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Abstract—To minimize the communication in parallel sparse
matrix-vector multiplication while maintaining load balance, we
need to partition the sparse matrix optimally into k disjoint parts,
which is an NP-complete problem. We present an exact algorithm
based on the branch and bound (BB) method which partitions a
matrix for any k, and we explore exact sparse matrix partitioning
beyond bipartitioning. The algorithm has been implemented in
a software package General Matrix Partitioner (GMP). We also
present an integer linear programming (ILP) model for the same
problem, based on a hypergraph formulation. We used both
methods to determine optimal 2,3,4-way partitionings for a subset
of small matrices from the SuiteSparse Matrix Collection. For
k=2, BB outperforms ILP, whereas for larger k, ILP is superior.
We used the results found by these exact methods for k=4 to
analyse the performance of recursive bipartitioning (RB) with
exact bipartitioning. For 46 matrices of the 89 matrices in our test
set of matrices with less than 250 nonzeros, the communication
volume determined by RB was optimal. For the other matrices,
RB is able to find 4-way partitionings with communication
volume close to the optimal volume.

Index Terms—branch-and-bound, integer linear programming,
exact algorithm, sparse matrix-vector multiplication, hypergraph,
parallel computing

I. INTRODUCTION

Sparse matrix–vector multiplication (SpMV) is the core

operation at the heart of many computations in scientific

computing and in data analytics, such as iterative linear system

solutions [1] and graph computations formulated in terms of

sparse matrix operations [2]. To solve larger problems, SpMVs

need to be carried out in parallel, which requires a suitable data

partitioning into multiple disjoint parts.

Assume that we have an m× n matrix A, with entries aij ,

0 ≤ i < m and 0 ≤ j < n, of which nz (A) are nonzero. The

parallel multiplication of A with a dense vector v of length n
yields a vector

u = Av (1)

of length m. A parallel algorithm for the computation of the

values

ui =
n−1∑
j=0

aijvj , 0 ≤ i < m, (2)

for an arbitrary distribution of the matrix and the vectors across

the processors, consists of four phases:

1) Fan-out: Communication of the values vj to the pro-

cessors that need them.
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Fig. 1. Parallel sparse matrix-vector multiplication, with three processors
0 (red), 1 (blue), and 2 (yellow). The arrows represent the communication
between the processors, with vertical arrows for the fan-out and horizontal
arrows for the fan-in. The owners of the nonzeros and the vector components
are indicated by their color. The zeros of the matrix are shown in white. The
communication volume is equal to the number of arrows, CV = 7.

2) Local SpMV: Local multiplications aij ·vj and additions

into a local partial sum.

3) Fan-in: Communication of partial sums to the owners

of the values ui.

4) Summation: Summation of the received partial sums.

Fig. 1 illustrates the parallel SpMV algorithm. In this article,

we will only be concerned with the distribution of the matrix:

we assume that the vector distribution can be chosen freely

based on the matrix distribution. Therefore, the owner of vj
can be taken as one of the processors represented in column

j of the matrix, and similarly for ui and row i of the matrix.

Thus, the vector distribution will not cause any additional

communication. Without loss of generality, we assume that

no matrix row or column is empty. Such rows and columns

can easily be removed from the matrix without affecting the

partitioning problem.

The speed of a parallel SpMV depends heavily on an equal

distribution of the workload and on the number of data words

that need to be communicated in the fan-out and fan-in phases.

This gives rise to the problem of partitioning a sparse matrix

A into k disjoint parts,

A =

k−1⋃
i=0

Ai, (3)

while minimizing the communication volume and maintaining
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Fig. 2. An optimal 3-way partitioning of the matrix from Fig. 1, with
communication volume CV = 4. The load imbalance parameter was set
to ε = 0.03.

the load balance, expressed by the constraint

nz (Ai) ≤ (1 + ε)

⌈
nz (A)

k

⌉
, 0 ≤ i < k. (4)

Here, ε ≥ 0 is the load imbalance parameter. It is set

beforehand, often to a value ε = 0.03. The ceiling function is

used to make sure that a valid partition is possible even when

ε = 0. This problem is called the sparse matrix partitioning
problem. If we define λc

j to be the number of different

processors that own an element in column j of A, then the

communication volume of this matrix column is λc
j − 1, since

during the fan-out one of these processors sends vj to the

others. Similarly, the communication volume of a row i during

the fan-in is equal to λr
i −1, with λr

i the number of processors

owning a nonzero in row i. The total communication volume

of a partitioned m × n matrix A in the parallel SpMV then

equals

CV (A) =

m−1∑
i=0

(λr
i − 1) +

n−1∑
j=0

(λc
j − 1). (5)

Different partitionings of the same matrix can have a large

difference in communication volume. In Fig. 2, an optimal 3-

way partitioning of the matrix from Fig. 1 is shown, which

has CV = 4, while the partitioning in Fig. 1 has CV = 7.

The sparse matrix partitioning problem has been shown

to be NP-complete for fixed ε, already for k = 2 [3].

Therefore, only relatively small problems can be solved to

optimality, while for larger problems a heuristic algorithm is

necessary. Solving small problems may not seem very useful,

but the solutions to these small problems can be used to

analyse the performance of heuristic methods. For instance,

it was shown in [3] for a set of 839 test matrices from

the SuiteSparse collection [4] that combining the medium-

grain (heuristic) method from the Mondriaan package [5], [6]

with the (heuristic) hypergraph partitioner from the PaToH

package [7] yields on average results within 10% of optimality;

this justifies the practical use of such heuristic solvers for

bipartitioning, presumably also for larger problems.

The communication requirements of sparse matrix partition-

ers can be modeled exactly by formulating the partitioning

problem in terms of hypergraphs. The problem can then

be solved by using one of the currenly available sequential

hypergraph partitioners hMetis [8], PaToH [7], Mondriaan [5],

KaHyPar [9], [10], and the parallel partitioner Zoltan [11].

