
Multi-Temporal Convolutions for Human Action
Recognition in Videos

Alexandros Stergiou
Department of Information and Computing Sciences

Utrecht University
Utrecht, The Netherlands

a.g.stergiou@uu.nl

Ronald Poppe
Department of Information and Computing Sciences

Utrecht University
Utrecht, The Netherlands

r.w.poppe@uu.nl

Abstract—Effective extraction of temporal patterns is crucial
for the recognition of temporally varying actions in video. We
argue that the fixed-sized spatio-temporal convolution kernels
used in convolutional neural networks (CNNs) can be improved
to extract informative motions that are executed at different time
scales. To address this challenge, we present a novel convolution
block that is capable of extracting spatio-temporal patterns
at multiple temporal resolutions. Our proposed multi-temporal
convolution (MTConv) blocks utilize two branches that focus on
brief and prolonged spatio-temporal patterns, respectively. The
extracted time-varying features are aligned in a third branch,
with respect to global motion patterns through recurrent cells.
The proposed blocks are lightweight and can be integrated into
any 3D-CNN architecture. This introduces a substantial reduction
in computational costs. Extensive experiments on Kinetics, Mo-
ments in Time and HACS action recognition benchmark datasets
demonstrate competitive performance of MTConvs compared
to the state-of-the-art with a significantly lower computational
footprint1.

I. INTRODUCTION

The variations in how humans execute tasks and how they
interact with each other present significant challenges for
the recognition of their actions in videos [1]. Differences in
visual appearance can largely be captured by deep convo-
lutional neural networks (CNNs). For action recognition in
videos, 2D convolutions have been successfully extended to
3D convolutions to additionally extract informative patterns
over time. Although connections between the three dimensions
do exist [2], the symmetrical processing of temporal and
spatial information significantly limits how the variations in
the execution of actions over time can be modeled. For
example, as shown in Figure 1, examples in the same action
category can significantly differ in the type and duration of
the performed movements.

Current efforts in action recognition are based on 3D convo-
lutions [3] with fixed-sized kernels. We observe that variations
in the duration of the performance of an action are typically
not in the order of magnitude. Therefore, a greater number
of variations in temporal movements can be captured with
the extraction of different timescale spatio-temporal patterns.
The flexible extraction of space-time features can improve the
feature representation capabilities of space-time models.

1Our code is available at: https://git.io/JfuPi

A.

B.

C.

Fig. 1. Three examples of basketball passes of different
duration: (A) brief hand-off pass, (B) longer wing pass, and

(C) full-court pass spanning the entire clip duration.

In this work, we introduce a convolutional block that explic-
itly models temporally variant motion patterns and their cross-
feature dependencies. We observe that contributing factors
relating to the temporal complexity of actions are primarily
recording-related, such as camera motion and video frame
rates, or performance-related corresponding to the actor’s pre-
potent identity of an action [4]. Motivated by this distinction,
we believe that 3D convolutions are inherently constrained to
capture only fixed-sized local patterns. To address the temporal
complexity of human actions in videos, we propose a multi-
temporal convolution (MTConv) block that captures spatio-
temporal features variations within their representations. As
shown in Figure 2, the blocks consist of three branches:
a local branch (L), a prolonged branch (P), and a global
aggregated feature importance branch (G). The local and
prolonged branches focus on spatio-temporal patterns that
are performed in short and longer spatio-temporal windows,
respectively. The global aggregated feature importance branch
aligns the activations of these two branches based on the
temporal dynamics of motions across the entire video. The
novel design of MTConvs, and the resulting MTBlocks, enable
the discovery of patterns across multiple time-scales as well
as their combined temporal attention over the entire video
sequence. Owing to this property, we can capture local feature
dependencies within the (global) scale of the entire sequence.

We validate the proposed blocks on action classification for
third person videos, on four large-scale benchmark datasets

978-0-7381-3366-9/21/$31.00 ©2021 IEEE

20
21

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-6
65

4-
39

00
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IJC
N

N
52

38
7.

20
21

.9
53

35
15

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:46:24 UTC from IEEE Xplore. Restrictions apply.

and an additional fine-tuning dataset. We report performance
on Kinetics-400 [5] demonstrating the descriptive quality of
MTConv features over equivalent state-of-the-art approaches
with similar or larger computational requirements. We further
test our method on the Moments in Time [6] dataset that
includes large motion variances across examples of the same
action class. Equivalently, we present results on the recent
Kinetics-700 [7] and HACS [8] datasets. The feature transfer
capabilities are then tested with pre-trained models used on
UCF-101 [9].

We discuss current progress in action recognition in Sec-
tion II. We then introduce the proposed MTConv blocks in
Section III. Evaluation of our work is shown in Section IV,
and we conclude in Section V.

II. RELATED WORK

Two-stream networks. Optical flow is a widely used
method for representing motion information across video
frames. In two-stream networks [10], one stream is responsible
for handling individual (RGB) frames sequentially, while the
other processes the optical flow equivalent motions. Informa-
tion from both streams is then fused at the end. Enhancements
to the two-stream approach include the addition of lateral
connections between the two streams, for the inclusion of
temporal information within spatial patterns [11], division
into temporal segments [12] and spatial-based and temporal-
based encoding of segments [13]. The main limitation of the
two-stream approach is the strong dependence on hand-coded
optical flow inputs that prevents the joint learning of complex
spatio-temporal features in an end-to-end manner.

3D convolutions. An alternative approach for utilizing
temporal information is the use of 3D convolutions that operate
over space-time volumes of stacked frames [14]. The use
of 3D convolutions has shown improvements on modeling
complex spatio-temporal features [15], [16]. Compared to
their 2D counterparts, the large computational requirements
of 3D convolutions is a disadvantage with much of the recent
literature aimed at improving the efficiency of 3D-CNNs.
Tran et al. [17] have considered decoupling 3D convolutions
into temporal-only and spatial-only, thus strongly reducing
the number of trainable parameters. 3D grouped convolutions
[18], [19] have also shown benefits on performing convolutions
in groups and decreasing the number of GFLOPs without a
reduction in accuracy. Other works have focused on step-wise
progressive network expansions [20] that improved the overall
efficiency 3D CNNs. Lin et al. [21] have introduced temporal
shifting activations, emulating the effect of 3D convolutions
while relying on frame-based 2D convolutions. This temporal
shift module (TSM) has recently been combined with a 3D
convolution method to enable or disable shifting [22].

