((f,w)) =

⋂
α∈Ags

Choicem
α ((f,w)) for every (f,w) ∈

Wm. This amounts to showing that Rm
Ags =

⋂
α∈Ags

Rm
α . For the (⊆) inclusion,

assume that (f,w) Rm
Ags (f′,w′). This implies that wRAgsw′, so the fact thatM

is super-additive yields that wRαw′ for every α ∈ Ags. Our assumption also
implies, by definition, that, for all v ∈ h−[w], v′ ∈ h−[w′] such that vRAgsv′,
f(v) = f′(v′), and that f(w) = f′(w′). This implies that (f′(w′))α = (f(w))α
for every α ∈ Ags. Therefore, (f,w) Rm

α (f′,w′) for every α ∈ Ags, so that
Rm

Ags ⊆
⋂

α∈Ags
Rm
α .

For the (⊇) inclusion, assume that (f,w) Rm
α (f′,w′) for every α ∈ Ags. This

implies that wRαw′ for every α ∈ Ags, that, for all v ∈ h−[w], v′ ∈ h−[w′] such
that vRAgsv′, f(v) = f′(v′), and that (f′(w′))α = (f(w))α for everyα ∈ Ags. Thus,
Aw = Aw′ and f′(w′) = f(w), so that w and w′ both lie within cw

(∑α∈Ags(f(w))α) mod n

and thus wRAgsw′. Therefore, (f,w) Rm
Ags (f′,w′). With this we have shown

that Rm
Ags ⊇

⋂
α∈Ags

Rm
α .

(SET)K Showing thatMm satisfies this condition is straightforward from the
definitions of the Rm

α : Rm
α ⊆ Rm

□ for every α ∈ Ags.

(IA)K Take (f,w) ∈ Wm, and let s : Ags → 2(f,w) be a function that maps
each α ∈ Ags to a member of Choicem

α included in (f,w). We want to show
that

⋂
α∈Ags s(α) , ∅. For each s(α), take (fα,wα) ∈ s(α). For every α ∈ Ags,

the fact that (fα,wα) ∈ (f,w) implies that wα ∈ w and that fα(xα) = f(x′) for
every xα ∈ h−[wα], x′ ∈ h−[w] such that xαRAgsx′. Now, since M satisfies
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(IA)K,
⋂

α∈Ags
Choicew

α (wα) , ∅. Take v′∗ ∈
⋂

α∈Ags
Choicew

α (wα). Consider the

number N :=

 ∑
α∈Ags

(fα (wα))α

 mod n. Take v∗ ∈ cv′∗
N—where recall that cv′∗

N

is an RAgs-equivalence class in the enumeration of Av′∗—the set of all RAgs-

equivalence classes included in
⋂

α∈Ags
Choice

v′∗
α (v′∗) =

⋂
α∈Ags

Choicew
α (wα). By

construction, v∗R□w and v∗Rαwα for every α ∈ Ags. We want to build a
function f∗ such that (f∗, v∗) ∈ (f,w) and such that (f∗, v∗) ∈ s(α) for every
α ∈ Ags. In order to do this, we first observe that f∗ should assign a vector
to each u ∈ h[v∗]. We define f∗ by parts and then show that our definition
yields that (f∗, v∗) satisfies the conditions that we want. For all u ∈ h−[v∗], we
know by Lemma A.24 that there exists u′ ∈ h−[w] such that uRAgsu′. Thus,
for u ∈ h−[v∗], we set f∗(u) = f(u′). This part of f ∗ is well-defined because, for
all x, y ∈ h−[w] such that xRAgsy, f(x) = f(y) (by definition of f). For v∗, we set

f∗(v∗) =
((

fα1
(
wα1

))
α1
, . . . ,

(
fαm

(
wαm

))
αm

)
, where observe that

 ∑
α∈Ags

(f∗ (v))α


mod n =

 ∑
α∈Ags

(fα (wα))α

 mod n = N. Finally, for u ∈ h+[v∗], let Nu be the

index of the element that includes u in the enumeration
{
cu

0 , . . . , c
u
n−1

}
of Au;

if we take (Nu, 0, . . . , 0) ∈
∏

α∈Ags
{0, . . . ,n − 1}, then u ∈ cu

(∑α∈Ags(Nu,0,...,0)α) mod n
,

where (Nu, 0, . . . , 0)α denotes the αth projection of vector (Nu, 0, . . . , 0). There-
fore, for u ∈ h+[v∗], we set f∗(u) = (Nu, 0, . . . , 0). Now, in order for f ∗ to be
well-defined, it is crucial that the transitive closure of RX is irreflexive, for
this condition implies that h−[v∗], {v∗}, and h+[v∗] are pairwise disjoint sets,
as we had mentioned in Definition A.23.46

Observe that the definition of f∗ implies that (f∗, v∗) ∈ Wm. Let us show that
it also implies that (a) (f∗, v∗) ∈ (f,w), and that (b) (f∗, v∗) ∈ s(α) for every
α ∈ Ags. For (a), observe that we took v∗ ∈ w, and that we set f∗(u) = f(u′) for
every u ∈ h−[v∗],u′ ∈ h−[w] such that uRAgsu′, so that (f∗, v∗) ∈ (f,w). For (b),
we have to prove the three items in the definition of Rm

α . Fix α ∈ Ags. For the
first item, observe that v∗Rαwα. For the second item, we know that the fact
that (fα,wα) ∈ (f,w) implies that, for xα ∈ h−[wα], x ∈ h−[w] such that xαRAgsx,
fα(xα) = f(x). Let u ∈ h−[v∗],uα ∈ h−[wα] be such that uRAgsuα. Lemma A.24

46Actually, this is the reason behind Step 2 in our proof of completeness: we use it to be able
to define specific functions in the tuples that make up the domain of our structures, so that they are
well-defined and so that the structureMm satisfies the necessary conditions for it to be (a) an actual
model and (b) a bounded morphic pre-image of the super-additive Kripke-exs-n-model that it is based
on.
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implies that uRAgsu′ for some u′ ∈ h−[w], so that point (a) above implies that
f∗(u) = f(u′). The facts that uRAgsu′ and uRAgsuα imply, by euclideanity of
RAgs, that u′RAgsuα. Therefore, fα(uα) = f(u′). Thus, f∗(u) = f(u′) = fα(uα).
Finally, for the third item, observe that (f∗(v∗))α = (fα(wα))α by construction.
Therefore, we have shown that (f∗, v∗) Rm

α (fα,wα) for every α ∈ Ags, which
means that (f∗, v∗) ∈ s(α) for every α ∈ Ags.

(NAgs)KWe want to show that Rm
□◦Rm

X◦R
m
Ags ⊆ Rm

X◦R
m
Ags. Let (f,w) ,

(
g, v

)
∈Wm

be such that (f,w) Rm
□ ◦ Rm

X ◦ Rm
Ags

(
g, v

)
, which means that there exists (f′,w′)

such that (f,w) Rm
Ags (f′,w′) and such that

(
f′,w′+1

)
Rm
□

(
g, v

)
. We want to

show that (f,w) Rm
Ags

(
g, v−1

)
. First, observe that the fact that

(
f′,w′+1

)
Rm
□

(
g, v

)
implies that w′+1R□v, which by (NAgs)K implies that w′RAgsv−1. It also implies
that, for all x ∈ h−[w′+1], y ∈ h−[v] such that xRAgsy, f′(x) = g(y). In particular,
this means that f′(w′) = g

(
v−1

)
. Thus, our assumption that (f,w) Rm

Ags (f′,w′)
yields that two of the items in the definition of Rm

Ags (the first and third,

respectively) hold between (f,w) and
(
g, v−1

)
, namely that wRAgsv−1 (via the

facts that wRAgsw′ and w′RAgsv−1) and that f(w) = f′ (w′) = g
(
v−1

)
. For

the second item, we show that, for all x ∈ h−[w], y ∈ h−[v−1] such that
xRAgsy, f(x) = g(y): let x ∈ h−[w] and y ∈ h−

[
v−1

]
be such that xRAgsy;

from the assumption that (f,w) Rm
Ags (f′,w′) and Lemma A.24, there exists

x′ ∈ h−[w′] such that xRAgsx′ and f(x) = f′(x′), where x′ ∈ h−[w′] implies that
x′ ∈ h−

[
w′+1

]
as well. Now, observe that the fact that y ∈ h−

[
v−1

]
implies

that y ∈ h−[v]. In turn, by euclideanity of RAgs, the facts that xRAgsy and
that xRAgsx′ imply that yRAgsx′. Therefore, the elements x′ ∈ h−

[
w′+1

]
and

y ∈ h−[v] are such that yRAgsx′, so that the fact that
(
f′,w′+1

)
Rm
□

(
g, v

)
implies

that f′(x′) = g(y). In turn, this yields that f(x) = f′(x′) = g(y), giving us what
we wanted.

Finally, since for every w ∈ W Rα and RAgs both induce partitions of cardi-
nality at most n on w, then the construction ofMm ensures that Rm

α and Rm
Ags

induce partitions of cardinality at most ncard(Ags)+1 on (f,w) for every (f,w).

4. Since ≈α is an equivalence relation on W for every α ∈ Ags, ≈m
α is also an

equivalence relation on Wm for every α ∈ Ags. We verify thatMm satisfies
(Unif − H)K and (NoF)K:

(Unif − H)K Let (f,w) ,
(
g, v

)
∈Wm be such that (f,w) ≈m

α

(
g, v

)
. Take (f′,w′) ∈

(f,w). We want to show that there exists
(
g′, v′

)
∈

(
g, v

)
such that (f′,w′) ≈m

α(
g′, v′

)
. By definition, the facts that (f′,w′) ∈ (f,w) and that (f,w) ≈m

α

(
g, v

)
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imply that w′R□w and that w ≈α v. Since M satisfies (Unif − H)K, there
exists v′ ∈ v such that w′ ≈α v′. With a procedure similar to the one
used to show that (IA)K holds, we build a function g′ such that

(
g′, v′

)
∈(

g, v
)

and such that (f′,w′) ≈m
α

(
g′, v′

)
. We define g′ by parts so that it

satisfies the wanted conditions. For all u′ ∈ h−[v′], Lemma A.24 implies
that there exists u ∈ h−[v] such that u′RAgsu. Therefore, for u′ ∈ h−[v′], we
set g′(u′) = g(u), where observe that this part of g′ is well-defined because,
for all x, y ∈ h−[v] such that xRAgsy, g(x) = g(y) (by definition of g); for all
u′ ∈ {v′} ∪ h+[v′], there is some element in Au′ that includes u′; let Nu′ be
the index of such an element in the enumeration

{
cu′

0 , . . . , c
u′
n−1

}
; if we take

(Nu′ , 0, . . . , 0) ∈
∏

α∈Ags
{0, . . . ,n − 1}, then u′ ∈ cu′

(∑α∈Ags(Nu′ ,0,...,0)α) mod n
, where

(Nu′ , 0, . . . , 0)α denotes the αth projection of vector (Nu′ , 0, . . . , 0); therefore,
for u′ ∈ {v′} ∪ h+[v′], we set g′(u′) = (Nu′ , 0, . . . , 0). Again, for g′ to be
well-defined, it is crucial that the transitive closure of RX is irreflexive, for
this condition implies that h−[v′] and {v′} ∪ h+[v′] are disjoint sets. Observe
that the definition of g′ implies that

(
g′, v′

)
∈ Wm, and that the fact that

w′ ≈α v′ implies, by definition of≈m
α , that (f′,w′) ≈m

α

(
g′, v′

)
. By construction,(

g′, v′
)
∈

(
g, v

)
, since v′R□v and g′(u′) = g(u) for all u′ ∈ h−[v′],u ∈ h−[v] such

that u′RAgsu.

(NoF)K Take α ∈ Ags, and let (f,w) ,
(
g, v

)
∈ Wm be such that (f,w) ≈m

α

◦Rm
X
(
g, v

)
. We want to show that (f,w) Rm

X◦ ≈
m
α

(
g, v

)
. By assumption,(

f,w+1
)
≈

m
α

(
g, v

)
. By definition of ≈m

α , this implies that w+1
≈α v. SinceM

satisfies (NoF)K, then w ≈α v−1. Therefore, the definition of ≈m
α yields that

(f,w) ≈m
α

(
g, v−1

)
, and thus that (f,w) Rm

X◦ ≈
m
α

(
g, v

)
.

□

Proposition A.27. If M is a super-additive Kripke-exs-n-model where the transitive
closures of the ‘next’ and ‘last’ relations are irreflexive, then F : Mm

→ M, defined by
F ((f,w)) = w, is a surjective bounded morphism, where Mm is as defined in Defini-
tion A.25.

Proof. • By construction, F is surjective. Now, the definition ofVm in the last
item of Definition A.25 ensures that, for all (f,w) ∈ Wm, (f,w) and F ((f,w))
satisfy the same propositional letters.

• Take R ∈
{
RX,RY,R□,Rα,RAgs,≈α

}
, and let Rm stand for the corresponding

relation on Mm. Definition A.25 ensures that the fact that (f,w) Rm (
g, v

)
implies that wRv.



136 · Agency & Knowledge

• Assume that F ((f,w)) R v for some R ∈
{
RX,RY,R□,Rα,RAgs,≈α

}
and v ∈ W.

We have the following cases:

– (Case R ∈ {RX,RY}) Observe that (f, v) is such that (f,w) Rm (f, v).

– (Case R = R□). Assume that F ((f,w)) R□v. This implies that wR□v.
Then

(
g, v

)
is such that (f,w) Rm

□

(
g, v

)
, where we define g by parts

as follows: for all u ∈ h−[v], we know by Lemma A.24 that there
exists u′ ∈ h−[w] such that uRAgsu′; therefore, for u ∈ h−[v], we set
g(u) = f(u′) (observe that this part of g is well-defined because, for all
x, y ∈ h−[w] such that xRAgsy, f(x) = f(y), by definition of f); for all
u ∈ {v} ∪ h+[v], there is some element in Au that includes u; let Nu be
the index of such an element in the enumeration

{
cu

0 , . . . , c
u
n−1

}
; if we

take (Nu, 0, . . . , 0) ∈
∏

α∈Ags
{0, . . . ,n − 1}, then u ∈ cu

(∑α∈Ags(Nu,0,...,0)α) mod n
;

therefore, for u ∈ {v} ∪ h+[v], we set g(u) = (Nu, 0, . . . , 0). Once again,
for g to be well-defined, it is crucial that the transitive closure of RX

is irreflexive, for this condition implies that h−[v] and {v} ∪ h+[v] are
disjoint sets. Observe that the definition of g implies that

(
g, v

)
∈ Wm,

so that the fact that wR□v, coupled with our definition of g, gives that
(f,w) Rm

□

(
g, v

)
, since g(u) = f(u′) for all u ∈ h−[v],u′ ∈ h−[w] such that

uRAgsu′.

– (Case R = Rα). Fix α ∈ Ags and assume that F ((f,w)) Rαv. This im-
plies that wRαv. Observe, then, that

(
g, v

)
is such that (f,w) Rm

α

(
g, v

)
,

where we define g by parts as follows: for u ∈ h−[v], we set g(u)
exactly as we did in the above item for that part of the respective
g that was defined over the preceding elements of the respective v;
for v, we have to be careful; consider the elements in Av; it is clear
that there is an element in Av that includes v; let Nv be the index
of said element in the enumeration

{
cv

0, . . . , c
v
n−1

}
, and let M ∈ N be

such that
(
M + (f(w))α

)
mod n = Nv; take α1, . . . , αm an enumera-

tion of Ags such that—without loss of generality—α = α j, and take(
mα1 , . . . ,mαm

)
∈

∏
α∈Ags

{0, . . . ,n − 1} such that mα j = (f(w))α and such that∑
i, j mαi = M; thus,

(∑
α∈Ags

(
mα1 , . . . ,mαm

)
α

)
mod n =

(
M + (f(w))α

)
mod n = Nv; therefore, we set g(v) =

(
mα1 , . . . ,mαm

)
; for u ∈ h+[v],

we define g(u) exactly as we did in the above item for that part of
the respective g that was defined over the succeeding elements of
the respective v. Once again, g is well-defined because the transitive
closure of RX is irreflexive, for this condition implies that h−[v], {v},
and h+[v] are pairwise disjoint sets. Observe that the definition of g
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implies that
(
g, v

)
∈ Wm. Moreover, the facts that (a) wRαv, that (b)

g(u) = f(u′) for all u ∈ h−[v],u′ ∈ h−[w] such that uRAgsu′, and that (c)(
g(v)

)
α = mα j = (f(w))α imply that (f,w) Rm

α

(
g, v

)
.

–
(
Case R = RAgs

)
In this case, assume that F ((f,w)) RAgsv. This implies

that wRAgsv. Then
(
g, v

)
is such that (f,w) Rm

Ags
(
g, v

)
, where we define

g by parts as follows: for u ∈ h−[v]∪ h+[v], we set g(u) exactly as in the
above item, for the parts of the respective g concerning the preceding
and succeeding elements of the respective v. For v, we set g(v) = f(w).
Thus, (f,w) Rm

Ags
(
g, v

)
, by arguments analogous to the ones in the above

items.

– (Case R =≈α) Assume that F ((f,w)) ≈α v. Observe that (f,w) ≈m
α

(
g, v

)
for any g that fulfills the requirements in Definition A.25 that would
make

(
g, v

)
an actual element of Wm. One such g exists in virtue of

an argument similar to the ones used above to build the respective g’s
over the succeeding elements of the respective v’s.

Therefore, F :Mm
→M is a surjective bounded morphism. □

Proposition A.28 (Completeness w.r.t actual models). For all n ∈ N− {0}, the proof
system ΛKn is complete with respect to the class of Kripke-exs-n-models.

Proof. Take n ∈ N− {0}, and let φ be a ΛKn-consistent formula ofLKX. By Proposi-
tion A.22, there exists a super-additive Kripke-exs-n-modelMwhere the transitive
closures of the ‘next’ and ‘last’ relations are irreflexive, and a world w in its do-
main, such that M,w |= φ. By Proposition A.27 and the invariance of modal
satisfaction under bounded morphisms, the matrix structureMm—as defined in
Definition A.25—is such thatMm, (f,w) |= φ, where Proposition A.26 yields that
M

m is a Kripke-exs-l-model for some l ∈ N − {0}. □

Therefore, the following result, appearing in the main body of the chapter, has
been shown:

Theorem 3.11 (Soundness & Completeness of ΛKn). For all n ∈ N − {0}, the proof
system ΛKn is sound and complete with respect to the class of Kripke-exs-n-models.





4

Agency, Knowledge, and Obligation

‘ “Duty, conscience,” they say—I’m not going to speak against duty
and conscience, but how do we really understand them?’

Fyodor Dostoevsky, Crime and Punishment

Responsibility appears greater or lesser, depending on a greater or lesser
knowledge of the conditions in which the man whose action is being
reviewed found himself... and on the greater or lesser understanding of
the causes of the act.

Leo Tolstoi, War and Peace

4.1 Introduction

Suppose that you are the leader of a rescuing team. Ten miners are trapped either
in shaft A or in shaft B of a mine, but you do not know in which. An overflowing
river threatens to flood the mine, and your rescuing team can deploy a huge
sandbag so that it blocks one of the shafts, but not both. If one shaft is blocked,
all the water will stream into the other shaft, killing any miners in it. If neither
shaft is blocked, both will be partially flooded, and your calculations say that one
miner will likely die in this case. As the leader of the rescuing team, you are asked
what is to be done. What should you do?

The story above is part of a famous thought experiment known as the Miners
Paradox. Put forward in an unpublished paper by Parfit (1988) but made popular



140 · Agency, Knowledge, and Obligation

by Kolodny and MacFarlane (2010), its analysis leads to opposing recommenda-
tions for the rescuers, according to the following reasoning: under a utilitarian
view on morality, the goal would be to minimize the number of casualties, so
that—considering the rescuers’ uncertainty about the location of the miners—it
seems correct to say that (1) the rescuers ought to block neither shaft; however, it also
seems correct to say that (2) if the miners are in shaft A, the rescuers ought to block
shaft A, and that (3) if the miners are in shaft B, the rescuers ought to block shaft B;
obviously, the rescuers know that (4) either the miners are in shaft A or they are in
shaft B; thus stated, sentences (2), (3), and (4) entail that (5) the rescuers either ought
to block shaft A or ought to block shaft B, which contradicts sentence (1).

This conflict is based on the assumption that, from the aforementioned utili-
tarian perspective, sentence (1) is clearly true. However, the opposite of sentence
(1) is concluded from the seemingly correct premises (2), (3), and (4). Thus, one
derives a contradiction from apparently valid premises describing the rescuers’
background knowledge.

The most popular approach for solving the problem has been through curbing
the reasoning-by-cases principle that underlies the derivation with sentences (2),
(3), and (4) (see, for instance, Willer, 2012). The challenge, then, is to come up with
general criteria that would distinguish when the reasoning-by-cases should apply
and when it should not. A different approach—which motivates the contents of
this chapter—focuses on the rescuers’ knowledge, targeting its implications on
what they ought to do. This approach argues that clauses (2) and (3) are not
entirely adequate and should be restated as follows: (2) if the rescuers know that the
miners are in shaft A, then they ought to block shaft A, and (3) if the rescuers know that
the miners are in shaft B, then they ought to block shaft B.

Rather than providing a solution to the Miners Paradox, the knowledge-based
approach opens up a discussion about the interplay between agency, ought-to-do,
and the knowledge that agents have when they choose some action. This chapter
is devoted to studying such an interplay. The reason is that agency, knowledge,
and ought-to-do’s are three essential components of responsibility, according to
the list introduced in Chapter 1 (p. 3). Recall from said list (see also Duijf, 2018,
Chapters 2 & 3), that a common intuition in blame assignment is that an agent
is blameworthy only if the agent failed to comply with one of its obligations.
What happens, then, if the agent did not know how to comply? Should the
agent be considered blameworthy? If it was impossible for the agent to have
knowingly complied with an obligation, how much of an obligation was it in the
first place? Based on the view that an appropriate formalization of the interplay
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between agency, knowledge, and ought-to-do can help us solve these questions,
the main contribution of this chapter is the development of logics for two senses
of ought-to-do: an objective sense and a subjective one.

Perhaps the best way to present these two senses is by means of an example.
Consider once again the Miners Paradox. Its paradoxical character can be seen
as a direct consequence of the assumption that the ought-to-do’s appearing in
sentences (1), (2), (3), and (5) are all of the same kind. I propose that, in fact, two
senses of ought-to-do are being confused. Objectively speaking, sentence (1) is
false! It is not the case that the rescuers should refrain from blocking either shaft,
because they should block the shaft that contains all the miners and be done with
it. Subjectively speaking, however, there is an argument in favor of saying that (5)
is false: it is not the case that the rescuers should block one of the shafts, because
they do not know which shaft needs to be blocked to save all the miners.1

I propose that an agent subjectively ought to do φ only when the agent has
practical knowledge about the acts that would lead to φ (see the discussion on
the concept of know-how in Chapter 3’s Subsection 3.3.4). Since they do not
know in which shaft the miners are trapped, the rescuers clearly lack the practical
knowledge to save all ten miners. In other words, the rescuers cannot knowingly
perform an action of the form ‘to rescue all the miners by blocking a shaft.’
The intuition, then, is that Kant’s maxim of ought implies can (see Horty, 2001,
Chapter 4) helps us draw a distinction between objective and subjective ought-
to-do’s: while objective ought-to-do’s only require the possibility of successfully
complying with them, subjective ones require the possibility of both successfully
and knowingly complying with them.2

It is important to correctly position my approach—of differentiating two senses
of ought-to-do—within the fast growing literature on issues involving agency,
knowledge, and oughts (see, for instance, Baskent, Loohuis, & Parikh, 2012). I
focus on what can be called knowledge-dependent oughts. These are somewhat
similar to the knowledge-based obligations of Pacuit, Parikh, and Cogan (2006),
but there is an important difference. While Pacuit et al. studied how acquiring
knowledge about a state can lead agents to being obligated to do certain things,
I study obligation from a perspective where agents should be excused for not
complying with some duty if they lacked knowledge that is necessary for doing so.

1The latter view is certainly supported by the fact that the truth of sentence (1) is rarely called into
question, something that must follow from a form of subjective reasoning. For instance, the truth of
sentence (1) evokes the idea that the rescuers should make their choice on the basis of maximization
of expected moral utility.

2Observe that the contrapositive of Kant’s maxim can be stated as cannot implies being excusable.
This type of excuse—not being able to comply with an obligation—is one of the most popular among
a wide variety of excuses available for not doing something that one should do.
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Thus, while Pacuit et al.’s approach concerns theoretical knowledge (if the doctors
know that the patient is bleeding, then they ought to stop it), mine concerns
practical knowledge (doctors ought to stop the bleeding of the patient, but if they
do not know how to then they should be excused for not being able to stop it).

The starting point of my study comes from a recent interest in enhancing the
expressivity (and the applicability) of Horty’s (2001) seminal stit theory of ought-
to-do so that it can deal with situations in which agents’ knowledge plays a key
role. Inspired by three puzzles for knowledge-dependent obligations, that pose
problems for merely extending his act-utilitarian stit theory (AUST) with epistemic
operators, Horty (2019) introduced a novel semantics for his so-called epistemic
oughts.3 In this chapter I carefully review Horty’s (2019) proposal and build my
own as a reply to it. Thus, my goal can be summarized as follows: I aim to provide
axiomatizable stit-theoretic logics to reason about the reciprocity between three
essential components of responsibility: agency, knowledge, and ought-to-do.
Consequently, the logics that I develop (which are extensions of atemporal basic
stit theory (BST) with both deontic and epistemic operators) have the following
benefits: (a) their semantics for objective and subjective ought-to-do’s deals with
Horty’s puzzles; (b) they pave the way for a simple formalization of responsibility;
and (c) they are axiomatizable. An outline of this chapter is included below.

• Section 4.2 reviews the stit-theoretic background for the logics of objective
and subjective ought-to-do’s. Namely, the fundamentals of AUST and epis-
temic stit theory (EST) are addressed.

• Section 4.3 examines Horty’s puzzles and the problems that they pose,
pointing out the basic properties of Horty’s own solution to these problems.

• Section 4.4 presents my stit logic of objective and subjective ought-to-do’s,
which I refer to as epistemic act-utilitarian stit theory (EAUST). The section
shows how this logic admits a solution to the problems implied by Horty’s
puzzles, and it compares my proposal with Horty’s aforementioned solu-
tion.

• Section 4.5 addresses EAUST’s logic-based and metalogic properties. Two
Hilbert-style proof systems are introduced: one for the restriction that re-

3Indeed, these puzzles sum up both the conflict described for the Miners Paradox and the intuition
that Kant’s maxim of ought implies can should be tailored to epistemic cases. Section 4.3 thoroughly
dissects these puzzles.
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sults from considering only objective ought-to-do’s, and the other for the
restriction including only subjective ought-to-do’s.4 Importantly, this sec-
tion presents soundness & completeness results for these proof systems.

• Section 4.6 (the conclusion) explores two paths for future work: first, it
presents a doxastic sense of obligation, based on the extension of EAUST
with a probabilistic semantics of belief; secondly, it discusses Horty’s (2001,
Chapter 6) group obligations and gives proposals both for their incorpora-
tion into EAUST and for their epistemic extension.

4.2 Agency, Knowledge, and Obligation in Stit Theory

As discussed in Chapter 2, stit theory was created to formalize agency. Thus,
it naturally lent itself to the study both of obligation (Horty, 2001) and of know-
ingly doing (Broersen, 2011a). Since agency, knowledge, and obligation are three
prominent components of responsibility, in this section I review the stit-theoretic
literature on them to provide a bedrock for this chapter’s discussions.5

Before this review, it is important to emphasize that—just as in all the other
chapters of this thesis—the present description of the stit-theoretic modalities fol-
lows my interpretation of the semantics (see the discussion on p. 34 and Remark 2.4,
p. 36). Therefore, when specifying the points of evaluation for the formulas—the
indices in bt-models—I take it that at those indices states of affairs are definitive.
Because of this, I use the present-perfect tense for the description of modality [α]φ
and say that ‘at index ⟨m, h⟩ α has seen to it that φ.’ To be consistent, I use the past
tense for modalities □φ and Kαφ and say that ‘at index ⟨m, h⟩ φ was settled’ and
that ‘at index ⟨m, h⟩ α knew φ.’ For modalities involving the verb ‘ought,’ whose
only tense in English is the present tense (see Jörgensen, 1984), I use the past form
of the sentences and say that ‘at index ⟨m, h⟩ α ought to have seen to it that φ.’
As discussed in Chapter 2, this usage does not mean to refer to past moments.
Rather, it aims to reinforce the notion that, at the level of indices, circumstances
in the world have already happened and cannot be changed.

4The reason for having these restrictions is two-fold: first, a proof system for the stit logic of
objective ought-to-do’s—which I presently call AUST—has already been given in the literature (Mu-
rakami, 2004). Secondly, the models with respect to which the proof systems that I present are sound
and complete are precisely the models used in all the examples in this chapter. While I also have a
soundness & completeness result for a merged proof system, the class of models with respect to which
it is complete is much broader, and somewhat atypical. To achieve a proof of completeness for the full
system, with respect to the models here used for the examples, is still an open problem.

5For a comprehensive review of these three concepts in the stit-theoretic literature, the reader is
referred to Xu (2015).
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The two backgrounds for the logics developed here are act-utilitarian stit theory
(AUST) (see Chapter 2’s Subsection 2.4.3) and epistemic stit theory (EST) (see Chap-
ter 2’s Subsection 2.4.4), where both these frameworks are extensions of atemporal
BST (see Chapter 2’s Section 2.3).

4.2.1 Act-Utilitarian Stit Theory

As for AUST, recall that it is the extension of atemporal BST that uses decision-
and game-theoretic notions to formalize deontic concepts. This implies that AUST
can be thought of as a deontic logic. Thus, let me briefly address the fundamentals
of the deontic logic that serves as the broadest background for the ones that will
be presented later on in this chapter.6

Standard deontic logic (SDL) is a modal logic with operators O for obligation and
P for permission (Anderson, 1956; Kanger, 1970; Prior & Prior, 1955; von Wright,
1951). Modality Oφ is meant to express that it ought to be the case that φ, and Pφ
is meant to express that φ is permitted. Indeed, P is the dual modal operator of
O, such that P abbreviates ¬O¬. The semantics for these modalities are given on
standard Kripke models of the formM := ⟨W,RO,V⟩, where W is a non-empty
set of possible worlds, RO is a serial relation dividing W into ideal and non-ideal
worlds, and V is a valuation function assigning a set of worlds to each atomic
proposition. Intuitively, the division into ideal and non-ideal worlds allows us to
define what ought to be the case at some w as those formulas that hold in all the
ideal alternatives of w. Thus, the evaluation rule for Oφ is as follows: M,w |= Oφ
iff for all w′ such that wROw′,M,w′ |= φ.7

6Deontic logic is a broad field in symbolic modal logic. Starting with the seminal work by von
Wright (1951), it has developed in many directions over the past 70 years. Horty (2001, Chapter 4)
explicitly mentioned that, in the past, the task of relating deontic logic and act utilitarianism resulted in
surprising difficulties, leading some authors (Castañeda, 1968, for instance) to suggest the possibility
of a conflict in the fundamental principles underlying the two theories. According to Horty, one
source of these difficulties is that, while deontic logic was developed as a theory of what ought or
ought not to be, utilitarianism is concerned with ranking actions rather than states of affairs. Horty
affirmed that stit theory can close this gap, because it allows us to develop a deontic logic to represent
what agents ought to do under a particular variant of act utilitarianism, namely the dominance theory
that will be presented in this chapter.

7This definition implies that O is a KD modal operator. By ordinary techniques of modal logic
(see, for instance, Blackburn et al., 2002, Chapter 4), the logic of modality Oφ is then axiomatized by
the proof system KD. For a discussion of SDL from a historical perspective, the reader is referred to
Føllesdal and Hilpinen (1970). A more formal treatment, positioning SDL as a modal logic, was given
by Chellas (1980, Chapter 6). As it happens, the literature has generally agreed on the fact that SDL
suffers a number of paradoxes that hardly make it appropriate for deontic reasoning. As explained
by Canavotto (2020, Chapter 6), one of the most serious issues involves the so-called contrary-to-duty
obligations, which concern what ought to be done in the case where another, primary obligation has
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Following Thomason (1981), Horty (2001, Chapter 3) adapted a version of SDL
to branching-time logic and generalized it into a utilitarian setting. Horty’s main
goal was to provide a coherent backdrop for AUST, as well as to motivate his
introduction of a formal, primitive notion of ought-to-do. In his adaptation, a
function Value is added to a bt-modelM, such that Value assigns to each history
a real number representing the deontic utility of the history. The idea, then, is that
histories’ utilities underlie which indices are better than others inM, so that the
formulas that hold at all ‘good enough’ indices are what ought to be the case. To
clarify, the semantics on bt-models for Oφ is obtained by extending the recursive
definition in Definition 2.3 with the following clause:

M, ⟨m, h⟩ |= Oφ iff there is h′ ∈ Hm s. t. M, ⟨m, h′′⟩ |= φ
for every h′′ ∈ Hm s. t. Value(h′) ≤ Value(h′′).

8

Ever since deontic logic’s inception there has been a debate about the relation
between what ought to be the case and what agents ought to do. Actually, von
Wright’s (1951) seminal introduction of deontic operators treated these operators
as applying not to propositions but rather to expressions representing actions.
According to Horty (2001, Chapter 1), a variety of reasons—some of them purely
technical—led other pioneers in the field (Anderson, 1956; Kanger, 1970; Prior &
Prior, 1955, for instance) to adopt the more usual style of modal logic and apply the
deontic operators to propositions. Thus, taking ought-to-be as primitive gained
popularity in the literature, and with it the idea that the analysis of what agents
ought to do is subsumed by the analysis of what ought to be the case, namely by
identifying what an agent ought to do with what ought to be the case that the
agent does.

However, it was also argued (see, for instance, Geach, 1991) that using logics
of ought-to-be to reason about what agents ought to do might lead to “severe
distortions” (Horty, 2001, p. 4). Indeed—albeit not for the same reasons that
Geach advanced—this is exactly what happens if, with the semantics for Oφ
on bt-models discussed above, one tries to characterize what agent α ought to do
with the combined modality O[α]φ (thus identifying what agents ought to do with
what ought to be the case that agents do). Referring to such an identification as
the Meinong/Chisholm analysis of ought-to-do (because of the thesis expounded by

been violated. There are a number of paradoxes that revolve around contrary-to-duty obligations
(see, for instance, Hilpinen & McNamara, 2013). Famously, Chisholm’s (1963) paradox proved that
SDL cannot properly handle contrary-to-duty obligations.

8With such a semantics, O turns out to be a KD45 operator. Furthermore, formulas (a) □φ→ Oφ,
(b) Oφ → □Oφ, and (c) ¬Oφ → □¬Oφ are also valid with respect to the class of bt-models to which
Value functions have been added.
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Chisholm (1964)), Horty (2001, Chapter 3) explored its undesirable consequences
in stit theory. To be precise, Horty proved that identifying ought-to-do with
O[α]φ is vulnerable to the gambling problem (Example 4.1 below), which ultimately
renders the Meinong/Chisholm analysis as inadequate to formalize ought-to-do.

Example 4.1 (The gambling problem). The gambling problem can be stated as
follows: suppose that agent Nikolai is faced with two options at moment m1: to either
gamble 5 roubles or to forfeit the bet. If Nikolai gambles, then there is a history in which
he wins 10 roubles, and another in which he loses his stake. However, Nikolai cannot
determine whether he wins or loses. If Nikolai forfeits, then he preserves his original
stake of 5 roubles no matter how things turn out. Thus, if the utility of each history at
m1 is entirely determined by the sum of money that Nikolai possessed in that history, the
situation can be depicted by Figure 4.1.

D1 D2

Choicem1
Nikm1

h4h3h2h1

g
10

g
0

¬g
5

¬g
5

Figure 4.1: The gambling problem.

Here, D1 represents the option of engaging in the gamble, and D2 the option of
forfeiting. The letter g, then, stands for the proposition ‘Nikolai has gambled.’ In
this situation, a problem ensues due to the fact that, for all h ∈ Hm1 ,M, ⟨m1, h⟩ |=
O[Nik]g: at every index based on m1 it ought to have been the case that Nikolai gambled.
Therefore, according to the Meinong/Chisholm analysis, Nikolai ought to have
gambled, even if he risked achieving an outcome with payoff 0.

Horty (2001) developed his AUST as a way of solving this gambling problem
(a robust objection against the Meinong/Chisholm analysis). Horty introduced a
novel semantics for a primitive notion of ought-to-do, under von Wright’s (1951)
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intuition that decoupling ought-to-do from ought-to-be is more appropriate for
deontic reasoning. Instead of merely adapting SDL to branching-time logic, Horty
used the theory of act utilitarianism, as well as decision-theoretic and game-
theoretic ideas, to formalize his notion of ought-to-do.9 The main definitions for
his logic are included below.

Definition 4.2 (Syntax of AUST). Given a finite set Ags of agent names and a countable
set of propositions P, the grammar for the formal language LO is given by

φ ::= p | ¬φ | φ ∧ φ | □φ | [α]φ | ⊙αφ,

where p ranges over P and α ranges over Ags.

In this language, □φ and [α]φ have the same meanings as in BST (see Defini-
tion 2.1, p. 28), and ⊙αφ is meant to express that agent α ought to have seen to
it that φ. As for the semantics, the structures on which the formulas of LO are
evaluated are based on what I refer to as act-utilitarian bt-frames.

Definition 4.3 (Aubt-frames & models). A tuple
〈
M,⊏,Ags,Choice,Value

〉
is called

an act-utilitarian bt-frame (aubt-frame for short) iff

•
〈
M,⊏,Ags,Choice

〉
is a bt-frame.

• Value is a function that assigns to each history h ∈ H a real number, representing
the deontic utility of h.10

9In the words of Horty himself, “[t]he general goal of any utilitarian theory is to specify standards
for classifying actions as right or wrong; and in its usual formulation, act utilitarianism defines an
agent’s action in some situation as right just in case the consequences of that action are at least as great
in value as those of any of the alternatives open to the agent, and wrong otherwise” (Horty, 2001,
p. 70). For a contemporary formulation of act utilitarianism, the reader is referred to Bergström (1966).

10While in game theory the utilities of outcomes quantify agents’ preferences, in the context of AUST
there is no particular interpretation for the word ‘utility.’ The utility of a history—Value(h)—does not
stem from any agentive preference. Thus, AUST allows the assignment of values to “accommodate
a variety of different approaches” (see Horty, 2001, Chapter 3, Section 2.2). To clarify, the notion of
deontic utility is taken as primitive in AUST, and, rather than to individuals, it applies to the whole
set of agents. Therefore, it may be thought of—but not necessarily so—as the “total utility of the set of
agents in that history, their average utility, or perhaps some distribution-sensitive aggregation of the
utilities of these individual agents” (Horty, 2001, p. 38). AUST’s analysis of interdependent decision
contexts with aubt-frames thus differs from the game-theoretic approach in two main points: (1) rather
than assigning individual utilities to each outcome as is done with the payoff functions in games, in
aubt-frames function Value assigns a general deontic utility to each history; and (2) whereas in game
theory utilities are assigned to full action profiles, in aubt-frames each index has a deontic utility. Of
course, neither (1) nor (2) is strictly necessary for the formalization of ought-to-do. For instance, Kooi
and Tamminga (2008) and Tamminga (2013) gave semantics for obligations on stit-theoretic models
(known as consequentialist models) where individual utilities are assigned to each outcome and where
a full action profile determines a single outcome (the latter being a property that I referred to as
determinism in the context of the rich Kripke-stit-models of Definition 2.25, p. 67).
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An aubt-modelM, then, consists of the tuple that results from adding a valuation function
V to an aubt-frame, whereV : P → 2I(M×H) assigns to each atomic proposition a set of
indices.

Horty (2001, Chapter 4) used aubt-models to provide semantics for ⊙αφ. The
intuition behind such a semantics is that the choices of action of a given agent
can be ranked according to the utilities of the histories within them, and that
ought-to-do’s are based on the optimal choices in this ranking. To clarify, the
idea is that at an index an agent ought to have seen to it that φ iff φ is an effect
of all the agent’s optimal choices. To formalize the ranking and the measure of
optimality, Horty defined, for each moment and agent, a dominance ordering ⪯
on the choices available to the agent at that moment. Of course, function Value is
what underlies such a dominance ordering:

Definition 4.4 (Dominance ordering over choices). For an aubt-frame with M as its
set of moments, α ∈ Ags, and m ∈M, consider the following definitions:

• Let ≤ be an ordering on 2Hm defined by the rule: for X,Y ⊆ Hm, X ≤ Y iff
Value(h) ≤ Value(h′) for every h ∈ X and h′ ∈ Y. I write X < Y iff X ≤ Y and
Y ≰ X.

• Let Statem
α :=

{
S ⊆ Hm; S =

⋂
β∈Ags−{α} s(β), for s ∈ Selectm

}
, where recall from

Definition 2.2 (p. 29) that Selectm denotes the set of all selection functions at m
(i.e., the functions that assign to each agent β a choice in Choicem

β ).

• Let ⪯ be an ordering on Choicem
α defined by the rule: for L,L′ ∈ Choicem

α , L ⪯ L′

iff for each S ∈ Statem
α , L∩S ≤ L′∩S. I will refer to this ordering as the dominance

ordering over the choices available to α at m, and, following Horty (2001), two
types of dominance are defined using it:

– L is weakly dominated by L′ iff L ⪯ L′.

– Let ≺ be defined by the rule: for L,L′ ∈ Choicem
α , L ≺ L′ iff L ⪯ L′ and

L′ ⪯̸ L. Then L is strongly dominated by L′ iff L ≺ L′.

• Let Optimalm
α :=

{
L ∈ Choicem

α ; there is no L′ ∈ Choicem∗
α such that L ≺ L′

}
.

This is the set of α’s optimal choices at m.

An interesting question to ask is why one cannot use the ordering ≤ (the
one in the first item in the definition above) to rank the choices. Why is the
notion of Statem

α introduced? Well, an important aspect of Horty’s ‘dominance
act utilitarianism,’ which is the name that he uses for the philosophical theory
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behind the definition above, is that the orderings are defined to account for sure-
thing reasoning. A good way of discussing this kind of reasoning, and of therefore
answering the questions regarding Statem

α , is through an example:

Example 4.5 (Sure-thing reasoning). Suppose that Nikolai and Dolokhov are playing
a game at a gambling house. Both are holding a kopeck in one hand, and at moment m1 both
are independently faced with a choice between two actions: either placing their respective
kopeck on a table heads up or placing it tails up. If both Nikolai and Dolokhov place
their kopeck heads up, then the house gives them 10 roubles; if Nikolai places his kopeck
heads up and Dolokhov places his tails up, the house pays 5 roubles; if Nikolai places
his kopeck tails up and Dolokhov places his heads up, the house pays 9 roubles; finally,
if both gamblers place their kopeck tails up, the house pays 4 roubles. Figure 4.2 includes
a diagram for this situation.

H
H T

T

m1Choicem1
Nik

Choicem1
Dol

h4h3h2h1

10 59 4

Figure 4.2: Matching kopecks pt. 1: sure-thing reasoning.

Here, the choices available to Nikolai at m1 are placing his kopeck heads up (H)
and placing it tails up (T). The choices available to Dolokhov at m1 are the same
as Nikolai’s. Thus, Choicem1

Nik = {H,T}, and Choicem1
Dol = {H,T}. Now, let us focus

on Nikolai’s choices. Suppose for a second that, instead of using the dominance
ordering ⪯ of Definition 4.4 to rank these choices, one uses ≤. Observe, then, that
H ≰ T and that T ≰ H, so that if one were to use ≤ for the dominance ordering,
neither H nor T would dominate the other choice. However, as Horty (2001, p. 63)
wrote, “there seems to be a persuasive argument in favor of the conclusion that”
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H is a better choice for Nikolai than T. To clarify, no matter whether Dolokhov
performs H or T, it is better for Nikolai to perform H rather than T. This kind of
argument is known as sure-thing reasoning.11

Therefore, as Example 4.5 suggests, using ≤ to rank the choices fails to capture
sure-thing reasoning. Horty (2001, p. 63) wrote:

The key to applying sure-thing reasoning in a given situation lies in
identifying an appropriate partition of the possible outcomes into a set
of states (sometimes called ‘states of nature’ or ‘conditioning events’),
against the background of which the actions available to an agent can
then be evaluated through a state-by-state comparison of their results.

In AUST, such an appropriate partition of the outcomes is achieved by in-
troducing the notion of Statem

α . This notion allows us to define the dominance
ordering ⪯ so that sure-thing reasoning is accounted for. As the reader can notice,
Definition 4.4 implies that, in Example 4.5, T ≺ H for Nikolai.12

With Definition 4.4’s dominance ordering ⪯, then, the semantics for ⊙αφ is
given as follows:

Definition 4.6 (Evaluation ruls for AUST). LetM be an aubt-model. The semantics
on M for the formulas of LO are obtained by extending the recursive definition in
Definition 2.3 (p. 30) with the following clause:

M, ⟨m, h⟩ |= ⊙αφ iff for all L ∈ Choicem
α s. t. M, ⟨m, hL⟩ ̸|= φ for some hL ∈ L,

there is L′ ∈ Choicem
α s. t. L ≺ L′ and, if L′′ = L or L′ ⪯ L′′,

thenM, ⟨m, h′⟩ |= φ for every h′ ∈ L′′.

11Sure-thing reasoning was first explicitly discussed by Savage (1954) (under the term ‘sure-thing
principle’), but it already appeared in an earlier work by the author (Savage, 1951). In the latter, he
wrote that “there is one unquestionably appropriate criterion for preferring some act to some others:
If for every possible state, the expected income of one act is never less and is in some cases greater
than the corresponding income of another, then the former act is preferable to the latter” (Savage,
1951, p. 58).

12To account for sure-thing reasoning, the background states (against which choices are evaluated)
must be independent of the available choices (see Horty, 2001, Chapter 4, pp. 64–67). Traditionally,
there are two ways of thinking about this independence: (a) in terms of probabilistic independence, as
explained by Jeffrey (1965), such that the conditional probability that a state holds should not vary
according to the choice of action; and (b) in terms of causal independence, as first described by Gibbard
and Harper (1978), such that the action chosen by an agent should not cause any effect that would
influence the occurrence or absence of a state. It is based on the latter kind of independence—causal—
that ⪯ is defined in aubt-models. The reason is that frame condition independence of agency (IA) implies
that, for all α ∈ Ags, m ∈ M, and state S ∈ Statem

α , Choicem
α (h) ∩ S , ∅ for every h ∈ Hm. In turn, this

implies that S, seen as a set of alternative courses of events, can happen at m regardless of what α
chooses. Thus, α’s choices are always compatible with every state.
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Satisfiability, validity, and general validity are defined as usual. I write
∣∣∣φ∣∣∣m to refer to

the set
{
h ∈ Hm;M, ⟨m, h⟩ |= φ

}
.

Therefore, one says that at index ⟨m, h⟩ agent α ought to have seen to it that φ
iff for each action L of α that does not guarantee the bringing about of φ there is a
better action L′ such that (a) L′ guarantees the bringing about of φ, and (b) every
action that is better than L′ also guarantees the bringing about of φ.

Before, I mentioned that Horty’s intuitions involved a measure of optimality
of choices. The trained reader will notice that the truth condition for ⊙αφ results
from handling cases where the existence of an infinite number of available choices
might yield that there are no optimal ones. Thus, such a truth condition can be
much more intuitively stated when the definition of aubt-frames includes the
requirement that the number of available choices at each moment is finite. In
this case, Definition 4.6’s clause for ⊙αφ is equivalent to: M, ⟨m, h⟩ |= ⊙αφ iff
for all L ∈ Optimalm

α , M, ⟨m, h′⟩ |= φ for every h′ ∈ L. It is in such terms that
an agent’s obligations are identified with the effects that are common to all the
optimal choices for that agent.

4.2.2 Epistemic Stit Theory

As for EST, the reader is referred to Chapter 2’s Subsection 2.4.4 for a discussion
of its basic aspects. Furthermore, Chapter 3 was dedicated in its entirety to
reviewing an extension of EST with temporal operators X and Y (for next and
last moments, respectively), and all the ideas exposed there will greatly pay off
throughout this chapter. To clarify, even if the present discussion is limited to
agency with instantaneous effects, my treatment of knowledge will still involve
the stages of information disclosure in the decision-making process, as well as
the four kinds of knowledge formalized in Chapter 3. Therefore, with respect
to the topics that are relevant in EST (see the list on p. 71), this chapter adopts
the following conventions, applicable to any extension of an ebt-model M (see
Definition 2.27, p. 70):

• Concerning knowingly doing, I will say that at index ⟨m, h⟩ agent α has know-
ingly seen to it that φ iffM, ⟨m, h⟩ |= Kα[α]φ—that is, iff at ⟨m, h⟩ α knew that
it has seen to it that φ.

• Concerning the epistemic sense of ability, know-how, and practical knowledge, I
will say that at ⟨m, h⟩ α was able in the epistemic sense to see to it that φ iff
M, ⟨m, h⟩ |= ^Kα[α]φ—that is, iff at ⟨m, h⟩ it was historically possible for α
to knowingly see to it that φ.
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• Concerning the knowledge across the stages of information disclosure, the expo-
sition will be restricted to ex ante and ex interim knowledge. I will say that
at ⟨m, h⟩ α had ex ante knowledge of φ iffM, ⟨m, h⟩ |= □Kαφ—that is, iff at
⟨m, h⟩ it was historically settled that the agent knew φ. In turn, I will say
that at ⟨m, h⟩ α had ex interim knowledge of φ iffM, ⟨m, h⟩ |= Kα[α]φ—that
is, iff at ⟨m, h⟩ α has knowingly seen to it that φ.

• Concerning uniformity, all the models used here are built on the assumption
that an agent should have the same available choices of action at indis-
tinguishable indices. In the present context, the frame conditions charac-
terizing this version of uniformity, as well as the formulas defining it, are
thoroughly discussed in Sections 4.4 and 4.5.

This concludes the presentation of the two main backgrounds for this chap-
ter’s logics. With the notions covered, we are ready to start building an appropriate
logic for studying the interplay between agency, knowledge, and ought-to-do. As
implied before, the yardstick against which to measure the degree of appropri-
ateness is given by two points: (a) the logics need to address the problems posed
by Horty’s (2019) puzzles; and (b) the logics need to be axiomatizable.

4.3 Horty’s Puzzles

Horty (2019) presented three puzzles that are good examples of how the most nat-
ural mix between AUST and EST would approach the interplay between agency,
knowledge, and ought-to-do. To scrutinize these puzzles in all formality, it is best
to first address the question of what ‘the most natural mix’ actually is. Therefore,
consider the following language, which results from extendingLO with epistemic
modalities.

Definition 4.7 (Syntax for a possible extension). Given a finite set Ags of agent names
and a countable set of propositions P, the grammar for the formal language LKo is given
by

φ ::= p | ¬φ | φ ∧ φ | □φ | [α]φ | Kαφ | ⊙αφ,

where p ranges over P and α ranges over Ags.

In this language, □φ and [α]φ have the same meanings as in BST (see Defi-
nition 2.1, p. 28); Kαφ has the same meaning as in EST (Definition 2.26, p. 70);
and ⊙αφ has the same meaning as in AUST (Definition 4.2). As for the seman-
tics, for now let us think of the frames that result from combining ebt-frames



§ 4.3. Horty’s Puzzles · 153

(Definition 2.27, p. 70) and aubt-frames (Definition 4.3) without any restriction,
and allow me to refer to these structures as unconstrained epistemic act-utilitarian
branching-time frames.13

Definition 4.8 (Unconstrained eaubt-frames). A tuple〈
M,⊏,Ags,Choice, {∼α}α∈Ags ,Value

〉
is called an unconstrained epistemic act-utilitarian branching-time frame (uncon-
strained eaubt-frame for short) iff

〈
M,⊏,Ags,Choice, {∼α}α∈Ags

〉
is an ebt-frame (Def-

inition 2.27, p. 70) and
〈
M,⊏,Ags,Choice,Value

〉
is an aubt-frame (Definition 4.3).

An unconstrained eaubt-modelM, then, consists of the tuple that results from adding a
valuation functionV to an unconstrained eaubt-frame, whereV : P→ 2I(M×H) assigns
to each atomic proposition a set of indices.

Definition 4.9 (Evaluation rules on unconstrained eaubt-models). Let M be an
unconstrained eaubt-model. The semantics on M for the formulas of LKo are defined
by extending the recursive definition in Definition 2.3 (p. 30) with the standard truth
conditions for Kαφ and ⊙αφ (Definition 2.28 on p. 70 and Definition 4.6, respectively).

Now, Horty’s three puzzles posed problems for formalizing ought-to-do with
the epistemic extension of AUST given by unconstrained eaubt-models. Let me
address these puzzles one by one, then.

Example 4.10 (Puzzle #1). Suppose that Nikolai and Dolokhov are playing a game at a
gambling house. The set-up is as follows: Dolokhov places a coin on top of a table—either
heads up or tails up—and hides it from Nikolai. Nikolai can bet that the coin is heads
up, bet that it is tails up, or forfeit the bet. If Nikolai bets and chooses correctly, Nikolai
and Dolokhov win 10 roubles from the house. If he chooses incorrectly or forfeits the bet,
they win nothing.

To formalize Horty’s interpretation of this puzzle, consider the unconstrained
eaubt-model M depicted in Figure 4.3. Here, Ags = {Nikolai,Dolokhov} and m1,
m2, and m3 are moments. At moment m1 Dolokhov chooses between placing his
coin on the table either heads up or tails up. Thus, his available actions are the
following: D1, where he places the coin heads up, and D2, where he places the
coin tails up. At moments m2 and m3 it is Nikolai’s turn to act, and his available
actions are the following: N1 and N4, where he bets heads; N2 and N5, where
he bets tails; and N3 and N6, where he forfeits the bet. The epistemic states of

13A specific sub-class of such unconstrained structures—resulting from two important frame
conditions—will help us achieve an axiomatizable logic for the interplay of agency, knowledge, and
ought-to-do. This sub-class is introduced in Section 4.4 (Definition 4.18).
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Figure 4.3: Puzzle #1.

Nikolai are represented with the indistinguishability relation given by the dashed
line (where reflexive loops are omitted). Since Dolokhov is hiding his coin, Nikolai
cannot distinguish whether he is at moment m2 or at moment m3. Thus, Horty set
⟨m2, h⟩ ∼Nik ⟨m3, h′⟩ for every h ∈ Hm2 and h′ ∈ Hm3 .

In Figure 4.3, h stands for the atomic proposition ‘Dolokhov’s coin is placed
heads up,’ t stands for ‘Dolokhov’s coin is placed tails up,’ bh stands for ‘Nikolai
has bet heads,’ bt stands for ‘Nikolai has bet tails,’ and g stands for ‘Nikolai has
gambled.’ In such an interpretation, a problem ensues due to the fact that, for all
i ∈ {2, 3} and h ∈ Hmi , M, ⟨mi, h⟩ |= KNik ⊙Nik g: at every index based on m2 and m3,
Nikolai knew that he ought to have gambled; however, to gamble is a risky move that
could result in a payoff of 0, so that being obligated to gamble is counterintuitive,
to say the least.14

Observe that the Miners Paradox—the example opening this chapter—can be
modelled with a very similar diagram to Figure 4.3’s, substituting Nikolai with
agent rescuer, and setting the value of histories h3 and h6 at 9, the number of miners
that rescuer saved at those histories. Let D1 be the choice, available to the miners,
of going into shaft A, and let D2 be the choice of going into shaft B. Let N1 and N4

be the choices, available to rescuer, where she blocks shaft A of the mine; let N2 and
N5 be the choices where she blocks shaft B; and let N3 and N6 be the choices where

14Observe that Horty’s interpretation yields that Nikolai cannot knowingly perform any of his
available actions. He cannot distinguish between the indices at which he has bet heads, at which he
has bet tails, and at which he has forfeited the bet.
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she refrains from blocking any shaft. Then the problem that was mentioned in the
previous paragraph translates into a slightly terrifying conclusion: at every index
based on m2 and m3 rescuer knew that she ought to have taken a gamble and blocked
some shaft. Therefore, the act-utilitarian stit-theoretic representation of the Miners
Paradox is a variation of Example 4.10, and it is vulnerable to the problem that
was raised for such an example.

Example 4.11 (Puzzle #2). Consider the same basic scheme as in Puzzle #1. If Nikolai
bets and chooses correctly, he wins 10 roubles; however, this time, if he forfeits the bet,
he also wins 10 roubles; if he bets incorrectly, he wins nothing. Horty’s interpretation of
this puzzle is depicted in Figure 4.4.
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Figure 4.4: Puzzle #2.

Intuitively, Nikolai ought to have forfeited the bet. The reason is that by
choosing to do so he would win by the same amount as when betting correctly,
but without choosing an action that could possibly fail. The problem, then, is
that, for all i ∈ {2, 3} and h ∈ Hmi ,M, ⟨mi, h⟩ |= ¬KNik ⊙Nik ¬g: at every index based on
m2 and m3 Nikolai did not know that he ought to have forfeited the bet.

Example 4.12 (Puzzle #3). With the same basic scheme as in the previous puzzles, if
Nikolai bets and chooses correctly, he wins 10 roubles. This time, if he bets incorrectly
or forfeits the bet, he wins nothing. Horty’s interpretation of this puzzle is depicted in
Figure 4.5.

In Figure 4.5, w stands for the proposition ‘Nikolai and Dolokhov win.’ Here,
a problem ensues according to the following arguments: for all i ∈ {2, 3} and
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Figure 4.5: Puzzle #3.

h ∈ Hmi , M, ⟨mi, h⟩ |= KNik ⊙Nik w: at all indices based on m2 and m3 Nikolai knew
that he ought to have won; however, having known that he ought to have won was
not action-guiding in any sense, meaning that Nikolai’s knowledge of what he
ought to have done could not influence any of his available choices. In terms
of formulas, M, ⟨mi, h⟩ ̸|= Kα ⊙α w → ^Kα[α]w: at all indices based on m2 and m3

Nikolai knew that he ought to have won, but it was impossible for him to knowingly win.
Thus, the epistemic version of Kant’s principle of ought implies can is not satisfied.

4.3.1 Horty’s Solution: Action Types

Introducing both syntactic and semantic addenda to epistemic AUST, Horty (2019)
solved the problems implied by his three puzzles. On the syntactic side, he ex-
tended the language with modality [α kstit]φ (see Chapter 3’s Subsection 3.3.2),
meant to encode α’s ex interim knowledge of φ or α’s epistemic agency with re-
spect to φ (Horty & Pacuit, 2017). On the semantic side, he based the semantics
for [α kstit]φ on a set of action labels that was added to unconstrained eaubt-
models. The premise behind this extension was that the only way to relate choices
across indistinguishable indices was through tagging these choices with labels. To
clarify, actions that have the same label may lead to different outcomes at different
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moments, and indistinguishable moments should offer choices with same labels
(see Horty, 2019; Horty & Pacuit, 2017). Thus, in Horty’s proposal such labels
represent what is known in the literature as action types.15

To reason about types, one must also reason about tokens. As mentioned
in Chapter 2’s Subsection 2.4.2, the difference between types and tokens can be
phrased as follows: while an action token is the single performance of an action
by a specific agent at a specific moment, action types refer to categories or patterns
of actions, that can be repeated at different moments by different agents, and that
are instantiated in tokens.

A usual assumption in stit theory is that the cells in choice-partitions, that
represent the actions available to an agent at some moment, are action tokens
rather than types. The reason is that these cells are specific to each point in
time and to each agent. Action types can then be seen as sets of tokens that
share properties but may lead to different outcomes according to the moment
when they—the tokens—are performed. Thus, extending the models with labels,
meant to represent action types, accompanies the intent of binding several tokens
together under a unifying term. Indeed, Horty’s (2019) goal behind binding
tokens together was to capture the uniformity condition that the same types of
actions must be available at indistinguishable moments.16 To be precise about his
strategy, let me address the formal definitions for Horty’s (2019) logic of epistemic
oughts.

Definition 4.13 (Syntax for Horty’s logic of epistemic oughts). Given a finite set
Ags of agent names and a countable set of propositions P, the grammar for the formal
language LH is given by

φ ::= p | ¬φ | φ ∧ φ | □φ | [α stit]φ | Kαφ | [α kstit]φ |
⊙[α stit]φ | ⊙[α kstit]φ,

where p ranges over P and α ranges over Ags.

In this language, □φ, and Kαφ have the same meanings as in the previous
definitions of this chapter; [α stit]φ is Horty’s notation for [α]φ; [α kstit]φ is
meant to express that agent α has seen to it that φ in an epistemic sense, or that

15Indeed, action types have a long-standing tradition in the literature on knowledge and agency,
especially in the literature on alternating-time temporal logic (ATL) (Alur et al., 2002) and its epistemic
extension, commonly referred to as ATEL. ATEL’s goal is to reason about the notion ability under
imperfect information (see Ågotnes, 2006; Ågotnes et al., 2015; Jamroga & Ågotnes, 2007; van der
Hoek & Wooldridge, 2002) (see also Subsections 2.4.2 and 2.4.4 of Chapter 2).

16In previous chapters I have referred to this condition as uniformity of available action types (UAAT)
(see Footnote 40 on p. 65 and the discussion on p. 94, for instance).
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α had ex interim knowledge of φ; ⊙[α stit]φ is Horty’s notation for ⊙αφ; and
⊙[α kstit]φ is meant to express that seeing to it that φ was α’s epistemic ought.
The formulas of this language are evaluated on what I refer to as finite-choice
Horty-like labelled eaubt-models, whose definition is included below (Horty, 2019;
Horty & Pacuit, 2017, notation adapted).

Definition 4.14 (Labelled eaubt-frames & models). A tuple of the form〈
M,⊏,Ags,Choice, {∼α}α∈Ags ,Value,Tps,Lbl,Exe

〉
is called a labelled eaubt-frame

iff

•
〈
M,⊏,Ags,Choice, {∼α}α∈Ags ,Value

〉
is an unconstrained eaubt-frame (Defini-

tion 4.8).

•
〈
M,⊏,Ags,Choice,Tps,Lbl,Exe

〉
is a labelled bt-frame (Definition 2.24, p. 63).

If in a labelled eaubt-frame function Choice is such that Choicem
α is finite for every

α ∈ Ags and m ∈ M, then I will refer to the frame as a finite-choice labelled eaubt-
frame.17 If a labelled eaubt-frame additionally satisfies the following two constraints,
then I will refer to the frame as a Horty-like labelled eaubt-frame:

• (UAAT) For every index ⟨m, h⟩, if ⟨m, h⟩ ∼α ⟨m′, h′⟩ , then Tpsm
α = Tpsm′

α .

• (C4) For every index ⟨m, h⟩, if ⟨m, h⟩ ∼α ⟨m′, h′⟩, then ⟨m, h∗⟩ ∼α
〈
m′, h′∗

〉
for every

h∗ ∈ Hm, h′∗ ∈ Hm′ . This constraint allows us to lift the epistemic indistinguishabil-
ity relations from the level of indices to the level of moments: in Horty-like labelled
eaubt-frames, one writes m ∼α m′ iff there exist h ∈ Hm and h′ ∈ Hm′ such that
⟨m, h⟩ ∼α ⟨m′, h′⟩, and constraint (C4) implies that ∼α is an equivalence relation
on M.18

A labelled eaubt-model M, then, is a tuple that results from adding a valuation
function V to a labelled eaubt-frame, where V : P → 2I(M×H) assigns to each atomic
proposition a set of indices. If one adds a valuation like this to a tuple defining a finite-
choice labelled frame, then I refer to the model as finite-choice. If one adds a valuation like
this to a tuple defining a Horty-like labelled frame, then I refer to the model as Horty-like.

Definition 4.15 (Dominance ordering of types). LetM be a finite-choice Horty-like
labelled eaubt-model. For α ∈ Ags and m ∈ M, let ⪯H be a dominance ordering on
Tpsm

α defined by the following rule: τ ⪯H τ′ iff for all m′ such that m ∼α m′, Exem′
α (τ) ≤

17The terminology of ‘finite-choice’ also applies to any stit-theoretic frame for which the images of
Choice are all finite partitions.

18The reader might find the tag for this constraint odd, but the reason is that I decided to refer to
it with the same tag that Horty and Pacuit (2017) use.
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Exem′
α (τ′), where ≤ is the ordering defined in the first bullet point of Definition 4.4. I

write τ ≺H τ′ iff τ ⪯H τ′ and τ′ ⪯̸H τ. The set of α’s optimal action types at m is then
defined as TOptimalmα :=

{
τ ∈ Tpsm

α ; there is no τ′ ∈ Tpsm
α s. t. τ ≺H τ′

}
.

