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ABSTRACT

Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in
radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet.
The inner and outer jet components then have a different origin and launching mechanism, making their effective
inertia, magnetization, associated energy flux, and angular momentum content different as well. Their interface
will develop differential rotation, where disruptions may occur. Here we investigate the stability of rotating, two-
component relativistic outflows typical for jets in radio galaxies. For this purpose, we parametrically explore the
long-term evolution of a transverse cross section of radially stratified jets numerically, extending our previous
study where a single, purely hydrodynamic evolution was considered. We include cases with poloidally magnetized
jet components, covering hydro and magnetohydrodynamic (MHD) models. With grid-adaptive relativistic MHD
simulations, augmented with approximate linear stability analysis, we revisit the interaction between the two jet
components. We study the influence of dynamically important poloidal magnetic fields, with varying contributions
of the inner component jet to the total kinetic energy flux of the jet, on their non-linear azimuthal stability. We
demonstrate that two-component jets with high kinetic energy flux and inner jet effective inertia which is higher
than the outer jet effective inertia are subject to the development of a relativistically enhanced, rotation-induced
Rayleigh–Taylor-type instability. This instability plays a major role in decelerating the inner jet and the overall jet
decollimation. This novel deceleration scenario can partly explain the radio source dichotomy, relating it directly
to the efficiency of the central engine in launching the inner jet component. The FRII/FRI transition could then
occur when the relative kinetic energy flux of the inner to the outer jet grows beyond a certain threshold.
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1. INTRODUCTION

There is strong observational and theoretical evidence that
magnetic fields play a crucial role in the acceleration and the
collimation of extragalactic jets. Most active galactic nuclei
(AGNs) jet formation scenarios involve magnetic fields, thread-
ing a rotating black hole (in the ergosphere) and its accretion
disk, thereby removing from them angular momentum, allowing
the central black hole to accrete. At least close to the jet launch-
ing region, the jet rotation profile persists, reflecting its (general
relativistic and/or magnetorotational) origin. Thus both ingre-
dients, magnetic fields and rotation, are very important in jet
formation, as well as in jet propagation and stability.

Moreover, detailed astrophysical jet observations point out
that relativistic jets are structured, in a direction perpendicular
to the jet axis, typically consisting of a fast spine and slower
outer flow. In the case of AGNs, this jet structuring plays an im-
portant role in explaining the morphology of the jet high energy
radiation (Ghisellini et al. 2005; Hardcastle 2006; Jester et al.
2006, 2007; Siemiginowska et al. 2007; Kataoka et al. 2008),
with sometimes clear evidence for a very fast, light inner jet and
a heavy slow outer outflow (Giroletti et al. 2004). Furthermore,
observations of the TeV BL Lacertae objects show brightenings
and rapid variability in their TeV emission. This variation in their
high-energy emission implies high Lorentz factor flows occur-
ring at smaller scale, suggesting ultra-relativistic bulk motion of
the (inner) jet. At the same time, complementary (radio) obser-
vations with very long baseline interferometry of the pc-scale
jet structure indicate a broad, “slowly” (albeit relativistic) mov-

ing outflow. In combination, this clearly suggests the presence
of a two-component jet morphology (Ghisellini et al. 2005). A
two-component jet structure has also been proposed in more
theoretical work, addressing the physics of jet launching, colli-
mation, and propagation mechanisms (Bogovalov & Tsinganos
2001; Sol et al. 1989; Meier 2003).

While our jet dynamics computations will be representative
for AGN jet conditions, radially structured jet flows are now
known to exist in virtually all astrophysical jet outflows.
Transversely structured, ultra-relativistic jet-like outflow has
been proposed in the context of gamma-ray bursts (Racusin
et al. 2008) to explain the break observed in their afterglow
light curve. In the case of stellar outflows, recent observations of
some T Tauri jets (Bacciotti et al. 2000; Günther et al. 2009) also
suggest a fast inner outflow bounded by a slow outer outflow.
In these young stellar objects, a clear signature of jet rotation
around the symmetry axis was detected (Bacciotti et al. 2002;
Woitas et al. 2005; Coffey et al. 2004, 2007), fully supporting
scenarios of magnetocentrifugal jet launch and acceleration.
Theoretical models of two-component jets in classical T Tauri
(Bogovalov & Tsinganos 2001; Meliani et al. 2006a; Cranmer
2008; Fendt 2009) then postulate that the inner outflow is
turbulent and pressure driven, associated with the young star
wind. The inner jet then has a small opening angle, as it is
collimated by the outer jet, which is in turn magnetocentrifugally
driven from the surrounding disk. The outer disk wind then
carries most of the mass loss in the jet. Various authors
(Meliani et al. 2006a; Fendt 2009) have demonstrated using
axisymmetric magnetohydrodynamic (MHD) simulations that
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the outer outflow is self-collimated by its intrinsic magnetic
field, and that the turbulent inner outflow gets collimated by
the outer jet. Furthermore, Matsakos et al. (2008) investigated
the topological stability of two-component outflows for young
stellar objects, performing extensive numerical simulations to
determine whether analytic self-similar models demonstrate
robustness in axisymmetric conditions.

Also for relativistic jet simulations, axisymmetric assump-
tions are often adopted, excluding the development of all non-
axisymmetric perturbations. These can address details of how
helical field configurations (naturally expected from magneto-
centrifugal launch mechanisms) effectively may transport their
helicity down the jet beam (Keppens et al. 2008), with magneti-
cally aided re-acceleration by field compression across internal
cross shocks. While Keppens et al. (2008) concentrated on ki-
netic energy dominated jets, initially Poynting flux dominated
jets were simulated by Komissarov et al. (2007) in axisym-
metric relativistic MHD, finding that the transition to a matter-
dominated jet regime occurs very close to the central engine
(within 0.01 pc). Our model computations will therefore as-
sume kinetic-energy-dominated jets.

As far as the magnetic field topology is concerned, we will
restrict ourselves in this paper to purely poloidally magnetized
jet components. Our two-component jet model determining our
initial conditions can actually allow for helical fields, as ex-
plained in Section 2 (we include this more general case here
for future reference in follow-up studies). As indicated be-
fore, during the first acceleration phase of AGN jets, magne-
tocentrifugal mechanisms play an important role, and a heli-
cal or even strongly toroidal magnetic field is likely produced
(Fendt 1997; Meliani et al. 2006b; McKinney & Blandford
2009; Komissarov et al. 2007). McKinney & Blandford (2009)
present three-dimensional (3D) general relativistic MHD sim-
ulations for rapidly rotating black holes, producing jets with
strong toroidal fields. They find a prominent role of the accreted
magnetic field geometry for achieving “stable” jets. Helical or
strongly toroidal field topologies can be subject to current-driven
kink instabilities (Begelman 1998), with m = 1 toroidal modes
that helically displace the jet axis. This requires full 3D numer-
ical simulations, such as performed by Baty & Keppens (2002)
in non-relativistic MHD, or addressed by Mizuno et al. (2009)
in relativistic MHD for a static force-free equilibrium. Disper-
sion relations for non-axisymmetric modes and m = 1 kinks
in particular for relativistic MHD were analyzed by Begelman
(1998) for purely toroidal fields, and electromagnetically dom-
inated force-free jets were analyzed spectrally by Istomin &
Pariev (1996) and more recently by Narayan et al. (2009).