A recent exact solver for the sparse matrix partitioning

problem is MondriaanOpt [12], a branch-and-bound (BB)

bipartitioner that branches on the possible choices for a row

or column, which is either completely assigned to processor

0, or completely assigned to processor 1, or cut, meaning that

some nonzeros are assigned to processor 0 and others to pro-

cessor 1, where the choice of nonzeros need not be specified.

MondriaanOpt prunes the solution tree by lower bounds on the

communication volume of a partial solution, based on cuts that

are either explicitly or implicitly present. It increases these

bounds by exploiting inevitable conflicts between rows and

columns that share a nonzero, or by inevitable cuts of rows or

columns with many nonzeros to prevent violation of the load

balance constraint (4).

MondriaanOpt has been extended by Mumcuyan, Usta,

Kaya, and Yenigün [13] with machine learning techniques to

obtain a good branching ordering of the rows and columns

for a given sparse matrix, and it has been accelerated by

shared-memory parallelization. Usta also developed an exact

BB-based k-way hypergraph partitioner PHaraoh [14], which

can be used to find an optimal sparse matrix partitioning by

applying it to the corresponding fine-grain hypergraph [15].

An improved exact solver is MatrixPartitioner (MP) [3],

which exploits conflicts not only by directly intersecting rows

and columns, but also along a path of nonzeros in the matrix

with conflicting end points. Furthermore, MP also generalizes

the use of the load balance constraint by considering whole

neighbourhoods of rows and columns instead of single rows

or columns. This led to a much larger set of matrices that

could be solved, extending the database with results for 356

matrices from the SuiteSparse collection [4] to 839 matrices.

The aims of the present work are: (i) to develop a BB-

based exact sparse matrix partitioner for the general case

k ≥ 2, which we call General Matrix Partitioner (GMP); (ii) to

formulate the problem as an integer linear programming (ILP)

problem that can be fed into an ILP solver; (iii) to compare

the speed and the quality of BB and ILP partitioners for a

set of (inevitably small) test problems and to provide their

solutions in a database; (iv) study the quality of recursive

bipartitioning (RB) by using exact bipartitioning within the

overall partitioning framework.

II. PARTITIONING BY THE BRANCH-AND-BOUND METHOD

The BB method explores the set S of feasible solutions of an

optimization problem and uses bounds on the optimal solution

to prevent searching the whole feasible region. In our case, S is

the set of partitionings of the matrix that meet the load balance

constraint (4). We start with the complete set S and we split it

into subsets S1, . . . ,Sr, based on a well-chosen property of the

solutions. This procedure is repeated by splitting the subsets

each into smaller subsets based on another property of the

solutions and we repeat this process until we have sets that

represent a single solution. This splitting of the set of feasible

solutions is the “branch” part of the BB algorithm. The whole

BB process can be captured by a rooted tree with the root

representing the complete set of feasible solutions, each node
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Fig. 3. The first two levels of the BB tree for k = 3, with three processors
0 (red), 1 (blue), and 2 (yellow). A node with multiple colors represents that
the row/column is assigned to multiple processors.

representing a subset of the feasible solutions, and each leaf

representing a single solution. Essentially, the BB method is

just an enumeration of all possible feasible solutions.

Fig. 3 shows a BB tree for our partitioning problem that

branches on the first two rows or columns, based on the

property of the colors present in the row or column. For k = 3,

this means that a row or column can be assigned either to

processor 0, 1, or 2, or to a pair 01, 02, 12, or to all processors,

denoted by 012.

The BB tree of the partitioning problem grows exponen-

tially: every node has 2k − 1 children, so that the number of

leaves is (2k−1)m+n. The size of the BB tree can be reduced

by at most a factor of k! if we exploit symmetry: when we

introduce a new processor in the partitioning, we can take the

lowest numbered one not used so far. In Fig. 3, at the first level

only the nodes 0, 01, and 012 need to be kept; the others can

be discarded because their solutions are equivalent to one of

these three. For node 0, its children to be kept are 0, 1, 01,

12, 012; the nodes 2 and 02 can be discarded. For the other

nodes, this is done in a similar fashion.

We can use bounds on the communication volume to avoid

searching the whole feasible set S. Assume that we have

an upper bound UB on the optimal solution, which can, for

instance, be the best solution found so far, or an initial bound

obtained by a heuristic method. Before we branch on a node

v, we compute a lower bound LB on the solutions represented

by this node; if LB ≥ UB , single solutions coming from this

subset of solutions cannot improve our current best solution,

so we can prune this part of the tree and we do not have

to branch from node v. This is the “bound” part of the BB

method.

We use lower bounds on the communication volume of

partial solutions to prune the BB tree. If we have a partial

partitioning B of a matrix A, with part of the rows and columns

assigned to processors or sets of processors, what can we say

about the communication volume of a full solution that is

an extension of this partial solution B? We will answer this

question by generalizing ideas on lower bounds for k = 2
from [3], [12] to the case k ≥ 2.

A. Lower bounds based on explicit and implicit cuts

The most trivial bound is to use the assignments of the

rows/columns that are already assigned to one or more pro-

cessors. This gives the first lower bound L1. Assume that

k = 3, so that a partial solution of a matrix A can be

0 − 1 − 0

02

−
−
−
−

Fig. 4. A partial partitioning of a matrix. Next to each row and column
are the numbers of the processors to which a row/column is assigned. For
example, ‘0’ indicates that the row/column is assigned to processor 0, while
‘-’ indicates that the row/column is unassigned. If a nonzero has multiple
colors, then it is assigned to the processors corresponding to those colors.

represented by B = {B0, B1, B2, B01, B02, B12, B012}. We

know that all rows/columns that are assigned to 2 processors

are already explicitly cut; these are the rows/columns in the

sets B01, B02, B12. The rows/columns in set B012 are assigned

to 3 processors and have 2 explicit cuts. We can count the

number of rows/columns in these sets and the number of cuts

associated with them to obtain the first lower bound L1 on

the communication volume. So the explicit cuts of a partial

partitioning give the lower bound L1, and for k = 3 this equals

L1(B) = |B01|+ |B02|+ |B12|+ 2|B012|. (6)

Fig. 4 illustrates a partial assignment with a lower bound L1 =
1 caused by row 0 ∈ B02.

