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Abstract. Negation is a complex grammatical phenomenon that has received con-
siderable attention in the biomedical natural language processing domain. While
neural network-based methods are the state-of-the-art in negation scope resolu-
tion, they often use the unrealistic assumption that negation cue information is
completely accurate. Even if this assumption holds, there remains a dependency on
engineered features from state-of-the-art machine learningmethods. To tackle this
issue, in this study, we adopted a two-step negation resolving approach to assess
whether a neural network-based model, here a bidirectional long short-termmem-
ory, can be a an alternative for cue detection. Furthermore, we investigate how
inaccurate cue predictions would affect the scope resolution performance. We ran
various experiments on the open access Bio-Scope corpus. Experimental results
suggest that word embeddings alone can detect cues reasonably well, but there still
exist better alternatives for this task. As expected, scope resolution performance
suffers from imperfect cue information, but remains acceptable on the Abstracts
subcorpus. We also found that the scope resolution performance is most robust
against inaccurate information for models with a recurrent layer only, compared
to extensions with a conditional random field layer and extensions with a post-
processing algorithm. We advocate for more research into the application of auto-
mated deep learning on the effect of imperfect information on scope resolution.

Keywords: Negation cue detection · Negation scope resolution · Bi-directional
long short-term memory · LSTM · Conditional random field

1 Introduction

Negations play an important role in the semantic representation of biomedical text,
because they reverse the truth value of propositions [1]. Therefore, correct negation han-
dling is a crucial step whenever the goal is to derive factual knowledge from biomedical
text. There are two distinguish ways to approach negations in medical text: negation
detection and negation resolving. Negation detection is a form of assertion identifica-
tion, in this case, determining whether a certain statement is true or false, or whether a
medical condition is absent or present [2–7]. Negation resolving shifts the focus towards
the token level by approaching the problem as a sequence labeling task [8]. This task is
typically divided into two sub-tasks: (1) detecting the negation cue, a word expressing
negation and (2) resolving its scope, the elements of the text affected by it. A cue can
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also be a morpheme (“impossible”) or a group of words (“not at all”). As an example, in
the following sentence the cue is underlined and its scope is enclosed by square brackets:

“I am sure that [neither
apples nor bananas are blue].”

Several studies adopted neural network-based approaches to resolve negations [10,
12,16]. This approach is shown to be highly promising, but most methods solely focus
on scope resolution, relying on gold cue annotations. As Read et al. [9] point out: “It
is difficult to compare system performance on sub-tasks, as each component will be
affected by the performance of the previous.” This comparison will not be easier when
the performance on a sub-task is not affected by the performance of the previous com-
ponent.

The main advantage of deep learning methods is their independence of manually
created features, in contrast to other methods. However, by aiming at scope resolution
only, they indirectly still use these features, or assume 100% accurate cues. For com-
plete automatic negation resolving, a neural network model should detect the cue by
itself. This raises two questions:

1. How does a neural network-based model perform on the cue detection task?
2. How does a neural network-based model perform on the scope resolution task with

imperfect cue information?

This study addresses these questions by applying a Bi-directional Long Short-Term
Memory (BiLSTM) model [10] to both stages of the negation resolving task. A BiL-
STM model has proven to be good in various NLP tasks, yet not a very complex
architecture. We develop the proposed model and their improvements on the BioScope
Abstracts and Full Papers subcorpora [11].

As a secondary aim, the current study explores different methods to ensure contin-
uous scope predictions. Since the BioScope corpus only contains continuous scopes,
the Percentage Correct Scopes will likely increase after applying such a method. We
compare a post-processing algorithm [8] with a Conditional Random Field (CRF) layer
[12], in our experiments.

2 Task Modeling

Let a sentence be represented by a token sequence t = (t1 t2 · · · tn). Following Khan-
delwal and Sawant [14], we use the following labeling scheme for the cue detection
task: For k = 1, . . . , n, token tk is labeled

– C if it is annotated as a single word cue or a discontinuous multiword cue
– MC if it is part of a continuous multiword cue
– NC if it is not annotated as a cue

The scope label of token tk is

– O if it is outside of the negation cue scope
– B if it is inside the negation scope, before the first cue token
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Table 1. Example of a token sequence and its cue and scope labels.

Tokens It Had No Effect On IL-10 Secretion .