Temporal streams in 3D convolutions. Inspired by the
two-steam 2D CNNs with optical flow, initial works on
stream-based 3D CNNs have focused on using dual inputs of
stacked RGB frames alongside optical flow [5]. Later works of
Feichenhofer et al. [23] proposed a 3D model of dual adjacent
input-based frame sampling of slow and fast frame rates.

With the same rationale, Qiu et al. [24] showed how global
paths using entire videos as inputs and local paths with local
spatio-temporal segments can be used in two separate network
pathways. Others have considered block-based approaches
with octave convolutions [25] to model temporal variation in
the frequency domain.

Although these methods have shown great promise in ex-
tracting robust spatio-temporal features, they do not directly
address the complex motion features and their relationships
across varying temporal scales. In contrast, our tri-branch
method aims to address within convolutional blocks the tem-
poral disparities of actions through the extraction of different
periodic spatio-temporal features and the discovery of their
dynamics.

Spatio-temporal attention. Image-based methods Squeeze
and Excitation [26] and Gather and Excite [27] consider
self-attention mechanisms as calibration methods for convolu-
tional features in images. Extensions to video have also been
proposed based on attention clustering [28] or through the
division of information in terms of appearance and spatial
relations [29]. This has also led to the introduction of recurrent
sub-networks to explore the dynamics of extracted patterns
[30]. Recent works (e.g. [31]) further utilize self-attention for
the creation of local importance maps and location-invariant
feature weights.

Our method uses temporal attention through the alignment
of activations with Squeeze and Recursion modules [30] on the
global aggregated feature importance branch. This enforces
coherence of the learned spatio-temporal patterns despite tem-
poral variations.

III. MULTI-TEMPORAL NETWORKS

In this section, we first describe multi-temporal convolu-
tions (MTConvs) and their inner workings in terms of how
information is processed. We then detail the structure of the
blocks (MTBlocks, shown in Figure 2) in which they operate
in Section III-B. In Section III-C, we introduce the CNN
architecture that employs these MTBlocks.

Formally, layer activations are denoted by a(C×T×H×W)

with C channels, T frames, height H and width W . Branch
activations are denoted by aL for the local branch (L) and aP
for the prolonged branch (P). Layers are indexed with l and
indicated as a[l] or following a[l],L, a[l],P in branch notation.

A. Multi-Temporal Convolutions (MTConv)

The local and prolonged branches each use a portion of
the number of channels (C̃) of the layer (l). To determine the
number of channels for each branch, a channel ratio parameter
δ is introduced. We denote the channel size of the input
activations (a[l−1]) as C. Channels CL, based on ratio δ, are
the lowest integer value approximation (through the homonym
function denoted with bfloorc). Respectively, the maximum
integer value approximation (dceile) is used for channels CP :

CL + CP = C̃ , where

CL = bδ ∗ C̃c and CP = d(1− δ) ∗ C̃e
(1)

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:46:24 UTC from IEEE Xplore. Restrictions apply.

MTBlock

predictions frames

Res Block

T

H W

local () branch operations prolonged () branch operations

common operations for both and branches

in-block kernel-based operations

global () branch operations

res2 res3 res4 res5

Residual or MT block

Fig. 2. MTNet architecture. Residual blocks (left) in the X3D [20] are replaced by the proposed MTBlocks (right). Blocks
contain three consecutive multi-temporal convolutions (MTConv, center) followed by the Squeeze and Recursion (SR, left of

center) feature alignment. We denote element-wise additions with ⊕ and element-wise multiplications with ⊗.

Inputs are first processed by the L and P branches. L
processes a single input a[l−1] of size (C × T ×H ×W).
P is performed over input pair (a[l],L, a[l−1]) with the first
volume being the resulting activations from branch L of size
(CL×T ×H×W) and the second being the original layer
input. Dual inputs are used in the prolonged branch (P)
as spatio-temporal patterns of elongated duration and spatial
sizes are strongly correlated with corresponding more local
features, which are extracted by L. With prolonged features
incorporating the complexity of local short-term ones, the P
branch effectively operates over CL+Cin channels addressing
the added complexity over L. The L branch and P branch
feature extraction process is summarized in Equation (2):

a[l] = L(a[l−1])a (P(L(a[l−1]), a[l−1])) (2)

where a denotes the concatenation of the outputs from the
two branches into a single volume.

Local branch in MTConv. The local branch is used for the
extraction of short-term local motions within the input activa-
tions. Given input (a[l−1]) we use a Conv3D followed by batch
normalization (BN) [32] and compute feature volume (z[l],L)
of CL channels followed by non-linearity (g()) with ReLU.
Unless stated otherwise, g() refers to a ReLU activation. The
final branch output takes the form of a[l],L = g(z[l],L).

Prolonged branch in MTConv. The prolonged branch aims
at the extraction of patterns of extended duration, incorporating
information from the local branch (L) and the layer input. To
explore long-temporal features, both inputs are reduced by a

factor of two across their spatio-temporal dimensions. Such a
size reduction provides a balanced trade-of between accuracy
and computation. More aggressive reduction strategies using
larger factors lead to significant information loss. Both inputs
are initially downsampled spatially by their per-frame regional
exponential maximum with SoftPool [33] with the activations
produced being of size T ×H ′ ×W ′ (where H ′ = H/2
and W ′ = W/2). The activations are then downsampled
temporally by a temporal triplet cosine frame selection to
size T ′ = T/2. We provide detailed explanations for both
methods later in the section. The inclusion of receptive fields
twice the duration of those in L allows for the exploration of
temporal movements of larger spatio-temporal regions without
the increased computational requirements of kernels double
the size. Extended temporal patterns for inputs a[l−1] and
a[l],L are extracted by Conv3D operations followed by BN.
The complete process is formulated as follows:

a[l],P = I(g(z[l],L→P)⊕ g(z[l],P)) (3)

in which ⊕ denotes element-wise addition and I() is the
spatio-temporal tri-linear interpolation of the volume from size
(T ′×H ′×W ′) to original size (T ×H ×W). The feature
volume z[l],L→P corresponds to the extracted patterns from
the reduced input a[l],L, while z[l],P corresponds to features
extracted from a[l−1]:

z[l],L→P = T (a[l],L) ∗ wL→P and z[l],P = T (a[l]) ∗ wP (4)

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:46:24 UTC from IEEE Xplore. Restrictions apply.

with T () the triplet cosine frame selection for a spatially
pooled volume (a). The convolutional weight vectors for the
respective inputs are denoted as wL→P and wP .