In our work, we will restrict attention to 2.5-dimensional
(2.5D) scenarios with the somewhat unusual assumption of
translational invariance along the jet axis. The overall configu-
ration is schematically indicated in Figure 1, and we simulate a
transverse cross section of the jet at a sufficient distance from
the two-component jet source, where all the three velocity com-
ponents (axial, azimuthal, and radial) are included, but their
variation along the jet axis is ignored. Our aim is to investi-
gate all non-axisymmetric instabilities, primarily induced by
the (sheared) rotation. This approximation is valid because in
the poloidal direction, the flow is supersonic with a high Lorentz
factor, and then the growth rate of poloidal instabilities is ex-
pected to be low. On the other hand, the rotation is subsonic,
facilitating the growth of toroidal instabilities. We then address
jet stability in a cross section of a rotating two-component jet,
initially collimated by thermal pressure and/or a poloidal mag-

Figure 1. Three-dimensional schematic view of the overall AGN disk-jet
configuration (indicating the accretion disk and the two-component jet). We
model the jet evolution in the transverse plane.

(A color version of this figure is available in the online journal.)

netic field. Consecutive snapshots of the cross-sectional evolu-
tion can be interpreted as mimicking the jet flow conditions at
an increasing distance from the source. Note that this particular
assumption allows us to follow both axisymmetric and all non-
axisymmetric (including m = 1) mode development, but does
exclude helical mode axis displacement typical for kink modes.
Our model therefore mimics jet evolution adequately as long as
the radial axis displacement is smaller than the axial wavelength
associated with possible m = 1 kinks. Our assumption does also
neglect conical jet expansion, assuming cylindrical propagation.
This is justified given the low observed values for jet opening
angles.

Since we defer the study of toroidal and helical magnetic
field configurations in 2.5D and 3D to later work, we start off
with numerically investigating the influence of a purely poloidal
magnetic field on the stability of rotating, two-component rel-
ativistic jets. Our work complements the studies looking into
kink development by putting the emphasis on the azimuthal
variation and on the effect of the two-component jet stratifi-
cation. As far as a purely poloidal magnetic field topology is
concerned, the work by Spruit et al. (1997) suggests that jets
should be collimated by poloidal magnetic field pressure, rather
than by toroidal magnetic field, as toroidal jet magnetic fields
can introduce kink instability (but only slow mode growth was
found for force-free jets by Narayan et al. 2009). To justify
purely toroidal fields, we can argue that the toroidal magnetic
field in the jet acceleration phase can be gradually dissipated
involving reconnection, a mechanism which in turn contributes
to (axial) jet acceleration (Spruit 2009; Meliani et al. 2006a).
Indeed, during the acceleration phase a fraction of the Poynting
flux (angular momentum) carried by the the magnetic field is
converted to kinetic energy by internal dissipation/reconnection
of the toroidal magnetic field (Spruit 2009; Meliani et al. 2006a).
In accord with this mechanism, we model the region where the
eventual jet rotation is low.

In this paper, we analyze five cases in detail to determine the
effects of differing poloidal magnetic field configurations in
the two-component structure on its long-term stability, and on
the overall deceleration of the jet as it propagates away from
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the central source regions. The role of the poloidal magnetic
field is in these cases most prominent in its added effect on total
pressure and effective fluid inertia, and this is shown to play a
prominent role in the two-component jet stability.

2. TWO-COMPONENT JET MODEL

We set up a relativistic magnetohydrodynamic model of
a two-component jet, which elaborates on the earlier model
described in Meliani & Keppens (2007). The jet model uses as
its basic characterizing parameter a total jet kinetic luminosity
flux typical for powerful radio loud galaxies, namely Ljet,Kin =
1046 erg s−1 (Rawlings & Saunders 1991; Tavecchio et al.
2004). Second, the outer radius of the two-component jet is
taken to be Rout ∼ 0.1 pc. This is a value directly inferred
from observed values for M87 (Biretta et al. 2002), which has
a known jet opening angle of 6◦ at 1 pc from the jet source.
For the less constrained inner jet radius, we adopt the initial
value Rin = Rout/3. The remainder of the t = 0 condition is
then characterized by the velocity profiles in both inner and
outer jet components and by the magnetic configuration in the
two-component jet.

2.1. Initial Flow Profiles and Rayleigh Criterion

For the initial flow condition, we adopt a uniform outflow
velocity Vz along the jet axis in each jet component, with
Vz,out = 0.9428 (hence γz,out ∼ 3, since speeds are normalized
to the light speed) for the outer, slow jet located within
Rin < R < Rout. This represents a typical outflow value for
relativistic jets at a parsec scale from the source. The inner jet has
a much faster outflow speed, which we set to Vz,in = 0.99939,
with the corresponding Lorentz factor γz,in ∼ 30. The difference
in the Lorentz factor by an order of magnitude in the inner versus
outer jet layers is representative (though somewhat exaggerated)
for differences inferred for the BL Lac object Markarian 501
between its central spine and surrounding (shear) layer jet, as
described by Giroletti et al. (2004). However, it remains lower
than the Lorentz factor γ ∼ 50 suggested for TeV blazar PKS
2155−304 (Ghisellini & Tavecchio 2008).

Two-component jet models also commonly assume that the
spin of the inner beam is higher than the spin of the outer jet. The
physical argument is that the inner beam is extracting angular
momentum from the inner parts of the accretion disk and from
the black hole itself, both implying fast rotation. Therefore,
we adopt different initial rotation profiles for the inner versus
outer jet, both radially self-similar. Although in our numerical
results below we will only adopt purely poloidal magnetic field
configurations, i.e., we will have �B = Bz(R, ϕ; t)�ez, one can
generalize our initial equilibrium configuration to allow for both
toroidal speeds and toroidal magnetic fields, sharing the same R
dependence. In that general case, one takes in practice
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where the �V = Vϕ�eϕ + Vz�ez is the 3-velocity, and similarly
for the magnetic field. At t = 0, we then have a discontinuity
in the toroidal velocity at the boundary between the two jets
when fixing vϕ,in = 0.01 and vϕ,out = 0.001. A faster rotating
inner component is consistent with a small expansion of the
inner streamlines, which are confined by the outer outflow. The
fast rotating inner jet effectively extracts the angular momentum
from the central region and carries it away with a very small mass
flux. In fact, our models typically have the inner jet extracting
order 10% of the total angular momentum associated with the
two-component jet. We fix the exponent ain = 0.5 for the inner
jet and aout = −2 for the outer jet. We then choose for the
outer jet a rotation profile implying a radially constant angular
momentum. This is motivated by the fact that this component is
believed to be launched from an accretion disk, where the outer
streamlines in the jet expand faster than the inner streamlines.

The rotation profile of the inner jet then obeys the relativistic
equivalent of the Rayleigh criterion for stability, namely that the
angular momentum flux given by

I = γ

(
ρ + Γ

Γ−1p
)

ρ
Vϕ R − Bp

γ ρ Vp
R Bϕ (3)

increases with R (Meliani et al. 2006b). This expression uses
proper density and pressure ρ, p, assumes a polytropic index Γ
appearing in a simple polytropic equation of state (our actual
numerical simulations will in fact relax this assumption and
use a full Synge-type equation of state), and writes Vp, Bp for
poloidal 3-velocity and magnetic field strengths. For the chosen
radial prescriptions for Vϕ given by Equation (1), we have for
the inner jet

d|I |
dR

∝ (ain/2 + 1) > 0, (4)

making the inner jet centrifugally stable. The outer outflow,
on the other hand, is marginally stable, following the same
argument. In the numerical simulations further in this paper, we
neglect the toroidal field Bϕ , and then the interface between the
two components does not verify the Rayleigh criterion, and this
shear flow interface is unstable from the start, since the angular
momentum at the interface decreases when

γout

(
ρout + Γout

Γout−1pout
)

ρout
vϕ,out < γin

(
ρin + Γin

Γin−1pin
)

ρin
vϕ,in. (5)

This means that in all cases we will simulate the initial shear
flow interface at R = Rin, develop small-scale instabilities, and
intend to address the ultimate nonlinear stability of such initial
two-component structure. The central question investigated then
is whether the dynamics will lead to complete destruction of the
initial two-component nature of the outflow at further distances
from the source. Related to this question, we will quantify the
potential deceleration of the central fast jet by mixing processes,
induced by the nonlinear evolution of the two-component jet.