Cue labels NC NC C NC NC NC NC NC

Scope labels O O C A A A A O

– C if it is the first cue token in the scope
– A if it is inside the negation scope, after the first cue token

For each sentence, Task 1 is to predict its cue sequence: c = {NC,C,MC}n,
given its token sequence t and Task 2 is to subsequently predict the scope sequence:
s = {O,B,C,A}n, given t and c. Table 1 shows an example for the token sequence
t with gold cue and scope labels for a given sentence: “It had [no effect on IL-10
secretion].”

2.1 Performance Measures

To measure performance, we evaluate whether the tokens are correctly predicted as cue
or non-cue (Task 1) and as outside or inside the scope (Task 2). At the token level, both
tasks are evaluated by precision, recall and F1 measures.

At the scope level, we report the percentage of exact cue matches (PECM) over the
number of negation sentences for Task 1. All cue tokens in the sentences have to be cor-
rectly labeled to count as an exact match. For Task 2, we adopt the Percentage of Correct
Scopes (PCS) as a measure of performance, the percentage of gold negation scopes that
completely match. To evaluate the effectiveness of a ‘smoothing’ method, we compute
the Percentage of Continuous Predictions (PCP) over all scope predictions.1

3 Model Architecture

In this section, we describe the proposed model architectures for Task 1 and Task 2.
Both tasks are performed by a neural network consisting of an embedding layer, a BiL-
STM layer and a softmax layer (Fig. 1). For Task 1, we define a baseline model with
an embedding layer and a softmax. For both tasks, we add a model where the softmax
layer is replaced by a CRF layer to obtain a joint prediction for the token sequence.

3.1 Word Embeddings for Cue Detection

The token sequence t = (t1 · · · tn) is the only input for the cue detection models.
Let Ed×v be an embedding matrix, where d is the embedding dimension and v is the
vocabulary size. Then, each token in t = (t1 · · · tn) is represented by a pre-trained

1 Let the left and right boundary of a scope be defined as kL = min
{
k|sk ∈ {B,C,A}}

and
kR = max

{
k|sk ∈ {B,C,A}}

, respectively. We define a scope to be continuous if tk = 1
for all kL < k < kR, and discontinuous otherwise.
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Fig. 1. Schematic representation of the BiLSTM model for cue detection (left) and scope resolu-
tion (right), for the example sentence “It had no effect on IL-10 secretion.” at k = 3.

BioWordVec [18] embedding e ∈ R
d corresponding to its vocabulary index. These

embeddings were trained by the Fasttext subword embedding model with a context
window size of 20 [19] on the MIMIC-III corpus [20]. This model is able to include
domain-specific subword information into its vector representations. Out-of-vocabulary
(OOV) tokens were represented by a d-dimensional zero vector.

Word embeddings may represent features that are already informative enough for
the cue detection task. Therefore, we define a baseline model where the embeddings
are directly passed to a 3-unit dense layer with weights W 3×d

s and bias bs ∈ R
3. The

output vector
yk = Wsek + bs = (yNC

k , yC
k , yMC

k )

contains to the ‘confidence’ scores of tagging token k as a non-cue, cue or mul-
tiword cue, respectively. These scores are used to obtain the final prediction label
pk = softmax(yk), where the softmax function R

3 → {NC,C,MC} is given by

y �→
{

ey
NC

Z
,
ey

C

Z
,
ey

MC

Z

}
, Z =

∑
y∈y

ey.

3.2 BiLSTM for Cue Detection

In the BiLSTM model, the token embeddings (e1 · · · en) are passed to a BiLSTM
layer [21] with 2U units, U in the forward direction and U in the backward direction.
We represent an LSTM layer as a sequence of n identical cells. A cell at token k is
described by the following set of equations corresponding to its input gate ik, forget
gate fk, output gate ok, candidate memory state γ̃k, memory state γk and hidden state
hk, respectively:
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ik = σ
(
W (i)

e ek + W
(i)
h hk−1 + b(i)

)
,

fk = σ
(
W (f)

e ek + W
(f)
h hk−1 + b(f)

)
,

ok = σ
(
W (o)

e ek + W
(o)
h hk−1 + b(o)

)
,

γ̃k = tanh
(
W (γ̃ )

e ek + W
(γ̃ )
h hk−1 + b(γ̃ )