Prolonged branch spatial downsampling. Downsampling
blocks use soft-maximum approximation (SoftPool, [33]), to
reduce the spatial dimensions of the input activations. The
method uses the softmax weights of activations with each of
the inputs within the kernel region having a proportional effect
to the output. This is formulated given an input a and frame
(t) region R for size H×W :

at,r =
∑
r∈R

eat,r ∗ at,r∑
k∈R

eat,k
, ∀ t ∈ |T | (5)

pair-wise cosine
similarity

cosine triplet selection

. . .

. . .

. . .

. . .

T

H
W

triplet cosine
similarity

spatial
vectorization

frames

Fig. 3. Temporal triplet cosine similarity frame selection.
Selection is based on the channel-wise sum (⊕) of cosine

similarities per pair of adjacent frames (cos(θa(t)
)),

calculated from their spatially-summed volumes (a).

Prolonged branch temporal downsampling. The exten-
sion of image-based pooling methods to time-inclusive data
comes at the expense of a decrease in spatial detail through the
fusion of multiple frames. As the proposed method depends
on the preservation of such features in order to extract their
extended spatio-temporal patterns, we instead introduce a
frame-selection sampling method to decrease the temporal
dimensionality of the spatially-reduced activation volume (a).
We termed this method temporal triplet cosine frame selection.

The frame selection process is shown in Figure 3. Initially,
for each frame t all activations are summed spatially to pro-
duce a single value per frame. The spatially-summed activation
(a) contains frame-wise activation vectors. These vectors can
be used to measure the feature-wise similarity per pair of
frames using their respective dot product and magnitude:

cos(θa(t)
) =

∑
c∈C

a(t,c) ∗ a(t+1,c)√∑
c∈C

a2
(t,c) ∗

√∑
c∈C

a2(t+1,c)

(6)

Their cosine similarity is then summed in similarity pairs
(P (θa(t)

, θa(t+1)
) = cos(θa(t)

)+cos(θa(t+1)
)) for the creation of

triplets. This represents a concatenated view of the similarity
in features for frame (t) in comparison to features of the
preceding frame (t−1) and succeeding frame (t+1). Temporal
pooling by triplets then takes the form of selecting the frame
locations (N) with the lowest |T |/2 triplet cosine similarities.
This cosine-based sampling can reduce feature redundancy
across frames while focusing of frames that are found to be
more informative:

argmin
∀n∈N

P (θa(n)
, θa(n+1)

) = cos(θa(n)
) + cos(θa(n+1)

),

where N ⊂ T, |N | = |T |/2
(7)

As frames are selected based on their similarity instead
of being temporally fused, the per-frame activations remain
consistent over the produced decreased volume.

B. Multi-Temporal Blocks (MTBlocks)
Global aggregated feature importance. We align the

concatenated activations of the local (L) and prolonged (P)
branches based on the importance of each feature in the
context of the entire video sequence. The role of the global
aggregated feature importance branch (G) is the creation of co-
herent activations based on averaged feature attention through
Squeeze and Recursion [30] with GRU [34] recurrent cells.
The branch operates over a vectorized version of the original
volume pooled by its spatial dimensionality (pool(a[l−1])). The
pooled volume is processed through a dual-layer recurrent
sub-network for the discovery and amplification of globally-
informative features. Initial refinement of salient features is
achieved by the update gate (z(t)) that uses the per-frame
(t) instance input (pool(a[l−1])(t)) with state (h(t−1)) of the
previous recurrent cell (for time t− 1), through a sigmoid (σ)
activation and weight Wz (with bias term bz):

z(t) = {σ(Wz ∗ [h(t−1), pool(a[l−1])(t)] + bz)} (8)

Cell input pool(a[l−1])(t) and previous state outputs h(t−1)
also pass through a reset gate (r(t)), with weight (Wr) and
bias (br) terms, to ignore temporally inconsistent features.

r(t) = {σ(Wr ∗ [h(t−1), pool(a[l−1])(t)] + br)} (9)

Both update and reset gates act in a complementary manner
on the same inputs. Based on the activations produced by the
reset gate, a candidate hidden state is computed (h̃(t)) with
a tanh activation, and reduced influence from the previous
state (h(t−1)) based on r(t). The produced cell state is the
fusion of a proportion of the previous state (z(t) ∗ h(t−1)) and
the supplementary portion of the candidate hidden state ((1−
z(t)) ∗ h̃(t)), as summarized in Equations (10) and (11):

h̃(t) = tanh(Wh ∗ [r(t) ∗ h(t−1), pool(a[l−1])(t)] + bh) (10)

h(t) = z(t) ∗ h(t−1) + (1− z(t)) ∗ h̃(t) (11)

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:46:24 UTC from IEEE Xplore. Restrictions apply.

All cell outputs (h(t)) are concatenated to create a filtered
activation map of intensities. As shown in Figure 2, this
temporal excitation volume is used in conjunction with the
original input (a[l−1]) through an element-wise multiplication
operation. The produced activation map (a[l]) effectively incor-
porates the global feature dynamics for the discovered features
of different spatio-temporal region sizes.