The lower bound L1 can easily be extended to the general

case k ≥ 2:

L1(B) =
∑

x1···xr⊆P
(r − 1)|Bx1···xr

|. (7)

Here, P = {0, 1, . . . , k− 1} denotes the set of all processors,

and x1 · · ·xr a subset of r processors with r ≥ 2.

Whereas the lower bound L1 only counts explicit cuts, we

can also consider implicit cuts, such as shown in the last row

of Fig. 4. Although this row is unassigned, it has two nonzeros

that have been assigned through their column, namely column

2 to processor 1 and column 4 to processor 0. Thus, the row

must cause at least one communication. For each unassigned

row, we can define a subset x1 · · ·xr of processors that must

be represented in that row because of the column assignments

of the nonzeros of the row. With proper care, we can also count

processors based on nonzeros with multiple colors: for a row

with nonzeros assigned to 0, 12, we can either choose x1x2 =
01 or x1x2 = 02, and for a row with nonzeros assigned to 0,

12, 1, we must choose x1x2 = 01. All rows and columns

for a particular choice of x1 · · ·xr together define a set of

unassigned rows/columns B′x1···xr
, which leads to the bound

L2(B′) =
∑

x1···xr⊆P
(r − 1)|B′x1···xr

|, (8)

where the subsets must be of size r ≥ 2. In Fig. 4, we have

L2 = 1. We can add bounds L1 and L2, since their sets of

rows/columns are disjoint.
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B. Lower bounds based on partially assigned rows/columns
A partially assigned row is an unassigned row that has at

least one nonzero in a column that has already been assigned

to a strict subset of the processors; a partially assigned column

is defined similarly. So for k = 3, a partially assigned row has

at least one nonzero in a column with one or two processors,

but not three processors 012 since then that column does not

impose a fixed assignment of a nonzero in the row. In this

work, we will only take into account rows and columns that

are partially assigned to one or two processors.
We say that an unassigned row is partially assigned to

processor x if it has at least one nonzero in a column that

is assigned to processor x and all other nonzeros in columns

that are either unassigned or have been assigned to a set of

processors that contains processor x. A similar definition holds

for a partially assigned column. We define Px as the subset of

rows and columns that are partially assigned to processor x.
We say that an unassigned row is partially assigned to

processors x and y, for x �= y, if it has at least one nonzero

in a column that is assigned to x, at least one nonzero in a

column that is assigned to y, and all other nonzeros in columns

that are either unassigned or have been assigned to a set of

processors that contains x or y, or both. We also say that the

row is partially assigned to processors x and y in case it has

at least one nonzero in a column that is assigned to xy and

has all other nonzeros in columns that are either unassigned

or have been assigned to xy. A similar definition holds for

a partially assigned column. We define Pxy as the subset of

rows and columns that are partially assigned to processors x
and y, for x �= y.

If we need to make a distinction between rows and columns,

we add a superscript: e.g., we write P r
x for the subset of rows

partially assigned to x and P c
x for the subset of columns.

In Fig. 4, we have P0 = {r1, r3}, P1 = {r2}, P01 = {r4},
and P02 = {c1, c3}. Here, we denote the rows by ri, 0 ≤ i <
m and the columns by cj , 0 ≤ j < n.

We can exploit a partially assigned row in two different

ways: either by checking whether we would violate the load

balance constraint (4) if we would assign all its unassigned

nonzeros to one of the processors already present in the row, or

by checking whether it has an unassigned nonzero in a partially

assigned column with a conflicting partial assignment. We can

do this for a single row or a larger set of rows, and similarly

also for a set of columns.
In Fig. 4, if we demand perfect load balance, so that

the 12 nonzeros must be divided equally among the three

processors, then processor 0 has already attained its maximum

of 4 nonzeros and hence r1 and r3 must both be cut. This

observation will be the basis for bound L3, which is called a

packing bound [3] because it considers the number of nonzeros

that can be packed into a part.
The third lower bound, L3, is determined by computing the

maximum allowed number of nonzeros M of a part from (4)

and then for each x cutting rows and removing them from P r
x

until the remaining rows can all be assigned to x within the

load balance constraint. To make sure we find a lower bound,

0 − 1 − −
2

−
−
−
−

r1

r2

r3

r4

c1

Fig. 5. A partial partitioning of a matrix for k = 3, with partially assigned
rows r1, r3 ∈ P0, r2, r4 ∈ P1 and partially assigned column c1 ∈ P2, and
the corresponding bipartite graph. The vertices have been colored according
to their corresponding partial assignment. The vertices corresponding to rows
i ∈ P0 are red, those corresponding to rows i ∈ P1 are blue, and the vertex
corresponding to column j ∈ P2 is yellow. An edge between ri and cj
corresponds to an unassigned nonzero aij .

i.e., cut the least number of rows, we start by cutting the row

with the largest number of nonzeros not assigned to x, and

so on. We can do the same for the column sets P c
x . The L3

bound is the sum of the number of cuts for all sets P r
x , x ∈ P,

and the number of cuts for the sets P c
x , x ∈ P .

The fourth lower bound, L4, is obtained by matching rows

and columns that conflict with each other because of an

unassigned nonzero that they share. If row ri is partially

assigned to x1 · · ·xr and column cj to y1 · · · ys, where these

processor sets are disjoint, then assigning the still unassigned

nonzero aij will give an extra cut in either the row or column.

