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We demonstrate that certain gauge fixing functionals cannot be added to the action
on backgrounds such as de Sitter, in which a linearization instability is present. We
also construct the field-dependent gauge transformation that carries the electromag-
netic vector potential from a convenient, non-de Sitter invariant gauge to the de
Sitter invariant, Lorentz gauge. The transformed propagator agrees with the de
Sitter invariant result previously found by solving the propagator equation in Lor-
entz gauge. This shows that the gauge transformation technique will eliminate
unphysical breaking of de Sitter invariance introduced by a gauge condition. It is
suggested that the same technique can be used to finally resolve the issue of
whether or not free gravitons are de Sitter invariant. © 2009 American Institute of
Physics. �doi:10.1063/1.3266179�

I. INTRODUCTION

Working out propagators is the difficult part about formulating quantum field theoretic per-
turbation theory on exotic backgrounds. It is typically accomplished by solving the differential
equation that the propagator must obey; however, this procedure is ambiguous up to a homoge-
neous solution. It has long been realized that some choices for this homogeneous solution do not
make the resulting Green’s function into a true propagator. That is, the Green’s function does not
correspond to the expectation value of the time-ordered product of two free fields in the presence
of any state.1

There is nothing mysterious about the problem, nor does it require field theory to understand.
Consider the simple harmonic oscillator whose position as a function of time is q�t� and whose
Lagrangian is

L = 1
2mq̇2 − 1

2m�2q2. �1�

The propagator equation for this system is

− m�� d

dt
�2

+ �2�i��t;t�� = i��t − t�� . �2�

The general solution to this equation, which is symmetric under interchange of t and t�, has three
free parameters,
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i��t;t�� = −
i

2m�
sin��	t − t�	� + � cos��t�cos��t�� + � sin���t + t��� + � sin��t�sin��t�� .

�3�

Although any choice of �, �, and � in �3� gives a solution to the propagator equation �2�, the result
is not a propagator unless they obey two inequalities,

� + � �
1

2m�
and �� �

1

4
�2. �4�

To see this, note first that the Heisenberg picture operator q�t� can be expressed in terms of its
initial position and momentum as

q�t� = q0 cos��t� +
p0

m�
sin��t� . �5�

For i��t ; t�� to be a propagator, there must be a state 	�
 such that

i��t;t�� = ��	T�q�t�q�t���	�
 �6�

=−
i

2m�
sin��	t − t�	� + ��	

q0
2

2
	�
cos��t�cos��t�� + ��	

q0p0 + p0q0

2m�
	�
sin���t + t���

+ ��	
p0

2

2m2�2 	�
sin��t�sin��t�� . �7�

We can therefore identify the constants �, �, and � as

� = ��	
q0

2

2
	�
, � = ��	

q0p0 + p0q0

2m�
	�
, � = ��	

p0
2

2m2�2 	�
 . �8�

For the ground state, one has

Ground state ⇒ � = � =
1

4m�
and � = 0. �9�

For a general state, the first inequality in �4� results from requiring the expectation value of the
energy to be greater than or equal to 1

2�; the second is just the Schwarz inequality.
A more subtle set of issues can arise in gauge theories. To understand them, we must digress

to explain the difference between an “exact gauge” and an “average gauge.”2 The former is
obtained by choosing the gauge parameter to make the vector potential obey some equation at
each point in space and time. This is the normal type of gauge fixing in classical field theory.
Familiar examples are

Temporal gauge: A0�t,x�� = 0, �10�

Coulomb gauge: �� · A� �t,x�� = 0, �11�

Lorentz gauge: �	A	�t,x�� = − Ȧ0�t,x�� + �� · A� �t,x�� = 0. �12�

Although exact gauges can be used in quantum field theory, the more common type of gauge
fixing is accomplished by adding some noninvariant term to the invariant Lagrangian. For ex-
ample, the Feynman gauge Lagrangian is

122502-2 Miao, Tsamis, and Woodard J. Math. Phys. 50, 122502 �2009�

Downloaded 22 Feb 2010 to 131.211.105.164. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



L = − 1
4F	
F	
 − 1

2 ��	A	�2. �13�

The functional integral representation for this type of gauge condition can be viewed as a weighted
average of exact gauges. For example, the Feynman gauge functional formalism results from
imposing the exact gauge,

�	A	�t,x�� = f�t,x�� , �14�

where f�x� is a C-number field. One then functionally averages over f�x� with a Gaussian weight-
ing functional,

� �df�exp�−
i

2
� dt� d3xf2�t,x��� . �15�

From this discussion, it is obvious that a fairly involved set of functional changes of variables
connects the exact gauge conditions of the canonical formalism to the average gauge conditions
typically employed in the functional formalism. The late Sidney Coleman3 worked this out ex-
plicitly for flat space on the manifold R4 to derive the Faddeev–Popov ansatz for this case, but the
result is often assumed without justification for general metrics on any manifold. We suspect that
the unjustified use of average gauge fixing is behind the dispute about the graviton propagator on
de Sitter background.

It is easy to see that certain average gauges can be problematic when linearization instabilities
are present. Consider flat space electrodynamics on the manifold T3�R. Because the spatial
sections are compact, both sides of the spatially averaged, 	=0 Maxwell equation must vanish
separately,

�
F
	 = J	 ⇒� d3x�iF
i0�t,x�� =� d3xJ0�t,x�� . �16�

Because this zero charge constraint follows from the invariant field equations, it must be true as
well in every exact gauge. However, naively imposing an average gauge can result in a very
different theory. For example, the field equation of Feynman gauge �13� is

�− �t
2 + �2�A	�t,x�� = J	�t,x�� . �17�

This equation can be solved for any total charge. One can argue about how the problem happened,
or how significant it is, but there cannot be any doubt that something went wrong.

The issues we have been discussing are relevant to a debate between cosmologists and rela-
tivists, concerning perturbative quantum gravity on de Sitter background. From the perspective of
inflationary cosmology, it is natural to view de Sitter as a special case of homogeneous, isotropic,
and spatially flat geometries whose invariant element in comoving coordinates takes the general
form

ds2 = − dt2 + a2�t�dx� · dx� . �18�

One gets the open coordinate submanifold of de Sitter by setting the scale factor to a�t�=eHt with
constant H. For any scale factor, the transverse-traceless components of the graviton field obey the
same equation as the massless, minimally coupled scalar4

�� �

�t
�2

+ 3H
�

�t
−

�2

a2 �hij
tt�t,x�� = 0. �19�

The power spectrum for gravitational radiation5 is proportional to the canonically normalized,
superhorizon scalar mode functions u�t ,k�H /k3/2,
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Ph  G � 	u�t,k�	2 � k3  GH2. �20�

From scale invariance—which would be exact in de Sitter—one sees that the mode functions of
physical gravitons diverge too strongly at small k to give a convergent result for the Fourier mode
sum of a part of the graviton propagator which must be present in any gauge. It follows that there
can be no de Sitter invariant graviton propagator, just as there is no de Sitter invariant propagator
for the massless, minimally coupled scalar.6

People who abhor the breaking of de Sitter invariance typically dismiss it as unphysical, but
this argument cannot be accepted because the tensor power spectrum is certainly physical. �In-
deed, strenuous efforts are underway to observe it!� Nor is there any support to be gained from the
tiny distinction between de Sitter and primordial inflation, which typically makes the infrared
behavior worse in any case. So one would think that the noninvariance of free gravitons on de
Sitter must be accepted as universally as that of the massless, minimally coupled scalar. This is not
so because relativists have been able to find de Sitter invariant solutions to the propagator equation
in average gauges.7 Explicit solutions in what seem to be valid gauges are just as compelling as
inferences from the tensor power spectrum. However, we have just seen that average gauges may
not be reliable on manifolds such as de Sitter, which possess linearization instabilities.

The early recognition of a problem8 with one of these de Sitter invariant solutions led to the
development of a noninvariant, average gauge.9,10 The associated propagator has been shown to
obey the Ward identities at tree order11 and one loop;12 and the only fully renormalized, dimen-
sionally regulated loop results for quantum gravity on de Sitter background have been obtained
using it.13–15 Although the gauge fixing functional of this propagator is not de Sitter invariant, it
does preserve the one-parameter subgroup of dilatations,

t → t −
1

H
ln�k� , �21�

x� → kx� , �22�

so the fact that the propagator breaks dilatation invariance cannot be blamed on the gauge.
Moreover, Kleppe showed that the propagator’s de Sitter breaking is physical by the standard
technique of supplementing naive de Sitter transformations with a compensating gauge transfor-
mation to restore the noninvariant gauge condition.16

As with the cosmological power spectrum, one would think these results decisive, but the
interest in a de Sitter invariant graviton propagator persists.17 What seems to be necessary to settle
the issue is two things:

• a proof that the average gauges for which de Sitter invariant solutions have been found are
not valid and

• an explicit construction of the graviton propagator in an exact, de Sitter invariant gauge,
which is valid over the full de Sitter manifold.

Of course, the imposition of a de Sitter invariant gauge would make the propagator equation
de Sitter invariant, but that does not imply a de Sitter invariant solution for the graviton propagator
any more than it does for the massless, minimally coupled scalar propagator, which obeys an
invariant equation but is not invariant.6 If the graviton propagator in an exact gauge breaks de
Sitter invariance, then the breaking must be accepted as physical. This would not only resolve a
contentious dispute, but the resulting propagator might be easier to use and it would reduce the
number of counterterms.14,15

In Sec. II of this paper, we give a proof that the average de Sitter invariant gauges are not
valid; in subsequent sections, we develop the machinery for constructing the propagator in exact
de Donder gauge. The technique for our construction is to find the field-dependent gauge trans-
formation �	�h�, which enforces the gauge condition
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h	
� = h	
 − 2�	;
�h� such that g��h	;�� − 1
2h�;	� � = 0. �23�

�In this and subsequent formulas, g	
 stands for the spacelike background de Sitter metric and a
semicolon denotes covariant differentiation with respect to this background.� Then, we use this
transformation to carry the existing noninvariant propagator9,10 into de Donder gauge. If the de
Sitter breaking of the existing propagator is completely due to the noninvariant gauge, then the de
Donder gauge result should be invariant; if the de Sitter breaking is physical, then it should persist
after the transformation.

