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Uncertainty in non-CO2 greenhouse gas
mitigation contributes to ambiguity in
global climate policy feasibility

Mathijs Harmsen 1,2 , Charlotte Tabak 1, Lena Höglund-Isaksson 3,
Florian Humpenöder 4, Pallav Purohit 3 & Detlef van Vuuren 1,2

Despite its projected crucial role in stringent, future global climate policy,
non-CO2 greenhouse gas (NCGG)mitigation remains a large uncertain factor in
climate research. A revision of the estimated mitigation potential has impli-
cations for the feasibility of global climate policy to reach the Paris Agreement
climate goals. Here, we provide a systematic bottom-up estimate of the total
uncertainty in NCGG mitigation, by developing ‘optimistic’, ‘default’ and
‘pessimistic’ long-term NCGG marginal abatement cost (MAC) curves, based
on a comprehensive literature review of mitigation options. The global
1.5-degree climate target is found to be out of reach under pessimistic MAC
assumptions, as is the 2-degree target under high emission assumptions. In a
2-degree scenario, MAC uncertainty translates into a large projected range in
relative NCGG reduction (40–58%), carbon budget (±120 Gt CO2) and policy
costs (±16%). Partly, the MAC uncertainty signifies a gap that could be bridged
by human efforts, but largely it indicates uncertainty in technical limitations.

Roughly one-third of present-day global warming can be attributed to
non-CO2 greenhouse gases (NCGGs), such as methane (CH4), nitrous
oxide (N2O) and fluorinated greenhouse gases (HFCs, PFCs, SF6 and
NF3)

1. Correspondingly, reaching ambitious climate targets also
requires deep reductions of these gases2,3. Reducing NCGG emissions
as part of amitigation strategy can have substantial benefits, including
(1) cost reductions4–14, (2) rapid impacts on temperature (given the
short lifetimes of some NCGGs5, and (3) substantial health benefits, as
several gases are also air pollutants15. Nevertheless, most attention in
climate policy analysis has been paid to CO2, given its large share in
overall emissions16.

Global climate change mitigation research relies heavily on inte-
grated assessment models (IAMs)17. For projected NCGG mitigation,
these IAM models almost universally use NCGG marginal abatement
cost (MAC) curves. These are region- and source-specific datasets used
in climate policy research and scenario development to estimate
emission reduction potentials and costs. Comprehensive sets of long-

termMAC curves are rarely produced, andmanymodels use relatively
old information18,19. (See Supplementary S1 for an overview of theMAC
data used for a selection of IAMs). Moreover, IAMs typically use only
‘one’ middle-of-the-road estimate. Therefore, the inherently high
uncertainty and possible large consequences for climate policy are
largely unknown or at least hidden in most climate change mitigation
scenarios.

This study aims to understand the uncertainty in the mitigation
potential of emissions from all major NCGG emission sources and the
implications for climate policy feasibility, strategies and costs. For this,
we develop ‘optimistic’, ‘pessimistic’, and default NCGG MAC curves
based on a comprehensive literature review, representing the uncer-
tainty range in relative emissions reductions. We subsequently assess
the implications of the MAC curve uncertainty in meeting the objec-
tives of the Paris Agreement using the IMAGE 3.2 integrated assess-
ment model20,21 (Supplementary S2). By varying assumptions on
human activities, this setup also allows an assessment of the impact of
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human activities on overall uncertainty, next to the implications from
technical uncertainty represented by the MACs.

The MACs represent all major emitting sectors: agriculture,
industry, waste, and fossil fuel production. (See methods and Sup-
plementary S3). They have been developed using the method by ref. 9
but complemented with uncertainty ranges and the inclusion of an
additional approx. 120 studies on mitigation measures. The MAC
uncertainty analysis is performed with the most detail for the agri-
cultural sources since (1) these are hardest to abate (and thus most
relevant in stringent climate scenarios)18, (2) mitigation potentials are
most uncertain, and (3) can be based on the fully bottom-up approach
by ref. 9, with quantitative estimates for all underlying parameters. The
agricultural MACs are built-up from quantitative components, repre-
senting (1) reductions when measures can be applied, (2) technical
applicability, (3) non-technical implementation barriers, (4) technolo-
gical progress, (5) correction for overlap between measures and (6)
costs (See Methods and Supplementary S4). For each component,
uncertainty ranges have been estimated, where possible, based on
literature from up to and including 2022. In a Monte Carlo (MC)
simulation, these input parameters have been varied to determine the
lower and upper bounds of the overall relative reduction potential per
emissions source. For all non-agricultural sources, uncertainty has
been estimated by deriving source-specific maximum reduction
potentials from literature and expert insights from the GAINS research
group22,23 (see Methods and Supplementary S5). A full MC analysis is
not possible for these sources, since most values of the underlying
parameters are unknown, as the short-term MAC data is based on
external databases23–25. However, reduction potentials for non-
agriculture sources are generally higher than for agriculture sources
(measures are typically more applicable for targeting source emis-
sions, with higher reductions when applied), implying lower uncer-
tainty and resulting in lower residual emissions in stringent climate
scenarios9,18. All MAC curves are available for further research
(including model-based analysis). See Supplementary Data File 1.