This is illustrated by Fig. 5, where the nonzeros a11 and a21
both cause a conflict. We only consider sets x1 · · ·xr with

r ≤ 2 and y1 · · · ys with s ≤ 2 to limit the cost of dynamically

maintaining subsets Px1···xr
during the BB algorithm. This is

also the reason for our restrictive definitions of Px and Pxy ,

which do not exploit all possible options.

To obtain a lower bound on the number of cuts based on

direct conflicts, we cannot use the same row or column twice,

meaning that we have to match the rows of the conflict nonze-

ros with the columns. Following [12], we can conveniently

convert this problem to a bipartite matching problem for a

graph G = (V r ∪ V c, E), where the vertices of V r represent

the rows and those of V c the columns, and where the edges in

E represent the conflicting nonzeros. The number of edges in

an optimal (i.e., maximum) matching for G then becomes the

lower bound L4, which we call a matching bound. In Fig. 5,

we choose one of the two edges in the matching, and hence

L4 = 1.

The matching bound can be improved for k > 2 by also

exploiting indirect conflicts. Such a conflict occurs for instance

when a row ri ∈ Px and a row rj ∈ Py have an unassigned

nonzero in the same column k ∈ Pz . This situation increases

the communication volume by two, but when we look at a

maximum matching we will only increment by one. In Fig. 5,

either two of row r1, r2 and column c1 must be cut, or column

c1 must be cut twice. In the graph formulation, this can be

taken into account by splitting the vertices of the bipartite

graph. We formally split each vertex v ∈ Px into k−1 vertices

vy , with y ∈ P−{x}, and we create an edge between vertices
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0 − − −
2

1

−
−

r2

r3

c0

c2

c3

Fig. 6. A partial partitioning of a matrix for k = 3 and the neighborhood of
row r2 ∈ P0, shown as black edges and vertices. The red color of vertex c0
means that column 0 has been assigned to processor 0; the red color of edge
(r2, c0) means that nonzero a20 has been assigned to processor 0. All the
edges in the neighborhood need to be colored red to avoid a cut in a row or
column in the partial partitioning.

rxi and cyj if there is an unassigned nonzero aij with ri ∈ Py

and cj ∈ Px. We discard degree-0 vertices. In Fig. 5, we

obtain two edges, (r21, c
0
1) and (r22, c

1
1), which are not adjacent

and hence both end up in the matching, giving a better bound

L4 = 2.

Packing bound L3 and matching bound L4 both use partially

assigned rows and columns and hence they might use the

same rows or columns. Therefore we cannot add these bounds,

but instead must take their maximum as the combined bound

max(L3, L4). An alternative is first to compute L4, then

remove all the matched rows and columns, and after that

compute L3 for the remaining rows and columns. This gives a

combined bound L5. The best bound is then max(L3, L4, L5).

C. Global lower bounds

The packing bound L3 is local because it only takes a single

row or column into account and not the rows or columns

that are connected to it through intersections in a nonzero.

We can turn L3 into a global bound GL3 by expanding the

neighborhood of a partially assigned row or column. This is

illustrated in Fig. 6, which shows the neighborhood of row

r2 ∈ P0. All four edges of the neighbourhood must be assigned

to processor 0 to avoid a cut.

In the following, we generalize the definition of a neigh-

borhood from [3] to the case k > 2, although for k = 2 our

definition differs slightly. We define a neighborhood (V,E)
adjacent to processor x as a subset V of the vertices and a

subset E of the edges of the whole bipartite graph that satisfies

the following requirements:

1) for v ∈ V with v /∈ Px, all edges of v are unassigned;

2) if u is an end point of two distinct edges in E, then

u ∈ V ;

3) (V,E) is path-connected with respect to edges;

4) V contains at least one vertex v ∈ Px;

5) all edges e ∈ E are either unassigned or assigned to a

set of at least two processors that contains x.

If we have a neighborhood (V,E) adjacent to vertex v ∈ Px,

then to avoid extra cuts we need to assign all edges in E to

processor x. As was the case for the L3 bound this can only be

done if the load balance constraint (4) allows this; otherwise

we need to assign at least some of the edges to a different

processor. This means that at least one of the vertices in V is

cut.

To determine the GL3 bound, we try to find neighborhoods

for each partially assigned row/column in Px. These neigh-

borhoods need to be pairwise disjoint, i.e., vertex disjoint. If

we have found a set of neighborhoods (V1, E1), . . . , (Vl, El)
adjacent to part x, then to prevent cuts in the future we need

to assign all edges of these neighborhoods to processor x.

However, if load balance does not allow this, we need to cut

some of the neighborhoods, where we start by cutting the

neighborhood with the largest number of edges. We repeat

this until the load balance constraint is satisfied. Each cut

neighborhood leads to one extra communication volume. We

can do this for every x ∈ P , and sum over all neighborhoods

that need to be cut to get the global packing bound GL3.

The matching bound L4 is local because it only takes the

immediate vicinity of a conflict nonzero into account. In the

graph, we can view the edge corresponding to the conflict

nonzero as a path of length 1. We can turn L4 into a global

bound GL4 by also taking conflicts at longer distances into

account. This is illustrated in Fig. 7, which shows two conflict

paths that start in a partially assigned row r4 ∈ P1 and end

in different sets P0 and P1, thus giving GL4 = 2. We can

find a set of such conflict paths starting in a vertex v ∈ Px

by performing a breadth-first search (BFS) from v, where we

search for end points that are each in a different set Py .

We can repeat this process, each time starting a BFS from a

new vertex v, where we have to make sure that new paths are

internally vertex disjoint with all paths produced by previous

searches; end points of previous paths are allowed to be used

as a starting point or ending point of a new path. Here, we have

to exclude paths ending in Py if v has already been connected

to Py by a previous search where u ∈ Py is the start of a path

and v the end point. In our implementation, we generalize the

searches to include also sets of the form Pxy; for details see

[16].