Definition 4.16 (Evaluation rules for Horty’s epistemic oughts). LetM be a finite-
choice Horty-like labelled eaubt-modelM. The semantics onM for the formulas of LH

are defined recursively by the following truth conditions, evaluated at index ⟨m, h⟩:

M, ⟨m, h⟩ |= p iff ⟨m, h⟩ ∈ V(p)
M, ⟨m, h⟩ |= ¬φ iff M, ⟨m, h⟩ ̸|= φ
M, ⟨m, h⟩ |= φ ∧ ψ iff M, ⟨m, h⟩ |= φ andM, ⟨m, h⟩ |= ψ
M, ⟨m, h⟩ |= □φ iff for all h′ ∈ Hm,M, ⟨m, h′⟩ |= φ
M, ⟨m, h⟩ |= [α stit]φ iff for all h′ ∈ Choicem

α (h),M, ⟨m, h′⟩ |= φ
M, ⟨m, h⟩ |= Kαφ iff for all ⟨m′, h′⟩ s. t. ⟨m, h⟩ ∼α ⟨m′, h′⟩ ,

M, ⟨m′, h′⟩ |= φ
M, ⟨m, h⟩ |= [α kstit]φ iff for all m′ s. t. m ∼α m′,M, ⟨m′, h′⟩ |= φ

for every h′ ∈ Hm′ s. t. Lblα(⟨m, h⟩) = Lblα(⟨m′, h′⟩)
M, ⟨m, h⟩ |= ⊙[α stit]φ iff for all L ∈ Optimalmα ,M, ⟨m, h′⟩ |= φ for every h′ ∈ L
M, ⟨m, h⟩ |= ⊙[α kstit]φ iff for all τ ∈ TOptimalmα ,M, ⟨m′, h′⟩ |= φ for every

m′ s. t. m ∼α m′ and every h′ ∈ Exem′
α (τ).

Thus, the main ideas underlying Horty’s epistemic oughts are (a) that types
can be ranked on the basis of an ordering of tokens at indistinguishable states, and
(b) that epistemic oughts are effects of all the tokens that result from executing the
optimal types at indices that are indistinguishable from the one of evaluation. In
other words, at a given index to have seen to it that φ was an epistemic ought of
agent α iff φ is an effect of all tokens that result from the execution of the types in
TOptimalmα .

As the reader can quickly verify (see Horty, 2019, for details), these definitions
solve the problems posed by the puzzles introduced in the previous subsection.
Let me briefly elaborate on such a solution.

In Examples 4.10, 4.11, and 4.12, Nikolai’s available actions—action tokens,
that is—at m2 are of the same type as those available at m3. To clarify, consider
once again Figures 4.3, 4.4, and 4.5. For Nikolai’s choices N1 and N4, where he
bets heads, Horty set that Lbl(N1) = Lbl(N4), so that N1 and N4 are two action
tokens of the type ‘to bet heads.’ For choices N2 and N5, where Nikolai bets
tails, Lbl(N2) = Lbl(N5); and for choices N3 and N6, where Nikolai forfeits the bet,
Lbl(N3) = Lbl(N6).

Thus, interpreting Example 4.10 (Puzzle #1) as a Horty-like finite-choice la-
belled eaubt-modelM, the definition of ⪯H implies that Lbl(Li) ∈ TOptimalm j

Nik for
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every 3 ≤ i ≤ 8 and j ∈ {2, 3}. Thus, for all j ∈ {2, 3} and h ∈ Hm j , M,
〈
m j, h

〉
|=

¬ ⊙ [Nik kstit]g: Nikolai was not epistemically obligated to gamble, which implies
thatM,

〈
m j, h

〉
|= KNik¬ ⊙ [Nik kstit]g: Nikolai knew that he was not epistemically

obligated to gamble. In Example 4.11 (Puzzle #2), TOptimalm j

Nik = {Lbl(N3)} for all

j ∈ {2, 3}. Thus, for all j ∈ {2, 3} and h ∈ Hm j ,M,
〈
m j, h

〉
|= KNik ⊙ [Nik kstit]¬g:

Nikolai knew that he was epistemically obligated to not gamble. In Example 4.12 (Puz-
zle #3), Lbl(Li) ∈ TOptimalm j

Nik for every 3 ≤ i ≤ 8 and j ∈ {2, 3}. Thus, for all j ∈ {2, 3}
and h ∈ Hm j ,M,

〈
m j, h

〉
|= ¬ ⊙ [Nik kstit]w: Nikolai was not epistemically obligated

to win, which implies thatM,
〈
m j, h

〉
|= KNik¬⊙ [Nik kstit]w: Nikolai knew that he

was not epistemically obligated to win.
As a solution to the puzzles’ problems, then, Horty’s approach is successful.

However, one can raise two points of criticism:

1. Horty and Pacuit (2017) explained that constraint (C4) was imposed in the
definition of labelled eaubt-models (Definition 4.14) just so that [α kstit]
would result in an S5 operator. Before, I mentioned that (C4) implies that
the indistinguishability relations characterize uncertainty at the level of
moments, rather than at the level of indices. The problem with (C4), then,
is that it limits the class of models to those in which knowledge is moment-
dependent. When knowledge is moment-dependent, agents cannot know
whether they performed one non-trivial action instead of another. To clarify,
formula Kαφ → □φ is valid in Horty’s (2019) logic, so that agents can only
know things that are settled.19

Similarly—and as mentioned in Chapter 3 (p. 94)—constraint (UAAT) and the
semantics for [α kstit]φ entail that Horty’s logic satisfies what I previously
referred to as knowledge of one’s own action (KOA) (see the discussion about
this property on p. 92, as well as Footnote 19 on p. 93). According to (KOA),
agents cannot have uncertainty about the actions that they perform at the ex
interim stage. In other words, if pτα denotes the proposition ‘the action type
τ is performed by agent α,’ then formula pτα → [α kstit]pτα is valid.

2. Horty and Pacuit (2017) argued that action types are necessary to deal
with action tokens across indistinguishable states. As shown by Duijf et
al. (2021) in the context of the stit-theoretic formalization of the epistemic
sense of ability (and as will be shown in Section 4.4 in the context of the
relation between knowledge and ought-to-do), this is not the case. To be
precise, in Subsection 4.4.3 a general correspondence result is put forward,

19It is precisely because of this that Horty identified the kind of knowledge that Kαφ expresses in
his logic as ex ante knowledge (see Chapter 3’s Subsection 3.3.1).
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that proves that any labelled eaubt-model—which includes action types—
can be transformed into a specific kind of eaubt-model—which eschews
action types—such that (a) epistemic agency in the former corresponds
to knowingly doing in the latter, and such that (b) epistemic oughts in
the former correspond to subjective ought-to-do’s in the latter. Thus, the
introduction of action types leads to unnecessary complications both in the
models and in the truth conditions for [α kstit]φ and ⊙[α kstit]φ.

Summing up, although Horty’s approach is successful as a solution to the puz-
zles’ problems, one can also be successful without using action types! Supporting
this last claim is one of the main objectives of the next section.

4.4 A Logic of Objective & Subjective Oughts

In this important section I present a framework that solves the problems implied
by the puzzles of Section 4.3 and that, when compared with Horty’s (2019) solu-
tion, includes the following advantages: (a) it offers simpler semantics (without
action types) that are more naturally related to Horty’s (2001) seminal theory
of ought-to-do (Definitions 4.18–4.21); (b) it is more flexible, since the study of
knowledge, agency, and ought-to-do is not as limited by model constraints as in
Horty’s (2019) approach; and (c) it admits more straightforward syntactic charac-
terizations, something that is very important for axiomatization (see Section 4.5).20

Following my joint works with Jan Broersen (Abarca & Broersen, 2019; Broersen
& Abarca, 2018a, 2018b), I propose to disambiguate two senses of ought-to-do:
an objective one, which coincides with Horty’s act-utilitarian ought-to-do, and a
subjective one, which arises from the epistemically best candidates in the set of
available choices for an agent. By ‘epistemically best’ I mean those choices that
are undominated not only at the index of evaluation but whose epistemic equiva-
lents across indistinguishable indices are also undominated. Thus, we are talking
about an extension of the language in Definition 4.7 with a new modality ⊙Sαφ,
meant to express that agent α subjectively ought to have done φ. The basic idea
is that while ⊙αφ is correlated with α’s causal agency and causal ability, ⊙Sαφ is
correlated with α’s knowingly-doing and ability in the epistemic sense. Let me
cut to the chase and go ahead with the formal definitions.

20Whether Horty’s (2019) logic of epistemic oughts is axiomatizable is still an open problem.



162 · Agency, Knowledge, and Obligation

4.4.1 Syntax & Semantics

Definition 4.17 (Syntax for epistemic act-utilitarian stit theory (EAUST)). Given a
finite set Ags of agent names and a countable set of propositions P, the grammar for the
formal language LKO is given by

φ ::= p | ¬φ | φ ∧ φ | □φ | [α]φ | Kαφ | ⊙αφ | ⊙Sαφ,

where p ranges over P and α ranges over Ags.

In this language, □φ, [α]φ, and Kαφ have the same meanings as in previous
definitions; ⊙αφ is the same modality as in AUST, but I reinterpret it as expressing
that agent α objectively ought to have seen to it that φ; and ⊙Sαφ is meant to
express that α subjectively ought to have seen to it thatφ. As for the semantics, the
structures on which the formulas ofLKO are evaluated are based on (constrained)
eaubt-frames:

Definition 4.18 (Eaubt-frames & models). A tuple〈
M,⊏,Ags,Choice, {∼α}α∈Ags ,Value

〉
is called an epistemic act-utilitarian branching-time frame (eaubt-frame for short) iff

•
〈
M,⊏,Ags,Choice, {∼α}α∈Ags ,Value

〉
is a structure as in Definition 4.8, that

additionally satisfies the following conditions:

– (OAC) Own action condition: for all α ∈ Ags and each index ⟨m, h⟩,
⟨m, h⟩ ∼α ⟨m, h′⟩ for every h′ ∈ Choicem

α (h).

– (Unif − H) Uniformity of historical possibility: for all α ∈ Ags and each
index ⟨m, h⟩, if ⟨m, h⟩ ∼α ⟨m′, h′⟩, then for every h∗ ∈ Hm there exists h′∗ ∈ Hm′

such that ⟨m, h∗⟩ ∼α
〈
m′, h′∗

〉
.

As a convention, I write m ∼α m′ if there exist h ∈ Hm and h′ ∈ Hm′ such that
⟨m, h⟩ ∼α ⟨m′, h′⟩.

An eaubt-modelM consists of the tuple that results from adding a valuation function
V to an eaubt-frame, whereV : P→ 2I(M×H) assigns to each atomic proposition a set of
indices.

As for (OAC) and (Unif − H), Broersen and Abarca (2018a) argued that these
conditions are very useful, since together they imply the following properties for
EAUST: (a) agents are able to knowingly do the same things across epistemically
indistinguishable indices; (b) subjective ought-to-do’s conform to Kant’s directive
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of ought implies can in its subjective, epistemic version of subjectively ought-to-do
implies the ability to knowingly do; and (c) if an agent subjectively ought to have
done φ, then the agent must have known that this is the case. Indeed, the proof
of soundness (Proposition C.40) for a proof system introduced in the next section
certifies that conditions (OAC) and (Unif − H) are instrumental in granting points
(a), (b), and (c).

Following Duijf (2018, Chapter 3), I refer to (OAC) as own action condition.
This frame condition entails that agents cannot know more than what their own
actions bring about, and—as will be addressed in Subsection 4.5.1—it is defined
by formula Kαφ → [α]φ. Condition (OAC) was introduced for the first time in
Chapter 3, where I mentioned that it limits the analysis to cases in which an
agent cannot have known what choices the other agents would perform (see
Footnote 19, p. 93). In turn, and again following Duijf (2018, Chapter 3), I refer
to (Unif − H) as uniformity of historical possibility. This frame condition underlies a
notion of uniformity of available actions, because it implies the following property
in eaubt-models: at an index an agent was able in the epistemic sense to see to
it that φ only if at the index the agent knew that it was possible to bring about
φ. In other words, (Unif − H) implies that agents are able to carry out the same
actions at indistinguishable indices. As will also be addressed in Subsection 4.5.1,
(Unif − H) is defined by formula ^Kαφ→ Kα^φ.

Eaubt-models allow us to provide semantics for the formulas ofLKO. However,
before presenting the evaluation rules for such formulas, further definitions are
required. The interesting cases concern modalities ⊙αφ and ⊙Sαφ. As for ⊙αφ,
its semantics is the same as AUST’s, although I reinterpret ⊙αφ as a modality for
objective ought-to-do’s. As for ⊙Sαφ, its semantics also results from a dominance
ordering, but one that is different to the one used for objective ought-to-do’s. To
define this subjective dominance ordering, I make use of a new semantic concept,
the epistemic clusters of a given choice of action:

Definition 4.19 (Epistemic clusters). Let M be an eaubt-frame with M as its set of
moments. Take α ∈ Ags, and let m,m′ ∈ M be such that m ∼α m′. For L ⊆ Hm, L’s
epistemic cluster at m′ is the set

[L]m′
α := {h′ ∈ Hm′ ; there is h ∈ L s. t. ⟨m, h⟩ ∼α ⟨m′, h′⟩} .

Thus, for all L ∈ Choicem
α , L’s epistemic cluster at m′ is nothing more than

the set of histories in Hm′ anchoring indices that agent α cannot distinguish from
those corresponding to L. As mentioned above, I use epistemic clusters to define a
subjective dominance ordering over an agent’s available actions at some moment.
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In this subjective dominance ordering, the agent’s choices are ranked taking into
consideration its epistemic equivalents, so that the actions that are subjectively
good enough will be the basis of said agent’s subjective ought-to-do’s:

Definition 4.20 (Subjective dominance ordering over choices). For an eaubt-frame
with M as its set of moments, α ∈ Ags, and m ∈M, consider the following definitions:

• Recall that ≤ is an ordering on 2Hm such that X ≤ Y iff Value(h) ≤ Value(h′) for
every h ∈ X and h′ ∈ Y. Let ⪯s be an ordering on Choicem

α defined by the rule: for
L,L′ ∈ Choicem

α , L ⪯s L′ iff for all m′ such that m ∼α m′ and each S ∈ Statem′
α ,

[L]m′
α ∩S ≤ [L′]m′

α ∩S. I write L ≺s L′ iff L ⪯s L′ and L′ ⪯̸s L. Observe that L ≺s L′

iff (a) for all m′ ∈M such that m ∼α m′ and each S ∈ Statem′
α , [L]m′

α ∩S ≤ [L′]m′
α ∩S,

and (b) there exist m∗ ∈ M and S∗ ∈ Statem∗
α such that m ∼α m∗ and such that

[L′]m∗
α ∩ S ≰ [L′]m∗

α ∩ S.

• On the basis of ⪯s, a set of subjectively optimal actions is defined: SOptimalm
α :={

L ∈ Choicem
α ; there is no L′ ∈ Choicem

α s. t. L ≺s L′
}
.

Observe that the definition of ⪯s accounts for a form of sure-thing reason-
ing: for all α ∈ Ags and each moment m′ such that m ∼α m′, the members of
Statem′

α provide a background against which α’s actions are subjectively ranked.
To clarify, once again consider Example 4.5 and its depiction in Figure 4.2.
With the intuitively natural definition of ∼Nik given by ⟨m1, h1⟩ ∼Nik ⟨m1, h4⟩ and
⟨m1, h2⟩ ∼Nik ⟨m1, h2⟩, one has that [H]m1

Nik = {h2, h3} and that [T]m1
Nik = {h1, h4}. Thus,

for all S ∈ Statem1
Nik = {H(for Dolokhov),T(for Dolokhov)}, [T]m1

Nik ∩ S ≤ [H]m1
Nik ∩ S and

[H]m1
Nik∩S ≰ [T]m1

Nik∩S, which implies that H ≻s T. Thus, betting heads subjectively
dominates betting tails for Nikolai, as desired.21

The subjective dominance ordering ⪯s is used to define semantics for ⊙Sαφ:

Definition 4.21 (Evaluation rules for EAUST). Let M be an eaubt-model. The
semantics onM for the formulas ofLKO are obtained by extending the recursive definition
in Definition 4.9 with the following clause:

M, ⟨m, h⟩ |= ⊙Sαφ iff for all L ∈ Choicem
α s. t. M, ⟨m′, hL⟩ ̸|= φ for some m′ s. t.

m ∼α m′ and some hL ∈ [L]m′
α , there is L′ ∈ Choicem

α s. t.
L ≺s L′and, if L′′ = L′ or L′ ⪯s L′′, thenM, ⟨m′′, h′′⟩ |= φ
for every m′′ s. t. m ∼α m′′ and every h′′ ∈ [L′′]m′′

α .

Therefore, one says that at index ⟨m, h⟩ agent α subjectively ought to have seen
to it thatφ iff for each action L of α that does not guarantee the bringing about ofφ

21It is worth noticing that Horty (2019) did not account for sure-thing reasoning in his logic for
epistemic oughts. According to the definition of⪯H in Definition 4.14, Lbl(H) ⪰̸H Lbl(T) in Example 4.5.
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there is a subjectively better action L′ such that (a) L’s epistemic clusters guarantee
the bringing about of φ, and (b) for each action that is subjectively better than L′,
all its epistemic clusters also guarantee the bringing about of φ. Just as in the case
of objective ought-to-do’s, such a truth condition can be much more intuitively
stated when the number of available choices at each moment is finite. In this case,
one has that

M, ⟨m, h⟩ |= ⊙Sαφ iff for all L ∈ SOptimalm
α ,M, ⟨m′, h′⟩ |= φ

for every m′ s. t. m ∼α m′ and every h′ ∈ [L]m′′
α .

The idea, then, is that at a given index α subjectively ought to have seen to it that
φ iff φ is an effect of α’s subjectively optimal actions at said index.

4.4.2 Solving the Problems in Horty’s Puzzles

The semantics for subjective ought-to-do’s allows us to solve the problems implied
by Horty’s puzzles. To be precise, consider Figures 4.3–4.5. For all three puzzles,
the fact that Dolokhov hides his coin from Nikolai is captured by defining ∼Nik

through the following information sets: {⟨m2, h1⟩ , ⟨m3, h4⟩}, in which Nikolai has
bet heads; {⟨m2, h2⟩ , ⟨m3, h5⟩}, in which Nikolai has bet tails; and {⟨m2, h3⟩ , ⟨m3, h6⟩},
in which Nikolai has forfeited the bet.

For Puzzle #1 in Example 4.10, then, consider the eaubt-modelM depicted in
Figure 4.6.
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Figure 4.6: Puzzle #1, revisited.
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Here, the setting coincides with Figure 4.3’s in everything except Nikolai’s
epistemic states, which are represented with the indistinguishability relation ∼Nik

given by dashed lines (omitting reflexive loops). Thus, while in Horty’s (2019)
interpretation Nikolai could not distinguish between his available actions, in mine
he could, certifying the fact that my models are more flexible than Horty’s when
it comes to indistinguishability relations.

Now, recall that Puzzle #1’s problem was thatM, ⟨mi, h⟩ |= KNik ⊙Nik g for all
i ∈ {2, 3} and h ∈ Hmi : at all indices based on moments m2 and m3 Nikolai knew that he
ought to have gambled, even if gambling was a risky move that could result in a payoff
of 0. However, now I interpret this knowledge as the knowledge of an objective
ought-to-do: Nikolai knew that he objectively ought to have gambled, in the sense
that—objectively speaking—in every best choice he indeed has gambled. As for
subjective ought-to-do’s, however, one has thatM, ⟨mi, h⟩ |= ¬⊙SNik g for all i ∈ {2, 3}
and h ∈ Hmi : at all indices based on m2 and m3 Nikolai did not subjectively ought to
have gambled. This is a consequence of the following arguments:

• First, observe that [N1]m2
Nik = N1 and [N1]m3

Nik = N4, that [N2]m2
Nik = N2 and

[N2]m3
Nik = N5, and that [N3]m2

Nik = N3 and [N3]m3
Nik = N6. Similarly, [N4]m2

Nik = N1

and [N4]m3
Nik = N4, [N5]m2

Nik = N2 and [N5]m3
Nik = N5, and [N6]m2

Nik = N3 and
[N6]m3

Nik = N6.

• Secondly, observe that, for all i ∈ {2, 3}, every S ∈ Statemi
Nik is such that S = Hmi .

Thus, the fact that N2 ≤ N1, which means that [N2]m2
Nik ≤ [N1]m2

Nik, implies that
N2 ⊁s N1. Similarly, the fact that N3 ≤ N1 implies that N3 ⊁s N1. Now, the
fact that N4 ≤ N5, which means that [N1]m3

Nik ≤ [N2]m3
Nik, implies that N1 ⊁s N2,

and the fact that N6 ≤ N5, which means that [N3]m3
Nik ≤ [N2]m3

Nik, implies that
N3 ⊁s N2. In turn, the fact that N4 ≤ N6, which means that [N1]m3

Nik ≤ [N3]m3
Nik,

implies that N1 ⊁s N3, and the fact that N2 ≤ N3 implies that N2 ⊁s N3. Thus,
SOptimalm2

Nik = {N1,N2,N3}. With analogous arguments, one can verify that
SOptimalm3

Nik = {N4,N5,N6}.

• Thus, N3 is such that N3 ∈ SOptimalm2
Nik and [N3]m2

Nik = N3 ⊆ |¬g|m2 , and N6

is such that N6 ∈ SOptimalm3
Nik and [N6]m3

Nik = N6 ⊆ |¬g|m3 . Since the eaubt-
model in Figure 4.6 is finite, one can use the evaluation rule for ⊙SNikφ that
is stated in terms of SOptimalm

α (p. 165). Therefore, N3 and N6 attest to the
fact thatM, ⟨mi, h⟩ |= ¬ ⊙SNik g for all i ∈ {2, 3} and h ∈ Hmi , which is what we
wanted to show.

Furthermore, Definition 4.21 also implies that M, ⟨mi, h⟩ |= KNik¬ ⊙
S

Nik g: at all
indices based on m2 and m3 Nikolai knew that he did not subjectively ought to have
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gambled. Therefore, Puzzle #1’s problem is solved, and the same solution applies
for the variation of this example that represents the Miners Paradox. In this case,
rescuer did not subjectively ought to have blocked a shaft.

For Puzzle #2 in Example 4.11, consider Figure 4.7.
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Figure 4.7: Puzzle #2, revisited.

Recall that Puzzle #2’s problem was that M, ⟨mi, h⟩ ̸|= KNik ⊙
S

Nik ¬g for all
i ∈ {2, 3}: at all indices based on m2 and m3 Nikolai did not know that he subjectively
ought to have not gambled. However, now I interpret this as saying that Nikolai did
not know that he objectively ought to have not gambled, which is a reasonable
assumption on account of the fact that—objectively speaking—not every best
choice involved not gambling. In contrast, reasoning about Nikolai’s subjective
ought-to-do’s leads us to conclude thatM, ⟨mi, h⟩ |= ⊙SNik¬g: at all indices based on
m2 and m3 Nikolai subjectively ought to have not gambled. This is a consequence of
the following arguments:

• The fact that N4 ≤ N6 implies that N1 ⊁s N3, and the fact that N2 ≤ N3

implies that N2 ⊁s N3. This time, however, observe that the fact that N6 ≰ N4

implies that N3 ≻s N1, and the fact that N3 ≰ N2 implies that N3 ≻s N2. Thus,
SOptimalm2

Nik = {N3}, and, analogously, SOptimalm3
Nik = {N6}.

• Thus, for N3 ∈ SOptimalm2
Nik, [N3]m2

Nik = N3 ⊆ |¬g|m2 and [N3]m3
Nik = N6 ⊆ |¬g|m3 .

Similarly, for N6 ∈ SOptimalm3
Nik, [N6]m2

Nik = N3 ⊆ |¬g|m2 and [N6]m3
Nik = N6 ⊆

|¬g|m3 . Definition 4.21 then implies thatM, ⟨mi, h⟩ |= ⊙SNik¬g for all i ∈ {2, 3}
and h ∈ Hmi , which is what we wanted to show.
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Furthermore, Definition 4.21 also implies that M, ⟨mi, h⟩ |= KNik ⊙
S

Nik ¬g for
all i ∈ {2, 3} and h ∈ Hmi : at all indices based on m2 and m3 Nikolai knew that he
subjectively ought to have not gambled. Therefore, Puzzle #2’s problem is solved.

For Puzzle #3 in Example 4.12, consider Figure 4.8.
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Figure 4.8: Puzzle #3, revisited.

Recall that Puzzle #3’s problem was thatM, ⟨mi, h⟩ |= KNik⊙Nik w for all i ∈ {2, 3}
and h ∈ Hmi : at all indices based on m2 and m3 Nikolai knew that he ought to have won.
Once again, now I interpret this statement as saying that Nikolai knew that he
objectively ought to have won, which is a reasonable assumption on account of
the fact that—objectively speaking—in every best choice he has won. In contrast,
observe thatM, ⟨mi, h⟩ |= ¬⊙SNik w or i ∈ {2, 3} and h ∈ Hmi : at all indices based on m2

and m3 Nikolai did not subjectively ought to have won. This is a consequence of the
following arguments:

• The fact that N2 ≤ N1 implies that N2 ⊁s N1, and the fact that N3 ≤ N1

implies that N3 ⊁s N1. Similarly, the fact that N4 ≤ N5 implies that N1 ⊁s N2,
and the fact that N3 ≤ N2 implies that N3 ⊁s N2. This time, however, the
fact that N1 ≰ N3 implies that N1 ≻s N3. Thus, SOptimalm2

Nik = {N1,N2}, and,
analogously, SOptimalm3

Nik = {N4,N5} .

• Thus, N2 is such that N2 ∈ SOptimalm2
Nik and [N2]m2

Nik = N2 ⊆ |¬w|m2 , and N4 is
such that N4 ∈ SOptimalm3

Nik and [N4]m3
Nik = N4 ⊆ |¬w|m3 . Definition 4.21 then

implies thatM, ⟨mi, h⟩ |= ¬⊙SNik w for all i ∈ {2, 3} and h ∈ Hmi , which is what
we wanted to show.
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Furthermore, Definition 4.21 implies thatM, ⟨mi, h⟩ |= KNik¬⊙
S

Nik w for all i ∈ {2, 3}
and h ∈ Hmi : at all indices based on m2 and m3 Nikolai knew that he did not subjectively
ought to have won. Therefore, Puzzle #3’s problem is solved.22

4.4.3 Relation to Horty’s Framework of Epistemic Oughts

When comparing my solution to the puzzles’ problems with Horty’s (2019), it is
important to point out that my formalism is different from his in four main points:

1. In eaubt-models, indistinguishability relations occur at the level of indices,
while—as mentioned in Subsection 4.3.1 (item 1 on p. 160)—Horty’s models
include indistinguishability relations at the level of moments.

2. Eaubt-models do not include action types.

3. EAUST is not restricted to finite-choice models, meaning that agents’ choice-
partitions can also be infinite.

4. The dominance ordering for my subjective ought-to-do’s accounts for a
form of sure-thing reasoning that is absent in Horty’s treatment of epistemic
oughts (see Footnote 21).

Regardless of these differences, the respective solutions are virtually the same,
as represented in Table 4.1.

Puzzle
Solution

Horty’s Mine

Ex. 4.10 (Puzzle #1) KNik¬ ⊙ [Nik kstit]g KNik¬ ⊙
S

Nik g

Ex. 4.11 (Puzzle #2) KNik ⊙ [Nik kstit]¬g KNik ⊙
S

Nik ¬g

Ex. 4.12 (Puzzle #3) KNik¬ ⊙ [Nik kstit]w KNik¬ ⊙
S

Nik w

Table 4.1: Comparison of solutions.

Therefore, ⊙Sα works as an analog of ⊙[α kstit].
Besides the fact that both approaches solve the puzzles’ problems, there is a

stronger connection between the framework with action types (Horty, 2019; Horty
& Pacuit, 2017) and the one developed here. Let me elaborate on this connection.

22Interestingly, observe that, in this case,M, ⟨mi, h⟩ |= ⊙SNik g: at all indices based on m2 and m3 Nikolai
subjectively ought to have gambled.
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Duijf et al. (2021) established a correspondence result between Horty-like
labelled ebt-models (which are those restrictions of Definition 4.14’s models that
do not include Value and its associated notions), on the one hand, and ebt-models
(Definition 2.28, p. 70), on the other. As shown below, this result can be extended
to formulas of the language LH, the language that includes the deontic operators
⊙[α stit] and ⊙[α kstit].

The basic idea is to first define a translation Tr from LH to LKO. One then
shows that a finite-choice Horty-like labelled eaubt-modelM can be used to build
a finite-choice eaubt-modelM′ such that, for every formula φ ofLH, φ holds at an
index inM iff Tr(φ) holds at the same index inM′, provided that one weakens
the definition of ⪯s inM′ and drops sure-thing reasoning. Following Duijf et al.
(2021), I refer toM′ as the transform structure ofM. I address the basics of such a
correspondence result below.

Definition 4.22 (Translation). Assume that bothLH andLKO are based on the same set
P of propositional letters and on the same set Ags of agent names. A translation function
Tr : LH → LKO is recursively defined by setting

Tr(p) = p
Tr(¬φ) = ¬Tr(φ)
Tr(φ ∧ ψ) = Tr(φ) ∧ Tr(ψ)
Tr(□φ) = □Tr(φ)
Tr([α stit]φ) = [α]Tr(φ)
Tr(Kαφ) = □KαTr(φ)
Tr([α kstit]φ) = KαTr(φ)
Tr(⊙[α stit]φ) = ⊙αTr(φ)
Tr(⊙[α kstit]φ) = ⊙

S
αTr(φ).

Definition 4.23 (Transform structure). Let F be a labelled eaubt-frame of
the form

〈
M,⊏,Ags,Choice, {∼α}α∈Ags ,Value,Tps,Lbl,Exe

〉
. The tuple F ′ :=〈

M′,⊏′,Ags′,Choice′,
{
∼
′
α

}
α∈Ags ,Value′

〉
is called the transform structure of F iff

M′ = M, ⊏′=⊏, Ags′ = Ags, Choice′ = Choice, Value′ = Value, and, for α ∈ Ags,
∼
′
α is defined on I(M × H) by the following rule: for indices ⟨m, h⟩ and ⟨m′, h′⟩,
⟨m, h⟩ ∼′α ⟨m′, h′⟩ iff ⟨m, h⟩ ∼α ⟨m′, h′⟩ and Lblα (⟨m, h⟩) = Lblα (⟨m′, h′⟩) .

For a labelled eaubt-model M that is based on labelled eaubt-frame F and that
has valuation function V, the eaubt-modelM′ that results from adding V to F ’—the
transform structure of F—is known as the transform structure ofM.

The following proposition, whose proof is relegated to Appendix B, guarantees
that the transform structures of labelled eaubt-frames are indeed eaubt-frames.
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Proposition 4.24. LetF be a labelled eaubt-frame, and letF ′ be its transform structure.
Then F ′ is an unconstrained eaubt-frame. Additionally, if F is Horty-like, then F ′ is
an eaubt-frame, and if F is finite-choice, then F ′ is also finite-choice.

Let me illustrate these transform structures. Recall that, when presenting
Horty’s solution to the puzzles of Section 4.3, the strategy was to interpret Fig-
ures 4.3, 4.4, and 4.5 as Horty-like labelled eaubt-models. My interpretations of
Horty’s puzzles, discussed in Subsection 4.4.2, are actually the transform eaubt-
models of the Horty-like labelled eaubt-models in Figures 4.3, 4.4, and 4.5. To
be precise, the eaubt-model depicted in Figure 4.6—resp. 4.7, resp. 4.8—is the
transform eaubt-model of the Horty-like labelled eaubt-model of Figure 4.3—resp.
4.4, resp. 4.5.

The correspondence result, then, is given by the theorem below, whose proof
is relegated to Appendix B.

Theorem 4.25 (Correspondence). LetM be a finite-choice Horty-like labelled eaubt-
model, and letM′ be its transform finite-choice eaubt-model. Let us redefine ⪯s inM′ so
that, for α ∈ Ags, m ∈M, and L,L′ ∈ Choicem

α , L ⪯s L′ iff for all m′ such that m ∼α m′,
[L]m′

α ≤ [L′]m′
α . Then, for every formula φ of LH,M, ⟨m, h⟩ |= φ iffM′, ⟨m, h⟩ |= Tr(φ).

Thus, finite-choice Horty-like labelled eaubt-models correspond to a sub-class
of eaubt-models, namely finite-choice eaubt-models. Proposition 4.24 and The-
orem 4.25 imply that, while one can simulate Horty’s (2019) logic of epistemic
oughts using mine, a converse simulation can only hold if Horty’s logic is adapted
to handle cases with infinite choices.

4.5 Logic-Based Properties & Axiomatization

4.5.1 Properties

Let me present and discuss interesting properties of EAUST, in terms of formulas
that are either valid or invalid with respect to eaubt-models. As for the logic-based
properties of modalities □φ and [α]φ, they are the same as the ones reviewed
in Chapter 2’s Subsection 2.3.1: both operators are S5, and they validate the
schemata known as (SET) and (IA). For every α ∈ Ags, Kα is also S5. Thus,
the properties of knowledge are the ones reviewed in Chapter 2 Subsection 2.4.4:
logical omniscience, factivity, positive introspection, and negative introspection.

As for the deontic modalities, it turns out that both ⊙α and ⊙Sα are KD45
operators. The validity of schema (K) entails that the logical consequences of
obligations are also obligations; the validity of schema (D) (∆φ → ¬∆¬φ for ∆ ∈
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{
⊙α,⊙Sα

}
) entails that both objective and subjective ought-to-do’s are respectively

consistent; the validity of schema (4) (∆φ→ ∆∆φ for ∆ ∈
{
⊙α,⊙Sα

}
) entails that, for

both objective and subjective senses, if at an index an agent had an obligation, then
the agent also ought to have seen to it that the agent itself had that obligation; and
the validity of schema (5) (¬∆φ → ∆¬∆φ for ∆ ∈

{
⊙α,⊙Sα

}
) entails that, for both

objective and subjective senses, if at an index an agent did not have an obligation,
then the agent ought to have seen to it that the agent itself did not have that
obligation. According to Horty’s (2001, Chapter 4) seminal theory of ought-to-do,
all these are reasonable and desirable properties of obligations.

Furthermore, the validity, resp. invalidity, of the following formulas, with
respect to the class of eaubt-models, captures desirable properties for the interplay
between the modalities of EAUST.

1. (a) |= ⊙αφ→ □ ⊙α φ: if at an index an agent objectively ought to have seen
to it that φ, then this was settled at the index.

(b) |= ¬ ⊙α φ → □¬ ⊙α φ: if at an index an agent did not objectively ought
to have seen to it that φ, then this was settled at the index.

With properties 2–4 below, these two are standard in AUST (Horty, 2001;
Murakami, 2004). A proof of validity—for both formulas—follows from the
truth condition for ⊙αφ.23

2. |= □φ → ⊙αφ: if at an index φ was settled, then every agent objectively
ought to have seen to it that φ. A proof of validity follows from the truth
condition for ⊙αφ.

3. |= ⊙αφ → ^[α]φ: if at an index an agent objectively ought to have seen to
it that φ, then it must have been historically possible for that agent to see
to it that φ. This is the objective version of Kant’s directive of ought implies
can (see Horty, 2001, Chapter 4), so that an agent objectively ought to have
brought about φ only if it was causally able to bring about φ.

4. ̸|= ⊙αφ→ [α]φ: it is not necessarily true that if at an index an agent ought to
have seen to it that φ then that agent has seen to it that φ. The models used
for the examples in this chapter all offer counterexamples. For instance, in
Figure 4.6, ⟨m2, h2⟩ is such thatM, ⟨m2, h2⟩ |= ⊙αbh andM, ⟨m2, h2⟩ ̸|= [α]bh.

5. (a) |= Kαφ → [α]φ: if at an index an agent knew φ, then the agent has
actually seen to it that φ. In the discussion after Definition 4.18 (p. 162),
I mentioned that the validity of this formula is associated with frame

23In fact, the second formula can be derived using the first, as shown in Proposition C.38.
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condition (OAC) and that it implies that an agent cannot know more
than what it brings about. Moreover, Kαφ → [α]φ defines (OAC) (see
Blackburn et al., 2002, Chapter 3, for the precise definitions of frame
definability through modal formulas), since it is easy to see that an
unconstrained eaubt-frame satisfies (OAC) iff Kαφ→ [α]φ is valid on said
frame. For a proof of validity, see the (OAC) item in Proposition C.40.

(b) |= Kαφ↔ Kα[α]φ: to know φ is the same as to knowingly see to it that φ.
This formula characterizes knowledge in EAUST, so that, according to
my treatment of knowledge across the stages of information disclosure
(p. 152), Kαφ expresses that agent α had ex interim knowledge of φ.
Furthermore, since the validity of Kαφ ↔ Kα[α]φ implies the validity
of □Kαφ ↔ □Kα[α]φ, then ex ante knowledge boils down to ex interim
knowledge that holds regardless of anyone’s choice of action. For a
proof of validity of Kαφ ↔ Kα[α]φ, observe that it is implied by the
validity of Kαφ → [α]φ (item 5a above), coupled with the facts that
schemata (K), (T), and (4) for Kα are valid.

6. (a) |= ^Kαφ→ Kα^φ: if at an index it was historically possible for an agent
to know φ, then the agent knew that φ was historically possible at the
index. As also mentioned in the discussion after Definition 4.18, the
validity of this formula is associated with frame condition (Unif − H).
Indeed, it defines (Unif − H) insofar as an unconstrained eaubt-frame
satisfies (Unif − H) iff ^Kαφ→ Kα^φ is valid on said frame. For a proof
of validity, see the (Uni f −H) item in Proposition C.40.

(b) |= ^Kα[α]φ → Kα^[α]φ: if at an index it was historically possible for
an agent to knowingly see to it that φ, then the agent knew that it
was possible to see to it that φ at the index. This formula encodes a
requirement of uniformity, according to which agents should be able to
carry out the same actions at indistinguishable indices. Thus, one of the
essential targets for my notion of subjective ought-to-do’s—point (a) in
the discussion after Definition 4.18—has been met. In light of item 5b
above, it is easy to see how the validity of this formula is equivalent to
that of ^Kαφ→ Kα^φ.24

(c) |= □Kαφ ↔ Kα□φ: at an index an agent knew that φ was settled iff
it was settled that the agent knew φ. This formula characterizes ex

24Duijf et al.’s (2021) method can be adapted to show how ^Kαφ → Kα^φ (and thus ^Kα[α]φ →
Kα^[α]φ) correspond to the constraint of uniformity of available action types (UAAT) that Horty (2019)
includes in his Horty-like labelled eaubt-models. Observation 4.31 a shows that, even without the
validity of the formula in item 5b, the validity of ^Kα[α]φ→ Kα^[α]φ is equivalent to the validity of
^Kαφ→ Kα^φ.
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ante knowledge in EAUST, so that at a given index an agent had ex ante
knowledge ofφ iff the agent knew thatφwas settled. The validity of this
formula is also equivalent to that of ^Kαφ → Kα^φ (Observation 4.31
b).

7. |= ⊙Sαφ → ⊙Sα
(
Kα[α]φ

)
: if at an index an agent subjectively ought to have

seen to it thatφ, then the agent subjectively ought to have brought about that
itself has knowingly seen to it that φ. In other words, subjective ought-to-
do’s concern states of affairs that an agent not only should bring about, but
that it should bring about knowingly. This property carries one step further
the natural correlation between subjective ought-to-do’s and knowingly
doing, just as planned by Horty (2019).25 Given the validity of the formulas
associated with (OAC) (item 5 above), this formula is equivalent to ⊙Sαφ →
⊙
S
α (Kαφ), which is schema (A6) in the proof system for the logic of subjective

ought-to-do’s in Definition 4.29. Thus, for a proof of validity, see the (A6)
item in Proposition C.40.

8. ̸|= ⊙αφ→ ^Kα[α]φ: it is not necessarily true that if at an index an agent ob-
jectively ought to have seen to it thatφ then the agent could have knowingly
seen to it that φ. Figure 4.8 offers a counterexample, because for all i ∈ {2, 3}
and h ∈ Hmi M, ⟨mi, h⟩ |= ⊙Nikw andM, ⟨mi, h⟩ ̸|= ^KNik[Nik]w: at all indices
based on m2 and m3 Nikolai objectively ought to have won, but it was impossible
for him to knowingly win (as witnessed by the facts thatM, ⟨m3, h4⟩ ̸|= [Nik]w,
thatM, ⟨m2, h2⟩ ̸|= [Nik]w, and thatM, ⟨m2, h3⟩ ̸|= [Nik]w).

9. |= ⊙Sαφ → ^Kαφ: if at an index an agent subjectively ought to have seen to
it that φ, then it must have been possible for the agent to know φ. Given the
validity of the formulas associated with (OAC) in item 5, the validity of this
formula implies that of ⊙Sαφ → ^Kα[α]φ, which is the subjective version
of Kant’s directive of ought implies can: if at an index an agent subjectively
ought to have seen to it that φ, then it must have been possible for the
agent to knowingly see to it that φ. Thus, this property means that another
essential target for my notion of subjective ought-to-do’s—point (b) in the
discussion after Definition 4.18—has been met. For a proof of validity, see
the (s.Oic) item in Proposition C.40.

25As mentioned right before Definition 4.17 (p. 162), objective ought-to-do’s are correlated with
causal agency, and subjective ought-to-do’s are correlated with epistemic agency. Observe, then,
that formula ⊙αφ → ⊙α([α]φ) is indeed valid in the case of objective ought-to-do’s, ratifying such a
correlation (Horty, 2001; Murakami, 2004) (see also schema (A4) in Definition 4.27).
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10. ̸|= ⊙αφ → Kα ⊙α φ: it is not necessarily true that if at an index an agent
objectively ought to have seen to it that φ then the agent knew about
such an objective obligation. Figure 4.8 offers a counterexample, because
M, ⟨m2, h1⟩ |= ⊙Nikbh andM, ⟨m2, h1⟩ ̸|= KNik ⊙Nik bh: at ⟨m2, h1⟩Nikolai objec-
tively ought to have bet heads, but he did not know this (as witnessed by the fact
thatM, ⟨m3, h4⟩ |= ⊙Nikbt).

11. (a) |= ⊙Sαφ → Kα□ ⊙Sα φ: if at an index an agent subjectively ought to have
seen to it that φ, then the agent knew that such a subjective obligation
was settled at that index. Given the validity of□Kαφ↔ Kα□φ (item 6c in
this list), this formula implies that an agent’s subjective obligations are
always known ex ante by the agent. Thus, this property means that the
last of the essential targets for my notion of subjective ought-to-do’s—
point (c) in the discussion after Definition 4.18—has been met. For a
proof of validity, see the (s.Cl) item in Proposition C.40.

(b) |= ¬⊙Sαφ→ Kα□¬⊙Sαφ: if at an index an agent did not subjectively ought
to have seen to it thatφ, then the agent knew that this lack of a subjective
obligation was settled at that index. In the proof system for the logic
of subjective ought-to-do’s given in Definition 4.29, this formula can be
derived using ⊙Sαφ→ Kα□ ⊙Sα φ, so it is also valid (Observation 4.31 c).

12. (a) ̸|= ⊙Sαφ → ⊙αφ: it is not necessarily true that if at an index an agent
subjectively ought to have seen to it that φ then the agent objectively
ought to have seen to it that φ. Figure 4.7 offers a counterexample,
because M, ⟨m2, h1⟩ |= ⊙

S

Nik¬g and M, ⟨m2, h1⟩ ̸|= ⊙Nik¬g: at ⟨m2, h1⟩

Nikolai subjectively ought to have not gambled, but he was not objectively
obligated to not gamble.

(b) ̸|= ⊙αφ → ⊙Sαφ: it is not necessarily true that if at an index an agent
objectively ought to have seen to it that φ then the agent subjectively
ought to have seen to it that φ. Figure 4.8 offers a counterexample,
because for all i ∈ {2, 3} and h ∈ Hmi M, ⟨mi, h⟩ |= ⊙Nikw andM, ⟨mi, h⟩ ̸|=
⊙
S

Nikw: at all indices based on m2 and m3 Nikolai objectively ought to have
won, but he was to subjectively obligated to win.

Thus, it turns out that modality ⊙Sαφ is neither (logically) stronger nor
weaker than ⊙αφ, just as Horty’s (2019) modality for epistemic oughts is
neither stronger nor weaker than ⊙αφ.

13. |= ⊙αφ→ ¬⊙Sα ¬φ and |= ⊙Sαφ→ ¬⊙α ¬φ: for each agent, its objective and
subjective ought-to-do’s are consistent. In other words, an agent cannot
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have been objectively, resp. subjectively, obligated to see to it that φ and
at the same time subjectively, resp. objectively, obligated to see to it that
¬φ. This property reflects a desirable tenet of consistency between senses
of obligation that are both based on dominance of choices.26 A proof of
validity is included in Observation C.39.

4.5.2 Axiomatization

In this subsection I introduce two proof systems, one for the logic of objective
ought-to-do’s, and one for the logic of subjective ought-to-do’s. To clarify, con-
sider the following disambiguation: the logic of objective ought-to-do’s has lan-
guage LO (Definition 4.2), and the formulas are evaluated on aubt-models (Defi-
nition 4.3); the logic of subjective ought-to-do’s has a languageLS, that is defined
as a restriction of LKO as follows:

Definition 4.26 (Syntax for the logic of subjective ought-to-do’s). The grammar for
the formal language LS is given by

φ ::= p | ¬φ | φ ∧ φ | □φ | [α]φ | Kαφ | ⊙Sαφ,

where p ranges over P and α ranges over Ags.

The modalities of this language are the same as those in Definition 4.17. As for
the semantics, the formulas ofLS are evaluated on eaubt-models (Definition 4.18).

In what follows, I address the soundness & completeness results for both
systems independently, and only afterwards discuss a joint proof system and its
metalogic properties. As for objective ought-to-do’s, their logic is axiomatized
according to Definition 4.27 and Theorem 4.28 below.

Definition 4.27 (Proof system for objective ought-to-do’s). Let ΛO be the proof
system defined by the following axioms and rules of inference:

26For a discussion of another sense of obligation—based on maximization of expected utility—that
is inconsistent both with the objective sense and with the subjective one, see this chapter’s conclusion
(Subsection 4.6.1).
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• (Axioms) All classical tautologies from propositional logic; the S5 schemata for □
and [α]; and the following schemata:

□φ→ [α]φ (SET)
For all n ≥ 1 and pairwise different α1, . . . , αn,∧

1≤k≤n^[αi]φi → ^
(∧

1≤k≤n[αi]φi
)

(IA)
⊙α(φ→ ψ)→ (⊙αφ→ ⊙αψ) (A1)
□φ→ ⊙αφ (A2)
⊙αφ→ □ ⊙α φ (A3)
⊙αφ→ ⊙α([α]φ) (A4)
⊙αφ→ ^[α]φ (Oic)

• (Rules of inference) Modus Ponens, Substitution, and Necessitation for all modal
operators.

Schemata (SET) and (IA) are standard in BST, and they were discussed in
Chapter 2’s Subsection 2.3.1. Schema (A1) ensures that ⊙α is a normal modal
operator. Schema (A2) characterizes syntactically that if φwas settled at an index
then every agent ought to have seen to it that φ at that index. Schema (A3)
characterizes syntactically that if at an index an agent ought to have seen to it
that φ then such an obligation was settled at the index. Schema (A4) characterizes
syntactically that if at an index an agent ought to have seen to it that φ then the
agent ought to have seen to it that the agent itself has seen to it that φ. Schema
(Oic)—where ‘Oic’ stands for ought implies can—concerns Kant’s directive of ought
implies can in the objective sense: if at an index an agent ought to have seen to it
that φ, then it must have been historically possible for the agent to see to it that φ
at the index.

Now, Murakami (2004) gave a slightly different proof system for this logic of
objective ought-to-do’s, and she showed that hers is sound and complete with
respect to the class of aubt-models, as well as decidable. Thus, soundness and
completeness of ΛO are direct consequences of the equivalence between Mu-
rakami’s (2004) proof system andΛO. Such an equivalence is proved in Appendix
C (Proposition C.38), yielding the following metalogic result.

Theorem 4.28 (Soundness & Completeness of ΛO). The proof system ΛO is sound
and complete with respect to the class of aubt-models.

As for subjective ought-to-do’s, their logic is axiomatized according to Defini-
tion 4.29 and Theorem 4.30 below.

Definition 4.29 (Proof system for subjective ought-to-do’s). Let ΛS be the proof
system defined by the following axioms and rules of inference:
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• (Axioms) All classical tautologies from propositional logic; the S5 schemata for □,
[α], and Kα; and the following schemata for the interactions between modalities:

□φ→ [α]φ (SET)
For all m ≥ 1 and pairwise different α1, . . . , αm,∧

1≤k≤m^[αi]φi → ^
(∧

1≤k≤m[αi]φi
)

(IA)
Kαφ→ [α]φ (OAC)
^Kαφ→ Kα^φ (Uni f −H)
⊙
S
α (φ→ ψ)→ (⊙Sαφ→ ⊙Sαψ) (A5)
⊙
S
αφ→ ⊙

S
α

(
Kαφ

)
(A6)

Kα□φ→ ⊙Sαφ (SuN)
⊙
S
αφ→ ^Kαφ (s.Oic)
⊙
S
αφ→ Kα□ ⊙Sα φ (s.Cl)

• (Rules of inference) Modus Ponens, Substitution, and Necessitation for all modal
operators.

Schemata (SET) and (IA) characterize the same properties as in the logic of
objective ought-to-do’s, but in eaubt-models.

Schema (OAC)—where ‘OAC’ stands for own action condition—encodes frame
condition (OAC) (see Definition 4.18 and item 5 in the list of logic-based properties
from the previous section). Schema (Uni f −H)—where ‘Unif-H’ stands for unifor-
mity of historical possibility—characterizes syntactically frame condition (Unif − H)
(see Definition 4.18 and item 6 in the list of logic-based properties).

Schema (A5) ensures that ⊙Sα is a normal modal operator. Schema (A6) char-
acterizes syntactically that if at an index an agent subjectively ought to have seen
to it that φ then the agent ought to have seen to it that the agent itself knew φ
(see item 7 in the list of logic-based properties). Schema (SuN)—where ‘SuN’
stands for subjective necessity—characterizes syntactically that if at an index an
agent knew that φ was historically necessary then the agent must have been sub-
jectively obligated to bring about φ. In other words, an agent’s ex ante knowledge
of φ implies that the agent subjectively ought to have seen to it that φ. Schema
(s.Oic)—where ‘s.Oic’ stands for subjective ought implies can—concerns the sub-
jective version of Kant’s directive of ought implies can (see item 9 in the list of
logic-based properties). Finally, schema (s.Cl)—where ‘s.Cl’ stands for subjective
closure—characterizes syntactically that if at an index an agent subjectively ought
to have seen to it that φ then the agent knew that this was settled (see item 11 in
the list of logic-based properties).
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Theorem 4.30 (Soundness & Completeness of ΛS). The proof system ΛS is sound
and complete with respect to the class of eaubt-models.

The proof of Theorem 4.30 is the main technical contribution of this chapter,
and it is relegated to Appendix C. As for soundness, the proof is standard. As for
completeness, the proof is a two-step process. First, I introduce a Kripke semantics
for the logic, where the formulas of LS are evaluated on Kripke-eaus-models
(Definition C.41). I prove completeness of ΛS with respect to the these structures,
via the well-known technique of canonical models. Secondly, a truth-preserving
correspondence between Kripke-eaus-models and a sub-class of eaubt-models is
used for proving completeness with respect to eaubt-models via completeness
with respect to Kripke-eaus-models.

Observation 4.31. To illustrate the derivation of theorems in ΛS, consider the following
ΛS-theorems, which are all important according to the list of logic-based properties given
in the previous section:

(a) ^Kα[α]φ → Kα^[α]φ. It is obtained by Substitution on schema (Uni f − H),
substituting [α]φ for φ. Interestingly, substituting ^Kα[α]φ → Kα^[α]φ for
(Uni f −H) in ΛS yields the same theory, since one can obtain ^Kαφ→ Kα^φ
from ^Kα[α]φ→ Kα^[α]φ according to the following derivation, where ‘c.p.’
abbreviates ‘contrapositive,’ ‘Nec.’ abbreviates ‘Necessitation,’ and ‘Subs.’
abbreviates ‘Substitution’:

1. ⊢ΛS φ→ [α]⟨α⟩φ C.p. of (T) for [α], (5) for [α],
prop. logic

2. ⊢ΛS ^Kαφ→ ^Kα[α]⟨α⟩φ 1, Nec. & Subs. of (K) for Kα,
modal logic

3. ⊢ΛS ^Kα[α]⟨α⟩φ→ Kα^[α]⟨α⟩φ ΛS-theorem a
4. ⊢ΛS Kα^[α]⟨α⟩φ→ Kα^⟨α⟩φ Subs. of (T) for [α],modal logic,

Nec. & Subs. of (K) for Kα
5. ⊢ΛS Kα^⟨α⟩φ→ Kα^^φ C.p. of (SET), modal logic,

Nec. & Subs. of (K) for Kα
6. ⊢ΛS Kα^^φ→ Kα^φ C.p. of (4) for □,

Nec. & Subs. of (K) for Kα
7. ⊢ΛS ^Kαφ→ Kα^φ 2, 3, 4, 5, 6,prop. logic.
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(b) □Kαφ ↔ Kα□φ. Formula (⋆⋆) Kα□φ → □Kαφ is obtained according to the
following derivation:

1. ⊢ΛS Kα□φ→ ^Kα□φ Subs. of (T) for □
2. ⊢ΛS ^Kα□φ→ Kα^□φ Subs. of (Uni f −H)
3. ⊢ΛS ^□φ→ □φ C.p. of (5) for □
4. ⊢ΛS Kα^□φ→ Kα□φ 3, Nec. & Subs. of (K) for Kα
5. ⊢ΛS Kα□φ→ Kα□φ 1, 2, 4, prop. logic.

Formula (⋆⋆⋆) □Kαφ→ Kα□φ is obtained according to the following deriva-
tion:

1. ⊢ΛS ^ ⟨Kα⟩□Kαφ→ ⟨Kα⟩^□Kαφ Subs. of c.p. of (⋆⋆)
2. ⊢ΛS ⟨Kα⟩^□Kαφ→ ⟨Kα⟩Kαφ Subs. of c.p. of (B) for □

modal logic
3. ⊢ΛS ⟨Kα⟩^□Kαφ→ φ 2, Subs. of c.p. of (B) for Kα,

prop logic
4. ⊢ΛS □ ⟨Kα⟩^□Kαφ→ □φ 3, Nec. & Subs. of (K) for □
5. ⊢ΛS □^ ⟨Kα⟩□Kαφ→ □ ⟨Kα⟩^□Kαφ 1, Nec. & Subs. of (K) for □
6. ⊢ΛS ^ ⟨Kα⟩□Kαφ→ □^ ⟨Kα⟩□Kαφ Subs. of (5) for □
7. ⊢ΛS ⟨Kα⟩□Kαφ→ ^ ⟨Kα⟩□Kαφ Subs. of (T) for □
8. ⊢ΛS ⟨Kα⟩□Kαφ→ □φ 7, 6, 5, 4, prop. logic
9. ⊢ΛS Kα ⟨Kα⟩□Kαφ→ Kα□φ 8, Nec. & Subs. of (K) for Kα
10. ⊢ΛS □Kαφ→ Kα ⟨Kα⟩□Kαφ Subs. of (B) for Kα
11. ⊢ΛS □Kαφ→ Kα□φ 10, 9, prop. logic.

Now, substituting either (⋆⋆) or (⋆ ⋆ ⋆) for (Uni f −H) in ΛS yields the same
theory. The reason is that the above derivation guarantees that (⋆ ⋆ ⋆) can
be derived using (⋆⋆), and it is the case that (Uni f −H) can be derived using
(⋆ ⋆ ⋆), as shown by the following derivation:

1. ⊢ΛS ^Kαφ→ Kα ⟨Kα⟩^Kαφ Subs. of (B) for Kα
2. ⊢ΛS ⟨Kα⟩^Kαφ→ ^ ⟨Kα⟩Kαφ Subs. of c.p. of (⋆ ⋆ ⋆)
3. ⊢ΛS Kα ⟨Kα⟩^Kαφ→ Kα^ ⟨Kα⟩Kαφ 2, Nec. & Subs. of (K) for Kα
4. ⊢ΛS ⟨Kα⟩Kαφ→ φ C.p. of (B) for Kα
5. ⊢ΛS Kα^ ⟨Kα⟩Kαφ→ Kα^φ 4, modal logic
6. ⊢ΛS ^Kαφ→ Kα^φ 1, 3, 5, prop. logic.



§ 4.5. Logic-Based Properties & Axiomatization · 181

(c) ¬ ⊙Sα φ→ Kα□¬ ⊙Sα φ. A derivation is as follows:

1. ⊢ΛS ⊙
S
αφ→ Kα□ ⊙Sα φ (s.Cl)

2. ⊢ΛS ^ ⊙Sα φ→ ^Kα□ ⊙Sα φ 1, modal logic
3. ⊢ΛS ^Kα□ ⊙Sα φ→ Kα^□ ⊙Sα φ Subs. of (Uni f −H)
4. ⊢ΛS ^□ ⊙Sα φ→ ⊙

S
αφ Subs. of c.p. of (B) for □

5. ⊢ΛS Kα^□ ⊙Sα φ→ Kα ⊙Sα φ 4, Nec. & Subs. of (K) for Kα
6. ⊢ΛS ^⊙Sα → Kα ⊙Sα φ 2, 3, 5, prop. logic
7. ⊢ΛS ⟨Kα⟩^⊙Sα → ⟨Kα⟩Kα ⊙Sα φ 6, modal logic
8. ⊢ΛS ⟨Kα⟩Kα ⊙Sα φ→ ⊙Sαφ Subs. of c.p. of (B) for Kα
9. ⊢ΛS ¬ ⊙

S
α φ ∧ ⟨Kα⟩^ ⊙Sα φ→

¬⊙
S
α φ ∧ ⊙

S
αφ 7, 8, prop. logic

10. ⊢ΛS ¬ ⊙
S
α φ ∧ ⟨Kα⟩^ ⊙Sα φ→ ⊥ 9, prop. logic

11. ⊢ΛS ¬ ⊙
S
α φ→ Kα□¬ ⊙Sα φ 10, prop. & modal logic.

A fair question to ask at this point is why I have not presented a sound and
complete proof system for EAUST, the full logic of objective and subjective ought-
to-do’s (with languageLKO and semantics on eaubt-models). Well, there is a sound
and complete proof system for a variant of this full logic, that I thoroughly explored
it in my joint work with Jan Broersen (Abarca & Broersen, 2019). To be precise, in
such a work a proof system ΛOS is defined as follows:

• (Axioms) All classical tautologies from propositional logic; the S5 schemata
for □, [α], Kα; and schemata (SET), (IA) (A1)–(A6), (OAC), (Uni f −H), (SuN),
(s.Oic), and (s.Cl).

• (Rules of inference) Modus Ponens, Substitution, and Necessitation for all
modal operators.

ΛOS is then shown to be sound and complete with respect to a class of models
known as bi-valued eaubt-models, which is a bigger class than the one introduced
in Definition 4.18. Instead of only one function Value, these models include
two: ValueO, underlying the semantics for objective ought-to-do’s; and ValueS,
underlying the semantics for subjective ones. Although having two value func-
tions instead of one is extremely useful for the proof of completeness, neither the
conceptual reach of this extension nor its philosophical implications have been a
subject of my investigation as of yet.27

27There are some reasons to entertain skepticism about this technical extension. For instance,
one could raise the following point of criticism: in bi-valued eaubt-models, a single history can have
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Abarca and Broersen’s (2019) system ΛOS is sound and complete with respect
to the class of bi-valued eaubt-models, but it is not complete with respect to eaubt-
models. Let me briefly elaborate on this matter. As shown in Observation C.39,
formulas ⊙αφ → ¬ ⊙Sα ¬φ and ⊙Sαφ → ¬ ⊙α ¬φ, that refer to the consistency
between objective and subjective ought-to-do’s, are valid with respect to eaubt-
models. It is easy to see, nonetheless, that these formulas are not valid on bi-valued
eaubt-models, because in these models a single history can have different utilities.
Thus, Λ is not complete with respect to the class of eaubt-models. Now, suppose
that a new system Λ′OS is obtained from ΛOS by adding ⊙αφ → ¬ ⊙Sα ¬φ and
⊙
S
αφ → ¬ ⊙α ¬φ as schemata. Then it is clear that Λ′OS is sound with respect to

eaubt-models, but to determine whether it is also complete is still an open problem.

4.6 Conclusion

This chapter dealt with important questions in the modelling of agency, knowl-
edge, and obligation, on the road to building a formal theory of responsibility. I
want to conclude it with a discussion of two topics: (a) an epistemic act-utilitarian
stit-theoretic framework in which belief and belief-inspired obligations are ac-
counted for, and (b) a possible extension of EAUST with group agency, objective
group obligations, and subjective group obligations.

4.6.1 Doxastic Obligations

Recall that my study of ought-to-do is based on the premise that an agent can
be excused for not meeting an obligation if it lacked knowledge that is necessary
for doing so. In turn, an agent’s beliefs, and the implications that these beliefs
have in what the agent thinks that it should do, also amount to reasons for being
excused (in those cases where the agent did not meet an obligation and faces a
potential punishment). Thus, incorporating a notion of belief into EAUST leads
to a more nuanced theory of ought-to-do, which ultimately proves useful in
the construction of a rich formalization of responsibility (see Subsection 6.5.1 of
Chapter 6’s conclusion).

Following Bartha 2014’s decision-theoretic proposal, a good way of addressing
the interplay between agency, belief, and obligation—in the context of responsibil-
ity attribution—is by introducing a probabilistic semantics of belief to stit theory
(see Subsection 3.5.1 of Chapter 3’s conclusion). Why? Because a probabilistic

different, non-related utilities, according to either ValueO or ValueS. Thus, the notion of deontic
utility becomes rather vague. Observe that Definition 4.18’s eaubt-models are particular instances of
bi-valued models, where both value functions assign the same value to each history.
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semantics of belief allows us to base a new sense of ought-to-do on a key concept
from decision theory: expected-utility maximization. Let me refer to the obli-
gations that arise from this new sense as doxastic ought-to-do’s. As presented in
my joint work with Jan Broersen (Abarca & Broersen, 2021a), one can character-
ize these doxastic ought-to-do’s as follows: agent α doxastically ought to have
brought aboutφ iffφ is an effect of the choices that maximize α’s expected deontic
utility (i.e., α’s rational deontically best responses).28 To be more precise, consider
the definitions below.

Definition 4.32 (Expected deontic utility). Let M be a finite eaubt-model. For
α ∈ Ags, m ∈ M, and h ∈ Hm, let πα[⟨m, h⟩] denote α’s (ex interim) information set
at ⟨m, h⟩, and let µα be a classical discrete probability function such that, for each index
⟨m, h⟩, µα (πα [⟨m, h⟩]) > 0 (see the discussion of µα in Subsection 3.5.1 of Chapter 3’s
conclusion, p. 112). For L ∈ Choicem

α , α’s expected deontic utility of L at ⟨m, h⟩,
denoted by EU⟨m,h⟩α (L), is defined as the value given by the following formula:

EU⟨m,h⟩α (L) :=
∑

m′∼αm,h′∈[L]m′
α

µα ({⟨m′, h′⟩} | πα [⟨m′, h′⟩]) ·Value(h′),

where recall that I write m ∼α m′ if there exist h ∈ Hm and h′ ∈ Hm′ such that
⟨m, h⟩ ∼α ⟨m′, h′⟩.

This means that α’s expected deontic utility of an available choice L at ⟨m, h⟩
is calculated by summing the utilities of all the histories lying in the epistemic
clusters of L, weighted by the probabilities that α assigns to the indices anchored
by those histories, conditional on α’s information set at those indices.29 Observe,
then, that, for all α ∈ Ags, m ∈ M, and L ∈ Choicem

α , EU⟨m,h⟩α (L) = EU⟨m,h
′
⟩

α (L) for
every h, h′ ∈ Hm.

Definition 4.33 (Maximal expected deontic utility). LetM be a finite eaubt-model
with probability functions µα (where α ranges over Ags), defined just as in Defini-
tion 4.32. Since M is finite, then for all α ∈ Ags, m ∈ M, and h ∈ Hm, the set{
EU⟨m,h⟩α (L); L ∈ Choicem

α

}
has a maximum. Therefore, at ⟨m, h⟩ there are actions that

maximize α’s expected deontic utility, namely the ones whose expected deontic utility is
the same as said maximum. The set of such actions is denoted by EU⟨m,h⟩α .

28For a logic-based study of agents’ beliefs and their rationality (as ensuing from best responses in
games), the reader is referred to Bjorndahl, Halpern, and Pass (2011, 2017).

29The reason for conditioning on information sets of the form π[⟨m′, h′⟩] in Definition 4.32 lies in
the kind of belief—in the context of the stages of information disclosure—that Abarca and Broersen
(2021a) wanted to base expectation on. Recall that ex interim knowledge is presently captured by Kαφ.
Since Abarca and Broersen’s p-1 belief refines ex interim knowledge and thus should be seen as ex
interim belief, expected deontic utility is based on degrees of ex interim belief, so that conditioning with
respect to π[⟨m′, h′] is justified.
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With the idea of maximal expected deontic utility, doxastic ought-to-do’s can
be formally introduced. Let the modality ⊙Bαφ express that agent α doxastically
ought to have seen to it that φ. Then M, ⟨m, h⟩ |= ⊙Bαφ iff for all L ∈ EU⟨m,h⟩α ,

[L]m′
α ⊆

∣∣∣φ∣∣∣m′ for every m′ such that m ∼α m′. In other words, at an index an agent
doxastically ought to have seen to it that φ iff φ is an effect of all the epistemic
clusters of those actions that maximized the agent’s expected deontic utility at
said index.30 Perhaps the best way of exploring this doxastic sense of obligation
is by means of an example.