As a warm-up for de Sitter gravity, here we carry out the same exercise for de Sitter electro-
magnetism. That is, we find the field-dependent gauge transformation ��A�, which imposes exact
Lorentz gauge

A	� = A	 − �	��A� such that �	��− gg	
A
�� = 0. �24�

Then, we use this transformation on the photon propagator in a noninvariant average gauge.10,18

Because we already know the unique, de Sitter invariant solution for the propagator equation in
Lorentz gauge,19 obtaining this known solution by transformation demonstrates that the technique
will remove de Sitter breaking that arises from using a noninvariant gauge condition. The simpler
setting of electromagnetism and the close relation between the noninvariant electromagnetic and
gravitational gauges should also teach us much of value for the main project.

This paper consists of six sections of which the first is ending. In Sec. II we review the
functional changes in variables which carry one from an exact, canonical gauge to a covariant,
average gauge, with special attention to what goes wrong when linearization instabilities are
present. The context is flat space electrodynamics on the D-dimensional manifolds RD and TD−1

�R. In Sec. III, we switch to D-dimensional de Sitter and carry out the field-dependent gauge
transformation that enforces exact Lorentz gauge. Of course, this gauge transformation is ambigu-
ous up to a homogeneous solution, which is uniquely determined by de Sitter invariance but which
we leave unspecified at this stage. In Sec. IV, we describe the unique de Sitter invariant solution
that was found by solving the propagator equation in Lorentz gauge.19 In Sec. V, we show how the
hitherto unspecified homogeneous part of the gauge transformation from Sec. III can be chosen to
make the two propagators agree. Our conclusions comprise Sec. VI.

II. DERIVING AVERAGE GAUGES

The purpose of this section is to explain how one derives average gauges from the exact
gauges of the canonical formalism. We shall take flat space quantum electrodynamics �QED� as
the object of study and first sketch the technique for passing from Coulomb gauge to Feynman
gauge on the manifold RD. We then consider the same process for the manifold TD−1�R to show
explicitly why full Feynman gauge cannot be imposed.

The QED Lagrangian is

L = − 1
4F	
F	
 + �̄�	�i�	 − eA	�� − m�̄� . �25�

The canonical dynamical variables of Coulomb gauge ��� ·A� �t ,x��=0� are the transverse compo-

nents of the vector potential, Ai
T�t ,x��, and the electric field, Ei

T�t ,x��, as well as ��t ,x�� and �̄�t ,x��.
The 	=0 component of the vector potential is not an independent dynamical variable but a

nonlocal functional ���̄ ,���t ,x�� of the charged fields

A0 = ���̄,�� � −
1

�2 �e�̄�0�� . �26�

Moreover, the Hamiltonian density of Coulomb gauge is

H = 1
2Ei

TEi
T + 1

4FijFij − 1
2��2� + �̄�− i�i�i + e�iAi

T + m�� . �27�
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The usual connection between the canonical and the functional formalisms is made through
the vacuum expectation values of T�-ordered products of operators. �T�-ordering is the same as

time-ordering except that the derivatives are taken outside the ordering.� Suppose O��̄ ,� ,ET ,AT�
represents an arbitrary functional of the canonical operators. The fundamental relation between the
canonical and the functional integral formalisms is

��	T��O��̄,�,ET,AT��	�
 =� �d�̄��d���dET��dAT�ei�dDx�i�̄�0�̇+Ei
TȦi

T−H�O��̄,�,ET,AT� .

�28�

Because they will play no role in our analysis, we have suppressed the initial and final state wave
functionals.

We henceforth denote expression �28� as �O
. A seven-step process of functional manipula-
tions carries it to Feynman gauge on RD.

�1� Perform the Gaussian integrals over the transverse electric field,

� �dET�ei�dDx�Ei
TȦi

T−1/2Ei
TEi

T�O��̄,�,ET,AT� = O���̄,�,AT�ei�dDx1/2Ȧi
TȦi

T
, �29�

where O���̄ ,� ,AT� is O��̄ ,� , ȦT ,AT� plus the delta function correlator terms that arise from
eliminating the various pairings of ET’s.

�2� Restore the longitudinal component of the vector potential,

� �dAT� =� �dA� ����� · A� ��det�− �2� . �30�

Note that this gives the square root of the Faddeev–Popov determinant for Coulomb gauge.
�3� Restore the temporal component of the vector potential,

ei�dDx1/2��2� = �det�− �2� �� �dA0�ei�dDx�1/2�iA0�iAo−�̄�0eA0��. �31�

Note that this gives the remaining bit of the Faddeev–Popov determinant. At this stage, �O

takes the form,

�O
 =� �d�̄��d���dA����� · A� �det�− �2�

� ei�dDx�1/2ȦiȦi+1/2�iA0�iA0−1/4FijFij+�̄�i�	�	−�	eA	−m���O���̄,�,A� , �32�

where O���̄ ,� ,A� is O���̄ ,� ,A� � with possible factors of ���̄ ,�� replaced by A0 �if desired,
it is not necessary� and with the addition of appropriate correlator terms for pairings of A0’s.

�4� Express the integrand as an invariant. Any good gauge can be used to express an arbitrary
functional of the fields as a gauge invariant which happens to agree with the original func-
tional when the gauge condition is obeyed.2,20 We do this for the action and for the operator

O���̄ ,� ,A�,

���� · A� � � ei�dDx�1/2ȦiȦi+1/2�iA0�iA0� = ���� · A� � � ei�dDx1/2F0iF0i, �33�

���� · A� � � O���̄,�,A� = ���� · A� � � Oinv��̄,�,A� . �34�

After invariantizing in this way, our expression for �O
 is
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�O
 =� �d�̄��d���dA����� · A� �det�− �2�eiSinvOinv. �35�

�5� Make a functional change of variables to Lorentz gauge. Consider the field-dependent gauge
transformation

A	� = A	 − �	�1�A� , �36�

�� = eie�1�A� � � , �37�

�̄� = e−ie�1�A� � �̄ , �38�

where the gauge parameter is

�1�A� = −
1

�2 Ȧ0. �39�

Because Sinv and Oinv are gauge invariant, only the gauge fixing delta functional and the
measure will change. To get them, note that the inverse transformation for the vector
potential is

A	 = A	� − �	

1

�2 Ȧ0�. �40�

It follows that the Coulomb gauge condition on A	 implies the Lorentz gauge condition on
A	� ,

�iAi = �	A	� . �41�

Also, the functional Jacobian converts the Faddeev–Popov determinant to the one appropri-
ate for Lorentz gauge

�dA�det�− �2� = �dA��det�− �2� . �42�

We can therefore write �O
 as

�O
 =� �d�̄���d����dA�����	A	� �det�− �2�eiSinvOinv. �43�

�6� Add an inhomogeneous, C -number term to the gauge fixing functional. Make an additional
change in variable,

A	� = A	� − �	�2�f� , �44�

�� = eie�2�f� � � , �45�

�̄� = e−ie�2�f� � �̄ , �46�

where the gauge parameter is defined in terms of an arbitrary C-number field f�t ,x��,

�2�f� =
1

�2 f . �47�

After the transformation, we have

�O
 =� �d�̄���d����dA�����	A	� − f�det�− �2�eiSinvOinv. �48�
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�7� Functionally average over the inhomogeneous term. By construction, �O
 has no dependence
on the function f�t ,x��. It is therefore unchanged if we multiply by a normalized Gaussian and
functional integrate over f ,

�O
 =� �df�ei�dDx1/2f2
� �O
 �49�

=� �d�̄���d����dA��det�− �2�eiSFeynmanOinv. �50�

This is the Feynman gauge functional formalism we sought.
Let us see how the sequence of functional manipulations described above changes when the

noncompact spatial manifold RD−1 is replaced by the compact manifold TD−1. A major difference
is that Fourier integrals become discrete sums. Suppose the range of each spatial coordinate is
−L�xi�+L for i=1,2 , . . . �D−1�. Then, any function f�t ,x�� can be expressed as a discrete
Fourier sum,

f�t,x�� = �
n��ZD−1

fn��t�e
ikn� ·x� , �51�

where k�� /L is the fundamental wave number. Note that the action of �2 on any such function
annihilates the n� =0 mode,

�2f�t,x�� = − �
n��ZD−1

�kn�2fn��t�e
i�L−1n� ·x� . �52�

Hence, the instantaneous Coulomb potential can only be defined for configurations of �̄�t ,x�� and
��t ,x��, which have zero total charge �this is the linearization stability constraint!� and the resulting
potential has no n� =0 mode,

��t,x�� = −
1

�2 ��̄�0e���t,x�� �53�

= �
n��0

1

�kn�2�2L�D−1� dD−1x�eikn� ·�x�−x����̄�t,x����0e��t,x��� . �54�

Of course, this means that when A0�t ,x�� is restored in step �3�, it cannot contain any n� =0 mode.
Another important change concerns restoring the longitudinal part of the vector potential in

step �2�. Under a gauge transformation, the Fourier mode A� n��t� goes to

A� n���t� = A� n��t� − ikn�n��t� . �55�

It follows that all three vector components of A� 0�t� are physical. �In the noninteracting theory they
would behave like free quantum mechanical particles rather than harmonic oscillators.� A second
consequence is that the Coulomb gauge delta functional lacks a n� =0 mode,

���� · A� � = �
t�R

�
n��0

��kn� · A� n��t�� . �56�

To recapitulate, the changes associated with working on the compact spatial manifold TD−1 are
as follows.