2.2. Initial Densities and Magnetic Configuration

The densities and poloidal magnetic field Bz are assumed to be
constant within the three different regions, namely throughout
inner jet beam, outer jet, and external region. The external
medium is hot and rarified and has a small reference number
density. The typical ISM number density value of 1 cm−3 is
in the computation used as a scaling value. We arbitrarily set
ρmed = mpnmed with nmed = 10−2 cm−3, and adopt c = 1
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and a unit of length of 1 pc. This sets the unit of pressure, and
a corresponding scaling value for the magnetic field is then
0.1375 Gauss (as mass is normalized to proton mass mp).

The jet environment represents a relativistically hot, rarified,
static external medium. This is consistent with the fact that at
the parsec scale, the jet head has previously shocked the jet
surroundings, so that the jet itself gets embedded in a dilute, hot
medium. Assuming a number density for this external medium
of nmed = 10−2 cm−3 is appropriate, since this is near values
obtained in numerical simulations of jet propagation and is then
typical for the jet cocoon surroundings (Meliani et al. 2008).
Values for the jet component proper densities are estimated
from the kinetic luminosity flux and its division over inner and
outer jet components. Requiring that the outer jet carries a case-
specific fraction of the total kinetic luminosity flux by

foutLjet,Kin = (γout hout − 1)ρoutγoutπ
(
R2

out − R2
in

)
Vout, (6)

we can deduce the density ρout, if we, in addition, prescribe the
(outer) jet Lorentz factor and make the initial approximation
that the thermal energy in the outer jet is negligible compared to
its mass energy (as valid in all cases studied). In Equation (6),
hout is the specific enthalpy in the outer jet, and its expression
depends on the equation of state. When we consider that the
inner component carries only a small fraction fin = 1% of
the total kinetic luminosity flux, such that the outer jet carries
the remaining fout = 99%, we find that the resulting density is
ρout ∼ 119.94×102ρmed. A similar argument for the inner, light
jet, works out to fix ρin ∼ 6.92ρmed.

While in all cases, we investigate here numerically, we
assume these initial, piecewise constant, densities for the inner
and outer jets, the actual kinetic luminosity carried by each
component will change from one case to another. This relates
to our prescription of the pressure and magnetic variation in the
jet components, and we will simulate five cases with varying
thermal pressure contribution at the jet axis. In four cases (A),
(B2), (C), and (D), the total pressure at the jet axis ends up
similarly, while case (B1) has a lower total pressure value.
By varying the relative contribution of thermal to magnetic
pressure in the jet components, we aim to analyze the effect on
overall jet stability of varying magnetic field and kinetic energy
contributions to the kinetic luminosity in each component. In all
five cases studied, we set the pressure of the external medium
to ensure total pressure balance with the outer jet. Also, in the
four cases (A), (B1), (C), and (D), we assume that the thermal
energy in the inner (hot) component is higher than its mass
energy. Only in case (B2), the thermal energy is lower than
the mass energy. They differ in the following sense: in the
first case (A), both components are non-magnetized, and the
pressure at the jet axis is p0 = 2.3 in our simulation units.
This purely hydrodynamic case differs from the hydro case
already studied in Meliani & Keppens (2007), as now the inner
jet has an even higher Lorentz factor, a slightly different inner
rotation profile, and an on-axis pressure value which makes
the entire inner jet relativistically hot. In cases (B1) and (B2),
only the inner jet is magnetized, and we set it to a constant
value Bz,in = √

0.01γ 2
inρin ∼ 0.789 (making the jet parameter

σ = B2
z /(γ 2ρ) expressing magnetic to rest-mass energy of

order 0.01, as for kinetic energy dominated jets) in case (B1)
and Bz,in ∼ 2.28 in case (B2). In case (B1), the thermal pressure
on axis is set to p0 = 0.1, and in case (B2) the thermal pressure
on axis is p0 = 10−4. In case (C), only the outer jet is magnetized
with Bz,out =

√
0.005γ 2

outρout ∼ 2.323, and we adopt the same

order on-axis inner pressure as in (A), namely p0 ≈ 2.3. In case
(D), both inner and outer jets are magnetized, with Bz,in ∼ 0.789
and Bz,out ∼ 2.323. We then take the pressure at the jet axis
p0 ≈ 2. In all magnetized cases, the magnetic field strength is
set according to the observations at parsec scale (O’Sullivan &
Gabuzda 2009). Clearly, in all four cases (A), (B1), (C), and
(D), the thermal energy in the inner component dominates, only
in case (B2) the thermal energy is lower than the mass energy.
The pressure profile through inner and outer jets is taken from
transverse equilibrium conditions, discussed next.

2.3. Two-component Jet Pressure Profiles

Since we assume an initial near steady-state axisymmetric
two-component jet, the actual pressure variation is deduced from
transverse equilibrium among pressure gradient, centrifugal
force, and Lorentz force. This is expressed by the steady-
state equation (Meliani et al. 2006b; Appl & Camenzind 1993;
Heyvaerts & Norman 2003)

γρ �V · ∇(γ h �V ) = −∇p + ρe
�E + �Je ∧ �B. (7)

Here ρ is the proper density of particles, p and h are the pressure
and enthalpy per particle, respectively, �V is the fluid 3-velocity,
γ is the Lorentz factor, and ( �E, �B) denote the electromagnetic
fields. We have ρe = ∇· �E and for steady-state conditions
�Je = ∇ ∧ �B as the associated charge and current densities,
while �E = − �V ∧ �B in ideal relativistic MHD.

If we introduce the total pressure in the fluid frame,

ψ = p +
B2 − E2

2
= p +

B2
z + B2

ϕ

2
− (BϕVz − VϕBz)2

2
, (8)

the radial component of Equation (7) can be written as
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dR
− Γ
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ϕ
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ϕ +

(
BϕVz − VϕBz
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.

(9)

This has assumed a polytropic equation of state. We can then
determine the radial pressure profile p(R) by solving the first-
order differential Equation (9) and using Equation (8), together
with the self-similar prescriptions from Equations (1) and (2) to
get

p = ζ

(
1 − α

(
R

Rin

)a)− Γ
a(Γ−1)

− (Γ − 1)

Γ
ρ

− (Γ − 1) (a + 2)

2 α (a (Γ − 1) + Γ)

(−b2
ϕ +

(
bϕVz − vϕBz

)2)
×

(
1 − α

(
R

Rin

)a)
. (10)

In this expression, the constant a is a self-similarity exponent,
which we use to set the inner jet exponents ain and the outer aout,

and the constant α = v2
ϕ

1−V 2
z

, which is different for inner versus
outer jet αin, αout. Also, ζ is an integration constant, which is to
be deduced from boundary conditions. For the inner jet, we use
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it to set the pressure on axis p0 from

ζin = p0 +
(Γin − 1)

Γin
ρin

+
(Γ − 1) (a + 2)

2 α (a (Γ − 1) + Γ)

(−b2
ϕ +

(
bϕVz − vϕBz

)2)
.