)
,

γk = fk � γk−1 + ik � γ̃k,

hk = ok � tanh(γk),

where WU×d
e denote the weight matrices for the token embeddings, WU×U

h denotes
the recurrent weight matrix, b ∈ R

u is a bias vector, � denotes the Hadamard product,
σ denotes the sigmoid function2 and tanh denotes the hyperbolic tangent function.3

The hidden state of the forward layer and backward layer are concatenated to yield a
representation

←→
h k = (

−→
h k;

←−
h k) ∈ R

2u for token k. For each token, the output
←→
h k

of the BiLSTM layer is fed into a 3-unit softmax layer with weights W 3×2U
s and bias

bs ∈ R
3, as defined in the baseline model.

3.3 Adding a Conditional Random Field Layer

Although the context around token t is captured by the LSTM cell, the model will still
assume independence between the token predictions when it maximizes a likelihood
function. Alternatively, we can replace the softmax layer of the cue detection models
by a Conditional Random Field (CRF) layer [22] to create a dependency between the
predictions of adjacent tokens. This allows the model to learn that a single cue token is
surrounded by non-cue tokens, and that a multiword cue token is always followed by a
next one.

Let Y = (y1 · · ·yn) be the 3 × n matrix of model predicted scores⎛
⎝yNC

1 yNC
2 · · · yNC

n

yC
1 yC

2 · · · yC
n

yMC
1 yMC

2 · · · yMC
n

⎞
⎠ .

Consider all possible label sequences enclosed by start/end labels P = {start} ×
{NC,C,MC}n × {end}. Let p∗ ∈ P and let T ∈ R

5×5 be a matrix of transition
scores, such that score Ti,j corresponds to moving from the i-th to the j-th label in the
set {NC,C,MC, start, end}. Then, a linear CRF yields a joint prediction for a token
sequence t by attaching it a global score

S(t, c,p∗) =
n∑

k=1

Yp∗
k,k

+
n∑

k=0

Tp∗
k,p

∗
k+1

.

The model predicts the label sequence with the maximum score among all possible
label sequences:

p =p∗∈P S(t, c,p∗)
2 The function R → (0, 1) given by x �→ 1/(1 + e−x).
3 The function R → (−1, 1) given by x �→ (ex − e−x)/(ex + e−x).
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3.4 BiLSTM for Scope Resolution

The scope resolution model accepts as input the token sequence t and a cue vector
(c1 · · · cn) ∈ {0, 1}n, where ck = 0 if the (gold or predicted) cue label of token k is
NC and ck = 1 otherwise. The embedding layer yields a cue embedding q ∈ {1}d if
ck = 1 and q ∈ {0}d if ck = 0. For the token input, we use the same embedding matrix
Ev×d as in the previous model.

The token and cue embeddings are passed to a BiLSTM layer with 2U units. An
LSTM layer is well-suited for the scope resolution, since it can capture long term depen-
dencies between a cue token and a scope token. The bidirectionality accounts for the
fact that a scope token can be located to the left and the right of a cue token. The hidden
state of the forward layer and backward layer are concatenated to yield a representation←→
h k = (

−→
h k;

←−
h k) ∈ R

2u for token k.

For each token, the output
←→
h k of the BiLSTM layer is fed into a 4-unit dense layer

with weights W 2×2U
s and bias bs ∈ R

2. The output vector

yk = Ws
←→
h k + bs = (yO

k , yB
k , yC

k , yA
k )

contains to the ‘confidence’ scores of the possible scope labels. These scores are used
to obtain the final prediction label pk = softmax(yk).

3.5 BiLSTM + CRF for Scope Resolution

A BiLSTM + CRF model is also used for the scope resolution task. The model might
learn that certain sequences are impossible, for example, that a B will never follow a C.
Moreover, we expect that the model will yield more continuous scope predictions.

3.6 Model Training

The objective of the models is to maximize the likelihood L(Θ) of the correct predic-
tions p compared to the gold labels g = (g1 · · · gn), with Θ the set of trainable model
parameters and X the inputs of the model. For the BiLSTM models, this likelihood is

L(Θ) =
n∏

k=1

(
pk(Θ,X)

)gt(1 − pk(Θ,X)
)1−gt

,

for the BiLSTM-CRF models, this likelihood is

L(Θ) =
eS(X,p)∑

p∗∈P
eS(X,p∗) .