• the field A0�t ,x�� contains no n� =0 mode and
• the Coulomb gauge delta functional contains no n� =0 mode.
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It is immediately obvious that while we can still make the functional change of variables in
step �7� to enforce exact Lorentz gauge, neither the resulting A0��t ,x�� nor the Lorentz gauge delta
functional will contain an n� =0 mode. It follows that there is no valid way to add the n� =0 mode
of the Feynman gauge fixing term. So the result is just what we expected: adding the full Feynman
gauge fixing term is incorrect, and all conclusions drawn from this formalism are suspect. It
should be clear that the same sort of problem must occur as well in de Sitter and for gravitons as
well as for electromagnetism, so we now have a proof that the average gauges for which de Sitter
invariant solutions have been found are not valid.

Let us return to the context of flat space electromagnetism on the manifold TD−1�R and
consider what goes wrong if the problem we have just demonstrated is ignored and the covariant
gauge fixing term �with n� =0 mode� is erroneously added to the invariant action. In that case, there
is an extra homogeneous contribution to A0�t ,x��, which should not be present, and a corresponding
extra contribution to propagator. For a point charge q, this extra term produces a homogeneous
contribution to A0�t ,x��, which grows like t2,

A0�t,x�� =
qt2

2DLD−1 + higher modes. �57�

One might object that the extra term is harmless because it makes no contribution to the electric
field; however, the undifferentiated potential does contribute to the interaction energy. A special
case of some interest in QED is the interaction of a particle with its own force fields. In this
context, it has been noted that using the de Sitter invariant, Feynman gauge propagator21 �which
must also contain a spurious homogeneous part� results in on-shell singularities for the one loop
self-mass-squared of a charged scalar.18 Just as the analysis of this section suggests, these on-shell
singularities disappear either

• when using a non-de Sitter invariant gauge on the open coordinate submanifold �which has
no linearization instability�18 or

• when using the de Sitter invariant Lorentz gauge propagator �which is exact�.22

It should be emphasized that there is no mistake in the Allen–Jacobson solution for the
Feynman gauge propagator;21 it is the gauge fixing functional which is at fault.

III. IMPOSING LORENTZ GAUGE ON DE SITTER

The purpose of this section is to make a field-dependent gauge transformation that carries the
photon propagator from a non-de Sitter invariant average gauge, defined on the open coordinate
submanifold, to the de Sitter invariant, exact Lorentz gauge, which can be extended to the entire
de Sitter manifold. We begin by reviewing the geometry and coordinate system, and then we give
the noninvariant gauge condition and the associated propagator. The next step is making the
transformation. Of course, this is ambiguous up to surface terms, which we leave to be specified
in Sec. V. We close by decomposing the transformed propagator �without the homogeneous con-
tributions� into two convenient pieces.

We work on the open conformal coordinate submanifold of D-dimensional de Sitter space. A
space-time point x	 can be decomposed into its temporal �x0� and spatial xi components, which
take values in the ranges

− � � x0 � 0 and − � � xi � + � . �58�

In these coordinates, the invariant element is

ds2 � g	
dx	dx
 = ax
2�	
dx	dx
, �59�

where �	
 is the Lorentz metric and ax=−1 /Hx0 is the scale factor. The parameter H is known as
the “Hubble constant.”
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Most of the various propagators between points x	 and z	 can be expressed in terms of the de
Sitter length function y�x ;z�,

y�x;z� � �x� − z��2 − �	x0 − z0	 − i��2. �60�

Except for the factor of i� �whose purpose is to enforce Feynman boundary conditions�, the
function y�x ;z� is closely related to the invariant length ��x ;z� from x	 to z	,

y�x;z� = 4 sin2� 1
2H��x;z�� . �61�

Because y�x ;z� is a de Sitter invariant, so too are covariant derivatives of it,

�y�x;z�
�x	 = Hax�y�	

0 + 2azH�x	� , �62�

�y�x;z�
�z
 = Haz�y�


0 − 2axH�x
� , �63�

�2y�x;z�
�x	 � z
 = H2axaz�y�	

0 �

0 + 2azH�x	�


0 − 2ax�	
0 H�x
 − 2�	
� . �64�

Here and subsequently, �x	��	
�x−z�
.
Electromagnetism is conformally invariant in D=4 dimensions, which means that it takes the

same form in conformal coordinates as in flat space. This is obvious from the gauge invariant
Lagrangian,

Linv = − 1
4F	
F�g	g�
�− g = − 1

4aD−4F	
F��	�
�. �65�

The wonderful simplicity of using known flat space results will not be preserved if one adds any
multiple of the de Sitter invariant, Feynman gauge fixing functional,

LdS = − 1
2 �g	
A	;
�2 = − 1

2aD−4��	
A	,
 − �D − 2�HaA0�2. �66�

�A semicolon denotes covariant differentiation, whereas a comma stands for the ordinary deriva-
tive.� However, a very simple formalism results from replacing the factor of �D−2� with �D−4�,

LNdS = − 1
2aD−4��	
�	A
 − �D − 4�HaA0�2. �67�

With this gauge fixing functional, the propagator takes the form10,18

i�	�

NdS��x;z� = axazi�B�x;z���	
 + �	

0 �

0� − axazi�C�x;z��	

0 �

0, �68�

where the de Sitter invariant scalar propagators are

i�B�x;z� � B�y�x;z�� =
HD−2

�4��D/2
��D − 2�

��D

2
� 2F1�D − 2,1;

D

2
;1 − y� , �69�

i�C�x;z� � C�y�x;z�� =
HD−2

�4��D/2
��D − 3�

��D

2
� 2F1�D − 3,2;

D

2
;1 − y� . �70�

One nice thing about �68� is that its tensor factors are constants. Another is that each of the
scalar propagators that multiply them consists of the conformal propagator plus a series of less
singular terms, which vanish in D=4 dimensions,
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B�y� =
HD−2

�4��D/2���D

2
− 1��4

y
�D/2−1

+ �
n=0

� ���n +
D

2
�

��n + 2� � y

4
�n−D/2+2

−
��n + D − 2�

��n +
D

2
� � y

4
�n�� ,

�71�

C�y� =
HD−2

�4��D/2���D

2
− 1��4

y
�D/2−1

− �
n=0

� ��n −
D

2
+ 3���n +

D

2
− 1�

��n + 2� � y

4
�n−D/2+2

− �n + 1�
��n + D − 3�

��n +
D

2
� � y

4
�n�� . �72�

So the infinite series terms only need to be retained when they multiply a potentially divergent
quantity. Because the higher values of n vanish more and more rapidly at coincidence �that is, for
y=0�, only a finite number of these extra terms ever need to be included.

It is now time to make the field-dependent transformation to Lorentz gauge,

A	� �x� = A	�x� − �	��A��x� . �73�

This would be step �5� in the scheme of the previous section. The fact that A	� obeys Lorentz gauge
implies a differential equation for ��A�,

�	��− gg	
�
�� = �	��− gg	
A
� . �74�

Of course, there are many solutions related to one another by homogeneous terms. Any choice of
homogeneous term will enforce Lorentz gauge, whereas there can be at most one choice which
gives a de Sitter invariant propagator. Because Sec. V is devoted to establishing de Sitter invari-
ance and correspondence with the known solution,19 we postpone specification of the homoge-
neous term until then. For now, we express the solution in a general way,

�̄�A��x� = �
V

dDx�G�x;x��
�

�x� ��− g�x��g��x��A��x��� , �75�

where G�x ;x�� is some Green’s function of the scalar d’Alembertian, which we specify in Sec. IV,
and V is some region of the manifold. The actual solution for ��A��x� consists of �75�—with
definite choices for G�x ;x�� and V—plus a definite homogeneous solution. For now, we study the

field transformed with only �̄�A��x�,

Ā	�x� � A	�x� − �	�̄�A��x� . �76�

The transformed propagator is the vacuum expectation value of the T�-ordered product of two

Ā’s. Because T�-ordering moves any derivatives outside the time-ordering symbol, we can express
this as
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��	T��Ā	�x�Ā
�z��	�
 = ��	T�A	�x�A
�z��	�
 −
�

�x	�
V

dDx�G�x;x�� �
�

�x� ��− g�x��g��x��

���	T�A��x��A
�z��	�
� −
�

�z
�
V

dDz�G�z;z�� �
�

�z�� ��− g�z��g���z��

���	T�A	�x�A��z���	�
� +
�

�x	

�

�z
�
V

dDx�G�x;x���
V

dDz�G�z;z��

�
�

�x�

�

�z�� ��− g�x��g��x���− g�z��g���z����	T�A��x��A��z���	�
� .