C. Multi-Temporal Networks (MTNet)

We introduce three MTNet architecture variants that use
as backbones the corresponding X3DS , X3DM and X3DL

models which vary in size and GFLOP usage, and replace their
Residual blocks and 3D Convs with the proposed MTBlocks
and MTConvs, as shown in Figure 2. We denote our models as
MTNetS , MTNetM and MTNetL. The architectures follow a
step-wise network and block expansion as recently proposed
in video [20] and image-based models [35]. Details of the
three proposed models in terms of the number of parameters
and GFLOPs appear in Table I.

IV. EXPERIMENTS AND RESULTS

We evaluate our MTBlock and the three MTNets on five
popular action recognition benchmark datatsets and compare
them against the current state-of-the-art in Section IV-D. In
Section IV-E, we compare MTNets with different channel
ratios (δ) as well as regular 3D convolutions in terms of
classification accuracy and computational complexity. Finally,
we evaluate the performance in a transfer learning setting
(Section IV-F).

A. Datasets

For our main evaluation, we use four large-scale action
recognition datasets. The results presented in this section are
calculated on the validation sets of Kinetics-400 (K-400) [5],
the extended Kinetics-700 (K-700) [7], Moments in Time
(MiT) [6] and Human Action Clips Segments (HACS) Clips
[8] datasets. For the transfer learning task, we evaluate on the
smaller UCF-101 [9] dataset.

B. Training

For HACS models are trained from random initialization
(from scratch) without pre-training. We set the mini-batch size
to 16 clips per GPU, with the total mini-batch size of 64. All
experiments were performed with half-precision (float16) for
more effective utilization of memory. Similar to relevant works
[20], [23], we use a cosine-based learning rate decay schedule
[36] with the the learning rate lrn for iteration n calculated
as lrn = lr0 ∗ 0.5[cos(n

nmax
π) + 1] in which nmax is the

total number of iterations and lr0 is the starting learning rate.
We use lr0 = 1.16 and learning rate warm-up for the first
8k iterations similar to [20], [23]. Batch sizes are determined
by a multigrid method [37] with the initial batch size of 64.
The multigrid learning rate follows the linear scaling rule [38]
given the mini-batch size scaling. Unless specified otherwise,
all experiments were performed over nmax = 400 epochs with
momentum of 0.9 and weight decay of 5×10−5.

Table I. Comparison with K-400 state-of-the-art. For
consistency with previous testing methods, we report the

model complexity as the GFLOPs per single clip view× the
number of clips with spatial cropping of size 256×256.

Model Input Backbone top-1 (%) top-5 (%) GFLOPs× views Params

R(2+1)D [17] 16×2242 ResNet101 62.8 83.9 152×115 63.6M

I3D [5] 16×2242 InceptionV1 71.6 90.0 108×N/A 12.0M

MF-Net [18] 16×2242 ResNet50 72.8 90.4 11.1×50 8.0M

TAM [39] (24, 2)×2242 ResNet50 73.5 91.2 93.4×9 25.0M

SRTG-101 (3D) [30] 16×2242 ResNet101 73.2 91.3 78.1×30 107.1M

SRTG-101 (2+1D) [30] 16×2242 ResNet101 73.8 92.0 163.1×30 105.3M

TSM [21] 16×2242 ResNet50 74.7 91.4 65×10 24.3M

ip-CSN-101 [19] 8×2242 ResNet101 76.7 92.3 83×30 24.5M

ip-CSN-152 [19] 8×2242 ResNet152 77.8 92.8 108.8×30 32.8M

SF-50 [23] (8, 8)×2242 ResNet50 77.0 92.6 65.7×30 34.4M

SF-101 [23] (8, 8)×2242 ResNet101 77.9 93.5 213×30 53.7M

SF-101+NL [23] (8, 8)×2242 ResNet101 78.7 93.5 116×30 59.9M

X3D-XL [20] 16×3122 ResNet(X3D) 79.1 93.9 48.4×30 11.0M

MTNetS (ours) 16×2562 ResNet(X3D) 74.8 92.1 5.8×30 25.8M

MTNetM (ours) 16×2562 ResNet(X3D) 76.6 92.5 8.8×30 25.8M

MTNetL (ours) 16×2562 ResNet(X3D) 78.1 93.2 17.6×30 50.1M

Fig. 4. Top-1 accuracy to computational complexity
tradeoff in K-400. FLOP and parameter calculations are

based on the inputs in Table I.

For K-400, K-700 and MiT, we use similar training pa-
rameters but initialize the networks weights from the models
trained on HACS. For the transfer learning task on UCF-
101, we reduce the start learning rate to 0.01 and do not
use warm-up. We also decrease the number of epochs to 150
while including a learning rate multiplier for convolutional
weights of value 0.1. Unless stated otherwise, our models use
δ = 0.875. We motivate this choice and experiment with other
values in Section IV-E.

The input frames are uniformly randomly selected. Based on
the average clip length, for each dataset, we use equivalently
sized temporal strides when selecting frames. For HACS with
an average clip length of 60 frames, we use a temporal stride
of 2. The two Kinetics datasets have clips with 250 frames on
average and we use a temporal stride of 5. For MiT, we use a
temporal stride of 3 with an average clips length of 90 frames.
For UCF-101 we use strides of 4. On the spatial domain, we
randomly crop a region of size 256×256 pixels in resized
video frames with the shortest side being 320.

C. Computational Inference

We report inference with two different measures. We first
report computational costs (FLOPs) similar to [19], [20], [23],
[39] by sampling 10 clips from a single video and perform 3
crops along the spatial dimensions (10×3 = 30 views) of size

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:46:24 UTC from IEEE Xplore. Restrictions apply.

Table II. Spatio-temporal block comparison on K-400.
Using a ResNet-50 as backbone, accuracy rates are reported
for different spatio-temporal blocks. Numbers in parentheses

are in comparison to 3D baseline.

Method top-1 (%) top-5 (%) FLOPs (G) Params (M)

3D [15] 61.3 83.1 53.2 36.7

(2+1)D [17] 61.8 (+0.5) 83.5 (+0.4) 56.0 (+2.8) 38.8 (+2.1)

Multi-Fiber [18] 72.8 (+11.5) 90.4 (+7.3) 22.5 (−30.7) 8.0 (−28.7)

Slow-only [23] 72.6 (+11.5) 90.3 (+7.2) 27.3 (−25.9) 26.6 (−10.1)

SlowFast [23] 74.3 (+13) 91.0 (+7.9) 39.8 (−13.4) 34.4 (−2.3)

MTConv (ours) 74.8 (+13.5) 91.3 (+8.2) 23.1 (−30.1) 35.7 (−1.0)

Table III. Comparison with MiT state-of-the-art. Models
denoted with ‡ include additional optical flow input.