Recall Example 3.12 (p. 112), the anesthesiologist example in Subsection 3.5.1 of
Chapter 3’s conclusion. This example involves a doctor who supplied anesthetics
to a patient before a surgery. The patient had eaten just before the surgery, and the
doctor did not know this. Anesthetics must have been supplied only on an empty
stomach, so the patient died due to the interaction between the food and the
anesthetics. A small variation of the example, catered to the needs of illustrating
doxastic ought-to-do’s, is included in Figure 4.9.

As implied by the statement of the example, h3 is the actual history. Suppose
that doctor’s doxastic state is now given by the discrete probability function µdoctor :
2I(M×H)

→ [0, 1], where µdoctor

(〈
mi, h j

〉)
= 0.9

4 for all i, j ∈ {1, 2}, µdoctor

(〈
mi, h j

〉)
= 0.1

4
for all i ∈ {1, 3} and j ∈ {3, 4}. In the diagram, this is represented by labelling the
left-hand side of the model with the tag µdoctor : 0.9, and the right-hand side with
the tag µdoctor : 0.1. Thus,M, ⟨m3, h3⟩ |= ¬Bdoctor¬e: at the actual index doctor did not
p-1 believe that the patient had not eaten. This is due to the following arguments.
Doctor’s information set at the actual index is πdoctor [⟨m3, h3⟩] = {⟨m3, h3⟩ , ⟨m2, h1⟩}.
In such an information set, the set of indices at which the patient has not eaten is
∥¬e∥ ∩ πdoctor [⟨m3, h3⟩] = {⟨m2, h1⟩}; at the actual index, the probability that doctor

30Interestingly, Horty (2001, Chapter 4) had already considered the possibility of formalizing
obligation using an agent’s expected value of its actions. Horty’s brief assessment of this possibility
presupposed that probability distributions would be given over the set of histories in eaubt-frames.
The probability assigned to a history within an action cell would represent “its chance of occurring
should the agent choose to perform the action.” The expected value of each available action—obtained
by summing the values of the histories of the action, each weighted by the probability assigned to its
history—would then provide a preference ordering on the set of actions, and an agent would “ought
to see to it that some proposition holds whenever doing so is a necessary condition for performing
any action whose expected value is among the greatest available” (Horty, 2001, Chapter 4, p. 59).
Horty disfavored the approach because, in his opinion, it relied on probabilistic information about
the outcomes that is often unavailable or meaningless. However, if one interprets the probability
distributions as representations of subjective belief, then the resulting framework does not rely on
information that is often unavailable or meaningless. Rather, it incorporates the well-known theory of
probability-based belief into act-utilitarian stit theory, leading to a different, doxastic sense of ought.
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eµdoctor : 0.9 µdoctor : 0.1

Figure 4.9: Anesthesiologist example, once more.

assigned to the event that the patient had not eaten, conditional on her information

set, is µdoctor (∥¬e∥ | πdoctor [⟨m3, h3⟩]) =
µdoctor(∥¬e∥∩πdoctor[⟨m3,h3⟩])
µdoctor(πdoctor[⟨m3,h3⟩])

=
0.9
4

0.9+0.1
4
= 0.9 , 1. Thus,

doctor did not p-1 believe that the patient had not eaten.
Now, let us calculate doctor’s expected deontic utility for her available choices:

• As for the choices available at m2, observe that, for all i ∈ {1, 2},

EU⟨m2,hi⟩

doctor (L1) = µdoctor (⟨m2, h1⟩ | πdoctor [⟨m2, h1⟩]) ·Value(h1)+
µdoctor (⟨m3, h3⟩ | πdoctor [⟨m3, h3⟩]) ·Value(h3)

= 0.9 · 1 + 0.1 · (−1) = 0.8.

EU⟨m2,hi⟩

doctor (L2) = µdoctor (⟨m2, h2⟩ | πdoctor [⟨m2, h2⟩]) ·Value(h2)+
µdoctor (⟨m3, h4⟩ | πdoctor [⟨m3, h4⟩]) ·Value(h4)

= 0.9 · 0 + 0.1 · 0 = 0.

• As for the choices available at m3, observe that, for all i ∈ {3, 4}, EU⟨m3,hi⟩
α (L3) =

EU⟨m2,h1⟩
α (L1) and EU⟨m3,hi⟩

α (L4) = EU⟨m2,h2⟩
α (L2).

Therefore, EU⟨m2,h1⟩
α = EU⟨m2,h2⟩

α = {L1}, and EU⟨m3,h3⟩
α = EU⟨m3,h4⟩

α = {L3}. This
implies that, for all i ∈ {2, 3} and h ∈ Hmi ,M, ⟨mi, h⟩ |= ⊙Bdoctora: at all indices based
on m2 and m3 doctor doxastically ought to have supplied the anesthetics. Furthermore,
observe that, for all i ∈ {2, 3} and h ∈ Hmi ,M, ⟨mi, h⟩ |= Kα⊙Bdoctor a: at all indices based
on m2 and m3 doctor knew that she doxastically ought to have supplied the anesthetics.
Thus, even if doctor did not have p-1 certainty that the patient had not eaten, she
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still knew that she doxastically ought to have supplied the anesthetics. Coupled
with the facts that doctor did not know that the patient had eaten and that doctor
did not knowingly kill the patient, the satisfaction of these last two formulas at
the actual index provides a good reason for excusing doctor from having moral
responsibility of the patient’s death, despite having caused it.31

To explore the link between probability-based belief and obligation is a natural
step to take in the line both of Horty’s (2001) AUST and of the extensions with
epistemic modalities that were presented in this chapter. To clarify, recall that
Horty’s act-utilitarian ought-to-do is based on a measure of dominance for choices
of action. Extending the theory of ought-to-do with p-1 belief and with the
different notion of optimality that stems from expected utility, then, adds a new
dimension to the discussion. A very interesting problem for future work along
these lines, then, concerns implementing the ideas of belief revision—in terms of
conditional belief—to formalize conditional doxastic ought-to-do’s. The intuition
is that if at an index an agent has learned that ψ is the case then the doxastic
obligations that such an agent has at the index should in principle be subject to
the revision with ψ—just as beliefs are. Formulas of the form ⊙B/ψα φ could then
capture these revised doxastic ought-to-do’s, and possible semantics for these
formulas could depend on the restriction of the model’s indices to those where ψ
holds (just as happens for the version of conditional belief discussed by Abarca
and Broersen (2021a)). In fact, for good pointers in this respect the reader is
referred to Horty (2001, Chapter 4), where a stit-theoretic account of conditional
ought-to-do’s is presented. Of course, this is all the more interesting and relevant
in the context of building a finespun theory of responsibility.

4.6.2 Group Obligations

Collective responsibility refers to a relation between a group of agents and some
state of affairs such that the group is responsible for the state of affairs iff the
group’s degree of involvement in the realization of that state of affairs warrants

31As for the logic-based properties of doxastic ought-to-do’s, one can adapt the arguments of
Abarca and Broersen (2021a) to show that⊙Bα is a KD45 operator for which the validity of the following
formulas additionally holds: ⊙Bαφ→ ⊙Bα

(
Kα[α]φ

)
,⊙Bαφ→ ^Kαφ (a doxastic version of Kant’s directive

of ought implies can), ⊙Bαφ→ Kα□ ⊙Bα φ, and ¬ ⊙Bα φ→ Kα□¬ ⊙Bα φ. Interestingly, if one builds a logic
including all three ought-to-do modalites (objective, subjective, and doxastic), then doxastic and
objective ought-to-do’s are not necessarily consistent ( ̸|= ⊙Bαφ → ¬ ⊙α ¬φ and ̸|= ⊙αφ → ¬ ⊙Bα ¬φ),
and doxastic and subjective ought-to-do’s neither (̸|= ⊙Sαφ→ ¬ ⊙Bα ¬φ and ̸|= ⊙Bαφ→ ¬ ⊙

S
α ¬φ). This

highlights the discrepancy between dominance and expected-utility maximization, just as evidenced
by the famous thought experiment in decision theory known as Newcomb’s problem (Ahmed, 2018;
Eells, 1982; Gibbard & Harper, 1978; Nozick, 1969; Weirich, 2020). As for metalogic results, one can
once again adapt the proofs of Abarca and Broersen (2021a) to show that there is a sound and complete
proof system for the full logic of objective, subjective, and doxastic ought-to-do’s.
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collective blame or collective praise. An important discussion in responsibility
attribution concerns how individual and collective responsibility relate to one
another. In the exploration of such a relation, the concept of group obligations is
key (Duijf, 2018, Chapters 2 & 3).

Recall from Chapter 2’s Subsection 2.4.1 that atemporal group stit theory is the
extension of atemporal BST with modalities of the form [G]φ (where G ⊆ Ags),
meant to express that coalition G has seen to it that φ. As mentioned there,
the semantics for [G]φ on bt-models depends on joint actions. For bt-model M,
coalition G ⊆ Ags, and m ∈ M, G’s set of available joint actions at m is defined as
Choicem

G :=
{⋂

α∈G Choicem
α (h); h ∈ Hm

}
, so thatM, ⟨m, h⟩ |= [G]φ iffM, ⟨m, h′⟩ |= φ

for every h′ ∈ Choicem
G(h). One can then think of an extension of atemporal

BST with objective group obligations, underlying a modality of the form ⊙Gφ.
Following Horty’s (2001, Chapter 6) ideas, the semantics for ⊙Gφ can be based on
dominance rankings over joint actions:

Definition 4.34 (Objective dominance ordering over joint choices). For an eaubt-
frame with M as its set of moments, G ⊆ Ags, and m ∈ M, consider the following
definitions:

• Let Statem
G :=

{
S ⊆ Hm; S =

⋂
β∈Ags−G s(β), for s ∈ Selectm

}
.

• Let ⪯ be an ordering on Choicem
G defined by the rule: for L,L′ ∈ Choicem

G , L ⪯ L′

iff for all S ∈ Statem
G , L∩S ≤ L′∩S, where recall that ≤ is an ordering on 2Hm such

that X ≤ Y iff Value(h) ≤ Value(h′) for every h ∈ X and h′ ∈ Y. I write L ≺ L′ iff
L ⪯ L′ and L′ ⪯̸ L.

• Let Optimalm
G :=

{
L ∈ Choicem

G ; there is no L′ ∈ Choicem∗
G such that L ≺ L′

}
.

For an eaubt-model M, then, one can set that M, ⟨m, h⟩ |= ⊙Gφ iff for all
L ∈ Choicem

G such thatM, ⟨m, hL⟩ ̸|= φ for some hL ∈ L, there is L′ ∈ Choicem
G such

that L ≺ L′ and, if L′′ = L or L′ ⪯ L′′, then M, ⟨m, h′⟩ |= φ for every h′ ∈ L′′.32

Furthermore, the strategy of focusing on dominance of joint actions can also
help us formalize subjective group obligations—according to the intuitions about
subjective ought-to-do’s advanced in this chapter. In this case, however, one must
decide what kind of group knowledge is to be used. Inspired by the literature on
epistemic logic and by the idea that group agency is a distributed process, here
I mention one candidate: distributed knowledge, expressed by modality DGφ (for
G ⊆ Ags) (see, for instance, Fagin et al., 1995; Gerbrandy, 1998; Halpern & Fagin,

32Similar to what happens for individual obligations, for finite-choice eaubt-models this clause is
equivalent toM, ⟨m, h⟩ |= ⊙αφ iff for all L ∈ Optimalm

G ,M, ⟨m, h′⟩ |= φ for every h′ ∈ L. Furthermore,
both semantics imply that ⊙αφ↔ ⊙{α}φ is valid for every α ∈ Ags.
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1989, for a thorough examination of distributed knowledge).33 Similar to what
happens for individual agents, this kind of group knowledge leads to the idea of
a joint action’s distributed epistemic equivalents:

Definition 4.35 (Distributed epistemic clusters for coalitions). LetM be an eaubt-
frame with M as its set of moments. Let G ⊆ Ags, and let m,m′ ∈ M be such that
m

(⋂
α∈G ∼α

)
m′. For L ∈ Choicem

G , L’s distributed epistemic cluster at m′ is the set

[L]m′
G :=

h′ ∈ Hm′ ; there is h ∈ L s. t. ⟨m, h⟩

⋂
α∈G

∼α

 ⟨m′, h′⟩
 .

Thus, subjective dominance orderings can be defined over joint choices anal-
ogously to how they were defined for individual agents in Section 4.4:

Definition 4.36 (Subjective dominance ordering over joint choices). For an eaubt-
frame with M as its set of moments, G ⊆ Ags, and m ∈ M, consider the following
definitions:

• Let ⪯s be an ordering on Choicem
G defined by the rule: for L,L′ ∈ Choicem

G , L ⪯s L′

iff for all m′ such that m
(⋂

α∈G ∼α
)

m′ and each S ∈ Statem′
G , [L]m′

G ∩S ≤ [L′]m′
G ∩S.

I write L ≺s L′ iff L ⪯s L′ and L′ ⪯̸s L.

• Let SOptimalm
G :=

{
L ∈ Choicem

G ; there is no L′ ∈ Choicem
G s. t. L ≺s L′

}
.

For an eaubt-model M, one can then set that M, ⟨m, h⟩ |= ⊙SGφ iff for all L ∈
Choicem

G such thatM, ⟨m′, hL⟩ ̸|= φ for some m′ such that m
(⋂

α∈G ∼α
)

m′ and some
hL ∈ [L]m′

G , there is L′ ∈ Choicem
G such that L ≺s L′ and, if L′′ = L′ or L′ ⪯s L′′, then

M, ⟨m′′, h′′⟩ |= φ for every m′′ such that m
(⋂

α∈G ∼α
)

m′′ and every h′′ ∈ [L′′]m′′
G .34

To illustrate both senses of group ought-to-do’s, consider Chapter 3’s Ex-
ample 3.4 (p. 81), where a bomb squad is trying to defuse a bomb. Recall
that there were two cases: case a was depicted in Figure 3.2 (p. 86), and case
b was depicted in Figure 3.3 (p. 87). To turn both these figures’ models into
eaubt-models (with group notions), let Value be a function defined on their sets
of histories such that Value(h) = 1 on all histories where the bomb squad has
defused the bomb (i.e. h ∈ {h2, h7, h9}), and Value(h) = 0 on all other histo-
ries. Let G =

{
Luther,Benji

}
. As implied by the statement of the example, the

33It would also be interesting to explore subjective group ought-to-do’s based on common knowl-
edge.

34Just as in the case of objective group ought-to-do’s, in finite-choice eaubt-models such a truth
condition is equivalent toM, ⟨m, h⟩ |= ⊙Sαφ iff for all L ∈ SOptimalm

G ,M, ⟨m′, h′⟩ |= φ for every m′ such
that m

(⋂
α∈G ∼α

)
m′ and every h′ ∈ [L]m′′

α . Furthermore, both semantics imply that ⊙Sαφ ↔ ⊙S{α}φ is
valid for every α ∈ Ags.
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actual history is h10. Observe, then, that Optimalm4
G = {GL ∩ RB} in both case

a and case b, so that the objectively optimal joint action for group G at m4 is
given by Luther’s cutting the green wire of his bomb and Benji’s cutting the red
wire of his. As such, if s stands for the proposition ‘the bombs are defused,’
and using Chapter 3’s ‘next’ operator X to remain consistent with that chap-
ter’s presentation, then M, ⟨m4, h10⟩ |= ⊙GXs: at ⟨m4, h10⟩ the group made up of
Luther and Benji objectively ought to have defused the bomb. As for subjective obli-
gations, observe that in case a SOptimalm4

G = {RL ∩ RB,RL ∩ GB,GL ∩ RB}, which
implies that M, ⟨m4, h10⟩ |= ¬ ⊙

S

G Xs: at ⟨m4, h10⟩ the group made up of Luther and
Benji did not subjectively ought to have defused the bomb. In contrast, in case b
SOptimalm4

G = {GL ∩ RB}, so thatM, ⟨m4, h10⟩ |= ⊙
S

GXs: at ⟨m4, h10⟩ the group subjec-
tively ought to have defused the bomb.35

When group notions are being discussed, it is always important to reflect on
the relation between the group and its members. In the case of objective and
subjective group ought-to-do’s, obligations are neither downward hereditary nor
upward hereditary (Horty, 2001, Chapter 6, p. 131). To clarify, take G ⊆ Ags and
α ∈ G. To see that downward inheritance fails, suppose that G is objectively,
resp. subjectively, obligated to see to it that φ and that a necessary condition for
G to see to it that φ is that α sees to it that ψ. In terms of formulas, M, ⟨m, h⟩ |=
⊙Gφ ∧ ([G]φ → [α]ψ), resp. M, ⟨m, h⟩ |= ⊙SGφ ∧ ([G]φ → [α]ψ). Then it is not
necessarily true that α is objectively, resp. subjectively, obligated to see to it thatψ:
¬⊙α ψ, resp. ¬⊙Sα ψ, might hold at ⟨m, h⟩. Thus, ̸|=

(
⊙Gφ ∧ ([G]φ→ [α]ψ)

)
→ ⊙αψ

and ̸|=
(
⊙
S

Gφ ∧ ([G]φ→ [α]ψ)
)
→ ⊙

S
αψ. A counterexample for both objective and

subjective group ought-to-do’s is given by Horty’s (2001, Chapter 6, Figure 6.1,
p. 133) ‘swimming pool example.’ To see that upward inheritance fails, suppose
that α is objectively, resp. subjectively, obligated to see to it that φ and that
a necessary condition for α to see to it that φ is that G sees to it that ψ. In
terms of formulas, M, ⟨m, h⟩ |= ⊙αφ ∧ ([α]φ → [G]ψ), resp. M, ⟨m, h⟩ |= ⊙Sαφ ∧
([α]φ → [G]ψ). Then it is not necessarily the case that G is objectively, resp.
subjectively, obligated to see to it thatψ: ¬⊙Gψ, resp. ¬⊙SGψ, might hold at ⟨m, h⟩.
Thus, ̸|=

(
⊙αφ ∧ ([α]φ→ [G]ψ)

)
→ ⊙Gψ and ̸|=

(
⊙
S
αφ ∧ ([α]φ→ [G]ψ)

)
→ ⊙

S

Gψ. A
counterexample for both objective and subjective group ought-to-do’s was also
given by Horty (2001, Chapter 5, Figure 5.5, p. 116).

35As for the logic-based properties of group ought-to-do’s, it is easy to verify that both ⊙G and ⊙SG
turn out to be KD45 operators. Moreover, the following formulas turn out to be valid: □φ → ⊙Gφ,
⊙Gφ → □ ⊙G φ, ⊙Gφ → ⊙G

(
[G]φ

)
, ⊙Gφ → ^[G]φ, DGφ → [G]φ, Kβφ → DGφ for every β ∈ G,

^DGφ→ DG^φ, DG□φ→ ⊙
S

Gφ, ⊙SGφ→ DG□ ⊙
S

G φ, ⊙SGφ→ ⊙
S

G
(
DGφ

)
, and ⊙SGφ→ ^DGφ. However,

as far as metalogic results go, observe that, since the logic extends atemporal group stit theory, then it
is not finitely axiomatizable (Herzig & Schwarzentruber, 2008) (see also Chapter 2’s Subsection 2.4.1).
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A possible way of mending the disparity between group and individual obli-
gations is through Duijf’s (2018, Chapter 2) member obligations. Intuitively, a
member obligation is what a group member ought to do to help ensure that the
group fulfills its group obligation. Thus, one can set the following definitions: (a)
if group G is objectively obligated to see to it that φ and it is historically necessary
that G will see to it that φ iff α sees to it that ψ, then α has the objective member-
obligation to see to it that ψ; and (b) if group G is subjectively obligated to see to
it that φ and G distributively knows that G will see to it that φ iff α sees to it that
ψ, then α has the subjective member-obligation to see to it that ψ. In this way,
member obligations guarantee that both downward and upward inheritance is
satisfied. To incorporate member obligations into EAUST, new modalities would
be needed. A logic-based exploration of such an extension is an interesting path
for future work, specially in order to tackle fine-grained responsibility-related
problems. For instance, suppose that a group failed to comply with one of their
group obligations and thus is collectively blameworthy. If the group distribu-
tively knew that they would have fulfilled their group obligation iff each member
had played their part (or member obligation), then an afterwards deliberation
would lead to the group’s identifying the members who failed to play their part,
so that the group could hold them responsible to an appropriate degree at the ex
post stage (Duijf, 2018, Chapter 3, p. 135).
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Appendix B A Correspondence Result

Proposition 4.24. LetF be a labelled eaubt-frame, and letF ′ be its transform structure.
Then F ′ is an unconstrained eaubt-frame. Additionally, if F is Horty-like, then F ′ is
an eaubt-frame, and if F is finite-choice, then F ′ is also finite-choice.

Proof. From Definition 4.23, one can see that if F is a labelled eaubt-frame then
F
′ is an unconstrained eaubt-frame. Now, assume that F is Horty-like. To show

thatF ’ is an eaubt-frame, one needs to show thatF ’ satisfies constraints (OAC) and
(Unif − H).

For (OAC), letM’ be any model based onF ′. Assume thatM′, ⟨m, h⟩ |= Kαφ. For
all h′ ∈ Choice

′m
α , Lblα (⟨m, h⟩) = Lblα (⟨m, h′⟩). Constraint (C4) onF and reflexivity

of ∼α imply that ⟨m, h⟩ ∼α ⟨m, h′⟩. Therefore, the definition of ∼′α implies that
⟨m, h⟩ ∼′α ⟨m, h′⟩. The main assumption then implies thatM′, ⟨m, h′⟩ |= φ. Since
h′ ∈ Choice

′m
α , this in turn implies that M′, ⟨m, h⟩ |= [α]φ. Therefore, formula

Kαφ→ [α]φ is valid onM′ and thus valid on F ′. According to item 5a in the list
of EAUST’s logic-based properties (p. 172), this formula defines (OAC), so that its
validity on F ′ implies that F ′ satisfies (OAC).

For (Unif − H), let M’ be any model based on F ′. Assume that M′, ⟨m, h⟩ |=
^Kαφ. This means that there is h∗ ∈ Hm such thatM′, ⟨m, h∗⟩ |= Kαφ. Take ⟨m′, h′⟩
such that ⟨m, h⟩ ∼′α ⟨m′, h′⟩. The definition of ∼′α implies that ⟨m, h⟩ ∼α ⟨m′, h′⟩ and
that Lblα (⟨m, h⟩) = Lblα (⟨m′, h′⟩). Constraint (C4) on F and reflexivity of ∼α imply
that ⟨m, h∗⟩ ∼α ⟨m, h⟩, so that transitivity of ∼α implies that ⟨m, h∗⟩ ∼α ⟨m′, h′⟩. On
the one hand, since F satisfies (UAAT) and ⟨m, h∗⟩ ∼α ⟨m′, h′⟩, then there is h′∗ ∈ Hm′

such that (⋆) Lblα (⟨m, h∗⟩) = Lblα (
〈
m′, h′∗

〉
). On the other hand, constraint (C4)

implies that (⋆⋆) ⟨m, h∗⟩ ∼α
〈
m′, h′∗

〉
. Therefore, (⋆) and (⋆⋆) imply that ⟨m, h∗⟩ ∼′α〈

m′, h′∗
〉
. The assumption thatM′, ⟨m, h∗⟩ |= Kαφ then implies thatM′,

〈
m′, h′∗

〉
|= φ,

which gives thatM′, ⟨m′, h′⟩ |= ^φ and thus thatM′, ⟨m, h⟩ |= Kα^φ. Therefore,
formula ^Kαφ → Kα^φ is valid on M′ and thus valid on F ′. According to
item 6a in the list of EAUST’s logic-based properties (p. 173), this formula defines
(Unif − H), so its validity on F ′ implies that F ′ satisfies (Unif − H).

As for finite-choice labelled eaubt-frames, it is clear that if inM Choice maps
each agent α and moment m to a finite partition Choicem

α of Hm then so does
Choice’ in F ′.

□

Lemma B.37. LetM be a Horty-like finite-choice labelled eaubt-model, and letM′ be
its transform finite-choice eaubt-model. Let us redefine ⪯s inM′ so that, for α ∈ Ags,
m ∈ M, and L,L′ ∈ Choicem

α , L ⪯s L′ iff for all m′ such that m ∼α m′, [L]m′
α ≤ [L′]m′

α .
Then the following points hold:
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(i) For all α ∈ Ags and m,m′ ∈M, m ∼α m′ iff m ∼′α m′.

(ii) For all α ∈ Ags, m ∈ M, and L ∈ Choicem
α , [L]m′

α = Exem′
α (Lbl(L)) for every m′

such that m ∼′α m′.

(iii) For all α ∈ Ags, m ∈ M, and τ ∈ Tpsm
α ,

[
Exem

α (τ)
]m′
α = Exem′

α (τ) for every m′ such
that m ∼′α m′.

(iv) For all α ∈ Ags, m ∈ M, and L ∈ Choicem
α , L ∈ SOptimalm

α iff Lbl(L) ∈
TOptimalmα .

Proof. (i) To show that this point is true, recall that we write m ∼′α m′ if there
exist h ∈ Hm and h′ ∈ Hm′ such that ⟨m, h⟩ ∼′α ⟨m′, h′⟩. For the left-to-right
implication, observe that if m ∼α m′ then constraint (UAAT) ofM ensures that
there exist h ∈ Hm and h′ ∈ Hm′ such that Lblα (⟨m, h⟩) = Lblα(⟨m′, h′⟩). By
definition of∼′α, this implies that ⟨m, h⟩ ∼′α ⟨m′, h′⟩ and thus that m ∼′α m′. For
the right-to-left implication, observe that the definition of ∼′α and constraint
(C4) straightforwardly imply that if m ∼′α m′ then m ∼α m′.

(ii) First, observe that point i above, with constraint (UAAT), ensures that
Exem′

α (Lbl(L)) is defined for every m′ such that m ∼′α m′ (since the fact that
m ∼′α m′ implies that m ∼α m′). For the ⊆ inclusion, assume that h′ ∈ [L]m′

α .
This means that there exists h ∈ L such that ⟨m, h⟩ ∼′α ⟨m′, h′⟩. This last
fact implies that Lblα(⟨m′, h′⟩) = Lblα (⟨m, h⟩) = Lbl(L). Condition (EL) ofM
(see Definition 2.24) ensures that h′ ∈ Exem′

α (Lblα(⟨m′, h′⟩)), so that the last
equality shows that h′ ∈ Exem′

α (Lbl(L)). For the ⊇ inclusion, assume that
h′ ∈ Exem′

α (Lbl(L)). By condition (LE) ofM (see Definition 2.24), this implies
that Lblα(⟨m′, h′⟩) = Lbl(L). This last equality, coupled with the fact that
m ∼α m′, implies that, for any h ∈ L, ⟨m, h⟩ ∼′α ⟨m′, h′⟩. Therefore, h′ ∈ [L]m′

α .

(iii) For the⊆ inclusion, assume that h′ ∈
[
Exem

α (τ)
]m′
α . This means that there exists

h ∈ Exem
α (τ) such that ⟨m, h⟩ ∼′α ⟨m′, h′⟩. This last fact implies, on the one hand,

that m ∼α m′, so that constraint (UAAT) ofM yields that Exem′
α (τ) is defined;

on the other hand, it implies that Lblα(⟨m′, h′⟩) = Lblα (⟨m, h⟩) = Lbl(Exem
α (τ)).

Now, condition (LE) of M ensures that Lbl(Exem
α (τ)) = τ. Therefore,

Lblα(⟨m′, h′⟩) = τ, which by condition (EL) ofM implies that h′ ∈ Exem′
α (τ). For

the ⊇ inclusion, assume that h′ ∈ Exem′
α (τ). This means that Lblα(⟨m′, h′⟩) = τ.

Since m ∼α m′, constraint (UAAT) ofM implies that Exem
α (τ) is defined (and

thus non-empty). For every h ∈ Exem
α (τ), condition (LE) of M ensures that

Lblα (⟨m, h⟩) = τ = Lblα(⟨m′, h′⟩). Thus, for any h ∈ Exem
α (τ), the fact that

m ∼α m′ implies that ⟨m, h⟩ ∼′α ⟨m′, h′⟩. Therefore, h′ ∈ [Exem
α (τ)]m′

α .
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(iv) For the left-to-right direction, we work by contraposition. Assume that
Lbl(L) < TOptimalmα . Then there exists τ ∈ Tpsm

α such that Lbl(L) ≺H τ. This
means that (⋆) for all n such that m ∼α n, Exen

α(Lbl(L)) ≤ Exen
α(τ), and that (⋆⋆)

there exists m′ ∈M such that m ∼α m′ and such that Exem′
α (τ) ≰ Exem′

α (Lbl(L)).
We show that Exem

α (τ) is such that L ≺s Exem
α (τ). For this, we need to show

that (a) for all n such that m ∼′α n, [L]n
α ≤ [Exem

α (τ)]n
α, and that (b) there exists

n′ ∈ M such that m ∼′α n′ and such that [Exem
α (τ)]n′

α ≰ [L]n′
α . For (a), let n

be such that m ∼′α n. Point ii implies that [L]n
α = Exen

α(Lbl(L)), and point iii
implies that Exen

α(τ) = [Exem
α (τ)]n

α. Since point i implies that m ∼α n, (⋆) gives
that [L]n

α ≤ [Exem
α (τ)]n

α, as desired. For (b), (⋆⋆) and points i, ii, and iii give
that m′ is such that m ∼′α m′ and such that [Exem

α (τ)]m′
α ≰ [L]m′

α . Therefore,
L ≺s Exem

α (τ), so that L < SOptimalm
α .

For the right-to-left direction, we also work by contraposition. Assume that
L < SOptimalm

α . Then there exists L′ ∈ Choicem
α such that L ≺s L′. This

means that (⋆) for all n such that m ∼′α n, [L]n
α ≤ [L′]n

α, and that (⋆⋆) there
exists m′ ∈ M such that m ∼′α m′ and such that [L′]m′

α ≰ [L]m′
α . We show that

Lbl(L′) is such that Lbl(L) ≺H Lbl(L′). For this, we need to show that (a) for
all n such that m ∼α n, Exen

α(Lbl(L)) ≤ Exen
α(Lbl(L′)), and that (b) there exists

m′ ∈ M such that m ∼α m′ and such that Exem′
α (Lbl(L′)) ≰ Exem′

α (Lbl(L)). For
(a), let n be such that m ∼α n. Point i implies that m ∼′α n. Point ii implies
both that Exen

α(Lbl(L)) = [L]n
α and that Exen

α(Lbl(L′)) = [L′]n
α. Therefore, (⋆)

gives that Exen
α(Lbl(L)) ≤ Exen

α(Lbl(L′)). For (b), (⋆⋆) and points i and ii give
that m′ is such that m ∼α m′ and such that Exem′

α (Lbl(L′)) ≰ Exem′
α (Lbl(L)).

Therefore, Lbl(L) ≺H Lbl(L′), so that Lbl(L) < TOptimalmα .
□

Theorem 4.25 (Correspondence). LetM be a finite-choice Horty-like labelled eaubt-
model, and letM′ be its transform finite-choice eaubt-model. Let us redefine ⪯s inM′ so
that, for α ∈ Ags, m ∈M, and L,L′ ∈ Choicem

α , L ⪯s L′ iff for all m′ such that m ∼α m′,
[L]m′

α ≤ [L′]m′
α . Then, for every formula φ of LH,M, ⟨m, h⟩ |= φ iffM′, ⟨m, h⟩ |= Tr(φ).

Proof. We proceed by induction on the complexity of φ. The base case follows
from Definition 4.23. The cases of Boolean connectives are standard. The cases of
modal operators □, [α stit], and ⊙[α stit] follow from Definition 4.23. Let us
deal with the cases of the remaining modal operators:

• (“Kα”) (⇒) Assume that M, ⟨m, h⟩ |= Kαφ. We show that M′, ⟨m, h⟩ |=
□KαTr(φ). Take h′ ∈ Hm, and let ⟨m′′, h′′⟩ be an index such that ⟨m, h′⟩ ∼′α
⟨m′′, h′′⟩. We want to show that M′, ⟨m′′, h′′⟩ |= Tr(φ). The fact that
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⟨m, h′⟩ ∼′α ⟨m′′, h′′⟩ implies, by definition of ∼′α, that ⟨m, h′⟩ ∼α ⟨m′′, h′′⟩. Ob-
serve that reflexivity of ∼α and constraint (C4) imply that ⟨m, h⟩ ∼α ⟨m, h′⟩.
Therefore, transitivity of ∼α yields that ⟨m, h⟩ ∼α ⟨m′′, h′′⟩. Our assumption
then implies thatM, ⟨m′′, h′′⟩ |= φ. The induction hypothesis then gives that
M
′, ⟨m′′, h′′⟩ |= Tr(φ). Therefore,M′, ⟨m, h⟩ |= □KαTr(φ). (⇐) Assume that

M
′, ⟨m, h⟩ |= □KαTr(φ). We show thatM, ⟨m, h⟩ |= Kαφ. Let ⟨m′′, h′′⟩ be an

index such that ⟨m, h⟩ ∼α ⟨m′′, h′′⟩. We want to show thatM, ⟨m′′, h′′⟩ |= φ.
Constraint (UAAT) ensures that there exists h′ ∈ Hm such that Lblα(⟨m′′, h′′⟩) =
Lblα(⟨m, h′⟩). Observe, then, that the fact that ⟨m, h⟩ ∼α ⟨m′′, h′′⟩ implies,
with constraint (C4), that ⟨m, h′⟩ ∼α ⟨m′′, h′′⟩ (since h′ ∈ Hm). By definition
of ∼′α, this last fact implies that ⟨m, h′⟩ ∼′α ⟨m′′, h′′⟩. Since our assumption
implies that M′, ⟨m, h′⟩ |= KαTr(φ), we then get that M′, ⟨m′′, h′′⟩ |= Tr(φ).
The induction hypothesis then gives that M, ⟨m′′, h′′⟩ |= φ, and thus that
M, ⟨m, h⟩ |= Kαφ.

• (“[α kstit]”) (⇒) Assume that M, ⟨m, h⟩ |= [α kstit]φ. We show that
M
′, ⟨m, h⟩ |= KαTr(φ). Let ⟨m′, h′⟩ be an index such that ⟨m, h⟩ ∼′α ⟨m′, h′⟩.

We want to show thatM′, ⟨m′, h′⟩ |= Tr(φ). The fact that ⟨m, h⟩ ∼′α ⟨m′, h′⟩
implies by definition of ∼′α that ⟨m, h⟩ ∼α ⟨m′, h′⟩ and that Lblα (⟨m, h⟩) =
Lblα(⟨m′, h′⟩). Thus, our assumption implies that M, ⟨m′, h′⟩ |= φ. The
induction hypothesis then gives that M′, ⟨m′, h′⟩ |= Tr(φ). Therefore,
M
′, ⟨m, h⟩ |= KαTr(φ). (⇐) Assume that M′, ⟨m, h⟩ |= KαTr(φ). We show

that M, ⟨m, h⟩ |= [α kstit]φ. Let ⟨m′, h′⟩ be an index such that ⟨m, h⟩ ∼α
⟨m′, h′⟩ and Lblα (⟨m, h⟩) = Lblα(⟨m′, h′⟩). The definition of ∼′α ensures that
⟨m, h⟩ ∼′α ⟨m′, h′⟩. Our assumption then implies that M′, ⟨m, h′⟩ |= Tr(φ).
The induction hypothesis then gives that M, ⟨m′, h′⟩ |= φ, and thus that
M, ⟨m, h⟩ |= [α kstit]φ.

• (“⊙[α kstit]”) (⇒) Assume that M, ⟨m, h⟩ |= ⊙[α kstit]φ. We show that
M
′, ⟨m, h⟩ |= ⊙SαTr(φ). Take L ∈ SOptimalm

α , let m′ be a moment such that
m ∼′α m′, and take h′ ∈ [L]m′

α . We want to show thatM′, ⟨m′, h′⟩ |= Tr(φ). By
Lemma B.37 iv, the fact that L ∈ SOptimalm

α implies that Lbl(L) ∈ TOptimalmα .
The assumption that M, ⟨m, h⟩ |= ⊙[α kstit]φ and the fact that m ∼α m′

imply that, for all h′′ ∈ Exem′
α (Lbl(L)), M, ⟨m′, h′′⟩ |= φ. But Lemma B.37 ii

gives that [L]m′
α = Exem′

α (Lbl(L)). Thus, the fact that we took h′ ∈ [L]m′
α implies

thatM, ⟨m′, h′⟩ |= φ. By induction hypothesis, then,M′, ⟨m′, h′⟩ |= Tr(φ), so
thatM′, ⟨m, h⟩ |= ⊙SαTr(φ). (⇐) Assume thatM′, ⟨m, h⟩ |= ⊙SαTr(φ). We show
thatM, ⟨m, h⟩ |= ⊙[α kstit]φ. Take τ ∈ TOptimalmα , let m′ be a moment such
that m ∼α m′, and take h′ ∈ Exem′

α (τ). We want to show thatM, ⟨m′, h′⟩ |= φ.
By condition (LE) ofM, Lbl(Exem

α (τ)) = τ ∈ TOptimalmα . By Lemma B.37 iv,
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this implies that Exem
α (τ) ∈ SOptimalm

α . The assumption that M′, ⟨m, h⟩ |=
⊙
S
αTr(φ) and the fact that m ∼′α m′ imply that, for every h′′ ∈ [Exem

α (τ)]m′
α ,

M
′, ⟨m′, h′′⟩ |= Tr(φ). But Lemma B.37 iii gives that Exem′

α (τ) = [Exem
α (τ)]m′

α .
Thus, the fact that we took h′ ∈ Exem′

α (τ) implies thatM′, ⟨m′, h′⟩ |= Tr(φ). By
induction hypothesis, then,M, ⟨m′, h′⟩ |= φ, so thatM, ⟨m, h⟩ |= ⊙[α kstit]φ.

□

Appendix C Metalogic Results for EAUST

C.1 Equivalence of Proof Systems for Objective Ought-to-Do’s

Proposition C.38 (Equivalence of ΛO to Murakami’s (2004) proof system). Def-
inition 4.27’s schemata (SET), (A1) − (A4), (Oic), and (IA) are jointly equivalent to
the schemata that Murakami used to axiomatize Horty’s (2001) logic of act-utilitarian
ought-to-do.

Proof. Instead of (A3), Murakami used schema (a) □ ⊙α φ ∨ □¬ ⊙α φ, and instead
of (A4), Murakami used schema (b) □([α]φ → [α]ψ) → (⊙αφ → ⊙αψ). With the
exception of the schema that Murakami used to characterize syntactically that the
cardinality of available choices is finite (see the discussion of schemata (AgsPCn)
and (APCn) in Chapter 3’s Section 3.4, as well as Footnote 34, p. 105), each of the
remaining schemata in her system is logically equivalent to one in ΛO.

Now, Murakami’s schema (a) is derivable in ΛO according to the following
arguments: first of all, observe that formula (⋆) ¬ ⊙α φ → □¬ ⊙α φ is derivable
in ΛO. A derivation is as follows, where ‘c.p.’ abbreviates ‘contrapositive’ and
‘Subs.’ abbreviates ‘Substitution’:

1. ⊢ΛO ^¬ ⊙α φ→ □^¬ ⊙α φ Subs. of (5) for □
2. ⊢ΛO ^□ ⊙α φ→ □ ⊙α φ C.p. of 1
3. ⊢ΛO ⊙αφ→ □ ⊙α φ (A3)
4. ⊢ΛO ^ ⊙α φ→ ^□ ⊙α φ 3, modal logic
5. ⊢ΛO ^ ⊙α φ→ □ ⊙α φ 4, 2, prop. logic
6. ⊢ΛO ^ ⊙α φ→ ⊙αφ (T) for □, 5, prop. logic
7. ⊢ΛO ¬ ⊙α φ ∧^ ⊙α φ→ ¬⊙α φ ∧ ⊙αφ 6, prop. logic
8. ⊢ΛO ¬ ⊙α φ ∧^ ⊙α φ→ ⊥ 7, prop. logic
9. ⊢ΛO ¬ ⊙α φ→ □¬ ⊙α φ 8, prop. & modal logic.
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A derivation for schema (a) is as follows, then:

1. ⊢ΛO ⊙αφ ∨ ¬ ⊙α φ Prop. logic
2. ⊢ΛO ⊙αφ ∨ ¬ ⊙α φ→ □ ⊙α φ ∨ □¬ ⊙α φ (A3), (⋆), prop. logic
3. ⊢ΛO □ ⊙α φ ∨ □¬ ⊙α φ 2, 1, Modus Ponens.

Similarly, Murakami’s schema (b) is derivable inΛO, according to the following
derivation:

1. ⊢ΛO □([α]φ→ [α]ψ)→ ⊙α([α]φ→ [α]ψ) Subs. of (A2)
2. ⊢ΛO ⊙α([α]φ→ [α]ψ)→ (⊙α[α]φ→ ⊙α[α]ψ) Subs. of (K) for ⊙α
3. ⊢ΛO ((⊙α[α]φ→ ⊙α[α]ψ) ∧ ⊙α[α]φ)→ ⊙α[α]ψ Prop. logic
4. ⊢ΛO ⊙α[α]ψ→ ⊙αψ Subs. of (T) for [α],

modal logic
5. ⊢ΛO ((⊙α[α]φ→ ⊙α[α]ψ) ∧ ⊙α[α]φ)→ ⊙αψ 3, 4, prop. logic
6. ⊢ΛO ⊙αφ→ ⊙α([α]φ) (A6)
7. ⊢ΛO ((⊙α[α]φ→ ⊙α[α]ψ) ∧ ⊙αφ)→ ⊙αψ 5, 6, prop. logic
8. ⊢ΛO (□([α]φ→ [α]ψ) ∧ ⊙αφ)→ ⊙αψ 1, 2, 7, prop. logic.

The other way around, schema (A3) is derivable in Murakami’s proof system,
according to the following derivation:

1. ⊢ΛO ⊙αφ→ (□ ⊙α φ ∨ □¬ ⊙α φ) Prop. logic
2. ⊢ΛO (⊙αφ→ (□ ⊙α φ ∨ □¬ ⊙α φ))→

(⊙αφ→ □ ⊙α φ) ∨ (⊙αφ→ □¬ ⊙α φ) Prop. logic
3. ⊢ΛO (⊙αφ→ □ ⊙α φ) ∨ (⊙αφ→ □¬ ⊙α φ) 1, 2, Modus Ponens
4. ⊢ΛO (⊙αφ→ □¬ ⊙α φ)→ ⊥ Subs. of (T) for □,Prop. logic
5. ⊢ΛO ⊙αφ→ □ ⊙α φ 3, 4, Modus Ponens.

Similarly, schema (A6) is derivable in Murakami’s proof system, according to
the following derivation, where ‘Nec.’ abbreviates ‘Necessitation’:

1. ⊢ΛO [α]φ→ [α][α]φ Subs. of (4) for [α]
2. ⊢ΛO □([α]φ→ [α][α]φ) 1,Nec. for □
3. ⊢ΛO ⊙αφ→ ⊙α([α]φ) Schema (b), 2, Modus Ponens.

Thus,ΛO is equivalent to Murakami’s (2004) proof system that does not include
the schema that Murakami used to characterize syntactically that the cardinality
of available choices is finite. □
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C.2 Soundness for Subjective Ought-to-Do’s

Observation C.39. Objective and subjective ought-to-do’s are consistent. In other
words, the formulas (a) ⊙αφ→ ¬⊙Sα ¬φ and (b) ⊙Sαφ→ ¬⊙α ¬φ are valid with respect
to the class of eaubt-models.

Proof. By Substitution and contraposition, the validity of one of these formulas
implies the validity of the other. Therefore, let us show that (b) is valid.

LetM be an eaubt-model. First of all, let us show that, for all L,L′ ∈ Choicem
α ,

if L ⪯s L′, then L ⪯ L′. Take L,L′ ∈ Choicem
α . If L ⪯s L′, then, for each m′ such

that m ∼α m′, Value(h) ≤ Value(h′) for every h ∈ [L]m′
α , h′ ∈ [L′]m′

α . Reflexivity of
∼α implies both that m ∼α m′ and that L ⊆ [L]m

α and L′ ⊆ [L′]m
α . Therefore, for all

h′′ ∈ L and h′′′ ∈ L′, Value(h′′) ≤ Value(h′′′), which implies that L ⪯ L′.
Now, let ⟨m, h⟩ be an index. Assume for a contradiction that (⋆)M, ⟨m, h⟩ |=

⊙
S
αφ and that (⋆⋆)M, ⟨m, h⟩ |= ⊙α¬φ. On the one hand, assumption (⋆) implies

that there is L∗ ∈ Choicem
α such that L∗ ⊆

∣∣∣φ∣∣∣m. Thus, assumption (⋆⋆) yields
that there is L′∗ ∈ Choicem

α such that L∗ ≺ L′∗ and, if N = L′∗ or L′∗ ⪯ N, then
N ⊆ |¬φ|m. In particular, L′∗ ⊆ |¬φ|m. Assumption (⋆) then implies that there is
L′′∗ ∈ Choicem

α such that L′∗ ≺s L′′∗ and, if N = L′′∗ or L′′∗ ⪯s N, then N ⊆ [N]m
α ⊆

∣∣∣φ∣∣∣m.
In particular, L′′∗ ⊆

∣∣∣φ∣∣∣m. On the other hand, by the first observation in the proof,
the fact that L′∗ ≺s L′′∗ implies that L′∗ ⪯ L′′∗ , so that assumption (⋆⋆) yields that
L′′∗ ⊆ |¬φ|m, which contradicts the previously shown fact that L′′∗ ⊆

∣∣∣φ∣∣∣m. Thus,
M, ⟨m, h⟩ |= ⊙Sαφ → ¬ ⊙α ¬φ for every index ⟨m, h⟩, so that ⊙Sαφ → ¬ ⊙α ¬φ is
indeed valid. □

Proposition C.40 (Soundness ofΛS). The systemΛS is sound with respect to the class
of eaubt-models.

Proof. Let
〈
M,⊏,Ags,Choice, {∼α}α∈Ags ,Value

〉
be an eaubt-frame. Let V be any

valuation function, and letM be the eaubt-model that results from adding V to
the eaubt-frame above. The S5 schemata for □, [α], and Kα, as well as schemata
(SET), (IA), and (A5), are shown to be valid straightforwardly. Since they involve
some novelty, I include the detailed proofs for the validity of schemata (OAC),
(Uni f −H), (A6), (SuN), (s.Oic), and (s.Cl) below.

• To see that M |= (OAC), take ⟨m, h⟩ such that M, ⟨m, h⟩ |= Kαφ. Take
h′ ∈ Choicem

α (h). Frame condition (OAC) implies that ⟨m, h⟩ ∼α ⟨m, h′⟩. The as-
sumption thatM, ⟨m, h⟩ |= Kαφ then implies thatM, ⟨m, h′⟩ |= φ. Therefore,
for any h′ ∈ Choicem

α (h),M, ⟨m, h′⟩ |= φ, which implies thatM, ⟨m, h⟩ |= [α]φ.

• To see that M |= (Uni f − H), take ⟨m, h⟩ such that M, ⟨m, h⟩ |= ^Kαφ. Let
⟨m′, h′⟩ be an index such that ⟨m, h⟩ ∼α ⟨m′, h′⟩. We want to show that
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M, ⟨m′, h′⟩ |= ^φ. The fact thatM, ⟨m, h⟩ |= ^Kαφ implies that there exists
h∗ ∈ Hm such that (⋆)M, ⟨m, h∗⟩ |= Kαφ. Frame condition (Unif − H) implies
that there exists h′∗ ∈ Hm′ such that ⟨m, h∗⟩ ∼α

〈
m′, h′∗

〉
. With (⋆), this last fact

implies that M,
〈
m′, h′∗

〉
|= φ, which in turn implies that M, ⟨m′, h′⟩ |= ^φ.

Therefore,M, ⟨m, h⟩ |= Kα^φ.

• To see that M |= (A6), take ⟨m, h⟩ such that M, ⟨m, h⟩ |= ⊙Sαφ. We want

to show that, for every L ∈ Choicem
α such that [L]m′ ⊈

∣∣∣Kαφ∣∣∣m′ (for some
m′ such that m ∼α m′), there is L′ ∈ Choicem

α such that L ≺s L′ and, if
L′′ = L′ or L′ ⪯s L′′, then [L′′]m′′

α ⊆

∣∣∣Kαφ∣∣∣m′′ for every m′′ such that m ∼α m′′.
Take L ∈ Choicem

α such that there exists m′ ∈ M such that m ∼α m′ and
[L]m′ ⊈ |Kαφ|m

′

. This implies that [L]m′′′ ⊈
∣∣∣φ∣∣∣m′′′ for some m′′′ such that

m′ ∼α m′′′. Now, transitivity of ∼α implies that m ∼α m′′′. Therefore, the
assumption that M, ⟨m, h⟩ |= ⊙Sαφ implies that there is L′ ∈ Choicem

α such

that L ≺s L′ and, if L′′ = L′ or L′ ⪯s L′′, then [L′′]m′′
α ⊆

∣∣∣φ∣∣∣m′′ for every m′′

such that m ∼α m′′. By definition of epistemic clusters (Definition 4.19) and
transitivity of ∼α, this last clause implies that if L′′ = L′ or L′ ⪯s L′′ then

[L′′]m′′
α ⊆

∣∣∣Kαφ∣∣∣m′′ for every m′′ such that m ∼α m′′. Thus, L′ attests to the fact
thatM, ⟨m, h⟩ |= ⊙Sα

(
Kαφ

)
.

• To see that M |= (SuN), take ⟨m, h⟩ such that M, ⟨m, h⟩ |= Kα□φ. Take
L ∈ Choicem

α , and let m′ ∈ M be such that m ∼α m′ (which means that
there exist j ∈ Hm, j′ ∈ Hm′ such that

〈
m, j

〉
∼α

〈
m′, j′

〉
). Condition (Unif − H)

ensures that there exists h′ ∈ Hm′ such that ⟨m, h⟩ ∼α ⟨m′, h′⟩. The assumption
that M, ⟨m, h⟩ |= Kα□φ then implies that M, ⟨m′, h′⟩ |= □φ. Thus, for any
h′′ ∈ [L]m′

α , the fact that h′′ ∈ Hm′ yields thatM, ⟨m′, h′′⟩ |= φ. Therefore, for

all L ∈ Choicem
α and m′ such that m ∼α m′, [L]m′

α ⊆

∣∣∣φ∣∣∣m′ , which vacuously
implies thatM, ⟨m, h⟩ |= ⊙Sαφ.

• To see thatM |= (s.Oic), take ⟨m, h⟩ such thatM, ⟨m, h⟩ |= ⊙Sαφ. This implies

that there exists L ⊆ Hm such that [L]m′′
α ⊆

∣∣∣φ∣∣∣m′′ for every m′′ ∈ M such that
m ∼α m′′. Since ∼α is reflexive, [L]m

α ⊆

∣∣∣φ∣∣∣m. Now, take h0 ∈ L. Let ⟨m′, h′⟩
be an index such that ⟨m, h0⟩ ∼α ⟨m′, h′⟩. From the definition of epistemic

clusters (Definition 4.19), h′ ∈ [L]m′
α , so the fact that [L]m′

α ⊆

∣∣∣φ∣∣∣m′ implies that
M, ⟨m′, h′⟩ |= φ. Therefore, history h0 ∈ Hm is such that, for every ⟨m′, h′⟩
with ⟨m, h0⟩ ∼α ⟨m′, h′⟩,M, ⟨m′, h′⟩ |= φ. This means thatM, ⟨m, h0⟩ |= Kαφ,
which implies thatM, ⟨m, h⟩ |= ^Kαφ.
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• To see thatM |= (s.Cl), take ⟨m∗, h∗⟩ such thatM, ⟨m∗, h∗⟩ |= ⊙Sαφ. Let
〈
m, j

〉
be such that ⟨m∗, h∗⟩ ∼α

〈
m, j

〉
. Take h ∈ Hm. We want to show that, for every

L ∈ Choicem
α such that [L]m′ ⊈

∣∣∣φ∣∣∣m′ (for some m′ such that m ∼α m′), there is

L′ ∈ Choicem
α such that L ≺s L′ and, if L′′ = L′ or L′ ⪯s L′′, then [L′′]m′′

α ⊆

∣∣∣φ∣∣∣m′′
for every m′′ such that m ∼α m′′. Take L ∈ Choicem

α such that there exists

m′ ∈M such that m ∼α m′ and [L]m′ ⊈
∣∣∣φ∣∣∣m′ . Let NL be an action in Choicem∗

α

such that NL ⊆ [L]m∗
α , where we know that such an action exists in virtue of

(Unif − H) and (OAC). Notice that transitivity of ∼α entails that [NL]o
α = [L]o

α

for any moment o, so that [NL]m′
α ⊈

∣∣∣φ∣∣∣m′ . Since M, ⟨m∗, h∗⟩ |= ⊙Sαφ, there
must exist N ∈ Choicem∗

α such that NL ≺s N and, if N′ = N or N ⪯s N′, then
[N′]m′′

α ⊆

∣∣∣φ∣∣∣m′′ for every m′′ such that m∗ ∼α m′′. Now, let LN be an action
in Choicem

α such that LN ⊆ [N]m
α (which implies that [LN]o

α = [N]o
α for any

moment o). We claim that L ≺s LN, and show our claim with the following
argument: let m′′ ∈ M be such that m ∼α m′′, and take S ∈ Statem′′

α ; on the
one hand, (⋆) [L]m′′

α ∩ S = [NL]m′′
α ∩ S ≤ [N]m′′

α ∩ S = [LN]m′′
α ∩ S; on the other

hand, we know that there exist a moment m′′′ and a state S0 ∈ Statem′′′
α such

that m∗ ∼α m′′′ and such that [N]m′′′
α ∩ S0 ≰ [NL]m′′′

α ∩ S0; therefore, (⋆⋆)
[LN]m′′′

α ∩S0 = [N]m′′′
α ∩S0 ≰ [NL]m′′′

α ∩S0 = [L]m′′′
α ∩S0. Together, (⋆) and (⋆⋆)

entail that L ≺s LN, proving our claim. Now, let L′′ ∈ Choicem
α be such that

L′′ = LN or LN ⪯s L′′. If L′′ = LN, then [L′′]m′′
α = [N]m′′

α ⊆

∣∣∣φ∣∣∣m′′ for every m′′

such that m ∼α m′′. If LN ≺s L′′, then an argument similar to the one used to
show that our claim was true renders that there is an action NL′′ ∈ Choicem∗

α

such that NL′′ ⊆ [L′′]m∗
α and N ⪯s NL′′ . Thus, [L′′]m′′

α = [NL′′ ]m′′
α ⊆

∣∣∣φ∣∣∣m′′ .
With this, we have shown that M, ⟨m, h⟩ |= ⊙Sαφ for every h ∈ Hm, so that
M,

〈
m, j

〉
|= □ ⊙Sα φ. But

〈
m, j

〉
was an arbitrary index such that ⟨m∗, h∗⟩ ∼α〈

m, j
〉
. Thus,M, ⟨m∗, h∗⟩ |= Kα□ ⊙Sα φ.

• It is clear that the rules of inference Modus Ponens, Substitution, and Neces-
sitation for the modal operators all preserve validity.

Therefore, ΛS is sound with respect to the class of eaubt-models. □

C.3 Completeness for Subjective Ought-to-Do’s

C.3.1 From Kripke Models to Stit Models

To prove completeness of ΛS with respect to eaubt-models, we will first prove
completeness with respect to a class of Kripke models. The reason is that there
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exists a truth-preserving correspondence between this class and a sub-class of
eaubt-models. Below, I define said class of Kripke models and prove such a
truth-preserving correspondence.

Definition C.41 (Kripke-eaus-frames & models). A tuple〈
W,Ags,R□, Choice, {≈α}α∈Ags , Value

〉
is called a Kripke-eaus-frame iff

•
〈
W,Ags,R□, Choice

〉
is a Kripke-stit-frame (Definition 2.9).

Recall that, for w ∈ W and v ∈ w, the class of v in the partition Choicew
α

is denoted by Choicew
α (v). Now, for β ∈ Ags and w ∈ W, Statew

β :={
S ⊆ w; S =

⋂
α∈Ags−{β} s(α), for s ∈ Selectw

}
, where Selectw denotes the set of

all selection functions at w (i.e., functions that assign to each α a member of
Choicew

α ).

• For all α ∈ Ags, ≈α is an (epistemic) equivalence relation on W. The following
conditions must be satisfied:

– (OAC)K For all α ∈ Ags, w ∈W, and v ∈ w, v ≈α u for every u ∈ Choicew
α (v).

– (Unif − H)K For all α ∈ Ags, if v,u ∈ W are such that v ≈α u, then for all
v′ ∈ v there exists u′ ∈ u such that v′ ≈α u′.

For w, v ∈ W, I write w ≈α v iff there exist w′ ∈ w and v′ ∈ v such that w′ ≈α v′.
For w, v ∈ W such that w ≈α v and L ∈ Choicew

α , L’s epistemic cluster at v is the
set [[L]]v

α :=
{
u ∈ v; there is o ∈ L such that o ≈α u

}
.

• Value is a function that assigns to each w ∈ W a value in R, representing the
(deontic) utility of w. This function is used to define a subjective ordering ⪯s just
as done in eaubt-models. For all α ∈ Ags and w ∈ W, this ordering leads to the
corresponding notion of SOptimalw

α . Formally, for α ∈ Ags and w ∈ W, one first
defines a general ordering ≤ on 2W by the rule: X ≤ Y iff Value(w) ≤ Value(w′)
for all w ∈ X and w′ ∈ Y. The subjective dominance ordering ⪯s is then defined
on Choicew

α by the rule: L ⪯s L′ iff [[L]]v
α ∩ S ≤ [[L′]]v

α ∩ S for every v such that
w ≈α v and every S ∈ Statev

α. I write L ≺s L′ iff L ⪯s L′ and L′ ⪯̸s L, so that
SOptimalw

α :=
{
L ∈ Choicew

α ; there is no L′ ∈ Choicew
α s. t. L ≺s L′

}
.

A Kripke-eaus-modelM consists of the tuple that results from adding a valuation function
V to a Kripke-eaus-frame, whereV : P→ 2W assigns to each atomic proposition a set of
worlds (recall that P is the set of propositions in LS).
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Kripke-eaus-models allow us to evaluate the formulas of LS with semantics
that are analogous to the ones provided for eaubt-models (see Definition 4.21):

Definition C.42 (Evaluation rules on Kripke models). Let M be a Kripke-eaus-
model, the semantics onM for the formulas ofLS are defined recursively by the following
truth conditions, evaluated at world w:

M,w |= p iff w ∈ V(p)
M,w |= ¬φ iff M,w ̸|= φ
M,w |= φ ∧ ψ iff M,w |= φ andM,w |= ψ
M,w |= □φ iff for all v ∈ w,M, v |= φ
M,w |= [α]φ iff for all v ∈ Choicew

α (w),M, v |= φ
M,w |= Kαφ iff for all v s. t. w ≈α v,M, v |= φ
M,w |= ⊙Sαφ iff for all L ∈ Choicew

α s. t. M, v ̸|= φ for some w′ s. t. w ≈α w′

and some v ∈ [[L]]w′
α , there is L′ ∈ Choicew

α s. t. L ≺s L′

and, if L′′ = L′ or L′ ⪯s L′′, thenM,w′′′ |= φ for every w′′

s. t. w ≈α w′′ and every w′′′ ∈ [[L′′]]w′′
α .

Satisfiability, validity, and general validity are defined as usual. I write
∣∣∣φ∣∣∣ to refer to the

set
{
w ∈W;M,w |= φ

}
.

Importantly, Kripke-eaus-models can be used for constructing eaubt-models
such that both satisfy the same formulas ofLS, according to the following defini-
tion and propositions.

Definition C.43 (Associated eaubt-frame). Let

F =
〈
W,Ags,R□, Choice, {≈α}α∈Ags , Value

〉
be a Kripke-eaus-frame. The tuple F T :=

〈
MW ,⊏,Ags,Choice, {∼α}α∈Ags ,Value

〉
is

called the eaubt-frame associated with F iff

• MW :=W∪
{
w; w ∈W

}
∪{W}, and ⊏ is a relation on MW , defined as the transitive

closure of the union
{
(w, v); w ∈W and v ∈ w

}
∪

{
(W,w); w ∈W

}
.

Observe that ⊏ is a strict partial order on MW that straightforwardly satisfies
no backward branching. Since the tuple ⟨MW ,⊏⟩ is thus a tree, let us refer to
the maximal ⊏-chains in MW as histories, and let us denote by HW the set of all
histories of MW . Observe that the definition of ⊏ yields that there is a bijective
correspondence between W and HW . For v ∈ W, let hv be the history

{
W, v, v

}
.

Thus, for all o ∈W, o ∈ hv iff o = v. Therefore, each history in HW can be identified
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using the world at its terminal node. Consequently, for all w ∈ W, if Hw denotes
the set of histories passing through w, then Hw =

{
hv; v ∈ w

}
—since w ∈ hv iff

v ∈ w. Observe, then, that HW = {hv; v ∈W}.

• For B ∈ 2W , let BT denote the set {hv; v ∈ B}. We then define Choice as a
function on Ags ×MW given by the rules: for α ∈ Ags, Choice(α,W) = {HW};
for α ∈ Ags and w ∈ W, Choice(α,w) =

{
CT
α ; Cα ∈ Choicew

α

}
; for α ∈ Ags and

v ∈ W, Choice(α, v) = {{hv}}. To keep notation consistent, the sets of the form
Choice(α,w) are denoted by Choicew

α , and the choice-cell of a given hv in Choicew
α

is denoted by Choicew
α (hv). Observe that this implies that, for all v, v′ in w, vRw

αv′

iff hv ∈ Choicew
α (hv′ ). Similarly, observe that, for every S ∈ Statew

α , ST
∈ Statew

α ,
and that, for every U ∈ Statew

α , there exists V ∈ Statew
α such that U = VT.

• For α ∈ Ags, ∼α is a relation on I (MW ×HW) defined as follows:

∼α := {(⟨W, hv⟩ , ⟨W, hv′⟩) ; v, v′ ∈W} ∪{(〈
w, hv

〉
,
〈
w′, hv′

〉)
; w,w′ ∈W and v ≈α v′

}
∪

{(⟨z, hz⟩ , ⟨z, hz⟩) ; z ∈W} .

This definition entails that ∼α is an equivalence relation for every α ∈ Ags and

that, for all w,w′ ∈W and L ∈ Choicew
α , v ∈ [[L]]w′

α iff hv ∈
[
LT

]w′

α
.

• Value : HW → R is a function defined as follows: for hv ∈ HW , Value(hv) =
Value(v). Endowed with this function, we define the subjective dominance order-
ings ⪯s and ≺s according to Definition 4.20.

Proposition C.44. Let F be a Kripke-eaus-frame. Then F T is indeed an eaubt-frame.

Proof. It amounts to showing that ⊏ is a strict partial order that satisfies no back-
ward branching, that Choice is a function that satisfies frame conditions (NC) and
(IA), that {∼α}α∈Ags is such that ∼α is an equivalence relation for every α ∈ Ags and
frame conditions (OAC) and (Unif − H) are met, and that Value is well defined:

• As mentioned in Definition C.43, it is straightforward to show that ⊏ is a
strict partial order that satisfies no backward branching. It is also clear from
Definition C.43 that ∼α is an equivalence relation for every α ∈ Ags, and that
Value is well defined.

• As for (NC), it is vacuously satisfied at moment W. It is satisfied in moments
of the form w (with w ∈ W), since two different histories never intersect in
a moment later than w. Finally, it is also satisfied in moments of the form v
such that v ∈W (since there are no moments above v).
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• For (IA), we reason by cases: (a) at moment W, (IA) is validated straight-
forwardly, since Choice(α,W) = {HW} for every α ∈ Ags; (b) for a moment
of the form w (with w ∈ W), let s be a function that assigns to each agent α
a member of Choicew

α =
{
CT
α ; Cα ∈ Choicew

α

}
; let s′ : Ags →

⋃
α∈Ags Choice

w
α

be a function such that s′(α) = Cα iff s(α) = CT
α ; sinceM satisfies (IA)K, then⋂

α∈Ags s′(α) , ∅; take v ∈
⋂
α∈Ags s′(α); then v ∈ Cα for every α ∈ Ags; this

implies that hv ∈ CT
α for every α ∈ Ags, so that

⋂
α∈Ags s(α) , ∅; (c) at mo-

ments of the form v such that v ∈ W, if s is a function that assigns to each α
a member of Choice(v, α), then s must be constant and

⋂
α∈Ags s(α) = {hv}.