At most we will perform a BFS at cost O(|V | + |E|)
for all vertices in V . So the computation of GL4 costs at

most O((m+ n)(m+ n+ nz (A))). This is, however, a very

pessimistic upper bound on the computation time. In practice,

the computation time will be far less. We observed that this

bound is beneficial and it enabled us to find optimal 3-way and

4-way partitionings for more matrices than if we had only used

the local matching bound L4.

The global bounds GL3 and GL4 might use the same rows

or columns, and hence these bounds cannot be added. Still,

they can be combined in a similar fashion as was done for L3

and L4, first determining GL4 and then computing GL3 on a

subset of the rows and columns, avoiding those that were used

by GL4. For the sake of brevity, we omit the details; see [16].

III. INTEGER LINEAR PROGRAMMING

In section II, we described an exact BB method to solve

the matrix partitioning problem. Another way to solve this

problem exactly is to formulate it as an integer linear program
(ILP), which has the following form:
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1 − − −
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2

−
−
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r0

r1

r2

r3

r4

c0

c1

c2

c3

Fig. 7. A partial partitioning of a matrix and the corresponding bipartite graph.
The path r4, c1, r2, c2 leads to a conflict between the partial assignment of
r4 ∈ P1 and c2 ∈ P2; the path r4, c1, r3, c3 leads to a conflict between r4 ∈
P1 and c3 ∈ P0. Vertices have been colored according to the corresponding
assignment of their rows or columns. Black vertices correspond to unassigned
rows or columns. Similar for the edges and their corresponding nonzeros.

min cTx

s.t. Cx ≤ b

x ∈ Z
n, (9)

with given vectors c,b and constraint matrix C.

It is known that integer linear programming is NP-

complete [17]. Still, several software packages exist that can

solve ILPs of small and medium size, although we cannot

expect these packages to be able to solve large instances

optimally in general. One of these software packages is

CPLEX [18], which we will use in this work. The ability to

solve an ILP highly depends on a suitable formulation of the

ILP.

Our ILP approach is to formulate the sparse matrix partition-

ing problem as a hypergraph partitioning problem by the fine-

grain model [15], and then convert the hypergraph problem to

an ILP.

A hypergraph H = (V,N) is a set of vertices with a

set of nets or hyperedges, which are subsets of V . Whereas

in a graph edges connect two vertices, in a hypergraph the

hyperedges may connect an arbitrary number of vertices. In

the fine-grain model, each vertex represents a nonzero aij of

the sparse matrix A; the nonzeros of row i are converted into

a row-net ri and those of column j into a column-net cj . This

hypergraph has nz (A) vertices and m + n nets. Each vertex

is contained in exactly two nets.

A k-way partitioning of the vertices of the hypergraph with

a load balance constraint induced by (4) and a communication

volume induced by (5) directly corresponds to a solution of the

sparse matrix partitioning problem with the same load balance

and communication volume [15].

For our ILP, we define the following decision variables:

xis =

{
1 if vertex i is in part s,

0 otherwise,

yjs =

{
1 if net j has vertices in part s,

0 otherwise.

(10)

We also define M as the maximum number of nonzeros

allowed in a part by the load balance criterion (4).

Using these variables, our ILP formulation becomes:

min

|N |−1∑
j=0

(
k−1∑
s=0

yjs − 1) (11)

s.t.
k−1∑
s=0

xis = 1 ∀i (12)

|V |−1∑
i=0

xis ≤M ∀s (13)

xis ≤ yjs ∀j, s, i,with i ∈ net j (14)

x00= 1 (15)

yjs ∈ {0, 1} ∀j, s (16)

xis ∈ {0, 1} ∀i, s (17)

The minimization in (11) counts for every net j the number of

parts that contain vertices of net j, i.e. yj0+ · · ·+yj,k−1 = λj ,

so that net j contributes λj − 1 to the communication volume

of the partitioned hypergraph. Furthermore, (12) expresses that

each vertex can only be in one part; (13) is the load balance

constraint; (14) takes care that a vertex i in a net j and in part

s forces the net variable yjs to be 1; (15) exploits symmetry

(albeit to a very limited extent).

Our ILP formulation has nz (A) · k variables xis and

(m + n) · k variables yjs, so in total k(nz (A) + m + n)
decision variables. There are nz (A) vertex constraints and k
load balance constraints. Furthermore, there are 2 · k · nz (A)
net constraints, because every nonzero appears in two net

constraints: one for its row and one for its column. Therefore,

the total number of constraints is nz (A) + k(2 · nz (A) + 1).

IV. RECURSIVE BIPARTITIONING

Recursive bipartitioning (RB) is used in many heuristic

solvers to obtain a k-way partitioning of a matrix. It works

as follows: we start with the set of all nz (A) nonzeros, which

we then split into two subsets. Each subset is subsequently

split into two subsets, resulting in four subsets. We repeat the

splitting of every subset until there are k subsets, meaning we

have obtained a k-way partitioning. Therefore, if k = 2l, there

are l levels at which we split the subsets. For simplicity, we

study RB for the case where k is a power of 2, but the method

can be adapted to other values of k.

We will study the RB method that uses an exact method to

bipartition a subset, within the given load balance constraint

and in such a way that it minimizes the communication volume

that arises. This RB method is greedy: although it bipartitions

a subset optimally, it does not take into account the subsequent

bipartitionings while doing this. Therefore, we ask ourselves

in how far the RB method is able to approach the minimal

communication volume that is possible for a k-way sparse

matrix partitioning.