Model Arch. size top-1 (%) top-5 (%)

EvaNet [40]
NAS [41]

31.8 N/A

AssembleNet [42] 34.3 62.7

TSN-Flow [6] ‡

Fixed

15.7 34.7

TSN-2stream [6] ‡ 25.3 50.1

TRN-Multiscale [43] 28.3 53.9

I3D [5] 29.5 56.1

CoST [44] 32.4 60.0

SRTG-101 [30] 33.6 58.5

MTNetM (ours) 34.5 58.6

MTNetL (ours) 35.2 59.3

256×256. The inference time is then reported as the number
of FLOPs per spatio-temporal view (clips times crops). This
provides a standardized measure of computing inference when
comparing across models as shown for Tables I, IV and V.

In the case of architectural changes such as in Table VIb
we additionally report the inference time in terms of compu-
tational latency (in msecs.) for forward and backward passes,
independently. Computational latency times are calculated on
single clips of size 16×256×256.

D. Main Results

We discuss the comparisons of our MTNets to the current
state-of-the-art for datasets K-400, MiT, K-700, and HACS.

Kinetics-400 (K-400). We present results in Table I. In
comparison to the top performing X3DXL [20], our largest
MTNetL produces comparable performance (1.0% top-1 and
0.7% top-5 lower accuracies), despite a considerable reduc-
tion in computation of ×2.75 in terms of GFLOPs. When
comparing MTNetL, we observe performance on par with
the significantly larger SlowFast-101 [23] which requires more
than 12 times the number of computations. Notably, MTNetL
outperforms the similarly complex MFNet [18] with +5.3%
top-1 and +2.8% top-5 accuracies. The trade-off between the
achieved accuracies, computational complexity (GFLOPs) and
parameter number is visualized in Figure 4.

For the smaller MTNetM we report accuracies close to
Channel-Separated Network (ip-CSN-101) [19] and Temporal
Adaptive Module ResNet-50 [39], while being significantly
more efficient than both. Considering its low number float-

Table IV. Comparison with K-700 state-of-the-art. GFLOP
calculation is similar to that in Table I.

Model Pre-train top-1 (%) top-5 (%) GFLOPs× views

I3D [5] K-600 58.7 81.7 108×N/A
SRTG-101 (3D) [30] HACS 56.5 76.8 78.1×30

SRTG-101 (2+1)D [30] HACS 56.8 77.4 163.1×30

MTNetM (ours) HACS 58.4 77.6 8.8×30
MTNetL (ours) HACS 63.3 84.1 17.6×30

Table V. Comparison with HACS state-of-the-art. Weight
initialization sources are denoted by their respective

indicators.

Model Pre-train top-1 top-5 GFLOPs× views Params
MF-Net [18]†

K-400

78.3 94.6 11.1×50 8.0M
TAM [39]† 82.2 95.2 93.4×9 25.0M

SF-101 [23]† 83.7 96.8 213×30 53.7M
X3D-L [20]† 85.8 96.1 24.8×30 6.1M

R3D-101 [16]∗
K-700

80.5 95.8 78.0×30 69.0M
R(2+1)D-101 [16]† 82.9 95.6 163.0×30 72.1M
ir-CSN-101 [19]†

IG65
83.8 93.8 63.6×10 22.1M

ip-CSN-101 [19]† 84.1 93.9 63.6×10 24.5M
SRTG-101 (3D) [30]† - 81.6 96.3 78.1×30 107.1M

SRTG-101 (2+1)D [30]† - 84.3 96.8 163.1×30 105.3M
MTNetS (ours) - 80.7 95.2 5.8×30 25.8M
MTNetM (ours) - 83.4 95.9 8.8×30 25.8M
MTNetL (ours) - 86.6 96.7 17.6×30 50.1M

† models and weights from authors’ repositories.
∗ models and weights that we re-trained.

ing point operations (FLOPs), MTNetM can still outperform
R(2+1)D ResNet101 [17], Temporal Shift Module (TSM) [21]
and Squeeze and Recursion Temporal Gates (SRTG) [30].

Finally, our smallest network MTNetS performs on par with
TSM and SRTG, while having the lowest number of GFLOPs
of all tested networks.

To better understand the relative contribution of network
architecture and convolution operator, we compare a variety of
spatio-temporal convolutional methods on the same ResNet-
50 architecture. As shown in Table II, a direct replacement
to MTConvs can yield a significant performance improvement
over 3D convolutions with +13.5% in top-1 and +8.2% in top-
5 accuracies. MTConvs also outperform other popular spatio-
temporal convolution-based methods. MTConvs reduce the
number of GFLOPs by 56% in comparison to regular 3D
convolutions. The decrease in FLOPs for MTConvs does not
come at a cost of parameters. MTNets include only a slightly
reduced number of parameters in comparison to 3D Convs,
which allows the models to preserve the level of complexity.

Moments in Time (MiT). Table III summarizes perfor-
mance in terms of the top-1 and top-5 accuracies of cur-
rent state-of-the-art models. Comparisons are performed on
models with fixed-sized architectures as well as those that
employ Neural Architecture Search (NAS) [41]. Our best
performing architecture MTNetL outperforms current state-of-
the-art models with top-1 accuracy of 35.2%. Notably, these
comparisons also include models with supplementary inputs
optical flow [6] and audio [6] while both MTNet architectures
are trained only on RGB frames. The smaller MTNetM

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:46:24 UTC from IEEE Xplore. Restrictions apply.

Table VI. Ablation studies on HACS. We evaluate MTNet architectures under different training parameters and report top-1
and top-5 accuracies as well as the number of GFLOPs and parameters.