Hyperparameters. The models were compiled and fitted with the Keras functional API
for TensorFlow 2.3.1 in Python 3.7.6. Based on validation results, we selected the Adam
optimizer with an initial learning rate 0.001 with step decay to find optimal values for
Θ. Scope resolution models were trained on 30 epochs with a batch size of 32. The
cue detection models were trained with early stopping, since the model showed large
overfitting on 30 epochs. For the architecture hyperparameters, we selected embedding
dimension d = 200 and number of units in the LSTM-layer U = 200. Embeddings
were not updated during training, except for the cue detection baseline model.
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Table 2. Descriptive statistics of the subcorpora.

Statistic Abstracts Full papers

Total Documents 1,273 9

Sentences 11,994 2,469

Negation instances 14.3% 15.2%

Tokens 317,317 69,367

OOV 0.1% 1.4%

Sentence length n n ≤ 25 53.5% 50.6%

25 < n ≤ 50 43.2% 42.7%

50 < n ≤ 75 3.0% 5.6%

75 < n 0.3% 1.1%

Scope length S S ≤ 10 69.9% 72.0%

10 < S ≤ 30 24.2% 22.1%

30 < S 58.7% 58.7%

Avg. S/n 0.33 0.30

Scope bounds Avg. kL 16.4 16.2

Avg. kR 23.1 22.8

Avg. kL/n 0.51 0.47

Avg. kR/n 0.76 0.70

Scope starts with cue 85.5% 78.7%
Note: OOV = Out Of Vocabulary tokens, that is, not appearing in
the BioWordVec pre-trained embeddings. Avg. = average.

3.7 Post-processing

In Task 2, we apply a post-processing algorithm on the predictions of the BiLSTM
model to obtain continuous scope predictions [8]. We first ensure that the cue tokens
are labeled as a scope token. In case of a discontinuous negation cue, the tokens between
the cue tokens are also labeled as a scope token. The algorithm locates the continuous
prediction ‘block’ containing the cue token and decides whether to connect separated
blocks around it, based on their lengths and the gap length between them.

4 Experiments

4.1 Corpus

The current study made use of the Abstracts and Full papers subcorpora from the open
access BioScope corpus [11]. Together, these subcorpora contain 14,462 sentences. For
each sentence, the negation cue and its scope are annotated such that the negation cue
is as small as possible, the negation scope is as wide as possible and the negation cue
is always part of the scope. Resulting from this strategy, every negation cue has a scope
and all scopes are continuous.
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One sentence contained two negation instances. We represented this sentence twice,
each such copy corresponded to a different negation instance. This resulted in 2,094
(14.48%) negation instances. A description of the subcorpora is provided in Table 2.

Tokenization. Biomedical text data poses additional challenges to the problem of
tokenization [24]. DNA sequences, chemical substances and mathematical formula’s
appear frequently in this domain, but are not easily captured by simple tokenizers.
Examples are “E2F-1/DP1” and “CD4(+)”. In the current pipeline, the standard NLTK-
tokenizer was used [25], in accordance with the tokenizer used by the BioWordVec
model. This resulted in a vocabulary of 17,800 tokens, with each token present in both
subcorpora. Tokenized sentences were truncated (23 sentences) or post-padded to match
a length of 100 tokens.

5 Results and Discussion

5.1 Task 1 Performance

The results indicate that BiLSTM-based models can detect negation cues reasonably
well in the Abstracts corpus, but perform poorly on the Full Papers corpus. The differ-
ence is not surprising, since we know from previous studies that most models perform
worse on the Full Papers corpus. In Table 3, we report the performance of the proposed
methods compared to the current state-of-the-art machine learning and neural network
methods. It is clear that the models underperform on both corpora by a large margin.

The most surprising result is that none of the models perform remarkably better than
the baseline model of non-trainable word embeddings. Adding a BiLSTM layer even
leads to worse performance: The precision and recall measures indicate that less tokens
are labeled as a cue with a BiLSTM layer, reducing the false positives, but increasing the
false negatives. Apparently, the BiLSTM layer cannot capture more syntactical informa-
tion needed for cue detection than already present in the embeddings. The embeddings
do not benefit from a CRF layer either. It is only with a BiLSTM-CRF combination that
the overall performance improves by predicting more non-cue labels for tokens that are
indeed not a cue token. Among the currently proposed models, we conclude that the
BiLSTM + CRF model is the best for the Abstracts corpus.