�77�

By substituting the noninvariant propagator �68� and using the fact that y�x ;z� depends on the
spatial coordinates only through their difference, we can write the three differentiated, square-
bracketed terms as

�

�x� ��− g�x��g��x����	T�A��x��A
�z��	�
�

= −
�

�z
 �ax�
D−1azB�y�x�;z��� + �


0� �

�z0 �ax�
D−1azB�y�x�;z��� +

�

�x�0 �ax�
D−1azC�y�x�;z���� ,

�78�

�

�z�� ��− g�z��g���z����	T�A	�x�A��z���	�
�

= −
�

�x	 �axaz�
D−1B�y�x;z���� + �	

0� �

�x0 �axaz�
D−1B�y�x;z���� +

�

�z�0 �axaz�
D−1C�y�x;z����� ,

�79�

�

�x�

�

�z�� ��− g�x��g��x���− g�z��g���z����	T�A��x��A��z���	�
�

=
�

�x�i

�

�z�i ��ax�az��
D−1B�y�x�;z���� −

�

�x�0

�

�z�0 ��ax�az��
D−1C�y�x�;z���� . �80�

All of these suggest that we would do well to organize the transformed propagator into a doubly
differentiated “integral term” and the remaining “other term,”

��	T��Ā	�x�Ā
�z��	�
 =
�

�x	

�

�z
I�x;z� + �	O
��x;z� . �81�

The integral term is
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I�x;z� � az�
V

dDx�G�x;x��ax�
D−1B�y�x�;z�� + ax�

V

dDz�G�z;z��az�
D−1B�y�x;z���

+ �
V

dDx�G�x;x���
V

dDz�G�z;z��� �

�x�i

�

�z�i ��ax�az��
D−1B�y�x�;z����

−
�

�x�0

�

�z�0 ��ax�az��
D−1C�y�x�;z����� . �82�

Moreover, the other term contains everything else,

�	O
��x;z� � axazB�y�x;z����	
 + �	
0 �


0� − axazC�y�x;z���	
0 �


0 − �

0 �

�x	�
V

dDx�G�x;x��

�� �

�z0 �ax�
D−1azB�y�x�;z��� +

�

�x�0 �ax�
D−1azC�y�x�;z���� − �	

0 �

�z
�
V

dDz�G�z;z��

� � �

�x0 �axaz�
D−1B�y�x;z���� +

�

�z�0 �axaz�
D−1C�y�x;z����� . �83�

It remains to act the derivatives to simplify our expressions for I�x ;z� and �	O
��x ;z�. This is
facilitated by some important identities obeyed by any function of y�x ;z�,

�xF�y� =
i4�D/2�D�x − z�

��D

2
− 1�HD−2aD

� Res�F� + H2��4y − y2�F� + D�2 − y�F�� , �84�

�2F�y�
�x0 � z0 =

i4�D/2�D�x − z�

��D

2
− 1��Ha�D−2

� Res�F� + axazH
2��8 − �4y − y2��F� − �2 − y�F� + �ax

az
+

az

ax
��− 2�2

− y�F� + 2F��� , �85�

�2F�y�
�xi � zi = axazH

2�4�2 − y�F� − 2�D − 1�F� − 4�ax

az
+

az

ax
�F�� , �86�

H�ax
�

�z0 + az
�

�x0�F�y� = axazH
2�− 2�2 − y�F� + 2�ax

az
+

az

ax
�F�� . �87�

Here, � is the covariant scalar d’Alembertian and Res�F� is the coefficient of y1−D/2 in the Laurent
expansion of F�y�. We shall also require some identities specific to B�y� and C�y�,

�4y − y2�B��y� + D�2 − y�B��y� = �D − 2�B�y� , �88�

�4y − y2�C��y� + D�2 − y�C��y� = 2�D − 3�C�y� . �89�

Also, there is a very useful relation between B�y� and C�y�,
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C�y� =
1

2
�2 − y�B�y� +

k

D − 3
, where k �

HD−2

�4��D/2
��D − 1�

��D

2
� . �90�

Note finally that substituting �90� into �89� and using �88� implies that

�4y − y2�B��y� + �D − 2��2 − y�B�y� = − 2k . �91�

It is best to start with the Other Term because it involves only first derivatives. The reduction
is straightforward for the B term,

�

�z0 �ax
D−1azB�y�x;z��� = ax

D−1az�HazB +
�y

�z0B�� �92�

=ax
DazH�2B� +

az

ax
�− �2 − y�B� + B�� . �93�

We begin the same way with the C term, but then use �90� to convert most of the C’s to B’s and
simplify with �91�,

�

�x0 �ax
D−1azC�y�x;z��� = ax

D−1az��D − 1�HaxC +
�y

�x0C�� �94�

=ax
DazH�− �2 − y�C� + �D − 1�C +

az

ax
�2C��� �95�

=ax
DazH�2C −

1

2
�2 − y�2B� +

1

2
�D − 2��2 − y�B + k +

az

ax
��2 − y�B� − B�� �96�

=ax
DazH�2C − 2B� +

az

ax
��2 − y�B� − B�� . �97�

Hence, �93� and �97� almost completely cancel and our final result for the Other Term is

�	O
��x;z� � axazB�y�x;z���	
 + axaz�1

2
y�x;z�B�y�x;z�� −

k

D − 3
��	

0 �

0

− 2Haz�

0 �

�x	�
V

dDx��− g�x��G�x;x��C�y�x�;z��

− 2Hax�	
0 �

�z
�
V

dDz��− g�z��G�z;z��C�y�x;z��� . �98�

The Integral Term I�x ;z� involves second derivatives. We only need �86� to reduce the spatial
case,

�

�xi

�

�zi ��axaz�D−1B�y�x;z��� = H2�axaz�D�4�2 − y�B� − 2�D − 1�B� + �ax

az
+

az

ax
��− 4B��� .

�99�

Reducing the temporal derivative term is more involved. We begin by passing the derivatives
through the scale factors, then employ relations �85� and �87��, and convert most of the C�y�’s to
B�y� using �90�, eliminating second derivatives with �88� and �89� as needed. The result is
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�

�x0

�

�z0 ��axaz�D−1C�y�x;z���

= �axaz�D−1� �

�x0

�

�z0 + �D − 1�H�ax
�

�z0 + az
�

�x0� + �D − 1�2axazH
2�C�y�x;z�� �100�

=iax
D�D�x − z�� + H2�axaz�D�4C + 4�2 − y�B� − 2�D + 3�B� + �ax

az
+

az

ax
��− 4B� + 2�2 − y�B�

− 2B�� . �101�

Adding the two terms gives a compact form,

�

�xi

�

�zi ��axaz�D−1B�y�� −
�

�x0

�

�z0 ��axaz�D−1C�y��

= − iax
D�D�x − z� + �axaz�DH2�− 4C + 8B� + �ax

az
+

az

ax
��− 2�2 − y�B� + 2B�� . �102�

A further simplification can be effected by means of the identity,

�axaz�D�x�ax

az
B�y�� = iax

D�D�x − z� + �axaz�DH2�− 4B� +
ax

az
�2�2 − y�B� − 2B�� . �103�

Using this and the result with x	 and z	 interchanged gives

�

�xi

�

�zi ��axaz�D−1B�y�� −
�

�x0

�

�z0 ��axaz�D−1C�y��

= iax
D�D�x − z� + �axaz�D�− 4H2C − �x�ax

az
B� − �z� az

ax
B�� . �104�

Our final result for the Integral Term involves the surface integral,

SB�x;z� �
ax

az
B�y�x;z�� − �

V

dDx��− g�x��G�x;x���x��ax�

az
B�y�x�;z��� �105�

=�
�V

dD−1x	��− g�g�	
�ax�

az
i�B�x�;z��
�G�x;x�� − G�x;x���
��ax�

az
i�B�x�;z��� . �106�

This function is obviously homogeneous; that is, �x annihilates it. In Sec. IV we will show how
to choose the homogeneous contribution to the full gauge parameter ��A��x� so as to cancel it and
similar terms. The final result for the Integral Term is

I�x;z� = �
V

dDx��− g�x��G�x;x��SB�z;x�� + �
V

dDz��− g�z��G�z;z��SB�x;z��

+ i�
V

dDx��− g�x��G�x;x��G�z;x��

− 4H2�
V

dDx��− g�x��G�x;x���
V

dDz��− g�z��G�z;z��C�y�x�;z��� . �107�
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IV. THE INVARIANT PROPAGATOR

The purpose of this section is to show that the transformed propagator of the previous section
agrees, up to surface terms, with the unique de Sitter invariant propagator, which was found by
solving the propagator equation in Lorentz gauge.19 Of course, we begin by describing that
solution. We then decompose it in analogy with the scheme �81� of the previous section, into an
integral term and another term. At this stage, there is a digression to derive an identity for the
convolution of scalar propagators. The section closes by applying this identity to demonstrate that
the two propagators agree up to surface integrals.

The Lorentz gauge propagator equation has a unique de Sitter invariant solution which can
expressed in terms of a function ��y�,19

i�	�

dS��x;z� =

1

4�D − 1�H2� �2y�x;z�
�x	 � z
 �− �4y − y2��� − �D − 1��2 − y��� +

�y

�x	

�y

�z
 ��2 − y��� − �D

− 1���� . �108�

The function ��y� has a very complicated series expansion

��y� =
1

2
�D − 1

D − 3
� HD−2

�4��D/2��D − 3���D

2
− 1��4

y
�D/2−1

+ �
n=0

� � �n + 1���n + D − 1�

��n +
D

2
+ 1� � ���2 −

D

2
�

− ��D

2
− 1� + ��n + D − 1� − ��n + 2��� y

4
�n

−
�n −

D

2
+ 3���n +

D

2
+ 1�

��n + 3� ���2 −
D

2
�

− ��D

2
− 1� + ��n +

D

2
+ 1� − ��n −

D

2
+ 4��� y

4
�n−D/2+2�� . �109�

Although it might seem unwieldy, this formalism has been used to perform several two loop
computations in scalar QED.22,23

The function ��y� obeys the second order differential equation,

�4y − y2��� + �D + 2��2 − y��� − 2�D − 1�� = 2�D − 1�B��y� . �110�

One consequence is

�

�y
�− �4y − y2��� − �D − 1��2 − y�� + 2�D − 1�B� = �2 − y��� − �D − 1�� . �111�

Hence, we can decompose the invariant propagator in a form analogous to that of the transformed
propagator �81�,

i�	�

dS��x;z� = −

1

2H2B�y�x;z��
�2y�x;z�
�x	 � z
 +

1

4�D − 1�H2

�

�x	

�

�z
 I�− �4y − y2��� − �D − 1��2 − y��

+ 2�D − 1�B� , �112�

where the notation “I�f�” of a function f�y� stands for its indefinite integral,

I�f��y� � �y

dy�f�y�� . �113�
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At this point, it is useful to digress on the subject of scalar propagators. Three were introduced
in Sec. III—+i�G�x ;z�, i�B�x ;z�, and i�C�x ;z�—and it might seem that there is a bewildering
variety of them, each with its own important special properties. However, a unified treatment can
be given in terms of the equation,

�− g�x���x + �
2 − �D − 1

2
�2�H2�i�
�x;z� = i�D�x − z� . �114�

The three propagators of Sec. III correspond to the following choices for 
:

i � G�x;z� ⇒ 
 = �D − 1

2
� , �115�

i�B�x;z� ⇒ 
 = �D − 3

2
� , �116�

i�C�x;z� ⇒ 
 = �D − 5

2
� . �117�

For general 
, the spatial plane wave mode functions corresponding to Bunch–Davies vacuum are

u
�x0,k� �� �

4H
a−�D−1�/2H


�1��− kx0� . �118�

When it exists, the Fourier mode sum for the propagator is24

i�
�x;z� =� dD−1k

�2��D−1eik�·�x�−z�����x0 − z0�u
�x0,k�u

��z0,k� + ��z0 − x0�u


��x0,k�u
�z0,k�� .