• For (OAC), take α ∈ Ags. Again we reason by cases: (a) for indices based
on moment W, (OAC) is met straightforwardly, since ∼α is defined so that
⟨W, hv⟩ ∼α ⟨W, hv′⟩ for every pair of histories hv, hv′ in HW ; (b) for indices of the
form

〈
w, hv

〉
(with w ∈W and v ∈ w), we want to show that

〈
w, hv

〉
∼α

〈
w, hu

〉
for every hu ∈ Choicew

α (hv); therefore, take hu ∈ Choicew
α (hv), which implies

that u ∈ Choicew
α (v); since M satisfies (OAC)K, v ≈α u, which in turn yields

that
〈
w, hv

〉
∼α

〈
w, hu

〉
, by definition of ∼α; (c) for indices based on moments

of the form v such that v ∈ W, (OAC) is met straightforwardly, since for all
hv ∈ HW the choice-cell in Choice(α, v) to which hv belongs is just {hv}.

• For (Unif − H), take α ∈ Ags. Again we reason by cases: (a) for indices based
on moment W, (Unif − H) is met straightforwardly, since ⟨W, hv⟩ ∼α ⟨W, hv′⟩

for every v, v′ ∈ W. (b) for indices of the form
〈
w, hv

〉
(with w ∈ W and

v ∈ w), assume that
〈
w, hv

〉
∼α

〈
w′, hv′

〉
; this means that v ≈α v′; take hz ∈ Hw

(which implies that z ∈ w); we want to show that there exists h ∈ Hw′ such
that

〈
w, hz

〉
∼α

〈
w′, h

〉
; now, condition (Unif − H)K for M gives that there

exists z′ ∈ w′ such that z ≈α z′, which, by definition of ∼α, means that〈
w, hz

〉
∼α

〈
w′, hz′

〉
; since z′ ∈ w′ iff hz ∈ Hw′ , we have shown what we

wanted; (c) for indices based on moments of the form v such that v ∈ W,
⟨v, hv⟩ is ∼α-related only to itself, so (Unif − H) is met straightforwardly.

□

Let M be a Kripke-eaus-model with valuation function V. The frame upon
which M is based has an associated eaubt-frame. If to the tuple of this eaubt-
frame one adds a valuation function VT such that VT(p) =

{〈
w, hw

〉
; w ∈ V(p)

}
,

the resulting model is called the eaubt-model associated withM.

Lemma C.45. LetM be a Kripke-eaus-model, and letMT be its associated eaubt-model.
For all α ∈ Ags, w ∈W, and L,N ∈ Choicew

α , the following conditions hold:
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(a) L ⪯s N iff LT
⪯s NT and L ≺s N iff LT

≺s NT.

(b) L ∈ SOptimalw
α iff LT

∈ SOptimalw
α .

Proof. (a) We prove this point only for the strict orderings, since this proof in-
cludes the arguments needed to show that the statement also holds for ⪯s.
(⇒) Assume that L ≺s N. Let w′ be such that w ∼α w′ (which implies that
w ≈α w′),36 and take U ∈ Statew′

α . We know that U = VT for some V ∈ Statew′
α .

Our assumption implies that [[L]]w′
α ∩V ≤ [[N]]w′

α ∩V. Recall that, for all v ∈W,
Value(hv) = Value(v) and that, for all v1, v2 ∈ W such that v1 ∈ [[L]]w′

α ∩ V

and v2 ∈ [[N]]w′
α ∩ V, hv1 ∈

[
LT

]w′

α
∩ VT and hv2 ∈

[
NT

]w′

α
∩ VT. Thus, the fact

that [[L]]w′
α ∩ V ≤ [[N]]w′

α ∩ V implies that
[
LT

]w′

α
∩ U ≤ [N]w′

α ∩ U. Now, our

assumption also yields that there exist w∗ ∈ WΛS and S0 ∈ State
w∗
α such that

w ≈α w∗ (which implies that w ∼α w∗) and such that [[N]]w∗
α ∩ S0 ≰ [[L]]w∗

α ∩ S0.

This implies that
[
NT

]w∗

α
∩ ST

0 ≰
[
LT

]w∗

α
∩ ST

0 , so that indeed LT
≺s NT.

(⇐) Assume that LT
≺s NT. Let w′ be such that w ≈α w′, and take S ∈

Statew′
α . Our assumption implies that

[
LT

]w′

α
∩ ST

≤

[
NT

]w′

α
∩ ST. Thus, an

argument similar to the one used for the left-to-right direction renders that
[[L]]w′

α ∩ S ≤ [[N]]w′
α ∩ S. Our assumption also implies that there exist w∗ ∈WΛS

and U0 ∈ Statew∗
α such that w ∼α w∗ (which implies that w ≈α w∗) and such

that
[
NT

]w∗

α
∩ U0 ≰

[
LT

]w∗

α
∩ U0. But U0 = VT

0 for some V0 ∈ State
w∗
α . Thus,

[[N]]w∗
α ∩ V0 ≰ [[L]]w∗

α ∩ V0, so that indeed L ≺s N.

(b) Straightforward, using point a above.
□

Proposition C.46 (Truth-preserving correspondence). Let M be a Kripke-eaus-
model, and letMT be its associated eaubt-model. For all φ ofLS and w ∈W,M,w |= φ
iffMT,

〈
w, hw

〉
|= φ.

Proof. We proceed by induction on the complexity of φ. For the base case, take a
propositional letter p and w ∈ W. ThenM,w |= p iff w ∈ V(p) iff

〈
w, hw

〉
∈ V

T(p)
iffMT,

〈
w, hw

〉
|= p. The cases of Boolean connectives are standard, so let us deal

with those of the modal operators. Take w ∈W and α ∈ Ags.

36Recall that, for eaubt-models, I write m ∼α m′ if there exist h ∈ Hm and h′ ∈ Hm′ such that
⟨m, h⟩ ∼α ⟨m′, h′⟩.
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• (“□”) M,w |= □φ iff M, v |= φ for every v ∈ w, which—by induction
hypothesis—happens iffMT,

〈
v, hv

〉
|= φ for every hv ∈ Hw (since hv ∈ Hw iff

v ∈ w), which happens iffMT,
〈
w, hw

〉
|= □φ.

• (“[α]”) M,w |= [α]φ iff M, v |= φ for every v ∈ W such that wRw
αv,

which—by induction hypothesis—happens iff MT,
〈
w, hv

〉
|= φ for every

hv ∈ Choicew
α (hw) (since hv ∈ Choicew

α (hw) iff wRw
αv), which in turn happens

iffMT,
〈
w, hw

〉
|= [α]φ.

• (“Kα”)M,w |= Kαφ iffM, v |= φ for every v ∈ W such that w ≈α v, which—
by induction hypothesis—occurs iffMT,

〈
v, hv

〉
|= φ for every hv ∈ H such

that
〈
w, hw

〉
∼α

〈
v, hv

〉
(since

〈
w, hw

〉
∼α

〈
v, hv

〉
iff w ≈α v), which happens iff

M
T,

〈
w, hw

〉
|= Kαφ.

• (“⊙Sα”) (⇒) Assume thatM,w |= ⊙Sαφ. Let NT
∈ Choicew

α be such that [N]w′
α ⊈∣∣∣φ∣∣∣w′ (for some w′ such that w ∼α w′). The induction hypothesis implies that

[[N]]w′
α ⊈

∣∣∣φ∣∣∣ (since v ∈ [[N]]w′
α iff hv ∈

[
NT

]w′

α
). Our assumption then entails

that there exists L1 ∈ Choice
w
α s. t. N ≺s L1 and, if L = L1 or L1 ⪯s L, then

[[L]]w′′
α ⊆

∣∣∣φ∣∣∣ for every w′′ such that w ≈α w′′. We claim that LT
1 is the choice-

cell at moment w that witnesses to the fact thatMT,
〈
w, hw

〉
|= ⊙Sαφ. To show

this claim, first notice that Lemma C.45 a renders that NT
≺s LT

1 . Secondly,

the fact that [[L1]]w′′
α ⊆

∣∣∣φ∣∣∣ for every w′′ such that w ≈α w′′ implies, with the

induction hypothesis, that
[
LT

1

]w′′

α
⊆

∣∣∣φ∣∣∣w′ for every w′′ such that w ∼α w′′.

Finally, let LT
∈ Choicew

α be such that LT
1 ⪯s LT. By Lemma C.45 a, L1 ⪯s L.

Let w′′ be such that w ∼α w′′ (which implies that w ≈α w′′). We know that

[[L]]w′′
α ⊆

∣∣∣φ∣∣∣, so the induction hypothesis implies that
[
LT

]w′′

α
⊆

∣∣∣φ∣∣∣w′′ . With
this we have shown that our claim is true, so thatMT,

〈
w, hw

〉
|= ⊙Sαφ.

(⇐) Assume thatMT,
〈
w, hw

〉
|= ⊙Sαφ. Let N ∈ Choicew

α be such that [[N]]w′
α ⊈∣∣∣φ∣∣∣ (for some w′ such that w ≈α w′). The induction hypothesis implies that[

NT
]w′

α
⊈

∣∣∣φ∣∣∣w′ . Our assumption then entails that there exists LT
1 ∈ Choicew

α

such that NT
≺s LT

1 and, if LT = LT
1 or LT

1 ⪯s LT, then
[
LT

]w′′

α
⊆

∣∣∣φ∣∣∣w′′ for

every w′′ such that w ∼α w′′. Here, we claim that L1 witnesses to the fact
that M,w |= ⊙Sαφ. To show this, first notice that Lemma C.45 a renders

that N ≺s L1. Secondly, the fact that
[
LT

1

]w′′

α
⊆

∣∣∣φ∣∣∣w′′ for every w′′ such that

w ∼α w′′ implies, with the induction hypothesis, that [[L1]]w′′
α ⊆

∣∣∣φ∣∣∣ for every
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w′′ such that w ≈α w′′. Finally, let L ∈ Choicew
α be such that L1 ⪯s L. By

Lemma C.45 a, LT
1 ⪯s LT. Let w′′ be such that w ≈α w′′ (which implies that

w ∼α w′′). We know that
[
LT

]w′′

α
⊆

∣∣∣φ∣∣∣w′′ , so the induction hypothesis gives

that [[L]]w′′
α ⊆

∣∣∣φ∣∣∣. With this, we have shown that our claim is true, so that
M,w |= ⊙Sαφ.

□

Proposition C.46 implies that to prove completeness of ΛS with respect to
eaubt-models all we need to do is prove completeness with respect to Kripke-eaus-
models. Therefore, let us prove completeness with respect to Kripke-eaus-models,
via the well-known technique of canonical models.

C.3.2 Canonical Kripke-Eaus-Structure

We show that the proof system ΛS is complete with respect to the class of Kripke-
eaus-models. For a ΛS-consistent formula φ, we build a canonical structure that
satisfies φ.

Definition C.47 (Canonical Structure). The tuple

M =
〈
WΛS ,R□, Choice, {≈α}α∈Ags , Value,V

〉
is called a canonical structure for ΛS iff

• WΛS = {w; w is a ΛS-MCS}. R□ is a relation on WΛS defined by the rule: wR□v iff
□φ ∈ w ⇒ φ ∈ v for every φ of LS. For w ∈ WΛS , the set

{
v ∈WΛS ; wR□v

}
is

denoted by w.

• Choice is a function that assigns to each α and w a subset Choicew
α of 2w, defined

as follows: let Rw
α be a relation on w such that wRw

αv iff [α]φ ∈ w⇒ φ ∈ v for every
φ of LS; if Choicew

α (v) :=
{
u ∈ w; vRw

αu
}
, then Choicew

α :=
{
Choicew

α (v); v ∈ w
}
.

• Forα ∈ Ags,≈α is a relation on WΛS given by the rule: w ≈α v iffKαφ ∈ w⇒ φ ∈ v
for every φ of LS.

• Value is a function on WΛS defined as follows: for α ∈ Ags and w ∈WΛS , we first
define Γw

α :=
{
Kαφ;⊙Sαφ ∈ w

}
and Γw :=

⋃
α∈Ags Γ

w
α ; then the function Value is

given by the rule:

Value(w) =
{

1 iff Γw
⊆ w

0 otherwise.
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• Recall that P is the set of propositions in LS. ThenV : P→ 2WΛS is the canonical
valuation, defined so that w ∈ V(p) iff p ∈ w.

Proposition C.48. The canonical structureM for ΛS is a Kripke-eaus-model.

Proof. We want to show that the tuple
〈
WΛS ,R□, Choice, {≈α}α∈Ags , Value

〉
is a

Kripke-eaus-frame, which amounts to showing that the tuple satisfies the items in
the definition of Kripke-eaus-frames (Definition C.41).

• Since ΛS includes the S5 axioms for □, R□ is an equivalence relation.

• Since ΛS includes the S5 schemata for [α], Rw
α is an equivalence relation

for all α ∈ Ags and w ∈ WΛS . Moreover, since ΛS includes schema (SET),
Rw
α ⊆ w × w for every w ∈ WΛS . Thus, Choice indeed assigns to each α and

w a partition of w. The fact that frame condition (IA)K is satisfied is shown
exactly as in Proposition A.15 (p. 118).

• Since the proof system ΛS includes the S5 schemata for Kα, ≈α is an equiv-
alence relation for every α ∈ Ags. We verify that M satisfies conditions
(OAC)K and (Unif − H)K. For (OAC)K, take w ∈ WΛS , v ∈ w, and α ∈ Ags. Take
u ∈ Choicew∗

α (v). This means that vRαu. Schema (OAC) and closure of v
under Modus Ponens then implies that [α]φ ∈ v. Since vRw

αu, this implies
that φ ∈ v. With this, we have shown that the fact that Kαφ ∈ v implies that
φ ∈ u, which means that v ≈α u.

(Unif − H)K is shown to hold exactly as in Proposition A.15 (p. 120).

• Value is a well-defined function with range in R.

□

Lemma C.49 (Existence for non-deontic operators). LetM be the canonical Kripke-
eaus-model for ΛS. For every w ∈WΛS and every φ of LKO, the following items hold:

1. □φ ∈ w iff φ ∈ v for every v ∈ w.

2. [α]φ ∈ w iff φ ∈ v for every v ∈ w such that wRw
αv.

3. Kαφ ∈ w iff φ ∈ v for every v ∈WΛS such that w ≈α v.

Proof. The proof is the same as the one included for Lemma A.16 (p. 121). □
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Observation C.50. For w ∈ WΛS and α ∈ Ags, let αk[w] denote the set{
v ∈WΛS ;^Kαφ ∈ w⇒ ^Kαφ ∈ v

}
. Then the set αk[w] is the same as the set{

v ∈WΛS ; wR□◦ ≈α v
}
.37

Proof. For the ⊆ inclusion, take v ∈ αk[w]. Let us show that the set u′ :={
φ; Kαφ ∈ w

}
∪ {θ;□θ ∈ v} is consistent. Suppose for a contradiction that it is not

consistent. In virtue of arguments analogous to the one used in Proposition A.15’s
proof of item (Unif − H)K (p. 120), we know that

{
φ; Kαφ ∈ w

}
and {θ;□θ ∈ v} are

consistent. Thus, there must exist sets
{
φ1, . . . , φn

}
and {θ1, . . . , θm} of formulas of

LS such that (a) Kαφi ∈ w for every 1 ≤ i ≤ n, (b) □θi ∈ v for every 1 ≤ i ≤ m,
and (c) ⊢ΛS (φ1 ∧ · · · ∧ φn) ∧ (θ1 ∧ · · · ∧ θm) → ⊥. Let φ = φ1 ∧ · · · ∧ φn, and let
θ = θ1 ∧ · · · ∧ θm. On the one hand, since Kα and □ distribute over conjunction, it
is the case that ⊢ΛS Kαφ↔ Kαφ1 ∧ · · · ∧ Kαφn and that ⊢ΛS □θ↔ □θ1 ∧ · · · ∧ □θm.
On the other hand, ΛS-theorem (c) implies that ⊢ΛS φ → ¬θ and thus that (d)
⊢ΛS ^Kαφ→ ^Kα¬θ. Observe that, since w is aΛS-MCS closed under conjunction
and logical equivalence, Kαφ ∈ w. Similarly, since v is closed under conjunction
and logical equivalence, (⋆) □θ ∈ v. The fact that Kαφ ∈ w, with schema (T) for
□ and closure of w under Modus Ponens, implies that ^Kαφ ∈ w. The fact that
v ∈ αk[w] then implies that ^Kαφ ∈ v, so that ΛS-theorem (d) and closure of v
under Modus Ponens imply that ^Kα¬θ ∈ v. Schema (Uni f − H) and closure of v
under Modus Ponens then imply that Kα^¬θ ∈ v. This last fact implies, by schema
(T) for Kα and closure of v under Modus Ponens, that ^¬φ ∈ v, contradicting (⋆).
Therefore, u′ is in fact consistent. Let u be the ΛS-MCS that includes u′, which
exists in virtue of Lindenbaum’s Lemma (Blackburn et al., 2002, Chapter 4, p. 199).
By construction, u ∈ v and w ≈α u. Thus, wR□◦ ≈α v.

For the ⊇ inclusion, let v ∈ WΛS be such that wR□◦ ≈α v. Assume that
^Kαφ ∈ w. This assumption implies that Kα□^Kαφ ∈ w according to the following
argument: schema (4) for Kα and the fact that ⊢ΛS (p → q) → (^p → ^q) imply
that ⊢ΛS ^Kαφ → ^KαKαφ. Schema (5) for □ and transitivity of implication
then imply that ⊢ΛS ^Kαφ → □^KαKαφ.38 Schema (Uni f − H), the fact that
⊢ΛS (p → q) → (□p → □q), and transitivity of implication then imply that ⊢ΛS

^Kαφ → □Kα^Kαφ. The fact that ⊢ΛS Kα□p ↔ □Kαp—which was shown to
be true in Observation 4.31 b—and transitivity of implication then imply that
⊢ΛS ^Kαφ→ Kα□^Kαφ. Therefore, closure of w under Modus Ponens implies that

37Recall from Chapter 3 (Footnote 36) that, for relations R,S on a given set, I write R ◦ S to denote
the composition of R and S, such that x(R ◦ S)y iff there exists z in the relevant set such that xSz and
zRy.

38I use the term ‘transitivity of implication’ to refer to the fact that |=ΛS ((p→ q)∧(q→ r))→ (p→ r),
which is clear from propositional logic.
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Kα□^Kαφ ∈ w. Let u ∈ WΛS be such that w ≈α u and such that u ∈ v. The facts
that Kα□^Kαφ ∈ w and that w ≈α u imply that □^Kαφ ∈ u. Therefore, the fact that
u ∈ v implies that ^Kαφ ∈ v. This shows that v ∈ αk[w]. □

Lemma C.51 (Existence for subjective ought-to-do’s). For all α ∈ Ags and w ∈WΛS ,
the following points hold:

(a) For every φ of LS, ⊙Sαφ ∈ w iff φ ∈ v for every v ∈ αk[w] such that Γv
α ⊆ v.

(b) For all w′ such that w ≈α w′ and all v ∈
[[
Choicew

α (w)
]]w′

α
, Γw

α ⊆ w iff Γv
α ⊆ v.

(c) Γw
α ⊆ w iff Choicew

α (w) ∈ SOptimalw
α .

(d) For every L ∈ Choicew
α −SOptimal

w
α , there exists L′ ∈ SOptimalw

α such that L ≺s L′.
Thus,M,w |= ⊙Sαφ iff [[L]]w′

α ⊆

∣∣∣φ∣∣∣ for every L ∈ SOptimalw
α and every w′ such that

w ≈ w′.

Proof. (a) Before the proof of this point, we need to show that two preliminary
claims are true:

Claim 1: for every v ∈ αk[w], Γv
α = Γ

w
α . Proof of claim: take v ∈ αk[w]. For the

⊇ inclusion, assume that Kαφ ∈ Γw
α . This means that ⊙Sαφ ∈ w. By schema

(s.Cl) and closure of w under Modus Ponens, the fact that ⊙Sαφ ∈ w implies that
Kα□ ⊙Sα φ ∈ w. Since v ∈ αk[w], Observation C.50 implies that ⊙Sαφ ∈ v. This
then implies that Kαφ ∈ Γv

α. The other inclusion is analogous, since the fact
that v ∈ αk[w] implies that w ∈ αk[v] according to the following argument:
(Unif − H)K implies that R□◦ ≈α=≈α ◦R□; thus, ≈α ◦R□ is an equivalence
relation, so that Observation C.50 implies that v ∈ αk[w] iff w ∈ αk[v] (end of
proof of claim).

Claim 2: for any pair of agents α, β ∈ Ags and any formula φ of LS, ⊙Sαφ →
¬ ⊙

S

β ¬φ ∈ w for every ΛS-MCS w. We refer to this property as consistency of
subjective ought-to-do. Proof of claim: this claim is a direct consequence from the
fact that, for everyα, β ∈ Ags and everyφ a formula ofLS, ⊢ΛS ⊙

S
αφ→ ¬⊙

S

β ¬φ.
In the case where α , β, this comes from the fact that, for every α, β ∈ Ags,
⊢ΛS ⊙

S
αφ ∧ ⊙

S

β¬φ → ⊥—which can be seen by applying schemata (s.Oic),
(OAC), (IA), and (T) for [α] and [β]. In the case where α = β, this can be seen
by noticing that⊙Sα distributes over conjunction, so that (s.Oic), schema (T) for
Kα, and the fact that ⊢ΛS (p→ q)→ (^p→ ^q) yield the required ΛS-theorem
(end of proof of claim).

Now, we proceed with the proof of the main statement. Let ⊙Sαφ be a formula
of LS.
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(⇒) Assume that⊙Sαφ ∈ w. Schema (s.Cl) and closure of w under Modus Ponens
implies that Kα□⊙Sα φ ∈ w. The fact that v ∈ αk[w] and Observation C.50 yield
that ⊙Sαφ ∈ v. The assumption that Γv

α ⊆ v then entails that Kαφ ∈ v. Schema
(T) for Kα and closure of v under Modus Ponens imply that φ ∈ v.

(⇐) We work by contraposition. Suppose that ⊙Sαφ < w. We first show
that Γw

α is consistent. Suppose that Γw
α is not consistent. Then there is a set{

φ1, . . . , φn
}

of formulas of LS such that (a) ⊙Sαφi ∈ w for every 1 ≤ i ≤ n,
and (b) ⊢ΛS Kαφ1 ∧ · · · ∧ Kαφn → ⊥. This last ΛS-theorem implies that ⊢ΛS

Kαφ1 ∧ · · · ∧ Kαφn−1 → ¬Kαφn. By Necessitation and schema (K) for ⊙Sα , as
well as its distributivity over conjunction, it is then the case that

⊢ΛS ⊙
S

α

(
Kαφ1

)
∧ · · · ∧ ⊙

S

α

(
Kαφn−1

)
→ ⊙

S

α

(
¬Kαφn

)
. (4.1)

The fact that ⊙Sαφi ∈ w for every 1 ≤ i ≤ n − 1 implies, by schema (A6) and
closure of w under Modus Ponens, that ⊙Sα (Kαφi) ∈ w for every 1 ≤ i ≤ n − 1.
Closure of w under conjunction then implies that

(∧
1≤i≤n−1 ⊙

S
α

(
Kαφi

))
∈ w.

With ΛS-theorem (4.1) and closure of w under Modus Ponens, this implies that
⊙
S
α (¬Kαφn) ∈ w. However, schema (A6) and closure of w under Modus Ponens

yield that the fact that ⊙Sαφn ∈ w implies that ⊙Sα
(
Kαφn

)
∈ w. Thus, we both

have that ⊙Sα
(
¬Kαφn

)
∈ w and that ⊙Sα

(
Kαφn

)
∈ w, which is a contradiction,

according to consistency of subjective ought-to-do (Claim 2). Next, we show
that Γw

α ∪ {^Kαθ;^Kαθ ∈ w} is also consistent. To prove this, suppose that
it is not consistent. Since Γw

α and {^Kαθ;^Kαθ ∈ w} are consistent, there
must exist sets

{
φ1, . . . , φn

}
and {θ1, . . . , θm} of formulas of LS such that (a)

⊙
S
αφi ∈ w for every 1 ≤ i ≤ n, (b) ^Kαθi ∈ w for every 1 ≤ i ≤ m, and (c)
⊢ΛS

(
Kαφ1 ∧ · · · ∧ Kαφn

)
∧ (^Kαθ1 ∧ · · · ∧^Kαθm) → ⊥. By Necessitation and

schema (K) for ⊙Sα , as well as its distributivity over conjunction, it is then the
case that

⊢ΛS

 ∧
1≤i≤n

⊙
S

α

(
Kαφi

) ∧
 ∧

1≤i≤m

⊙
S

α (^Kαθi)

→ ⊙Sα⊥. (4.2)

The fact that ⊙Sαφi ∈ w for every 1 ≤ i ≤ n implies, with schema (A6) and
closure of w under Modus Ponens, that ⊙Sα

(
Kαφi

)
∈ w for every 1 ≤ i ≤ n.

Closure of w under conjunction then implies that (⋆)
(∧

1≤i≤n ⊙
S
α

(
Kαφi

))
∈ w.

As mentioned in Observation C.50, the fact that^Kαθi ∈ w for every 1 ≤ i ≤ m
implies that Kα□^Kαθi ∈ w for every 1 ≤ i ≤ m. Therefore, closure of w
under Modus Ponens implies that Kα□^Kαθi ∈ w for every 1 ≤ i ≤ m. Schema
(SuN) and closure of w under Modus Ponens then imply that ⊙Sα (^Kαθi) ∈ w
for every 1 ≤ i ≤ m, so that closure of w under conjunction implies that (⋆⋆)
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(∧
1≤i≤m ⊙

S
α (^Kαθi)

)
∈ w. Hence, we have struck a contradiction, because

(⋆) and (⋆⋆) imply that the antecedent in ΛS-theorem (4.2) lies in w, so that
closure of w under Modus Ponens would imply that ⊙Sα⊥ ∈ w. Therefore,
Γw
α ∪ {^Kαθ;^Kαθ ∈ w} is consistent.

Finally, we show that Γw
α ∪ {^Kαθ;^Kαθ ∈ w} ∪

{
¬φ

}
is also consistent. First,

recall that our main assumption is that ⊙Sαφ < w. Now suppose that Γw
α ∪

{^Kαθ;^Kαθ ∈ w} ∪
{
¬φ

}
is not consistent. Since Γw

α ∪ {^Kαθ;^Kαθ ∈ w} is
consistent, there must exist sets

{
φ1, . . . , φn

}
and {θ1, . . . , θm} of formulas ofLS

such that (a) ⊙Sαφi ∈ w for every 1 ≤ i ≤ n, (b) ^Kαθi ∈ w for every 1 ≤ i ≤ m,
and (c) ⊢ΛS

(
Kαφ1 ∧ · · · ∧ Kαφn

)
∧ (^Kαθ1 ∧ · · · ∧^Kαθm)∧¬φ→ ⊥.Now, this

ΛS-theorem implies that ⊢ΛS

(
Kαφ1 ∧ · · · ∧ Kαφn

)
∧ (^Kαθ1 ∧ · · · ∧^Kαθm) →

φ. By Necessitation and schema (K) for ⊙Sα , as well as its distributivity over
conjunction, it is then the case that

⊢ΛS

 ∧
1≤i≤n

⊙
S

α

(
Kαφi

) ∧
 ∧

1≤i≤m

⊙
S

α (^Kαθi)

→ ⊙Sαφ. (4.3)

With similar arguments to the ones used before, the fact that ⊙Sαφi ∈ w for
every 1 ≤ i ≤ n implies that ⊙Sα

(
Kαφi

)
∈ w for every 1 ≤ i ≤ n, and the fact that

^Kαθi ∈ w for every 1 ≤ i ≤ m implies that ⊙Sα (^Kαθi) ∈ w for every 1 ≤ i ≤ m.
Closure of w under conjunction then implies that

(∧
1≤i≤n ⊙

S
α

(
Kαφi

))
∈ w and

that
(∧

1≤i≤m ⊙
S
α (^Kαθi)

)
∈ w. Therefore, closure of w under conjunction

implies that the antecedent in ΛS-theorem (4.3) lies in w, so that closure of w
under Modus Ponens entails that ⊙Sαφ ∈ w. But this contradicts the assumption
that ⊙Sαφ < w. Therefore, Γw

α ∪ {^Kαθ;^Kαθ ∈ w} ∪
{
¬φ

}
is in fact consistent.

Let u be theΛS-MCS that includes Γw
α ∪{^Kαθ;^Kαθ ∈ w}∪

{
¬φ

}
, which exists

in virtue of Lindenbaum’s Lemma (Blackburn et al., 2002, Chapter 4, p. 199).
By construction, u ∈ αk[w]. This last fact implies, by Claim 1, that Γu

α = Γ
w
α ,

so that our construction guarantees that Γu
α ⊆ u and that φ < u. In this way,

we have shown that assuming that ⊙Sα < w implies the existence of u ∈ αk[w]
such that Γu

α ⊆ u and such that φ < u.

(b) Let w′ ∈WΛS be such that w ≈α w′, and take v ∈
[[
Choicew

α (w)
]]w′

α
. (⇒) Assume

that Γw
α ⊆ w. First, observe that taking v in

[[
Choicew

α (w)
]]w′

α
implies that w ≈α v,

according to the following argument: by definition, if v lies in [[Choiceα(w)]]w
α ,

then there exists v′ ∈ Choicew
α (w) such that v′ ≈α v; condition (OAC)K renders

that w ≈α v′, so transitivity of ≈α implies that w ≈α v. Now, take Kαφ ∈ Γw
α .
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By assumption, Kαφ ∈ w. Schema (4) for Kα and closure of w under Modus
Ponens implies that KαKαφ ∈ w as well. Since w ≈α v, this in turn yields that
Kαφ ∈ v. Therefore, we have shown that Γw

α ⊆ v, but then point a’s Claim 1
implies that Γv

α ⊆ v, since the fact that w ≈α v implies that v ∈ αk[w] (as shown
in the proof of Claim 1). (⇐) Analogous.

(c) Before the proof of this point, we need to show that a preliminary claim is
true:

Claim 3: for every w ∈ WΛS , the set
{
u ∈ w; Value(u) = 1

}
is not empty. Proof

of claim: take w ∈ WΛS . First, we show that Γw =
⋃
α∈Ags Γ

w
α is consistent. To

prove this, suppose that it is not consistent. Then for each α ∈ Ags there exists
a set

{
φ1α , . . . , φnα

}
of formulas ofLS such that

∧
1α≤iα≤nα

⊙
S
αφiα ∈ w, and such that

(i) ⊢ΛS

∧
α∈Ags

( ∧
1α≤iα≤nα

Kαφiα

)
→ ⊥. For α ∈ Ags, takeφα = φ1α∧· · ·∧φnα . Since Kα

distributes over conjunction, ΛS-theorem (i) implies that (ii) ⊢ΛS

∧
α∈Ags

Kαφα →

⊥. Since w is closed under conjunction, the fact that
∧

1α≤iα≤nα
⊙
S
αφiα ∈ w for every

α ∈ Ags implies that
∧

α∈Ags

( ∧
1α≤iα≤nα

⊙
S
αφiα

)
∈ w. Since w is closed under logical

equivalence, this implies that
∧

α∈Ags
⊙
S
αφα ∈ w. Observe, then, that schema

(s.Oic) yields that (iii) ⊢ΛS

∧
α∈Ags

⊙
S
αφα →

∧
α∈Ags

^Kαφα. Now, for all α ∈ Ags,

schema (4) for Kα and schema (OAC) yield that ⊢ΛS Kαρ → [α]Kαρ, and thus
that ⊢ΛS ^Kαρ → ^[α]Kαρ. Therefore, ΛS-theorem (iii) and transitivity of
implication imply that (iv) ⊢ΛS

∧
α∈Ags

⊙
S
αφα →

∧
α∈Ags

^[α]Kαφα. Now, observe

that schema (IA) implies that (v) ⊢ΛS

∧
α∈Ags

^[α]Kαφα → ^

 ∧
α∈Ags

[α]Kαφα

, and

schemata (T) for [α] (for all α ∈ Ags) imply that (vi) ⊢ΛS ^

 ∧
α∈Ags

[α]Kαφα

 →∧
α∈Ags

Kαφα. Therefore, by transitivity of implication, ΛS-theorems (iv), (v),

(vi), and (ii) imply that ⊢ΛS

∧
α∈Ags

⊙
S
αφα → ^⊥. But this is a contradiction, since∧

α∈Ags
⊙
S
αφα ∈ w, and w is aΛS-MCS. Therefore, Γw is consistent. Next, we show

that the union Γw
∪ {θ;□θ ∈ w} is also consistent. To prove this, suppose that

it is not consistent. Since Γw and {θ;□θ ∈ w} are consistent, then there exist
sets

{
φ1α , . . . , φnα

}
(for each α ∈ Ags) and {θ1, . . . , θm} of formulas of LS such
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that (a)
∧

1α≤iα≤nα
⊙
S
αφiα ∈ w for every α ∈ Ags, (b) □θi ∈ w for every 1 ≤ i ≤ m,

and (c) ⊢ΛS

∧
α∈Ags

( ∧
1α≤iα≤nα

Kαφiα

)
∧ (θ1 ∧ · · · ∧ θm) → ⊥. Let θ = θ1 ∧ · · · ∧ θm.

Since □ distributes over conjunction, one has that ⊢ΛS □θ↔ □θ1 ∧ · · · ∧ □θm,
where it is important to mention that closure of w under conjunction and
logical equivalence implies that □θ ∈ w. With this equivalence, ΛS-theorem

(c) implies that (d) ⊢ΛS

∧
α∈Ags

( ∧
1α≤iα≤nα

Kαφiα

)
→ ¬θ. Again, for α ∈ Ags, take

φα = φ1α ∧· · ·∧φnα . By an argument that is analogous to the one used to show
that Γw is consistent, ΛS-theorem (d) implies that (e) ⊢ΛS

∧
α∈Ags

⊙
S
αφα → ^¬θ.

Again, since w is closed under conjunction and logical equivalence, the fact
that

∧
1α≤iα≤nα

⊙
S
αφiα ∈ w for everyα ∈ Ags implies that

∧
α∈Ags

⊙
S
αφα ∈ w. By closure

of w under Modus Ponens, ΛS-theorem (e) entails that ^¬θ ∈ w, but this is a
contradiction, since we had seen that □θ ∈ w. Therefore, Γw

∪ {θ;□θ ∈ w} is
consistent.

Let u be the ΛS-MCS that includes Γw
∪ {θ;□θ ∈ w}, which exists in virtue

of Lindenbaum’s Lemma (Blackburn et al., 2002, Chapter 4, p. 199). By
construction, u ∈ w and Γw

⊆ u. Point a’s Claim 1 and the fact that u ∈ w yield
that Γu = Γw. Therefore, Γu

⊆ u, so that Value(u) = 1. In this way, we have
shown that the set

{
u ∈ w; Value(u) = 1

}
is not empty (end of proof of claim).

For the proof of the main statement, first recall that SOptimalw
α is defined as{

L ∈ Choicew
α ; there is no L′ ∈ Choicew

α such that L ≺s L′
}
.

(⇒) Assume that Γw
α ⊆ w. We want to show that, for all L ∈ Choicew

α ,
L ⪯s Choice

w
α (w), since this implies that Choicew

α (w) ∈ SOptimalw
α . Take

L ∈ Choicew
α . To prove what we want, we show that, for all w′ such

that w ≈α w′, all S ∈ Statew′
α , and all u, o such that u ∈ [[L]]w′

α ∩ S and

o ∈
[[
Choicew

α (w)
]]w′

α
∩ S, Value(u) ≤ Value(o). For this, it suffices to show

that, for all w′ such that w ≈α w′ and all S ∈ Statew′
α , if Value(u∗) = 1 for some

u∗ ∈ [[L]]w′
α ∩ S, then Value(o) = 1 for every o ∈

[[
Choicew

α (w)
]]w′

α
∩ S. Therefore,

let w′ be such that w ≈α w′. Take S ∈ Statew′
α , o ∈

[[
Choicew

α (w)
]]w′

α
∩ S, and

u∗ ∈ [[L]]w′
α ∩ S such that Value(u∗) = 1. By point a’s Claim 1, this last as-

sumption means that Γu∗ = Γw′ =
⋃
α∈Ags Γ

w′
α ⊆ u∗. We show that Value(o) = 1.

We first prove that, for every v ∈ S,
⋃
β∈Ags−{α} Γ

v
β ⊆ v: take v ∈ S; this means

that v ∈ Choicew′
β (u∗) for every β ∈ Ags − {α}; by (OAC)K, this entails that
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v ∈
[[
Choicew′

β (u∗)
]]w′

β
for every β ∈ Ags − {α}; thus, point b of the present

lemma implies that Γv
β ⊆ v for every β ∈ Ags − {α}, so that

⋃
β∈Ags−{α} Γ

v
β ⊆ v.

Now, since o was taken in
[[
Choicew

α (w)
]]w′

α
∩ S ⊆ S, then, on the one hand,

the observation just made implies that (⋆)
⋃
β∈Ags−{α} Γ

o
β ⊆ o; on the other, the

fact that o ∈
[[
Choicew

α (w)
]]w′

α
∩ S ⊆

[[
Choicew

α (w)
]]w′

α
implies, by point b of the

present lemma, that (⋆⋆) Γo
α ⊆ o. By (⋆) and (⋆⋆), Γo =

⋃
α∈Ags Γ

o
α ⊆ o, so that

Value(o) = 1, which is what we wanted to show.

(⇐) We work by contraposition. Assume that Γw
α ⊈ w. We want to show

that there exists an action in Choicew
α that dominates Choicew

α (w) in the
subjective ordering. By point b of the present lemma, our assumption
implies that, for every w′ ∈ WΛS such that w ≈α w′, Γo

α ⊈ o for every

o ∈
[[
Choicew

α (w)
]]w′

α
. This means that, for all w′ ∈ WΛS such that w ≈α w′,

Value(o) = 0 for every o ∈
[[
Choicew

α (w)
]]w′

α
. From Claim 3 we know that the

set
{
u ∈ w; Value(u) = 1

}
is not empty. Take u∗ ∈

{
u ∈ w; Value(u) = 1

}
. We

claim that Choicew
α (u∗) is the action that we are looking for. To prove this

claim, we check that two conditions hold: (1) for all w′ ∈ WΛS such that

w ≈α w′ and all S ∈ Statew′
α ,

[[
Choicew

α (w)
]]w′

α
∩ S ≤

[[
Choicew

α (u∗)
]]w′

α
∩ S,

and (2) there exist w∗ ∈ WΛS and S∗ ∈ Statew∗
α such that w ≈α w∗ and such

that
[[
Choicew

α (u∗)
]]w∗

α
∩ S∗ ≰

[[
Choicew

α (w)
]]w∗

α
∩ S∗. For (1), let w′ ∈ WΛS be

such that w ≈α w′, and take S ∈ Statew′
α . Since Value(o) = 0 for every

o ∈
[[
Choicew

α (w)
]]w′

α
, then

[[
Choicew

α (w)
]]w′

α
∩ S ≤

[[
Choicew

α (u∗)
]]w′

α
∩ S. For (2),

let Su∗ :=
⋂
β∈Ags−{α} Choice

w
β (u∗). Observe that w ≈α w, that Su∗ ∈ State

w
α , and

that u∗ ∈
[[
Choicew

α (u∗)
]]w

α
∩Su∗ . In turn, (IA)K implies that Choicew

α (w)∩Su∗ , ∅,

so that (OAC)K gives that
[[
Choicew

α (w)
]]w

α
∩Su∗ , ∅. Since Value(o) = 0 for every

o ∈
[[
Choicew

α (w)
]]w

α
∩ Su∗ , and since Value(u∗) = 1,

[[
Choicew

α (u∗)
]]w

α
∩ Su∗ ≰[[

Choicew
α (w)

]]w

α
∩ Su∗ . Thus, results (1) and (2) render that Choicew

α (w) ≺s

Choicew
α (u∗), and this implies that Choicew

α (w) < SOptimalw
α .

(d) Take L ∈ Choicew
α − SOptimal

w
α . By Claim 3, there exists u∗ ∈ w such that

Value(u∗) = 1. Point c of the present lemma implies that Choicew
α (u∗) ∈

SOptimalw
α . Observe that the fact that L ∈ Choicew

α − SOptimal
w
α implies,

with points b and c of the present lemma, that Value(o) = 0 for every w′

such that w ≈α w′ and o ∈ [[L]]w′
α , according to the following argument: if
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L ∈ Choicew
α − SOptimal

w
α , then point c yields that (⋆) Γu

α ⊈ u for every u ∈ L;
now, let w′ ∈WΛS be such that w ≈α w′; take o ∈ [[L]]w′

α , which means that there
exists uo ∈ L such that uo ≈α o; according to (⋆), Γuo

α ⊈ uo; point b then implies
that Γo

α ⊈ o, so that Value(o) = 0. Therefore, one has that (1) for all w′ such that

w ≈α w′ and all S ∈ Statew′
α , [[L]]w′

α ∩ S ≤
[[
Choicew

α (u∗)
]]w′

α
∩ S. On the other

hand, if S∗ denotes the unique state in Statew
α such that u∗ ∈ S∗, then it is clear

that (2)
[[
Choicew

α (u∗)
]]w

α
∩ S∗ ≰ [[L]]w

α ∩ S∗. Our results (1) and (2) render that

L ≺s Choice
w
α (u∗).

□

Lemma C.52 (Truth Lemma). LetM be the canonical Kripke-eaus-model for ΛS. For
all φ of LS and w ∈WΛS ,M,w |= φ iff φ ∈ w.

Proof. We proceed by induction on the complexity ofφ. The cases of propositional
letters and of Boolean connectives are standard. It remains to deal with the
modal operators. For formulas involving □, [α], and Kα, both directions follow
straightforwardly from Lemma C.49 (items 1, 2, and 3, respectively). As for the
case of ⊙Sα , we have the following arguments:

• (“⊙Sα”) (⇒) We work by contraposition. Assume that ⊙Sαφ < w. By
Lemma C.51 a, there exists v ∈ αk[w] such that Γv

α ⊆ v and such that φ < v.
Let ov ∈ w be such that v ≈α ov—where we know that such an ov exists be-
cause Observation C.50 and condition (Unif − H)K guarantee that the fact that
v ∈ αk[w] implies that there exists ov in w such that v ≈α ov. Observe that the

fact that ov ≈α v implies that v ∈
[[
Choicew

α (ov)
]]v

α
. Now, by induction hypoth-

esis,M, v ̸|= φ. By Lemma C.51 b, the facts that Γv
α ⊆ v and v ≈α ov imply that

Γov
α ⊆ ov, so that Lemma C.51 c then implies that Choicew

α (ov) ∈ SOptimalw
α .

This means that there exists an action in SOptimalw
α—namely Choicew

α (ov)—

such that v ∈
[[
Choicew

α (ov)
]]v

α
and such thatM, v ̸|= φ, which by Lemma C.51

d implies thatM,w ̸|= ⊙Sαφ.

(⇐) Assume that ⊙Sαφ ∈ w. Because of Lemma C.51 d, we want to show
that [[L]]w′

α ⊆

∣∣∣φ∣∣∣ for every L ∈ SOptimalw
α and w′ ∈ WΛS such that w ≈α w′.

Thus, take L ∈ SOptimalw
α , and let w′ ∈ WΛS be such that w ≈α w′. By

Lemma C.51 a, our assumption implies that φ ∈ v for every v ∈ αk[w]
such that Γv

α ⊆ v. By Lemma C.51 c and b, Γv′
α ⊆ v′ for every v′ ∈ [[L]]w′

α ,
where Observation C.50 implies that [[L]]w′

α ⊆ αk[w]. Thus, φ ∈ v′ for every
v′ ∈ [[L]]w′

α . By induction hypothesis, then, M, v′ |= φ for every v′ ∈ [[L]]w′
α ,

which means that [[L]]w′
α ⊆

∣∣∣φ∣∣∣. Thus,M,w |= ⊙Sαφ.
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□

Proposition C.53 (Completeness w.r.t. Kripke-eaus-models). The proof system ΛS

is complete with respect to the class of Kripke-eaus-models.

Proof. Let φ be a ΛS-consistent formula of LS. Let w be the ΛS-MCS including φ,
which exists in virtue of Lindenbaum’s Lemma (Blackburn et al., 2002, Chapter 4,
p. 199). Then the canonical structureM for ΛS is a Kripke-eaus-model such that
M,w |= φ, according to Lemma C.52 above. □

Proposition C.54 (Completeness w.r.t. eaubt-models). The proof system ΛS is com-
plete with respect to the class of eaubt-models.

Proof. Let φ be aΛS-consistent formula ofLS. Proposition C.53 implies that there
exists a Kripke-eaus-modelM and a world w in its domain such thatM,w |= φ.
Proposition C.46 then ensures that the eaubt-modelMT associated withM is such
thatMT,

〈
w, hw

〉
|= φ. □

Therefore, Proposition C.40 and Proposition C.54 imply that the following
result, appearing in the main body of the chapter, has been shown:

Theorem 4.30 (Soundness & Completeness of ΛS). The proof system ΛS is sound
and complete with respect to the class of eaubt-models.



5

Agency, Knowledge, and Intentionality

‘And yet it disturbs me to learn I have hurt someone unintentionally. I
want all my hurts to be intentional.’

Margaret Atwood, Cat’s Eye

5.1 Introduction

Suppose that you are a lawyer. You are part of the prosecution in a trial where the
defendant is being accused of murder. The case is as follows: while driving her car,
the defendant ran over and killed a traffic officer who was standing at a crossing
walk. At the trial, the defense is seeking for a charge of involuntary manslaughter,
and the prosecution contends that it was either second- or first-degree murder.1 This

1According to Wikipedia (https://en.wikipedia.org/wiki/Murder_in_United_States_law),
American law distinguishes the following degrees of murder, whose descriptions are included verba-
tim:

• First-degree murder: any intentional killing that is willful and premeditated with malice afore-
thought.

• Second-degree murder: any intentional killing that is not premeditated or planned.

• Voluntary manslaughter: sometimes called a crime of passion murder, it is any intentional killing
that involves no prior intent to kill, and which was committed under such circumstances that
would ‘cause a reasonable person to become emotionally or mentally disturbed.’ Both this and
second-degree murder are committed on the spot under a spur-of-the-moment choice, but the
two differ in the magnitude of the circumstances surrounding the crime. For example, a bar
fight that results in death would ordinarily constitute second-degree murder. If that same bar
fight stemmed from a discovery of infidelity, however, it may be voluntary manslaughter.

• Involuntary manslaughter: a killing that stems from a lack of intention to cause death but
involving an intentional or negligent act leading to death. A drunk driving-related death is

https://en.wikipedia.org/wiki/Murder_in_United_States_law
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means that the verdict revolves around the intentionality of the defendant. If
the prosecuting team—to which you belong—is able to prove that the defendant
had an intention to kill the officer, then the verdict would be either of second-
or first-degree murder (according to whether the murder was either planned or
unplanned). If the defense shows that the evidence does not support that there
was an intention to kill—as would be the case if, for instance, the defendant
was drunk while driving and had no real motive for killing the officer—then the
verdict would be of only involuntary manslaughter.

This example shows that, as far as responsibility attribution in criminal law
goes, intentionality is of the utmost importance. For many reasons, this impor-
tance has carried over to philosophy, giving rise to an ongoing debate as to the
relation between intentionality and responsibility. This chapter is devoted to the
incorporation into stit theory of agents’ intentions and intentional actions, which
are key components of responsibility according to the decomposition presented
on p. 3. On the road to building my formal theory of responsibility, such an
incorporation will help in characterizing the category of motivational responsibility
(see the discussion on categories of responsibility in Chapter 1, p. 5).

To clarify, recall that an agent is motivationally responsible for a state of af-
fairs iff the agent is the material author of such a state and the agent behaved
knowingly and intentionally while bringing it about. Thus, to formalize motiva-
tional responsibility, a formalization of what it means to intentionally bring about
a state of affairs is necessary. This chapter includes a stit-theoretic proposal for
the latter formalization, where an agent’s intentional actions are defined in terms
of what the agent intends at a specific moment of acting. In other words, I define
intentional actions in terms of present-directed intentions (Bratman, 1984; Broersen,
2011b; Lorini & Herzig, 2008).

The main goal of this chapter, then, is to provide an axiomatizable (stit-
theoretic) logic to reason about the interplay between three essential components
of responsibility: agency, knowledge, and intentionality. Thus, here I extend
epistemic stit theory (EST) (see Chapter 2’s Subsection 2.4.4) with modality Iαφ,
meant to express that at a given point in time agent α had a present-directed
intention toward the realization of φ. The semantics for Iαφ is based on special
topologies, each associated with an agent, that are added to ebt-frames (see Defini-

typically involuntary manslaughter. Note that the ‘unintentional’ element here refers to the
lack of intent to bring about the death. If there is a presence of intention, it relates only to the
intent to cause a violent act which brings about the death, but not an intention to bring about
the death itself.
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tion 2.27). For a given agent, the non-empty open sets of the associated topology
are interpreted as present-directed intentions. I refer to the resulting formalism as
intentional epistemic stit theory (IEST). An outline of the chapter is included below.

• Section 5.2 briefly reviews philosophy of intention’s main ideas (and prob-
lems) around the notions of intending and intentionally doing, paying special
attention to previous logic-based frameworks.

• Section 5.3 introduces my theory of intentionality (IEST). Since such a theory
represents intentions with open sets in specific topologies, the pertinent def-
initions of General Topology are addressed. Examples designed to illustrate
the basic aspects of IEST are also explored.

• Section 5.4 discusses IEST’s logic-based and metalogic properties. A Hilbert-
style proof system for the logic is investigated, as well as its soundness &
completeness results.

• Section 5.5 (the conclusion) discusses two possibilities for future work: first,
the modelling of future-directed intentions using temporal stit theory; sec-
ondly, an extension of IEST with a probabilistic semantics of belief. Further-
more, an initial characterization of motivational responsibility is presented.

5.2 A Bit of Background: Philosophy of Intention

What do we talk about when we talk about intentions, intending, intentional
action, and intentionally doing? Well, philosophy of intention has a lot to say
about these concepts and about their interplay. For the sake of clarity as to
succeeding sections’ discussions (and terminology), in this section I provide some
philosophical background on intentionality, as well as on previous logic-based
approaches to modelling it.

In the opening lines of the current SEP entry for intention, Setiya (2018) wrote:

Philosophical perplexity about intention begins with its appearance in
three guises: intention for the future, as when I intend to complete this
entry by the end of the month; the intention with which someone acts,
as I am typing with the further intention of writing an introductory
sentence; and intentional action, as in the fact that I am typing these
words intentionally.

In the philosophical literature it is well-known that modelling intentionality
is difficult, that it involves many interesting issues, and that no camp has the
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last word on what the best framework for analyzing the concept is. However,
most authors agree with the quote above, and thus identify three main forms of
intentionality:

1. Future-directed intentions: closely following the interpretation of Bratman
(1984, 1987), I take future-directed intentions as elements that make up an
agent’s plans.2 In other words, future-directed intentions are mental at-
titudes that an agent has towards possible states of affairs that lie in the
future, that help in the coordinating of said agent’s activities for bringing
about those states of affairs. In the quote above, when the author mentions
that he intends to complete his entry by the end of the month, the word
‘intends’ refers to future-directed intentions. Now, the literature also ac-
knowledges the existence of present-directed intentions, referring to mental
states that regard what agents intend to do now. Just as Bratman (1984), here
I opt to include present-directed intentions in the category of future-directed
intentions.3

2. Intentional action: following Broersen (2011b), who put forward a logic-based
account of claims advanced by Anscombe (1963), I interpret intentional
action as a mode of acting. Such a mode sets apart actions that are done with
the purpose of bringing about some of the states of affairs that ensue from
them, on the one hand, and actions that are done without any explicit goal
of that kind, on the other. In the quote above, when the author mentions that
he types words while writing his entry, and that he is doing so intentionally,
he is referring to the intentional action of hitting a keyboard’s keys.

3. Intention-with-which: following Davidson (1980), I interpret intention-with-
which as a description of the primary reason that an agent has for acting in a
specific way. In other words, intention-with-which refers to the motivation
underlying a particular choice of action, what the agent seeks to bring about
with such an action. In the quote above, when the author mentions that
he types words toward the goal of writing an introductory sentence, then
writing an introductory sentence is an intention-with-which he types.

2Bratman (1984, p. 379, emphasis in original) wrote that there is “ambiguity in talk about plans.
Sometimes we are talking about states of the agent—states of having certain plans. Other times we are
talking about an appropriate abstract structure—some sort of partial function from circumstances to
actions, perhaps—that may be used to describe the planning-states of different people.” According to
Bratman, a more careful usage reserves the term ‘plan’ for the latter notion and ‘having a plan’ for the
former. Here, just as Bratman, I refer to the state of ‘having a plan.’

3Bratman (1984, p. 379) wrote: “[n]ote that even my present-directed intention to start my car is
an intention to perform an action that continues somewhat into the future.”
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Intuitively speaking, these three guises are distinct but closely related to one
another. The typical example that sets future-directed intentions apart from in-
tentional action is that I might intend to start my car today and actually never
come to do it. Thus, my intention did not translate into an action, let alone an
instance of intentional action. The same example sets apart future-directed inten-
tions from intention-with-which, since intending does not imply doing. In turn,
the typical example that sets intention-with-which apart from intentional action is
that I might be intentionally moving my hand and turning the key in the ignition,
but the intention-with-which I am performing these actions is to start my car.4

One of the main problems in philosophy of intention, then, has been to find
unity in these three senses of intentionality. According to Setiya (2018), finding
unity matters for questions in philosophy of mind, but also in ethics, in episte-
mology, and for questions about the nature of practical reason.5

The literature includes notable attempts to solve this unity-problem. In such
attempts, a few camps have formed. For instance, Davidson (1963, 1978) famously
put forward that, while one can explain intention-with-which in terms of inten-
tional action, one cannot reduce future-directed intentions to intentional action.
Roughly speaking, Davidson (1963) described agents as having primary reasons
for acting the way they do, and the relation between a given action and those
primary reasons is what renders the action as either intentional or unintentional.
As for intentions-with-which, he considered them as mere descriptions of the
primary reasons. As for future-directed intentions, however, Davidson (1978)
considered them to be a whole different matter, since they admit the following
two facets: (1) as mentioned above, one can intend something without taking any
action toward achieving it, and (2) it is still the case that future-directed intentions
can be present in intentional action (as when I intend to start my car and then just
go and do it). Davidson’s work led many authors to seek an explanation of unity
by treating future-directed intentions as primitive and then defining intentional
action in terms of future-directed intentions (see, for instance, Aune, 1977; Brat-
man, 1984, 1987; Searle, 1983). All these authors belong to the same camp in the
question of unity, then.

Other authors, however, showed resistance to the view that intentional action
should be defined on the basis of future-directed intentions. The seminal work

4Anscombe (1963) wrote that, since it is implausible to say that the word ‘intention’ is equivocal,
then the fact that it has different senses tells us that “we are pretty much in the dark about the character
of the concept which it represents” (Anscombe, 1963, p. 1).

5Practical reason refers to the capacity for deciding, through reflection, what one is to do. Given
a set of alternatives for action, none of which has yet been executed, practical reason is employed by an
agent to settle on what the agent ought to do, or what action is best (Wallace, 2020). Observe that the
study of practical reason is closely related to the study of ought-to-do presented in Chapter 4.



222 · Agency, Knowledge, and Intentionality

of Anscombe (1963) gave birth to a long-standing tradition in philosophy of
action, where intentional action is primitive and where both intention-with-which
and future-directed intentions are defined in terms of intentional action (see, for
instance, Falvey, 2000; Moran & Stone, 2009; Thompson, 2008). According to
Setiya (2018), the simplest version of this approach emphasizes the ‘openness’ of
the progressive tense: if someone is doingφ, then this does not imply that they will
succeed in doing φ, or even that they are well on their way to achieving φ. One
can therefore identify future-directed intentions with intentional action, because
the latter can refer to an action that has just begun and will not necessarily bring
the effects intended by the future-directed intention. If I intend to play basketball
today, I am already on the way to doing so, but it is possible that something—such
as writing this chapter in my thesis—gets in the way. Thompson (2008) further
argued that, even if the openness of the progressive tense is not invoked, future-
directed intentions are actually processes ‘in progress’ toward the intentional
completion of an act. Thus, the only difference between future-directed intentions
and intentional actions is that expressions of the latter kind imply some measure
of success.

Although prevalent, the quest for unity is not the only problem that philoso-
phers of intention deal with. Additionally, there are big challenges in describing
the relation between intentions, knowledge, belief, desires, volition, and evalu-
ative judgement. For an overview of how authors have approached these chal-
lenges, the reader is once again referred to Setiya (2018).

To correctly position the following section’s proposal, I should also review
some of the logic-based studies of intentionality. Among them, it is important to
mention the BDI logics (Cohen & Levesque, 1990; Herzig & Longin, 2004; Meyer
et al., 1999; Rao & Georgeff, 1991; Shoham, 1993; Wooldridge, 2000). These frame-
works are prominent in the literature on multi-agent systems (MAS), and they rely
on the assumption that intelligent agents’ choices are influenced by mental con-
structs such as beliefs, desires, and intentions. Actually, the acronym ‘BDI’ stands
precisely for beliefs-desires-intentions. Following Bratman’s (1984) philosophical
theory of intentionality, BDI logics typically focus on future-directed intentions.
These intentions are seen as mental states of agents, that are constituents of more
complex plans, and they are modelled as particular sets either in branching-time
frames or in domains of possible worlds where each world represents a course
of events. The language of these logics, then, includes a modality of the form
α int : φ, meant to express that agent α intends to realize φ.

For instance, Cohen and Levesque’s (1990) seminal paper introduced a first-
order modal logic of beliefs and goals. Deeply inspired by dynamic logic, Cohen
and Levesque’s models include a set of agents, a set of possible worlds, a set of
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action types, and functions underlying the basic modalities for agents’ beliefs and
for agents’ goals.6 Within this framework, an agent’s future-directed intention—
of performing a given action type—is characterized as a specific combination of
the modality for belief and the modality for goals. As argued by Broersen (2011b),
although the approach enabled the authors to reason about several important
properties of action—like pre- and post- conditions in the context of action-type
composition—it excluded a thorough exploration of intentional action.7

Even if they do not exactly fall into the category of BDI logics, I would like to
address two other logic-based frameworks that share with BDI Bratman’s main
intuition of prioritizing future-directed intentions over both intentional action and
intention-with-which. These frameworks were respectively given by Konolige
and Pollack (1993) and by Duijf (2018, Chapter 4), and they are sound attempts
to model future-directed intentions using neighborhood semantics that yield non-
normal modal logics of intentionality (see Montague, 1970; Scott, 1970). In the
first case, the use of neighborhood semantics came from an interest in solving a
philosophical problem (for the formalization of intention) known as the side-effect
problem (Bratman, 1987; Broersen, 2011b; Cohen & Levesque, 1990). Since the
side-effect problem revolves around the questions of whether intentions should
be closed under belief, knowledge, or logical consequence,8 Konolige and Pollack
(1993) opted for a non-normal modal logic of intention where agents do not intend
all the logical consequences of whatever they intend. In the second case, Duijf
(2018, Chapter 4) introduced a notion of admissibility of actions with respect to
an agent’s given intention, such that an action is admissible with respect to the
intention if no other action is strictly better suited to fulfilling that intention.
Since it is generally impossible for an agent to perform an action that is both

6The syntax of Cohen and Levesque’s logic includes action types in the object language, so their
logic is indeed closely related to dynamic logic.

7Most of the BDI frameworks mentioned here only focus on the semantic aspect of the developed
logics. Their proponents were not particularly concerned with issues of axiomatization. A notable
exception is the propositional fragment of Cohen and Levesque’s seminal logic given by Herzig and
Longin (2004). Indeed, the authors of the latter work presented a sound and complete proof system
for their logic of beliefs, goals, and intentions.

8According to Bratman (1987), it is clear that an agent who intends to perform an action usually
does not intend all the consequences of that action, or even all the consequences that the agent
anticipates. Some of the consequences are indeed goals of the agent, while others are ‘side effects’ that
the agent is not committed to. The typical example supporting this view involves an agent intending
to go to get his tooth filled at the dentist. Being uninformed about anesthetics, the agent believes
that the process of having his tooth filled will necessarily cause him much pain. Although the agent
intends to ask the dentist to fill his tooth, and, believing what he does, he is willing to put up with
pain, the agent would surely deny that he intends to be in pain (see Cohen & Levesque, 1990, p. 218).
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admissible with respect to its intention and admissible with respect to all the
logical consequences of such an intention, Duijf also favored a non-normal modal
logic based on neighborhood semantics.9

In contrast to the logic-based approaches mentioned above, which prioritized
future-directed intentions, Broersen (2011b) set out to model the notion of in-
tentional action instead. By means of extending EST with a combined modality
for intentional action—Iα[α]φ—Broersen explored the relation between intention-
ally seeing to it that φ and knowingly doing φ. His aim—which is very similar
to my own—was to make a start on the analysis of responsibility in the con-
text of the modes of mens rea. In his formalization, the partition of an agent’s
available choices at some moment is independent of the partition based on the
equivalence relation underlying modality Iαφ, so that intentional action is charac-
terized with Iα[α]φ, and unintentional action is characterized with [α]φ∧¬Iα[α]φ.
Admittedly, Broersen (2011b) also gave an account—however implicit—of mere
intending with Iαφ, but he did not explore it thoroughly and rather focused on
Iα[α]φ.10

Along the same lines, Lorini and Herzig (2008) modelled intentional action
with a formalism that is technically similar to Herzig and Longin’s (2004) propo-
sitional fragment of Cohen and Levesque’s seminal BDI logic. Using action types
at the level of both syntax and semantics, Lorini and Herzig formalized the no-
tions of successful and unsuccessful attempts to perform an action type. With the
additional modalities for belief and for goals, the authors thereby integrated a
detailed account of future- and present-directed intentions, where the execution
of any such intention is an intentional-action execution.11

This concludes my discussion on the main topics in philosophy of intention
that this chapter involves, as well as on previous logic-based formalizations of
such topics. Now we are ready to proceed to my logic-based formalism, whose
aforementioned goal is to represent the interplay between agency, knowledge, in-
tentions, and intentional actions on the road to building a theory of responsibility.

5.3 My Proposal for a Logic of Intentionality

To address the challenge of incorporating a notion of intentionality—in terms both
of mental states (intentions) and of modes of acting (intentional actions)—into the
stit-theoretic conception of agency, I use present-directed intentions, written ‘p-d

9Neither of the two works mentioned in this paragraph offered a sound and complete proof system
for their corresponding logics.

10Broersen did present a sound and complete proof system for his logic of intentional action.
11Lorini and Herzig also presented a sound and complete proof system for their rich logic.
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intentions’ from here on. In stit theory, p-d intentions are best understood as
those intentions that an agent has exactly at the moment of acting, right before
making its choice, that concern states of affairs that are possible at precisely that
moment. The instantaneous nature of agency in atemporal BST is what promotes
the use of these p-d intentions to reason about the goals and plans that an agent has
at the moment at which the agent is performing an action, where such goals and
plans are about the states of affairs of that very moment. Still, perhaps a better way
to think about p-d intentions is as the condensation of previous future-directed
intentions in making a particular choice.

Therefore, here I extend EST with a modality of the form Iαφ, meant to express
that at an index agent α had a p-d intention toward the realization of φ. As for
the semantics of Iαφ, the idea is to assign a special topology to each agent. The
non-empty open sets in any such associated topology will represent the agent’s
p-d intentions at the moment of acting, so that if a non-empty open set U in the
topology associated with α supports φ (i.e., if φ holds at all indices within U),
then U is a p-d intention of α toward the realization of φ. Roughly speaking, then,
my proposal for the semantics of Iαφ is as follows: Iαφ holds at an index iff at
such an index there exists U in the topology associated with α such that U ⊆ φ.
In turn, the conjunction [α]φ ∧ Iα[α]φ is meant to evoke that α has intentionally
seen to it that φ.12 As mentioned in the introduction, I refer to the resulting logic
as intentional epistemic stit theory (IEST).

Instead of spinning around the concepts informally, let me dive into the rigor-
ous definitions right away.

5.3.1 Topologies of Intentions

I start by addressing some basic definitions from General Topology. For any other
basic definitions that I might be taking for granted, the reader is referred to Willard
(2004) or Engelking (1989) as proper background textbooks.

Definition 5.1 (Topological spaces). Let X be a set. Then τ ⊆ 2X is called a topology
on X if it meets the following requirements:

• X, ∅ ∈ τ.

• Closure under finite intersections: If U,V ∈ τ, then U ∩ V ∈ τ.

• Closure under arbitrary unions: For a family G ⊆ τ,
⋃
G ∈ τ.

12Of course, this reading of Iαφ and of the conjunction [α]φ ∧ Iα[α]φ positions my proposal as
belonging to a particular philosophical standpoint on the relation between intentions and intentional
action. I address the details of such a standpoint in Section 5.4.
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A topological space, then, is a pair (X, τ) such that X is a set and τ is a topology on
X. The elements of τ are called open sets. Complements of open sets are called closed
sets. For A ⊆ X, the interior of A, denoted by int(A), is defined as the ⊆-largest open
set included in A. In turn, the closure of A, denoted by Cl(A), is defined as the ⊆-least
closed set including A.