Our question on the quality of RB has been posed before by

Simon and Teng [19] for graph partitioning with the total edge
cut as cost metric, which differs from the incurred communica-

tion volume that we have. They showed that RB may produce
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CV : 3

CV : 3 CV : 2

δ = 0.015

δ01 = 0.067 δ23 = 0.143

Fig. 8. Recursive bipartitioning of the 11 × 11 matrix Tina_AskCal
from [4] with nz (A) = 29 (left), and an optimal 4-way partitioning (right),
both with ε = 0.03. The first bipartitioning step splits the nonzeros into two
subsets, A01 (red) and A23 (yellow). During the second bipartitioning step,
the nonzeros of subset A01 are split into subsets A0 (red) and A1 (blue), and
those of A23 into subsets A2 (yellow) and A3 (black). Next to the arrows is
the value of the load imbalance parameter used in each split, and next to each
split subset is the communication volume arising from this split. For RB, this
leads to CV = 3 + 3 + 2 = 8 and for the optimal partitioning to CV = 7.

a k-way graph partitioning that is very far from optimal,

although for well-shaped meshes it is within a constant factor

of optimal; note that mesh problems form a class of problems

for which edge cut is a good approximation of communication

volume and where graph partitioning is often used instead of

hypergraph partitioning. We will try to answer the question for

the sparse matrix partitioning problem with communication

volume as cost metric, and we will do this by comparing the

results obtained by the recursive bipartitioning of a matrix A
for the case k = 4 with the optimal value that was determined

by using direct 4-way partitioning. Fig. 8 illustrates this.

It has been shown that the communication volumes of

subsequent splits in a general partitioning method for parallel

SpMV are additive; a proof can be found in [5], [20]. For RB,

this means that

CV (A0, A1, A2, A3) =

CV (A01, A23) + CV (A0, A1) + CV (A2, A3). (18)

Even though each bipartitioning is performed optimally and

without looking ahead to further splits, the partitioning strategy

has not been completely determined yet: we still have some

freedom in choosing the imbalance parameter of every separate

split. Here, we will use the adaptive strategy of the Mondriaan

package [5], which is to assume at a given level the same

imbalance parameter δ for all remaining splits, so that

1 + ε = (1 + δ)l ≈ 1 + lδ, (19)

giving the choice δ ≈ ε/l. Note that for a lowest-level split,

with l = 1, the approximation is exact. As an alternative, we

could use the exact value for δ that can be obtained from

(19), which is done in KaHyPar [10]. We also adjust ε to the

current number of nonzeros in the part to be split. In Fig. 8,

nz (A01) = 15 and nz (A23) = 14, so that the next split of

A01 has to be tighter than that of A23, with a smaller value

of δ.

V. EXPERIMENTAL RESULTS

We have implemented the BB method from section II in

the C++ programming language, in a program called General

Matrix Partitioner (GMP). The results of our computations

are available through the MondriaanOpt page.1 The source

code of the GMP method and the ILP method are available

on GitHub.2

We partitioned a test set of relatively small sparse matrices

from the SuiteSparse collection [4] for k = 2, 3, 4 and ε =
0.03 using GMP as well as our ILP partitioner implemented

using IBM ILOG CPLEX 20.1 [18]. We set the value of the

parameter controlling the thread count of CPLEX to one, to

let it use only one processor. This seemed fair since the other

methods in our comparisons also use one processor. For all the

other parameters we used the default settings of CPLEX. The

CPLEX software uses a branch-and-cut method. For k = 2, we

also used the bipartitioners MondriaanOpt [12] and MP [3].

We performed our experiments on a computer system with an

AMD 3800XT processor with 8 Cores and 16 threads running

at 4.3GHz, and 16 GB RAM.

The initial upper bound UB was obtained for MondriaanOpt

by using the heuristic partitioner Mondriaan with the default

medium-grain method. For the other methods, we used itera-

tive deepening by starting at UB = 1 and then if no feasible

solution was found in a run of the partitioner perform a next

iteration with upper bound 	1.25 · UB
.
The lower bounds that we used in our implementation

were tried in order of increasing computing cost, LB =
L1 +L2, L1 +L2 +L3, L1 +L2 +L5, L1 +L2 +GL5; once

LB ≥ UB , we can prune the subtree and need not compute

further bounds. In the cheaper local bounds we only consider

sets Px, whereas in the more expensive global bounds we also

consider sets Pxy .

To execute the BB method, we need to decide on an order

of the rows and columns to branch on; we determine this

order beforehand. There are many possible orders and the

choice of a specific order can have a dramatic influence on the

performance. It seems natural to start with a row or column

with the largest number of nonzeros, since its assignment

has the largest influence on the load balance and on partial

assignments of other rows and columns. After choosing a

row or column in this ordering, we remove its nonzeros from

the matrix before choosing the next row or column. This

was found to be a good strategy for k = 2 in [13], where

1https://webspace.science.uu.nl/∼bisse101/Mondriaan/Opt/
2https://github.com/lienjenns/Thesis Matrix Part
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Fig. 9. Performance profile showing the fraction of all the matrices with
nz ≤ 500 from [4] that could be partitioned for k = 2 within the given
computation time, for four different methods. The test set consists of 160
matrices. Note the logarithmic scale for the computation time. The vertical
lines denote seconds, minutes, and hours.

MondriaanOpt was used with different orders. If this order

failed, we used a static branching strategy with alternating

rows and columns in decreasing order of nonzero count.

Furthermore, if we branch on a chosen row or column, and

multiple assignments are possible, each with its own associated

subtree, we need to decide which subtree we will traverse first.

We do this in increasing order of the number of processors in

the assignment. We break ties by preferring processors with

the lowest assigned number of nonzeros.

For k = 2, we compared the three BB methods Mon-

driaanOpt, MP, GMP, and the ILP method. Fig. 9 shows a

performance profile for k = 2 for the 160 matrices from the

SuiteSparse collection with at most 500 nonzeros. The matrix

partitioner MP is the fastest of these four methods, and it was

able to find the optimal bipartitioning of all matrices within the

set time limit of 12 hours. The ILP method also achieved this

within the time limit, but it was slower than MP. Thus we see

that for k = 2 a specialized BB partitioner can outperform

a general commercial ILP solver. The ILP solver seems to

have some startup overhead as for easy problems that can be

solved within a second it does not perform that well. The GMP

method is outperformed by the other methods, but it is still

able to solve 149 out of 160 problems; MondriaanOpt solves

144 problems. GMP has some overhead because it allows

partitioning for any k.