�119�

When this sum exists, the result is de Sitter invariant,25

i�
�x;z� =
HD−2

�4��D/2

��D − 1

2
+ 
���D − 1

2
− 
�

��D

2
� 2F1�D − 1

2
+ 
,

D − 1

2
− 
;

D

2
;1 −

y

4
� .

�120�

When the Fourier mode sum �119� is infrared divergent, it must be cut off either by making
the mode functions less singular for superhorizon wavelengths26 or by working on a spatially
compact manifold.27 Either procedure breaks de Sitter invariance. A special case of some impor-
tance to our discussion is 
= �D−1� /2, for which the result is28,24


 = �D − 1

2
� ⇒ i�A�x;z� = A�y�x;z�� + k ln�axaz� , �121�

where the constant k was defined in �90� and the function A�y� has the expansion,
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A�y� �
HD−2

�4��D/2���D

2
�

D

2
− 1

�4

y
�D/2−1

+

��D

2
+ 1�

D

2
− 2

�4

y
�D/2−2

− � cot��D

2
���D − 1�

��D

2
�

+ �
n=1

� �1

n

��n + D − 1�

��n +
D

2
� � y

4
�n

−
1

n −
D

2
+ 2

��n +
D

2
+ 1�

��n + 2� � y

4
�n−D/2+2�� . �122�

As with the expansions �71� and �72� for B�y� and C�y�, the infinite series terms of A�y� vanish for
D=4, so they only need to be retained when multiplying a potentially divergent quantity and even
then one only needs to include a handful of them. This makes loop computations manageable. For
a massless, minimally coupled scalar with a quartic self-interaction, two loop results have been
obtained for the expectation value of the stress tensor,28 for the scalar self-mass-squared29 and for
the quantum-corrected mode functions.30 In Yukawa theory, it has been used to compute the
expectation value of the coincident vertex function at two loop order,31 and it has been used for a
variety of two loop computations in scalar QED.22,23 It should also be noted that the de Sitter
breaking correction to i�A�x ;z� in expression �121� can be derived from the infrared-truncated
mode sum,24 and it serves to reproduce the classic and well known result for the coincidence limit
of the propagator.32

The function A�y� obeys a differential equation analogous to �88� and �89�,

�4y − y2�A� + D�2 − y�A� = �D − 1�k . �123�

A number of identities relate the derivative of A�y� to B�y� and C�y�,

A� = − 1
2 �D − 3�B + C�, �124�

�4y − y2�A� = − 2�D − 2�B − �2 − y�k . �125�

It is also useful to note the result of acting the scalar d’Alembertian on a function of the scale
factor,

� f�a� = − H2�a2f��a� + Daf��a�� . �126�

Now consider Green’s second identity for any two functions F�x�� and G�x��,

F�x���− g�x����G�x�� − G�x���− g�x����F�x��

= �	� ��− g�x��g	
�x���F�x���
�G�x�� − G�x���
�F�x���� . �127�

We choose G�x�� to be any symmetric Green’s function G�x ;x��=G�x� ;x�,

�− g�x� � G�x;x�� = �D�x − x�� . �128�

We can obviously integrate �127� over any region V with boundary �V to conclude,

F�x� = �
V

dDx��− g�x��G�x;x���x�F�x�� + �
�V

dD−1x	��− g�g�	
�F�x���
�G�x;x��

− G�x;x���
�F�x��� . �129�

Relation �129� is true for any Green’s function so we are free to use the A-type propagator,
G�x ;x��=−i� i�A�x ;x��. Relation �129� is also valid for any function F�x� so we are free to make
the choice,
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F�x� →
i�
�x;z� − i�A�x;z�

��D − 1

2
�2

− 
2�H2

. �130�

The surface terms involving i�A obviously cancel so the result is

− i�
V

dDx��− g�x��i�A�x;x��i�
�x�;z�

=
i�
�x;z� − i�A�x;z�

��D − 1

2
�2

− 
2�H2

+ i�
�V

dD−1x��− g�g��� i�
�x�;z����i�A�x;x�� − i�A�x;x�����i�
�x�;z�

��D − 1

2
�2

− 
2�H2 � . �131�

We call �131� the “convolution identity.”
Choosing 
= �D−5� /2 in the convolution identity �131� gives us a relation for the C-type

propagator C�y�,

− i�
V

dDx��− g�x��i�A�x;x��i�C�x�;z� =
i�C�x;z� − i�A�x;z� − SC�x;z�

2�D − 3�H2 , �132�

where the surface term is

SC�x;z� � �
�V

dD−1x��− g�g���i�C�x�;z����G�x;x�� − G�x;x�����i�C�x�;z�� . �133�

We now substitute �132� in our result �98� for the Other Term in Sec. IV,

�	O
��x;z� = axazB�y�x;z���	
 + axaz�1

2
y�x;z�B�y�x;z�� −

k

D − 3
��	

0 �

0 − 2H�az�


0 �

�x	

+ ax�	
0 �

�z
�� i�C�x;z� − i�A�x;z�
2�D − 3�H2 � +

az�

0

�D − 3�H
�SC�x;z�

�x	 +
ax�	

0

�D − 3�H
�SC�z;x�

�z
 .

�134�

The derivative is easy to simplify using �124�,

− 2Haz�

0 �

�x	� i�C�x;z� − i�A�x;z�
2�D − 3�H2 � = −

az�

0

�D − 3�H
�y

�x	 �C� − A�� +
k

D − 3
�	

0 �

0axaz �135�

=axaz�− azH�x	�

0B −

1

2
yB�	

0 �

0 +

k

D − 3
�	

0 �

0� . �136�

Combining everything results in an expression for the Other Term, which is almost de Sitter
invariant, modulo the surface terms,
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�	O
��x;z� = axaz�−
1

2
y�	

0 �

0 − azH�x	�


0 + ax�	
0 H�x
 + �	
�B +

k

D − 3
axaz�	

0 �

0

+
az�


0

�D − 3�H
�SC�x;z�

�x	 +
ax�	

0

�D − 3�H
�SC�z;x�

�z
 �137�

=−
�2y�x;z�
�x	 � z


B

2H2 +
kaxaz�	

0 �

0

D − 3
+

az�

0

D − 3

�SC�x;z�
�Hx	 +

ax�	
0

D − 3

�SC�z;x�
�Hz
 . �138�

The first term on the right hand side of �138� agrees with the first term in our decomposition
�112� for the invariant propagator. We must obviously choose the homogeneous contributions to
the gauge parameter ��A��x� so as to cancel the surface terms in �138�. That leaves the term
proportional to k, which relation �126� allows us to recognize as a potential part of the Integral
Term,

kaxaz�	
0 �


0

D − 3
=

�

�x	

�

�z
� k ln2�axaz�
2�D − 3�H2 + const � ln�axaz�� . �139�

We will presently see that precisely the bracketed expression is needed to make I�x ;z� de Sitter
invariant up to surface terms.

A matter of great importance for us is what the convolution identity �131� gives when the
index 
 is chosen to be �D−1� /2, corresponding to the A-type propagator. The term on the right
hand side obviously gives a derivative with respect to the index 
,

lim

→�D−1/2�� i�
�x;z� − i�A�x;z�

��D − 1

2
�2

− 
2�H2� = − � �

�

i�
�x;z�

�D − 1�H2 �

=��D−1�/2�

�140�

�−
i�A��x;z�

�D − 1�H2 . �141�

Hence, the convolution of two A-type propagators gives

− i�
V

dDx��− g�x��i�A�x;x��i�A�x�;z� = −
i�A��x;z�

�D − 1�H2 +
SA�x;z�

�D − 1�H2 , �142�

where the surface term is

SA�x;z� � �
�V

dD−1x��− g�g���i�A��x�;z����G�x;x�� − G�x;x�����i�A��x�;z�� . �143�

Like the A propagator, the A� propagator breaks de Sitter invariance. The simplest way to see
this is by differentiating relation �114� with respect to 
 and then setting 
= �D−1� /2,

0 =
�

�

���x + �
2 − �D − 1

2
�2�H2�i�
�x;z��


=��D−1�/2�
�144�

=�xi�A��x;z� + �D − 1�H2i�A�x;z� . �145�

Because i�A�x ;z�=A�y�+k ln�axaz� has a de Sitter breaking term, it is clear that i�A��x ;z� must as
well. From relation �126�, we infer that
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i�A��x;z� = A�y�x;z�� + const � ln�axaz� + 1
2k ln2�axaz� . �146�

We do not require the coefficient of the ln�axaz� term but the series expansion for A�y� is

A�y� =
HD−2

�4��D/2�4

y
�D/2−2

� 2�D − 1

D − 4
���D

2
− 1� −

HD−2

�4��D/2 �
n=0

� ��
1

4
y�n−D/2+3

n −
D

2
+ 3

�

��n +
D

2
+ 2�

�n + 2�! ���2 −
D

2
� − ��D

2
− 1� + ��n +

D

2
+ 2� − ��n −

D

2
+ 3�� −

�1

4
y�n+1

n + 1

�
��n + D�

��n +
D

2
+ 1����2 −

D

2
� − ��D

2
− 1� + ��n + D� − ��n + 1��� . �147�

One can hardly fail to notice the similarities in the series expansion �109� for ��y� and the
expansion �147� we have just given for the de Sitter invariant part of the A� propagator. The
relation between them is