(a) Branch channel ratio: Varying channel ratio (δ) across MTNetM
and MTNetL architectures.

Net. δ setting top-1 top-5 GFLOPs Params (M)

M
T

N
et
M

δ = 1.0 (No P) 82.2 93.6 10.8 29.7
7/8 83.4 95.9 8.8 25.8
3/4 83.1 95.6 6.7 21.8
5/8 81.6 93.2 4.8 19.3
1/2 79.7 91.8 3.6 18.6
3/8 78.6 89.4 2.6 19.2
1/4 77.1 88.6 2.1 21.0

M
T

N
et
L

δ = 1.0 (No P) 84.9 95.7 20.6 53.5
7/8 86.6 96.7 17.6 50.1
3/4 86.1 96.2 12.5 45.3
1/2 83.2 95.3 7.09 42.7
3/8 82.1 93.9 5.2 45.3
1/4 80.3 92.4 4.1 47.8

(b) Recurrent cell configurations: Alternative recurrent cells for the
global aggregated feature importance branch (G) with δ = 7/8.

Net Cell type Params FLOPS Latency (msec) top-1 top-5(M) (G) ↓F ↑B

M
T

N
et
S

RNN [45] 24.3 5.8 58 78 78.8 93.7
LSTM [46] 26.5 5.8 61 79 79.9 94.3

LSTM (peephole) [47] 26.5 5.8 68 85 80.1 94.5
GRU [34] 25.8 5.8 65 80 80.7 95.2

M
T

N
et
M

RNN [45] 24.3 8.8 84 113 82.5 94.8
LSTM [46] 26.5 8.8 86 109 83.1 95.4

LSTM (peephole) [47] 26.5 8.8 94 120 83.2 95.6
GRU [34] 25.8 8.8 90 111 83.4 95.9

(c) Spatio-temporal pooling methodology: Top-1 accuracy for
different pooling methods in the prolonged branch (P).

Net Pooling strategies

Avg Max Stochastic SoftPool Avg SoftPool [33]
[48] [33] + cos + cos

MTNetS 77.8 75.9 76.8 77.8 80.5 80.7
MTNetM 79.8 77.6 78.2 80.7 82.6 83.4
MTNetL 83.8 82.1 82.9 84.2 85.9 86.6

achieves a similar classification accuracy compared to learned
architectures such as AssembleNet [40]. This comes with a
reduction in terms of computations as there is no additional
objective to permute the base model.

Kinetics-700 (K-700). We further evaluate our MTNets
and their generalization capabilities on the recently introduced
700-class variant of Kinetics. As shown in Table IV, our
architectures demonstrate similar performance trends as the
accuracy values reported in Tables I and III. Specifically,
we observe that MTNetL outperforms other methods by a
significant margin of +(4.7-6.8)% for top-1 accuracy and
+(2.4-7.3)% for top-5. Again, MTNetM performs similar to
I3D [5] with a strongly reduced number of GFLOPs.

HACS. Finally, we present results on HACS in Table V.
The datasets on which the models have been pre-trained
are included in the table. Note that MTNets are trained
on HACS from scratch. As shown, the use of MTConvs
improves the overall accuracy. Notably, MTNetS performs
similarly to both R3D-101 [16] and SRTG-101 (3D) [30].
MTNetM provides overall higher performance with additional
+2.7% and +0.7% top-1 and top-5 accuracies over the smaller
counterpart MTNetS , while achieving similar accuracies as
SlowFast-101 and ir-CSN-101. Finally, comparing MTNetL
to X3D-L shows an improvement of +0.8% for the top-1 and
+0.6% top-5 accuracies while having ∼ 29% fewer GFLOPs.

E. Ablation Studies

In this section we present ablation studies on the HACS
dataset. We compare different ratios (δ) used by the local
(L) and prolonged (P) branches. We additionally evaluate the
effect of different recurrent cells on the global aggregated
feature importance branch (G). Finally, we present results
based on different spatio-temporal pooling methods in P .

Branch channel ratio. As shown in Table VIa, the best
performing ratios (δ) are within the range of (0.875 ∼ 0.75)
with marginal differences in the range of ±(0.3 ∼ 0.5)%
for both the top-1 and top-5 performances. These ratios also
lead to a reduction in computational costs and the number
of parameters. Improvements on number of computations
(GFLOPs) based on these ratios are shown by the reduction of
(25∼ 37)% when using both L and P branches, compared to
using solely the local branch (L) which is equivalent to a single
standard 3D Conv. We attribute the loss in performance when
using small ratios to the dependency of branch P on branch L.
Interestingly, the decrease in feature dimensionality of the lo-
cal features with the use of smaller δ values corresponds to the
inability of the prolonged features to encapsulate substantial
video action details by themselves. In addition, decreases in δ
do not directly relate to decreases in the number of parameters
as seen in Table VIa. For δ < 1/2, the number of parameters
increases again with branch P employing a larger number
of parameters. Therefore, the smallest number of parameters
is observed when the ratio is split equally between the two
channels (δ = 1/2). This setting shows the largest combined
reduction of GFLOPs (-66%) and number of parameters (-
37%) for a standard 3D Conv. Lastly, we note that zero ratios
δ = 0 are not feasible as branch P includes the outputs of
branch L which thus cannot be omitted.

Recurrent cell configuration. Next, we study the effect that
the recurrent cell methodology used in G has on the accuracy.
Recurrent layers are replaced in MTNetS and MTNetM with
the changes only affecting branch G. Latencies are calculated
as the time (in msecs.) required for a full forward (↓F) and
backward (↑B) pass for a single clip of size 16×256×256.
Results appear in Table VIb. The proposed use of GRUs [34]
is motivated by the (slight) improvements over alternative

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:46:24 UTC from IEEE Xplore. Restrictions apply.

Table VII. Transfer learning performance on UCF-101:
Top-1 and top-5 accuracies after pre-training.