(11)

To fix the constants for the outer jet, we have to match conditions
at the interface between the two components. At the contact
between the two components, Rankine–Hugoniot conditions
should hold. In terms of effective total pressure (Equation (8))
obeying Equation (9), we need to match at the interface

ψin(Rin) = ψout(Rin). (12)

This yields for the constant pressure integration in Equation (10)
for the outer jet

ζout =
[
ψin(Rin) +

Γout − 1

Γout
ρout − B2

z,out

2

]
(1 − αout)

Γout
aout(Γout−1)

+
[−b2

ϕ,out + (bϕ,outVz,out − vϕ,outBz,out)
2
]

× (1 − αout)
Γout

aout(Γout−1)

×
(

1

2
+

(1 − αout)(Γout − 1)(aout + 2)

2 αout[aout(Γout − 1) + Γout]

)
. (13)

This fixes the pressure variation throughout both components.
In the external medium, the thermal pressure is constant and set
equal to the total pressure in the outer jet component. This is
actually a slightly different value for cases (A), (B1) and (C),
(D); albeit of the same order. The governing equation of state is
taken as a Synge-type relation, also used in Meliani et al. (2004).
As a result of the above profile prescriptions, the outer jet is
relativistically cold with an effective polytropic index Γeff = 5/3
and the inner jet has ultra-relativistic state Γeff = 4/3. Case
(B2) is an MHD variant to the hydro case with more stratified
inner effective polytropic index already simulated in Meliani &
Keppens (2007). The matter state between the two components
is different (relativistically hot inner and cold outer jet), and
we will see that during the time evolution, a shear region with
an intermediate matter state forms. This variation in the matter
state between various jet regions makes it vital to use a Synge–
EOS to model growing instabilities and resulting turbulence.
However, in the initial conditions of all cases, the polytropic
index is relatively constant throughout each component. This is
why we could use the polytropic EOS assumption to deduce a
near-equilibrium solution of the initial two-component jet.

2.4. Dimensionless Characterization and Numerical Setup

As a result of the initializations described above, the local
fast magnetosonic speed in the inner jet for case (D) and the
local sound speed in the inner jet for cases (A) and (C) are of
the order of 0.6 (light speed units), while cases (B1) and (B2)
have a higher local fast magnetosonic speed. In the outer jet,
the local fast magnetosonic speed of cases (C) and (D) and the
local sound speed in cases (A) and (B2) are of the order of
0.2, while it is 0.07 in case (B1). Both inner and outer jets are
kinetically dominated. The inner jet has an effective relativistic
Mach number Mfast = γ Vp

γfast Vfast
up to ∼40 for cases (A), (C),

and (D), while the outer jet has Mfast ∼ 14.0 in cases (A),

(B2), (C), and (D), and Mfast ∼ 35 in case (B1). However, both
components are subsonically rotating, and during a complete
rotation of the inner jet, the fast magnetosonic or sound wave
will propagate about 200 times from the edge of the inner jet to
the axis and back. Such overall configuration can easily develop
non-axisymmetric instabilities, with growth times of order of
the radial sound-crossing time (Hardee 2004).

The computational domain of this simulation is a 2D box
of size −0.3 pc < x < 0.3 pc and −0.3 pc < y < 0.3 pc.
The simulation is performed in Cartesian coordinates using an
HLLC flux formula (Mignone & Bodo 2005). HLLC is a two
state extension of the Harten, Lax, and van Leer flux formulation
(HLL), which includes a proper representation for the contact
wave. We use a piecewise parabolic method (PPM) limiter
(Mignone et al. 2005). The combination of PPM reconstruction
(third order accurate) and HLLC flux computations is extremely
robust and handles both sharp discontinuities and turbulence
development accurately. The lateral boundaries assume open
boundary conditions, with a clipping of any inwardly directed
momentum as soon as turbulent flow features start crossing the
boundaries. The simulation is run till time t = 50, which due to
our normalization translates to 163.2 year. The corresponding
distance of jet propagation of the jet beam during this time
is about 50 pc. The simulation is done using the AMRVAC
code (Meliani et al. 2007; van der Holst & Keppens 2007; van
der Holst et al. 2008) with a Synge-type equation of state. We
take a base resolution of 120 × 120, allow for five grid levels,
reaching an effective resolution of 19202. Shorter timescale
runs at even higher resolutions were done to confirm that the
dominant initial large-scale structure development is adequately
resolved, although more fine scale features inevitably turn up.
The simulations are performed typically using 120 processors
for about two days per case. We add some white noise both
at the initial time and at time t = 1 when various waves have
already developed (this latter addition may not be essential to the
evolution). The fact that we use Cartesian coordinates could give
preference to instabilities with the mode number proportional to
m = 4 character (the case studied in Meliani & Keppens (2007)
was therefore confirmed separately in cylindrical coordinates,
with the overall mode number dominance of m = 4 recovered).
However, in all cases we study here, the instabilities dominating
the dynamics and evolution of the jet have a clear mixture of
many mode numbers.

3. RESULTS

In the actual simulations performed in this work, the magnetic
field in the jet is taken purely poloidal. As explained before,
our five simulations differ in their magnetic configuration:
(A) is hydrodynamic; (B1) and (B2) have only the inner jet
magnetized; (C) has only the outer jet magnetized, while
in (D) both outflows are magnetized. This represents the
main difference between the five cases, and while all cases
will develop fairly complex nonlinear evolutions governed by
multiple, interacting instabilities, our main aim is to determine
which configuration can result in a clearly sustained two-
component jet flow over a sufficiently long distance (time).
It will turn out that cases (A), (C), and (D) all result in
deceleration due to mixing between the two components,
leading to decollimation of the jet, while only cases (B1)
and (B2) convincingly maintain their two-component character.
For later reference, important models parameters are listed in
Table 1. We now continue to discuss the complex nonlinear
evolution of the five cases in some detail.
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Table 1
The Most Relevant Characteristics and Parameters for All Models Investigated

Case Inner Jet Outer Jet Effective Inertia Ratio

p0 Bz,in(0.1375 Gauss) Bz,out γ 2ρh + B2
z Ratio Out/In

A 2.3 0.0 0.0 0.15
B1 0.1 0.789 0.0 3.2
B2 10−4 2.28 0.0 18.3
C 2.3 0.0 2.323 0.15
D 2 0.789 2.323 0.17

Notes. In addition to these tabulated values, the number density of the inner jet
is fixed at 6.92 × 10−2 cm−3, while Vz = 0.99939c and vϕ = 0.01c. Constant
values for the outer jet are number density 119.94 cm−3, with Vz = 0.9428c

and vϕ = 10−3c. The external medium is always static and unmagnetized, and
has number density 10−2 cm−3.

3.1. Case (A)

According to the Rayleigh criteria mentioned, the interface
between the two components is always unstable. Also, the
effective inertia of the inner jet is higher than in the outer
jet. In fact, at the interface R = Rin, we have initially
(γ 2ρ h)out ≈ 0.07(γ 2ρ h)in. In Table 1, a t = 0 ratio is given
using a value midway the outer jet divided by the axial value. The
overall effective inertia contrast is very different from the case
we investigated in Meliani & Keppens (2007), where the ratio
between (mean value of) effective inertia of the inner component
jet to the effective inertia of the outer component jet was such
that (γ 2ρ h)out 
 (γ 2ρ h)in.

Initially, a linear surface mode develops at this interface
R = Rin. As a direct consequence, a small, radially extended
the shear region with low effective inertia γ 2ρ h forms at this
location. At both bounding interfaces of this small shear layer,
one with the outer and one with the inner jets, small wavelength
instabilities develop. Meanwhile, acoustic waves from the inner
interface propagate inward reflect on the jet axis, and then give
rise to a Kelvin–Helmholtz-like body mode with a dominant
azimuthal mode number m ∼ 8 in the inner jet. Meanwhile, the
surface instability at the interface between inner jet and shear
shell reaches a clearly nonlinear phase. The overall interaction
then gives rise to the growth of a relativistically enhanced
Rayleigh–Taylor-type instability, having a body mode character
propagating into the inner jet (Figure 2, top). This instability
regime shows about four arms at first that collapse to three arms
which progressively propagate inward. As will be detailed later
on, this instability can be explained from the fact that in this
case (A), fluid elements in the shear layer have a lower effective
inertia γ 2ρ h and higher pressure than pre-existing material in
the inner jet.