A�y� =
1

4
�D − 3

D − 1
�I��4y − y2��� + �D − 1��2 − y��� −

1

2
�D − 2�I�B� + const. �148�

It is tedious but straightforward to check �148� using the series expansions but a simpler way of
recognizing it is to act the scalar d’Alembertian on both sides. In view of �145�, the left hand side
gives

�

H2A�y� = − �D − 1�A�y� + const. �149�

To compute the right hand side, we need the lemma,

�2 − y��4y − y2��� + �4y − y2�� + D�2 − y�2� = 2�D − 1�I��2 − y�B�� + const. �150�

This follows from differentiation with respect to y and using Eq. �110� for ��y�. Now act � /H2 on
the first term on the right hand side of �148�, then use the � Eq. �110�, and finally relations �91�
and �150�,

�

H2 I��4y − y2��� + �D − 1��2 − y��� = �4y − y2���4y − y2��� + �D + 1��2 − y��� − �D − 1��� + D�2

− y���4y − y2��� + �D − 1��2 − y��� �151�

=�D − 1���2 − y��4y − y2��� + �4y − y2�� + D�2 − y�2� + 2�4y − y2�B�� �152�

=2�D − 1���D − 1�I��2 − y�B�� − �D − 2��2 − y�B� + const� . �153�

Acting on the right hand side of �148� and using identities �91�, �90�, and �124� proves the relation,

�

H2�1

4
�D − 3

D − 1
�I��4y − y2��� + �D − 1��2 − y��� −

1

2
�D − 2�I�B�� =

1

2
�D − 3��D − 1�I��2 − y�B��

−
1

2
�D − 3��D − 2��2 − y�B − �D − 2��2 − y�B + const �154�

122502-21 Transforming to Lorentz gauge on de Sitter J. Math. Phys. 50, 122502 �2009�

Downloaded 22 Feb 2010 to 131.211.105.164. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



=
1

2
�D − 3��D − 1�I�B� −

1

2
�D − 1��2 − y�B + const �155�

=− �D − 1�A + const. �156�

The point of enduring all this analysis is that we can now recognize the Integral Term of the
invariant propagator �112� as a collection of propagators plus the ln2�axaz� term of expression
�139�,

I�x;z� �
1

4�D − 1�H2 I�− �4y − y2��� − �D − 1��2 − y�� + 2�D − 1�B� �157�

=−
A

�D − 3�H2 − � C − A

�D − 3�2H2� + const �158�

=−
i�A��x;z�

�D − 3�H2 − � i�C�x;z� − i�A�x;z�
�D − 3�2H2 � +

k ln2�axaz�
2�D − 3�H2 + const � ln�axaz� + const. �159�

Note that the two unknown constants are irrelevant because they drop out when one differentiates
with respect to x	 and z
 to get the propagator.

We can make contact between the Integral Term �159� of the invariant propagator and the
Integral Term �107� of the transformed propagator by expressing the propagators as convolution
integrals,

−
i�A��x;z�

�D − 3�H2 = �D − 1

D − 3
��

V

dDx��− g�x��G�x;x��i�A�x�;z� −
SA�x;z�

�D − 3�H2 , �160�

− � i�C�x;z� − i�A�x;z�
�D − 3�2H2 � = − �

V

dDx��− g�x��G�x;x��
i�C�x�;z�

D − 3
−

SC�x;z�
2�D − 3�2H2

− �
V

dDz��− g�z��G�z;z��
i�C�x;z��

D − 3
−

SC�z;x�
2�D − 3�2H2 . �161�

Now break up the prefactor of �160� as

�D − 1

D − 3
� = 1 +

1

D − 3
+

1

D − 3
�162�

and combine the convolutions multiplying the last two factors with the convolutions of �161� to
produce the combination i�C− i�A that can be recognized as another convolution,

−
i�A��x;z�

�D − 3�H2 − � i�C�x;z� − i�A�x;z�
�D − 3�2H2 � = − i�

V

dDx��− g�x��i�A�x;x��i�A�x�;z�

+ i�
V

dDx��− g�x��i�A�x;x��� i�C�z;x�� − i�A�z;x��
D − 3

�
+ i�

V

dDz��− g�z��i�A�z;z��� i�C�x;z�� − i�A�x;z��
D − 3

�
−

SA�x;z�
�D − 3�H2 −

SC�x;z�
2�D − 3�2H2 −

SC�z;x�
2�D − 3�2H2 �163�
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=− i�
V

dDx��− g�x��i�A�x;x��i�A�x�;z�

+ 4H2�
V

dDx��− g�x��i�A�x;x���
V

dDz��− g�z��i�A�z;z��i�C�x�;z��

− �
V

dDx��− g�x��G�x;x��
SC�z;x��

D − 3
− �

V

dDz��− g�z��G�z;z��
SC�x;z��

D − 3
−

SA�x;z�
�D − 3�H2

−
SC�x;z�

2�D − 3�2H2 −
SC�z;x�

2�D − 3�2H2 . �164�

We obtain the desired relation by adding the Integral Term �107� of the transformed propagator to
the ln2�axaz� contribution �139� from the Other Term �and some pieces which drop out when
differentiated by x	 and z
�,

I�x;z� +
k ln2�axaz�
2�D − 3�H2 + const � ln�axaz� + const

= I�x;z� +
SA�x;z�

�D − 3�H2 + �SC�x;z� + SC�z;x�
2�D − 3�2H2 � + �

V

dDx��− g�x��G�x;x���SB�z;x��

+
SC�z;x��

D − 3
� + �

V

dDz��− g�z��G�z;z���SB�x;z�� +
SC�x;z��

D − 3
� . �165�

V. DETERMINING THE HOMOGENEOUS PART

The purpose of this section is to show that we can make the transformed propagator agree
with the invariant one by correctly choosing the homogeneous part of the full gauge parameter
��A��x�. We begin by summarizing the relevant results of the previous two sections concerning the

gauge parameter �̄�A��x�, given in �75�, which enforces Lorentz gauge but not de Sitter invariance.
The resulting propagator agrees with the invariant one �108� and �109� up to three surface terms
which we denote as “A-type,” “B-type,” and “C-type” according to the mode functions which they
involve. We then exhibit a homogeneous gauge parameter ���A��x�, depending upon A0, which
can be used to absorb the B-type and C-type surface terms. The section closes by deriving a
homogeneous gauge parameter ���A��x�, depending on Ai, which absorbs the A-type surface terms
and results in complete agreement with the invariant propagator.

A. Summary of previous results

Our goal is to construct a functional change in variables that is also a gauge transformation,

A	� �x� = A	�x� − �	��A��x� . �166�

We want the field-dependent gauge parameter ��A��x� to do two things:

�1� make the field A	� �x� obey Lorentz gauge and
�2� make the propagator associated with A	� �x� agree with the unique, de Sitter invariant solution

of the Lorentz gauge propagator equation.19

The first condition implies a second order differential equation for ��A��x�,

�− g � � = �	��− gg	
A
� . �167�

Of course, this only defines ��A��x� up to a term which is annihilated by the scalar d’Alembertian.
Because propagators obey Feynman boundary conditions, we took the inhomogeneous solution to
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be the convolution of −i times the scalar propagator �G�x ;z��−i� i�A�x ;z�� with the right hand
side of �167�,

�̄�A��x� � �
V

dDx�G�x;x��
�

�x� ��− g�x��g��x��A��x��� . �168�

The result of just performing this transformation defines a field,

Ā	�x� � A	�x� − �	�̄�A��x� , �169�

which obeys the Lorentz gauge condition but whose propagator does not quite agree with the
invariant one.

We decomposed the propagator of Ā	�x� into the double gradient of an Integral Term �107�
and an Other Term �98�,

��	T��Ā	�x�Ā
�z��	�
 =
�

�x	

�

�z
I�x;z� + �	O
��x;z� . �170�

The invariant propagator can be broken up in similar fashion �112�,

i�	�

dS��x;z� =

�

�x	

�

�z
I�x;z� −
1

2H2B�y�x;z��
�2y�x;z�
�x	 � z
 . �171�

It is desirable to shift the double gradient of a spatially constant term,

�I�x;z� �
k ln2�axaz�
2�D − 3�

+ const � ln�axaz� + const �172�

from �	O
��x ;z� to I�x ;z�. When this is done, the difference between what we want the full

transformation to produce and what the �̄�A��x� transformation actually gives is

�	O
� − �	O
� +
�2�I

�x	 � z
 = −
az�


0

D − 3

�SC�x;z�
�Hx	 −

ax�	
0

D − 3

�SC�z;x�
�Hz
 , �173�

I�x;z� − I�x;z� − �I�x;z� = −
SA�x;z�

�D − 3�H2 − �SC�x;z� + SC�z;x�
2�D − 3�2H2 � − �

V

dDx��− g�x��G�x;x��

��SB�z;x�� +
SC�z;x��

D − 3
� − �

V

dDz��− g�z��G�z;z���SB�x;z��

+
SC�x;z��

D − 3
� . �174�

Each of the surface integrals, SF�x ;z�, consists of a Dirichlet and a Neumann contribution,

SF�x;z� � �
�V

dD−1x��− g�g���F�x�;z����G�x;x�� − G�x;x�����F�x�;z�� . �175�

The functions F�x ;z� associated with the three integrals are

SA�x;z� ⇒ F�x�;z� = i�A��x�;z� , �176�

SB�x;z� ⇒ F�x�;z� =
ax�

az
i�B�x�;z� , �177�
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SC�x;z� ⇒ F�x�;z� = i�C�x�;z� . �178�

Note that each SF�x ;z� is homogeneous on the first argument x	. The integral SA�x ;z� is homo-
geneous on z	 as well, and also symmetric under interchange of x	 and z	.