In contrast, training the embeddings does lead to a better performance on the Full
Papers corpus. Here, the performance measures are more conclusive. The F1 measure
is halved after adding a BiLSTM layer to the embeddings, and adding a CRF leads to
no predicted cue labels at all. We therefore use the trained embeddings model to obtain
the cue predictions for the Full Papers corpus.

5.2 Task 2 Performance

Overall, it is clear that the models suffer from imperfect cue information. The F1 on the
scope resolution task can decrease up to 9% on the Abstracts corpus and 18% on the
Full Papers corpus, when moving from gold to predicted information, see Table 4. The
BiLSTM model seems to be the most robust against this effect. The transition scores
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Table 3. Performance of the cue detection models.

BioScope abstracts

Method P R F1 PECM

Baseline 80.59 87.81 84.05 76.95

Emb. train (E) 79.87 89.61 84.46 74.22

E + BiLSTM 84.87 82.44 83.64 78.52

E + CRF 82.62 83.51 83.07 76.95

E + BiLSTM + CRF 83.22 87.10 85.11 80.86

Metalearner [15] 100 98.75 99.37 98.68

NegBERT [14] NR NR 95.65 NR

BioScope full papers

Method P R F1 PECM

Baseline 64.18 62.32 63.24 47.46

Emb. train (E) 60.23 76.81 67.52 49.15

E + BiLSTM 58.33 20.28 30.11 18.64

E + CRF NaN 0 NaN 0

E + BiLSTM + CRF 60.53 66.67 63.45 45.76

Metalearner [15] 100 95.72 96.08 92.15

NegBERT [14] NR NR 90.23 NR
Note: PECM = Percentage Exact Cue Matches.

of a CRF layer might make the model more receptive to cue inputs. When the model
is presented a false positive cue, the transition score from an O-label to a C makes it
easier to predict a false positive C. It is also clear why the post-processing algorithm
performs worse with imperfect cue information, as it guarantees that all false positive
cues will receive a false positive scope label. This is confirmed by the sharp drop in
precision (14%) and the small drop in recall (4%), see Table 5.

As a secondary aim, we investigated the effect of the CRF layer and the post-
processing algorithm on the Percentage of Correct Scopes. In all cases, we see that
the post-processing algorithm yields the highest PCS. However, this comes at the cost
of a lower F1 measure at the token level when the model receives predicted cue inputs.
Another disadvantage of this approach is that is not easily transferable to genres where
the annotation style is different. For example, discontinuous scopes are quite common
in the Conan Doyle corpus [13].

The results indicate that the BiLSTM+CRFmodel often resolves more scopes com-
pletely than the BiLSTM model. This could be partly explained by the increase in con-
tinuous predictions, as earlier suggested by Fancellu et al. [12]. However, on the Full
Papers corpus with predicted inputs, the CRF-based model yields a lower PCS. The
precision and recall measures indicate that the BiLSTM+CRF model predicts more
positive cue labels, which may result in scopes that are too wide. We also see that there
remains a substantive percentage of discontinuous predictions. This may be solved by
higher-order CRF layers, that is, including transitions of label k to label k + 2.
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Table 4. F1 scores on the scope resolution task with Gold versus Predicted cue inputs.

Abstracts, Cue detection F1 = 85.11

Method Gold input Predicted input Difference

BiLSTM 90.25 83.90 6.35

BiLSTM + CRF 91.58 84.43 7.15

BiLSTM + post 90.17 80.87 9.30

Full papers, Cue detection F1 = 67.52

Method Gold input Predicted input Difference

BiLSTM 72.80 56.98 15.82

BiLSTM + CRF 76.10 59.19 16.91

BiLSTM + post 73.29 54.79 18.50

Table 5. Performance of the scope resolution model on the Abstracts corpus.