Let x ∈ X and A ⊆ X. Two standard results in General Topology are the
following: (1) x ∈ int(A) iff there exists an open set U such that x ∈ U ⊆ A; and (2)
x ∈ Cl(A) iff every open set U such that x ∈ U intersects A (U ∩ A , ∅).

Definition 5.2 (Density). For a topological space (X, τ) and A ⊆ X, A is said to be
τ-dense in X iff Cl(A) = X, or, equivalently, iff for every non-empty open set O ∈ τ,
O ∩ A , ∅.

With these basic definitions, let me introduce the semantics for formulas of a
language that extends EST (see Chapter 2’s Subsection 2.4.4) with modality Iαφ.

Definition 5.3 (Syntax of IEST). Given a finite set Ags of agent names and a countable
set of propositions P, the grammar for the formal language LI is given by

φ ::= p | ¬φ | φ ∧ φ | □φ | [α]φ | Kαφ | Iαφ,

where p ranges over P and α ranges over Ags.

In this language, □φ, [α]φ, and Kα have the same meanings as in EST (Defini-
tion 2.26, p. 70); Iαφ, in turn, expresses that ‘agent α had a p-d intention toward
the realization of φ,’ or that ‘α p-d intended φ,’ or that ‘α p-d intended that φ
would hold.’13 As for the semantics, the structures on which the formulas of LI

are evaluated are based on what I call intentional epistemic branching-time frames.

Definition 5.4 (Iebt-frames & models). A tuple
〈
M,⊏,Ags,Choice, {∼α}α∈Ags , τ

〉
is

called an intentional epistemic branching-time frame (iebt-frame for short) iff

•
〈
M,⊏,Ags,Choice, {∼α}α∈Ags

〉
is an ebt-frame (Definition 2.27, p. 70) that addi-

tionally satisfies the following conditions:

13Just as in all the other chapters of this thesis, the present description of the stit-theoretic modalities
follows my interpretation of the semantics (see the discussion on p. 34 and Remark 2.4, p. 36). Therefore,
when specifying the points of evaluation for the formulas—the indices in bt-models—I take it that
at those indices states of affairs are definitive. Because of this, I use the present-perfect tense for the
description of modality [α]φ and say that ‘at index ⟨m, h⟩ α has seen to it that φ.’ To be consistent, I
use the past tense for modalities □φ, Kαφ, and Iαφ and say that ‘at index ⟨m, h⟩ φ was settled,’ that ‘at
index ⟨m, h⟩ α knew φ,’ and that ‘at index ⟨m, h⟩ α p-d intended φ.’ As discussed in Chapter 2, this
usage does not mean to refer to past moments. Rather, it aims to reinforce the notion that, at the level
of indices, circumstances in the world are definitive, have already happened, and cannot be changed.
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– (OAC) Own action condition: for all α ∈ Ags and each index ⟨m, h⟩,
⟨m, h⟩ ∼α ⟨m, h′⟩ for every h′ ∈ Choicem

α (h).

– (Unif − H) Uniformity of historical possibility: for all α ∈ Ags and each
index ⟨m, h⟩, if ⟨m, h⟩ ∼α ⟨m′, h′⟩, then for all h∗ ∈ Hm there exists h′∗ ∈ Hm′

such that ⟨m, h∗⟩ ∼α
〈
m′, h′∗

〉
.

For α ∈ Ags, two notions of α’s information set at ⟨m, h⟩ are defined: the set
π□α [⟨m, h⟩] := {⟨m′, h′⟩ ;∃h′′ ∈ Hm′ s. t. ⟨m, h⟩ ∼α ⟨m′, h′′⟩} is α’s ex ante infor-
mation set at ⟨m, h⟩; and the set πα [⟨m, h⟩] := {⟨m′, h′⟩ ; ⟨m, h⟩ ∼α ⟨m′, h′⟩} is α’s
ex interim information set at ⟨m, h⟩.14

• τ is a function that assigns to each α ∈ Ags and index ⟨m, h⟩ a topology τ⟨m,h⟩α

on π□α [⟨m, h⟩]. This is the topology of α’s intentionality at ⟨m, h⟩, where any
non-empty open set is interpreted as a p-d intention of α at ⟨m, h⟩. Additionally, τ
must satisfy the following conditions:

– (CI) Finitary consistency of intention: for all α ∈ Ags and each index
⟨m, h⟩, every non-empty U,V ∈ τ⟨m,h⟩α are such that U ∩ V , ∅. In other
words, every non-empty U ∈ τ⟨m,h⟩α is τ⟨m,h⟩α -dense.

– (KI) Knowledge of intention: for all α ∈ Ags and each index ⟨m, h⟩, if
π□α [⟨m, h⟩] = π□α [⟨m′, h′⟩], then τ⟨m,h⟩α = τ⟨m

′,h′⟩
α . In other words, α has the

same topology of p-d intentions at all indices lying within α’s current ex ante
information set.

An iebt-modelM, then, results from adding a valuation functionV to an iebt-frame,
whereV : P→ 2I(M×H) assigns to each atomic proposition a set of indices.

Iebt-models allow us to provide semantics for the formulas of LI:

Definition 5.5 (Evaluation rules for IEST). LetM be an iebt-model. The semantics
onM for the formulas ofLI are recursively defined as in Definition 2.28 (p. 70), with the
following additional clause:

M, ⟨m, h⟩ |= Iαφ iff there exists U ∈ τ⟨m,h⟩α s. t. U , ∅ and U ⊆ ∥φ∥,

where ∥φ∥ denotes the set
{
⟨m, h⟩ ∈ I(M ×H);M, ⟨m, h⟩ |= φ

}
.

14This chapter adopts the same conventions, with respect to the topics that are relevant in EST
(knowingly doing, epistemic sense of ability, knowledge across the stages of information disclosure, and unifor-
mity), as Chapter 4 (see Subsection 4.2.2).
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Therefore, one says that at index ⟨m, h⟩ agent α p-d intended φ iff there exists
U ∈ τ⟨m,h⟩α that supports φ. As for intentional action, I characterize this notion
with the conjunction [α]φ∧ Iα[α]φ, so that at index ⟨m, h⟩ agent α has intentionally
seen to it that φ iff α has seen to it that φ and α p-d intended to see to it that φ.

5.3.1.1 Discussion

It is important to emphasize that, for each α ∈ Ags and index ⟨m, h⟩, the topology
τ⟨m,h⟩α is a topology on α’s ex ante information set. Thus, the logic IEST satisfies
what I call the knowledge-to-intention property: at an index an agent’s p-d intentions
are information that was available to the agent regardless of anyone’s choice of
action (including the agent’s one). Frame condition knowledge of intention (KI),
then, implies a second important feature, which I refer to as the knowledge-of-
intention property: at an index an agent always knew ex ante its p-d intentions. The
arguments in favor of these two properties are given below.

• The knowledge-to-intention property concerns the fact that all p-d intentions
are included in an agent’s ex ante information set. To clarify, this property is
reflected by the validity of formula □Kαφ→ Iαφ. As for arguments in favor
of this property, Broersen (2011b) stated that intentions should be based on
indices that an agent considers to be epistemically possible. Furthermore,
it is reasonable to assume that if an agent knows φ ex ante, “which means
the agent cannot do anything about it, the agent cannot but intend that φ
holds” (Broersen, 2011b, p. 515).15

Now, the idea that an agent cannot but intend everything known ex ante leads
us to a notion of non-deliberative intention, so that an agent non-deliberatively
p-d intends φ iff the agent knows φ ex ante (see the discussion on delibera-
tive agency in Chapter 2’s Section 2.2.5). Non-deliberative intentions thus
concern states of affairs that the agent is compelled to intend for the sole
reason that the agent knows that these states will ensue no matter what all
agents do. In such terms, the p-d intentions underlying modality Iαφ can be
thought of as possibly non-deliberative p-d intentions. In turn, a modality Id

αφ
for deliberative intention, intuitively expressing what agent α has chosen to
intend, can be defined by setting Id

αφ := Iαφ∧¬□Kαφ, so that at an index an
agent deliberatively p-d intended φ iff at the index the agent p-d intended
φ and the agent did not know φ ex ante. In turn, deliberative intentional

15Observe that α’s ex ante knowledge, at a given index, is itself a p-d intention of α, as witnessed
by the fact that, since τ⟨m,h⟩α is a topology on α’s ex ante information set, then such an information set
must be an element of the topology.
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action can be characterized with the conjunction [α]φ∧ Id
α[α]φ, so that at an

index an agent has deliberative-intentionally seen to it that φ iff at the index
the agent has intentionally seen to it that φ and it was not settled that the
agent knowingly saw to it that φ.

• The knowledge-of-intention property concerns the fact that at an index an agent
always knew ex ante its p-d intentions. To clarify, this property is reflected
by the validity of formulas Iαφ → □KαIαφ and ¬Iαφ → □Kα¬Iαφ. This is
a desirable property in virtue of a usual assumption of positive and nega-
tive introspection about one’s own intentionality. According to Lorini and
Herzig (2008), who formalized the relation between intentions and beliefs,
agents have positive and negative introspection about their intentions with
respect to their belief (see also Dunin-Keplicz & Verbrugge, 2002; Herzig &
Longin, 2004). This means that formulas corresponding to Iαφ→ BαIαφ and
to ¬Iαφ→ Bα¬Iαφ are valid in their logics. Broersen (2011b) supported this
claim and took it further so as to include positive and negative introspection
about one’s own intentions with respect to knowledge. Presently, I enforce
this property—with respect to ex ante knowledge—following a relatively
undisputed premise in philosophy of intention that Setiya (2011) referred
to as practical self-knowledge. According to this premise, if an agent has the
capacity to act for reasons and can ascribe intentions to others, then the
agent has the capacity for (groundless) knowledge of its own intentions.16

Now, the fact that p-d intentions are dense implies that they are consistent,
so that an agent cannot p-d intend both φ and ¬φ at the same time. Commonly
accepted in the philosophical literature on intentions (see, for instance, Bratman,
1987; Broersen, 2011b; Cohen & Levesque, 1990; Herzig & Longin, 2004; Lorini &
Herzig, 2008), this property is reflected by the validity of schema (D) for Iαφ. For
agent α and state of affairs φ, int

(
∥φ∥

)
represents the ⊆-biggest p-d intention that

α currently has toward the realization ofφ. Observe, then, that either int
(
∥φ∥

)
= ∅

or int
(
∥φ∥

)
intersects all p-d intentions of α at an index, and thatM, ⟨m, h⟩ |= Iαφ

iff Cl
(
int

(
∥φ∥

))
= π□α [⟨m, h⟩].

Before presenting some examples, I want to justify my choice of using topolo-
gies, since the reader might be curious about the reason for such a choice. As
mentioned before, the intuition that an intention can be seen as a set of possi-
bilities is fairly standard in the logic-based literature on intentions. Inspired by

16Setiya (2011, pp. 189–190) observed that “just as it is impossible for a subject with the power of
inference and the concept of belief to lack first-person access to his own beliefs, so it is impossible for
an agent who does things for reasons and has the concept of intention to lack first-person access to
what she herself intends.”
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Konolige and Pollack’s (1993) ideas behind using neighborhood semantics for for-
malizing intentionality (see also Duijf, 2018), I opted to represent p-d intentions as
special subsets of indices in bt-models.17 However, unlike these two approaches,
I do not agree with the claim that all kinds of p-d intentions should not be closed
under logical consequence. Thus, I started considering the idea of ‘topologies
of intentions’ according to the intuition that unions and intersections of p-d in-
tentions are also p-d intentions. After exploring different options for semantics, I
opted for the topological representation because, in my view, it is straightforward,
intuitive, and expressive, and because it helps in the description of a particular
relation between agency, intentions, and intentional action. In IEST, an agent’s
p-d intentions at the moment of acting are the basis of intentional action insofar
as there must be a p-d intention included in a choice that brings about φ in order
for an agent to intentionally see to it that φ (recall that I presently characterize
intentional action with the conjunction [α]φ ∧ Iα[α]φ).18

5.3.1.2 Examples

To illustrate my semantics of intentionality, I present a formal analysis of two
examples using IEST.

Example 5.6. Recall the situation described at the beginning of this chapter, where you
are a lawyer in the prosecution of a driver that ran over—and killed—a traffic officer.
Consider the iebt-modelM depicted in Figure 5.1.

Here, Ags = {driver}, and m1 is a moment. There are two histories (h1 and h2)
passing through m1. At m1 the choices of action available to driver are the following: R1,
standing for the choice of running over the traffic officer, and R2, standing for the choice
of stopping the car. According to the choice performed, time moves on either into history
h1 or into history h2. As implied by the statement of the example, h1 is the actual history.

17As pointed out by Pacuit (2007) in his lecture notes for a course on neighborhood semantics, “[s]ets
paired with a distinguished collections of subsets are ubiquitous in many areas of mathematics.”

18The reader might wonder why I did not opt for a relational semantics for intentionality. As
mentioned here, I think that the topological representation is better suited to the notion of p-d inten-
tions than potential relational representations. To be sure, the relational paradigms that I explored
before choosing topology involved a more convoluted truth condition for Iαφ, as well as a less
clear-cut formulation of my models’ constraints. Moreover, topological semantics generalize stan-
dard relational semantics and are more expressive. In the words of Özgün (2017, Chapter 1, p. 2),
“topological spaces are equipped with well-studied basic operators such as the interior and closure
operators which, alone or in combination with each other, succinctly interpret different modalities,
giving a better understanding of their axiomatic properties.” As implied by the discussion on the
problems in philosophy of intention in Section 5.2, it is not easy to model the relation between the
concepts of future-directed intentions, intentional action, and intention-with-which. In instantaneous
stit theory—without temporal modalities—such a relation is even harder to address. The topological
semantics for p-d intentions, then, helped me establish one such relation in clear, tractable terms.
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R1 R2

m1

Choicem1
driver

h2h1

k

Figure 5.1: Driver example.

Throughout the diagrams of this thesis, I have represented the epistemic states of agents
by indistinguishability relations given by dashed lines, omitting reflexive loops. Here,
there are no dashed lines because driver is assumed to distinguish ⟨m1, h1⟩ from ⟨m1, h2⟩.
Thus, at every index based on m1 driver knew her choice of action. In turn, driver’s ex
ante information set at the actual index ⟨m1, h1⟩—denoted by π□driver [⟨m1, h1⟩]—is the
set {⟨m1, h1⟩ , ⟨m1, h2⟩}, which coincides with π□driver [⟨m1, h2⟩].

As for driver’s intentionality, consider the topology τ⟨m1,h1⟩

driver . Sinceπ□driver [⟨m1, h1⟩] =
π□driver [⟨m1, h2⟩], frame condition (KI) implies that τ⟨m1,h1⟩

driver = τ
⟨m1,h2⟩

driver . The non-empty
open sets of such a topology are represented in the diagram using circles and ellipses.
More precisely, τ⟨m1,h1⟩

driver =
{
∅, π□driver [⟨m1, h1⟩] , {⟨m1, h1⟩}

}
.

Let k stand for the atomic proposition ‘the traffic officer has been killed’ in
Figure 5.1. Thus, according to the diagram, M, ⟨m1, h1⟩ |= Kdriver[driver]k, for
instance: at the actual index, driver knowingly killed the traffic officer.

To illustrate the evaluation of formulas involving driver’s intentionality, let
U denote the set {⟨m1, h1⟩}. Then U ∈ τ⟨m1,h1⟩

driver and U ⊆ ∥k∥. Thus, according to
Definition 5.5,M, ⟨m1, h1⟩ |= Idriverk: at the actual index driver had a p-d intention—
or p-d intended—that the officer was killed. The same U attests to the fact that
M, ⟨m1, h1⟩ |= Idriver[driver]k: at the actual index driver had a p-d intention to see to it
that the officer was killed. As such, for all practical purposes, driver knowingly and
intentionally killed the officer—which makes it reasonable for her to be blamed
for second- or first-degree murder.

Example 5.7. Recall Chapter 3’s Example 3.12 (p. 112). This example involves a doctor
who supplied anesthetics to a patient before a surgery. The patient had eaten just before
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the surgery, and the doctor did not know this. Anesthetics must have been supplied only
on an empty stomach, so the patient died due to the interaction between the food and the
anesthetics. Consider the iebt-modelM depicted in Figure 5.2.

E1 E2

m1

Choicem1
patient

L3 L4

m3

Choicem3
doctor

h4h3

L1 L2

m2

Choicem2
doctor

h2h1

a ∧ r a ∧ d
e e

Figure 5.2: Anesthesiologist example, again.

Here, Ags =
{
patient,doctor

}
, and m1, m2, and m3 are moments, where ⊏ is defined

so as to be represented by the diagram. There are four histories (h1–h4), representing
different possibilities for time to evolve according to the actions available both to patient
and doctor. At m1 we find two choices available to patient: E1, standing for the choice of
refusing to eat, and E2, standing for the choice of eating. According to the action chosen by
patient, the world evolves toward either m2 or m3. At both these moments, it is doctor’s
turn to act, and her available choices are the following: L1 and L3, standing for supplying
anesthetics; and L2 and L4, standing for refusing to supply anesthetics. As implied by the
statement of the example, h3 is the actual history.

The epistemic states that I focus on are those of doctor. They are represented with
the indistinguishability relation given by dashed lines (where reflexive loops are omitted).
Thus, at all indices based on m2 and m3 doctor did not know whether the patient had
eaten. However, at such indices she did know which action she performed.

As for doctor’s intentionality, let me present τ⟨m3,h3⟩

doctor . Observe that, for all i ∈ {2, 3}
and h ∈ Hmi , π□doctor [⟨mi, h⟩] =

{〈
m j, h′

〉
; j ∈ {2, 3} and h′ ∈ Hm j

}
. This implies that

τ⟨m2,hk⟩

doctor = τ
⟨m3,hl⟩

doctor for all k ∈ {1, 2} and l ∈ {3, 4}. Once again, the non-empty open sets
of such a topology are represented in the diagram using circles and ellipses. Therefore,
τ⟨m3,h3⟩

doctor =
{
∅, π□doctor [⟨m3, h3⟩] , {⟨m2, h1⟩}

}
.
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Let e stand for the atomic proposition ‘the patient has eaten’ in Figure 5.2, and
let a stand for ‘anesthetics are supplied to the patient,’ r stand for ‘the patient
is ready for surgery,’ and d stand for ‘the patient will die.’ Then consider the
following examples for the evaluation of formulas of LI: M, ⟨m3, h3⟩ |= [doctor]d:
at the actual index doctor has seen to it that the patient will die; and M, ⟨m3, h3⟩ |=

¬Kdoctor[doctor]d: at the actual index doctor did not knowingly kill the patient.
As for formulas involving doctor’s intentionality, let U = {⟨m2, h1⟩}. Then

U ∈ τ⟨m3,h3⟩

doctor and U ⊆ ∥a ∧ r∥. Thus, M, ⟨m3, h3⟩ |= Idoctor(a ∧ r): at the actual index
doctor had a p-d intention that the anesthetics would be supplied and that the patient
would get ready for surgery. Similarly, observe that M, ⟨m3, h3⟩ |= ¬Idoctord: at the
actual index doctor had no p-d intention that the patient would die, which implies that
M, ⟨m3, h3⟩ |= ¬Idoctor[doctor]d: at the actual index doctor did not have a p-d intention
to kill the patient and thus did not intentionally kill him.

Therefore, the model tells us two important facts: (1) although doctor killed
the patient on the causal level, she acted neither knowingly nor intentionally;
and (2) doctor actually p-d intended that the patient would live. These claims
provide good reasons for excusing the doctor from having moral responsibility of
the patient’s death.

5.4 Logic-Based Properties & Axiomatization

Let me present and discuss some properties of IEST, in terms of formulas that are
either valid or invalid with respect to iebt-models.

5.4.1 Properties

The logic-based properties of modalities □φ and [α]φ are the same as those re-
viewed in Chapter 2’s Subsection 2.3.1. The properties of knowledge and its
interplay with agency are the same as those addressed in Chapter 4’s Subsec-
tion 4.5.1: Kα is an S5 operator such that the formulas associated with frame
conditions (OAC) and (Unif − H) are valid (see items 5 and 6 in the list of EAUST’s
logic-based properties, Chapter 4, Subsection 4.5.1, pp. 172 and 173).

As for operator Iα, it is a KD operator. The validity of the KD schemata for
Iα follows from Definitions 5.4 and 5.5, and it has the following consequences for
my notion of intentionality:

• The validity of (K) (Iα(φ → ψ) → (Iαφ → Iαψ)) implies that if at an index
an agent p-d intended φ then the agent p-d intended all the logical conse-
quences of φ. Thus, my notion of (possibly non-deliberative) p-d intentions
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is vulnerable to a particular version of the so-called side-effect problem (see
Footnote 8). I do not agree with the claim that possibly non-deliberative in-
tentions should not be closed under logical consequence. The reason is that
stit-theoretic agents are rational, logically omniscient thinkers, who know
ex ante all the logical consequences of what they know. Similarly, they know
ex ante all tautologies and all valid formulas. For agents of this kind, I find
it reasonable to assume that they will p-d intend the logical consequences
of whatever they intend. Furthermore, formula (□Kα(φ→ ψ) ∧ Iαφ)→ Iαψ
is valid in my framework, so that if at an index an agent knew ex ante that φ
implies ψ—or non-deliberatively p-d intended that φ implies ψ—then the
agent’s p-d intention of φ implies its p-d intention of ψ. Thus, p-d inten-
tions are presently closed under ex ante knowledge (or non-deliberative p-d
intention) of side-effect implication. Again, I find that this is a reasonable
assumption for rational, logically omniscient thinkers.19

Philosophers might remain skeptical about this line of argumentation. Ob-
serve, then, that my framework admits a solution to the versions of the side-
effect problem discussed above. It is easy to verify that the concept of deliber-
ative intention (p. 228), expressed by modality Id

αφ, is not closed under logical
consequence nor under ex ante knowledge of side-effect implication. Rem-
iniscent of what happens in Cohen and Levesque’s (1990) and Broersen’s
(2011b) proposals for formalizing intentions that are not closed under logi-
cal consequence, however, if the agent did not already know ex ante that the

19Most versions of the side-effect problem (see, for instance, Bratman, 1987; Broersen, 2011b; Cohen
& Levesque, 1990; Rao & Georgeff, 1991) only argue that intentions should not be closed under believed
(or anticipated) side effects, in the sense that if an agent intends φ and also believes that φ → ψ,
then one should not conclude that the agent also intends ψ. In fact, the formulation of the side-effect
problem with the dentist example (Footnote 8) involves only this argument, in terms of intentions and
belief. Indeed, it is unclear to me why the side-effect problem is sometimes assumed to refer to closure
of intentions under logical consequence (Duijf, 2018; Konolige & Pollack, 1993). Logical consequence
is a very strong assumption for most logic-based models, since it means that φ→ ψ holds at all states.
For logically ideal agents as the ones here modelled, this implies that at every possible configuration
of the world every agent knows for sure (with absolute, indefeasible certainty) that φ → ψ will hold
(at every possible configuration of the world). Recall once again the dentist example (Footnote 8), and
suppose that we phrase it in terms of logical consequence. Now pain is a necessary consequence of
getting one’s tooth filled at every possible configuration of the world, and the agent not only believes
that the process of having his tooth filled will cause him pain, but he also knows for sure that there is
no possible configuration of the world in which he will not feel pain by getting his tooth filled. Can
we really say that the agent intended to get his tooth filled without intending pain? Most likely, this is
why Rao and Georgeff (1991), Lorini and Herzig (2008), and Bentzen (2012), for instance, all disregard
that intentions should be not closed under logical consequence. As for approaches that manage to
yield logics of intending where intentions are not closed under logical consequence, it is either the
case that non-closure is only possible when side effects are already known/believed (Broersen, 2011b;
Cohen & Levesque, 1990) or the case that the logics have problems arising from the use of non-normal
operators (Duijf, 2018; Konolige & Pollack, 1993).
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side effect held then the agent also has a deliberative p-d intention of the
side effect. To clarify, formula

(
Id
αφ ∧ □Kα

(
φ→ ψ

)
∧ ¬□Kαψ

)
→ Id

αψ is still
valid.

• The validity of (D) (Iαφ → ¬Iα¬φ) implies that if at an index an agent p-d
intended φ then at that index the agent must not have p-d intended ¬φ. As
mentioned before, most of the authors whose formalization of intention has
been discussed (Bratman, 1987; Broersen, 2011b; Cohen & Levesque, 1990;
Herzig & Longin, 2004; Lorini & Herzig, 2008) support the idea that, at a
specific point in time, future-directed intentions, p-d intentions, intentional
actions, and intentions-with-which should be respectively consistent, and I
agree with them.

Furthermore, the validity, resp. invalidity, of the following formulas, with
respect to the class of iebt-models, captures important properties of the interplay
between the modalities of IEST.

1. (a) ̸|= Iαφ → Iα[α]φ: it is not necessarily true that if at an index an agent
p-d intended φ then at that index the agent p-d intended to see to it that
φ. This property refers to a distinction between intending that φ is the
case and intending to be the material author of φ. For instance, suppose
that I am a dictator displaying psychopathic traits. I have an intention
toward the bombing of a neighboring country, but I do not intend for me
to actually press the button that would deploy a bomb. Although some
authors claim that the most primal notion of intending always refers
to intending to do (see, for instance, Moran & Stone, 2009; Thompson,
2008), I support the idea—consistent with Bratman’s (1984) seminal
thesis that future-directed intentions are elements in complex plans—
that an agent can intend the realization of some state of affairs without
intending to be the one realizing it.20 Once again, a good example of

20Duijf (2018, Chapter 4, p. 163) explicitly stated that there is a distinction between intending and
intending to do. He wrote: “[t]here are two different types of future-directed intentions: I can intend
to perform a certain action, or I can intend to realize a certain state of affairs.” Observe that I have
often used expressions such as ‘α p-d intended that φ would hold,’ or ‘α p-d intended φ’ to describe
modality Iαφ, reserving expressions of the form ‘α p-d intended to do φ,’ or ‘α p-d intended to see to
it that φ,’ to describe the combined modality Iα[α]φ. This presupposes a practical identification of α’s
intending to do something with α’s intending that something will be done by α. Therefore, my framework
has two points of contention with Thompson’s (2008)’s view (which in turn follows the tradition that
began with Anscombe’s (1963) work):

i. The logic-based property that the present footnote annotates ( ̸|= Iαφ → Iα[α]φ) implies that I
distinguish between intentions, on the one hand, and intending to do, on the other. In contrast,
Thompson formalized a sense of intention in which intending is already intending to do, and
furthermore already an intentional action “in progress” (Setiya, 2018).
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this lies in mastermind agents that delegate actions to subordinates. The
distinction between intending that φ is the case, on the one hand, and
intending to actually see to it thatφ, on the other, is all the more relevant
in responsibility attribution: although my subordinate pilots were the
ones deploying the bombs, it is me who should stand trial in The Hague.

To illustrate this property, consider a variation of Example 5.6. Suppose
that driver did not want to run over the traffic officer herself, but, still,
she had a p-d intention that the officer would get killed. A diagram
of this situation is included in Figure 5.3. In this case, observe that

R1 R2

m1

Choicem1
driver

h3h2h1

k k

Figure 5.3: Another driver example.

τ⟨m1,h3⟩

driver =
{
∅, π□driver [⟨m1, h3⟩] , {⟨m1, h3⟩}

}
. Let U = {⟨m1, h3⟩}. Then U ⊆ ∥k∥.

This means that M, ⟨m1, h3⟩ |= Idriverk: at ⟨m1, h3⟩ driver p-d intended
that the officer would get killed. However, there does not exist a non-
empty open set included in ∥[driver]k∥, which means thatM, ⟨m1, h3⟩ |=

¬Idriver[driver]k: at ⟨m1, h3⟩ driver did not p-d intend to kill the officer.

(b) ̸|= Iα[α]φ → [α]φ ∧ Iα[α]φ: it is not necessarily true that if at an index
an agent p-d intended to see to it that φ then at that index the agent has
intentionally seen to it that φ. Recall that I interpret [α]φ ∧ Iα[α]φ as
expressing that α has intentionally seen to it that φ. Thus, this property

ii. The expressions here used to describe modalities Iαφ and Iα[α]φ imply that, in my framework, it
is possible to reduce intending to do to intending that. If Iα[α]φ holds, my interpretation says that
‘α intended that α has seen to it that φ,’ and I have identified such an expression with ‘α intended
to do φ.’ In contrast, Thompson (2008, Chapter 8, pp. 120–123) considered that there is a primal
sense of intending that only takes verb phrases as complement. When somebody says ‘I intend
to walk to school,’ for instance, this is not reducible to an expression of the form ‘I intend that I
will walk to school,’ since the latter is not directed to a particular action of mine that will get me
to school.
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is in line with the assumption, that began with Davidson’s (1978) work,
that intending does not imply intentionally doing. For instance, I could
have intended to start my car and still not have taken any action toward
starting it.21 To illustrate this property, consider Example 5.6. Here,
M, ⟨m1, h2⟩ |= Iα[driver]k andM, ⟨m1, h2⟩ |= ¬[driver]k: at ⟨m1, h2⟩ driver
p-d intended to kill the traffic officer, but at such an index driver did not
intentionally kill the officer.

(c) |= Iα[α]φ → Iαφ: if at an index an agent p-d intended to see to it
that φ, then at that index the agent p-d intended φ. Since I interpret
the conjunction [α]φ ∧ Iα[α]φ as α’s intentionally doing φ, then this
property yields that in IEST intentional action implies intending. Thus,
my notion of intentionality falls under a philosophical standpoint that
Bratman (1984) called the Simple View. The Simple View considers that,
for an agent to intentionally do φ, the agent must also intend that φ
is the case. Although Bratman heavily objected to the Simple View, I
find it appropriate for logically omniscient agents.22 The validity of this
formula follows from the validity of schema (T) for [α], Necessitation
for Iα, and the validity of schema (K) for Iα.

(d) ̸|= [α]φ → Iαφ: it is not necessarily true that if at an index an agent
has seen to it that φ then at that index the agent p-d intended φ. This
property reflects the desirable tenets that (i) not all actions follow a
specific p-d intention, and that (ii) not all actions are intentional. As for

21The desirability of this property depends on agreeing with the tradition inspired by Davidson’s
work (see also Aune, 1977; Bratman, 1984, 1987; Searle, 1983). As mentioned in Section 5.2, the property
would not be in line with what the camp that arose from the work of Anscombe (1963) thinks about
the relation between intentions and intentional action.

22Bratman (1984) objected to the Simple View by showing that there are situations when one would
naturally say that an agent intentionally did φ without actually intending φ. His famous example
involves an agent playing two video games that are linked to each other. In each game, the objective is
the same: guiding a missile to its respective target. The games are difficult, and the agent is doubtful
of success at either of them. Moreover, the agent knows that the two games are linked in such a way
that it is impossible to hit both targets. If both targets are about to be hit, simultaneously, then the
machines just shut down. Both targets are visible to the agent, so the agent can see which target was
hit, if any. Thus, the agent proceeds to try to hit target 1 and also to try to hit target 2, considering the
risk of shutting down the machines as outweighed by the increase in the chances of hitting a target.
Supposing that the agent hits target 1, it seems fair to say that the agent hit target 1 intentionally. So,
on the Simple View, the agent must have intended to hit target 1. Symmetrically, the agent must also
have intended to hit target 2. However, given the agent’s knowledge that both targets cannot be hit,
these two intentions are not consistent. Having them would involve the agent in a criticizable form of
irrationality. However, it seems clear that the agent is not irrational in choosing the strategy of trying
to hit both targets, because the games are both difficult. If the agent is not guilty of irrationality, then
the agent should not be seen as having both intentions. Therefore, the Simple View should be false.

I find much worth in Bratman’s (1984) solution to this problem of the Simple View. He introduced the
notion of motivational potential of φ—referring to all ψ’s which an agent counts as doing intentionally
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point (i), observe that agents can bring about states of affairs without
any intention toward the realization of these states of affairs. This is
what happens, for instance, in Example 5.7: doctor caused the patient’s
death, but doctor did not p-d intend that the patient would die. In terms
of formulas,M, ⟨m3, h3⟩ |= [doctor]d∧¬Idoctord. As for point (ii), it is clear
that agents can bring about states of affairs unintentionally. Observe
that the fact that [α]φ → Iαφ is not valid, coupled with the validity of
the formula in item 1c (Iα[α]φ → Iαφ), implies that [α]φ → Iα[α]φ is
also not valid. Therefore, in light of my characterization of intentional
action with the conjunction [α]φ ∧ Iα[α]φ, the fact that [α]φ→ Iα[α]φ is
not valid reflects that in IEST agents can act unintentionally.

2. (a) ̸|= Kαφ→ Iαφ: it is not necessarily true that if at an index an agent knew
φ then at that index the agent p-d intended φ. In light of the validity of
the formulas associated with frame condition (OAC) (see item 5 in the list
of EAUST’s logic-based properties, Chapter 4, Subsection 4.5.1, p. 172),
Kαφ is logically equivalent to Kα[α]φ. To know φ, then, is to knowingly
do φ (or to have ex interim knowledge of φ). Therefore, this property,
which can be reformulated as ̸|= Kα[α]φ → Iαφ, reflects the desirable
tenet that knowingly doing φ does not imply intending φ, as can occur
when someone else forced your hand, for instance. To clarify, consider
another variation of Example 5.6. Suppose that driver did not want to
run over the officer herself. By previously threatening to injure your
family if you refused to follow her instructions, driver forced you into
taking your own car and running over the officer. A diagram of your
situation as an agent is included in Figure 5.4.

In this case, the actual history is h1. Thus, M, ⟨m1, h1⟩ |= Kyou[you]k ∧
¬Iyouk: at the actual index you knowingly killed the traffic officer, but you
had no p-d intention that the officer would be killed. Furthermore, observe

in the course of carrying out an intention to do φ—and used the relation between this potential
and beliefs/desires in complex plans to offer a solution to the Simple View’s problem. According to his
proposal, in the video-games example, although the agent did not intend to hit target 1, hitting target 1
is included in the motivational potential ofψ = getting a reward from the video-games, for instance. Thus,
although the agent does not intend to hit target 1, hitting it does count as an intentional action.
Nevertheless, I disagree with the idea that the video-games example is suited to claiming that the
Simple View is false. I do not think that, in such an example, the agent intentionally hit target 1. Let
me explain this position, by means of my own framework. Let t1 stand for the proposition ‘target 1 is
hit,’ let t2 stand for the proposition ‘target 2 is hit,’ and let α be the agent playing the video-games. In
my view, formula Iα[α]t1 does not hold, and thus α did not intentionally hit target 1. The formula that
holds, rather, is [α] (t1 ∧ ¬t2) ∧ Iα[α] ((t1 ∧ ¬t2) ∨ (¬t1 ∧ t2)). Thus, what the agent did intentionally
was an exclusive disjunction: the agent intentionally either hit target 1 while not hitting target 2 or hit
target 2 while not hitting target 1.
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Figure 5.4: Yet another driver example.

that the validity of the formula in item 1c (Iα[α]φ → Iαφ) implies that
M, ⟨m1, h1⟩ |= ¬Iyou[you]k as well: at the actual index you did not p-d intend
to kill the traffic officer. In light of my characterization of intentional action
with the conjunction [α] ∧ Iα[α]φ, this means that you did not kill the
officer intentionally. Thus, in IEST knowingly doing also does not imply
intentionally doing.

(b) ̸|= [α]φ∧ Iα[α]φ→ Kα[α]φ: it is not necessarily true that if at an index an
agent has seen to it that φ and the agent p-d intended to see to it that φ
then at that index the agent has knowingly seen to it thatφ. This property
entails that my framework allows us to model situations where an agent
intentionally does φ without knowingly doing φ. A good example of
the viability of such situations is given by a small variation of one of
Horty’s (2019) three puzzles (the ones that were extensively discussed in
Chapter 4’s Sections 4.3 and 4.4). Suppose that Nikolai and Dolokhov are
playing a game at a gambling house. The set-up is as follows: Dolokhov
places a coin on top of a table—either heads up or tails up—and hides
it from Nikolai. Nikolai can bet that the coin is heads up or bet that it is
tails up. If Nikolai bets and chooses correctly, Nikolai and Dolokhov win
10 roubles from the house. If he chooses incorrectly, they win nothing.
Assume that Nikolai p-d intended to win at any index based on m2 and
m3. Then a diagram of the situation is depicted in Figure 5.5.

Just as in Chapter 4, at moment m1 Dolokhov chooses between placing
his coin on the table either heads up or tails up. Thus, his available
actions are labelled by D1 (placing the coin heads up) and D2 (placing
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Figure 5.5: Nikolai gambling.

the coin tails up). At moments m2 and m3 it is Nikolai’s turn to act, and
the available actions are the following: N1 and N3, where he bets heads;
and N2 and L4, where he bets tails.

Here, h stands for the proposition ‘Dolokhov’s coin is placed heads up,’ t
stands for ‘Dolokhov’s coin is placed tails up,’ bh stands for ‘Nikolai has
bet heads,’ bt stands for ‘Nikolai has bet tails,’ and w stands for ‘Nikolai
and Dolokhov win.’ Observe that Nikolai’s ex ante information set is the
same at all indices based on m2 and m3: π□Nik

[〈
mi, h j

〉]
= π□Nik [⟨mk, hl⟩] for

all i, k ∈ {2, 3} and j, l in 1–4. Let us assume that the actual index is ⟨m2, h1⟩,
where Nikolai has bet heads and has won 10 roubles. The diagram shows
thatM, ⟨m2, h1⟩ |= [Nik]w∧¬KNik[Nik]w: at ⟨m2, h1⟩, although Nikolai has
won the bet, he has done so unknowingly. As for Nikolai’s intentionality,
τ⟨m2,h1⟩

Nik =
{
∅,U, π□Nik [⟨m2, h1⟩]

}
, where U = {⟨m2, h1⟩ , ⟨m3, h4⟩}.23 Observe,

then, that U ⊆ ∥[Nik] w∥, so that INik[Nik]w holds at ⟨m2, h1⟩: at ⟨m2, h1⟩

Nikolai p-d intended to win the bet. Thus, Nikolai did not knowingly win
the bet, but he did win it intentionally: ¬KNik[Nik]w∧[Nik]w∧INik[Nik]w
holds.

The fact that my framework allows situations where an agent inten-
tionally doesφwithout knowingly doingφ implies that it deviates from

23For the diagram’s readability, I omitted displaying the ellipse that represents the full ex ante
information set π□α [⟨m2, h1⟩].
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what Marcus (2019, p. 4) called the knowledge thesis for intentional action,
according to which “it is impossible for a person to do something inten-
tionally without knowing that she is doing it.” Although the knowledge
thesis is defended by many philosophers (see, for instance Anscombe,
1963; Broersen, 2011b; Gorr & Horgan, 1982; Olsen, 1969), there is em-
pirical evidence that “in various scenarios a majority of non-specialists
regard agents as intentionally doing things that the agents do not know
they are doing and are not aware of doing” (Vekony, Mele, & Rose, 2021,
p. 1231).24

(c) |= □Kαφ → Iαφ: if at an index an agent knew φ ex ante, then at that
index the agent (non-deliberatively) p-d intended φ. The validity of
□Kαφ → Iαφ reflects what I called the knowledge-to-intention property
in the discussion right after Definition 5.5, concerning the fact that all
p-d intentions are included in an agent’s ex ante information set. The
arguments in favor of the knowledge-to-intention property were given on
p. 228, and a proof of validity of□Kαφ→ Iαφ follows from Definitions 5.4
and 5.5.

3. (a) |= Iαφ → □KαIαφ: if at an index an agent p-d intended φ, then at that
index the agent knew ex ante that it p-d intended φ. Together with
the validity of the formula in item 3b below, the validity of this one
reflects what I called the knowledge-of-intention property in the discussion
right after Definition 5.5, concerning the fact that at an index an agent
must have known ex ante its p-d intentions. The arguments in favor of
the knowledge-of-intention property were given on p. 229. As mentioned
before, such a property is associated with frame condition (KI) in Def-
inition 5.4. Indeed, formula Iαφ → □KαIαφ defines (KI) insofar as an
ebt-frame including τ satisfies (KI) iff Iαφ→ □KαIαφ is valid with respect
to said frame. The validity of this formula follows from Definitions 5.4
and 5.5.

24Vekony et al. (2021) conducted two studies on groups of 250 people, asking them to rate the
intentionality, knowledge, and awareness of an agent’s actions in two different scenarios, where each
study tested one of these scenarios. In the first study, the scenario involved a basketball player that
is practicing free throws. One evening, he lines up and takes the shot, but just as the ball leaves his
hands, lightning strikes the building. Due to this, the player is completely unaware of whether he
sank the shot, although he did in fact sink the shot. In the second study, the scenario involved an
agent that locks her door every morning as she leaves for work. On her way out to work one morning,
she locks the door, but because she is preoccupied with thoughts about her day she is completely
unaware of doing so. Therefore, she walks back from her car to check if she locked the door. For both
studies, most participants considered that the agents were intentionally but unknowingly performing
the actions of making the free throw and locking the door, respectively.
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(b) |= ¬Iαφ → □Kα¬Iαφ: if at an index an agent did not p-d intend φ, then
at that index the agent knew ex ante that it did not p-d intend φ. See the
discussion of item 3a above. In the proof system for IEST presented in
Subsection 5.4.2, this formula can be derived using the one in item 3a
above, so it is also valid (Observation 5.9 a).

Recall that in Section 5.2 I mentioned that two main problems in philosophy
of intention are (1) the quest for unity in the three forms of intentionality (future-
directed intentions, intentional action, and intention-with-which), and (2) the relation
between intentionality, on the one hand, and knowledge, beliefs, desires, etc.,
on the other. The logic-based properties in item 1 somewhat settle where my
interpretation of intentionality stands with respect to problem (1). In turn, the
logic-based properties in items 2 and 3 speak of my take on a relation that is
relevant in problem (2): the relation between intention and knowledge. Let me
briefly elaborate on these matters.

As for problem (1), I prioritize p-d intentions—which lie in the same category
as future-directed intentions—and base on them the notion of intentional action.
Since I identify α’s intentionally doing φ with the conjunction [α]φ∧ Iα[α]φ, then
at a given index α has intentionally seen to it that φ only if α p-d intended to
see to it that φ—that is, only if Iα[α]φ holds; therefore, the validity of formula
Iα[α]φ → Iαφ (item 1c) implies that for α to intentionally do φ α must have p-d
intended that φ would be the case. As mentioned before, this means that my
treatment of intentionality falls under what Bratman (1984) referred to as the
Simple View.25

As for problem (2), my framework’s position on the relation between an agent’s
intentionality and its knowledge can be summarized with two remarks. First, an
agent’s p-d intentions must be consistent with the agent’s ex ante knowledge, as
implied by the validity of □Kαφ→ Iαφ and the validity of schema (D) for Iα imply
that. In other words, if an agent p-d intends φ then the agent must not know
¬φ ex ante. In light of the validity of □Kαφ ↔ Kα□φ (a formula associated with
frame condition (Unif − H)), this implies that an agent cannot at the same time p-d
intend φ and know that φ is impossible, since formula Iαφ → ¬Kα□¬φ is valid.

25As for intention-with-which, a viable characterization can be conceived using an extension of IEST
with a belief modality Bαφ (see Subsection 5.5.2), as follows: suppose that at a given index agent α
had a primary reason ψ for choosing its current action, so that Id

αψ∧ (□Bα([α]φ→ ψ)∧ ([α]φ∧ Id
α[α]φ))

holds. Thus, at the index (a) α deliberatively p-d intended ψ, (b) α believed ex ante that [α]φ→ ψ, and
(c) α has deliberative-intentionally seen to it that φ. Then the realization of ψ can be thought of as an
intention-with-which α has seen to it that φ.
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Secondly, agents always have positive and negative introspection about their p-d
intentions with respect to their ex ante knowledge, as implied by the validity of
formulas Iαφ→ □KαIαφ and ¬Iαφ→ □Kα¬Iαφ.

5.4.2 Axiomatization

Just as done in all the previous chapters, in this subsection I introduce a proof
system for the developed logic:

Definition 5.8 (Proof system for IEST). Let ΛI be the proof system defined by the
following axioms and rules of inference:

• (Axioms) All classical tautologies from propositional logic; the S5 schemata for □,
[α], and Kα; the KD schemata for Iα; and the following schemata:

□φ→ [α]φ (SET)
For all m ≥ 1 and pairwise different α1, . . . , αm,∧

1≤k≤m^[αi]φi → ^
(∧

1≤k≤m[αi]φi
)

(IA)
Kαφ→ [α]φ (OAC)
^Kαφ→ Kα^φ (Uni f −H)
□Kαφ→ Iαφ (InN)
Iαφ→ □KαIαφ (KI)

• (Rules of inference) Modus Ponens, Substitution, and Necessitation for all modal
operators.

Schemata (SET) and (IA) are standard in BST, and they were discussed in
Chapter 2’s Subsection 2.3.1. Schemata (OAC) and (Uni f −H) were discussed in
Chapter 4’s Subsection 4.5.2.

Schema (InN)—where ‘InN’ stands for intentional necessity—characterizes syn-
tactically what I called the knowledge-to-intention property (p. 228, see also item 2c
in the list of IEST’s logic-based properties in Subsection 5.4.1).

Schema (KI)—where ‘KI’ stands for knowledge of intention—characterizes syn-
tactically the knowledge-of-intention property (p. 228, see also item 3 in the list of
IEST’s logic-based properties in Subsection 5.4.1), as well as frame condition (KI)
(see Definition 5.4).

Observation 5.9. Schemata (4) and (5) for Iα, as well as schema (⋆) ¬Iαφ→ □Kα¬Iαφ
and schema (Den) ^Iαφ→ Kα⟨Iα⟩φ, are important ΛI-theorems, which can be shown to
be ΛI-provable according to the following arguments:
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(a) For schema (⋆) ¬Iαφ → □Kα¬Iαφ, a derivation is obtained as follows: let
(KI)′ denote schema Iαφ→ Kα□Iαφ. Observe that ΛI-theorem □Kαφ↔ Kα□φ
(which is indeed a ΛI-theorem since it is logically equivalent to (Uni f − H),
as shown in Observation 4.31 b) implies that (KI) in ΛI is logically equivalent
to (KI)’. Thus, a derivation of ¬Iαφ → Kα□¬Iαφ can be obtained by substi-
tuting Iαφ for ⊙Sαφ and (KI)′ for (s.Cl) in the derivation of item c in the same
Observation 4.31. Once again, ΛI-theorem □Kαφ ↔ Kα□φ then implies that
¬Iαφ→ □Kα¬Iαφ is therefore also a ΛI-theorem.

(b) Schema (4) for Iα follows straightforwardly from schema (KI) and schema
(InN). Schema (5) for Iα follows straightforwardly from (⋆) ¬Iαφ→ □Kα¬Iαφ
(item a above) and schema (InN).

(c) For schema (Den) ^Iαφ→ Kα⟨Iα⟩φ, a derivation is obtained as follows, where
‘c.p.’ abbreviates ‘contrapositive,’ ‘Nec.’ abbreviates ‘Necessitation,’ and
‘Subs.’ abbreviates ‘Substitution’:

1. ⊢ΛI ¬Iαφ→ □¬Iαφ (⋆), Subs. of (T) for Kα, modal & prop. logic
2. ⊢ΛI ^Iαφ→ Iαφ C.p. of 1
3. ⊢ΛI Iαφ→ KαIαφ (KI), Subs. of (T) for □, modal & prop. logic
4. ⊢ΛI KαIαφ→ Kα⟨Iα⟩φ (D) for Iα,Nec. & Subs. of (K) for Kα
5. ⊢ΛI ^Iαφ→ Kα⟨Iα⟩φ 2, 3, 4, prop. logic.

As for metalogic properties of IEST, the soundness & completeness results for
ΛI are stated in the following theorem, whose proof is relegated to Appendix D:

Theorem 5.10 (Soundness & Completeness ofΛI). The proof systemΛI is sound and
complete with respect to the class of iebt-models.

□

The proof of Theorem 5.10 is the main technical contribution of this chapter.
As for soundness, the proof is standard. As for completeness, the proof is a two-
step process. First, I introduce a Kripke semantics for the logic—entirely based
on relations on sets of possible worlds. In such a semantics, the formulas of LI

are evaluated on Kripke-ies-models (Definition D.14). I prove completeness of
ΛI with respect to the class of these structures, via the well-known technique of
canonical models. Secondly, a truth-preserving correspondence between Kripke-
ies-models and a sub-class of iebt-models is used for proving completeness with
respect to iebt-models via completeness with respect to Kripke-ies-models. The
truth-preserving correspondence implies associating a topological model to a
Kripke model, such that both satisfy the same formulas at same indices. This is
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done via so-called Alexandrov spaces (Definition D.16), with a technique inspired
by Özgün (2017) (see also Baltag, Bezhanishvili, Özgün, & Smets, 2015; Baltag et
al., 2016).

5.5 Conclusion

I want to conclude this chapter with a discussion of three topics: (a) possibilities
for future work in the stit-theoretic formalization of future-directed intentions, (b)
a few aspects of the interplay between my notion of intentionality and the notion
of p-1 belief that was introduced in Subsection 3.5.1 of Chapter 3’s conclusion,
and (c) a first proposal for formalizing the category of motivational responsibility
(see the discussion on Broersen’s three categories of responsibility in Chapter 1,
p. 5).

5.5.1 An Account of Future-Directed Intentions

My semantics of intentionality shies away from modelling future-directed inten-
tions. However, I believe that xstit theory (see Chapter 2’s Subsection 2.3.3, p. 56),
coupled with the strategic-ability modality ⟨⟨α⟩⟩sφ (see, for instance, Broersen et
al., 2006a;Horty, 2001, Chapter 7), might aid in the construction of a framework
that would account for an interesting relation between explicit future-directed
intentions and intentional action, which would prove useful in a finer-grained
characterization of motivational responsibility.

Definition 5.11 (Syntax for intentional xstit theory with strategies). Given a finite
set Ags of agent names and a countable set of propositions P, the grammar of the formal
language LSX is given by

φ ::= p | ¬φ | φ ∧ φ | □φ | Xφ | [α]φ | Kα | Iαφ | ⟨⟨α⟩⟩sφ,

where p ∈ P and α ∈ Ags.

In this language, □φ, [α]φ, Kαφ, and Iαφ have the same meaning as in Defini-
tion 5.3; Xφ expresses that ‘φ holds at the next moment (along the same history)’;
and ⟨⟨α⟩⟩sφ expresses that agent α has the strategic ability to ensure that φ is the
case. As for the semantics, the formulas of LSX are evaluated on what I refer to
as uniformly bounded iebdt-models, which are nothing more than finite iebt-models
(see Definition 5.4) that additionally satisfy the following two conditions:

• (TD) Time-discreteness: for all h ∈ H and m ∈ h such that m is not terminal,
there exists a unique moment m+h such that m ⊏ m+h and m+h

⊑ m′ for
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every m′ ∈ h such that m ⊏ m′. For m ∈ M and h ∈ Hm, m+h is known as
the successor of m along h. For m ∈ M, h ∈ Hm, the moment m+h will also

be denoted by m+h(1), the moment
(
m+h

)+h
will also be denoted by m+h(2), so

that, for i ∈ N − {0}, m+h(i) will denote the unique moment in h that is the ith

iteration of the successor function applied to m. For the sake of coherence,
m+h(0) will also denote m. For index ⟨m, h⟩, I refer to

〈
m+h, h

〉
as the successor

of ⟨m, h⟩ or as ⟨m, h⟩’s next index.

• (UB) Uniform bound: for all h, h′ ∈ H, card(h) = card(h′).

For α ∈ Ags and moment m, let ⊑ [m] := {m′ ∈ M; m ⊑ m′}. Then a strategy
of α starting at m is defined as a function σ :⊑ [m] →

⋃
m′∈⊑[m] Choicem′

α such that
σ(m′) ∈ Choicem′

α . In other words, a strategy of α starting at m assigns to m′ a
choice of action available to α at m′ (for every m′ that is either equal to m or in the
future of m). For α ∈ Ags, moment m, and strategy σα starting at m, the set

Admm
α (σα) :=

{
h′ ∈ Hm;

h′ ∈ σα (m′)
for every m′ ∈ h′ s. t. m′ ⊒ m

}
is known as the set of admissible histories of σα. The idea is that strategy σα

constrains the possible courses of events at m to the histories in Admm
α (σα).

To clarify, strategies underlie alternatives for sequential actions over time.
Thus, they allow us to reason about the effects of chains of actions in the long run.
If α is carrying out a particular strategy σα starting at m, then α will perform the
action σα(m′) recommended by that strategy whenever α arrives at m′. In this way,
α sequentially constrains the possible futures while carrying out σα. Any history
that results from this process of sequential constraining is said to be admitted by
σα—and lies in the set Admm

α (σα).26 With such a notion, one can define semantics
for the strategic-ability modality:

Definition 5.12. Let M be a uniformly bounded iebdt-model. The semantics on M
for the formulas of LSX are recursively defined as in Definition 5.5, with the following
additional clauses:

M, ⟨m, h⟩ |= Xφ iff M, ⟨m+h, h⟩ |= φ
M, ⟨m, h⟩ |= ⟨⟨α⟩⟩sφ iff there is a strategy σα starting at m s. t.

M, ⟨m, h′⟩ |= φ for every h′ ∈ Admm
α (σα) .

26This concept of ‘strategy’ was first incorporated into stit theory by Belnap et al. (2001) and by
Horty (2001). Similar to what is defined in extensive-form games or in concurrent game structures for
alternating-time temporal logic (ATL), an agent’s strategies are functions that map a given moment to
a choice of action available to the agent at that moment.
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Now, as mentioned on p. 220, I follow Bratman (1984, 1987) in considering
future-directed intentions as elements in complex plans. In my view, the no-
tion of strategies introduced above—which underlies modality ⟨⟨α⟩⟩sφ—can be
added to my theory of intentionality to formalize having plans, and thus to for-
malize a version of future-directed intentions. The idea is that an agent α has a
future-directed intention—written f-d intention, from here on—toward the final
realization of φ iff (a) there is a strategy by which α can enforce φ in the end, and
(b) at each step of this strategy α p-d intends that φ will hold in the end. The se-
quence of actions recommended by the strategy, each coupled with the respective
moment’s p-d intention that φ will hold in the end, can be identified with a plan
of α toward the final realization of φ. Thus, α f-d intends φ iff α plans that φ will
hold in the end.

To express these ideas in all formality, for a non-terminal moment m and
h ∈ Hm, let i(m) denote the number of moments between m and h’s terminal
moment (including h’s terminal moment but not including m).27 Then I will say
that at ⟨m, h⟩ α f-d intended φ iffM, ⟨m, h⟩ |= ⟨⟨α⟩⟩sXi(m)φ via strategy σα and, for
all h′ ∈ Admm

α (σα) and 0 ≤ k < i(m),M,
〈
m+h′(k), h′

〉
|= IαXi(m)−kφ via p-d intention

Uh′
k .28 Thus, at ⟨m, h⟩ α f-d intended φ iff (a) there is a strategy starting at m by

which α can enforce that φ holds at all indices based on terminal moments and
anchored by histories admitted by the strategy, and (b) at all current and successor
indices that are anchored by strategically admitted histories, α p-d intended thatφ
would hold in the end. The sequence of pairs

{(
σα

(
m+h′(k)

)
,Uh′

k

)}
h′∈Admm

α (σα),0≤k<i(m)
can be thought of as α’s plan toward the final realization of φ.

To illustrate this semantics, consider the uniformly bounded iebdt-model de-
picted in Figure 5.6. In this simple example, agent driver intends to start her
car. At moment m1 there are two available choices: L1, standing for the choice of
getting the keys of the car, and L2, standing for the choice of not getting the keys
of the car. At m2 the available choices are: L3, standing for the choice of turning
the key in the ignition, and L4, standing for the choice of not turning the key in
the ignition. At m3 the available choices (L5 and L6) are irrelevant.

Focusing on driver’s intentionality, let τ⟨m1,h1⟩

driver =
{
∅, π□driver [⟨m1, h1⟩] , {⟨m1, h1⟩}

}
,

let τ⟨m2,h1⟩

driver =
{
∅, π□driver [⟨m2, h1⟩] , {⟨m2, h1⟩}

}
, and let τ⟨m3,h3⟩

driver =
{
∅, π□driver [⟨m3, h3⟩]

}
.

These topologies are represented in the diagram using circles, where at m1 the

27In other words i(m) = card(⊏ [m] ∩ h).
28Recall that Xnψ (n ∈ N) denotes the formula that results from applying n-iterations of operator

X behind φ (see Footnote 32 in Chapter 3, p. 104).
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Figure 5.6: Another driver example.

circle encloses the tag ‘h1’ to rule out a p-d intention including ⟨m1, h2⟩, and
where for readability I omitted displaying ellipses that would represent full ex
ante information sets.

Let σdriver be a strategy starting at m1 such that σdriver(m1) = L1, σdriver(m2) = L3

(where these recommendations are represented in the diagram using checkmarks),
and σdriver(m) is arbitrary for every other moment m lying in m1’s future. Thus,
Admm1

driver (σdriver) = {h1}. Let c stand for the proposition ‘driver’s car is started.’
Then the diagram implies thatM, ⟨m4, h1⟩ |= c: at ⟨m4, h1⟩ driver’s car has started.
Now, observe that σdriver implies thatM, ⟨m1, h1⟩ |= ⟨⟨driver⟩⟩sX2c: at ⟨m1, h1⟩driver
had the strategic ability to start her car in the end—by first getting the key and then
turning it in the ignition. Furthermore, observe that both M, ⟨m1, h1⟩ |= IdriverX2c
(via U1 := {⟨m1, h1⟩}) and M, ⟨m2, h1⟩ |= IdriverXc (via U2 := {⟨m2, h1⟩}): at both
⟨m1, h1⟩ and ⟨m2, h1⟩ driver p-d intended that her car would start in the end. Since
i(m1) = 2, {(L1,U1) , (L3,U2)} is a plan of driver toward the final realization of the
starting of her car, and one can say that at ⟨m1, h1⟩ driver f-d intended that her car
would start.

This version of future-directed intentions can be used to characterize inten-
tional action so that the relation between the two notions does not fall under
the Simple View (see item 1c in the list of IEST’s logic-based properties in Sub-
section 5.4.1, as well as Footnote 22). Inspired by Bratman’s (1984) idea of mo-
tivational potential, let me characterize intentional action as follows: at ⟨m, h⟩ α
has intentionally seen to it that φ iff (a) at ⟨m, h⟩ α f-d intended ψ via plan{(
σα

(
m+h′(k)

)
,Uh′

k

)}
h′∈Admm

α (σα),0≤k<i(m)
, (b) h ∈ σα(m), and (c) at ⟨m, h⟩ α knew that
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φ is an effect of σα(m) (Kα[α]φ holds at ⟨m, h⟩). In other words, at an index an
agent has intentionally seen to it that φ iff at the index (a) the agent had an f-d
intention toward the final realization of ψ, (b) the agent chose the action cur-
rently recommended by its strategy (toward the final realization of the agent’s f-d
intention), and (c) the agent knew that φ is an effect of such a recommendation.29

This characterization does not enforce that intentionally doing must imply f-d
intending. In the example above, for instance, at ⟨m1, h1⟩ driver has intentionally
grabbed the keys, and at ⟨m2, h1⟩ driver has intentionally turned the key in the
ignition—where both these intentional actions were carried out with the intention
that the car would be started. Depending on the valuation of atomic propositions
standing for ‘grabbing the keys’ and ‘turning the key in the ignition,’ one can both
render models where driver f-d intended to have grabbed the keys and f-d intended
to have turned the key in the ignition, on the one hand, and render models where
driver did not f-d intend to grab the keys and did not f-d intend to turn the key in
the ignition, on the other. Models of the latter kind could help in formalizing a
potential solution to Bratman’s (1984) target example (see Footnote 22).

Now, these stit-theoretic versions of f-d intentions and of intentional action
are part of a merely initial proposal—which might not seem entirely satisfactory
to some. Tailoring this proposal, as well as exploring its logic, is left for future
work.

5.5.2 Intentionality & P-1 Belief

Many of the works reviewed in this chapter presuppose that intentionality is
deeply connected with belief (Bratman, 1984; Cohen & Levesque, 1990; Herzig
& Longin, 2004; Rao & Georgeff, 1991; Wooldridge, 2000). Moreover, and as
often mentioned in this thesis, I consider that belief is an important epistemic
component of responsibility. This is why the conclusions of Chapters 3 and
4 briefly explored particular extensions of EST with probabilistic belief, in the
context of building nuanced theories of responsibility that would include an
account of belief-driven choice. Once again leaving full-fledged analyses for
future work, here I carry on the discussions of those chapters’ conclusions, with
the goal of sketching out interesting aspects of a potential merged framework.
To be precise, I address three properties concerning the relation between this
chapter’s intentionality and the notion of p-1 belief from Chapter 3’s conclusion
(Subsection 3.5.1):

29Observe that, in contrast to the version of intentional action that was addressed in the other
sections of this chapter, this version of intentional action does adhere to what Marcus (2019) called
the knowledge thesis of intentional action, according to which an agent intentionally does φ only if the
agent knowingly does φ (see item 2b in the list of IEST’s logic-based properties in Subsection 5.4.1).
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• ̸|= Iαφ → Bα^φ: it is not necessarily true that if at an index an agent
p-d intended φ then the agent must have p-1 believed that φ was cur-
rently possible. An example can be obtained from the anesthesiologist
example depicted in Figure 5.2, by defining µdoctor and τ⟨m2,h1⟩

doctor according
to the following story: suppose that doctor intended to kill the patient by
supplying anesthetics on a full stomach, but at the moment reserved for
supplying anesthetics she p-1 believed that the patient had an empty stom-
ach. Thus, let µdoctor be defined so that µdoctor ({⟨m2, h1⟩} | πdoctor [⟨m2, h1⟩]) =
1 and µdoctor ({⟨m2, h2⟩} | πdoctor [⟨m2, h2⟩]) = 1, and let τ⟨m2,h1⟩

doctor ={
∅, π□doctor [⟨m2, h1⟩] , {⟨m3, h3⟩}

}
. This implies that M, ⟨m2, h1⟩ |=

Idoctor[doctor]d∧¬Bdoctor^d: at ⟨m2, h1⟩ doctor p-d intended to kill the patient, but
doctor did not p-1 believe that killing the patient was possible.

• ̸|= Iαφ → ¬Bα¬φ: it is not necessarily true that if at an index an agent p-d
intended φ then the agent must have not p-1 believed ¬φ. An example
can be found in the previous item’s scenario. Observe that the definition of
µdoctor implies thatM, ⟨m2, h1⟩ |= Idoctor[doctor]d ∧ Bdoctor¬d: at ⟨m2, h1⟩ doctor
p-d intended to kill the patient, but doctor believed that the patient would live.
In fact,M, ⟨m2, h1⟩ |= Bdoctor□¬d: at ⟨m2, h1⟩ doctor p-1 believed that to kill the
patient was impossible.

• ̸|=
(
Iαφ ∧ Bα□

(
φ→ ψ

))
→ Iαψ: p-d intentions are not closed under (ex ante)

belief of side-effect implication. An example can be obtained from the pre-
vious items’ scenario. Observe thatM, ⟨m2, h1⟩ |= (Idoctora ∧ Bdoctor□(a→ r))∧
¬Idoctorr: at ⟨m2, h1⟩ doctor p-d intended that the anesthetics were supplied and
p-1 believed that it was settled that supplying anesthetics implied that the patient
would get ready for surgery; still, doctor did not intend that the patient would get
ready for surgery.

The first two properties imply that the potential merged framework would
deviate from assumptions that are common to most frameworks formalizing
both intentions and beliefs (Cohen & Levesque, 1990; Herzig & Schwarzentruber,
2008; Konolige & Pollack, 1993; Lorini & Herzig, 2008). The justification for not
enforcing these assumptions comes from my interpretation of the semantics for
modalities Bαφ and Iαφ. On the one hand, p-1 belief refers to a notion known
as ‘certain belief‘ (Baltag & Smets, 2008), so that an agent could have had a p-d
intention toward the realization of φ and not have certainty that φ is possible. On
the other hand, the instantaneous nature of p-d intentions justify the idea that an
agent could have had a p-d intention of φ and at the same moment have come to
p-1 believe ¬φ, just then.
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The third property, in turn, implies that the potential merged framework
would solve the most usual formulations of the side-effect problem (see Foot-
notes 8 and 19).

5.5.3 A Glimpse at Motivational Responsibility

As demonstrated in Subsection 3.5.2 of Chapter 3’s conclusion, one can formalize
the categories of causal and informational responsibility—the first two categories
in Broersen’s classification—using the models for knowledge and agency given in
previous chapters. The contents of this chapter, then, aid in the formalization of
the third category: motivational responsibility. Recall from Chapter 1 (p. 5) that an
agent is causally responsible for a state of affairs iff the agent is the material author
of such a state. In turn, an agent is motivationally responsible for a state of affairs
iff the agent is the material author and it behaved knowingly and intentionally
while bringing about the state of affairs. Thus, in Example 5.6, for instance,
driver should be held both causally responsible and motivationally responsible for
killing the traffic officer. In Example 5.7, in contrast, although doctor should be held
casually responsible for killing the patient, she should not be held motivationally
responsible.