We could qualitatively describe this relativistic Rayleigh–
Taylor instability as follows. A fluid element in the shear layer is
at first typically rotating with a speed of order of Vϕ ∼ 0.01, the
initial rotation speed at the inbound interface. The lower inertia
of the shear shell relative to the inner jet makes that transfer of
angular momentum from the inner wind/jet region to the shear
layer is rather efficient, causing a fast rotational speedup of the
shear layer matter. At the same time, the centrifugal force acting
on a fluid element moving inward varies with 1/R. Because the
fluid inertia in the shear region ends up at about a 12 times
lower value than the inertia in the inner jet, the centrifugal force
acting on this fluid element is much weaker than in the inner
wind. At the same time, the pressure in the shear layer fluid
element is higher than in the inner wind. Therefore, the element

Figure 2. Case (A), the purely hydrodynamical jet, showing logarithm of proper
density at times (top) t = 32.6 year: development of relativistically enhanced
Rayleigh–Taylor-type instability propagating inward in the inner jet, (center)
t = 65.3 year: merging of the three Rayleigh–Taylor fingers at the jet axis and
(down) t = 163 year: decollimation of the jet (one full rotation of the inner jet
corresponds to t = 65.3 year).

(A color version of this figure is available in the online journal.)
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will expand inward until the pressure gradient gets balanced
by the centrifugal force. In this particular simulation, three
prominent fingers form and start propagating inward. However,
as the initial pressure profile decreases toward the jet axis, the
centrifugal force in the inner jet decreases inward. With such
a configuration, we find that in the phase where the intruding,
rotating fingers of the Rayleigh–Taylor mode propagate inward,
they will nearly reach the jet axis. Very close to the axis,
the centrifugal force acting on them gets compensated by the
pressure force. In the phase that follows, the rotating fingers
get deflected sideways in the direction of rotation. After less
than half a full rotation of the inner jet (at t ∼ 32.6 year, see
Figure 2, top), this relativistic Rayleigh–Taylor mode then
dominates the body mode instability in the inner jet. The
Rayleigh–Taylor fingers propagating inward also compress the
inner jet. Since angular momentum is conserved, the centrifugal
force increases, and the inner jet fluid moves outward toward
the shear shell. This means that we get enhanced angular
momentum transfer from the inner jet to the shear layer shell,
which accelerates the rotational speed of the shear shell. We
find that after less than one total rotation of the inner jet (at
t ∼ 65.3 year, see Figure 2, center), the three Rayleigh–Taylor
fingers nearly merge, making the inner jet appearance totally
dominated by the (growing) shear shell.

An analysis of this relativistic Rayleigh–Taylor-type instabil-
ity is described separately in Section 4. The low effective inertia
of fluid in the shear region makes the interface between the shear
flow and the inner jet unstable to this instability, where centrifu-
gal forces act as an effective (radially outward pointing) gravity.
Once initiated, these grow faster than the previously formed
Kelvin–Helmholtz body mode. A number of “arms” develop
from the shear region, having lower angular momentum than
the fluid from the inner region, propagate inward, while inner
jet fluid having higher angular momentum propagates outward.
The end result is transfer of energy and angular momentum from
the inner jet to the growing shear region. As a consequence of
this complex mixing of jet and shear layer matter, we find signif-
icant deceleration of the inner jet, while the density and radius
of the inner jet plus shear region increase (this is quantified later
in Figure 8).

The external boundary of the growing shear region at R ≈ Rin
which borders the outer cold jet is also Kelvin–Helmholtz
unstable. For the case at hand, in a first phase, a larger
scale Kelvin–Helmholtz-type mode develops with eight undu-
lations initially, eventually converging to form about five large-
scale structures (see Figure 2, center). This is different from
the case studied before in Meliani & Keppens (2007), where
the most prominent feature in the nonlinear evolution was the
development of a Kelvin–Helmholtz-type mode with four arms.
This mode transfers angular momentum from the shear region
to the outer jet and decollimates the jet. At smaller spatial
scale, but also at the interface between the shear region and
the outer jet, other instabilities develop as well. These are again
more centrifugally driven, as angular momentum and pressure
increase in the shear region. Thus also at this interface, the
centrifugal force becomes locally higher than in the outer out-
flow. Small bubble-like protrusions from the shear shell enter
the outer outflow. However, since the pressure of the outer jet
slowly increases outward, the growth of this smaller scale in-
stability is stopped when the centrifugal force of the protruding
bubbles gets balanced by the pressure of the outer jet. There-
fore, this instability remains weak and the large-scale dynamics
of the interaction between the shear layer and the outer jet

remains dominated by the Kelvin–Helmholtz instability. The
small scale instabilities do influence the dynamics by increas-
ing the efficiency of the angular momentum transfer from the
Kelvin–Helmholtz structures to the outer jet. Finally, also the
outer interface at R ≈ Rout between outer jet and the hot, dilute
medium is Rayleigh–Taylor unstable, and is dominated by small
wavelength perturbations.

As the overall outcome of all the interacting instabilities,
the two-component jet decollimates, such that the jet radius
increases to Rout ∼ 0.28 pc (see Figure 9). The inner component
jet also spreads and its radius reaches R ∼ 0.18 pc (see
Figure 8). Also during the simulated 163 years in physical
time (Figure 2, down), the rotation speed of both components
decreases, and the interaction between the shear region and the
outer component is dominated by Kelvin–Helmholtz-induced
behavior, together with the relativistically enhanced Rayleigh–
Taylor instability of the inner rotating fluid. The main result
of this interaction between the two components is the dramatic
deceleration of the inner jet. In fact, the relativistic Rayleigh–
Taylor-type instability leads to a deceleration of the inner
component where the Lorentz factor of the inner component
drops to γ ∼ 8 (quantified later for all models in Figure 7).

3.2. Cases (B1) and (B2)

We now describe the two-component jet evolution with a
magnetized inner component. The effective inertia in the inner
jet is lower than in the outer jet with initial contrasts (γ 2ρ h)out ≈
3.2(γ 2ρ h+B2

z )in in case (B1) and (γ 2ρ h)out ≈ 18(γ 2ρ h+B2
z )in

in case (B2), due to the initial lower pressure at the jet axis
and the initial different distribution over thermal and magnetic
energy in them. These cases are then such that the inner interface
is now stable against the dominating Rayleigh–Taylor-type
instability described above and explained analytically in Section
4. Still the interface at R ≈ Rin between the inner and outer
jets is subject to Kelvin–Helmholtz instability because of the
differential rotation. This modifies the shape of the interface
surface, leading to non-axisymmetric reflection of MHD waves
propagating through the inner jet. These waves in turn disturb
locally the initial equilibrium between total pressure gradient
and centrifugal force.