BioScope abstracts

Cues Method P R F1 PCS PCP

Gold BiLSTM 89.80 90.70 90.25 68.34 87.89

BiLSTM+CRF 91.07 92.10 91.58 70.31 92.19

BiLSTM+post 90.43 89.92 90.17 72.66 100

Metalearner [15] 90.68 90.68 90.67 73.36 100

RecurCRFs* [17] 94.9 90.1 93.6 92.3 –

NegBERT [14] NR NR 95.68 NR NR

Pred BiLSTM 81.83 86.08 83.90 58.59 83.07

BiLSTM+CRF 81.29 87.82 84.43 58.98 87.40

BiLSTM+post 76.40 85.90 80.87 60.55 100

Metalearner [15] 81.76 83.45 82.60 66.07 100

BioScope full papers

Cues Method P R F1 PCS PCP

Gold BiLSTM 94.21 59.31 72.80 28.81 88.14

BiLSTM+CRF 80.87 71.86 76.10 32.20 89.83

BiLSTM+post 94.86 59.72 73.29 32.20 100

Metalearner [15] 84.47 84.95 84.71 50.26 100

NegBERT [14] NR NR 87.35 NR NR

Pred BiLSTM 67.69 49.19 56.98 18.64 56.92

BiLSTM+CRF 57.55 60.93 59.19 16.95 63.08

BiLSTM+post 49.92 60.73 54.79 22.03 100

Metalearner [15] 72.21 69.72 70.94 41.00 100
Note: PCS = Percentage Correct Scopes, PCP = Percentage Continu-
ous scope Predictions. *These results were reported for the complete
BioScope corpus.
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6 Conclusion and Future Work

The current study adopted a neural network-based approach to both sub-tasks of nega-
tion resolving: cue detection and scope resolution. In this way, the task would be com-
pletely independent of hand-crafted features, and would more realistically demonstrate
the performance on the scope detection task. The study showed that the applicability of
the BiLSTM approach does not extend to cue detection: isolated word embeddings are
just as effective. These embeddings could capture features that are informative for cue
detection, but they need more ‘flexible’ contextual information to distinguish negative
or neutral use of a potential cue token within a given sentence.

The scope resolution performance of a BiLSTM + CRF-based method with inac-
curate cue labels is hopeful. The model still outperforms most early methods, and per-
forms on par with some recent methods. It would be interesting to assess the robustness
of other neural network-based models against imperfect cue inputs, possibly with differ-
ent levels and forms of cue accuracy. Additionally, this robustness could be integrated
in the approach. For example, we could capture the prediction uncertainty of the cue
inputs by feeding the probabilities instead of the labels to the scope resolution model.
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11. Vincze, V., Szarvas, G., Farkas, R., Móra, G., Csirik, J.: The BioScope corpus: biomedical
texts annotated for uncertainty, negation and their scopes. BMCBioinform. 9(11), 1–9 (2008)

12. Fancellu, F., Lopez, A., Webber, B., He, H.: Detecting negation scope is easy, except when
it isn’t. In: Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers, pp. 58–63, April 2017

13. Morante, R., Daelemans, W.: ConanDoyle-neg: annotation of negation in Conan Doyle sto-
ries. In: Proceedings of the Eighth International Conference on Language Resources and
Evaluation, Istanbul, pp. 1563–1568, May 2012

14. Khandelwal, A., Sawant, S.: NegBERT: a transfer learning approach for negation detection
and scope resolution. arXiv preprint arXiv:1911.04211 (2019)

15. Morante, R., Daelemans, W.: A metalearning approach to processing the scope of negation.
In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning
(CoNLL 2009), pp. 21–29, June 2009

16. Lazib, L., Qin, B., Zhao, Y., Zhang, W., Liu, T.: A syntactic path-based hybrid neural network
for negation scope detection. Front. Comp. Sci. 14(1), 84–94 (2018). https://doi.org/10.1007/
s11704-018-7368-6

17. Fei, H., Ren, Y., Ji, D.: Negation and speculation scope detection using recursive neural
conditional random fields. Neurocomputing 374, 22–29 (2020)

18. Chen, Q., Peng, Y., Lu, Z.: BioSentVec: creating sentence embeddings for biomedical texts.
In: 2019 IEEE International Conference on Healthcare Informatics (ICHI), pp. 1–5. IEEE,
June 2019

19. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword
information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

20. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3(1),
1–9 (2016)

21. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM
and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

22. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for
segmenting and labeling sequence data (2001)

23. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016)
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