Results
Agricultural measures
The main goal of the literature study has been to include recent case
studies on agricultural measures to the former dataset9 by collecting
information on reduction efficiencies (RE), technical applicability (TA)
and costs. RE represents the relative emission reduction when a mea-
sure is applied. TA represents the share of the baseline emissions
where a measure can be applied. Table 1 gives an overview of the
included measures and associated RE values (Supplementary S6
includes a table with all emission sources and a description of the
measures and assumptions for all emission sources). Several agri-
cultural sources included in ref. 9 have been excluded here because
they are implicitly part of other measures or conflict with them (CH4

enteric fermentation: Improvedmilk production, extendedproductive
life and for N2O fertilizer: fertilizer free zone, sub-optimal fertilizer
application). The following additional measures have been included in
this study: for CH4 enteric fermentation: Seaweed asparagopsis taxi-
formis as a feed supplement (optimistic case only); for CH4 manure:
solid-liquid separation; for N2O fertilizer: Biochar (optimistic case
only), no-tillage, irrigation practices, and for N2O manure: Anaerobic
digestion and manure acidification.

Next to collecting data on RE values (Table 1), the literature study
also contributed to updating the default assumptions for the compo-
nents TA26,27 and costs28–40. Supplementary S7 provides an overview of
all input values to the Monte Carlo analysis.

Optimistic/default/pessimistic MAC curves
The ‘optimistic’, default and ‘pessimistic’ MAC curves have been
developed for all major NCGG sources for 26 world regions and
the 2020–2100 period (See Supplementary Data File 1. Figure 1 shows

theMAC curves for the five agricultural sources (for example: Western
Europe). See Supplementary S8 for an overview of the non-agricultural
MACs (CH4 and N2O). As the approach and part of the data were
similar to those used in ref. 9, it is relevant to compare the maximum
reduction potentials (MRPs) of the MACs in both studies (see also
Supplementary S9with anMRP comparison for all sources in 2050 and
2100). For the agricultural sources, the ref. 9 default estimate is gen-
erally found between this study’s default and optimistic value, i.e., this
study’s default reduction potential is generally somewhat lower. N2O
emissions from manure form an exception with a slightly higher MRP
due to newly includedmeasures. This is mainly the result of theMonte
Carlo approach used in this study, where lower implementation
and technical applicability values are included in the solution space.
For CH4 rice, recent studies41,42 also indicate a lower reduction effi-
ciency. Further, this study assumes a higher overlap between CH4

manure measures.

Scenario analysis
The MAC curves have been used as an input to IMAGE in conjunction
with Shared Socio-economic Pathway (SSP) based scenario
assumptions43. The scenarios are described in Table 2. The core set to
assess the implications of the MAC uncertainty is based on SSP2, a
scenario with middle-of-the-road socio-economic and technological
development assumptions. The scenarios are set to reach a 1.5- and
2-degreesCelsius target in 2100 (representedby 2.0W/m2 and 2.6W/m2

radiative forcing targets) under optimistic, default and pessimistic
NCGG MAC assumptions (i.e., with high (H), medium (M) and low (L)
reduction potentials, respectively). The mitigation scenario implica-
tions are compared to a no climate policy baseline (Base). Pre-2100
temperature overshoots are allowed. The SSP2-based 2-degree scenar-
ios follow the nationally determined contributions (NDCs) until 2030,
followed by fragmented regional climate policy until 2040 and globally
concerted climate action until 2100 (i.e., category C3b in the IPCC’s
scenario classification44). The 1.5-degree scenarios are of category C2
(allowing a temperature overshoot). These scenarios also allow for
increased pre-2030/2040 climate ambition additional to the NDCs.

In addition, the analysis includes two additional SSP scenarios (in
a 2-degree case) to assess the additional uncertainty due to human
activities: SSP1 and SSP3, with low and high GHG-emitting activities,
respectively (see methods for underlying scenario assumptions). SSP1
is combined with optimistic MAC assumptions (H) and SSP3 with
pessimistic assumptions (L) to represent the extremes in NCGG
emissions. The goal of the scenario analysis is to analyze the effect of
MAC uncertainty and uncertainty in human NCGG emitting activ-
ities on:

• Feasibility of scenarios
• NCGG emission reductions (total and source-specific)
• Climate policy costs
• Remaining global carbon budgets, i.e., the need for CO2

mitigation

The scenarios used to assess uncertainty in GHG-emitting activ-
ities (2H_SSP1 and 2L_SSP3) have only been used for the feasibility and
carbon budget calculations. Policy costs and NCGG reduction are not
directly comparable due to different cost and baseline emission
assumptions.