During the evolution, some spikes develop at the interface,
where the outer jet locally interchanges with the inner jet. These
spikes are accelerated in the toroidal direction by the faster
rotating inner jet. The centrifugal force acting on these slows
down their inward expansion, and they then mainly propagate
in the toroidal direction. Their interaction with the inner jet
material induces Kelvin–Helmholtz body mode instability, with
a spiral pattern forming, this time having 3 arms in the two
cases (see Figures 3, top and 4, top). They extract some
angular momentum from the outer regions of the inner jet,
slowing its rotation. Again, a shear shell then forms in this
region, continuously extracting angular momentum from the
inner jet/wind. The spikes then slowly expand to the jet axis.
The inner wind gets compressed by the shear layer. However,
these mainly Kelvin–Helmholtz-type instabilities turn out to
have lower efficiency in extracting angular momentum than
the relativistic Rayleigh–Taylor instability encountered in case
(A). The compression of the inner jet by the shear region is
followed by a modest expansion. In case (B2), the extraction
of the angular momentum is weaker than that in case (B1),
because in case (B2), the inner jet has lower inertia. Meanwhile,
the angular momentum extracted from the inner jet leads to an
outward extension of the shear shell that formed at Rin. At the
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Figure 3. Case (B1), only the inner jet is magnetized. Logarithm of density at
(top) t = 32.6 year: development of Kelvin–Helmholtz body mode instability
at the interface between the inner and outer jets, (center) t = 65.3 year: inward
growing of the shear shell in the inner jet and (down) t = 163 year: development
of Rayleigh–Taylor at the outer jet interface, with one rotation of the inner jet
completed at t = 65.3 year.

(A color version of this figure is available in the online journal.)

Figure 4. Case (B2), only the inner jet is magnetized. Logarithm of density at
(top) t = 32.6 year: development of Kelvin–Helmholtz body mode instability at
the interface between the inner and outer jets, (center) t = 65.3 year and (down)
t = 163 year: the inner jet component is deplaced from its on-axis position due
to significant non-axisymmetric mode development, with one rotation of the
inner jet completed at t = 65.3 year.

(A color version of this figure is available in the online journal.)
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interface between this growing shear shell and the outer jet, a
Kelvin–Helmholtz instability surface mode with the azimuthal
mode number m ∼ 3 character then develops. Also at this
interface, smaller scale Rayleigh–Taylor instability proceeds.
The shear shell has an effective inertia which is lower than
the outer jet inertia. As locally centrifugal forces dominate,
low inertia “bubbles” radially extend toward the outer jet. The
growth rate of these bubbles is rather slow, since the pressure of
the outer jet increases mildly outward, and the slowly rotating
outer jet breaks their rotation.

At the outer surface Rout of the outer jet in case (B1) (see
Figure 3), we also witness Rayleigh–Taylor instability, as in case
(A). On the other hand, case (B2) shows little evidence for such
instability at the outer jet surface (see Figure 4), which is due
to the different external pressure conditions there. Throughout
the simulation, the jet in (B1) and (B2) remains collimated by
the outer component, which compresses the inner component
and shear region. The inner component jet radius in case (B1)
at 163 years remains lower than 0.07 pc and in case (B2) even
below about 0.04 pc (see Figure 8). However, in case (B1),
the Rayleigh–Taylor instability at the surface of the outer region
forms an extended sheet, which gives an increase to the apparent
total jet radius Rjet = 0.2 pc (see Figure 9), whereas the jet in
case (B2) does not show any sign of decollimation.

Both the inner jet and the shear region end up magnetized.
The main difference between these cases and all others studied
here is that despite all small-scale instability development, the
inner jet decelerates little, dropping to an average Lorentz factor
of about 20 (see Figure 7). The two-component jets for cases
(B1) and (B2) remain clearly separable in inner and outer jet
components (see Figures 3, down-4, down), which is not the
case for all other evolutions shown here. In both cases (B1)
and (B2), we do find that the inner jet component is deplaced
from its on-axis position due to significant non-axisymmetric
mode development. The jet stratification converges to a structure
with an inner fast, magnetized spine having a Lorentz factor of
about 20. The spine is surrounded by a shear shell being 100
denser than the spine and with a lower Lorentz factor and low
magnetization. The difference between the two cases is that the
high magnetic pressure and low thermal pressure in the inner
jet for case (B2) increase its nonlinear stability as compared to
case (B1).

3.3. Case (C)

In this case, only the outer jet is magnetized with a purely
poloidal magnetic field. As mentioned before, the rotation of
the jet is subsonic, such that acoustic waves which start to
propagate from the inner–outer jet interface at different stages
in the evolution propagate inward and are reflected about
200 times during one rotation period of the inner jet. Our
simulations follow about 2.5 full inner jet rotations. As the
interface between the two components is unstable to various
mode types as already encountered in the previous cases, its
shape changes and the acoustic wave propagation becomes
strongly non-axisymmetric. These waves play a clear role in
disturbing the initial axisymmetry of the inner jet, and mitigate
the development of non-axisymmetric body mode instabilities
in the inner jet.

In this case (C), in a first stage, linear small-wavelength
(compared to case (A)) Kelvin–Helmholtz instabilities develop
at the interface R ≈ Rin between the two components. These
reach a nonlinear phase in less than a tenth of a full rotation.
Spikes of the outer jet, which are this time magnetized, arise

in the inner jet. The large ratio of the fluid inertia between the
outer and inner jet makes these spikes once more unstable to
the centrifugally mediated, relativistically enhanced Rayleigh–
Taylor instability seen previously in case (A). This gives rise to
the formation of rotating “bubbles” that protrude inward. In the
case at hand, about 10 such bubbles form (see Figure 5, top),
having smaller size compared to those seen to emerge in case
(A). This difference results due to the difference in the Kelvin–
Helmholtz surface mode development mentioned earlier. The
initial smaller size of the protruding bubbles makes their growth
rate slower than in the purely hydrodynamical case (A), until
they reach the merging phase where in this case about three
larger size bubbles form and converge to the jet axis. Meanwhile,
these bubbles compress and push fluid elements from the inner
jet to a shear layer (see Figure 5, center). Thus once again, the
larger-scale mode structures act to transfer angular momentum
from the inner jet to the shear region.

Since the bubbles which move radially inward form at the
shear shell, their ratio of magnetic pressure to thermal pressure
B2

z (1 − V 2
ϕ )/(2 p) ∼ 0.1 is lower than in the outer jet. In

fact, the shear region is made up of fluid from the inner and
outer jets, and its thermal pressure dominates total pressure.
The external surface of the shear shell is Kelvin–Helmholtz
unstable and about six arms form (see Figure 5, center). From
each one, a centrifugally driven spike propagates outward. In
fact, angular momentum extracted from the inner jet in the end
gets transferred to the external part of the shear region. Then,
locally the centrifugal force at the interface between the shear
shell and the outer jet acts to develop spikes which decollimate
the jet (see Figure 5, down). The total jet radius increases from
0.1 pc at the initial stage to 0.189 pc (Figure 9), after the jet has
propagated for a distance of 50 pc. In the same time, the inner
jet spreads as well, decelerates, and its Lorentz factor drops
to about 8. At the end state, the jet is constituted of an inner
turbulent component with a radius of 0.15 pc (see Figure 8)
and a small outer component. The final rotation speed profile
increases from the axis to 0.006 at 0.04 pc, further decreasing
outward.

3.4. Case (D)

In this last case, both inner and outer jets are magnetized.
Initially, from the discontinuity between the two components,
fast magnetosonic waves propagate both outward into the outer
jet, and inward into the inner jet. The end result of the initial re-
adjustment is that a small shear region with lower magnetization
than both component develops at the interface R ≈ Rin. Also
this configuration is Kelvin–Helmholtz unstable. At the surface
from the shear region, roughly 13 bubbles arise, moving inward
into the inner jet (see Figure 6, top). They merge to form three
large arms expanding toward the jet axis (see Figure 6, center).
Fluid from the inner jet is pushed outward, thereby extracting
angular momentum from the inner jet. Since the structures form
at the shear region, the magnetic pressure inside the bubbles
is lower than in the inner and outer components. However, the
thermal pressure is increased in the shear region. During the
evolution, dominant forces are magnetic pressure and thermal
pressure that balance each other, while the contribution of the
centrifugal force is low. However, the centrifugal force remains
responsible for triggering instabilities. As in case (C), the shear
region grows with eventual almost complete destruction of the
inner jet component (see Figure 6, center). In the last phase
simulated, the dominating inner shear region becomes totally
turbulent, and strong vortices form, changing the full jet shape
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Figure 5. Case (C), only the outer jet is magnetized. Logarithm of density
at (top) t = 32.6 year: Rayleigh–Taylor instability develops at an interface
between the two component inducing rotating “bubbles” that protrude inward,
(center) t = 65.3 year: “buabbles” merge at the jet axis and inner jet decelerates
and becomes turbulent and (down) t = 163 year: The shear shell expand
outward in the outer jet and decollimates the jet, with one full inner jet rotation
at t = 65.3 year.