B. Absorbing the B-type and C-type surface terms

Rather than absorb all the surface terms at once it is simpler to first cancel those of the Other
Term, which must also reduce those that remain in the integral term to pure A-type �homogeneous
on both x	 and z	�. We accordingly seek a homogeneous gauge parameter ���A��x� which cancels
�173�. Because this will also change the integral term, we write out the full transformed field,

Â	�x� = Ā	�x� −
�

�x	���A��x� . �179�

The propagator of Â is

��	T��Â	�x�Â
�z��	�
 = ��	T��Ā	�x�Ā
�z��	�
 −
�

�x	 ��	T�����x�A
�z��	�


−
�

�z
 ��	T��A	�x����z��	�
 +
�

�x	

�

�z
 ��	T�����x��̄�z� + �̄�x����z�

+ ���x����z��	�
 . �180�

The terms on the final line of �180� must belong to the integral term �174�, and most of the middle
line of �180� must similarly belong to the other term �173�. If we assume ���A��x� depends only
on A0, then the break is clean and we have

��	T�����x�A0�z��	�
 =
azSC�x;z�
�D − 3�H

, �181�

��	T�����x��̄�z� + �̄�x����z� + ���x����z��	�


= �A-type terms� − �SC�x;z� + SC�z;x�
2�D − 3�2H2 � − �

V

dDx��− g�x��G�x;x���SB�z;x�� +
SC�z;x��

D − 3
�

− �
V

dDz��− g�z��G�z;z���SB�x;z�� +
SC�x;z��

D − 3
� . �182�

It is straightforward to see that relation �181� fixes the homogeneous part of the gauge pa-
rameter to be

���x� =
− 1

�D − 3�H��V

dD−1x��− g�g���A0�x��
ax�

���G�x;x�� − G�x;x�����
A0�x��

ax�
� . �183�

Combining �168� and �183� gives

��	T�����x��̄�z��	�
 =
− 1

�D − 3�H�V

dDz�G�z;z��
�

�z�0 �az�
D−1SC�x;z��� . �184�

The surface integral SC�x ;z�� has the form �175� with the function F�x� ;z��= i�C�x� ;z��. Multi-
plying this by the factor of az�

D−1 and taking the derivative gives an expression which we can
simplify using relations �124� and �90�,
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�

�z�0 �az�
D−1i�C�x�;z��� = Haz�

D��D − 1�C − �2 − y�C� + 2
ax�

az�
C�� �185�

=Haz�
D�2C + �D − 3�C −

1

2
�D − 3��2 − y�B + �D − 3�

ax�

az�
B − �2 − y�A� + 2

ax�

az�
A�� �186�

=Haz�
D�2C + �D − 3�

ax�

az�
B� + az�

D−1 �

�z�0 �i�A�x�;z��� . �187�

The final term involving i�A�x� ;z�� gives rise to an A-type surface term whose form we will work
out in the next subsection. We can therefore write,

��	T�����x��̄�z��	�
 = �A-type terms� − �
V

dDz��− g�z��G�z;z���SB�x;z�� +
2

D − 3
SC�x;z��� .

�188�

Interchanging x	 and z	 gives

��	T���̄�x����z��	�
 = �A-type terms� − �
V

dDx��− g�x��G�x;x���SB�z;x�� +
2

D − 3
SC�z;x��� .

�189�

The term with two ��’s yields a surface integral of surface integrals that we can write as a
volume integral of surface integrals using Green’s second identity,

��	T�����x����z��	�
 = −
1

�D − 3�2H2�
�V

dD−1x��− g�x��g��x�� � �SC�z;x��
�

�x��G�x;x��

− G�x;x��
�

�x��SC�z;x��� �190�

=
− 1

�D − 3�2H2�
V

dDx��− g�x���SC�z;x���x�G�x;x�� − G�x;x���x�SC�z;x��� . �191�

Of course, we can use the identity �−g�x���x�G�x ;x��= i�D�x−x��, and the quantity
�−g�x���x�SC�z ;x�� involves

�− g�x���x�i�C�z�;x�� = i�D�x� − z�� + 2�D − 3�H2�− g�x��i�C�z�;x�� . �192�

The delta function in �192� gives another A-type term whose form we work out in the next
subsection. Hence, we have

��	T�����x����z��	�
 = �A-type terms� −
SC�z;x�

�D − 3�2H2 +
2

D − 3
�

V

dDx��− g�x��G�x;x��SC�z;x�� .

�193�

The result is symmetric in x	 and z	 so we can express it as
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��	T�����x����z��	�
 = �A-type terms� −
SC�x;z� + SC�z;x�

2�D − 3�2H2 + �
V

dDx��− g�x��G�x;x��
SC�z;x��

D − 3

+ �
V

dDz��− g�z��G�z;z��
SC�x;z��

D − 3
. �194�

Combining expressions �188� and �189� with �194� gives the desired form �182�,

��	T�����x��̄�z� + �̄�x����z� + ���x����z��	�


= �A-type terms� − �SC�x;z� + SC�z;x�
2�D − 3�2H2 � − �

V

dDx��− g�x��G�x;x���SB�z;x�� +
SC�z;x��

D − 3
�

− �
V

dDz��− g�z��G�z;z���SB�x;z�� +
SC�x;z��

D − 3
� . �195�

C. Absorbing the A-type surface terms

We should begin this section by clarifying precisely what the A-type surface terms are. They
reside entirely in the integral term, and they consist of SA / �D−3�H2 plus the A-type surface terms
induced by the gauge parameter ���A�. We first reduce SA to a pair of temporal surface terms, and
then derive similar expressions for the A-type surface terms from ���A�. This will motivate our
construction of the final gauge parameter ���A�, which absorbs the A-type surface terms and gives
full agreement with the invariant propagator.

Recall that the surface integral SA�x ;z� is

SA�x;z� � �
�V

dD−1x��− g�g���i�A��x�;z����G�x;x�� − G�x;x�����i�A��x�;z�� , �196�

where i�A��x ;z� is the derivative with respect to 
 �evaluated at 
= �D−1� /2� of the Fourier mode
sum,

i�
�x;z� =� dD−1k

�2��D−1eik�·�x�−z�����x0 − z0�u
�x0,k�u

��z0,k� + ��z0 − x0�u


��x0,k�u
�z0,k�� .

�197�

Because G�x ;z� is −i times the same mode sum �again evaluated at 
= �D−1� /2�, we see that the
surface terms at spatial infinity make no contribution. One can therefore express SA�x ;z� as a
Fourier mode sum of temporal surface terms

SA�x;z� = i� dD−1k

�2��D−1eik�·�x�−z�� � �uA
��x0,k�uA

��z0,k� � F�− k�2� − uA�x0,k�uA�z0,k� � F��− k�1�� ,

�198�

where �1 and �2 are the initial and final times, respectively, and the function F�−k�� is

F�− k�� � aD−2� �u
��,k�
�


�u
��,k�
��

− u
��,k�
�2u
��,k�

�
 � �
�


=�D−1�/2
�199�
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=
�

4Ha
� �H


�1��− k��
�


�H

�1��− k��
��

− H

�1��− k��

�2H

�1��− k��

�
 � �
�


=�D−1�/2
. �200�

This function F�z� has the interesting property that it can be related to the product of two Hankel
functions, without any derivatives with respect to the index or the argument.33 To see the relation
we define,

E
�z� � z�H

�1��z��2, �201�

G
�z� � z��
H

�1��z��zH


�1��z� − H

�1��z��
�zH


�1��z�� . �202�

Of course, we have

F�− k�� = −
�

4
� G
�− k�� , �203�

and the relation to E
 is33

�zG
�z� = −
2


z2 E
�z� . �204�

The integration constant can be fixed using the asymptotic expansion for large z to give

G
�z� = 2
�
z

�

dz�
E
�z��

z�2 . �205�

The key identity for ���A� to produce A-type surface terms is

�

�x�0

�

�z�0 i�C�x�;z�� =
i

ax�
D−2�D�x� − z�� +

�2y�x�;z��
�x�0 � z�0 C��y�x�;z���

+
�y�x�;z��

�x�0

�y�x�;z��
�z�0 C��y�x�;z��� . �206�

The A-type surface terms come exclusively from the delta function term; the other contributions
produce B-type and C-type surface terms we have already included. Note that because one gets a
D-dimensional delta function, whereas the initial and final surface integrals are only
�D−1�-dimensional, it is necessary to regulate ���A� to make the A-type surface term well
defined. An obvious regularization is to integrate the initial and final time surfaces over a small
range of duration ��=2�,

����x� �
1

2��D − 3�H���2−�

�2+�

dx�0 − �
�1−�

�1+�

dx�0�� dD−1x�� � ax�
D−2� 1

ax�
A0�x��

�

�x�0G�x;x��

− G�x;x��
�

�x�0� 1

ax�
A0�x���� . �207�

Let us now work out the A-type surface term from ����x���̄�z�. The full expectation value is
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��	T������x��̄�z��	�
 = ��
�2−�

�2+�

dx�0 − �
�1−�

�1+�

dx�0�� dD−1x���
V

dDz�
ax�

D−2G�z;z��

2��D − 3�H

�
�

�z�0�az�
D−1i�C�x�;z��

�

�x�0G�x;x�� − az�
D−1G�x;x��

�

�x�0 i�C�x�;z��� .