Climate targets are out of reach under pessimistic assumptions
Of the scenarios described in Table 2, both 1.5 L and 2L_SSP3 have
proven to be infeasible, when using the IMAGE model setup. This
implies that under pessimistic NCGG mitigation assumptions, the 1.5-
degree climate target cannot be reached, despite maximum climate
policy efforts. Further, the combination of high GHG-emitting activ-
ities (SSP3-based) and a low NCGG mitigation potential would even
keep the 2-degree climate target out of reach. Note that these
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conclusions depend on the use of themodel.Model comparisons have
shown that compared to other models, IMAGE can be regarded as
average in terms of inertia/speed of implementation and energy sys-
tem transformation45. This automatically implies that some models
may still find the 1.5-degree target within reach based on more opti-
mistic assumptions. Note further that, given that the world is close to
exceeding 1.5 degrees warming, there are multiple factors that can be
considered ‘make-or-break’ for reaching the 1.5-degree target, such as
the level of near-term CO2 reduction and CO2 removal.

Figure 2 shows the results from the scenario exercise. Optimistic
NCGG assumptions (indicated in light green) correspond with high
NCGG reductions, lower policy costs and higher carbon budgets, with
opposite relations under pessimistic assumptions (indicated in
orange).

Range in NCGG reduction
Unsurprisingly, MAC uncertainly results in considerable ranges in
projected NCGG reductions (panel a) (see also Supplementary S10 for
the emission trajectories). This is indicated by the range under the
same (SSP2) baseline assumptions, with (in relative difference with a
no climate policy baseline in CO2 equivalents, in 2100) 40% to 58% in
the 2-degree case and 53–65% in the 1.5-degree case. Net NCGG
reductions only provide an overall indication because of the policy-
dependent choice of GWPmetric (here: AR4GPW100) to convertNCGG
emissions to CO2 equivalents. Supplementary S11 gives the source-

specific relative and absolute reductions. Methane mitigation is the
main contributor to total NCGG reduction (in 2100: 45–51%), followed
by HFCs (31–38%), N2O (13–17%) and small contributions of SF6 (1.7%)
and PFCs (0.5%). In all mitigation scenarios, total F-gases are reduced
by more than 90% in 2100, leaving most of the uncertainty with CH4

andN2O. The gas-specific uncertainty is also reflected by differences in
the climatic influence of individual gases. The projected (MAGICC6.3-
based) difference in high vs. low radiative forcing in a 2-degree case in
2100 is for (in W/m2): CH4: 0.08, N2O: 0.05, F-gases: 0.02. In other
words, evenwith pessimistic F-gas assumptions, residual emissions are
expected to be low. Uncertainty is relatively high for PFCs and SF6
compared to HFCs, but their net effect is small due to their relatively
low share in total emissions. An average 57% of total CH4 reductions is
realized in fossil energy. However, the scenario differences are largely
defined by differences in projected agriculture emissions. This is also
the case for N2O where 90% of the emissions are produced in
agriculture.

Scenario differences in emission reductions increase over the
century as the average and range in mitigation potentials in the MACs
increase. We find no significant impact of MAC uncertainty on peak
warming, due to the early-century similarities between the emission
trajectories. The maximum radiative forcing levels (typically peaking
between 2030 and 2040) andmaximumglobalmean temperatures are
very similar across the (SSP2-based) 2-degree scenarios and across the
1.5-scenarios (see Supplementary S10). Note however, that peak

Table 1 | Included agricultural reduction measures, associated reduction efficiencies (when fully applied) and underlying
literature