The discussion in Subsection 3.5.2 of Chapter 3’s conclusion implies that one
can think of formula [α]φ ∧^¬[α]φ as a good candidate for syntactically charac-
terizing causal responsibility (see also Lorini et al., 2014): agent α was causally
responsible for φ iff α has seen to it that φ and it was possible for α to refrain from
seeing to it that φ. In turn, formula Kα[α]φ∧ Iα[α]φ∧Kα^¬[α]φ is a likewise good
candidate for syntactically characterizing motivational responsibility: α was mo-
tivationally responsible for φ iff α has knowingly and intentionally seen to it that
φ and α knew that it was possible to refrain from seeing to it that φ. This follows
the ideas behind the notion of deliberative intentional action discussed in Subsec-
tion 5.3.1 (p. 228), so that an agent will be motivationally responsible for φ only if
it deliberatively intended to bring about φ, and furthermore the agent knew that
it was possible to refrain. Otherwise, someone could claim that the agent’s not
knowing that it was possible to refrain was what led it to intend to see to it that φ
and to knowingly do so, so that the agent was not really motivationally responsi-
ble for φ.30 To illustrate this characterization, consider Example 5.6. Observe that
M, ⟨m1, h1⟩ |= Kdriver[driver]k ∧ Idriver[driver]k ∧ Kdriver^¬[driver]k: at ⟨m1, h1⟩ driver

30Indeed, in the case of blameworthy agents, claims of this kind amount to excuses, and this is why
in Chapter 6’s Subsection 6.3.2 I refer to the policy that allows such excuses as lenient on blameworthy
agents.
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was motivationally responsible for killing the traffic officer. In turn, in Example 5.7
M, ⟨m3, h3⟩ |= [doctor]d∧¬Idoctor[doctor]d∧Kdoctor^¬[doctor]d: at ⟨m3, h3⟩ doctor was
causally responsible for the patient’s death, but she was not motivationally responsible.

As it turns out, these candidate-formulas greatly influenced Chapter 6’s (Sub-
section 6.3.2) proposal for the syntactic characterization of causal, resp. moti-
vational, responsibility. Thus, on the road to formalizing Broersen’s categories
of responsibility, we are already equipped with tools to characterize all three of
them.
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Appendix D Metalogic Results for IEST

D.1 Soundness

Proposition D.13 (Soundness of ΛI). The system ΛI is sound with respect to the class
of iebt-models.

Proof. The proof of soundness is routine: the validity of the S5 schemata for □
and [α], as well as that of (SET) and (IA), is standard from BST; the validity of the
S5 schemata for Kα is standard from EST; the validity of (OAC) and (Uni f −H) is
shown exactly as in Chapter 4’s Proposition C.40; the validity of the KD schemata
for Iα (InN) follows from Definitions 5.4 and 5.5; and the validity of (KI) follows
from frame condition (KI). □

D.2 Completeness

To prove completeness of ΛI with respect to iebt-models, we will first prove
completeness with respect to a class of Kripke models. The reason is that there
exists a truth-preserving correspondence between this class and a sub-class of
iebt-models. Below, I define said class of Kripke models and prove such a truth-
preserving correspondence.

Definition D.14 (Kripke-ies-frames & models). A tuple〈
W,Ags,R□,Ags, Choice, {≈α}α∈Ags ,

{
RI
α

}
α∈Ags

〉
is called a Kripke-ies-frame (where the acronym ‘ies’ stands for ‘epistemic intentional
stit’) iff

• W,Ags,R□,Ags, Choice, and {≈α}α∈Ags are defined exactly as in Definition C.41
(p. 200).

For α ∈ Ags and w ∈ W, α’s ex ante information set at w is defined as
π□α [w] := {v; w ≈α ◦R□v}, which by frame condition (Unif − H)K coincides with the
set {v; wR□◦ ≈α v}. To clarify, (Unif − H)K implies that R□◦ ≈α=≈α ◦R□. Thus,
≈α ◦R□ is an equivalence relation such that π□α [w] = π□α [v] for every w, v ∈ W
such that w ≈α ◦R□v.

• For α ∈ Ags, RI
α is a serial, transitive, and euclidean relation on W such that

RI
α ⊆≈α ◦R□ and such that the following condition is satisfied:

– (Den)K For all v,u ∈ W such that v ≈α ◦R□u, there exists z ∈ W such that
vRI

αz and uRI
αz.
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For α ∈ Ags, RI+
α denotes the reflexive closure of RI

α. For w ∈ W, w ↑RI+
α

denotes
the set

{
v ∈W; wRI+

α v
}
.

A Kripke-ies-modelM consists of the tuple that results from adding a valuation function
V to a Kripke-ies-frame, whereV : P → 2W assigns to each atomic proposition a set of
worlds (recall that P is the set of propositions in LI).

Kripke-ies-models allow us to evaluate the formulas ofLI with semantics that
are analogous to the ones provided for iebt-frames:

Definition D.15 (Evaluation rules on Kripke models). LetM be a Kripke-ies-model.
The semantics onM for the formulas of LI are defined recursively by the following truth
conditions, evaluated at world w:

M,w |= p iff w ∈ V(p)
M,w |= ¬φ iff M,w ̸|= φ
M,w |= φ ∧ ψ iff M,w |= φ andM,w |= ψ
M,w |= □φ iff for all v ∈ w,M, v |= φ
M,w |= [α]φ iff for all v ∈ Choicew

α (w),M, v |= φ
M,w |= Kαφ iff for all v s. t. w ≈α v,M, v |= φ
M,w |= Iαφ iff there exists x ∈ π□α [w] s. t. x ↑RI+

α
⊆ |φ|,

where I write |φ| to refer to the set
{
w ∈W;M,w |= φ

}
. Satisfiability, validity, and general

validity are defined as usual.

Importantly, Kripke-ies-models can be used for constructing iebt-models such
that both satisfy the same formulas of LI. Such a construction implies defining
topologies on the basis of relations, so that the following definition and observa-
tion are very important.

Definition D.16 (Alexandrov spaces). A topological space (X, τ) is said to be an
Alexandrov space iff the intersection of any collection of open sets of X is an open set as
well.

Notice that a space is Alexandrov iff every point x ∈ X has a ⊆-smallest open
set including it, namely the intersection of all the open sets around x.

Definition D.17. For a given frame (X,R) such that R is reflexive and transitive, a set
A ⊆ X is called upward-closed iff for all x ∈ A, if x ≤ y for some y ∈ X, then y ∈ A as
well. For x ∈ X, x ↑R denotes the set

{
y ∈ X; xRy

}
, which is clearly upward closed.
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Observation D.18. For every frame (X,R) such that R is reflexive and transitive, the
set of all R-upward-closed sets forms an Alexandrov topology on X, denoted by τR. For
all x ∈ X, the ⊆-smallest open set including x is precisely x ↑R. This implies that
{x ↑R; x ∈ X} is a basis for the topology τR.

Proof. It is routine. The reader is referred to van Benthem and Bezhanishvili (2007,
Section 2) for details (see also Özgün, 2017, Chapter 3). □

We are now ready to define, for a Kripke-ies-frame, an associated iebt-frame.

Definition D.19 (Associated iebt-frame). Let

F =
〈
W,Ags,R□, Choice, {≈α}α∈Ags ,

{
RI
α

}
α∈Ags

〉
be a Kripke-ies-frame. Then F T :=

〈
MW ,⊏,Ags,Choice, {∼α}α∈Ags , τ

〉
is called the

iebt-frame associated with F iff

• MW ,⊏,Choice, and {∼α}α∈Ags are defined just as in Chapter 4’s Definition C.43
(p. 201).

• τ is a function defined as follows:

– For α ∈ Ags and z ∈W, τ⟨z,hz⟩
α =

{
∅, π□α [⟨z, hz⟩]

}
.

– For α ∈ Ags, we first define a relation RIT
α on

{〈
w, hv

〉
; w ∈W and v ∈ w

}
by

the rule:
〈
w, hv

〉
RIT
α

〈
w′, hv′

〉
iff vRI

αv′.

For α ∈ Ags, w ∈ W, and v ∈ w, then, we define τ⟨w,hv⟩
α as the subspace

topology of τRIT+
α

(the Alexandrov topology induced by relation RIT+
α according

to Observation D.18) onπ□α
[〈

w, hv
〉]

.31 Observe that, for allα ∈ Ags, w ∈W,
and v ∈ w, π□α

[〈
w, hv

〉]
=

{〈
v′, hv′

〉
; v′ ∈ π□α [v]

}
. Thus, the fact that RI

α ⊆≈α

◦R□ implies that, for all
〈
x, hx

〉
∈ π□α

[〈
w, hv

〉]
,
〈
x, hx

〉
↑RIT+

α
⊆ π□α

[〈
w, hv

〉]
, so

that π□α
[〈

w, hv
〉]

is open in τRIT+
α

.

– For α ∈ Ags and v ∈W, τ⟨W,hv⟩
α =

{
∅, π□α [⟨W, hv⟩]

}
.

Proposition D.20. Let F be a Kripke-ies-frame. Then F T is an iebt-frame, indeed.

Proof. It amounts to showing that ⊏ is a strict partial order that satisfies no back-
ward branching, that Choice is a function that satisfies frame conditions (NC) and
(IA), that {≈α}α∈Ags is such that ≈α is an equivalence relation for every α ∈ Ags and
frame conditions (OAC) and (Unif − H) are met, and that τ is a function that meets
the requirements of Definition 5.4.

31Let τ be a topology on X. For each A ⊆ X, the subspace topology of τ on A is the family
{U ∩ A |U ∈ τ}.
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• For all the properties mentioned above, except the one concerning τ, the
proofs are exactly the same as their analogs’ in Chapter 4’s Proposition C.44
(p. 202).

• As for τ let us show that it satisfies conditions (CI) and (KI).

Observe that, for each α ∈ Ags and each index ⟨m, h⟩ either of the form
⟨z, hz⟩ (where z ∈ W) or of the form ⟨W, hv⟩ (where v ∈ W), τ⟨m,h⟩α is defined
as topology on π□α [⟨m, h⟩] that trivially satisfies the conditions imposed both
by (CI) and by (KI). Thus, τ satisfies (CI) and (KI) at such indices.

Assume, then, that ⟨m, h⟩ is of the form
〈
w, hv

〉
, where v ∈ w. Take α ∈ Ags.

By Definition D.19, τ⟨w,hv⟩
α is the subspace topology of τRIT+

α
on π□α [

〈
w, hv

〉
].

Thus, τ⟨w,hv⟩
α is a topology on π□α [

〈
w, hv

〉
] that by definition satisfies the

condition imposed by (KI). Let us show that the condition imposed by (CI)

is also satisfied. Take U,V ∈ τ⟨w,hv⟩
α such that U and V are non-empty. Take〈

u, hu
〉
∈ U and

〈
x, hx

〉
∈ V. Definition D.19—and in turn Definition C.43

(p. 201)—implies that u ≈α ◦R□x. F ’s condition (Den)K implies that there
exists z ∈ W such that uRI

αz and xRI
αz, which by definition of RIT

α implies
that

〈
u, hu

〉
RIT
α

〈
z, hz

〉
and that

〈
x, hx

〉
RIT
α

〈
z, hz

〉
. Thus,

〈
z, hz

〉
∈

〈
u, hu

〉
↑RIT+

α

and
〈
z, hz

〉
∈

〈
x, hx

〉
↑RIT+

α
. Since π□α

[〈
w, hv

〉]
is open in τRIT+

α
(see the second

bullet point in Definition D.19), we know that
〈
u, hu

〉
↑RIT+

α
⊆ U and that〈

x, hx
〉
↑RIT+

α
⊆ V. Thus,

〈
z, hz

〉
∈ U ∩ V, so that U (and V) is τ⟨w,hv⟩

α -dense.

□

Let M be a Kripke-ies-model with valuation function V. The frame upon
whichM is based has an associated iebt-frame. If to the tuple of this iebt-frame
one adds a valuation function VT such that VT(p) =

{〈
w, hw

〉
; w ∈ V(p)

}
, the

resulting model is called the iebt-model associated withM.

Proposition D.21 (Truth-preserving correspondence). LetM be a Kripke-ies-model,
and letMT denote its associated iebt-model. For all φ of LI and w ∈ W,M,w |= φ iff
M

T,
〈
w, hw

〉
|= φ.

Proof. We proceed by induction on the complexity ofφ. For the base case, the cases
of Boolean connectives, and the cases of all modal operators except Iα, the proofs
are exactly the same as their analogs’ in Chapter 4’s Proposition C.46 (p. 204). As
for the case of Iα, the following arguments complete the induction proof:

• (“Iα”) First, observe that, by induction hypothesis, ∥φ∥ =
{〈

w, hw
〉

; w ∈ |φ|
}
.
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Therefore, M,w |= Iαφ iff there exists x ∈ π□α [w] such that x ↑RI+
α
⊆ |φ|

iff
〈
x, hx

〉
↑RIT+

α
⊆ ∥φ∥ iff there exists U ∈ τ⟨

w,hw⟩
α such that U ⊆ ∥φ∥ iff

M
T,

〈
w, hw

〉
|= Iαφ.

□

Proposition D.21 implies that to prove completeness of ΛI with respect to iebt-
models all we need to do is prove completeness with respect to Kripke-ies-models.
Therefore, let us prove completeness with respect to Kripke-ies-models, via the
well-known technique of canonical models.

D.2.1 Canonical Kripke-Ies-Structure

We show that the proof system ΛI is complete with respect to the class of Kripke-
ies-models. For eachΛI-consistent formula φ, we build a canonical structure from
the syntax that satisfies φ.

Definition D.22 (Canonical Structure). The tuple

M =
〈
WΛI ,R□, Choice, {≈α}α∈Ags ,

{
RI
α

}
α∈Ags

,V
〉

is called a canonical structure for ΛI iff

• WΛI = {w; w is a ΛI-MCS}. R□ is a relation over WΛI defined by the rule: wR□v
iff □φ ∈ w ⇒ φ ∈ v for every φ of LI. For w ∈ WΛI , the set

{
v ∈WΛI ; wR□v

}
is

denoted by w.

• Choice is a function that assigns to each α and w a subset of 2w, denoted by
Choicew

α , and defined as follows: let Rw
α be a relation on w such that, for w, v ∈WΛI ,

wRw
αv iff [α]φ ∈ w ⇒ φ ∈ v for every φ of LI; if Choicew

α (v) :=
{
u ∈ w; vRw

αu
}
,

then Choicew
α :=

{
Choicew

α (v); v ∈ w
}
.

• For α ∈ Ags, ≈α is an epistemic relation on WΛI given by the rule: w ≈α v iff
Kαφ ∈ w⇒ φ ∈ v for every φ of LI.

• For α ∈ Ags, RI
α is a relation on WΛI given by the rule: wRI

αv iff Iαφ ∈ w⇒ φ ∈ v
for every φ of LI.

• Recall that P is the set of propositions in LI. ThenV : P → 2WΛI is the canonical
valuation, defined so that w ∈ V(p) iff p ∈ w.

Proposition D.23. The canonical structureM for ΛI is a Kripke-ies-model.
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Proof. We want to show that the tuple
〈
WΛI ,R□, Choice, {≈α}α∈Ags ,

{
RI
α

}
α∈Ags

〉
is a

Kripke-ies-frame, which amounts to showing that the tuple satisfies the items in
the definition of Kripke-ies-frames (Definition D.14).

1. The fact that
〈
WΛI ,R□, Choice, {≈α}α∈Ags

〉
meets the items of Definition C.41

is shown exactly as in Proposition C.48 (p. 207).

2. Since ΛI includes the KD45 schemata for Iα (for each α ∈ Ags), then RI
α is a

serial, transitive, and euclidean relation on W for every α ∈ Ags. Since ΛI

includes schema (InN), then RI
α ⊆≈α ◦R□ for every α ∈ Ags.

We now verify that frame condition (Den)K is satisfied. Take α ∈ Ags. Let
v,u ∈ WΛI be such that v ≈α ◦R□u. This means that there exists w ∈ W such
that v ∈ w and w ≈α u. We want to show that there exists z ∈W such that uRI

αz
and vRI

αz. We show that z′ =
{
ψ; Iαψ ∈ v

}
∪

{
ψ; Iαψ ∈ u

}
is consistent. To do

so, we first show that
{
ψ; Iαψ ∈ v

}
is consistent. Suppose for a contradiction

that it is not consistent. Then there exists a set
{
ψ1, . . . , ψn

}
of formulas of

LI such that Iαψi ∈ v for every 1 ≤ i ≤ n and (a) ⊢ΛI ψ1 ∧ · · · ∧ ψn → ⊥.
By Necessitation for Iα and its distributivity over conjunction, (a) implies
that ⊢ΛI Iαψ1 ∧ · · · ∧ Iαψn → Iα⊥, but this is a contradiction, since v is
a ΛI-MCS and it includes Iαψ1 ∧ · · · ∧ Iαψn. One can use an analogous
argument to show that

{
ψ; Iαψ ∈ u

}
is consistent. Next, we show that z′ ={

ψ; Iαψ ∈ v
}
∪

{
ψ; Iαψ ∈ u

}
is also consistent. Suppose for a contradiction

that it is not consistent. Since
{
ψ; Iαψ ∈ v′

}
and

{
ψ; Iαψ ∈ u

}
are consistent,

then there must exist sets
{
φ1, . . . , φn

}
and {θ1, . . . , θm} of formulas of LI

such that Iαφi ∈ v for every 1 ≤ i ≤ n, Iαθi ∈ u for every 1 ≤ i ≤ m,
and (b) ⊢ΛI

(
φ1 ∧ · · · ∧ φn

)
∧ (θ1 ∧ · · · ∧ θm) → ⊥. Let θ = θ1 ∧ · · · ∧ θm

and φ = φ1 ∧ · · · ∧ φn. Thus, (b) implies that ⊢ΛI φ → ¬θ and thus that (c)
⊢ΛI ⟨Iα⟩φ→ ⟨Iα⟩¬θ. Notice that the facts that Iαφi ∈ v for every 1 ≤ i ≤ n, that
Iα distributes over conjunction, and that v is a ΛI-MCS imply that Iαφ ∈ v.
Analogously, one has that (⋆) Iαθ ∈ u. The fact that v ∈ w implies that
^Iαφ ∈ w, so that (Den) entails that Kα⟨Iα⟩φ ∈ w. Now, this last inclusion
implies, with the fact that w ≈α u, that ⟨Iα⟩φ ∈ u, which by (c) in turn yields
that ⟨Iα⟩¬θ ∈ u, contradicting (⋆). Therefore, z′ is consistent. Let z be the
ΛI-MCS that includes z′, which exists in virtue of Lindenbaum’s Lemma
(Blackburn et al., 2002, Chapter 4, p. 199). By construction, uRI

αz and vRI
αz.

With this, we have shown thatM satisfies (Den)K.

□
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Lemma D.24 (Existence for non-intentional operators). Let M be the canonical
Kripke-ies-model for ΛI. For every w ∈WΛI and every φ of LI, the following items hold:

1. □φ ∈ w iff φ ∈ v for every v ∈ w.

2. [α]φ ∈ w iff φ ∈ v for every v ∈ w such that wRw
αv.

3. Kαφ ∈ w iff φ ∈ v for every v ∈WΛI such that w ≈α v.

Proof. The proof is the same as the one included for Lemma A.16 (p. 121). □

Lemma D.25 (Truth Lemma). LetM be the canonical Kripke-ies-model for ΛI. For all
φ of LI and w ∈WΛI ,M,w |= φ iff φ ∈ w.

Proof. We proceed by induction on the complexity ofφ. The cases of propositional
letters and of Boolean connectives are standard. For the cases of □, [α], and Kα,
both directions follow straightforwardly from Lemma D.24 (items 1, 2, and 3,
respectively). As for Iα, we have the following arguments:

• (“Iα”) (⇒) We work by contraposition. Suppose that Iαφ < w. Take
x ∈ π□α [w]. The assumption that ¬Iαφ ∈ w implies, by schema (KI) and
closure of w under Modus Ponens, that □Kα¬Iαφ ∈ w. Since x ∈ π□α [w],
this implies that ¬Iαφ ∈ x. By an argument analogous to the one used in
Proposition D.23 to show that the canonical model satisfies (Den)K, the set{
ψ; Iαψ ∈ x

}
is consistent. Next, observe that

{
ψ; Iαψ ∈ w

}
∪

{
¬φ

}
is consis-

tent. To see this, suppose that it is not consistent. Since
{
ψ; Iαψ ∈ w

}
is

consistent, there must exist a set
{
φ1, . . . , φn

}
such that Iαφi ∈ w for every

1 ≤ i ≤ n and ⊢ΛI (φ1∧· · ·∧φn)∧¬φ→ ⊥Now, thisΛI-theorem implies that
⊢ΛI (φ1∧· · ·∧φn)→ φ. By Necessitation of Iα, its schema (K), and its distribu-
tivity over conjunction, one then has that (⋆) ⊢ΛI (Iαφ1 ∧ · · · ∧ Iαφn) → Iαφ.
Now, closure of w under conjunction then implies that

(∧
1≤i≤n Iαφi

)
∈ x, so

that the antecedent in ΛI-theorem (⋆) lies in x. Closure of x under Modus
Ponens then implies that Iαφ ∈ x, but this contradicts the previously shown
fact that ¬Iαφ ∈ x. Therefore,

{
ψ; Iαψ ∈ w

}
∪

{
¬φ

}
is in fact consistent. Let

u be the ΛI-MCS that includes
{
ψ; Iαψ ∈ w

}
∪

{
¬φ

}
, which exists in virtue

of Lindenbaum’s Lemma (Blackburn et al., 2002, Chapter 4, p. 199). By
construction, xRI

αu, so that u ∈ x ↑R+α . It also follows from construction that
¬φ ∈ x, so that the induction hypothesis yields thatM, x |= ¬φ. Thus, x is
such that x ∈ π□α [w] and such that x ↑R+α⊈ |φ|, which implies thatM,w ̸|= Iαφ.

(⇐) Assume that Iαφ ∈ w. Suppose for a contradiction that M,w ̸|= Iαφ.
This means that for all x ∈ π□α [w] there exists y ∈ W such that xRI+

α y and
M, y ̸|= φ. Now, we have two cases. Case 1 comes from assuming that
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for every x ∈ π□α [w] the y such that xRI+
α y and M, y ̸|= φ is actually x

itself. In this case,M, x ̸|= φ for every x ∈ π□α [w]. By induction hypothesis,
this implies that ¬φ ∈ x for every x ∈ π□α [w], which, by items 1 and 3 of
Lemma D.24, implies that □Kα¬φ ∈ x for every x ∈ π□α [w]. In particular,
□Kα¬φ ∈ w. Schema (InN) and closure of w under Modus Ponens then
imply that Iα¬φ ∈ w, but this is a contradiction, since the fact that Iαφ ∈ w,
with schema (D) for Iα and closure of w under Modus Ponens, implies that
¬Iα¬φ ∈ w. Case 2 comes from assuming that that there exist x ∈ π□α [w] and
y ∈W such that xRI+

α y,M, y ̸|= φ, and y , x. By induction hypothesis, φ < y.
Since xRI+

α y and y , x, then xRI
αy, so that the definition of RI

α implies that
Iαφ < x. As such, ¬Iαφ ∈ x, which, by schema (KI) and closure of x under
Modus Ponens, implies that □Kα¬Iαφ ∈ x. Since x ∈ π□α [w], this implies that
¬Iαφ ∈ w, but this is a contradiction to the initial assumption.

□

Proposition D.26 (Completeness w.r.t. Kripke-ies-models). The proof system ΛI is
complete with respect to the class of Kripke-ies-models.

Proof. Let φ be a ΛI-consistent formula of LI. Let w be the ΛI-MCS including φ,
which exists in virtue of Lindenbaum’s Lemma (Blackburn et al., 2002, Chapter 4,
p. 199). Then the canonical structure M for ΛI is a Kripke-ies-model such that
M,w |= φ, according to Lemma D.25 above. □

Proposition D.27 (Completeness w.r.t. iebt-models). The proof systemΛI is complete
with respect to the class of iebt-models.

Proof. Let φ be a ΛI-consistent formula of LI. Proposition D.26 implies that there
exists a Kripke-ies-model M and a world w in its domain such that M,w |= φ.
Proposition D.21 then ensures that the iebt-modelMT associated withM is such
thatMT,

〈
w, hw

〉
|= φ. □

Therefore, Proposition D.13 and Proposition D.27 imply that the following
result, appearing in the main body of the chapter, has been shown:

Theorem 5.10 (Soundness & Completeness ofΛI). The proof systemΛI is sound and
complete with respect to the class of iebt-models.

□
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Responsibility

But since moral activity is unthinkable without physical activity, the
cause of an event is neither the one nor the other, but a combination of
the two.

Leo Tolstoi, War and Peace

‘There is only one way to salvation, and that is to make yourself
responsible for all men’s sins. As soon as you make yourself responsible
in all sincerity for everything and for everyone, you will see at once that
this is really so, and that you are in fact to blame for everyone and for
all things.’

‘But then there are the children... if it is really true that they must
share responsibility for all their fathers’ crimes, such a truth is not of
this world and is beyond my comprehension.’

Fyodor Dostoevsky, Brothers Karamazov

The study of responsibility is a complicated matter. The term is used in dif-
ferent ways in different fields, and it is easy to engage in everyday discussions
as to why someone should be considered responsible for something. Typically,
the backdrop of these discussions involves social, legal, moral, or philosophical
problems, each with slightly different meanings for expressions like being respon-
sible for..., being held responsible for..., or having the responsibility of..., among others.
Therefore—to approach such problems efficiently—there is a demand for clear,
taxonomical definitions of responsibility.
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For instance, suppose that you are a judge in Texas. You are presiding over a
trial where the defendant is being charged with first-degree murder. The alleged
crime is horrible, and the prosecution seeks capital punishment. The case is as
follows: driving her car, the defendant ran over a traffic officer that was holding
a stop-sign at a crossing walk, while school children were crossing the street.
The traffic officer was killed, and some of the children were severely injured. A
highly complicated case, the possibility of a death-penalty sentence means that
the life of the defendant is at stake. More than ever, due process is imperative.
As the presiding judge, you must abide by the prevailing definitions of criminal
liability with precision. In other words, there is little to no room for ambiguity
in the ruling, and your handling of the notions associated with responsibility in
criminal law should be impeccable.

As this example suggests, a framework with intelligible, realistically appli-
cable definitions of responsibility is paramount in the field of law. However,
responsibility-related problems arise across many other disciplines—social psy-
chology, philosophy of emotion, legal theory, and ethics, to name a few (Lorini
et al., 2014; Weiner, 1995). A clear pattern in all these is the intent of issuing
standards for when—and to what extent—an agent should be held responsible
for a state of affairs.

This is where Logic lends a hand. The development of expressive logics—to
reason about agents’ decisions in situations with moral consequences—involves
devising unequivocal representations of components of behavior that are highly
relevant to systematic responsibility attribution and to systematic blame-or-praise
assignment. To put it plainly, expressive syntactic-and-semantic frameworks help
us analyze responsibility-related problems in a methodical way.1 Most likely,
this is why the logic-based formalization of responsibility has become such an
important topic in, for instance, normative multi-agent systems, responsible au-
tonomous agents, and machine ethics for AI (Arrieta et al., 2020; Pereira & Saptaw-
ijaya, 2016).

In Chapter 1 I stated that the main goal of the whole thesis is to develop a
formal theory of responsibility. Chapters 2–5 were key steps toward this aim, and
here I finally present my proposal. As also mentioned in Chapter 1, this proposal

1Indeed, to produce the aformentioned ‘unequivocal representations’ is one of the most fundamen-
tal premises of applying game theory, decision theory, and deontic logic in the task of systematizing
responsibility attribution. The previous chapters include several examples of multi-agent decision
contexts, where the effects of choices of agents have ethical implications. It is precisely because of
these ethical implications that the examples illustrate some of the typical problems that researchers
want to address when it comes to producing a theory of responsibility.
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relies on (a) a decomposition of responsibility into specific components and (b) a
functional classification of responsibility, where the different categories directly
correlate with the components of the decomposition.

As for the decomposition, the components of responsibility will at this point
come as no surprise to the reader, since each accounts for a major topic of study
in this thesis:

– Agency: the process by which agents bring about states of affairs in the
environment. In other words, the phenomenon by which agents choose
and perform actions, with accompanying mental states, that change the
environment.

– Knowledge and belief: mental states that concern the information available
in the environment and that explain agents’ particular choices of action.

– Intentions: mental states that determine whether an action was done with
the purpose of bringing about its effects.

– Ought-to-do’s: the actions that agents should perform, complying to the
codes of a normative system. Oughts-to-do’s make up contexts that provide
a criterion for deciding whether an agent should be blamed or praised. I
refer to these contexts as the deontic contexts of responsibility.

As for the classification, it is a refinement of Broersen’s three categories of
responsibility: causal, informational, and motivational responsibility (see, for in-
stance, Ågotnes, 2006;Broersen, 2008a; Duijf, 2018, Introduction). I will discuss
these categories at length in Section 6.1.

On the basis of both the decomposition and the classification, in this chap-
ter I introduce a very rich stit logic to analyze responsibility, which I refer to
as intentional epistemic act-utilitarian stit theory (IEAUST). More precisely, I use
IEAUST to model and syntactically characterize various modes of responsibility.
By ‘modes of responsibility’ I mean combinations of sub-categories of the three
ones mentioned above, cast against the background of particular deontic contexts.

Let me clarify. On the one hand, the sub-categories correspond to the different
versions of responsibility that one can consider according to the active and passive
forms of the notion: while the active form involves contributions—in terms of
explicitly bringing about outcomes—the passive form involves omissions—which
are interpreted as the processes by which agents allow that an outcome happens
while being able, to some extent, to prevent it. On the other hand, the deontic
context of a mode establishes whether and to what degree the combination of
sub-categories involves either blameworthiness or praiseworthiness.
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Now, the logic IEAUST is obtained by merging all the frameworks of the pre-
vious chapters. Thus, the formalism includes a language that expresses agency,
epistemic notions, intentionality, and different senses of obligation. With this lan-
guage, I characterize the components of responsibility using particular formulas.
Then, adopting a compositional approach—where complex modalities are built
out of more basic ones—I use these characterizations of the components to for-
malize the aforementioned modes of responsibility. An outline of this chapter is
included below.

• Section 6.1 presents an operational definition for responsibility and ad-
dresses the philosophical perspective adopted in my study of the notion.
The section discusses (a) backward- and forward-looking responsibility, (b)
Broersen’s three categories of responsibility, and (c) the active and passive
forms for particular instances of these three categories. This conceptual
analysis serves as groundwork for the stit-theoretic formalizations that the
chapter investigates later on.

• Section 6.2 discusses blame and praise as central elements of my operational
definition of responsibility, relating these two concepts to the deontic modal-
ities of Chapter 4.

• Section 6.3 introduces IEAUST and uses this logic to provide stit-theoretic
characterizations of different modes of responsibility (according to Broersen’s
categories of responsibility in their active and passive forms). These char-
acterizations are illustrated with typical stit-like examples.

• Section 6.4 briefly reviews important logic-based properties of IEAUST. As
for metalogic properties, the section presents Hilbert-style proof systems
both for IEAUST and for a technical extension, addressing the status of their
soundness & completeness results.

• Section 6.5 (the conclusion) first examines an extension of IEAUST with a
probabilistic semantics of belief and with doxastic obligations; then, it offers
a proposal for characterizing the modes of mens rea; lastly, it mentions some
possibilities for future work in the context of collective responsibility.

6.1 Categories of Responsibility

To make a start on formally analyzing responsibility, I identify (a) two viewpoints
for the philosophical study of responsibility, (b) three main categories for the
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viewpoint that I focus on, and (c) two forms in which the elements of the categories
can be interpreted. Therefore, I am merging ideas of Lorini (2013) (whose main
categorization of responsibility comes from Aristotle’s Nicomachean Ethics), of
Broersen (2011a), of van de Poel (2011), and of Talbert (2019). Let me further
explain points (a), (b), and (c).

As for (a), the philosophical literature on responsibility usually distinguishes
two viewpoints on the notion (see van de Poel, 2011, for details): backward-looking
responsibility and forward-looking responsibility. By backward-looking responsibil-
ity one refers to the viewpoint according to which an agent is considered to have
produced a state of affairs that has already ensued and lies in the past. This is the
viewpoint taken by a judge when, while trying a murder case, she wants to get
to the bottom of things and find out who is responsible for doing the killing. In
contrast, by forward-looking responsibility one refers to the viewpoint according
to which which an agent is expected to comply with the duty of bringing about
a state of affairs in the future. When one thinks of a student that has to write an
essay before its due date, for instance, this is the view that is being used. In other
words, the writing and the handing in of the essay before the deadline are seen
as responsibilities of the student.

From here on, I will focus on backward-looking responsibility. Thus, unless
explicitly stated otherwise, whenever the word ‘responsibility’ is used, I am refer-
ring to backward-looking responsibility. Even with this restriction, responsibility
is immensely multifaceted. Just as stated in Chapter 1, then, I work with the
following operational definition:

Responsibility: a relation between the agents and the states of affairs of
an environment, such that an agent is responsible for a state of affairs iff
the agent’s degree of involvement in the realization of that state of affairs
warrants blame or praise (in light of a given normative system).2

As for point (b), I follow Broersen (2011a) (see also Duijf, 2018) and distinguish
three main categories of responsibility, where each category can be correlated with
the components of responsibility that it involves:

1. Causal responsibility: an agent is causally responsible for a state of affairs
iff the agent is the material author of such a state of affairs. The component
that this category involves is agency.

2As stated by (Watson, 2001) and by (J. M. Fischer, 1982), for instance, the typical frameworks
for analyzing responsibility deal with agents’ responsibility for their actions, whereas agents can in
principle also be seen as bearing responsibility for omissions, for consequences, and even for character.
Making room for these distinctions, the logic that I introduce here accommodates not only agents’
responsibility for actions but also responsibility for omissions and responsibility for consequences.
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2. Informational responsibility: an agent is informationally responsible for a
state of affairs iff the agent is the material author and it behaved knowingly,
or consciously, while bringing about the state of affairs. The components
that this category involves are agency, knowledge, and belief.

3. Motivational responsibility: an agent is motivationally responsible for a
state of affairs iff the agent is the material author and it behaved knowingly
and intentionally while bringing about the state of affairs. The components
that this category involves are agency, knowledge, and intentions.

These categories extend the literature’s common distinction between causal and
agentive responsibility (see, for instance, Crisp, 2014; Lorini et al., 2014; Watson,
1996), and they were derived by Broersen on the basis of his analysis of the modes
of mens rea.3 Let me briefly elaborate on this matter. In American criminal law, the
mental states that accompany an instance of actus reus (Latin for ‘guilty act’) are
known as mens rea (Latin for ‘guilty mind’). There are different mens rea mental
states, and—as taken from(Dubber, 2002, pp. 62–80)—they correspond to the
following levels of culpability, presented in decreasing order of culpability:4

• Purposefully: the actor has the ‘conscious object’ of engaging in conduct and
believes and hopes that the attendant circumstances exist.

• Knowingly: the actor is certain that his conduct will lead to the result.

• Recklessly: the actor is aware that the attendant circumstances exist, but
nevertheless engages in the conduct that a ‘law-abiding person’ would have
refrained from.

• Negligently: the actor is unaware of the attendant circumstances and the
consequences of his conduct, but a ‘reasonable person’ would have been
aware.

• Strict liability: the actor engaged in conduct and his mental state is irrelevant.

3In fact, the modes of responsibility that are formalized in Section 6.3 are deeply connected with
the modes of mens rea underlying Broersen’s proposal. This means that, although my framework
does not pretend to be applied in legal theory, it is certainly inspired by it (see Subsection 6.5.2 of this
chapter’s conclusion).

4It might be misleading to say ‘decreasing order of culpability,’ so let me clarify what this means.
As presented by Broersen (2011a), it is not that a guilty act that is found out to be done purposefully
yields a higher degree of culpability for an actor than a guilty act that is charged under criminal
negligence. Rather, when considering a single guilty act, this is deemed to yield a higher degree of
culpability if it was done purposefully rather than if the same act was done only with negligence. I
will elaborate on this topic in Section 6.3 (when I formalize the modes of responsibility) and in this
chapter’s conclusion (Subsection 6.5.2).
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As established in Chapter 1, Broersen realized that categorizing responsibility
helps in the systematic identification of the differences between the modes of
mens rea. This is the main idea behind his proposal of the three categories and
behind the decomposition in this chapter’s introduction (p. 263, see also the list
of components on p. 3).

Finally, as for point (c), the two forms of responsibility are the active form
and the passive form. The active form of causal responsibility concerns causal
contributions: an agent is causal-active responsible for φ only if it saw to it
that φ. The passive form of causal responsibility concerns causal omissions:
an agent is causal-passive responsible for φ only if φ was the case, the agent
could have prevented φ, but the agent refrained from preventing φ. The active
form of informational responsibility concerns conscious contributions: an agent
is informational-active responsible for φ only if it knowingly saw to it that φ.
Its passive form concerns conscious omissions: an agent is informational-passive
responsible for φ only if φ was the case, the agent knew that it could have
prevented φ, and the agent knowingly refrained from preventing φ. The active
form of motivational responsibility concerns motivational contributions: an agent
is motivational-active responsible for φ only if it knowingly and intentionally
brought about φ. Its passive form concerns motivational omissions: an agent
is motivational-passive responsible for φ only if φ was the case and the agent
knowingly and intentionally refrained from preventing φ.

This concludes my discussion on the philosophical analysis of responsibility
and its categories. But why is one interested in these categories, in the first place?
Before diving into formalizations, let me first open a new section to give an answer
to this question.

6.2 Blame & Praise

Key elements in p. 265’s operational definition of responsibility are the notions of
blame and praise. Intuitively, responsibility can be measured by how much blame
or how much praise an agent gets for its participation in bringing about a state
of affairs. In other words, blame and praise are indicators of how responsible an
agent should be held. A murderer, for instance, generally gets more blame—for
the committed murder—than any of her accomplices. Similarly, when within
a champion-team in the NBA an individual player’s performance is ranked as
most important for the team’s success, that player gets the extra accolade of
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‘most valuable player.’ These two examples illustrate that it is natural to think
that degrees of praiseworthiness/blameworthiness are correlated with degrees of
responsibility.

Nevertheless, blame and praise are more than indicators of responsibility.
They are the main reasons for wanting to find out whether—and to what extent—
an agent is responsible for a state of affairs. Let me explain this point. It is
clear that there are actions that individuals/societies deem either reprehensible or
commendable. Typically, these individuals/societies have an interest in figuring
out who is responsible—and, if so, how much—for such actions, precisely so
that the authors can be either sanctioned or honored. Not every action elicits
this interest, however. While a mass murder almost demands that society finds
out who was responsible for it, there would likely be no interest in finding out
who made a particular footprint on a road that is busy on a daily basis. The
discrepancy is due to the general condemnation of the act of murder, coupled
with the prevalence of schemes of accountability for blameworthy agents in most
legal societies. At the other end of the spectrum, finding out who is responsible
for actions that call for praise is also standard. Consider the act of developing the
cure for a deadly disease, for instance; to decorate whoever is responsible is part
of a scheme in which prizes are awarded to authors, precisely to encourage acts
that are desirable for society.5

Up to now, I have not explicitly discussed blame and praise, so it seems fit-
ting to do so. Intuitively, these terms refer to attitudes that agents have, toward
themselves and others, that regard the undesirability, resp. desirability, of a state
of affairs that was obtained as a result of some action. As the examples in the
previous paragraph show, this undesirability, resp. desirability, can in principle
be related to many other measures, such as individual/social preferences, individ-
ual/social utility, individual/social morality, individual/social commitments, and
individual/social codes of conduct (or norms), to name a few. The basic idea,
nonetheless, is that undesirable outcomes are reasons for blaming the authors,
and desirable outcomes are reasons for praising them.6

In this thesis there are specific contexts that provide a criterion for deciding
when agents should be blamed and when agents should be praised. These con-
texts are given by the deontic attributes of the logics presented in Chapter 4.
More precisely, consider the distinctions between an agent’s available choices of

5That an agent is deserving of blame or praise is part of a complex feature typically attributed
to human individuals and human groups known as the morality of fairness (see Tomasello, 2016,
Chapter 1).

6It is in this sense that blame and praise can be seen as contrasting attitudes within the same
spectrum. Whether blame and praise are magnitudes that are the exact opposite of each other is a
further question that I do not attempt to answer here, however.
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action, that are implied by the ought-to-do’s that have been reviewed and formal-
ized so far. Such distinctions, which in essence divide choices between optimal
and non-optimal, can be used to build a framework that accounts for degrees of
praiseworthiness/blameworthiness.

The main idea is as follows: if agent α ought to have done φ, then having seen
to it that φ makes α praiseworthy, while having refrained from seeing to it that
φ makes α blameworthy. For a given φ, then, the degrees of α’s praiseworthi-
ness/blameworthiness correspond to the possible combinations between (a) the
deontic modalities introduced in Chapter 4 (⊙αφ for objective ought-to-do’s and
⊙
S
αφ for subjective ought-to-do’s), and (b) the active/passive forms of the three cat-

egories of responsibility. Although Section 6.3 discusses this in detail, let me clarify
the intuition underlying such degrees of praiseworthiness/blameworthiness with
some examples.

Suppose that you are driving through a quiet neighborhood, where there is
always light traffic, in the middle of the day. You see that a few blocks down the
road a traffic officer is holding up a stop-sign at a crossing walk so that a group of
school children can cross the road behind her. Let s stand for the proposition ‘your
car is stopped.’ In a situation like this, at all moments at which the school children
are crossing, you objectively and subjectively ought to see to it that your car is
stopped. Without going into details regarding epistemic indistinguishability, you
know that the children are crossing the street—because you can see them. In terms
of formulas and bt-models, formulas ⊙yous and ⊙Syous hold at every index based
on said moments. Suppose, nonetheless, that you knowingly and intentionally
keep on driving. Thus, a formula of the form Kyou[you]¬s ∧ Iyou[you]¬s holds. In
this case, it would be difficult to say that you are not highly blameworthy for
whatever terrible circumstance that ensues from your action.

In contrast, suppose that there is a terrorist inside your car, and that he is
holding your family at gun point. This terrorist has threatened to shoot your
family if you do not keep on driving. Making a tough choice, you keep on
driving. Once again, at all moments at which the kids are crossing you objectively and
subjectively ought to have stopped the car. However, although you knowingly
kept on driving, you did not have any intention of doing so—and thus you did not
intentionally keep on driving. Therefore, in this case formula Kyou[you]¬s∧¬Iyou¬s
holds, and most people would say that your degree of blameworthiness is less
than the one in the first scenario.

Finally, consider this alternate backstory. Suppose that, the night before, a
terrorist hacked the wiring and the computer of your car. He also installed a
camera on the front hood so that he would be able to see where you would be
driving the next day. In the morning you noticed nothing strange about your
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car, and you started your drive as any other day. Right before you reached the
crossing walk, the terrorist—who knew where you were because of the camera on
the front hood—remotely changed the settings of your car so that the brake pedal
turned into the accelerator and vice versa. At the crossing walk, then, you stepped
on the brake pedal to stop the car, but to your dismay the car sped up instead,
causing a tragedy. In this case, although you causally saw to it that the car still
went ahead, it is clear that you did so unknowingly. Moreover, you did not have
the intention of driving past the crossing walk when the kids were passing by.
Thus, in this case formula [you]¬s∧¬Kyou[you]¬s∧¬Iyou¬s holds, and your degree
of blameworthiness should be even less than the one in the second scenario.

Compare these driving scenarios with the Miners Paradox—the example open-
ing Chapter 4 (p. 139). As mentioned in Example 4.10 (p. 153) and further ex-
plained in Chapter 4’s Subsection 4.4.2, the rescuers objectively ought to have
blocked a shaft of the mine: if b stands for the proposition ‘a shaft is blocked,’
then formula ⊙Resb holds. However, blocking a shaft was not a subjective ought-
to-do: formula ¬ ⊙SRes b holds. Suppose, then, that the rescuers refrained from
blocking a shaft, so that both mines were flooded and one miner drowned. Since
the rescuers were not subjectively obligated to block a shaft, one can say that
the degree of blameworthiness should be less than the one in a hypothetical case
where blocking a shaft were also a subjective ought-to-do.

As the reader can see, these examples were focused only on blameworthiness.
However, praiseworthiness can also be accounted for using the deontic modalities
and the categories of responsibility. This is done by considering as a basic principle
that agents that comply with their ought-to-do’s are praiseworthy. Just as in
the case of blameworthy actors, different combinations of modalities provide a
background to reason about degrees of praiseworthiness, albeit from a slightly
different perspective. To clarify, there are situations where the compliance with
obligations rarely elicits high degrees of praise from society. Consider the example
of stopping your car at the crossing walk to let a group of school children pass
by. You objectively and subjectively ought to stop the car, and while the degree
of blameworthiness is very high if you refrain from stopping the car, you would
not receive a medal if you did stop it.

Still, for a given obligation—without specifying, for now, whether it is objec-
tive or subjective—the degree of praiseworthiness attributed to knowingly and
intentionally complying with it, for instance, is intuitively higher than the one
attributed to only knowingly doing so. The reason, just as in the crossing-walk
example given for blameworthiness, is that somebody might be forcing you into
doing something that you did not intend to do. For instance, suppose that you are
the captain of a basketball team in the NBA. You have made it to the championship
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finals, and the series’ last game is being played. There are only a few seconds on
the clock, and your team has the final ball-possession. During a time-out, your
team’s coaches are deliberating what to do. As it happens, the head coach had pre-
viously designed a strategy for end-of-game plays, and this strategy involves your
passing the ball to the strongest player in the team so that he takes the last shot.
However, you are a bit of a ‘ball hog,’ and you would rather take all the credit by
scoring yourself. During the time-out, then, you start an argument with the head
coach, claiming that it is you who should take the shot. The coach threatens to fire
you from the team if you do not follow his instructions, and all your teammates
witness the argument. The play begins, and the ball gets to your hands. Very
reluctantly, you pass the ball—knowingly complying with your obligation. Your
team ends up winning the game, and you become an NBA champion. However,
all your teammates know that you did not have any intention to pass the ball,
and that you only did it because otherwise you would have been fired. Because
of this, they do not praise your behavior whatsoever.7

In turn, the degree of praiseworthiness attributed to knowingly complying
with an obligation is intuitively higher than the one attributed to complying with
an obligation without knowing that one is doing such a thing. Another example
from sports well illustrates this intuition. Suppose that you and a friend of yours
are watching a dart-throwing tournament, where highly skilled players compete.
As part of the entertainment, at some point the organizers will ask a person from
the audience to come up and throw a single dart, blindfolded, so that if the person
hits the bulls-eye they win a prize. Although to hit the bulls-eye can hardly be
called an obligation, it is a ‘deontically desirable’ outcome—provided that no one
wishes that the lucky contestant misses the shot. A random choice, the organizers
ask the friend that you are with to be this lucky contestant. You know that he does
not know the first thing about dart-throwing. Still, when he throws the dart, he
hits the bulls-eye—a fluke. Without knowing how to throw a dart, and without

7Observe that, in this case, your ought-to-do concerns passing the ball instead of winning the
game on your own. A reader that has carefully followed Chapter 4 might object and say that the
action of passing the ball should have a lower utility than that of winning the game on your own.
Therefore, in act-utilitarian stit theory, the action of passing the ball should not dominate that of taking
the last shot—provided that there is a history within the latter choice where you take all the credit
for winning the game by scoring yourself. According to this view, then, to pass the ball should not
be your ought-to-do. In my view, the best response to this possible objection is that, in this example,
individual utility does not match with deontic utility. Although your individual payoff will be greater
if you score the last shot, this does not mean that the team’s payoff will also be greater. The team’s
payoff is still the same: becoming champions. Therefore, if one considers deontic utility as the utility
of the team instead of that of the individual players, one can argue that the action of passing the ball
indeed dominates that of making the last shot.
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even seeing the target, your friend managed. Therefore, although you might be
pleasantly surprised, you would not praise your friend for his skill at throwing
darts.

These examples suggest that a taxonomy where the possible conjunctions of
modalities ⊙αφ and ⊙Sαφ, on the one hand, with modalities [α]φ, Kα[α]φ, and Iαφ,
on the other, can provide a criterion that accounts for degrees of praiseworthi-
ness/blameworthiness. The next section includes an extensive discussion on such
possibilities.

6.3 A Logic of Responsibility

We are ready to introduce intentional epistemic act-utilitarian stit theory (IEAUST),
a stit-theoretic logic of responsibility. The reader will see that all the concepts
addressed in previous chapters will greatly pay off at this point. The reason is
that IEAUST is obtained by integrating (a) Chapter 4’s epistemic act-utilitarian
stit theory (EAUST) and (b) Chapter 5’s intentional epistemic stit theory (IEST).
The resulting logic might seem crammed, but the intuitions behind each modality
have all been explained by now. Without further ado, let me address the syntax
and semantics of this expressive framework.

6.3.1 Syntax & Semantics

Definition 6.1 (Syntax of intentional epistemic act-utilitarian stit theory). Given a
finite set Ags of agent names and a countable set of propositions P, the grammar for the
formal language LR is given by

φ ::= p | ¬φ | φ ∧ φ | □φ | [α]φ | Kαφ | Iαφ | ⊙αφ | ⊙Sαφ,

where p ranges over P and α ranges over Ags.

In this language, □φ is meant to express the historical necessity of φ (^φ ab-
breviates ¬□¬φ); [α]φ expresses that ‘agent α has seen to it that φ’; Kαφ expresses
that ‘α knows φ’; Iαφ expresses that ‘α p-d intended φ’; ⊙αφ expresses that ‘α
objectively ought to have seen to it that φ’; and ⊙Sαφ expresses that ‘α subjectively
ought to have seen to it that φ.’8As for the semantics, the structures on which the

8Just as in all the other chapters of this thesis, the present description of the stit-theoretic modalities
follows my interpretation of the semantics (see the discussion on p. 34 and Remark 2.4, p. 36). Therefore,
when specifying the points of evaluation for the formulas—the indices in bt-models—I take it that
at those indices states of affairs are definitive. Because of this, I use the present-perfect tense for the
description of modality [α]φ and say that ‘at index ⟨m, h⟩ α has seen to it that φ.’ To be consistent, I
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formulas of LR are evaluated are based on what I call knowledge-intentions-oughts
branching-time frames. These are the usual bt-frames, supplemented with the func-
tions and relations that make up the semantic counterpart of the modalities in
LR. Let me first present the formal definition of these frames and then review the
intuitions behind the extensions.

Definition 6.2 (Kiobt-frames & models). A tuple〈
M,⊏,Ags,Choice, {∼α}α∈Ags , τ,Value

〉
is called a knowledge-intention-oughts branching-time frame (kiobt-frame for short)
iff

•
〈
M,⊏,Ags,Choice, {∼α}α∈Ags ,Value

〉
is an aubt-frame (Definition 4.3).

•
〈
M,⊏,Ags,Choice, {∼α}α∈Ags , τ

〉
is an iebt-frame (Definition 5.4).

A kiobt-modelM, then, results from adding a valuation function V to a kiobt-frame,
whereV : P→ 2I(M×H) assigns to each atomic proposition a set of indices.

Thus, a kiobt-frame is the extension of an aubt-frame with the function τ from
Section 5.1, that assigns to each agent and index the topology of the agent’s p-d
intentions at that index. As is customary, these models are used to define semantics
for the formulas of LR. Before presenting these semantics, a brief review—both
of concepts and of terminology—seems suitable. LetM be a kiobt-frame. Recall
the following characteristics of its components:

•
〈
M,⊏,Ags,Choice

〉
is a bt-frame just as in Definition 2.2 (p. 29).

• For α ∈ Ags, the equivalence relation ∼α is the usual indistinguishability
relation, borrowed from epistemic logic, that represents α’s uncertainty in
ebt-frames (Definition 2.27, p. 70). For each α ∈ Ags, ∼α satisfies conditions
(OAC) own action condition and (Unif − H) uniformity of historical possibility
(see Definition 4.18, p. 162). For α ∈ Ags and index ⟨m, h⟩, π□α [⟨m, h⟩] =
{⟨m′, h′⟩;∃h′′ ∈ Hm′s.t.⟨m, h⟩ ∼α ⟨m′, h′′⟩} is known as α’s ex ante information
set; and πα[⟨m, h⟩] = {⟨m′, h′⟩; ⟨m, h⟩ ∼α ⟨m′, h′⟩} is known as α’s ex interim
information set.

use the past tense for modalities □φ, Kαφ, and Iαφ and say that ‘at index ⟨m, h⟩ φ was settled,’ that ‘at
index ⟨m, h⟩ α knew φ,’ and that ‘at index ⟨m, h⟩ α p-d intended φ.’ For modalities involving the verb
‘ought,’ I use the past form of the sentences and say that ‘at index ⟨m, h⟩ α ought to have seen to it
that φ.’ For the same reason, I will use the past tense when describing α’s responsibility for φ and say
that ‘at index ⟨m, h⟩ α was responsible for φ’ (see p. 277). As discussed in Chapter 2, this usage does
not mean to refer to past moments. Rather, it aims to reinforce the notion that, at the level of indices,
circumstances in the world are definitive, have already happened, and cannot be changed.
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• τ is a function that assigns to each α ∈ Ags and index ⟨m, h⟩ the topology
τ⟨m,h⟩α of α’s intentionality at ⟨m, h⟩, where any open set is interpreted as a
p-d intention of α at ⟨m, h⟩. Function τ satisfies conditions (CI) consistency of
intention and (KI) knowledge of intention (see Definition 5.4, p. 226).

• Value is a function that assigns to each history h a real number, repre-
senting the deontic utility of h. This function allows us to define ob-
jective and subjective orderings on an agent’s choices of action. Recall
from Definition 4.4 (p. 148) that, for m ∈ M and β ∈ Ags, Statem

β :={
S ⊆ Hm; S =

⋂
α∈Ags−{β} s(α), for s ∈ Selectm

}
, where Selectm denotes the set

of all selection functions at m. First, a general ordering ≤ is defined on 2Hm

by the rule: X ≤ Y iff Value(h) ≤ Value(h′) for every h ∈ X and h′ ∈ Y.

For α ∈ Ags and m ∈ M, an objective dominance ordering ⪯ is then de-
fined on Choicem

α by the rule: L ⪯ L′ iff for all S ∈ Statem∗
α ,L ∩ S ≤

L′ ∩ S. The objectively optimal set of actions is defined by Optimalm
α :={

L ∈ Choicem
α ; there is no L′ ∈ Choicem

α s. t. L ≺ L′
}
, where I write L ≺ L′ iff

L ⪯ L′ and L′ ⪯̸ L.

Subjective orderings are defined using the notion of epistemic clus-
ters (Definition 4.19, p. 163). For α ∈ Ags, m,m′ ∈ M, and
L ∈ Choicem

α , L’s epistemic cluster at m′ is the set [L]m′
α :=

{h′ ∈ Hm′ ; there is h ∈ L s. t. ⟨m, h⟩ ∼α ⟨m′, h′⟩}. For α ∈ Ags and m ∈ M,
an subjective dominance ordering ⪯s is then defined on Choicem

α by
the rule: L ⪯s L′ iff for all m′ such that m ∼α m′ and S ∈ Statem′

α ,
[L]m′

α ∩ S ≤ [L′]m′
α ∩ S.9 Just as in the case of objective ought-to-do’s,

this ordering allows us to define a subjectively optimal set of actions
SOptimalm

α :=
{
L ∈ Choicem

α ; there is no L′ ∈ Choicem
α s. t. L ≺s L′

}
, where

I write L ≺s L′ iff L ⪯s L′ and L′ ⪯̸s L.

Therefore, kiobt-frames allow us to represent the components of responsibility
discussed in the introduction: agency, knowledge, intentions, and ought-to-do’s.
More precisely, they allow us to provide semantics for the modalities of LR:

Definition 6.3 (Evaluation rules for IEAUST). LetM be a finite-choice kiobt-model,
where I focus on finite-choice models to simplify the evaluation rules for objective and
subjective ought-to-do’s.10 The semantics on M for the formulas of LR are recursively

9Recall that I write m ∼α m′ if there exist h ∈ Hm and h′ ∈ Hm′ such that ⟨m, h⟩ ∼α ⟨m′, h′⟩.
10Finite-choice bt-models are those for which function Choice is such that Choicem

α is finite for
every α ∈ Ags and m ∈ M (see Footnote 17, p. 158). The reader is referred to Definitions 4.6 (p. 150)
and 4.21 (p. 164) for the evaluation rules in the case of infinite-choice models.
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defined by the following truth conditions:

M, ⟨m, h⟩ |= p iff ⟨m, h⟩ ∈ V(p)
M, ⟨m, h⟩ |= ¬φ iff M, ⟨m, h⟩ ̸|= φ
M, ⟨m, h⟩ |= φ ∧ ψ iff M, ⟨m, h⟩ |= φ andM, ⟨m, h⟩ |= ψ
M, ⟨m, h⟩ |= □φ iff for all h′ ∈ Hm,M, ⟨m, h′⟩ |= φ
M, ⟨m, h⟩ |= [α]φ iff for all h′ ∈ Choicem

α (h),M, ⟨m, h′⟩ |= φ
M, ⟨m, h⟩ |= Kαφ iff for all ⟨m′, h′⟩ s. t. ⟨m, h⟩ ∼α ⟨m′, h′⟩,

M, ⟨m′, h′⟩ |= φ
M, ⟨m, h⟩ |= Iαφ iff there exists U ∈ τ⟨m,h⟩α s. t. U ⊆ ∥φ∥
M, ⟨m, h⟩ |= ⊙αφ iff for all L ∈ Optimalm

α ,M, ⟨m, h′⟩ |= φ
for every h′ ∈ L

M, ⟨m, h⟩ |= ⊙Sαφ iff for all L ∈ SOptimalm
α ,M, ⟨m′, h′⟩ |= φ

for every m′ s. t. m ∼α m′ and every h′ ∈ [L]m′′
α .

where ∥φ∥ refers to the set
{
⟨m, h⟩ ∈ I(M ×H);M, ⟨m, h⟩ |= φ

}
. I write

∣∣∣φ∣∣∣m to refer to
the set

{
h ∈ Hm;M, ⟨m, h⟩ |= φ

}
.

6.3.2 Formalization of Sub-Categories of Responsibility

The logic introduced in the previous subsection allows us to formalize different
modes of responsibility by means of formulas of LR. Before diving into the
formulas, let me present an operational definition for the expression ‘mode of
responsibility,’ so that the reader has more clarity as to what I mean when I use it.

On the one hand, recall from Section 6.1 that my analysis of responsibility dis-
tinguishes three categories of the notion—Broersen’s three categories of responsi-
bility: causal, informational, and motivational. On the other hand, recall—also from
Section 6.1—that such an analysis also presupposes two forms of responsibility:
the active form—concerning contributions—and the passive form—concerning
omissions. A mode of responsibility, then, is defined as follows: for α ∈ Ags,
index ⟨m, h⟩, and φ of LR, a mode of α’s responsibility with respect to φ at ⟨m, h⟩ is a
tuple consisting of three constituents: (1) a set of categories, taken from Broersen’s
three categories of responsibility, that applies to the relation between α and φ at
⟨m, h⟩, (2) the forms of responsibility—active or passive—that apply to the cate-
gories in said set, and (3) a deontic context, determining whether the forms of the
categories are either blameworthy, praiseworthy, or neutral.

As for constituents (1) and (2), observe that the active and passive forms of the
three categories of responsibility lead to sub-categories of the notion. For clarity,
first I will introduce the stit-theoretic characterizations of these sub-categories;
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afterwards, in Subsection 6.3.3, these sub-categories will be discussed against the
backdrop of the deontic contexts that will decide their degree of blameworthiness
or praiseworthiness (constituent (3) in a given mode).

Now, a maxim usually endorsed in the philosophical literature on moral re-
sponsibility is the principle of alternate possibilities. According to this principle, “a
person is morally responsible for what he has done only if he could have done
otherwise” (Frankfurt, 2018, p. 829).11 In other words, an agent is not morally
responsible for having brought about φ if φ was inevitable. Thus, the princi-
ple of alternate possibilities is clearly related to the notion of deliberative agency
(Horty, 1989; Horty & Belnap, 1995; von Kutschera, 1986). Recall from Chap-
ter 2’s Definition 2.6 (p. 43) that the idea behind the deliberative-stit modality
[α]dψ := [α]ψ ∧ ^¬ψ is that if a state of affairs was already settled then the state
did not really depend on an agent’s choice of action and should not be thought
of as an effect of any such choice. For [α]dψ to hold at some index, then, there are
two requirements: (1) that ψ is an effect of the choice that α has performed at the
index, known as the positive condition; and (2) that ¬ψ must have been possible at
the index, known as the negative condition.

Following the example of Lorini et al. (2014), I adopt the intuitions behind
deliberative agency and restrict my view on responsibility to situations where
agents can be said to actually have had a hand in bringing about states of affairs.
Therefore, each sub-category of α’s responsibility with respect to φ at ⟨m, h⟩ will
include a positive condition—concerning the realization of φ—and a negative
condition—concerning the realization of ¬φ. For α ∈ Ags and φ of LR, the main
sub-categories of α’s responsibility with respect to φ are displayed in Table 6.1.

Category
Form

Active (contributions) Passive (omissions)

Causal [α]φ ∧^[α]¬φ φ ∧^[α]¬φ

Informational Kα[α]φ ∧^Kα[α]¬φ φ ∧ Kα¬[α]¬φ∧
^Kα[α]¬φ

Motivational Kα[α]φ ∧ Iα[α]φ∧
^Kα[α]¬φ

φ ∧ Kα¬[α]¬φ∧
Iα¬[α]¬φ ∧^Kα[α]¬φ

Table 6.1: Main sub-categories.

11It is worth mentioning that Frankfurt (2018) argued against this principle.
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Let me explain and discuss Table 6.1. LetM be a kiobt-model. For α ∈ Ags and
index ⟨m, h⟩, the sub-categories of α’s responsibility with respect to φ at ⟨m, h⟩ are
defined as follows:12

• – α was causal-active responsible for φ at ⟨m, h⟩ iff at ⟨m, h⟩ α has seen to it
that φ (the positive condition) and it was possible for α to prevent φ
(the negative condition). As such, I refer to state of affairs φ as a causal
contribution of α at ⟨m, h⟩.13

– αwas causal-passive responsible for φ at ⟨m, h⟩ iff at ⟨m, h⟩ φwas the case
(the positive condition), and α refrained from preventing φ while it
was possible for α to prevent φ (the negative conditions). To clarify,
formula φ→ ¬[α]¬φ is valid, so that if φwas the case then α refrained
from preventing φ. I refer to ¬φ as a causal omission of α at ⟨m, h⟩.

• – α was informational-active responsible for φ at ⟨m, h⟩ iff at ⟨m, h⟩ α has
knowingly seen to it that φ (the positive condition) and it was possible
for α to knowingly prevent φ (the negative condition). I refer to φ as a
conscious contribution of α at ⟨m, h⟩.

– αwas informational-passive responsible forφ at ⟨m, h⟩ iff at ⟨m, h⟩φwas the
case (the positive condition), and α knowingly refrained from prevent-
ing φ while it was possible for α to knowingly prevent φ (the negative
conditions). I refer to ¬φ as a conscious omission of α at ⟨m, h⟩.

12Recall from Chapter 2’s Subsection 2.2.3 (p. 38) that the following expressions are standard in
this thesis:

• α has refrained from seeing to it that φ at ⟨m, h⟩ iff ¬[α]φ holds at ⟨m, h⟩.

• α has prevented φ at ⟨m, h⟩ iff [α]¬φ holds at ⟨m, h⟩.

• α has refrained from preventing φ at ⟨m, h⟩ iff ¬[α]¬φ holds at ⟨m, h⟩.

Bringing knowledge and intentions into the picture, I will abide by the following conventions:

• α has knowingly seen to it that φ at ⟨m, h⟩ iff Kα[α]φ holds at ⟨m, h⟩.

• α has knowingly refrained from seeing to it that φ at ⟨m, h⟩ iff Kα¬[α]φ holds at ⟨m, h⟩.

• α has knowingly refrained from preventing φ at ⟨m, h⟩ iff Kα¬[α]¬φ holds at ⟨m, h⟩.

• α has intentionally seen to it that φ at ⟨m, h⟩ iff [α]φ ∧ Iα[α]φ holds at ⟨m, h⟩.

• α has intentionally refrained from seeing to it that φ at ⟨m, h⟩ iff ¬[α]φ ∧ Iα¬[α]φ holds at ⟨m, h⟩.

• α has intentionally refrained from preventing φ at ⟨m, h⟩ iff ¬[α]¬φ ∧ Iα¬[α]¬φ holds at ⟨m, h⟩.

13Observe that, in this case, α is the sole author of φ. In other words, α did not merely contribute
to the realization of φ but is the primary and only reason why φ was realized. This follows from the
fact that if [α]φ ∧ ^[α]¬φ holds at ⟨m, h⟩ then no other agent could have seen to it that φ at such an
index.
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• – α was motivational-active responsible for φ at ⟨m, h⟩ iff at ⟨m, h⟩ α has
both knowingly and intentionally seen to it that φ (the positive condi-
tions) and it was possible for α to knowingly prevent φ (the negative
condition). I refer to φ as a motivational contribution of α at ⟨m, h⟩.