For k = 3, 4 we tried to solve as many matrices as possible

with at most 1000 nonzeros using GMP, and we also compared

GMP with ILP. For k = 3, we first tried to find the optimal

communication volume for the 60 matrices of the SuiteSparse

Matrix Collection with the fewest nonzeros. We gave the GMP

partitioner at least 48 hours of computation time to try to find

any feasible solution within 48 hours. If this succeeded, we

then let GMP run for at least 5 more days to see if it could

Fig. 10. Performance profile showing the fraction of matrices from our test
set that could be partitioned for k = 3 within the given computation time, for
the two general partitioning methods. The test set consists of 101 matrices
with nz ≤ 1000. The vertical lines denote seconds, minutes, hours, and days.

find the optimal communication volume. For other matrices,

we focused on those with small CV that were partitionable for

k = 2 in at most a few seconds. We noticed that both the CV
of the optimal bipartitioning and the computation time needed

to determine it gave us a good indication whether we would

be able to find an optimal 3-way partitioning. In general, the

higher the optimal CV and the computation time for k = 2,

the longer it takes to determine an optimal 3-way partitioning.

With this approach, GMP succeeded for 101 matrices.

For k = 4, we used the same approach but instead of taking

the results for k = 2 as an indicator for possible success we

used the results for k = 3 and focused on the matrices that

have a small CV and were 3-way partitionable in at most a

few minutes. Here, GMP succeeded for 62 matrices.

The optimal communication volumes and computation times

of the partitioned matrices for k = 3, 4 can be found in [16,

Appendix A] and they will also become available on the

MondriaanOpt page.

Figs. 10 and 11 show performance profiles for k = 3, 4. ILP

solves all the problems that GMP can solve, and does this

much faster. Using the geometric mean of the speed ratios

for the matrices that both can solve, we found that ILP is

4.3× faster for k = 2, 51.3× for k = 3, and 182.9× for

k = 4. The far superior performance of ILP for k = 3, 4
was surprising to us, given that for k = 2 the BB solvers

MondriaanOpt and MP are faster than ILP, by factors 3.1×
and 39.5×, respectively, which confirms our experience with

other ILP implementations in the past.

We have two possible explanations for the better perfor-

mance of the ILP approach. First, the commercial software

package CPLEX has made progress over the years, incorpo-

rating many optimizations and new algorithms. This makes it

harder for a specialized problem-specific BB implementation

to beat it. Second, for k > 2, exploiting specific bounds
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Fig. 11. Performance profile showing the fraction of matrices from our test
set that could be partitioned for k = 4 within the given computation time,
for the two general partitioning methods. The test set consists of 62 matrices
with nz ≤ 1000. The vertical lines denote seconds, minutes, hours, and days.

becomes more complicated and the right balance needs to be

found between a sophisticated bound that is costly to compute

and a simpler bound that is cheap. GMP tries to find this

balance, e.g. by limiting partially assigned rows and columns

to sets with one or two processors, but it might miss out

on certain useful larger sets of processors. An advantage of

GMP is that it uses much less memory than ILP; we observed

differences of several orders of magnitude.

Having an exact 4-way partitioner allows us to study the

quality of the recursive bipartitoning method used in many

heuristic sparse matrix partitioners. We did this by the method

described in section IV: we set ε = 0.03, perform the first split

with δ = 0.015, and then perform the next two splits each with

their own δ, according to the number of nonzeros of the two

parts resulting from the first split. Here, we used MP as the

exact bipartitioner. We also optimally partitioned the matrices

of our test set into 4 parts by either GMP or ILP.

Tables I and II show the optimal communication vol-

umes for k = 2, 3, 4, and the volume obtained by the

RB method for k = 4 with exact bipartitioning. The test

set of 89 matrices consists of all the sparse matrices with

less than 250 nonzeros from the SuiteSparse collection [4],

except the matrices Trec3, mycielskian2, Trec4, which

are too small with nz ≤ 3, and the difficult matrices

ibm32, mycielskian5, ch4-4-b1, Trefethen20b,

Trefethen20, wheel_5_1, cage5, Maragal_1, and

n3c5-b7, which could not be solved by our strategy.

The results in Tables I and II show that the communication

volume of RB is always close to the optimal value obtained

for k = 4, and often it equals that value, namely in 46 out

of 89 cases. In 34 cases the difference in CV is only 1; in 8

cases it is 2; and in one case it is 3, namely for the matrix

wheel_3_1. This means that RB performs well as a heuristic

strategy.

TABLE I
COMMUNICATION VOLUMES FOR MATRICES WITH AT MOST 150

NONZEROS FROM THE SUITESPARSE COLLECTION [4]. SHOWN ARE THE

NUMBER OF ROWS, COLUMNS, AND NONZEROS, THE OPTIMAL VOLUMES

FOR k = 2, 3, 4, AND THE VOLUME OBTAINED BY RECURSIVE

BIPARTITIONING FOR k = 4 WITH EXACT BIPARTITIONING. THE LOAD

IMBALANCE WAS ε = 0.03 AND THE FIRST SPLIT WAS WITH δ = 0.015.