(A color version of this figure is available in the online journal.)

Figure 6. Case (D), both jet components magnetized. Logarithm of density at
(top) t = 32.6 year: 13 bubbles arise, moving inward into the inner jet, (center)
t = 65.3 year: Rayleigh–Taylor bubbles emerge at the jet axis, and the inner
jet becomes turbulent and (down) t = 163 year: The shear region grows and
changes the full jet shape to elliptic, with one full rotation of the inner jet
corresponding to t = 65.3 year.

(A color version of this figure is available in the online journal.)
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Figure 7. Time evolution of the mean Lorentz factor of the inner jet in the
five cases. For the cases (A), (C), and (D), we distinguish between the inner
and outer jets according to the polytropic index and Lorentz factor. In cases
(B1) and (B2), we use the same condition for the Lorentz factor to distinguish
between the inner and outer jets, as well as the extra condition that the inner jet
is magnetized.

Figure 8. Time evolution of the effective inner jet radius in all cases. For cases
(A), (C), and (D), we distinguish between the inner and outer jets according to
the polytropic index and Lorentz factor. For cases (B1) and (B2), we use the
same condition for the Lorentz factor and the condition that the inner and shear
components are magnetized. The effective inner jet radius is

√
Sin/π , where

Sin is the surface thus found for the inner jet. The jets (B1, B2) with low inner
kinetic energy flux contribution are more stable and remain relativistic and the
jets (A, C, D) with high inner kinetic energy flux contribution are unstable and
decelerate.

to elliptic (Figure 6, down). At this phase, the average Lorentz
factor of the inner jet has dropped down to γmax ∼ 7 (see
Figure 7).

4. RELATIVISTICALLY ENHANCED
RAYLEIGH-TAYLOR

In cases (A), (C), and (D), a relativistic, Rayleigh–Taylor-type
instability developed. Here, we first describe in a qualitative way
how this instability ensues, and then continue to explain it using
an approximate linearization.

Figure 9. Time evolution of the effective jet radius in all cases. The effective jet
radius is

√
Sjet/π , where Sjet is the surface occupied by the full (inner+outer) jet.

The jets (A, C, D) with high inner kinetic energy flux contribution decollimate.

At the interface between the two outflow components, we
mentioned that (linear and then nonlinear) surface modes
develop, due to velocity shear hence of Kelvin–Helmholtz type.
Fluid of lower inertia (low γ 2ρh) and higher pressure then
penetrates the inner jet. Since the inertia in the penetrating spikes
is lower than in the surrounding inner jet material, the centrifugal
force acting on these is weaker. The spikes then expand inward
until the pressure is balanced by the centrifugal force. They
expand sideways as well, again on the basis of pressure balance
and ram pressure arguments. Due to the big difference in inertia,
transfer of angular momentum from the inner jet to these inward
penetrating spikes is very efficient. Rather quickly then, their
rotation speed reaches the rotation speed of the inner jet at the
initial interface, set by vϕ,in. During its further inward expansion,
this rotation speed remains constant. However, the low inertia of
the spikes keeps their angular momentum lower than the inner
jet matter.

To explain this phenomenon semi-analytically, we confine
our attention to a perturbation depending only on the radial
direction R. Let dR = ṽRdt represent the radial displacement of
the contact surface between the two components during dt , and
ṽR the perturbation speed. The momentum equation governing
the fluid near our initial equilibrium writes as

(
γ 2 ρ h + B2

z

) [
∂

∂t
+ �V · ∇

]
�V + ∇ptotal + �V ∂ptotal

∂t
+ · · · = 0,

(14)
with ptotal = p + B2

2 . In this equation, we already ignored the lab
frame contribution of the charge separation, which is justified for
rotational flows far within the light cylinder, as is the case in our
model here.4 Moreover, the magnetic topology taken here does

4 Note that we mentioned a jet radius of 0.1 pc at a distance of 1 pc for M87.
The estimated light cylinder radius for M87 is smaller than 0.1 pc if a large
fraction of the angular momentum (then Poynting flux) extracted from the
accretion by the magnetic field is transferred to the stream lines during the
acceleration phase by the ideal RMHD mechanisms (Begelman & Li 1994).
But in our model, we assume that the jet is accelerated also by non-ideal
RMHD mechanisms with decay of the toroidal magnetic field by
dissipation/reconnection, leading to a fast central spine jet, and overall low
rotation profiles (weak transfer of angular momentum from magnetic fields to
stream lines).



No. 2, 2009 RELATIVISTIC TWO-COMPONENT JETS 1605

not involve magnetic pinching; hence, magnetic effects only
add to the total pressure and to the effective inertia, where also
Vϕ � Vz is used. Then the radial component of Equation (14)
can be further approximated, if we neglect temporal variation
of the total pressure and use ∂ṽR

∂ϕ
= 0, to get

(
γ 2 ρ h + B2

z

) [
∂ṽR

∂t
− V 2

ϕ

R

]
+

∂ptotal

∂R
= 0. (15)

According to the initial condition, the inertia γ 2 ρ h of the
fluid varies slowly in the inner and outer jets. We can thus
argue that both inertia and toroidal speed in each fluid element
vary slowly when it undergoes a small radial displacement
ζ = Rin − R = ∫

ṽζ dt = − ∫
ṽRdt from the initial interface

position Rin, with |ζ | � Rin. Using the main equilibrium
balance between centrifugal force and total pressure gradient,
the variation of the total pressure can be argued to lead to

p̃total = (
γ 2 ρ h + B2

z

) [
∂

∫
ṽζ dζ

∂t
+

V 2
ϕ ζ

Rin

]
. (16)

To get an approximate dispersion relation, we assume that to first
order, the perturbation speed is potential, i.e. ṽζ = (∇Ψ)ζ and
that we have Ψ ∝ exp(λ t − k |ζ |). Noting that the displacement
ζ = ∫

ṽζ dt must be identical for inner/outer regions, and using
total pressure and displacement continuity arguments, we then
get the essential proportionality relation between the instability
growth rate and wave number

λ2 ∝ k
[(

γ 2 ρh + B2
z

)
in − (

γ 2 ρh + B2
z

)
out

]
. (17)

This approximative dispersion relation indicates that for two-
component stability, we need λ2 < 0 requiring that (γ 2 ρh +
B2

z )out > (γ 2 ρh+B2
z )in. This confirms that the interface between

the two rotating components is stable against a centrifugally
driven, relativistic Rayleigh–Taylor instability, when the effec-
tive inertia of the outer component is higher than the effective
inertia of the inner component. This important result correlates
well with the results of all simulations in Section 3 as well as in
our previous publication (Meliani & Keppens 2007). In fact, this
equation explains why cases (A), (C), and (D) are relativistically
Rayleigh–Taylor unstable since we find typical contrasts during
the evolution in (A)

(
γ 2 ρh + B2

z

)
out ≈ 0.75

(
γ 2 ρh + B2

z

)
in,

in (C) and (D)
(
γ 2 ρh + B2

z

)
out ≈ 0.1

(
γ 2 ρh + B2

z

)
in, whereas

cases (B1) and (B2) are relativistically Rayleigh–Taylor sta-
ble since

(
γ 2 ρh + B2

z

)
out ∼ 10

(
γ 2 ρh + B2

z

)
in in (B1) and(

γ 2 ρh + B2
z

)
out ∼ 20

(
γ 2 ρh + B2

z

)
in in (B2). Initial effective

inertia ratios derived from the initial conditions are mentioned
in Table 1, and it is clear that we can set up stable versus un-
stable cases by varying the contrast of effective inertia between
inner versus outer jets. This also works in pure hydro, and in-
deed the pure hydro case from Meliani & Keppens (2007) does
not suffer from this newly discovered instability. For the purely
poloidal field configurations studied here, magnetic field effects
are prominent in total pressure and effective inertia alone. Note
finally that it is a truly relativistic effect, since the same ar-
gument in classical MHD just involves the density difference
between outer versus inner jet. Under the conditions of a light
inner jet with heavy outer jet taken here, a classical variant of re-
lation (Equation (17)) involves only ρout −ρin and would predict
stability.