– αwas motivational-passive responsible forφ at ⟨m, h⟩ iff at ⟨m, h⟩φwas the
case (the positive condition), and α both knowingly and intentionally
refrained from preventing φ while it was possible for α to knowingly
prevent φ (the negative conditions). I refer to ¬φ as a motivational
omission of α at ⟨m, h⟩.

The main reason for setting the negative conditions as stated in Table 6.1 is
that it greatly simplifies the relation between the active and the passive forms
of responsibility. Namely, it implies that passive responsibility is a logical con-
sequence of active responsibility (see Observation 6.4 2), something that in turn
simplifies Subsection 6.3.3’s presentation of modes of responsibility. That said, it
is important to mention that these negative conditions lead to a policy that I call
leniency on blameworthy agents. Let me elaborate on this topic.

Consider the definition of causal responsibility. In the present framework,
agent αwas causal-active responsible for φ at ⟨m, h⟩ only if [α]dφ holds at ⟨m, h⟩.14

Similarly,αwas causal-passive responsible forφ at ⟨m, h⟩ only if ¬[α]d
¬φ∧^[α]d

¬φ
holds at ⟨m, h⟩.15 This is why my proposal can be called ‘lenient on blameworthy
agents’: for α to be causal-active responsible forφ at ⟨m, h⟩, both [α]φ (the positive
condition) and^[α]¬φ (the negative condition) must hold at ⟨m, h⟩. As such, that
[α]dφ holds at ⟨m, h⟩, for example, is not enough to guarantee that αwill be causal-
active responsible for φ at ⟨m, h⟩. To clarify, [α]φ ∧ ^¬φ does not logically imply
[α]φ∧^[α]¬φ in the present framework. For one to be casual-active responsible,
then, it is not enough that one has seen to it that φwhile ¬φ is possible; one must
have seen to it thatφwhile being able to preventφ. I consider such a policy ‘lenient
on blameworthy agents’ because the requirements for causal-active responsibility
can be set using weaker formulas—precisely like [α]φ∧^¬φ. The same argument
applies toα’s causal-passive responsibility: one can use weaker formulas to define
it, such as, for instance, φ ∧^¬φ.

14This follows from the validity of schema (D) for [α], modal logic, and the fact that^¬φ↔ ^¬[α]φ
is valid with respect to all bt-frames. Namely, since ^[α]¬φ → ^¬[α]φ is valid, then the validity of
^¬φ↔ ^¬[α]φ implies that ^[α]¬φ→ ^¬φ is also valid.

15This follows from the following arguments: since φ → ¬[α]¬φ is valid (from the validity of
schema (T) for [α]), then αwas causal-passive responsible forφ at ⟨m, h⟩ only if¬[α]¬φ∧^[α]¬φ holds
at ⟨m, h⟩—that is, only if α has deliberatively refrained, or von-Wright-refrained, from seeing to it that
¬φ (see the discussion on refraining on p. 39); in light of the definition given by [α]dψ := [α]ψ ∧^¬ψ,
formula ¬[α]dψ ∧^[α]dψ translates into a formula that is logically equivalent to ¬[α]ψ ∧^[α]ψ.
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As for informational responsibility, the policy of leniency on blameworthy
agents carries on. Here, the positive condition is given by Kα[α]φ, and the negative
condition is given by ^Kα[α]¬φ. Thus, that Kα[α]dφ holds at ⟨m, h⟩ is not enough
to ensure that αwill be informational-active responsible for φ at ⟨m, h⟩. To clarify,
Kα[α]dφ translates into Kα[α]φ∧Kα^¬φ, and this formula does not logically imply
Kα[α]φ∧^Kα¬[α]φ in the present framework. For one to be informational-active
responsible, it is not enough that one has knowingly seen to it that φ while
knowing thatφ is possible; one must have knowingly seen to it thatφwhile being
able to knowingly prevent φ. Just as in causal responsibility, the requirements
for informational-active responsibility could in principle be set using far weaker
formulas—such as, for instance, Kα[α]φ ∧ ^Kα¬[α]φ, or the weaker Kα[α]φ ∧
Kα^¬[α]φ, or the even weaker Kα[α]φ ∧^¬φ. Thus, once again we find a policy
of leniency on blameworthy agents, where the same argument applies to α’s
informational-passive responsibility: one can use weaker formulas to define it—
for instance, φ ∧ Kα¬[α]¬φ ∧ Kα^[α]¬φ, or, weaker than this one, either φ ∧
Kα¬[α]¬φ ∧ ^[α]¬φ or φ ∧ Kα¬[α]¬φ ∧ Kα^¬φ, or, weaker than both these two,
φ ∧ Kα¬[α]¬φ ∧^¬φ.

Although based on the ideas behind deliberative agency, my policy of leniency
on blameworthy agents might be considered too lenient by some. To illustrate
this, consider Chapter 4’s example in Figure 4.8 (p. 168), where Nikolai is gam-
bling. Suppose that the actual index is ⟨m2, h3⟩, at which Nikolai has chosen the
action of forfeiting the bet (N3). Observe, then, thatM, ⟨m2, h3⟩ |= ¬^KNik[Nik]w∧
KNik[Nik]¬w: at ⟨m2, h3⟩ it was impossible for Nikolai to knowingly win, and he has
knowingly lost. According to Table 6.1, Nikolai would not be informational-active
responsible for losing, since it was impossible for him to knowingly win. How-
ever, observe thatM, ⟨m2, h3⟩ |= ^KNik (¬KNik[Nik]¬w ∧ ⟨KNik⟩ [Nik]w) as well: at
⟨m2, h3⟩ it was possible for Nikolai to choose an action for which he knew both that he was
not knowingly losing by choosing it and that he had the epistemic possibility of winning.
To clarify, if Nikolai would have chosen either to bet heads (N1) or to bet tails
(N2), then formula ¬KNik[Nik]¬w ∧ ⟨KNik⟩ [Nik]w would hold, and schema (5) for
KNik implies that KNik (¬KNik[Nik]¬w ∧ ⟨KNik⟩ [Nik]w) would hold as well. Thus,
some people might object to the claim that Nikolai was not informational-active
responsible for losing, since he chose an action where he knowingly lost when
it was possible for him to choose an action for which he knew that he would
not knowingly lose and that there was the epistemic possibility of winning. For
those who wish to conclude that Nikolai is informational-active responsible for
losing, they would get the desired result by revising the negative conditions of
informational responsibility.
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As for motivational responsibility, observe that the negative conditions—in
both the active and the passive forms—involve epistemic attitudes. Recall from
Chapter 5’s Section 5.1 that p-d intentions are part of an agent’s ex ante informa-
tion set. Moreover, α’s p-d intending φ implies that α knows that it is impossible
to still have a p-d intention of ¬φ at the same time—formula Iαφ→ Kα□¬Iα¬φ is
valid.16 Nevertheless, it still seems reasonable to impose negative conditions for
motivational responsibility, just as in the other categories. I consider that, for α to
be motivational-active responsible for φ at ⟨m, h⟩, at the very least α should have
known that at ⟨m, h⟩ it was possible to refrain from seeing to it that φ—that is,
Kα^¬[α]φ should hold. In turn, for α to be motivational-passive responsible for
φ at ⟨m, h⟩, α should have knowingly and intentionally refrained from preventing
φ and, at the very least, α should have known that at ⟨m, h⟩ it was possible to
prevent φ—that is, Kα¬[α]¬φ∧ Iα¬[α]¬φ∧Kα^[α]¬φ should hold. The policy of
leniency on blameworthy agents, then, led me to set the requirements for motiva-
tional responsibility using negative conditions similar to those in the category of
informational responsibility: formula ^Kα[α]¬φ—which is strictly stronger than
Kα^¬[α]φ—is used as the negative condition of motivational-active responsibil-
ity; and formula Kα¬[α]¬φ ∧ Iα¬[α]¬φ ∧ ^Kα[α]¬φ—which is strictly stronger
than Iα¬[α]¬φ ∧ Kα^[α]¬φ—is used as the negative conditions of motivational-
passive responsibility. Therefore, α was motivational-active responsible for φ at
⟨m, h⟩ only if it was possible for α to knowingly prevent φ at ⟨m, h⟩—that is, only if
^Kα[α]¬φ holds at the index. Otherwise, someone could claim that α knew that it
was impossible to knowingly prevent φ (formula □¬Kα[α]¬φ→ Kα□¬Kα[α]¬φ is
valid), and that such knowledge somehow led α to knowingly and intentionally
bring about φ. Similar arguments apply to motivational-passive responsibility:
the negative conditions imply a policy of leniency on blameworthy agents.

As mentioned before, the negative conditions in Table 6.1 were set so that
the presentation of modes would be simpler. However, the reader is encouraged
to explore different options for characterizing the sub-categories. Indeed, the
logic is flexible enough to make diverse proposals in this respect, where each
proposal could be accordingly labelled within a spectrum of leniency-to-strictness
on agents.

As a final note to the discussion on the sub-categories of responsibility, let me
address an important observation concerning the relations between these sub-
categories:

Observation 6.4. LetM be a kiobt-model. For all α ∈ Ags, index ⟨m, h⟩, and φ of LR,
the following items hold:

16This validity is implied by schema (D) for Iα and Observation 5.9 a (p. 244).
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1. (a) If α was informational-active, resp. informational-passive, responsible for φ
at ⟨m, h⟩, then α was causal-active, resp. causal-passive, responsible for φ at
⟨m, h⟩; the converse is not true.
The implication follows from the validity of ^Kαψ → Kα^ψ and of
schema (T) for Kα. An example of the fact that the converse does not hold
is given by Chapter 5’s Example 5.7 (p. 231): at ⟨m3, h3⟩ doctor was causal-
active and causal-passive responsible for the patient’s death, but she was
neither informational-active nor informational-passive responsible for
it.

(b) If α was motivational-active, resp. motivational-passive, responsible for φ at
⟨m, h⟩, then α was informational-active, resp. informational-passive, responsi-
ble for φ at ⟨m, h⟩; the converse is not true.
The implication follows from the definitions of informational and mo-
tivational responsibility. An example of the fact that the converse does
not hold is given by Chapter 5’s Figure 5.4 (p. 239): at ⟨m1, h1⟩ driver was
informational-active and informational-passive responsible for the offi-
cer’s death, but she was neither motivational-active nor motivational-
passive responsible for it.

2. For all three categories, the active form of responsibility with respect to φ implies
the passive form.

For causal responsibility, the result follows from the validity of schema
(T) for [α]. For informational responsibility, it follows from the validity of
schemata (T) for Kα and [α], the validity of schema (D) for [α], Necessitation
for Kα, and the validity of schema (K) for Kα. For informational responsibil-
ity, it follows from the validity of schema (T) for [α], the validity of schema
(D) for [α], Necessitation for Iα, and the validity of schema (K) for Iα.

After this discussion on the sub-categories of responsibility, we are ready to
introduce the full characterizations of the modes of responsibility. As has often
been mentioned in this chapter, this is done by collating the sub-categories against
the backdrop of specific deontic contexts.

6.3.3 Formalization of Modes of Responsibility

In Section 6.2 I explained why blame-or-praise assignment is one of the main
reasons for considering the relation ‘. . . is responsible for. . . ’ relevant at all. Fur-
thermore, the examples given in said section illustrate the intuition that agents’
obligations—or ought-to-do’s—are deeply connected with systematic blame-or-
praise assignment. To be precise, obligations provide the deontic contexts of
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responsibility, that determine degrees of praiseworthiness/blameworthiness for
instances of the notion. Aiming for clarity in the presentation of my proposal for
a system of such degrees, I will anchor the modes of responsibility to the different
deontic contexts, where these contexts are represented with conjunctions of the
deontic modalities of IEAUST.17

Let M be a kiobt-model. Take α ∈ Ags, and let φ be a formula of LR. For
each index ⟨m, h⟩, there are 4 main possibilities for conjunctions of deontic modal-
ities holding at ⟨m, h⟩, according to whether ∆φ or ¬∆φ is satisfied at the index,
where ∆ ∈

{
⊙α,⊙Sα

}
. I refer to any such conjunction as a deontic context for α’s

responsibility with respect to φ at ⟨m, h⟩. Thus, these contexts render 4 main levels of
praiseworthiness, resp. blameworthiness, under the premise that bringing about
φ is praiseworthy and refraining from bringing about φ is blameworthy. I use
numbers 1–4 to refer to these levels, so that Level 1 corresponds the highest level of
praiseworthiness, resp. blameworthiness, and Level 4 corresponds to the lowest
level.

Level 1: when deontic context ⊙αφ ∧ ⊙Sαφ holds at ⟨m, h⟩.
Compared with the other levels below—and generally speaking—in this level

bringing about φ comes with the highest degree of praiseworthiness, and refrain-
ing from bringing about φ comes with the highest degree of blameworthiness.18

Observe that M, ⟨m, h⟩ |= ⊙αφ ∧ ⊙Sαφ iff at ⟨m, h⟩ α objectively and subjectively
ought to have seen to it that φ. In other words, at ⟨m, h⟩ α was compelled on both
deontic accounts to bring about φ. A good example of this level of compulsion
was given in Section 6.2, where you are objectively and subjectively obligated to
stop your car at a crossing walk, to let school children pass. If you stop your car,
then you are abiding by the law, and the legal system will praise you for it. If you
do not stop your car, then the legal system will investigate how much you are to
blame for any tragic outcome that ensues from your action.

For deontic context ⊙αφ ∧ ⊙Sαφ, the basic modes of α’s active responsibility with
respect to φ at ⟨m, h⟩ are displayed in Tables 6.2 and 6.3, where the latter is the tran-
scription of the former in terms of formulas ofLR. In both tables, the columns are
indexed by the attribution-attitudes of praiseworthiness/blameworthiness (Att.),
and the rows are indexed by degrees for such attitudes (Deg.).

17As mentioned before, the deontic contexts account for constituent (3) in any given mode.
18As established in Section 6.2, this does not imply that the degree of praiseworthiness attributed to

bringing aboutφ is exactly the opposite of the degree of blameworthiness attributed to refraining from
bringing about φ. Sometimes complying with an obligation does not elicit a level of praiseworthiness
that is comparable to the level of blameworthiness that failing to comply elicits (recall the example
involving stopping your car at a crossing walk). Indeed, these nuances depend on what φ actually
means.
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Deg.
Att.

Praiseworthiness Blameworthiness

LowA

Causal-active for φ ✓
Infor.-active for φ ✗

Motiv.-active for φ ✗

Causal-active for ¬φ ✓
Infor.-active for ¬φ ✗

Motiv.-active for ¬φ ✗

MiddleA

Causal-active for φ ✓
Infor.-active for φ ✓
Motiv.-active for φ ✗

Causal-active for ¬φ ✓
Infor.-active for ¬φ ✓
Motiv.-active for ¬φ ✗

HighA

Causal-active for φ ✓
Infor.-active for φ ✓
Motiv.-active for φ ✓

Causal-active for ¬φ ✓
Infor.-active for ¬φ ✓
Motiv.-active for ¬φ ✓

Table 6.2: Modes of α’s active responsibility with respect to φ.

Deg.
Att.

Praiseworthiness Blameworthiness

LowA

(
[α]φ ∧^[α]¬φ

)
∧(

¬Kα[α]φ ∨ ¬^Kα[α]¬φ
)
∧(

¬Iα[α]φ ∨ ¬^Kα[α]¬φ
)

(
[α]¬φ ∧^[α]φ

)
∧(

¬Kα[α]¬φ ∨ ¬^Kα[α]φ
)
∧(

¬Iα[α]¬φ ∨ ¬^Kα[α]φ
)

MiddleA

(
Kα[α]φ ∧^Kα[α]¬φ

)
∧

¬Iα[α]φ

(
Kα[α]¬φ ∧^Kα[α]φ

)
∧

¬Iα[α]¬φ

HighA

(
Kα[α]φ ∧^Kα[α]¬φ

)
∧

Iα[α]φ

(
Kα[α]¬φ ∧^Kα[α]φ

)
∧

Iα[α]¬φ

Table 6.3: Modes of α’s active responsibility with respect to φ.

Therefore, Tables 6.2 and 6.3 include those basic modes—of α’s responsibility
with respect to φ at ⟨m, h⟩—whose constituent (3) is deontic context ⊙αφ ∧ ⊙Sαφ.
To illustrate these degrees—for context ⊙αφ ∧ ⊙Sαφ—let me explicitly discuss the
cells of Tables 6.2 and 6.3.

Assume that M, ⟨m, h⟩ |= ⊙αφ ∧ ⊙Sαφ. As for degrees of praiseworthi-
ness, LowA applies to the mode characterized with formula

(
[α]φ ∧^[α]¬φ

)
∧(

¬Kα[α]φ ∨ ¬^Kα[α]¬φ
)
∧
(
¬Iα[α]φ ∨ ¬^Kα[α]¬φ

)
. If this formula holds at ⟨m, h⟩,

then α was causal-active responsible for φ at ⟨m, h⟩, but α was not informational-
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active nor motivational-active responsible. In other words, α brought about φ
unknowingly and unintentionally, and it was possible for α to knowingly pre-
vent φ. Now, to illustrate why this mode gets a low degree of praiseworthiness,
consider the example of stopping your car at a crossing walk. Let s stand for the
proposition ‘your car is stopped.’ Then formula ⊙yous ∧ ⊙Syous holds. Consider
a version of this example where you indeed stop your car, but only as a lucky
coincidence. Knowing that it would not be deontically ideal, you were actually
trying to speed up—just for the selfish reason of being fast—and you mistook the
brake pedal for the accelerator. Thus, formula [you]s ∧ ¬Kyou[you]s ∧ ¬Iyou[you]s
holds: at the implied actual index you stopped your car but did so unknowingly and
unintentionally. Whoever happens to know this background information would
likely praise you very mildly, since you only complied with your obligation by
mere chance and without having any intention of doing so.19

It is important to mention that if M, ⟨m, h⟩ |= ⊙αφ ∧ ⊙Sαφ then M, ⟨m, h⟩ |=
^Kα[α]φ. Therefore, for deontic context ⊙αφ ∧ ⊙Sαφ, it must be the case that α
should be able to knowingly see to it that φ. This is a consequence of the validity
of ⊙Sαφ → ^Kα[α]φ (a subjective version of Kant’s directive of ought implies can,
discussed in item 9 in the list of EAUST’s logic-based properties, Chapter 4, p. 174).
In the example above, I take it that it is possible for you to knowingly stop the car,
since you can use the hand-brake instead of the brake pedal.

For the praiseworthy mode tagged MiddleA, formula
(
Kα[α]φ ∧^Kα[α]¬φ

)
∧

¬Iα[α]φ holds at ⟨m, h⟩. Thus, α was causal-active and informational-active re-
sponsible for φ at ⟨m, h⟩, but α was not motivational-active responsible. In other
words, α knowingly brought about φ, did so unintentionally, and it was possible
for α to knowingly prevent φ. To illustrate why this mode gets a middle degree
of praiseworthiness, recall the basketball example from Section 6.2 (p. 270). In
this example, you were a ‘ball hog’ that did not p-d intend to pass the ball to
the strongest player in the team for the last play of the game. You wanted to
take all the credit by scoring on your own, and you only passed the ball because
the head coach had previously told you that otherwise you would be fired. If p
stands for the proposition ‘the ball is passed to the strongest player in your team,’
then formulas ⊙youp ∧ ⊙Syoup, Kyou[you]p, and ¬Iyou[you]p hold: at the implied actual

19Moreover, the statement of this example implies that formulas¬Kyou¬[you]¬s and Iyou[you]¬s also
hold. Therefore, you did not knowingly refrain from not stopping your car, and you p-d intended to
see to it that your car did not stop. Thus, you were not informational-passive nor motivational-passive
responsible for stopping the car, and you could have been! Therefore, your degree of praiseworthiness
might still be less than the one already described. This situation highlights that the present framework
allows the use of many combinations of modalities to describe nuances in responsibility and blame-
or-praise assignment (see the discussion after the presentation of modes of passive responsibility on
p. 287).
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index you were compelled to pass the ball on both deontic accounts, and you knowingly
but unintentionally passed the ball. Since it was possible for you to knowingly not
pass the ball, then you are causal-active and informational-active responsible for
passing, but you are not motivational-active responsible. Thus, and as mentioned
before, in this case your teammates would not likely praise your action very much.
Still, this mode generally receives more praise than the one labelled LowA, since
to knowingly comply with an obligation typically involves certain skills; in other
words, the agent did not comply by mere chance.

For the praiseworthy mode tagged HighA, formula
(
Kα[α]φ ∧^Kα[α]¬φ

)
∧

Iα[α]φ holds at ⟨m, h⟩. Thus, α was causal-active, informational-active, and
motivational-active responsible for φ at ⟨m, h⟩. In other words, α knowingly
and intentionally brought about φ, while it was possible for α to knowingly pre-
vent φ. To illustrate why this mode gets the highest degree of praiseworthiness,
consider a different version of the basketball example above, where the strongest
player in the team is you. Here, you knowingly and intentionally take the last
shot—as part of a play that you and your teammates ran almost to perfection, just
as designed by the head coach. If b stands for the proposition ‘the ball is shot,’
then formulas ⊙youb ∧ ⊙Syoub, Iyou[you]b, and Kyou[you]b hold: at the implied actual
index you knowingly and intentionally fulfilled your obligation of executing the last play
to the best of your ability. Regardless of whether the shot goes in, it is likely that
everyone will highly praise you for your action.

As for degrees of blameworthiness, LowA applies to the mode characterized
with

(
[α]¬φ ∧^[α]φ

)
∧
(
¬Kα[α]¬φ ∨ ¬^Kα[α]φ

)
∧
(
¬Iα[α]¬φ ∨ ¬^Kα[α]φ

)
. If this

formula holds at ⟨m, h⟩, then α was causal-active responsible for ¬φ at ⟨m, h⟩, but
α was not informational-active nor motivational-active responsible. To illustrate
why this mode gets a low degree of blameworthiness, consider the version of
the driver example that was mentioned on p. 269. You are driving your car,
approaching a crossing walk where a traffic officer is holding up a stop-sign so
that a group of school children can cross the road. Thus, formula ⊙yous ∧ ⊙Syous
holds, where s stands for the proposition ‘your car is stopped.’ This time, a
terrorist had previously hacked the wiring and the computer of your car. Right
before you reached the crossing walk, the terrorist—who knew that you were
approaching the crossing walk because he had also installed camera on the front
hood—remotely changed the settings of your car so that the brake pedal turned
into the accelerator and vice versa. At the crossing walk, you stepped on the
brake pedal to stop the car, but the car sped up, and a tragedy occurred. Thus,
formula [you]¬s∧¬Kyou[you]¬s∧¬Iyou[you]¬s holds: at the implied actual index you
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kept on driving; however, you did not knowingly nor intentionally keep on driving.20 In
this case, if you are taken to court for your involvement in the tragedy, and if your
lawyers demonstrate that you are neither informational-active nor motivational-
active responsible for keeping on driving, then it is likely that the jury will either
absolve you or blame you very mildly, because the really blameworthy agent is
the terrorist.

For the blameworthy mode tagged MiddleA, formula [α]¬φ ∧ ¬Kα[α]¬φ ∧(
Iα[α]¬φ ∧^Kα[α]φ

)
holds at ⟨m, h⟩. Thus, αwas causal-active and informational-

active responsible for ¬φ at ⟨m, h⟩, but αwas not motivational-active responsible.
To illustrate why this mode gets a middle degree of blameworthiness, consider
another version of the driver example (mentioned on p. 269). In this case, there
is a terrorist inside your car, holding your family at gun point. This terrorist has
threatened to shoot your family if you do not keep on driving. Making a difficult
decision, you keep on driving. Thus, formula [you]¬s∧Kyou[you]¬s∧¬Iyou[you]¬s
holds: at the implied actual index you knowingly but unintentionally kept on driving.
Thus, if you are taken to court, and if your lawyers demonstrate that you are not
motivational-active responsible for keeping on driving, it is likely that the jury
will either absolve you or blame you very mildly, since the blameworthy agent is
the terrorist. Still, this mode generally receives more blame than the one labelled
LowA, since it implies that the agent knowingly brought about the undesirable
state of affairs.

For the blameworthy mode tagged HighA, formula
(
Kα[α]¬φ ∧^Kα[α]φ

)
∧

Iα[α]¬φ holds at ⟨m, h⟩. Thus, α was causal-active, informational-active, and
motivational-active responsible for ¬φ at ⟨m, h⟩. To illustrate why this mode
gets the highest degree of blameworthiness, consider the first driver example in
Section 6.2 (p. 269), itself based on Chapter 5’s Example 5.6 (see Figure 5.1 on
p. 231). Here, you approach the crossing walk in your car, and you knowingly
and intentionally keep on driving while a traffic officer is holding a stop sign so
that school children can cross the road. Thus, formula Kyou[you]¬s ∧ Iyou[you]¬s
holds: at the implied actual index you knowingly and intentionally kept on driving. In
this case, it would be difficult to say that you are not highly blameworthy for
whatever terrible outcome that occurs.

20Recall that the subjective version of Kant’s directive of ought implies can yields that it must be
possible for you to knowingly stop your car (formula ^Kyou[you]s must hold). As before, I take it that
it is possible for you to knowingly stop the car, since you can use the hand-brake instead of the brake
pedal.
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Observe that Tables 6.2 and 6.3 concern the active form of responsibility. As for
passive responsibility, the basic modes of α’s passive responsibility with respect
to φ are included in Tables 6.4 and 6.5, where the latter is the transcription of the
former in terms of formulas of LR.

Deg.
Att.

Praiseworthiness Blameworthiness

LowP

Causal-passive for φ ✓
Infor.-passive for φ ✗

Motiv.-passive for φ ✗

Causal-passive for ¬φ ✓
Infor.-passive for ¬φ ✗

Motiv.-passive for ¬φ ✗

MiddleP

Causal-passive for φ ✓
Infor.-passive for φ ✓
Motiv.-passive for φ ✗

Causal-passive for ¬φ ✓
Infor.-passive for ¬φ ✓
Motiv.-passive for ¬φ ✗

HighP

Causal-passive for φ ✓
Infor.-passive for φ ✓
Motiv.-passive for φ ✓

Causal-passive for ¬φ ✓
Infor.-passive for ¬φ ✓
Motiv.-passive for ¬φ ✓

Table 6.4: Modes of α’s passive responsibility with respect to φ.

Deg.
Att.

Praiseworthiness Blameworthiness

LowP

(
φ ∧^[α]¬φ

)
∧(

¬Kα¬[α]¬φ ∨ ¬^Kα[α]¬φ
)
∧(

¬Iα¬[α]¬φ ∨ ¬^Kα[α]¬φ
)

(
¬φ ∧^[α]φ

)
∧(

¬Kα¬[α]φ ∨ ¬^Kα[α]φ
)
∧(

¬Iα¬[α]φ ∨ ¬^Kα[α]φ
)

MiddleP

φ∧(
Kα¬[α]¬φ ∧^Kα[α]¬φ

)
∧

¬Iα¬[α]¬φ

¬φ∧(
Kα¬[α]φ ∧^Kα[α]φ

)
∧

¬Iα¬[α]φ

HighestP

φ∧(
Kα¬[α]¬φ ∧^Kα[α]¬φ

)
∧

Iα¬[α]¬φ

¬φ∧(
Kα¬[α]φ ∧^Kα[α]φ

)
∧

Iα¬[α]φ

Table 6.5: Modes of α’s passive responsibility with respect to φ.

An interesting question to address, then, is how the degrees of praiseworthi-
ness/blameworthiness for the modes of passive responsibility compare with those
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for active responsibility. According to Observation 6.4 2, the active form implies
the passive form in all categories. Thus, it is reasonable to assume that, for any
tag T ∈ {Low, Middle, High}, the basic mode tagged TA comes with a bit more
praiseworthiness/blameworthiness than the mode tagged TP.

Furthermore, the active/passive dichotomy makes the gradation of praisewor-
thiness/blameworthiness still more complex. To clarify, consider Table 6.4. For any
basic mode X in such a table, consider all the sub-modes that result from substitut-
ing the term ‘active’ for the term ‘passive’ in some check-marked category in X. It
is reasonable to assume that the more categories are taken to be active, the higher
the degree of praiseworthiness/blameworthiness for the sub-mode should be.
However, it is relatively unclear how to compare the degrees for such sub-modes
with those of modes with tags involving more praiseworthiness/blameworthiness
than that of X. In particular, for tags T,S ∈ {Low, Middle, Highest}, it is unclear
how to compare TA and SP when S is higher in praiseworthiness/blameworthiness
than T. To illustrate this conundrum, consider Figure 6.1.

H
H T
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Q

m1Choicem1
Nik

Choicem1
Dol

h8h7h6h5h4h3h2h1

10
w

00 010
w
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w

0 0

(b)

(a)

Figure 6.1: Matching kopecks pt. 2.

Figure 6.1 depicts another game that Nikolai and Dolokhov are playing at a
gambling house. Here, Nikolai is holding a kopeck in his hand, and at m1 he is faced
with four options: placing his kopeck on a table heads up (labelled by H), placing
his kopeck tails up (T), forfeiting the bet (F), or quitting the game and leaving
the gambling house (Q). At the same moment, Dolokhov must place his kopeck
on the table, either heads up (H) or tails up (T). No previous communication
between the two players is allowed so as to prevent them from aligning their
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choices beforehand. If Nikolai and Dolokhov both place their kopecks heads up
or both place their kopecks tails up, the house gives them 10 roubles; if Nikolai
forfeits the bet, the house also pays 10 roubles; finally, if Nikolai quits the game,
the house pays nothing.

Let us focus on Nikolai’s situation. Nikolai’s epistemic states at m1 are repre-
sented in the diagram with the indistinguishability relation given by dashed lines.
Thus, if w stands for the proposition ‘Nikolai and Dolokhov win,’ then formulas
⊙Nikw ∧ ⊙SNikw, ^KNik[Nik]w, ^KNik[Nik]¬w, and ^KNik¬[Nik]w all hold at every
index based on m1. Consider, then, the following two modes:

(a) Suppose that Nikolai p-d intended to win but he could not bring himself to
forfeit the bet, thinking that this would be a ‘cowardly’ option. Thus, he
chose to gamble and placed his kopeck heads up on the table, hoping to
win. This is modelled in the diagram with the p-d intention embodied by
the circle enclosing tag ‘(a).’ Suppose that they nonetheless lost. This means
that Dolokhov played tails, so that the actual index is ⟨m1, h5⟩. Observe, then,
that M, ⟨m1, h5⟩ |= ¬w ∧ INik¬[Nik]w ∧ KNik¬[Nik]w: at ⟨m1, h5⟩ Nikolai was
motivational-passive for losing. According to Tables 6.4 and 6.5, the mode of
Nikolai’s responsibility with respect to w at ⟨m1, h5⟩ is tagged blameworthy
HighP.

(b) Suppose that Nikolai p-d intended to win by forfeiting the bet and that he
was forced by someone in the gambling house to quit the game. This is
modelled in the diagram with the p-d intention embodied by the ellipse
enclosing tag ‘(b).’ Without loss of generality, then, assume that the actual
index is ⟨m1, h1⟩, where M, ⟨m1, h1⟩ |= KNik[Nik]¬w ∧ INik[Nik]w: at ⟨m1, h1⟩

Nikolai is informational-active responsible for losing, but he is not motivational-
passive responsible. According to Tables 6.2 and 6.3, the mode of Nikolai’s
responsibility with respect to w at ⟨m1, h1⟩ is tagged blameworthy MiddleA.

How should one compare the blameworthiness of the mode in case (a) with
that of the mode in case (b)? In (a) Nikolai knowingly and intentionally refrained
from winning, but he chose an action that could have led to winning. In contrast,
in (b) Nikolai knowingly—but unintentionally—lost, choosing an action for which
there was no possibility of winning. Thus, even if the tag for the mode in case (a)
implies that its blameworthiness is higher than that of the mode in case (b), some
people would definitely say otherwise. At this point, I shy away from settling this
dilemma, because such a thing lies beyond the scope of my discussion. However,
it is important to mention that IEAUST is flexible enough to include many nuances
in the gradation of praiseworthiness/blameworthiness, that can be set as the reader
sees fit.
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Along the same lines, observe that the validity of ⊙Sαφ → Kα□ ⊙Sα φ implies
that if deontic context ⊙αφ∧⊙Sαφ holds at ⟨m, h⟩ then at this index α knew ex ante
that it subjectively ought to have seen to it that φ.21 As such, it can be said that
α was conscious of its subjective obligation to bring about φ. In my view, this
implies that the obligation was all the more compelling. In contrast, it is neither
necessarily true that (a) at ⟨m, h⟩ α knew ex ante that it objectively ought to have
seen to it that φ nor necessarily true that (b) at ⟨m, h⟩ α knew ex interim about this
objective obligation. Indeed, formulas ¬□Kα⊙αφ and ¬Kα⊙αφ can hold at ⟨m, h⟩.
Therefore, for ψ ∈

{
□Kα ⊙α φ,Kα ⊙α φ

}
, the conjunctions

(
⊙αφ ∧ ⊙Sαφ

)
∧ ψ and(

⊙αφ ∧ ⊙Sαφ
)
∧¬ψ imply different sub-cases of the main deontic context⊙αφ∧⊙Sαφ,

which lead to more nuances in the gradation of modes of responsibility. In fact,
the same claim of existence of sub-cases applies to Levels 2–3 below, substituting(
⊙αφ ∧ ⊙Sαφ

)
for any of the deontic contexts of such levels.

Level 2: when deontic context ¬ ⊙α φ ∧ ⊙Sαφ holds at ⟨m, h⟩.
Observe that M, ⟨m, h⟩ |= ¬ ⊙α φ ∧ ⊙Sαφ iff at ⟨m, h⟩ α subjectively ought to

have seen to it that φ, but α did not objectively ought to have seen to it that
φ. Now, ¬ ⊙α φ holds at ⟨m, h⟩ iff φ is not an effect of all objectively optimal
actions—for α—at m. More precisely, there must exist L ∈ Optimalm

α such that
L ⊈ |φ|m.22 By the semantics for the two deontic modalities (Definition 6.3), this
means that L is just as good, in the objective dominance ordering⪯, as every action
in SOptimalm

α—where, for all L′ in SOptimalm
α , [L′]m′

α ⊆ |φ|
m for every m′ such

that m ∼α m′. The existence of objectively optimal actions that do not support φ
justifies the claims that—generally speaking—bringing about φ in this level comes
with less praiseworthiness than in Level 1 and refraining from bringing about φ
in this level comes with less blameworthiness than in Level 1.

To illustrate the present deontic context, consider another example of Nikolai
and Dolokhov. This time, the set-up is the one from Chapter 4’s Figure 4.7
(p. 167): if Nikolai bets and chooses correctly, or if he forfeits the bet, Nikolai
and Dolokhov win 10 roubles. If he chooses incorrectly, they win nothing. Ob-
serve that SOptimalm2

Nik = {N3}, and SOptimalm3
Nik = {N6}. Recall that f stands

for the proposition ‘Nikolai has forfeited the bet.’ According to Definition 6.3,
M, ⟨mi, h⟩ |= ¬⊙Nik f∧⊙SNik f for all i ∈ {2, 3} and h ∈ Hmi : at all indices based on m2 and
m3 Nikolai did not objectively ought to have forfeited the bet, but he subjectively ought to

21This chapter adopts the same conventions, with respect to the topics that are relevant in EST
(knowingly doing, epistemic sense of ability, knowledge across the stages of information disclosure, and unifor-
mity), as Chapter 4 (see Subsection 4.2.2). For a discussion on the validity of ⊙Sαφ → Kα□ ⊙Sα φ, see
item 11 in the list of logic-based properties for Chapter 4’s EAUST (Subsection 4.5.1, p. 175).

22Recall from Definition 6.3 that I write |φ|m to refer to the set
{
h ∈ Hm;M, ⟨m, h⟩ |= φ

}
.
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have forfeited the bet. Observe that at m2 there is an objectively optimal action—for
Nikolai—that does not imply forfeiting. Namely, the action N1 of choosing heads
is such that N1 ∈ Optimalm2

Nik and such that N1 ⊈
∣∣∣ f ∣∣∣m2 . Similarly, at m3 the action

N5 of choosing tails is such that N5 ∈ Optimalm3
Nik and such that N5 ⊈

∣∣∣ f ∣∣∣m3 .
The basic modes of responsibility associated with deontic context ¬ ⊙α φ ∧

⊙
S
αφ are also given in Tables 6.2, 6.3, 6.4, and 6.5, with the same degrees of

praiseworthiness/blameworthiness as displayed there, but relative to the present
deontic context. When comparing this level with Level 1, one must be careful. It is
not that the mode with lowest praiseworthiness, resp. blameworthiness, of Level
1 has higher praiseworthiness, resp. blameworthiness, than the mode tagged
‘highest’ in Level 2. Rather, for a fixed conjunction of formulas characterizing
a combination of sub-categories of α’s responsibility with respect to φ at ⟨m, h⟩,
the mode that results from coupling this conjunction with the deontic context
of Level 1 gets a higher degree of praiseworthiness, resp. blameworthiness, than
the mode that results from coupling this conjunction with the deontic context of
Level 2. In other words, suppose that two modes x and y, of α’s responsibility
with respect to φ at ⟨m, h⟩, share constituents (1) and (2) (where these constituents
refer to the sub-categories of responsibility according to the active and passive
forms). If constituent (3) of mode x is the deontic context of Level 1 and constituent
(3) of mode y is the deontic context of Level 2, then x gets a higher degree of
praiseworthiness, resp. blameworthiness, than y. For instance, suppose that α
was informational-active and motivational-active responsible forφ at ⟨m, h⟩. Then
the praise that α deserves if the deontic context is ⊙αφ ∧ ⊙Sαφ should be higher
than the one deserved if the deontic context were ¬ ⊙α φ ∧ ⊙Sαφ. It is important to
emphasize that this is the criterion of comparison between all four levels.

The intuition that this level involves less blameworthiness than Level 1—for a
fixed responsibility-related formula—can be illustrated in terms of α’s excusabil-
ity: if α engages in a blameworthy mode in this level, then α can be excused for
not having brought about φ if one claims that ¬[α]φ resulted from having chosen
one of the objectively optimal actions that did not enforce φ. This would be a
rather weak excuse, though, because the properties of subjective ought-to-do’s
imply that (a) it was possible for α to have knowingly brought about φ, and that
(b) α knew that it subjectively ought to have seen to it that φ (recall that formulas
⊙
S
αφ → ^Kα[α]φ and ⊙Sαφ → Kα□ ⊙Sα φ are valid). For instance, suppose that in

the example above Nikolai chooses to bet heads instead of forfeiting the bet, and
that he loses. Therefore, in Figure 4.7 Nikolai chose action N4, and the actual index
is ⟨m3, h4⟩. In principle, Nikolai can be excused for not forfeiting by claiming that
his choice (N4) was, in his view, epistemically equivalent to an objectively optimal
action where to bet heads led to his winning (N1). Since he knew that by forfeiting
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the bet he would have knowingly won, and since he knew that it was possible
for him to knowingly forfeit, then, for such an excuse to actually work, he would
probably have to justify it on the grounds of some personal intention, belief, or
long-term strategy, for instance.

Similar to what was said for the deontic context of the previous level, for ψ ∈{
□Kα¬ ⊙α φ,Kα¬ ⊙α φ

}
, the conjunctions

(
¬ ⊙α φ ∧ ⊙Sαφ

)
∧ψ and

(
¬ ⊙α φ ∧ ⊙Sαφ

)
∧

¬ψ present sub-cases of the main deontic context ¬ ⊙α φ ∧ ⊙Sαφ.

Level 3: when deontic context ⊙αφ ∧ ¬ ⊙Sα φ holds at ⟨m, h⟩.
The basic modes associated with the deontic context of this level are once again

displayed in Tables 6.2, 6.3, 6.4, and 6.5.
Observe that M, ⟨m, h⟩ |= ⊙αφ ∧ ¬ ⊙Sα φ iff at ⟨m, h⟩ α objectively ought to

have seen to it that φ, but α did not subjectively ought to have seen to it that φ.
Therefore, there exists L ∈ SOptimalm

α such that [L]m′
α ⊈ |φ|

m for some m′ such
that m ∼α m′. This means that L is just as good, in the subjective dominance
ordering ⪯s, as every action in Optimalm

α—where, for all L′ ∈ Optimalm
α , L′ ⊆ |φ|m.

An example of this situation can be found in the Miners Paradox discussed at the
beginning of Chapter 4 (p. 139). To clarify, consider the kiobt-model depicted in
Figure 6.2.
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Figure 6.2: Miners paradox.

In Figure 6.2, L1 represents the choice, available to the miners, of going into
shaft A, and L2 represents the choice of going into shaft B; R1 and R4 represent
the choices, available to the rescuers, of blocking shaft A; R2 and R5 represent the
choices of blocking shaft B; and R3 and R6 represent the choices of refraining from
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blocking any shaft. Observe that Optimalm2
Res = {R1}, that Optimalm3

Res = {R5}, that
SOptimalm2

Res = {R1,R2,R3}, and that SOptimalm3
Res = {R4,R5,R6}. Let A stand for

the proposition ‘the miners are in shaft A,’ B stand for ‘the miners are in shaft B,’
bA stand for ‘shaft A is blocked,’ bB stand for ‘shaft B is blocked,’ and b stand for
‘a shaft is blocked.’ Therefore, ⊙Resb ∧ ¬ ⊙SRes b holds at every index based on m2

and m3: at these indices the rescuers objectively ought to have blocked some shaft, but
they did not subjectively ought to have blocked some shaft.

In my view, subjective ought-to-do’s are very compelling in kiobt-models. The
reason is that they concern states of affairs that an agent can knowingly enforce
and such that the agent knows that they should be enforced (see Chapter 4’s
Subsection 4.5.1). Therefore, for deontic context ⊙αφ ∧ ¬ ⊙Sα φ, the existence
of subjectively optimal actions for which not all epistemic clusters support φ
justifies the claims that—generally speaking—bringing about φ in this level comes
with less praiseworthiness than in Level 2 and refraining from bringing about φ
in this level comes with less blameworthiness than in Level 2. To illustrate these
claims, suppose that the miners were trapped in shaft A in the example above
(Figure 6.2), and that the rescuers followed their objective sense of ought-to-do
and knowingly and intentionally blocked a shaft, which only by luck turned out
to be the correct one (shaft A). This means that the actual index is ⟨m2, h1⟩, where
M, ⟨m2, h1⟩ |= KRes[Res]bA ∧ IRes[Res]bA. Regardless of the fact that the rescuers
engaged in a praiseworthy mode of responsibility with respect to proposition b
at ⟨m2, h1⟩, they took a risky choice (R1) that disagrees with a subjectively optimal
action (R3) over b. Thus, the level of praiseworthiness should be lower than the
one in a hypothetical case where to block a shaft were also a subjective ought-
to-do. In contrast, suppose that the rescuers decided to play it safe and thus
knowingly and intentionally refrained from blocking any shaft (choice R3). One
miner died because of this, and the rescuers can be excused for not saving this
miner if they claim that they were not subjectively obligated to do so; they chose
a subjectively optimal action that led to saving 9 miners. Therefore, the level of
blameworthiness should be lower than the one in a hypothetical case where to
block a shaft were also a subjective ought-to-do.23

The example in the previous paragraph highlights one of the problems with
objective ought-to-do’s that were extensively discussed in Chapter 4, where these
problems revolve around the lack of a relation between an agent’s objective obli-

23Recall that the criterion of comparison between levels, discussed in Level 1, is that, for a fixed
conjunction of formulas characterizing a combination of sub-categories of α’s responsibility with
respect to φ at ⟨m, h⟩, the mode that results from coupling this conjunction with the deontic context
of Level x (with x in 1–3) gets a higher degree of praiseworthiness, resp. blameworthiness, than the
mode that results from coupling this conjunction with the deontic context of Level (x+1).
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gations and its knowledge. Notice that the rescuers objectively ought to have
taken a gamble, which, given the risk of failure, is definitely not an intuitive de-
cision to have made. The prevalence of such problems supports my view that
subjective ought-to-do’s are more compelling than objective ones.

Once again, and similar to what was said for the deontic context of previous
levels, for ψ ∈

{
□Kα¬ ⊙α φ,Kα¬ ⊙α φ

}
, the conjunctions

(
⊙αφ ∧ ¬ ⊙Sα φ

)
∧ ψ and(

⊙αφ ∧ ¬ ⊙Sα φ
)
∧¬ψ present sub-cases of the main deontic context⊙αφ∧¬⊙Sα φ.24

Furthermore, for this deontic context, it might be the case that it was not even
possible for α to have knowingly seen to it that φ—¬^Kα[α]φ might hold at
⟨m, h⟩, because ⊙αφ → ^Kα[α]φ is not valid. For situations in which ¬^Kα[α]φ
holds at ⟨m, h⟩, if α brought about φ, then it must have been unknowingly. For
instance, suppose that ¬^Kα[α]φ holds and that α brought about φ. Thus, α
was causal-active responsible for φ at ⟨m, h⟩. The mode of α’s responsibility with
respect to φ at ⟨m, h⟩ is then tagged praiseworthy LowA. However, since it was
impossible for α to bring about φ knowingly, α could in principle receive a bit
more praise than the one it would receive in a hypothetical case where ^Kα[α]φ
were to also hold. Thus, for ψ = ^Kα[α]φ, the conjunctions

(
⊙αφ ∧ ¬ ⊙Sα φ

)
∧ ψ

and
(
⊙αφ ∧ ¬ ⊙Sα φ

)
∧ ¬ψ present further sub-cases of the main deontic context.

Level 4: when deontic context ¬ ⊙α φ ∧ ¬ ⊙Sα φ holds at ⟨m, h⟩.
Unless α either objectively or subjectively ought have seen to it that ¬φ at

⟨m, h⟩ (which would imply that a deontic context of the previous levels holds with
respect to¬φ), then in this level neither bringing aboutφnor refraining from doing
so elicits any interest in terms of blame-or-praise assignment. Thus, the modes
of α’s responsibility with respect to φ at ⟨m, h⟩ whose constituent (3) is deontic
context ¬⊙αφ∧¬⊙Sα φ get a neutral degree of praiseworthiness/blameworthiness,
provided that ¬⊙α¬φ∧¬⊙Sα ¬φ also holds. This means that such modes are seen
as calling for neither praise nor blame. To illustrate this intuition, think of φ as
a deontically inconsequential state of affairs in the environment, such as the one
mentioned in Section 6.2 (p. 268): causing a particular footprint, with no harm or
foul for anyone, on a road that is busy on a daily basis. It is unlikely that a person
should be blamed or praised for having caused the footprint, because both to do
so and to prevent oneself from doing so were not obligations of any kind.

This concludes my discussion on the characterization of modes of responsibil-
ity in terms of IEAUST formulas.

24Observe that, when deontic context ⊙αφ ∧ ¬ ⊙Sα φ holds at ⟨m, h⟩, then at ⟨m, h⟩ α knew ex ante
that it was not subjectively obligated to see to it that φ: formula ¬ ⊙Sα φ → □Kα¬ ⊙Sα φ is valid (see
item 11 in the list of EAUST’s logic-based properties, Chapter 4, Subsection 4.5.1, p. 175).
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6.4 Logic-Based Properties & Axiomatization

The logic-based properties of IEAUST are obtained by grouping EAUST’s prop-
erties (Chapter 4’s Subsection 4.5.1) and IEST’s properties (Chapter 5’s Subsec-
tion 5.4.1). Just as done in all the previous chapters, in this section I introduce
proof systems. More precisely, I present two systems:

• A sound system for IEAUST, for which achieving a completeness result is
still an open problem.

• A sound and complete system for a technical extension of IEAUST that I
refer to as bi-valued IEAUST. Bi-valued IEAUST was devised with the aim
of having a completeness result for a logic that would be reasonably similar
to the one presented in Section 6.3.

As for the first bullet point, a proof system for IEAUST is defined as follows:

Definition 6.5 (Proof system for IEAUST). Let ΛR be the proof system defined by the
following axioms and rules of inference:

• (Axioms) All classical tautologies from propositional logic; the S5 schemata for □,
[α], and Kα; the KD schemata for Iα; and the schemata given in Table 6.6.

Basic-stit-theory schemata:
□φ→ [α]φ (SET)
For distinct α1, . . . , αm,∧
1≤k≤m

^[αi]φi → ^

( ∧
1≤k≤m

[αi]φi

)
(IA)

Schemata for knowledge:
Kαφ→ [α]φ (OAC)
^Kαφ→ Kα^φ (Uni f −H)

Schemata for objective ought-to-do’s:
⊙α(φ→ ψ)→ (⊙αφ→ ⊙αψ) (A1)
□φ→ ⊙αφ (A2)
⊙αφ→ □ ⊙α φ (A3)
⊙αφ→ ⊙α([α]φ) (A4)
⊙αφ→ ^[α]φ (Oic)

Schemata for subjective ought-to-do’s:
⊙
S

α (φ→ ψ)→ (⊙Sαφ→ ⊙Sαψ) (A5)
⊙
S

αφ→ ⊙
S

α (Kαφ) (A6)
Kα□φ→ ⊙Sαφ (SuN)
⊙
S

αφ→ ^Kαφ (s.Oic)
⊙
S

αφ→ Kα□ ⊙Sα φ (s.Cl)
⊙
S

αφ→ ¬⊙α ¬φ (ConSO)
Schemata for intentionality:
□Kαφ→ Iαφ (InN)
Iαφ→ □KαIαφ (KI)

Table 6.6: Axioms for the modalities’ interactions.

• (Rules of inference) Modus Ponens, Substitution, and Necessitation for all modal
operators.
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The reader will notice that, with the exception of (ConSO), all the schemata in
Table 6.6 have already been extensively discussed in the previous chapters. As for
(ConSO), it characterizes syntactically that subjective and objective ought-to-do’s
are consistent, something that was discussed in item 13 in the list of EAUST’s
logic-based properties (Chapter 4, Subsection 4.5, p. 175). An important result for
ΛR is the following proposition, whose proof is relegated to Appendix E.

Proposition 6.6 (Soundness of ΛR). The proof system ΛR is sound with respect to the
class of kiobt-models.

Unfortunately, the question of whether ΛR is complete with respect to the
class of kiobt-models is still an open problem. Now, in the search for a complete
proof system for IEAUST, and following a strategy found in my joint works with
Jan Broersen (Abarca & Broersen, 2019, 2021a), I tried to first prove completeness
of ΛR with respect to a class of more general models, that I refer to as bi-valued
kiobt-models (Definition 6.7 below). This strategy led to the need of dropping
one of the schemata in ΛR: (ConSO). More precisely, if Λ′R is obtained from
ΛR by eliminating (ConSO) in Definition 6.5, then Λ′R turns out to be sound and
complete with respect to the class of bi-valued kiobt-models. The formal statements
are included below.

Definition 6.7 (Bi-valued kiobt-frames & models). A tuple〈
M,⊏,Ags,Choice, {∼α}α∈Ags , τ,ValueO,ValueS

〉
is called a bi-valued kiobt-frame iff

• M,⊏,Ags,Choice, {∼α}α∈Ags, and τ are defined just as in Definition 6.2.

• ValueO and ValueS are functions that independently assign to each history h ∈ H
a real number.

A bi-valued kiobt-model M, then, results from adding a valuation function V to a
bi-valued kiobt-frame, whereV : P→ 2I(M×H) assigns to each atomic proposition of LR

a set of indices (recall that P is the set of propositions in LR).

The two value functions in bi-valued kiobt-frames allow us to redefine the
dominance orderings so that they are independent from one another, something
that proves useful in achieving a completeness result in the style of Abarca and
Broersen (2019). For α ∈ Ags and m ∈M, two general orderings ≤ and ≤s are first
defined on 2Hm : for X,Y ⊆ Hm, X ≤ Y, resp. X ≤s Y, iff ValueO(h) ≤ ValueO(h′),
resp. ValueS(h) ≤ ValueS(h′), for every h ∈ X and h′ ∈ Y. Then, for α ∈ Ags and
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m ∈M, an objective dominance ordering⪯ is now defined on Choicem
α by the rule:

L ⪯ L′ iff for every S ∈ Statem
α ,L ∩ S ≤ L′ ∩ S. In turn, for α ∈ Ags and m ∈ M, a

subjective dominance ordering ⪯s is now defined on Choicem
α by the rule: L ⪯s L′

iff for all m′ such that m ∼α m′ and each S ∈ Statem
α , [L]m′

α ∩ S ≤s [L′]m′
α ∩ S. With

these new notions, the sets Optimalm
α and SOptimalm

α are redefined accordingly,
and the evaluation rules for the formulas of LR (with respect to bi-valued kiobt-
models) are given just as in Definition 6.3. As mentioned before, I refer to the
resulting logic as bi-valued IEAUST. Bi-valued IEAUST, then, admits the following
metalogic result, whose proof is sketched in Appendix E.

Theorem 6.8 (Soundness & Completeness ofΛ′R). LetΛ′R be the proof system obtained
from ΛR by eliminating (ConSO) in Definition 6.5. Then Λ′R is sound and complete with
respect to the class of bi-valued kiobt-models.

6.5 Conclusion

I want to conclude this chapter with a discussion of three topics. First, I discuss
a possible extension of IEAUST with p-1 belief and with doxastic obligations.
Secondly, I present a proposal for formalizing the modes of mens rea. Finally, I ad-
vance some comments on group-related notions and on collective responsibility.

6.5.1 Extension with P-1 Belief & Doxastic Obligations

As mentioned frequently in this thesis, belief is an important epistemic component
of responsibility. In Chapter 4’s conclusion (Subsection 4.6.1), I extended epistemic
act-utilitarian stit theory (EAUST) with p-1 belief and with doxastic ought-to-
do’s. The idea was that agent α doxastically ought to have brought about φ iff
φ is an effect of α’s choices of action that maximize expected deontic utility (see
Definitions 4.32 and 4.33 on p. 183). It is clear that the doxastic dimension—with
the sense of ought-to-do that corresponds to it—only adds interesting nuances to
systematic blame-or-praise assignment.

For instance, suppose that in the Miners Paradox the rescuers thought that they
heard voices coming out of shaft A. In consequence, the probability assigned to
the miners’ being trapped in shaft A was much higher than the one assigned
to their being trapped in shaft B. Suppose further that, as a result of this, the
choice of blocking shaft A was the only one maximizing the rescuers’ expected
deontic utility. Thus, according to the semantics for doxastic ought-to-do’s on
p. 184, the rescuers were doxastically obligated to block shaft A. If bA stands for
the proposition ‘shaft A is blocked,’ then formula ⊙BResbA holds. Suppose, then,
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that the rescuers indeed block shaft A, and that this was a fatal mistake due to
the fact that the miners were actually trapped in shaft B. In this case, although 10
miners died, one could say that the degree of blameworthiness of the rescuers is
less than the one in a hypothetical case where to block a shaft were not a doxastic
ought-to-do (for which formula ¬ ⊙BRes bA would hold).

Furthermore, an important variation of the category of informational respon-
sibility results from using a belief modality Bαφ in place of Kαφ. Certainly, there
are situations where one would claim that agent α was informational-active re-
sponsible for φ iff, for instance, [α]φ ∧ Bα[α]φ ∧ Bα^[α]¬φ holds, because this
formula means that α saw to it that φ, α believed that it saw to it that φ, and α be-
lieved that it was possible to prevent φ. Similarly, one could very well claim that α
was informational-passive responsible for φ iff φ ∧ Bα¬[α]¬φ ∧ Bα^[α]¬φ holds,
because this formula means that α refrained from preventing φ, α believed that it
refrained from preventing φ, and α believed that it was possible to prevent φ.

Therefore, extending IEAUST with the p-1 belief modality Bαφ and with ⊙Bαφ
leads to a framework that accommodates a wide variety of new modes of responsi-
bility. To be precise, letLR’ be obtained by extendingLR with the aforementioned
doxastic modalities, and letM be a finite kiobt-model to which a set {µα}α∈Ags of
probability functions is added. For α ∈ Ags, let µα underlie the semantics for Bαφ
according to the semantics for p-1 belief on p. 112, and let the semantics for ⊙Bαφ
be given just as on p. 184. Then, for every φ of L′R, α ∈ Ags, there are now 8
main possible deontic contexts, according to whether ∆φ or ¬∆φ holds at ⟨m, h⟩,
where ∆ ∈

{
⊙α,⊙Sα ,⊙

B
α

}
. Furthermore, informational responsibility now includes

a new sub-category, where Bα is used instead of Kα in Table 6.1. To illustrate
this extension, let me formalize the aforementioned example based on the Miners
Paradox, where the rescuers assigned a much higher probability to the miners’
being trapped in shaft A than the one assigned to their being trapped in shaft B.
Consider Figure 6.3 below, which expands Figure 6.2.

Since the rescuers heavily lean toward believing that the miners are trapped
in shaft A, let µRes be such that (a) µRes ({⟨m2, h⟩} | πRes [⟨m2, h⟩]) = .91 for ev-
ery h ∈ Hm2 , and (b) µRes ({⟨m3, h⟩} | πRes [⟨m3, h⟩]) = .09 for every h ∈ Hm3 . As
such, EU⟨m2,h⟩

Res (R1) = 9.1 = EU⟨m3,h′⟩
Res (R4), EU⟨m2,h⟩

Res (R2) = .9 = EU⟨m3,h′⟩
Res (R5), and

EU⟨m2,h⟩
Res (R3) = 9 = EU⟨m3,h′⟩

Res (R6) for every h ∈ Hm2 and h′ ∈ Hm3 . This implies that
EU⟨m2,h⟩

Res = {R1} for every h ∈ Hm2 , and that EU⟨m3,h′⟩
Res = {R4} for every h′ ∈ Hm3 . As

for the other deontic modalities, observe that Optimalm2
Res = {R1}, that Optimalm3

Res =

{R5}, that SOptimalm2
Res = {R1,R2,R3}, and that SOptimalm3

Res = {R4,R5,R6}.

Just as in Figure 6.2, in Figure 6.3 bA stands for ‘shaft A is blocked,’ bB stands for
‘shaft B is blocked,’ and b stands for ‘a shaft is blocked.’ Therefore, formulas⊙Resb,
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Figure 6.3: Miners paradox with doxastic notions.

¬⊙
S

Resb,⊙BResbA, and⊙BResb hold at every index based on m2 and m3: at these indices the
rescuers objectively ought to have blocked some shaft, doxastically ought to have blocked
shaft A, and did not subjectively ought to have blocked some shaft. Since blocking shaft A
implies blocking some shaft (M |= bA → b), thenM, ⟨mi, h⟩ |= ⊙Resb∧¬⊙SRes b∧⊙BResb
for all i ∈ {2, 3} and h ∈ Hmi : at all indices based on m2 and m3 the rescuers objectively
and doxastically ought to have blocked a shaft, but they were not subjectively obligated to
do so.

Thus, this is an example where the deontic context is of the form ⊙αφ ∧ ¬ ⊙Sα
φ∧⊙Bαφ.25 The modes of responsibility associated with such a context, then, could
in principle be obtained by extending Tables 6.2 and 6.3, resp. Tables 6.4 and 6.5,
with modes for doxastic-informational-active responsibility (characterized with
[α]φ∧ Bα[α]φ∧ Bα^[α]¬φ), resp. with modes for doxastic-informational-passive
responsibility (characterized with φ ∧ Bα¬[α]¬φ ∧ Bα^[α]¬φ).

Although the extension of IEAUST with p-1 belief and with doxastic ought-
to-do’s has already been presented in my joint work with Jan Broersen (Abarca &
Broersen, 2022), a full-fledged exploration of the logic in the context of responsi-
bility attribution—as well as an exploration of its metalogic results—remains to
be done.

25Recall from Footnote 31 (p. 186) that subjective ought-to-do’s are not necessarily consistent
with doxastic ones, something that highlights the discrepancy between the principle of subjective
dominance and the principle of maximization of expected deontic utility. Thus, the incorporation of
p-1 belief and doxastic ought-to-do’s into IEAUST opens up many possibilities for a complex analysis
of deontic contexts and of their associated levels of praiseworthiness/blameworthiness.
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6.5.2 Formalizing the Modes of Mens Rea

Recall that Broersen’s (2011a) initial motivation for categorizing the notion of
responsibility was mens rea. As it turns out, the ideas behind Subsection 6.3.3’s
stit-theoretic formalization of modes of responsibility can be used to also formalize
the modes of mens rea that were introduced on p. 266.

Suppose that φ is of the form ¬ψ for a formula ψ that stands for an ille-
gal outcome, or a criminal offense, at index ⟨m, h⟩. Thus, the deontic context
that holds at ⟨m, h⟩ will most likely be included in one of Levels 1–3. In other
words,M, ⟨m, h⟩ |= ⊙αφ ∨ ⊙Sαφ. For any of the implied deontic contexts, one can
characterize the mens rea mode purposefully, for criminal agent α, with formula
□Kα

(
⊙αφ ∨ ⊙Sαφ

)
∧

(
Kα[α]¬φ ∧ Iα[α]¬φ

)
. This formula holds at ⟨m, h⟩ iff at this

index (a) α knew ex ante that to see to it that ¬φ was prohibited on some deontic
account, and (b) provided that ^Kα[α]φ also holds at the index, α was causal-
active, informational-active, and motivational-active responsible for ¬φ at ⟨m, h⟩.
Thus, the mens rea mode purposefully is a mode of α’s responsibility that gets a
high degree of blameworthiness (with respect to the deontic context at hand).

Similarly, one can characterize the mens rea mode knowingly with formula
□Kα

(
⊙αφ ∨ ⊙Sαφ

)
∧ Kα[α]¬φ. This formula holds at ⟨m, h⟩ iff at this index (a) α

knew ex ante that to see to it that ¬φwas prohibited on some deontic account, and
(b) provided that^Kα[α]φ∧¬Iα¬[α]φ also holds at the index, αwas causal-active,
informational-active, and not motivational-passive for ¬φ at the index. Thus, this
version of the mens rea mode knowingly—where there is a complete lack of intent—
is a mode of α’s responsibility that gets a middle degree of blameworthiness (with
respect to the deontic context at hand).

As for the mens rea mode recklessly, one can use an extension of IEAUST with
belief, just as the one presented in the previous subsection, to formalize it. To
clarify, formula □Bα

(
⊙αφ ∨ ⊙Sαφ

)
∧ [α]θ ∧ □

(
[α]θ→ ¬φ

)
∧ Bα^

(
[α]θ→ ¬φ

)
is

a good candidate for characterizing the mode recklessly. This formula holds at
⟨m, h⟩ iff at this index (a) α believed—regardless of anyone’s choice—that to see to
it that ¬φ was prohibited on some deontic account, (b) α causally brought about
θ such that it was settled that ¬φ follows from α’s seeing to it that θ, and (c) α
believed that it was possible that its bringing about θ could have implied ¬φ. In
this case, α was causal-active responsible for θ at ⟨m, h⟩. The validity of schema
(SET) and of schema (K) for [α] yields that α was also causal-active responsible
for ¬φ at ⟨m, h⟩. Provided that ^Kα[α]φ ∧ ¬Iα¬[α]φ ∧ ¬Kα¬[α]φ also holds at
the index, α was neither informational-passive nor motivational-passive for ¬φ.
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Thus, this version of the mens rea mode recklessly—where there is a complete lack
of intent and of knowledge—is a mode of α’s responsibility that gets a low degree
of blameworthiness (with respect to the deontic context at hand).

As for the mens rea mode negligently, formula □Kβ
(
⊙αφ ∨ ⊙Sαφ

)
∧ [α]θ ∧

□Kβ
(
[α]θ→ ¬φ

)
, where β represents a ‘reasonable agent,’ is a good candidate

for characterizing it. This formula holds at ⟨m, h⟩ iff at this index (a) a reasonable
agent β would have known ex ante that ¬φ was prohibited on some deontic ac-
count, (b) α causally brought about θ such that ¬φ follows from α’s seeing to it
that θ, and (c) a reasonable agent β would have known ex ante about such an im-
plication. Just as for the mode recklessly, here αwas causal-active responsible for θ
and for ¬φ at ⟨m, h⟩. Provided that ^Kα[α]φ∧¬Iα¬[α]φ∧¬Kα¬[α]φ also holds at
the index, α was neither informational-passive nor motivational-passive for ¬φ.
Thus, this version of the mens rea mode negligently—where again there is a com-
plete lack of intent and of knowledge—also gets a low degree of blameworthiness
(with respect to the deontic context at hand).

Strict liability offenses are charged and tried without appealing to any mens rea
mental state. Typically, offenses of this kind are divided in two main categories
(see, for instance, Green, 2005; Larkin JR, 2014): (1) minor infractions (such as
speeding, overtime parking, or not signaling for a turn), for which the justification
of reaching verdicts without requiring any proof of mens rea is made on the
grounds of regulatory expediency; and (2) serious crimes that pose a danger to
society (such as statutory rape or felony murder), for which conviction without
any proof of mens rea is justified on the grounds of maximizing the deterrent effect
of the penalty. For both categories, and if φ is of the form ¬ψ for a strict liability
offense ψ, one can characterize the mode strict liability—for criminal agent α—
using α’s causal-active responsibility for ¬φ (ψ). In other words, against a deontic
context that implies that ⊙αφ ∨ ⊙Sαφ holds, α’s strict liability for having seen to it
that ¬φ can be characterized with formula [α]¬φ ∧^[α]φ.