Model Pre-training top-1 (%) top-5 (%)
I3D K-400 92.4 97.6

TSM K-400 92.3 97.9
ir-CSN-152 IG65M 95.4 99.2

MF-Net K-400 93.8 98.4
SF-50 ImageNet 94.6 98.7

SF-101 ImageNet 95.8 99.1
SRTG-101 (2+1)D HACS+K-700 97.2 99.1

SRTG-101 (3D) HACS+K-700 97.3 99.6
MTNetS (ours) HACS 94.2 98.0
MTNetM (ours) HACS 95.4 98.1
MTNetL (ours) HACS 97.4 99.2

recurrent cell structures. For MTNetS , GRUs perform better
than regular RNN cells [45] with +1.9% top-1 and +1.5% top-
5 accuracies. However, the overall simplicity of RNNs can be
more efficient in terms of parameter use with a -8% overall
network parameter reduction as well as marginally lower
forward and backward latency times. A similar observation
is made for MTNetM as GRU’s top-1 and top-5 accuracies
improve the RNN baseline by +0.9% and +1.1% respectively.
Compared to LSTMs [46] and LSTMs with peephole variants
[47], GRUs also show marginally better accuracy rates. We
note that a property of GRUs is the merge of LSTM’s forget
and input states as well as their cell and hidden states. This
simplifies the recurrent structure.

Spatio-temporal pooling methodology. We conclude our
ablation studies by exploring the effect of different pooling
methods used for P branch’s inputs. Experiments were per-
formed with temporal and spatial symmetric and asymmet-
ric methods. In the first category, operations are performed
similarly in all dimensions while the latter methods perform
spatial and temporal pooling independently. In Table VIc, we
report the top-1 accuracies for different pooling configurations.
Frame selection with the proposed temporal triplet cosine
(cos) similarity yields overall improvements over symmetric
methods. For average pooling with triplet cos, accuracies are
improved by +2.7% for MTNetS , +2.8% for MTNetM and
+2.1% for MTNetL. Similarly, using SoftPool [33] and triplet
cos increases top-1 accuracy, by +2.9%, +2.7% and +2.4% for
each of the models respectively, in comparison to symmet-
ric SoftPool. The improvement of SoftPool asymmetrically
compared to average pooling is only marginal with +0.57%
improvement on accuracy on average across the three archi-
tectures. We thus conclude that the temporal dimensionality
reduction method has a significantly larger effect on the overall
performance than the selection of a spatial pooling method.
Temporal reductions with asymmetric methods such as our
combined SoftPool with triplet cosine similarity show greater
accuracy gains than symmetric methods that apply a pooling
operation across all dimensions.

F. Feature Transferability with MTNets

Finally, we compare the transfer learning capabilities of
MTNets with state-of-the-art video models on the smaller
action recognition dataset UCF-101. To allow a fair compari-
son with other methods, all tested architectures are initialized
with weights as in Table V. MTNetL achieves performance
comparable to that of SRTG-101 (2+1)D which has been pre-
trained on both large-scale HACS and K-700 datasets. The
second model MTNetM can also perform as well as the ir-
CSN that used a 65M dataset sourced from Instagram [49] and
the 101-layer variant of SlowFast. Our smallest architecture
MTNetS also shows good performance with accuracies above
those of TSM and I3D while being similar to SlowFast-50.
These findings further show the generalization capabilities of
our spatio-temporal feature extraction approach.

V. CONCLUSIONS

We have introduced a novel multi-temporal convolution
(MTConv) block that models variations in the performance
in action videos by extracting and aligning spatio-temporal
patterns across temporal scales. Our proposed convolution
block uses two branches to address motions performed within
a short and prolonged time span, respectively. A third global
aggregated feature importance branch aligns the output activa-
tions of the first two branches based on the discovered feature
dynamics. With this mechanism, we can extract salient spatio-
temporal patterns despite potential differences in the temporal
execution. We have also introduced MTNets that include MT-
Convs in a X3D backbone. MTNets achieve comparable or, in
many cases, higher classification accuracies than current state-
of-the-art models on the most widely used action recognition
benchmarks. Importantly, MTNets achieve a reduction in terms
of computation costs. Based on these results, we believe that
the modeling of variable-duration spatio-temporal patterns can
be more widely exploited in future research in video action
recognition for both real time and post-video processing.

VI. ACKNOWLEDGMENTS

This publication is supported by the Netherlands Organiza-
tion for Scientific Research (NWO) with a TOP-C2 grant for
Automatic recognition of bodily interactions (ARBITER).

REFERENCES

[1] A. Stergiou and R. Poppe, “Analyzing human-human interactions: A sur-
vey,” Computer Vision and Image Understanding, vol. 188, p. 102799,
2019. 1

[2] D. W. Dong and J. J. Atick, “Statistics of natural time-varying images,”
Network: Computation in Neural Systems, vol. 6, no. 3, pp. 345–358,
1995. 1

[3] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 1, pp. 221–231, 2013. 1

[4] R. R. Vallacher and D. M. Wegner, “Action identification theory,”
Handbook of theories of social psychology, vol. 1, pp. 327–349, 2011.
1

[5] J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new
model and the Kinetics dataset,” in Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 4724–4733. 2, 5, 6, 7

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:46:24 UTC from IEEE Xplore. Restrictions apply.

[6] M. Monfort, A. Andonian, B. Zhou, K. Ramakrishnan, S. A. Bargal,
T. Yan, L. Brown, Q. Fan, D. Gutfreund, C. Vondrick, and A. Oliva,
“Moments in time dataset: One million videos for event understand-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 42, no. 2, pp. 502–508, 2019. 2, 5, 6

[7] J. Carreira, E. Noland, C. Hillier, and A. Zisserman, “A short note on the
Kinetics-700 human action dataset,” arXiv preprint arXiv:1907.06987,
2019. 2, 5

[8] H. Zhao, A. Torralba, L. Torresani, and Z. Yan, “HACS: Human action
clips and segments dataset for recognition and temporal localization,” in
International Conference on Computer Vision (ICCV), 2019, pp. 8668–
8678. 2, 5

[9] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of
101 human actions classes from videos in the wild,” arXiv preprint
arXiv:1212.0402, 2012. 2, 5

[10] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in Neural Information
Processing Systems (NIPS), 2014, pp. 568–576. 2