5. DISCUSSION AND CONCLUSIONS

We examined five configurations of magnetized two-
component jets. All share the same density ratio between in-
ner and outer components and identical rotation profiles. The
magnetic and thermal pressure configuration in each model dif-
fers, though. This in turn translates to different distributions of
the (total, fixed) kinetic energy flux over the inner and outer
jet components. In fact, in case (A), the kinetic energy flux in
the inner component is about 10%, while it is 0.7% for case
(B1) and 0.5% in case (B2), and around 38% for cases (C) and
(D). For the outer component, we thus have 90% in case (A),
99.3% in case (B1) and 99.5% in case (B2), and only 62% for
cases (C) and (D). The most important difference between the
two model categories is then: cases (A, C, D) have an inner jet
component with higher inertia γ 2 ρ h + B2

z than their outer jet
component, while cases (B1) and (B2) have an inner jet compo-
nent inertia which ends up lower than in the outer jet component.
From the detailed analysis of the simulations, as well as from
the approximate stability analysis, this criterion distinguishes
between cases where relativistically enhanced Rayleigh–Taylor
modes ultimately dominate the evolution, leading to complete
mixing of both components and inner jet deceleration. This is
quantified most clearly by showing the time evolution of the
mean Lorentz factor over the inner jet region for all cases in
Figure 7. This requires a clear criterion to distinguish inner ver-
sus outer jets in the turbulent evolutions. In cases (A), (C), and
(D), we locate the outer jet component as having a Lorentz fac-
tor 2.5 < γ < 3.5 and effective polytropic index Γeff > 3/2.
The inner component is the region defined by a Lorentz factor
γ � 3.5 and effective polytropic index Γeff � 3/2. In cases
(B1) and (B2), the effective polytropic index in the inner and
outer jets can be locally of the same order there; hence, we use
that the inner jet is magnetized. In cases (B1) and (B2), the in-
ner component jet and shear region are not totally mixed during
the evolution, since the inner component is compressed and has
higher magnetization and Lorentz factor. Thus to distinguish
the inner component jet, we put a condition on magnetic field
strength Bz > Bz,initial/2, where Bz,initial is the magnetic strength
assumed initially. Under these precise quantifications of inner/
outer jet regions, Figure 7 demonstrates clearly that how stable
cases (for the relativistically enhanced Rayleigh–Taylor modes)
remain at high speed, while unstable cases decelerate. Using
the same means to distinguish inner versus outer jet regions
at all times, we can quantify the inner jet radius for all cases,
as well as the total jet radius for all cases. These are shown in
Figures 8 and 9, and quantify the decollimation effects discussed
in Section 3.

During the entire evolutions, the toroidal and radial speeds
remain weak as we have typically a maximal VR < 0.01 and
Vϕ < 0.04. This means that the contribution of the laboratory
frame charge separation force ρe

�E to the Lorentz force is
negligible at all times. Under these conditions, in both radial
and toroidal directions, the contribution of magnetic energy to
fluid inertia is 1/γ 2 weaker than the contribution of the magnetic
pressure to the total pressure. This explains why cases (B1) and
(B2) are then more stable than the other cases. Despite the
fact that case (B2) has similar axial total pressure than other
cases (A, C, D), the low contribution of thermal energy to total
pressure makes the effective inertia ratio between the inner and
outer jets low. This two-component jet is then stable against the
relativistically enhanced Rayleigh–Taylor instability. Extraction
of angular momentum and energy from the inner jet to the shear
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shell is less efficient in cases (B1) and (B2) than in all other
cases. As a result, in cases (B1) and (B2) the inner relativistic jet
with a high Lorentz factor γin ∼ 20 persists. In other cases, the
kinetic energy flux in the inner jet was initially relatively high,
making them unstable and leading to deceleration to Lorentz
factors around 8.

We investigated the stability of two-component jets beyond
the launching region, where both components are rotating
differently and a clear two-component structure exists. We
initialized this model in accord with magnetocentrifugal models
for jet generation, also using the observed analogy between radio
source jets and two-component jets in young stellar objects,
where the rotation within the jet can actually be observed. We
performed five very high-resolution simulations of magnetized
two-component jets with various magnetization and kinetic
energy flux stratifications. The two-component jets with a
low inner kinetic energy flux contribution are more stable
and remain relativistic for long distances, whereas jets with
a highly contributing inner jet to the total jet kinetic energy
flux are subject to a relativistic Rayleigh–Taylor-type instability.
This instability turns out to be very efficient to decollimate
and decelerate the inner jet. Jets that are subject to this
instability become turbulent after propagating for a distance of
about 30 pc.

This new result on two-component jet models is important
because it can explain the classification of radio sources in
Fanaroff–Riley I/II categories according to the energy strati-
fication of the inner jet. This ultimately relates to the jet launch
region and the properties of the inner accretion disk. In fact, by
analogy between the FRI/FRII classification and the results of
our model, an FRI jet would correspond to a two-component
jet with a high energy flux contribution from the inner jet,
whereas the FRII jet corresponds to relatively low energy fluxes
in the inner jet. The model we propose here to explain the FRI/
FRII dichotomy is different from the model we proposed ear-
lier (Meliani et al. 2008) where the transition occurs due to
external density stratification. That model explains the group
of peculiar “HYbrid MOrphology Radio Source” (HYMORS;
Gopal-Krishna & Wiita 2000) which appear to have an FRII
type on one side and an FRI-type diffuse radio lobe on the other
side of the active nucleus. Since the launch conditions on each
side are presumably similar in these kind of radio sources, the
different Fanaroff–Riley morphologies on either side must be
attributed to the change in the properties of the ambient media,
as shown convincingly in Meliani et al. (2008). The results of
the present paper nicely complement these earlier findings with
a quantifiable role of the central engine contribution.

We currently continue this study of the interaction between
two component jets in full 3D. We thereby intend to explore the
relative influence of azimuthal versus longitudinal instabilities
for realistic multi-component jets. Another extension is to
allow for aximuthal magnetic fields in accord with the initial
profiles as given generally in this paper. It then remains to be
shown that (1) the newly discovered instability persists in 3D
hydro and MHD configurations, where the potential role of
axial mode development is incorporated, and introduces helical
jet axis displacements; (2) how the instability gets modified
(stabilized or destabilized) by the inclusion of toroidal field
components, first in 2.5D neglecting helical axis displacements,
and consecutively in 3D, where also current-driven kinks may
occur.
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REFERENCES

Appl, S., & Camenzind, M. 1993, A&A, 270, 71
Bacciotti, F., Mundt, R., Ray, T. P., Eisköffel, J., Solf, J., & Camenzind, M.
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350
Coffey, D., Bacciotti, F., Woitas, J., Ray, T. P., & Eislöffel, J. 2004, ApJ, 604,
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