Communication volume
Matrix m n nz k=2 k=3 k=4 RB
GL7d10 1 60 8 1 2 3 3
mycielskian3 5 5 10 2 3 4 4
Trec5 3 7 12 2 4 7 7
b1_ss 7 7 15 3 4 5 5
ch3-3-b2 6 18 18 0 0 2 2
rel3 12 5 18 3 6 10 11
cage3 5 5 19 4 7 9 9
lpi_galenet 8 14 22 2 3 4 4
relat3 12 5 24 3 8 9 9
lpi_itest2 9 13 26 3 4 6 6
lpi_itest6 11 17 29 2 3 5 5
Tina_AskCal 11 11 29 3 6 7 8
n3c4-b1 15 6 30 5 6 9 10
n3c4-b4 6 15 30 5 6 9 9
ch3-3-b1 18 9 36 5 6 9 9
Tina_AskCog 11 11 36 4 6 9 9
GD01_b 18 18 37 1 2 3 4
mycielskian4 11 11 40 6 10 12 12
Trec6 6 15 40 5 8 10 11
farm 7 17 41 4 7 10 11
Tina_DisCal 11 11 41 5 9 11 12
kleemin 8 16 44 6 8 11 12
LFAT5 14 14 46 4 4 10 10
bcsstm01 48 48 48 0 0 0 0
Tina_DisCog 11 11 48 6 9 13 14
cage4 9 9 49 9 12 16 17
GD98_a 38 38 50 0 3 4 4
jgl009 9 9 50 5 10 14 15
GD95_a 36 36 57 1 1 2 2
klein-b1 30 10 60 5 8 12 12
klein-b2 20 30 60 6 9 11 11
n3c4-b2 20 15 60 9 15 18 19
n3c4-b3 15 20 60 9 15 18 19
Ragusa18 23 23 64 5 9 12 13
bcsstm02 66 66 66 0 0 0 0
lpi_bgprtr 20 40 70 4 6 8 9
wheel_3_1 21 25 74 8 13 16 19
jgl011 11 11 76 7 11 16 17
rgg010 10 10 76 8 12 18 18
Ragusa16 24 24 81 7 12 15 16
LF10 18 18 82 4 8 12 12
problem 12 46 86 2 5 6 7
GD02_a 23 23 87 7 12 15 16
Stranke94 10 10 90 10 18 20 20
n3c5-b1 45 10 90 8 10 15 17
ch4-4-b3 24 96 96 0 0 0 0
GD95_b 73 73 96 2 2 3 5
Hamrle1 32 32 98 5 10 13 14
lp_afiro 27 51 102 5 7 11 11
rel4 66 12 104 5 8 13 14
bcsstm03 112 112 112 0 0 0 0
p0033 15 48 113 5 9 12 13
football 35 35 118 8 13 19 20
n4c5-b11 10 120 120 0 2 2 2
GlossGT 72 72 122 5 8 10 12
wheel_4_1 36 41 122 12 18 21 22
bcspwr01 39 39 131 6 8 10 12
bcsstm04 132 132 132 0 0 0 0
p0040 23 63 133 3 8 13 13
GD01_c 33 33 135 7 11 17 18
bcsstm22 138 138 138 0 0 0 0
lpi_woodinfe 35 89 140 0 0 6 6
Trec7 11 36 147 8 13 20 22
lp_sc50b 50 78 148 5 9 11 12
GD99_c 105 105 149 0 1 2 2
d_ss 53 53 149 4 9 12 12
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TABLE II
COMMUNICATION VOLUMES FOR MATRICES WITH A NUMBER OF

NONZEROS BETWEEN 150 AND 250 FROM THE SUITESPARSE

COLLECTION [4], CONTINUED FROM TABLE I.

Communication volume
Matrix m n nz k=2 k=3 k=4 RB
bcsstm05 153 153 153 0 0 0 0
refine 29 62 153 3 6 10 10
karate 34 34 156 8 14 18 19
can_24 24 24 160 8 16 20 20
lp_sc50a 50 78 160 5 7 11 13
bcspwr02 49 49 167 4 10 14 14
lap_25 25 25 169 10 18 22 22
relat4 66 12 172 4 9 12 13
pores_1 30 30 180 9 17 22 23
GD96_b 111 111 193 3 4 7 7
GD98_b 121 121 207 0 0 0 0
n2c6-b1 105 15 210 11 15 21 22
n3c6-b1 105 105 210 11 15 21 22
n4c5-b1 105 15 210 11 15 21 22
can_62 62 62 218 6 10 14 16
dwt_72 72 72 222 4 8 12 12
divorce 50 9 225 8 16 23 24
GD96_d 180 180 229 0 0 0 0
GD02_b 80 80 232 5 10 13 13
d_dyn 87 87 238 5 10 15 15
d_dyn1 87 87 238 5 10 15 15
lpi_forest6 66 131 246 5 10 12 13
Sandi_authors 86 86 248 4 8 10 12

VI. CONCLUSION AND OUTLOOK

In this work, we have developed a branch-and-bound (BB)

method for k-way partitioning of sparse matrices that can

handle any value of k. We have implemented this in a C++

program called General Matrix Partitioner (GMP), and tested it

on a set of matrices with up to 1000 nonzeros, for k = 2, 3, 4.

As a result, we can now provide a database of optimal

partitionings that can be used as a benchmark for heuristic

solvers.

We have also formulated the sparse matrix partitioning

problem as an integer linear programming (ILP) problem and

used the CPLEX package to solve it. This approach proved

superior for k > 2.

For future work, the performance of the ILP approach

indicates that it is a viable alternative to BB for exact parti-

tioning and that it deserves to be explored further, for instance

by finding better ILP formulations based on the fine-grain

hypergraph model. This may also be an approach for heuristic

partitioning, perhaps in combination with other methods such

as the medium-grain method; this would lead to a different

hypergraph that can be fed into an ILP solver.

We tried to answer the question “How good is recursive

bisection?” [19] by studying recursive bipartitioning (RB) with

an optimal split in every bisection, comparing it with an

optimal 4-way partitioning. Our answer is “Quite good in

practice”, even though we could study this only for relatively

small problems. For future work, it would be worthwhile

to investigate the freedom that RB still has when using

exact bipartitioning, namely the strategy for choosing the load

imbalance parameter for the next split.
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