[11] C. Feichtenhofer, A. Pinz, and R. Wildes, “Spatiotemporal residual net-
works for video action recognition,” in Advances in Neural Information
Processing Systems (NIPS), 2016, pp. 3468–3476. 2

[12] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in European Conference on Computer Vision (ECCV),
2016, pp. 20–36. 2

[13] A. Diba, V. Sharma, and L. Van Gool, “Deep temporal linear encoding
networks,” in Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 2329–2338. 2

[14] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt, “Se-
quential deep learning for human action recognition,” in International
Workshop on Human Behavior Understanding (HBU), 2011, pp. 29–39.
2

[15] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3D CNNs
retrace the history of 2D CNNs and ImageNet?” in Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 18–22. 2, 6

[16] H. Kataoka, T. Wakamiya, K. Hara, and Y. Satoh, “Would mega-scale
datasets further enhance spatiotemporal 3D CNNs?” arXiv preprint
arXiv:2004.04968, 2020. 2, 6, 7

[17] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A
closer look at spatiotemporal convolutions for action recognition,” in
Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 6450–6459. 2, 5, 6

[18] Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng, “Multi-fiber networks
for video recognition,” in European Conference on Computer Vision
(ECCV), 2018, pp. 352–367. 2, 5, 6

[19] D. Tran, H. Wang, L. Torresani, and M. Feiszli, “Video classification
with channel-separated convolutional networks,” in International Con-
ference on Computer Vision (ICCV). IEEE, 2019, pp. 5552–5561. 2,
5, 6

[20] C. Feichtenhofer, “X3d: Expanding architectures for efficient video
recognition,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 203–213. 2, 3, 5, 6

[21] J. Lin, C. Gan, and S. Han, “TSM: Temporal shift module for efficient
video understanding,” in International Conference on Computer Vision
(ICCV), 2019, pp. 7083–7093. 2, 5, 6

[22] S. Sudhakaran, S. Escalera, and O. Lanz, “Gate-shift networks for video
action recognition,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 1102–1111. 2

[23] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “SlowFast networks
for video recognition,” in International Conference on Computer Vision
(ICCV), 2019, pp. 6202–6211. 2, 5, 6

[24] Z. Qiu, T. Yao, C.-W. Ngo, X. Tian, and T. Mei, “Learning spatio-
temporal representation with local and global diffusion,” in Conference
on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 12 056–
12 065. 2

[25] Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan, and
J. Feng, “Drop an octave: Reducing spatial redundancy in convolutional
neural networks with octave convolution,” in International Conference
on Computer Vision (ICCV), 2019, pp. 3435–3444. 2

[26] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 7132–7141. 2

[27] J. Hu, L. Shen, S. Albanie, G. Sun, and A. Vedaldi, “Gather-excite: Ex-
ploiting feature context in convolutional neural networks,” in Advances

in Neural Information Processing Systems (NeurIPS), 2018, pp. 9401–
9411. 2

[28] X. Long, C. Gan, G. De Melo, J. Wu, X. Liu, and S. Wen, “Attention
clusters: Purely attention based local feature integration for video clas-
sification,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 7834–7843. 2

[29] L. Wang, W. Li, W. Li, and L. Van Gool, “Appearance-and-relation
networks for video classification,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 1430–1439. 2

[30] A. Stergiou and R. Poppe, “Learn to cycle: Time-consistent feature
discovery for action recognition,” Pattern Recognition Letters, vol. 141,
pp. 1–7, 2021. 2, 4, 5, 6, 7

[31] Z. Liu, L. Wang, W. Wu, C. Qian, and T. Lu, “TAM: Temporal adaptive
module for video recognition,” arXiv preprint arXiv:2005.06803, 2020.
2

[32] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning (ICML), 2015, pp. 448–456. 3

[33] A. Stergiou, R. Poppe, and K. Grigorios, “Refining activation downsam-
pling with SoftPool,” arXiv preprint, 2021. 3, 4, 7, 8

[34] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder–decoder for statistical machine translation,” in Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 1724–1734. 4, 7

[35] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár,
“Designing network design spaces,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2020, pp. 10 428–10 436. 5

[36] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” International Conference on Learning Representations
(ICLR), 2017. 5

[37] C.-Y. Wu, R. Girshick, K. He, C. Feichtenhofer, and P. Krähenbühl, “A
multigrid method for efficiently training video models,” in Conference
on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 153–
162. 5

[38] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: training
ImageNet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017. 5

[39] Q. Fan, C.-F. Chen, H. Kuehne, M. Pistoia, and D. Cox, “More
is less: Learning efficient video representations by big-little network
and depthwise temporal aggregation,” Advances in Neural Information
Processing Systems (NeurIPS), 2019. 5, 6

[40] A. Piergiovanni, A. Angelova, A. Toshev, and M. S. Ryoo, “Evolving
space-time neural architectures for videos,” in International Conference
on Computer Vision (ICCV), 2019, pp. 1793–1802. 6, 7

[41] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” Internation Conference on Learning Representations (ICLR),
2017. 6

[42] M. S. Ryoo, A. Piergiovanni, M. Tan, and A. Angelova, “Assemblenet:
Searching for multi-stream neural connectivity in video architectures,”
Internation Conference on Learning Representations (ICLR), 2020. 6

[43] B. Zhou, A. Andonian, A. Oliva, and A. Torralba, “Temporal relational
reasoning in videos,” in European Conference on Computer Vision
(ECCV), 2018, pp. 803–818. 6

[44] C. Li, Q. Zhong, D. Xie, and S. Pu, “Collaborative spatiotemporal feature
learning for video action recognition,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 7872–7881. 6

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985. 7, 8

[46] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997. 7, 8

[47] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and count,”
in International Joint Conference on Neural Networks (IJCNN), vol. 3,
2000, pp. 189–194. 7, 8

[48] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of
deep convolutional neural networks,” in International Conference on
Learning Representationsm (ICLR), 2013. 7

[49] D. Ghadiyaram, D. Tran, and D. Mahajan, “Large-scale weakly-
supervised pre-training for video action recognition,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. 8

Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:46:24 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T19:48:00-0400
	Preflight Ticket Signature