Measures Range in reduction efficiencies (%) References

CH4 - Enteric fermentation Addition of nitrate to the feed 21–42 58–65

Genetic selection and breeding 8–31 66–70

Adding tannins as a food supplement 10–32 71–75

Grain processing 10–38 73,76–78

Improved health monitoring and illness prevention 4–20 28,68,79,80

Seaweed (Asparagopsis taxiformis) 12–99.5 81–88

CH4 - Rice production Rice straw mitigation 26.5–61 29–31,89–91

Direct seeding 16.6–47 29,91–94

Replacing urea with ammonium sulfate 14.18–42 29,91,95,96

Addition of phosphogypsum 28–86 29,91,97–100

Alternate flooding and drainage 18.8–79 29,31,32,41,42,74,91,101–115

CH4 - Manure Manure acidification 61–98 73,90,116–120

Anaerobic digestion 25–75 29,121–123

Solid-liquid separation 46–81 121,122

Manure storage: duration 38–76 124

Housing systems and beddings 4–96 58,73,125–129

Manure storage covering 0–90 58,73,118,130

N2O - Fertilizer Nitrification inhibitors 17–60 53,58,131–141

Improved land manure application 5–50 33,138,142–145

Irrigation practices 15–67 146–149

Biochar 14–38 150–153

Spreader maintenance 22–42 13,29,154,155

Improved agronomy practices 14–54 33,156–161

No-tillage 25–48 162–166

N2O- Manure Reduced dietary protein 0–52 73,167–171

Decreased manure storage time 35–35 73

Manure storage covering 30–75 58,73

Improved animal housing systems and bedding 9–88 58,125,127,128

Anaerobic digestion 34–75 123,172,173

Acidification 0–96 174–179
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temperature is found to be slightly (0.02 degrees) lower in the 2H_SSP1
case, due to earlier allowed action (ratcheting up the NDCs) and lower
(SSP1) baseline emissions. The impact of NCGGmitigation potential on
peak temperature is model- and scenario dependent and could be
further explored in a multi-model study.

Climate policy costs
Global climate policy costs (Fig. 2b) strongly depend on the availability
of NCGG mitigation options, which are on average lower in cost than
CO2 mitigation options9, but also expand the range of possible mea-
sures. When low-cost options are exhausted earlier (i.e., in the pessi-
mistic MAC case), climate targets can only be met by applying higher-
cost mitigation measures (both for CO2 and NCGG emissions). This is

indicated by the 32% difference in cost between the pessimistic and
optimistic 2-degree scenarios and a 42% difference between the
default and optimistic 1.5-degree scenarios, where nearly all options
need to be applied. Although the absolute policy costs are highly
uncertain (here, estimated at roughly 1–2% of global GDP), the relative
scenario differences give a more robust indication of the large impli-
cations of NCGG MAC uncertainty.

Carbon budgets
Under equal climate targets, cumulative CO2 emissions need to com-
pensate for differences in NCGG emissions, which can be expressed in
an allowable global CO2 budget for the remainder of the century
(Fig. 2c). The carbon budgets of the 1.5-degree and 2-degree scenarios

Fig. 1 | Agricultural MAC curves. Example: Western Europe. Optimistic (green),
default (gray) and pessimistic (orange) MACs represent the 5th, 50th, and 95%
percentile in a 1000 MAC range. The blue-shaded area shows the Monte Carlo

range. Left panels: 2050, Right panels: 2100. Relative reduction (Y-axis) is relative to
the present-day, global mean emission intensity. CO2 eq. prices (X-axis) are given
in 2020$.
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fit within the cumulative CO2 range of the AR6’s scenario
classification44, (C2 (1.5-degree with overshoot) –90 to 620 Gt, C3b
(NDCs and 2-degree) 560–1050). This study’s 1.5-degree scenarios are
developed with the aim of having >66.6% chance of staying below 1.5
degrees, whereas the C2 category also allows 1.5-degree scenarios that
have a > 50% chance of staying below 1.5-degrees. This also explains
that the carbon budget of 76 Gt in 1.5M is on the low side of the range.

MAC uncertainty alone translates into a 240 Gt CO2 range in the
carbon budget under 2-degree conditions. Lower (SSP1-based) GHG-
emitting activities can increase this value by a projected 38 Gt. No
feasible low-enough carbon budget (i.e., level of CO2 mitigation) can
be found under the high-emitting, low mitigation conditions in
2L_SSP3. MAC uncertainty is projected to result in a (partial) 184 Gt
range in the carbon budget in the 1.5-degree case. The carbon budget
estimates from this study’s bottom-up uncertainty analysis are rela-
tively consistent with top-down analyses of large scenario ensembles.
As part of the IPCC’s 1.5-degree Special Report and more recent 6th
Assessment Report, it has been estimated that uncertainty in future
NCGGemissions could affect the global carbonbudget by ±250GtCO2

or ±220 Gt CO2, respectively
44,46. Here, we find a slightly smaller range

in a 2-degree case only andwith a singlemodel. The large disadvantage
of the top-down approach is the difficulty in distinguishing between
factors underlying the range. These could also simply be the exclusion
of emission categories in models or a simplified representation of
NCGG emissions, next to assumptions on activities and mitigation
options. Regardless, both the top-down and bottom-up estimates
portray NCGGs as a huge uncertain factor, considering the remaining
CO2 budgets of roughly 1000 Gt and 400 Gt in a 2-degree and 1.5-
degree case, respectively.

Discussion
This study shows the crucial role that NCGGmitigation needs to fulfill
in future stringent climate change mitigation scenarios. It also makes
clear that uncertainty in future NCGG mitigation implies that we can-
not be confident about the feasibility of stringent climate goals. More
NCGGmitigation measure deployment, case studies and research can
help in three ways in this respect: (1) It maximizes learning and thus
reduction potentials, while lowering costs (2) It stimulates early action,
limiting short-term climate change and avoiding limitations in longer-
term upscaling, and (3) It helps understand the limitations of NCGG
mitigation, leading to more accurate and effective policy strategies.