6.5.3 Collective Responsibility

As mentioned in Subsection 4.6.2 of Chapter 4’s conclusion, collective responsibility
refers to a relation between a group of agents and some state of affairs such that the
group is responsible for the state of affairs iff the group’s degree of involvement
in the realization of that state warrants collective blame or collective praise.

Just as in the case of individual responsibility, one can both decompose and
classify collective responsibility. On the one hand, the list of components would
include group agency, group knowledge & belief, group intentions & plans, and
group obligations. On the other, the categories would once again be causal, infor-
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mational, and motivational responsibility. Coupled with different senses of group
obligations (objective, subjective, doxastic, etc.), these categories would lead to
diverse modes of collective responsibility, in a similar fashion to Section 6.3’s.

Adapting Section 6.3’s exploration to the case of groups is a feasible en-
deavor, because the literature includes many paradigms to formalize group
agency (Broersen, 2011a; Broersen et al., 2006b; Herzig & Schwarzentruber, 2008;
Lorini, 2013; Lorini et al., 2014; Payette, 2014; Schwarzentruber, 2012; Tamminga,
2013) (see also Chapter 2’s Subsection 2.4.1), group knowledge & belief (Barwise,
1989; Fagin et al., 1995; Gerbrandy, 1998; Halpern & Fagin, 1989), group intentions
& plans (Duijf, 2018, Chapters 2& 3;Bratman, 2013), and group obligations (Horty,
2001, Chapter 6;Tamminga, 2013) (see also Chapter 4’s Subsection 4.6.2).

For instance, take G ⊆ Ags. Let group agency be defined exactly as in
Chapter 2’s Subsection 2.4.1, so that modality [G]φ is based on Choicem

G :={⋂
α∈G Choicem

α (h); h ∈ Hm
}
. Let group knowledge be distributed, so that modality

DGφ is based on
⋂
α∈G ∼α. Let group p-d intentions be obtained from individual

p-d intentions according to the rules of the joint topology, so that modality IGφ
is based on the topology generated by

⋃
α∈G τ

⟨m,h⟩
α . Finally, let group objective

and subjective obligations be defined just as in Subsection 4.6.2 of Chapter 4’s
conclusion, so that modality ⊙Gφ, resp. ⊙SGφ, is based on an objective, resp. sub-
jective, dominance ordering of joint actions. Then, first of all, one can advance
the following syntactic characterizations: formula [G]φ ∧ ^[G]¬φ for collective
causal-active responsibility (with respect to φ), and φ∧¬[G]¬φ∧^[G]¬φ for col-
lective causal-passive responsibility; formula DG[G]φ ∧ ^DG[G]¬φ for collective
informational-active responsibility, and φ ∧ DG¬[G]¬φ ∧ ^DG[G]¬φ for collec-
tive informational-passive responsibility; formula [G]φ∧ IG[G]φ∧^DG[G]¬φ for
collective motivational-active responsibility, and φ ∧ IG¬[G]¬φ ∧ ^DG[G]¬φ for
collective motivational-passive responsibility. Secondly, coupling sub-categories
of these forms with the deontic contexts given by whether ∆φ or ¬∆φ is satis-
fied at a given index, where ∆ ∈

{
⊙G,⊙SG

}
, one can formalize levels of collective

praiseworthiness/blameworthiness with analogs of Tables 6.2 and 6.3.
Now, if extending IEAUST with group notions for the formalization of collec-

tive responsibility is feasible, the big challenge comes from choosing those group
notions’ semantics so that one can successfully—and systematically—assess the
relations between individual and collective responsibility. What principles will
be validated? What principles does one wish to be validated?

To illustrate this challenge, consider the question of whether responsibility
voids exist. Think of the following version of the discursive dilemma, atrributed to
Duijf (2018, Introduction): suppose that a committee of academics, consisting of
Marie, Mel, and Mo, is deciding on whether to award tenure to Mr.Borderline. The
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university’s tenure policy requires excellence in research, service, and teaching.
Thus, the committee is to decide on awarding tenure by first voting on each of
these fields of competence, then aggregating its members’ votes by majority, and
finally deriving the collective decision in line with university rules. Suppose that
the members vote in accordance with Table 6.7.

Research Service Teaching Tenure?
r s t r & s & t

Marie Yes Yes No No
Mel No Yes Yes No
Mo Yes No Yes No

Group Yes Yes Yes →Yes / ↓No

Table 6.7: The discursive dilemma.

As such, the committee collectively decided to award tenure even when they
were unanimously opposed to doing so. Now, suppose further that Mr. Borderline
turns out to be a terrible choice for the university. Is the committee collectively
responsible/blameworthy for awarding tenure? Are any of the committee mem-
bers individually responsible/blameworthy for contributing to awarding tenure?
Is this a case where a group is collectively blameworthy for an outcome without
any of its members being individually blameworthy for it? Or, in other words, is
there a responsibility void here? Well, it all depends on the characterizations of
individual and collective responsibility that one wishes to adopt.

For instance, suppose that group agency is obtained by aggregating decisions
according to the majority rule. Then one can say that the committee is collec-
tively causally responsible for Mr. Borderline’s tenure, although neither member
is individually causally responsible for such a decision. However, what about
informational responsibility? The answer to whether the committee and/or its
members are informationally responsible for tenure depends on the kind of group
knowledge considered. For instance, if knowledge is aggregated by the rules of
distributed knowledge (Fagin et al., 1995; Halpern & Fagin, 1989), and if com-
munication is possible between the members of the committee, then one could
say that the group is collectively informationally responsible, and that its mem-
bers are individually informationally responsible as well. If communication were
not possible, then one would say that neither the group nor its members are in-
formationally responsible—unless one of the members somehow knew how the
others would vote (in which case that member is informationally responsible, the
group is implicitly informationally responsible, and the group is not explicitly
informationally responsible (Gerbrandy, 1998)).
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A similar reasoning applies to motivational responsibility. The answer to
whether the committee and/or its members are motivationally responsible for
tenure depends on the kind of collective intentionality considered. Suppose that
the committee members agree that their collective intention is to award tenure.
If the individual intentions are team-directed (see Duijf, 2018, Chapter 5), meaning
that each member intends to play their part so that the collective intention is
achieved, then both the group and its members are motivationally responsible. If
there is agreement that the collective intention is to award tenure but a member
has a non-team-directed intention that tenure is not awarded, then the group is
collectively motivationally responsible, but said member is not. Suppose, in con-
trast, that the group’s plan or intention is obtained by aggregating the individual
intentions that are implied by the votes in Table 6.7 (which are not cooperative or
team-directed), then neither the group is collectively motivationally responsible
nor any of its members is individually motivationally responsible for awarding
tenure.

As the reader can foresee, the individual-collective relation is immensely com-
plex, and there are quite a few paths to choose from in order to formalize it. This
is a very interesting line for future work, and the reader is referred to Duijf (2018,
2022) for germane reviews, proposals, and discussions.
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Appendix E Metalogic Results for IEAUST

E.1 Soundness

Proposition E.1 (Soundness of ΛR). The system ΛR (Definition 6.4) is sound with
respect to the class of kiobt-models.

Proof. The proof of soundness is routine: the validity of the S5 schemata for □
and [α], as well as that of (SET) and (IA), is standard from BST; the validity of the
S5 schemata for Kα is standard from EST; the validity of (OAC) and (Uni f −H) is
shown exactly as in Chapter 4’s Proposition C.40; the validity of schemata (A1)–
(A4), as well as that of (Oic), is standard from AUST (Murakami, 2004), and can
be shown just as in Chapter 4 (Theorem 4.28 and Proposition C.38); the validity of
schemata (A5) and (A6), as well as that of (SuN), (s.Oic), (s.Cl), and (ConSO) can be
shown just as in Chapter 4 (Proposition C.40 and Observation C.39); the validity
of the KD schemata for Iα, as well as that of (InN), follows from Definitions 6.2,
5.4, and 5.5; and the validity of (KI) follows from frame condition (KI). □

E.2 Completeness

As mentioned in the main body of the chapter, whether ΛR is complete with
respect to the class of kiobt-models is still an open problem. However, the proof
systemΛ′R—obtained fromΛR by eliminating (ConSO) in Definition 6.5—is sound
and complete with respect to the class of bi-valued kiobt-models (Definition 6.7).
Soundness follows from Proposition E.1, and the proof of completeness is obtained
by integrating the proofs of completeness in Chapters 4 and 5. More precisely,
the proof of completeness will be sketched below as a two-step process. First, I
introduce a Kripke semantics for bi-valued IEAUST, where the formulas of LR are
evaluated on bi-valued Kripke-kios-models (Definition E.2). Completeness of ΛR’
with respect to the class of these structures is shown via the well-known technique
of canonical models. Secondly, a truth-preserving correspondence between bi-
valued Kripke-kios-models and a sub-class of bi-valued kiobt-models is used to
prove completeness with respect to bi-valued kiobt-models via completeness with
respect to bi-valued Kripke-kios-models.

A Kripke semantics for IEAUST is defined as follows:

Definition E.2 (Bi-valued Kripke-kios-frames & models). A tuple〈
W,Ags,R□,Choice, {≈α}α∈Ags ,

{
RI
α

}
α∈Ags

, ValueO, ValueS

〉
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is called a bi-valued Kripke-kios-frame iff

• W,Ags,R□,Ags, Choice, {≈α}α∈Ags, and
{
RI
α

}
α∈Ags

are defined just as in Chapter 5’s
Definition D.14 (p. 253), which implies that the non-intentional attributes are
defined just as in Chapter 4’s Definition C.41 (p. 200).

Thus, recall from Definition C.41 that, for β ∈ Ags and w ∈ W, Statew
β :={

S ⊆ w; S =
⋂
α∈Ags−{β} s(α), for s ∈ Selectw

}
, where Selectw denotes the set

of all selection functions at w (i.e., functions that assign to each α a mem-
ber of Choicew

α ). Also from Definition C.41 recall that, for w, v ∈ W such
that w ≈α v and L ∈ Choicew

α , L’s epistemic cluster at v is the set [[L]]v
α :={

u ∈ v; there is o ∈ L such that o ≈α u
}
.

Recall from Definition D.14 (p. 253) that, for α ∈ Ags and w ∈ W, α’s ex ante
information set at w is defined as π□α [w] := {v; w ≈α ◦R□v}. Also from Defini-
tion D.14 recall that, for x ∈ X, x ↑RI+

α
denotes the set

{
y ∈ X | xRI+

α y
}
, where RI+

α

denotes the reflexive closure of RI+
α .

• ValueO and ValueS are functions that independently assign to each world w ∈W
a real number.

These functions are used to define an objective ordering ⪯ and a subjective ordering
⪯s of choices. Formally, for α ∈ Ags and w ∈ W, one first defines two general
orderings ≤ and ≤s on 2W by the rules: X ≤ Y iff ValueO(w) ≤ ValueO(w′) for
all w ∈ X and w′ ∈ Y; and X ≤s Y iff ValueS(w) ≤ ValueS(w′) for all w ∈ X
and w′ ∈ Y. An objective dominance ordering ⪯ is then defined on Choicew

α

by the rule: L ⪯ L′ iff L ∩ S ≤ L′ ∩ S for every S ∈ Statew
α . In turn, a

subjective dominance ordering ⪯s is then defined on Choicew
α by the rule: L ⪯s L′

iff [[L]]v
α ∩ S ≤s [[L′]]v

α ∩ S for every v such that w ≈α v and every S ∈ Statev
α. I

write L ≺ L′ iff L ⪯ L′ and L′ ⪯̸ L, and I write L ≺s L′ iff L ⪯s L′ and L′ ⪯̸s L,
so that Optimalw

α :=
{
L ∈ Choicew

α ; there is no L′ ∈ Choicew
α s. t. L ≺ L′

}
and

SOptimalw
α :=

{
L ∈ Choicew

α ; there is no L′ ∈ Choicew
α s. t. L ≺s L′

}
.

A Kripke-kios-modelM consists of the tuple that results from adding a valuation function
V to a Kripke-kios-frame, whereV : P→ 2W assigns to each atomic proposition a set of
worlds (recall that P is the set of propositions in LR).

Kripke-kios-models allow us to evaluate the formulas of LR with semantics
that are analogous to the ones provided for kiobt-models:

Definition E.3 (Evaluation rules on Kripke models). LetM be a Kripke-kios-model,
the semantics onM for the formulas ofLKO are defined recursively by the following truth
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conditions, evaluated at world w:

M,w |= p iff w ∈ V(p)
M,w |= ¬φ iff M,w ̸|= φ
M,w |= φ ∧ ψ iff M,w |= φ andM,w |= ψ
M,w |= □φ iff for each v ∈ w,M, v |= φ
M,w |= [α]φ iff for each v ∈ Choicew

α (w),M, v |= φ
M,w |= Kαφ iff for each v s. t. w ≈α v,M, v |= φ
M,w |= Iαφ iff there exists x ∈ π□α [w] s. t. x ↑RI+

α
⊆ |φ|

M,w |= ⊙αφ iff for all L ∈ Choicew
α s. t. M, v ̸|= φ for some v ∈ L, there is

L′ ∈ Choicew
α s. t. L ≺ L′ and, if L′′ = L′ or L′ ⪯s L′′,

thenM,w′ |= φ for every w′ ∈ L′′α
M,w |= ⊙Sαφ iff for all L ∈ Choicew

α s. t. M, v ̸|= φ for some w′ s. t. w ≈α w′

and some v ∈ [[L]]w′
α , there is L′ ∈ Choicew

α s. t. L ≺s L′

and, if L′′ = L′ or L′ ⪯s L′′, thenM,w′′′ |= φ for every w′′

s. t. w ≈α w′′ and every w′′′ ∈ [[L′′]]w′′
α ,

where I write |φ| to refer to the set
{
w ∈W;M,w |= φ

}
. Satisfiability, validity, and general

validity are defined as usual.

A truth-preserving correspondence between Kripke-kios-models and kiobt-
models is shown as follows:

Definition E.4 (Associated kiobt-frame). Let

F =
〈
W,Ags,R□, Choice, {≈α}α∈Ags ,

{
RI
α

}
α∈Ags

, ValueO, ValueS

〉
be a bi-valued Kripke-kios-frame.

Then F T :=
〈
MW ,⊏,Ags,Choice, {∼α}α∈Ags , τ,ValueO,ValueS

〉
is called the bi-

valued kiobt-frame associated with F iff

• MW ,⊏,Choice, {∼α}α∈Ags, and τ are defined just as in Chapter 5’s Definition D.19
(p. 255).

• ValueO and ValueS are defined by the following rules: for hv ∈ H, ValueO(hv) =
ValueO(v), and ValueS(hv) = ValueS(v).

Proposition E.5. Let F be a bi-valued Kripke-kios-frame. Then F T is a bi-valued
kiobt-frame, indeed.

Proof. Follows from Chapter 4’s Proposition C.44 (p. 202), Chapter 5’s Proposi-
tion D.20 (p. 255), and Definition E.4. □
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Lemma E.6. Let M be a bi-valued Kripke-kios-model, and let MT be its associated
bi-valued kiobt-model. For all α ∈ Ags, w ∈ W, and L,N ∈ Choicew

α , the following
conditions hold:

(a) L ⪯ N iff LT
⪯ NT and L ≺ N iff LT

≺ NT.

(b) L ⪯s N iff LT
⪯s NT and L ≺s N iff LT

≺s NT.

(c) L ∈ Optimalw
α iff LT

∈ Optimalw
α .

(d) L ∈ S − Optimalw
α iff LT

∈ S −Optimalw
α .

Proof. For the proofs of items b and d, see Chapter 4’s Lemma C.45 (p. 203).
The proofs of a and c are analogous, and the reader is referred to the proof of
Proposition 4 in https://doi.org/10.48550/arXiv.1903.10577 for details (see
also Abarca & Broersen, 2019). □

Proposition E.7 (Truth-preserving correspondence). LetM be a bi-valued Kripke-
kios-model, and let MT be its associated bi-valued kiobt-model. For all φ of LR and
w ∈W,M,w |= φ iffMT,

〈
w, hw

〉
|= φ.

Proof. We proceed by induction on the complexity of φ. For the base case, the
cases of Boolean connectives, and the cases of all modal operators except Iα
and except ⊙α, the proofs are exactly the same as their analogs’ in Chapter 4’s
Proposition C.46 (p. 204), using Lemma E.6 b in the case of ⊙Sα . For the case of
Iα, the proof is the same as its analog in Chapter 5’s Proposition D.21 (p. 256).
As for the case of ⊙α, it follows from Lemma E.6 a according to Proposition 4 in
https://doi.org/10.48550/arXiv.1903.10577.

□

Thus, completeness with respect to bi-valued kiobt-models is proved with
Propositions E.8 and E.9 below.

Proposition E.8 (Completeness w.r.t. bi-valued Kripke-kios-models). The proof
system ΛR’ is complete with respect to the class of bi-valued Kripke-kios-models.

Proof. Completeness with respect to bi-valued Kripke-kios-models is shown
via canonical models. To be precise, one defines a structure

M :=
〈
WΛ′R ,R□, Choice, {≈α}α∈Ags ,

{
RI
α

}
α∈Ags

ValueO, ValueS,V
〉
, where WΛ′R ={

w; w is a Λ′R-MCS
}
, where R□, Choice, {≈α}α∈Ags,

{
RI
α

}
α∈Ags

, andV are defined just

https://doi.org/10.48550/arXiv.1903.10577
https://doi.org/10.48550/arXiv.1903.10577
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as in Chapter 5’s Definition D.22 (p. 257), and where ValueO and ValueS are de-
fined as follows: for α ∈ Ags and w ∈WΛ, one first definesΣw

α := {[α]φ;⊙[α]φ ∈ w}
and Γw

α := {Kαφ;⊙S[α]φ ∈ w}. Then, taking Σw =
⋃
α∈Ags Σ

w
α and Γw =

⋃
α∈Ags, the

deontic functions are given by

ValueO(w) =

{
1 iff Σw

⊆ w,
0 otherwise.

ValueS(w) =

{
1 iff Γw

⊆ w,
0 otherwise.

The canonical structureM is shown to be a bi-valued Kripke-kios-model just
as in Chapter 5’s Proposition D.23 (p. 257). Then, the so-called truth lemma is
shown by merging Lemma C.52 (p. 215), Lemma D.25 (p. 259), and Lemma 4
in https://doi.org/10.48550/arXiv.1903.10577. This renders completeness
with respect to bi-valued Kripke-kios-models. □

Proposition E.9 (Completeness w.r.t. bi-valued kiobt-models). The proof system
ΛR’ is complete with respect to the class of bi-valued kiobt-models.

Proof. Let φ be a Λ′R-consistent formula of LR. Proposition E.8 implies that there
exists a bi-valued Kripke-kios-model M and a world w in its domain such that
M,w |= φ. Proposition E.7 then ensures that the bi-valued kiobt-modelMT asso-
ciated withM is such thatMT,

〈
w, hw

〉
|= φ. □

Therefore, Proposition E.1 and Proposition E.9 imply that the following result,
appearing in the main body of the chapter, is true:

Theorem 6.8 (Soundness & Completeness ofΛ′R). LetΛ′R be the proof system obtained
from ΛR by eliminating (ConSO) in Definition 6.5. Then Λ′R is sound and complete with
respect to the class of bi-valued kiobt-models.

https://doi.org/10.48550/arXiv.1903.10577




Conclusion

‘You can’t bypass nature with logic alone! Logic will presuppose three
cases, when there are a million of them! Cut away the whole million,
and reduce everything to the one question of comfort... the whole of life’s
mystery can fit on two printed pages!’

Fyodor Dostoevsky, Crime and Punishment

In the summer of 2019 I heard an eye-opening talk during an artificial intel-
ligence conference. The speaker argued that a path toward constructing ethical
AI involves working under an analogy between AI and the human brain. More
precisely, the speaker was talking about how we could build hybrid AI systems
by dividing their tasks into right-hemisphere tasks and left-hemisphere ones. To
clarify, recall that there is a popular and widespread belief that, while the right
half of the human brain is used in emotional, creative tasks—where inventiveness
and adaptability is required—the left half is used in analytical, logical tasks—
where rules and order are required.26 Thus, the point of the talk was that, to build
ethical AI, a promising strategy is to mix-and-match different techniques: while
sub-symbolic techniques based on learning algorithms can be used to optimize un-
supervised decision-making (right-hemisphere tasks), symbolic techniques based
on Logic can be used to harness these decisions and constrain them to specific
codes of conduct (left-hemisphere tasks).

I want to conclude this thesis by revisiting a discussion, that began in Chap-
ter 1, regarding the applicability of logic-based frameworks in the development of
responsible AI. In particular, I want to position the contents of the thesis as realistic
first steps toward the far-reaching goal of developing hybrid ethical AI systems.

26This belief started in the 1960’s, with the study of patients who had undergone split-brain surgery
in which the main commissures connecting the two hemispheres were cut as a means of controlling
epilepsy. Testing of each disconnected hemisphere revealed the left to be specialized for language and
the right for emotional and nonverbal functions (Corballis, 2014; Sperry, 1982).
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Recall from Chapter 1’s Section 1.3 that the underlying motivation for my work
is to aid in the construction of formal frameworks for performing computational
checks on responsibilities of AI systems, just as intended by the research project
REINS (REsponsible Intelligent Systems) (Broersen, 2014b). It is precisely because
of projects like this that I envision the real-life possibility of building ethical AI
under a similar strategy to the one described by the conference speaker.

Let me elaborate on such a possibility. Over the last decade, most AI systems
have been designed and manufactured using sub-symbolic techniques based on
machine learning. Thus, some people have become skeptical about the role of
symbolic techniques—or good old fashioned AI (GOFAI) (Haugeland, 1985)—in the
actual engineering of artificial intelligence. Now, to disambiguate the dichotomy
between symbolic and sub-symbolic AI, let me first review what is usually meant
when one uses these terms:

• Sub-symbolic AI refers to a variety of methods that involve the following
processes: handling large amounts of raw data, performing calculations
on this data, recognizing patterns in it (thus learning from it), and making
predictions/decisions with an implicit, bottom-up kind of intelligence. The
traditional paradigm in sub-symbolic AI is machine learning.

• In contrast, symbolic AI refers to techniques that imply explicit models
of knowledge and action. The idea is that intelligence can be rendered
through the rule-based manipulation of symbols that encode those notions
of knowledge and action, where these symbols are given within particular
logics.

Although skepticism about GOFAI in AI manufacturing translates into skepti-
cism about the applicability of formal theories of responsibility in the development
of ethical AI, there are two main arguments—that are related to one another—to
sustain the claim that such theories are more relevant than ever. One has to do with
the resurgence of symbolic approaches in foundations & verification of AI, and the
other has to do with the suitability of these symbolic—logic-based—approaches
for creating hybrid explainable & ethical AI:

1. AI foundations & verification: although sub-symbolic techniques have domi-
nated the latest advancements in artificial intelligence, Calegari et al. (2020)
recently stated that symbolic AI is re-gaining momentum, specially in the
context of tackling one of the biggest problems with sub-symbolic methods:
the inability to explain why a system made a decision. For sub-symbolic
AI, making a system’s underlying decision process completely understand-
able to human beings is incredibly difficult—if not impossible. Indeed, it
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is well-known that sub-symbolic techniques have complex mathematical
foundations, on the one hand, and that they admit a very low model inter-
pretability, on the other (where ‘model interpretability’ refers to a measure
of how easy it is for a human being to comprehend the predictions of a
system’s models). Thus, researchers are turning their attention to tactics
that might help in dealing with these problems, something that has led to
an important revival of logic-based methods. The reason is that in logic-
based methods there is a clear formulation both of systems’ models and
of the rules that govern systems’ decision making. The fields of knowledge
representation, logic-based reasoning, and formal verification, among others, all
involve perspectives that have their origin in Logic, and they are all starting
to be seriously exploited in the design of AI.27 For instance, according to
Calegari et al. (2020), some areas of recent application are formalization &
verification, cognitive agents, healthcare & well-being, law & governance,
education planning, task allocation, and robotics & control.

2. Hybrid explainable & ethical AI: since sub-symbolic AI is considerably opaque,
many people—particularly non-experts—do not trust it. This prevents the
use of AI systems in activities where autonomous and intelligent decision-
making admits moral (and legal) consequences. The idea is that “it is often
not sufficient for intelligent systems to produce bare decisions—they must
also be explained, as ethical and legal issues may arise” (Calegari et al., 2020,
p. 15, emphasis in original). Moreover, the use of sub-symbolic methods

27The fields of AI that are highly influenced by Logic can be described as follows, following
Markman (2013), Calegari et al. (2020), and (Bjesse, 2005):

• Knowledge representation is the field of AI that aims to model information about the world in
such a way that a computer system can functionally use it. Since virtually nobody argues
with the assumption that reasoning requires knowledge, the questions addressed by this field
have been fundamental since the early days of AI. Many kinds of (logic-based) knowledge
representation systems have been proposed over the years. They mostly rely on description
logics and modal logics, used to respectively represent terminological knowledge and time-
dependent or subjective knowledge.

• Logic-based reasoning includes a number of methods for modelling reasoning. The intuition that
underlies all these methods is that formalizing commonsense reasoning comes in handy when
building intelligent systems. The following paradigms can be seen to fall under logic-based
reasoning: deduction (which is the basis of automated theorem-proving and logic programming,
for instance), induction (which is the basis of inductive model checkers, for instance), abduction
(which is used in the verification of compliance of specific properties), non-monotonic reasoning
(which underlies default and defeasible reasoning), and cognitive-agent architectures (for which
the typical logics are BDI or beliefs-desires-intentions—see Chapter 5’s Section 5.2).

• In the context of hardware and software systems, formal verification refers to the formulation
within a particular logic of a computer algorithm that underlies any such system. The goal is
to check whether the algorithm correctly satisfies a given specification, encoded as a formula of
the logic’s language. In such a practice, two traditions stand out: (a) automated theorem-proving,
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implies another dangerous threat: bias of training data. If the data upon
which a machine-learning algorithm is trained was biased, then its predic-
tions/decisions will unavoidably lead to prejudice (both in the colloquial and
the legal connotations of the word ‘prejudice’). This is highly problematic,
to say the least.28 Thus, taking measures against these problems is of the
utmost importance if we are to allow that AI systems perform tasks in health-
care, governance, and the financial and military industries, for instance. To
clarify, reliability and accountability are crucial to prevent catastrophes in
all these spheres, and both the lack of transparency in learning algorithms
and the possible biases of training data make it difficult to trust AI and to
ascertain who should be held liable for an undesirable outcome of an AI
system’s decision making.29

One of the measures taken against these two problems, then, is the integra-
tion of sub-symbolic and symbolic AI in what is known as hybrid intelligent
systems (Corchado et al., 2012; Medsker, 2012). To be more precise, hy-
brid intelligent systems are models of AI that combine sub-symbolic and
symbolic approaches, used both at the level of design/construction and at
the level of verification. At the level of design, researchers seek after an
explicit integration of symbolic and sub-symbolic models—just as in neuro-
fuzzy systems (Nauck, Klawonn, & Kruse, 1997; Wu, Zhang, & Lu, 2011)
and neural-symbolic computing (A. Garcez et al., 2019; A. d. Garcez et al.,
2022).30 At the level of verification, researchers have paid attention to a
process known as post-hoc extraction, where symbolic knowledge is drawn
out from trained numeric predictors in the form of rules that could explain

that refers to the use of a computer program to yield the theorems of a given proof system;
and (b) model checking, that refers to a series of methods used to assess whether a mathematical
model of a computer system satisfies a formula that encodes some specification.

28A typical, real-life example of this danger is given by the employment of the software COM-
PAS (Correctional Offender Management Profiling for Alternative Sanctions) to predict a person’s
likelihood of becoming a repeat offender. In 2016 it was shown that the algorithm, allegedly
based on machine learning, displayed a double racial bias, one in favor of white defendants and
one against black defendants (see Flores, Bechtel, & Lowenkamp, 2016; Mehrabi, Morstatter, Sax-
ena, Lerman, & Galstyan, 2021). Although COMPAS is most probably a machine learning algo-
rithm, the model underlying this tool is closed-source and unknown to the public, according to
https://afraenkel.github.io/fairness-book/intro.html.

29Accountability is usually thought of as the state of being liable for an action, meaning being
answerable to society for having brought about a state of affairs.

30As its name implies, neuro-fuzzy systems aim at a synergy of fuzzy and neural systems, combining
human-like imprecise reasoning with neural-network learning. In turn, neural-symbolic computing
integrates robust learning with logic-based reasoning and with a symbolic simplification of artificial
neural networks, combining the benefits of meta-heuristics, neural networks, and logic programming.

https://afraenkel.github.io/fairness-book/intro.html
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their behavior (Andrews, Diederich, & Tickle, 1995; Guidotti et al., 2018).31

To be sure, hybrid intelligent systems are particularly relevant in explainable
artificial intelligence (XAI) (Gunning, 2017), a field that aims precisely at ex-
ploiting symbolic descriptions in the explanation of the internal functioning
of sub-symbolic AI, thus making it more interpretable in the eyes of human
beings and better suited to tasks with ethical implications (Arrieta et al.,
2020).

So how, then, could this thesis’s logics be used to design, verify, and explain
ethical AI?

First of all, observe that the frameworks in Chapters 2–6 are already part of
the symbolic-AI tradition. More precisely, and as mentioned in Chapter 1 (p. 17),
they fall into the category of agent-based symbolic AI (see, for instance, Russell
& Norvig, 1995; Shoham, 1993; Wooldridge & Jennings, 1995). The agents ap-
pearing in every stit theory of this thesis are assumed to be entities that reason
(they are rational/cognitive), that make their own choices independently (they
are autonomous), that interact with other such entities (they are interactive), that
perceive the environment and react to it (they are reactive), and that take action in
order to achieve their goals and intentions (they are proactive) (see, for instance,
Cardoso & Ferrando, 2021; Molina, 2020, for a discussion of these properties of
intelligent agents). Indeed, Chapter 2 explicitly formalizes agents in branch-
ing time and their taking action, Chapter 3 adds traditional epistemic notions
(knowledge and belief) to formalize aspects of such agents’ reasoning, Chapter 4

31According to Craven (1996), post-hoc rule extraction refers to a variety of algorithms that, given a
trained neural network and the data on which it was trained, produce a description of the network’s
hypothesis that is comprehensible and that closely approximates the network’s predictive behavior.
In other words, rule extraction helps to explain the process of how the network comes to a final
decision (Hailesilassie, 2016). The literature has somewhat agreed on a taxonomy for such algorithms
(see, for instance Andrews et al., 1995; Guidotti et al., 2018; Hailesilassie, 2016). Such a taxonomy
categorizes the algorithms according to the following dimensions: the expressivity of the rendered
rules, the translucency of the algorithm, the adequacy and portability of the algorithm, the quality of
the rendered rules, and the complexity of the algorithm (see Andrews et al., 1995, for details). Two
dimensions stand out: the expressivity dimension and the translucency dimension. In the expressivity
dimension, the most prominent categories in the literature include (a) if-then rules (where the rendered
rules are of the form ‘if input X meets condition A, then output Y will be labelled by class B’), (b)
m-of-n rules (which involves rules of the form ‘if m of the following n antecedents are true, then output
Y will be labelled by class B,’ (c) decision trees (composed by if-then rules running through branches
stemming from a root (see Guidotti et al., 2018, p. 376, for a simple example)), and (d) fuzzy rules (which
use membership functions to deal with partial truths of the form ‘if x is low and y is high, then z is
medium,’ where low, high, and medium are fuzzy sets with corresponding membership functions).
In the translucency dimension, the most prominent categories include (a) the decompositional approach
(where the focus is on extracting rules at the level of individual—both hidden and output—neurons),
(b) the pedagogical approach (where a neural network is treated as a black box and the goal is to find
the whole network’s output for a corresponding input), and (c) the eclectic approach (which combines
both decompositional and pedagogical techniques).
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adds obligations to formalize a particular, deontic aspect of the agents’ relation
with the environment, Chapter 5 adds intentionality to formalize their proactiv-
ity, and Chapter 6 merges the previous chapters into a framework to analyze
their responsibility. Therefore, the models and languages of these chapters are
naturally connected to those of logics for multi-agent systems (see Chapter 2’s
Subsection 2.4.2) and of BDI logics (see Chapter 5’s Section 5.2). This means that
my study is potentially applicable, both semantically and syntactically, in laying
down actual AI foundations, namely through its feasible use in areas such as
knowledge representation and logic-based reasoning.

Similarly, the frameworks in Chapters 2–6 have current relevance in the con-
texts of formal verification. On the one hand, the models can potentially be used
both in model checking and in post-hoc extraction (from a sub-symbolic AI system);
on the other, the proof systems can be used in automated theorem-proving. Below, I
discuss further these paths of application.

As for model checking, observe that the potential use of my models implies
two important processes: (a) one would need to either design or interpret an AI
system so that its behavior can be seen as based on the models (where the case
of interpreting refers to explaining an already existing sub-symbolic system); and
(b) one would need to either implement the chapters’ logics into model checkers
(either new or existing ones). Thus, for a formal specification, one could use
computer programs to test whether the explanatory formalization of the system
(in terms of a logic’s model) meets it or not. As for extraction, the potential use
of my models involves (a) interpreting an AI system so as to be based on said
models, (b) implementing a rule-extraction algorithm that would extract rules
from the AI system, and (c) developing translations that would map the extracted
rules to formulas that can be evaluated on the models.

In the specific context of building and/or verifying ethical AI, Chapter 6’s logic
proves useful. For instance, recall the example of the COMPAS algorithm, a soft-
ware that is employed to predict the likelihood of repeat-offenses (Footnote 28).
Assume that (a) we have managed to interpret COMPAS as a stit-theoretic agent
that—relative to the performance of a given task—has certain actions, knowledge,
beliefs, intentions, and obligations, that (b) we have managed to implement a rule-
extraction algorithm that explains COMPAS’s decision-making (see Footnote 31),
and that (c) we have translated the extracted rules into Chapter 6’s intentional
epistemic act-utilitarian stit theory (IEAUST). Thus, we can check whether COM-
PAS’s learning-motored choices deviate from a previously established obligation
of avoiding racial bias.32 Furthermore, one could also check what mode of respon-

32Of course, it may be hard to logically define ‘avoiding racial bias,’ generally speaking, and within
stit theory, in particular.
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sibility (for making particular predictions), if any, can be assigned to COMPAS.
Indeed, this strategy evokes the conference speaker’s ideas that I mentioned at the
beginning of this conclusion: suppose that we design a system by coupling the
COMPAS algorithm with the imagined rule-extraction algorithm and with a set of
particular ought-to-do’s (such as avoiding racial bias). Whenever an ought-to-do
is violated by a learning-motored choice, then our system must report such a vio-
lation and either train itself again or ask for new training data. Thus, the learning
task can be seen as a right-hemisphere process, and the verification of compliance
with respect to the ought-to-do’s can be seen as a left-hemisphere process.

For another toy example at the level of verification, suppose that we want
to check whether a self-driving car knows that it ought to not run over a dog.
To check for this, suppose that we have built a model—similar to Chapter 4’s
eaubt-models, for instance—that adequately represents the self-driving car as a stit-
theoretic agent facing a specific decision context with options for its navigation.33

Suppose further that we have managed to implement Chapter 4’s epistemic act-
utilitarian stit theory (EAUST) into a model checker. Then we can verify whether
and at which states the self-driving car possesses the knowledge that it ought
to not run over a dog by testing whether the model satisfies (validates, perhaps)
formulas of the forms Kcar⊙car¬r and Kcar⊙

S
car¬r (where r stands for the proposition

‘the dog has been run over’). The reason is that Kcar⊙car¬r, resp. Kcar⊙
S
car¬r, holds

at a state iff at that state agent car knows that it objectively, resp. subjectively,
ought to not run over the dog.

Indeed, the REINS project itself (the thesis’s motivation, p. 16) intended to
do implementations of this kind. Originally, the last stage of the project in-
volved developing translations from logic-based formalisms representing graded
responsibilities—exactly like Chapter 6’s—to formalisms for which model check-
ers already exist, with the goal of performing computational checks on responsi-
bilities. As argued by Broersen (2014b), a first possibility for investigation would
have been model checker Mocha (Alur et al., 1998), that checks formulas of
alternating-time temporal logic (ATL) (see Chapter 2’s Subsection 2.4.2). Unfor-
tunately, the project did not arrive to this stage, but this only implies that there
are still worthy opportunities for future work.

As for automated theorem-proving, observe that the proof systems in Chap-
ters 2–6 can be used as background axiomatic systems against which to test for
specific deductions and/or provable formulas using automated theorem-provers.

33Of course, a measure of the adequacy of representations is very important. One could use criteria
for evaluation (of the adequacy of an AI system’s representation within a logic-based model) similar
to the ones proposed by Andrews et al. (1995) to check for the quality of rule-extraction algorithms,
i.e., test the accuracy, fidelity, consistency, and comprehensibility of the representation at hand.
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These logics are particularly relevant in the context of verifying ethical AI. For
instance, again consider the self-driving car example. Suppose that, for a given
navigation-scenario, we have managed to embody agent car as a set Σ of for-
mulas of LKO—the language of Chapter 4’s EAUST—in terms of car’s available
choices and abilities. Suppose further that we have managed to characterize car’s
knowledge-base (for the given navigation-scenario) with a set Γ of formulas of
LKO. Then we can test whether the car knows that it subjectively ought to not run
over a dog by using a theorem-prover to see whether Σ ∪ Γ ⊢ΛS Kcar ⊙

S
car ¬r.

Of course, complexity-related issues play a role in the success of hypothetical
theorem-provers like the one in the example above. First of all, the logics in
Chapters 3–6 might not be decidable, and thus a theorem-prover would never
terminate when testing the provability of certain formulas. As a response to this
first concern, it is important to mention that existing results suggest that the logics
in Chapters 3–6 are likely to be decidable. For EXST—the logic in Chapter 3—
one can probably adapt Payette’s (2014) method to prove its decidability. For
EAUST, IEST, and IEAUST—the logics in Chapters 4, 5, and 6, respectively—the
results in my joint paper with Jan Broersen (Abarca & Broersen, 2021a), themselves
extending Murakami’s (2004) proof of decidability for AUST, can in principle be
adapted to render decidability via finite-model property.34

Now, even if the logics were shown to be decidable, a second obstacle is
that the provability problem might still be too hard, complexity-wise, and that
current theorem-provers could turn out to be inefficient. An already existing
paradigm, then, brings hope in this respect. Arkoudas et al. (2005) presented a
natural-deduction calculus for the axiomatization that Murakami (2004) gave to
Horty’s AUST (the sound, complete, and decidable proof system that I discussed
in Chapter 4’s Proposition C.38). The authors encoded this natural-deduction
calculus in an interactive theorem-prover named Athena, with which they suc-
cessfully tested the provability of AUST formulas. Thus, Arkoudas et al. proved
that Horty’s (2001) seminal theory of ought-to-do is “AI-friendly” (Bringsjord,
Arkoudas, & Bello, 2006, p. 8) and that it is possible to use “mechanized deontic
logics” in AI verification (Arkoudas et al., 2005, p. 23). Since the logics in Chap-
ters 4–6 largely rely on AUST’s ideas, it is not far-fetched to think that Arkoudas
et al.’s implementation could be extended to them.

34It is not hard to show that the single-agent versions of the logics in Chapters 4–6 are decid-
able. One can prove the finite-model property by first showing completeness with respect to Kripke
rooted models (rooted with respect to ≈α ◦R□) and then filtrate those models, in an adaptation of
Bezhanishvili’s (2006, Chapter 6) methods.



§ E. Metalogic Results for IEAUST · 319

All the scenarios described above (AI design, model checking, theorem prov-
ing, extraction, etc.) imply a great deal of work, as well as the confluence of
interdisciplinary efforts. To sum up possible paths for future work in these re-
spects, consider Figure 6.4 below:

Symbolic
AI system

Model
checkers

Stit models
&

proof systems

Automated
theorem-provers

Sub-symbolic
AI system

Rule-extraction
algorithms

Design

Re-interpret

Interpret

Implement
Implement Translate

Extract

Figure 6.4

Figure 6.4 illustrates how the models and proof systems for the logics in this
thesis could be used to (a) design symbolic AI systems and interpret existing
sub-symbolic AI systems, (b) implement said logics into model checkers and/or
automated theorem-provers, and (c) find translations of rules extracted from sub-
symbolic AI systems. Under such a scheme, the nature of these logics should prove
them valuable in the design and verification of responsible AI. In the particular
case of mix-and-matching sub-symbolic and symbolic approaches, such a scheme
is reminiscent of the strategy advocated by the conference speaker: let the learning
be done according to usual machine-learning methods, and verify (constrain, or
harness) such a learning with logic-based formalisms.

As implied by the present discussions, AI developers face big challenges in
the construction of systems that are expected to make decisions with moral con-
sequences. Looking for ways to tackle this challenge, the field of machine ethics
has seen a quick growth in recent years. Thus, questions concerning the respon-
sibility of autonomous intelligent agents have become very important. These
questions can be categorized in two main trends: (1) conceptual questions about
the ontology and essential components of the notion of responsibility, and (2)
technical questions that revolve around the implementation of such a notion in
AI. This thesis attempted to provide possible answers in both categories. Concep-
tually, the logics imply an extension of Horty’s (2001) AUST with epistemic and
intentional attitudes (according to the operational definition and decomposition
of responsibility proposed in Chapter 1, p. 3). Technically, there are two main con-
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tributions that lay groundwork for viable efforts of implementation: on the one
hand, the logics offer expressive models of agency, knowledge, belief, intentions,
ought-to-do, and responsibilities; on the other hand, the logics admit sound and
complete proof systems.

On p. 3 I wrote that this thesis aimed to build a formal theory of responsibility,
that the main tool used toward this aim would be Logic, and that the underlying
motivation was to provide theoretical foundations for symbolic techniques in the
development of ethical AI. Whether and to what extent the goal has been met is
an appreciation that I ultimately leave to the reader. However, what is clear to
me—after writing all these pages—is that the attempt is already a contribution
inasmuch as it opens roads for interesting further research, as argued by this
conclusion.

In Dostoevsky’s Crime and Punishment, the character Razumikhin says that one
“can’t bypass nature with Logic alone,” that Logic “will presuppose three cases,
when there are a million of them.” I truly believe that there is no arguing that.
However, I also believe that, rather than being meant to bypass nature, Logic
itself belongs to (human) nature and can help us comprehend it and better our
interactions with and within it. This belief is the driving force behind the present
work, and I surely hope that something somewhere in all these pages can evoke
such a belief in some reader, too.
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Samenvatting

De studie van verantwoordelijkheid is een ingewikkelde zaak. De term wordt
op verschillende manieren gebruikt in verschillende vakgebieden, en het is ge-
makkelijk om alledaagse discussies aan te gaan over waarom iemand ergens ver-
antwoordelijk voor moet worden gehouden. De achtergrond van deze discussies
wordt meestal gevormd door sociale, juridische, morele of filosofische problemen.
Een duidelijk patroon in al deze domeinen is de intentie om normen vast te stel-
len voor wanneer—en in welke mate—een agent verantwoordelijk moet worden
gehouden voor een toestand. Dit is waar logica uitkomst biedt. De ontwikkeling
van expressieve logica’s, het redeneren over de beslissingen van agenten in situa-
ties met morele gevolgen, omvat het bedenken van eenduidige representaties van
componenten van gedrag die zeer relevant zijn voor de systematische toekenning
van verantwoordelijkheid en voor de systematische toewijzing van schuld of lof.
Om het duidelijk te stellen: expressieve syntactische en semantische kaders hel-
pen ons om problemen gerelateerd aan verantwoordelijkheid op een methodische
manier te analyseren.

Deze dissertatie bouwt een formele theorie van verantwoordelijkheid op. Het
belangrijkste instrument om dit doel te bereiken is de modale logica en, in het
bijzonder, een klasse van modale handelingslogica’s die bekend staat als de stit-
theorie. De onderliggende motivatie is om een theoretische basis te verschaffen
voor symbolische technieken in de ontwerp van ethische AI. Dit werk betekent
dus een bijdrage aan de formele filosofie en symbolische AI. De methodologie
van het proefschrift bestaat uit de ontwikkeling van stit-theoretische modellen
en talen om de wisselwerking te onderzoeken tussen de volgende componenten
van verantwoordelijkheid: agency, kennis, overtuigingen, intenties en verplich-
tingen. Deze modellen zijn geïntegreerd in een kader dat rijk genoeg is om op
logica gebaseerde karakteriseringen te bieden voor drie categorieën van verant-
woordelijkheid: causale, informatieve en motivationele verantwoordelijkheid.
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Het proefschrift is als volgt opgebouwd. hoofdstuk 2 bespreekt uitvoerig de
stit theorie, een logica die de notie van agency in de wereld formaliseert over een
indeterministische opvatting van tijd die bekend staat als branching time. Het
idee is dat agenten handelen door mogelijke toekomsten te beperken tot bepaalde
deelverzamelingen. Op weg naar de formalisering van informatieve verantwoor-
delijkheid breidt hoofdstuk 3 de stit-theorie uit met traditionele epistemische
noties (kennis en geloof). Zo formaliseert het hoofdstuk belangrijke aspecten
van het redeneren van agenten bij de keuze en uitvoering van handelingen. In
een context van toekenning van verantwoordelijkheid en verontschuldigbaarheid
breidt hoofdstuk 4 de epistemische stit-theorie uit met maatstaven voor de opti-
maliteit van handelingen die ten grondslag liggen aan verplichtingen. In wezen
formaliseert dit hoofdstuk de wisselwerking tussen de kennis van agenten en wat
zij zouden moeten doen. Op weg naar formalisering van motivationele verant-
woordelijkheid voegt hoofdstuk 5 intenties en intentionele handelingen toe aan
de epistemische stit theorie en redeneert over de wisselwerking tussen kennis en
intentionaliteit. Tenslotte voegt hoofdstuk 6 de formalismen van de voorgaande
hoofdstukken samen tot een rijke logica waarmee verschillende modi van de bo-
vengenoemde categorieën van verantwoordelijkheid kunnen worden uitgedrukt
en gemodelleerd.

Technisch gezien liggen de belangrijkste bijdragen van dit proefschrift in de
axiomatiseringen van alle geïntroduceerde logica’s. Met name de bewijzen van
correctheid en volledigheid omvatten lange, stapsgewijze procedures die gebruik
maken van nieuwe technieken.
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provide theoretical foundations for symbolic techniques in the development of
ethical AI. He has taught courses on Mathematics, Logic, Artificial Intelligence,
and Philosophy, and he has published in peer-reviewed conference proceedings
and academic journals. His research interests include symbolic AI (responsible
AI, agent-based modelling, knowledge representation, multi-agent systems), Lo-
gic (logics of action, epistemic logic, doxastic logic, deontic logic), and Formal
Philosophy (epistemic game theory, decision theory).



Quaestiones Infinitae 
PUBLICATIONS OF THE DEPARTMENT OF PHILOSOPHY AND 

RELIGIOUS STUDIES 
 

VOLUME 21 D. VAN DALEN, Torens en Fundamenten (valedictory lecture), 1997.  
VOLUME 22 J.A. BERGSTRA, W.J. FOKKINK, W.M.T. MENNEN, S.F.M. VAN VLIJMEN, 

Spoorweglogica via EURIS, 1997.  
VOLUME 23 I.M. CROESE, Simplicius on Continuous and Instantaneous Change 

(dissertation), 1998.  
VOLUME 24 M.J. HOLLENBERG, Logic and Bisimulation (dissertation), 1998.  
VOLUME 25 C.H. LEIJENHORST, Hobbes and the Aristotelians (dissertation), 1998.  
VOLUME 26 S.F.M. VAN VLIJMEN, Algebraic Specification in Action (dissertation), 

1998.  
VOLUME 27 M.F. VERWEIJ, Preventive Medicine Between Obligation and Aspiration 

(dissertation), 1998.  
VOLUME 28 J.A. BERGSTRA, S.F.M. VAN VLIJMEN, Theoretische Software-Engineering: 

kenmerken, faseringen en classificaties, 1998.  
VOLUME 29 A.G. WOUTERS, Explanation Without A Cause (dissertation), 1999.  
VOLUME 30 M.M.S.K. SIE, Responsibility, Blameworthy Action & Normative 

Disagreements (dissertation), 1999.  
VOLUME 31 M.S.P.R. VAN ATTEN, Phenomenology of choice sequences (dissertation), 

1999.  
VOLUME 32 V.N. STEBLETSOVA, Algebras, Relations and Geometries (an equational 

perspective) (dissertation), 2000.  
VOLUME 33 A. VISSER, Het Tekst Continuüm (inaugural lecture), 2000.  
VOLUME 34 H. ISHIGURO, Can we speak about what cannot be said? (public lecture), 

2000.  
VOLUME 35 W. HAAS, Haltlosigkeit; Zwischen Sprache und Erfahrung (dissertation), 

2001.  
VOLUME 36 R. POLI, ALWIS: Ontology for knowledge engineers (dissertation), 2001.  
VOLUME 37 J. MANSFELD, Platonische Briefschrijverij (valedictory lecture), 2001.  
VOLUME 37A E.J. BOS, The Correspondence between Descartes and Henricus Regius 

(dissertation), 2002.  
VOLUME 38 M. VAN OTEGEM, A Bibliography of the Works of Descartes (1637-1704) 

(dissertation), 2002. 
VOLUME 39 B.E.K.J. GOOSSENS, Edmund Husserl: Einleitung in die Philosophie: 

Vorlesungen 1922/23 (dissertation), 2003.  
VOLUME 40 H.J.M. BROEKHUIJSE, Het einde van de sociaaldemocratie (dissertation), 

2002.  
VOLUME 41 P. RAVALLI, Husserls Phänomenologie der Intersubjektivität in den 

Göttinger Jahren: Eine kritisch-historische Darstellung (dissertation), 
2003.  

VOLUME 42 B. ALMOND, The Midas Touch: Ethics, Science and our Human Future 
(inaugural lecture), 2003.  

VOLUME 43 M. DÜWELL, Morele kennis: over de mogelijkheden van toegepaste ethiek 



(inaugural lecture), 2003.  
VOLUME 44 R.D.A. HENDRIKS, Metamathematics in Coq (dissertation), 2003.  
VOLUME 45 TH. VERBEEK, E.J. BOS, J.M.M. VAN DE VEN, The Correspondence of René 

Descartes: 1643, 2003.  
VOLUME 46 J.J.C. KUIPER, Ideas and Explorations: Brouwer’s Road to Intuitionism 

(dissertation), 2004.  
VOLUME 47 C.M. BEKKER, Rechtvaardigheid, Onpartijdigheid, Gender en Sociale 

Diversiteit; Feministische filosofen over recht doen aan vrouwen en hun 
onderlinge verschillen (dissertation), 2004.  

VOLUME 48 A.A. LONG, Epictetus on understanding and managing emotions (public 
lecture), 2004.  

VOLUME 49 J.J. JOOSTEN, Interpretability formalized (dissertation), 2004.  
VOLUME 50 J.G. SIJMONS, Phänomenologie und Idealismus: Analyse der Struktur und 

Methode der Philosophie Rudolf Steiners (dissertation), 2005.  
VOLUME 51 J.H. HOOGSTAD, Time tracks (dissertation), 2005.  
VOLUME 52 M.A. VAN DEN HOVEN, A Claim for Reasonable Morality (dissertation), 

2006.  
VOLUME 53 C. VERMEULEN, René Descartes, Specimina philosophiae: Introduction 

and Critical Edition (dissertation), 2007.  
VOLUME 54 R.G. MILLIKAN, Learning Language without having a theory of mind 

(inaugural lecture), 2007.  
VOLUME 55 R.J.G. CLAASSEN, The Market’s Place in the Provision of Goods 

(dissertation), 2008.  
VOLUME 56 H.J.S. BRUGGINK, Equivalence of Reductions in Higher-Order Rewriting 

(dissertation), 2008.  
VOLUME 57 A. KALIS, Failures of agency (dissertation), 2009.  
VOLUME 58 S. GRAUMANN, Assistierte Freiheit (dissertation), 2009.  
VOLUME 59 M. AALDERINK, Philosophy, Scientific Knowledge, and Concept 

Formation in Geulincx and Descartes (dissertation), 2010.  
VOLUME 60 I.M. CONRADIE, Seneca in his cultural and literary context: Selected moral 

letters on the body (dissertation), 2010.  
VOLUME 61 C. VAN SIJL, Stoic Philosophy and the Exegesis of Myth (dissertation), 

2010.  
VOLUME 62 J.M.I.M. LEO, The Logical Structure of Relations (dissertation), 2010. 
VOLUME 63 M.S.A. VAN HOUTE, Seneca’s theology in its philosophical context 

(dissertation), 2010. 
VOLUME 64 F.A. BAKKER, Three Studies in Epicurean Cosmology (dissertation), 2010. 
VOLUME 65 T. FOSSEN, Political legitimacy and the pragmatic turn (dissertation), 

2011. 
VOLUME 66 T. VISAK, Killing happy animals. Explorations in utilitarian ethics. 

(dissertation), 2011. 
VOLUME 67 A. JOOSSE, Why we need others: Platonic and Stoic models of friendship 

and self-understanding (dissertation), 2011. 
VOLUME 68 N. M. NIJSINGH, Expanding newborn screening programmes and 

strengthening informed consent (dissertation), 2012. 



VOLUME 69 R. PEELS, Believing Responsibly: Intellectual Obligations and Doxastic 
Excuses (dissertation), 2012. 

VOLUME 70 S. LUTZ, Criteria of Empirical Significance (dissertation), 2012 
VOLUME 70A G.H. BOS, Agential Self-consciousness, beyond conscious agency 

(dissertation), 2013. 
VOLUME 71 F.E. KALDEWAIJ, The animal in morality: Justifying duties to animals in 

Kantian moral philosophy (dissertation), 2013. 
VOLUME 72 R.O. BUNING, Henricus Reneri (1593-1639): Descartes’ Quartermaster in 

Aristotelian Territory (dissertation), 2013. 
VOLUME 73 I.S. LÖWISCH, Genealogy Composition in Response to Trauma: Gender 

and Memory in 1 Chronicles 1-9 and the Documentary Film ‘My Life Part 
2’ (dissertation), 2013. 

VOLUME 74 A. EL KHAIRAT, Contesting Boundaries: Satire in Contemporary Morocco 
(dissertation), 2013. 

VOLUME 75 A. KROM, Not to be sneezed at. On the possibility of justifying infectious 
disease control by appealing to a mid-level harm principle (dissertation), 
2014. 

VOLUME 76 Z. PALL, Salafism in Lebanon: local and transnational resources 
(dissertation), 2014. 

VOLUME 77 D. WAHID, Nurturing the Salafi Manhaj: A Study of Salafi Pesantrens in 
Contemporary Indonesia (dissertation), 2014. 

VOLUME 78 B.W.P VAN DEN BERG, Speelruimte voor dialoog en verbeelding. 
Basisschoolleerlingen maken kennis met religieuze verhalen (dissertation), 
2014. 

VOLUME 79 J.T. BERGHUIJS, New Spirituality and Social Engagement (dissertation), 
2014. 

VOLUME 80 A. WETTER, Judging By Her. Reconfiguring Israel in Ruth, Esther and 
Judith (dissertation), 2014. 

VOLUME 81 J.M. MULDER, Conceptual Realism. The Structure of Metaphysical 
Thought (dissertation), 2014. 

VOLUME 82 L.W.C. VAN LIT, Eschatology and the World of Image in Suhrawardī and 
His Commentators (dissertation), 2014. 

VOLUME 83 P.L. LAMBERTZ, Divisive matters. Aesthetic difference and authority in a 
Congolese spiritual movement ‘from Japan’ (dissertation), 2015. 

VOLUME 84 J.P. GOUDSMIT, Intuitionistic Rules: Admissible Rules of Intermediate 
Logics (dissertation), 2015.  

VOLUME 85 E.T. FEIKEMA, Still not at Ease: Corruption and Conflict of Interest in 
Hybrid Political Orders (dissertation), 2015. 

VOLUME 86 N. VAN MILTENBURG, Freedom in Action (dissertation), 2015. 
VOLUME 86A P. COPPENS, Seeing God in This World and the Otherworld: Crossing 

Boundaries in Sufi Commentaries on the Qurʾān (dissertation), 2015. 
VOLUME 87 D.H.J. JETHRO, Aesthetics of Power: Heritage Formation and the Senses in 

Post-Apartheid South Africa (dissertation), 2015. 
VOLUME 88 C.E. HARNACKE, From Human Nature to Moral Judgement: Reframing 

Debates about Disability and Enhancement (dissertation), 2015. 
VOLUME 89 X. WANG, Human Rights and Internet Access: A Philosophical 



Investigation (dissertation), 2016. 
VOLUME 90 R. VAN BROEKHOVEN, De Bewakers Bewaakt: Journalistiek en leiderschap 

in een gemediatiseerde democratie (dissertation), 2016. 
VOLUME 91 A. SCHLATMANN, Shi‘i Muslim youth in the Netherlands: Negotiating Shi‘i 

fatwas and rituals in the Dutch context (dissertation), 2016. 
VOLUME 92 M.L. VAN WIJNGAARDEN, Schitterende getuigen. Nederlands luthers 

avondmaalsgerei als identiteitsdrager van een godsdienstige minderheid 
(dissertation), 2016. 

VOLUME 93 S. COENRADIE, Vicarious substitution in the literary work of Shūsaku 
Endō. On fools, animals, objects and doubles (dissertation), 2016. 

VOLUME 94 J. RAJAIAH, Dalit humanization. A quest based on M.M. Thomas’ theology 
of salvation and humanization (dissertation), 2016. 

VOLUME 95 D.L.A. OMETTO, Freedom & Self-Knowledge (dissertation), 2016. 
VOLUME 96 Y. YALDIZ, The Afterlife in Mind: Piety and Renunciatory Practice in the 

2nd/8th- and early 3rd/9th-Century Books of Renunciation (Kutub al-
Zuhd) (dissertation), 2016. 

VOLUME 97 M.F. BYSKOV, Between experts and locals. Towards an inclusive 
framework for a development agenda (dissertation), 2016. 

VOLUME 98 A. RUMBERG, Transitions toward a Semantics for Real Possibility 
(dissertation), 2016. 

VOLUME 99 S. DE MAAGT, Constructing Morality: Transcendental Arguments in Ethics 
(dissertation), 2017. 

VOLUME 100 S. BINDER, Total Atheism (dissertation), 2017. 
VOLUME 101 T. GIESBERS, The Wall or the Door: German Realism around 1800, 

(dissertation), 2017. 
VOLUME 102 P. SPERBER, Kantian Psychologism (dissertation), 2017. 
VOLUME 103 J.M. HAMER, Agential Pluralism: A Philosophy of Fundamental Rights 

(dissertation), 2017. 
VOLUME 104 M. IBRAHIM, Sensational Piety: Practices of Mediation in Christ Embassy 

and NASFAT (dissertation), 2017. 
VOLUME 105 R.A.J. MEES, Sustainable Action, Perspectives for Individuals, Institutions, 

and Humanity (dissertation), 2017. 
VOLUME 106 A.A.J. POST, The Journey of a Taymiyyan Sufi: Sufism Through the Eyes 

ofʿImād al-Dīn Aḥmad al-Wāsiṭī (d. 711/1311) (dissertation), 2017. 
VOLUME 107 F.A. FOGUE KUATE, Médias et coexistence entre Musulmans et Chrétiens 

au Nord-Cameroun: de la période coloniale Française au début du 
XXIème siècle (dissertation), 2017.  

VOLUME 108 J. KROESBERGEN-KAMPS, Speaking of Satan in Zambia. The 
persuasiveness of contemporary narratives about Satanism (dissertation), 
2018. 

VOLUME 109 F. TENG, Moral Responsibilities to Future Generations. A Comparative 
Study on Human Rights Theory and Confucianism (dissertation), 2018. 

VOLUME 110 H.W.A. DUIJF, Let’s Do It! Collective Responsibility, Joint Action, and 
Participation (dissertation), 2018. 

VOLUME 111 R.A. CALVERT, Pilgrims in the port. Migrant Christian communities in 
Rotterdam (dissertation), 2018. 



VOLUME 112 W.P.J.L. VAN SAANE, Protestant Mission Partnerships: The Concept of 
Partnership in the History of the Netherlands Missionary Council in the 
Twentieth Century (dissertation), 2018. 

VOLUME 113 D.K. DÜRING, Of Dragons and Owls. Rethinking Chinese and Western 
narratives of modernity (dissertation), 2018. 

VOLUME 114 H. ARENTSHORST, Perspectives on freedom. Normative and political views 
on the preconditions of a free democratic society (dissertation), 2018. 

VOLUME 115 M.B.O.T. KLENK, Survival of Defeat. Evolution, Moral Objectivity, and 
Undercutting (dissertation), 2018. 

VOLUME 116 J.H. HOEKJEN, Pars melior nostri. The Structure of Spinoza’s Intellect 
(dissertation), 2018. 

VOLUME 117 C.J. MUDDE, Rouwen in de marge. De materiële rouwcultuur van de 
katholieke geloofsgemeenschap in vroegmodern Nederland (dissertation), 
2018. 

VOLUME 118 K. GRIT, “Christians by Faith, Pakistani by Citizenship”. Negotiating 
Christian Identity in Pakistan (dissertation), 2019. 

VOLUME 119 J.K.G. HOPSTER, Moral Objectivity: Origins and Foundations 
(dissertation), 2019. 

VOLUME 120 H. BEURMANJER, Tango met God? Een theoretische verheldering van 
bibliodans als methode voor spirituele vorming (dissertation), 2019. 

VOLUME 121 M.C. GÖBEL, Human Dignity as the Ground of Human Rights. A Study in 
Moral Philosophy and Legal Practice (dissertation), 2019. 

VOLUME 122 T. VAN ’T HOF, Enigmatic Etchings. True Religion in Romeyn de Hooghe’s 
Hieroglyphica (dissertation), 2019. 

VOLUME 123 M. DERKS, Constructions of Homosexuality and Christian Religion in 
Contemporary Public Discourse in the Netherlands (dissertation), 2019. 

VOLUME 124 H. NIEBER, Drinking the Written Qurʾan. Healing with Kombe in Zanzibar 
Town (dissertation), 2020. 

VOLUME 125 B.A. KAMPHORST, Autonomy-Respectful E-Coaching Systems: Fending 
Off Complacency (dissertation), 2020. 

VOLUME 126 R.W. VINKESTEIJN, Philosophical Perspectives on Galen of Pergamum: 
Four Case-Studies on Human Nature and the Relation Between Body and 
Soul (dissertation), 2020. 

VOLUME 127 L.J. JOZIASSE, Women’s faith seeking life; Lived Christologies and the 
transformation of gender relations in two Kenyan churches (dissertation), 
2020. 

VOLUME 128 M. KRAMM, Balancing Tradition and Development. A deliberative 
procedure for the evaluation of cultural traditions in development contexts 
(dissertation), 2020. 

VOLUME 129 N. MYLES, Communality, Individuality and Democracy: A Defense of 
Personism (dissertation), 2020. 

VOLUME 130 A. OEGEMA, Negotiating Paternal Authority and Filial Agency: Fathers 
and Sons in Early Rabbinic Parables (dissertation), 2021. 

VOLUME 131 A.A. GOUDRIAAN, 'Seit ein Gespräch wir sind': Language and dialogical 
experience in Hegel (dissertation), 2021. 

VOLUME 132 E.H. MEINEMA, Regulating Religious Coexistence. The Intricacies of 



‘Interfaith’ Cooperation in Coastal Kenya (dissertation), 2021. 
VOLUME 133 K.D. TIMMER, Thresholds and limits in theories of distributive justice 

(dissertation), 2021. 
VOLUME 134 M.J. BLAAKMAN, Confronting Discrimination and Unravelling the Veil of 

Prejudice. The epistemic conditions of responsibility for hidden prejudices  
(dissertation), 2021. 

VOLUME 135 A. GHAJARJAZI, Techniques of the senses: 19th-century media and Shiism 
in Iran (dissertation), 2021. 

VOLUME 136 Y. AL SALMAN, Sharing in Common: A Republican Defence of Group 
Ownership (dissertation), 2022. 

VOLUME 137 L.L. SCHRIJVERS, Questioning the Conversion Paradox: Gender, 
Sexuality, and Belonging amongst Women Becoming Jewish, Christian, 
and Muslim in the Netherlands (dissertation), 2022. 

VOLUME 138 I. VAN DER GIESSEN, Uniform Interpolation and Admissible Rules. Proof-
theoretic investigations into (intuitionistic) modal logics (dissertation), 
2022. 

VOLUME 139 F.H.W. BEKKERS, De Transformatieve Dialoog. Over het oplossen van 
identiteitsgerelateerde morele conflicten (dissertation), 2023.  

VOLUME 140 L.M. VAN ESCH, Sociocultural Interventions: The Performative 
Augmentation of the Social Imaginary (dissertation), 2023. 

VOLUME 141 A.I. RAMÍREZ ABARCA, Logics of Responsibility (dissertation), 2023. 
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