The MAC curves exclude natural emission sources that can be
influenced by human influence, most importantly, CH4 fromwetlands.
The human-induced GHG emission fluxes (notably from CH4 and CO2)
from wetlands are highly uncertain and could either be net positive or
negative47. This study also excludes uncertainties in NCGG

atmospheric chemistry and climate effects. For all non-included fac-
tors, we assumed default values, implying that the uncertainty range is
larger in both positive and negative directions, making it likely that
NCGG uncertainty has even larger implications for climate policy
feasibility.

There are critical differences between the NCGG MAC curves in
this study and those developed by US-EPA24 and GAINS10,13,14. The latter
MAC datasets mainly represent the present-day technical reduction
potentials as measured in multiple case studies, although they do
account for modest technical progress towards 2050 (the studies’ end
year), yet not for changes in the level of technology acceptance. In this
study, we deliberately fully account for all future technological change
and removal of non-technical implementation barriers under stringent
climate policy conditions. The longer-term (up to 2100) perspective of
this study also requires that these factors are included, including the
high uncertainty that comes with them. As these factors contribute to
more effective mitigation, this study’s default MAC curves generally
represent higher reduction potentials, while this study’s pessimistic
MACs are generally found to be in line with US-EPA and GAINS (when
looking at 2050). This fits well with the assumption that present day
reduction potentials should at the very least be reachable in any future
scenario, as with the prerequisite that this study’s MAC range should
span the full potential solution space.

Note that the MAC curves solely specify relative reductions at
different price levels. They are agnostic about the likelihood of climate
ambitions, which are almost certainly regionally constrained (e.g., lack
of finance or ceilings on food prices), represented by the carbon price.
These constraints can be estimated exogenously or specified in IAM-
based scenario studies. The information in the MACs only represents
climate policy implications. Mitigation measures might not be desir-
able when including non-climate socio-economic aspects (e.g., NCGG
pricing leading to higher food prices or negative environmental
implications of intensive agriculture).

TheMACcurves should onlybeused as anuncertainty benchmark
and explicitly not as a representation of high, default and low ambition
levels. It would be misleading to present the optimistic or pessimistic
MACs as realistic options that depend on policy choices. To a large
degree, the MAC mitigation uncertainty indicates uncertainty in
technical limitations, which cannot be influenced by human efforts,
whereas the ‘human ambition element’ should be represented by the
carbon price or differences in human activities (represented by dif-
ferent SSP pathways). However, it can be argued that highly uncertain,
‘soft’ MAC components such as the implementation potential (repre-
senting the level of social barriers) or R&Defforts behind technological
progress could allow for some minor additional gain at high ambition
levels.

Methods
Themethod section is structured in four parts: (1) A description of the
system boundaries and the coverage of global NCGG emissions, (2) An
approach to construct the MACs (provided in more detail in Supple-
mentary S4), (3) The development of the ‘optimistic’, ‘default’ and
‘pessimistic’ MACs (these MAC curves are made available as Supple-
mentary Data 1) and (4) A description of the scenario analysis.

System boundaries
TheMAC curves and scenario assessment in this study are based on the
emission source categories of the IMAGE 3.2model20,21, representing all
anthropogenic NCGGs. IMAGE is an ecological-environmental inte-
grated assessment model (IAM) framework that simulates the envir-
onmental consequences of human activities worldwide. It is a partial
equilibrium (with price elastic energy and resource demand), simula-
tion model (without foresight). However, a simplified emulator of the
model (called FAIR) canbe runprior to running the framework toobtain
least-cost climate policy data for mitigation scenarios (with a so-called

Table 2 | Scenario setup

Scenario NCGG MAC reduc-
tion potential

Human GHG-
emitting
activities

Radiative forcing
target 2100 (W/m2)

Base n.a. Medium (SSP2) n.a.

2H High/Optimistic Medium (SSP2) 2.6

2M Medium Medium (SSP2) 2.6

2L Low/Pessimistic Medium (SSP2) 2.6

1.5H High/ optimistic Medium (SSP2) 2.0

1.5M Medium Medium (SSP2) 2.0

1.5L Low/Pessimistic Medium (SSP2) 2.0

2H_SSP1 High/Optimistic Low (SSP1) 2.6

2L_SSP3 Low/Pessimistic High (SSP3) 2.6

Scenarios are SSP2 based, unless otherwise specified under Scenario. No target is set for Base.
The IMAGE SSP2 baseline results in a forcing level of 6.2 W/m2 in 2100. 1.5 L and 2L_SSP3 are
infeasible scenarios (further discussed in Results).
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recursive-dynamic solution algorithm). IMAGE represents socio-
economic developments in 26 world regions to capture spatial and
multi-scale differences. IMAGE has a relatively high-detailed land use
representation compared to other IAMs. Land use, land cover,
and associatedbiophysical processes are treated at a (5 × 5 arcminutes =
10 × 10 km at the equator) grid level to capture local dynamics. IMAGE
uses the reduced-complexity climate model emulator MAGICC648 to
develop climate changemitigation pathways aimed at reaching climate
targets. Calculated climate policy costs in mitigation scenarios repre-
sent first-order expenditures (i.e., the ‘area under the MAC curve’) and
exclude further economic impacts on the global economy. See Sup-
plementary S2 for further model information.

TheMAC curves in this study cover 92% of the present-day NCGG
emissions and 96% of the projected emissions in 2100 (see Supple-
mentary S3). TheMAC curves represent potential emission reductions
under CO2 equivalent (eq.) prices up to 4000 $(2005)/tCeq. (or 1446
$(2020)/tCO2eq.), themaximumprice that is applied in the IMAGE IAM
framework. Emissions and emission reductions are calculated for the
26 global IMAGE regions. Regional differences in present-day emission
intensities and activities are fully represented in the scenario assess-
ment. Regional emissions in the base year (2015 to 2020, depending on
the source) are calibrated with data from several detailed
databases covering different emissions sources; CEDS49, GAINS23,
EDGAR 4.2.350,51.
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Fig. 2 | Scenario results. 2 Degree scenarios: left panels, 1.5-degree scenarios: right
panels. NCGG reduction (a) shows reduced Gt CO2 equivalents (based on AR4 100-
yr GWP) relative to baseline (SSP2) with % reductions in bars. Policy costs (b)
represent global, first-order direct expenditures as a percentage of global GDP
(PPP), discounted over the 2020–2100 period. Discount rate follows the yearly

economic growth, with a Ramsey/Stern function. Carbon budgets (c) represent the
net global CO2 emissions over the 2020–2100 period. Bar colors indicate scenario
types: optimistic MAC and low emissions (green), optimistic MAC (light green),
default MAC (gray), pessimistic MAC (orange).
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Construction of the MAC curves
The MACs are built up from individual source-specific measures and
assumptions on long-term developments (See Supplementary S4 for a
more detailed description). The relative reduction potential (RP) (in %)
of eachmitigationmeasure in year t and region r is determinedbyEq. 1.
The maximum reduction potential (MRP) (in %) is the maximum rela-
tive abatement compared to baseline source emissions when all
source-specific measures are implemented (Eq. 2).

RPðt,rÞ =RE
*TAðrÞ

*OVcorrðt,rÞ
*IPðtÞ ð1Þ

MRPðt,rÞ = ðRP1ðt,rÞ +RP2ðt,rÞ +RP3ðt,rÞ . . . +RPxðt,rÞÞ*TPðtÞ�Bcorrðt,rÞ ð2Þ

With (all in %): TA: Technical applicability, this is the part of the
baseline that can technically be covered by the measure. This is often
100%, but can be lower, e.g., if only a sub-process is targeted or if
regional climatic circumstances are partly unsuitable. RE: Reduction
efficiency, i.e., the relative reduction in case a measure can be applied,
generally based on multiple case studies. IP: Implementation potential
represents (the lack of) non-technical barriers. This is assumed to
increase in time due to improved technology diffusion and policy
acceptance. OVcorr: Correction for overlap between measures that
target the same emissions. If a subsequent measure is applied, it has a
diminished benefit due to lower remaining emissions. Note that this
correction increases with time as IP increases (based on ref. 52, see
Supplementary S2). TP: Technological progress, increase of the reduc-
tion potential with time as a result of new or improved technologies.
This is the only factor that is larger than 100% (see Supplementary S2).
Bcorr: Correction for regional emission reductions that already occur in
the baseline scenario, e.g., due to zero or negative cost measures, such
as the use of fugitive CH4 emissions as an energy source, or non-climate
policy reductions, such as from air quality measures.

The combination of measures with the highest estimated max-
imum reduction potential is used to construct MAC curves. It is
assumed that the least costly measures are implemented first. When
multiple measures are used, mitigation costs increase due to dimin-
ishing returns when measures overlap, with for any measure x:

Cost newx =Cost oldx*1=OVcorrx ð3Þ

Regional differences in mitigation potential are included if these
are known. These differences are reflected in the parameters: technical
applicability, reduction efficiency, and costs. Partly, these are due to
socio-economic circumstances (e.g., different present-day emission
intensities anddifferent levels of advancements in farming techniques)
that can have short-term implications on mitigation potentials. How-
ever, in the case of similar biophysical circumstances across regions,
we assume convergence in mitigation potentials (i.e., in minimum
emission intensities) in the long term and at maximum carbon prices.
Where differences in mitigation potentials are known to be caused by
biophysical differences, such as regional temperature, precipitation,
geography, etc., this has been taken into account in the form of
quantitative constraints of the components underlying the MACs. In
this study, we differentiated between regions with high, medium, and
low technical applicability for enteric fermentation and CH4 manure
(e.g., due to differences in climate and farming systems), based on the
GAINS model global CH4 mitigation potentials for livestock in 2030
and 205022 (see Supplementary S7). In this assessment, we have esti-
mated the regional technical applicability (TA) on MAC data repre-
senting the samemeasures (with the sameRE) across regions, sowhere
a higher reduction potential (RP) was attributable to higher applic-
ability of themeasures. Regional differences in reduction efficiency are
incorporated in the measure ‘anaerobic digestion’, which has a higher
efficiency in warmer environments. Regional differences in costs are

incorporated where available (see Tables S7.2 and S7.3). It is known
that costs can be different across regions, for instance, due to differ-
ences in labor costs, costs of capital (with the last two factors typically
being negatively correlated), energy and resource requirements and
climate-related durability. Unfortunately, in most cases, very little
direct information on regional cost differences can be found in lit-
erature, in which case we assumed an aggregated global estimate.

The MACs for the agricultural emission sources (CH4 from rice
production, CH4 fromenteric fermentation in ruminants, CH4 andN2O
from manure, and N2O from fertilizer) have been constructed fully
bottom-up, using the MAC component-based methodology (Eqs. 1 &
2), as was also used in ref. 9. Here, we have updated the agricultural
MACcurves by including data onmeasure-specific reduction efficiency
(mainly), technical applicability, cost and source-specific maximum
reduction potentials from ±120 studies in combination with the
±80 studies used as a basis for ref. 9. For the Monte Carlo analysis,
ranges have been defined for all underlying MAC components, based
on the literature review (see Supplementary S7). The newly included
studies have been found with a literature search on Scopus, Google
Scholar, and Web of Science, using the following keywords: names of
emission sources (both agricultural and non-agricultural), names of
measures (where known), ‘non-CO2’, ‘CH4’, ‘N2O’, ‘greenhouse gas’,
‘mitigation’, ‘reduction’, ‘measure’, ‘marginal abatement cost’, ‘agri-
culture’. Papers were included if: (1) measures were primarily aimed at
emission reduction, (2) results were presented quantitatively and (3)
relatable to source-specificMAC components.Most studies, additional
to ref. 9, are predominantly published in the 2018–2022 period.

The default MAC curves for the non-agricultural sources are
directly based on ref. 9, with only a few, minor modifications to
the default values for the maximum reduction potentials (MRPs),
where this was justified by the literature review (see Supplementary S6
for a detailed description of the assumptions by source). These central
estimates were complemented with optimistic and pessimistic MACs,
with MRPs based on the literature study, which were used to scale the
default MACs (see Supplementary S5). Waste and industry MACs (CH4

from landfills/solid waste, CH4 from sewage andwastewater, N2O from
adipic and nitric acid production, N2O from transport, and N2O from
domestic sewage), are based on data up to 203024,53–55 but have added
assumptions on the technological progress up to 2100, largely based
on current best practices9. Fossil energy MACs (CH4 from coal, oil and
gas production) are based on a dataset from the GAINS model23,25 with
added long-term (MRP) assumptions on including promising tech-
nologies that are currently not in use on a large scale. The default F-gas
MACs (hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and Sulfur
hexafluoride (SF6) are directly used from ref. 9, including recent cali-
brations by refs. 51,56 F-gas emissions and mitigation are endogen-
ously calculated in an IMAGE module, which calculates future F-gas
emissions based on economic growth and population data, as well as
reductions due to GHG pricing. This study’s F-gas calculations are less
complex than for the other sources. Mitigation measures are con-
sidered complementary (i.e., OVcorr = 100%) and no non-climate
policy related reductions are assumed in the baseline (i.e., Bcorr = 0%).

MAC uncertainty range agricultural sources
The uncertainty analysis for agricultural sources is based on a Monte
Carlo (MC) analysis where the underlying parameters have been ran-
domly varied and subsequently run 1000 times. The outcome of the
MC analysis is a range in relative reductions at all carbon eq. prices
between zero and 4000$/tC. The pessimistic, default and optimistic
MACs are based on the 5th, 50th, and 95th percentile in reductions for
each carbon price, respectively.

Each MAC component value within a range is given equal weight
(i.e., uniform distribution) (see Supplementary S7 for the input values,
assumptions, and motivation). The minimum and maximum for the
reduction efficiency (RE) component are based on case studies found
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in the literature. For each measure, the highest and lowest outliers
were excluded to prevent the distribution from being skewed. The
minimum and maximum of the distributions of the other MAC com-
ponents are based on adelta value (all in ±%points, since uncertainty is
expected to be equally large at high and low values, except for costs,
which is given in US$ andwhere absolute uncertainty is expected to be
proportional to values) around the default component value (unless
new information was available, this was based on ref. 9. The default
delta values are (in ±%points): TA (40), OVcorr (30), IP (30), TP (10)
(note, this applies to the ‘diff’ term, explained in S7) and (in ±%):
Cost(80). The cost delta value is large because of particularly large
uncertainty. The values of all components can never be lower than 0
and higher than 100%. Where found relevant, based on existing lit-
erature, the sampling was constrained by technical limits (e.g., a TA
value is never allowed to be higher than 70% if it is known that 30% of
the baseline emissions cannot be reduced by a certain measure).

MAC uncertainty range non-agricultural sources
The optimistic, default and pessimistic MACs for the non-agricultural
sources have been developed by varying the maximum reduction
potentials (MRPs) in 2050 and 2100 and scaling them in intermediate
years. A full MC analysis is not possible for these sources, since most
values of the underlying parameters are unknown, as the short-term
MAC data is based on external databases. However, reduction poten-
tials are generally higher, implying lower uncertainty and lower residual
emissions in stringent climate scenarios9,18. ThedefaultMACs are largely
equal to those developed by ref. 9, with some small modifications (see
Supplementary S5 for the quantitative assumptions by source). Where
known, estimates of current technical reduction potentials (based on
projections by GAINS and US-EPA10,22,24) were used as a minimum value
for the pessimisticMACs. This is particularly relevant for F-gases, where
emissions, if unmitigated, are estimated to increase to a total of 25% of
total NCGG emissions (see Supplementary S3). However, with default
assumptions, F-gas emissions are projected to be largely mitigated
under stringent climate policy, due to high reduction potentials from
well-known technologies9. Supplementary S5, therefore, describes
possible considerations to lower the F-gas reduction potentials in the
pessimistic MAC, to be able to analyze if a substantial increase in resi-
dual F-gas emissions in a mitigation scenario could be likely.

Scenario analysis
The MAC curves have been used as an input to IMAGE 3.220,21 in con-
junction with Shared Socio-economic Pathway (SSP) based scenario
assumptions43. The scenarios are described in Table 3. The core set to
assess the implications of the MAC uncertainty is based on SSP2, a
scenario with middle-of-the-road socio-economic and technological

development assumptions. In these scenarios, a 1.5- and 2-degrees
Celsius target shouldbe reached in 2100 (representedby 2.0W/m2 and
2.6 W/m2 radiative forcing targets), under optimistic, default and
pessimistic NCGG MAC assumptions (i.e., with low (L), medium (M)
and high (H) reduction potentials, respectively). The mitigation sce-
nario implications are compared to a no climate policy baseline (Base).
Pre-2100 temperature overshoots are allowed. The SSP2-based 2-
degree scenarios follow the nationally determined contributions until
2030, followed by fragmented regional climate policy until 2040 and
globally concerted climate action until 2100 (i.e., category C3b in the
IPCC’s scenario classification44). The 1.5-degree scenarios are category
C2 (allowing a temperature overshoot).

In addition, the analysis includes two additional SSP narratives (in
a 2-degree case) to assess the additional uncertainty due to human
activities: SSP1 and SSP3, with low and high GHG-emitting activities,
respectively. The underlying scenario assumptions for SSP1 and SSP3
are described in ref. 57 with included updates21. Next to having lower
baseline emissions, the SSP1 mitigation scenarios also include ratch-
eting up the ambition of the NDCs before 2030, resulting in additional
early century emission reductions. SSP1 is combined with optimistic
MAC assumptions (H) and SSP3 with pessimistic assumptions (L) to
represent the extremes in NCGG emissions. The goal of the scenario
analysis is to analyze the effect of MAC uncertainty and uncertainty in
human NCGG emitting activities on:

• Feasibility of scenarios
• NCGG emission reductions (total and source-specific)
• Climate policy costs
• Remaining global carbon budgets, i.e., the need for CO2

mitigation

The scenarios used to assess uncertainty in GHG-emitting activ-
ities (2H_SSP1 and 2L_SSP3) have been used for the feasibility and
carbon budget calculations only. Policy costs and NCGG reduction are
not directly comparable due to different cost and baseline emission
assumptions.

Data availability
The optimistic, default and pessimistic CH4 and N2O MAC curves
generated and applied in this study areprovided in the Supplementary
Data file 1. This data is also directly available in the NAVIGATE database
[https://www.navigate-h2020.eu/wp-content/uploads/2022/11/Data_
MAC_CH4N2O_Harmsen-et-al_PBL.xlsx].

Code availability
We provide a stand-alone, Python-based script that can be used to
perform theMonte Carlo analysis to build and analyze the agricultural
MACs (Supplementary Software 1).
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