�208�

However, we already accounted for most of this in the previous subsection; it is only the delta
function from using �206� on the final surface term which makes the new contribution we seek,

��	T������x��̄�z��	�
A-type =
− i

2��D − 3�H���2−�

�2+�

dx�0 − �
�1−�

�1+�

dx�0�
�� dD−1x���

V

dDz�G�z;z��az�
D−1G�x;x���D�x� − z�� . �209�

The integration over z�	 is not affected by our regularization of ����x�,

� dDz� � �
�1

�2

dz�0� dD−1z��. �210�

It is therefore only half of the x�0 range over which the delta function can be saturated. Taking the
unregulated limit gives

lim
�→0

��	T������x��̄�z��	�
A-type = lim
�→0

− i

2��D − 3�H���2−�

�2

dx�0

− �
�1

�1+�

dx�0�� dD−1x��G�z;x��ax�
D−1G�x;x�� �211�

=
i

2�D − 3�H� dD−1x���ax�
D−1i�A�x;x��i�A�z;x���x�0=�1

x�0=�2. �212�

One obviously gets the same result �212� from �̄�x������z� so the total for these “mixed”
terms is

lim
�→0

��	T������x��̄�z� + �̄�x�����z��	�
A-type =
i

�D − 3�H� dD−1x���ax�
D−1i�A�x;x��i�A�z;x���x�0=�1

x�0=�2

�213�

=
i

�D − 3�H� dD−1k

�2��D−1eik�·�x�−z���a2
D−1uA

��x0,k�uA
��z0,k��uA��2,k��2 − a1

D−1uA�x0,k�uA�z0,k��uA
���1,k��2�

�214�

=
i

�D − 3�H2� dD−1k

�2��D−1eik�·�x�−z���uA
��x0,k�uA

��z0,k� �
�

4
�H


�1��− k�2��2 = − uA�x0,k�uA�z0,k� �
�

4
�H


�1�

��− k�2���2� . �215�

Expression �215� combines nicely with the A-type surface term from �̄
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SA�x;z�
�D − 3�H2 =

i

�D − 3�H2� dD−1k

�2��D−1eik�·�x�−z�� � �uA
��x0,k�uA

��z0,k� � F�− k�2� − uA�x0,k�uA�z0,k�

� F��− k�1�� . �216�

By partial integration, we can express F�z� as

F�z� = −
�

4
� 2
�

z

�

dz�
1

z�
�H


�1��z���2 �217�

=−
�

4
� �H


�1��z��2 −
�

4
� �

z

�

dz�
1

z�2


�

�z�
�z�
H


�1��z���2. �218�

So the first term of �218� is canceled by �215�.
The full expectation value for ����x������z� is

��	T������x�����z��	�
 =
− 1

4�2�D − 3�2H2 � ��
�2−�

�2+�

dx�0 − �
�1−�

�1+�

dx�0�� dD−1x��ax�
D−2��

�2−�

�2+�

dz�0

− �
�1−�

�1+�

dz�0�� dD−1z��az�
D−2

� �i�C�x�;z��
�G�x;x��

�x�0

�G�z;z��
�z�0

− G�z;z��
�G�x;x��

�x�0

�i�C�x�;z��
�z�0 − G�x;x��

�G�z;z��
�z�0

�i�C�x�;z��
�x�0

+ G�x;x��G�z;z��
�2i�C�x�;z��

�x�0 � z�0 � . �219�

As with the mixed term �212�, we have already reduced most of this in the previous subsection.
The only new contribution is derived from the delta function one obtains by using �206� on the
final term

��	T������x�����z��	�
A-type =
− i

4�2�D − 3�2H2��
�2−�

�2+�

dx�0 − �
�1−�

�1+�

dx�0�� dD−1x��ax�
D−2

� ��
�2−�

�2+�

dz�0 − �
�1−�

�1+�

dz�0�� dD−1z��G�x;x��G�z;z���D�x� − z��

�220�

=
i

4�2�D − 3�2H2��
�2−�

�2+�

dx�0 − �
�1−�

�1+�

dx�0�� dD−1x��ax�
D−2i�A�x;x��i�A�z;x�� �221�

=
i

4�2�D − 3�2H2� dD−1k

�2��D−1eik�·�x�−z���uA
��x0,k�uA

��z0,k��
�2−�

�2+�

d�a�
D−2�uA��,k��2

− uA�x0,k�uA�z0,k��
�1−�

�1+�

d�a�
D−2�uA

���,k��2� . �222�

The integrations with respect to � can be performed, but it is not possible to take the unregulated
limit,
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�
�2−�

�2+�

d�a�
D−2�uA��,k��2 = −

�

4
�

�2−�

�2+�

d���H

�1��− k���2 �223�

=−
�

4k2�
−k��2−��

−k��2+��

dzz�H

�1��z��2 �224�

=−
�

8k2���z2 − 
2��H

�1��z��2 + z2� �

�z
H


�1��z��2��
z=−k��2−��

z=−k��2+��

�225�

=−
�

4
� 2� � �2�H


�1��− k�2��2 + O��3� . �226�

Combining the various A-type surface terms gives a result of the form,

�A-type terms� =
− i

�D − 3�H2� dD−1k

�2��D−1eik�·�x�−z�� � �uA
��x0,k�uA

��z0,k�A��2,k,��

− uA�x0,k�uA�z0,k�A���1,k,��� . �227�

The function A�� ,k ,�� is

A��,k,�� =
�

4���H

�1��− k���2

2��D − 3�
+ �

−k�

�

dz�
1

z�2


�

�z�
�z�
H


�1��z���2 + O���� . �228�

We seek a homogeneous gauge parameter ���A��x� that cancels �227� and �228�, in the limit that
� goes to zero, without changing the Other Term. If we construct it from Ai rather than A0, then
there will be no interference between ���A� and ���A�. Suppose further that ���A��x�, like
���A��x� involves an integral over a dummy variable x�	, and that the field Ai�x�� is differentiated
with respect to x�0. What we want is that the expectation value of ���A��x��Ai�z� is zero unless
there is also a derivative with respect to z0. If we can construct a ���A� with this property then the
only nonzero contribution to the transformed propagator will come from ���A��x�����A��z�.

It is simplest to construct the term we want by analogy with the simple harmonic oscillator,
whose Heisenberg position operator is

q�t� =
1

�2m�
�ae−i�t + a†ei�t� . �229�

Note that we can isolate the raising and lower operators by taking linear combinations of q̇ and
i�q,

q̇�t� + i�q�t� =
2i�

�2m�
a†ei�t, q̇�t� − i�q�t� =

− 2i�
�2m�

ae−i�t. �230�

We assume the usual commutation relations and ground state 	�
,

�a,a†� = 1, a	�
 = 0 = ��	a†. �231�

If t comes before the last time t2, and after the earliest time t1, then we have

��	T���q̇�t2� + i�q�t2��q�t��	�
 = 0 ∀ t � t2, �232�
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��	T���q̇�t1� − i�q�t1��q�t��	�
 = 0 ∀ t1 � t . �233�

The only nonzero expectation value comes from the T�-ordered product of two factors of the
combination �230�,

��	T���q̇�t2� + i�q�t2���q̇�t2�� + i�q�t2����	�
 =
i

m
��t2 − t2�� , �234�

��	T���q̇�t1� − i�q�t1���q̇�t1�� − i�q�t1����	�
 = −
i

m
��t1 − t1�� . �235�

We construct a gauge parameter ���A��x� with the desired properties by analogy. The free
field mode sum for Ai�x� is10,18

Ai�x� =� dD−1k

�2��D−1 �axuB�x0,k�eik�·x��i�k�� + axuB
��x0,k�e−ik�·x��i

†�k��� , �236�

where the uB�� ,k� mode functions are given by �118� with index 
= �D−3� /2 and the �i�k�� are
canonically normalized annihilation operators. One can isolate �i�k�� by taking the spatial Fourier
transform,

Ãi�x0,k�� � � dD−1x�e−ik�·x�Ai�x0,x�� . �237�

Now form linear combinations analogous to �230�,

1

a
Ãi��,k��

�

��
uB

���,k� − uB
���,k�

�

��
�1

a
Ãi��,k��� =

i�i�k��
aD−2 , �238�

1

a
Ãi��,− k��

�

��
uB��,k� − uB��,k�

�

��
�1

a
Ãi��,− k��� = −

i�i
†�k��

aD−2 . �239�

It follows that the desired gauge parameter is

����x� =
i

�2��D − 3�H
� dD−1k

�2��D−1eik�·x��uA
��x0,k��

�2−�

�2+�

dx�0ax�
D−2��D − 3�A�x�0,k,���1/2

� � kiÃi�x�0,k��
kax�

�uB�x�0,k�
�x�0 − uB�x�0,k�

�

�x�0� kiÃi�x�0,k��
kax�

�� − uA�x0,k��
�1−�

�1+�

dx�0ax�
D−2��D

− 3�A��x�0,k,���1/2 � � kiÃi�x�0,k��
kax�

�uB
��x�0,k�
�x�0 − uB

��x�0,k�
�

�x�0� kiÃi�x�0,k��
kax�

��� . �240�

VI. DISCUSSION

There are two generic ways to freeze local symmetries:

• exact gauge fixing, in which the fields are made to obey some equation, and
• average gauge fixing, in which a term is added to the Lagrangian.

We have shown that certain average gauges cannot be derived from the canonical formalism
on manifolds such as de Sitter for which there are linearization instabilities. Ignoring this problem
in electrodynamics causes the vector potential to possess an unphysical and incorrect part which
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drops out of the field strength but affects interaction energies. This may be the origin of the
on-shell singularities found in Feynman gauge for the one loop self-mass-squared of charged
scalars on de Sitter.18

We have also constructed the field-dependent gauge transformation that enforces exact, Lor-
entz gauge on de Sitter electrodynamics. This was applied to the photon propagator from a non-de
Sitter invariant, average gauge, and the result agrees exactly with the de Sitter invariant solution
previously obtained from solving the Lorentz gauge propagator equation.19 It was already known
from adding the compensating gauge transformation to the naive de Sitter transformation that the
propagator in the noninvariant gauge shows no physical breaking of de Sitter invariance.10 So the
fact that our transformation technique produces an invariant result demonstrates that the technique
indeed eliminates unphysical breaking of de Sitter invariance.

In a subsequent work, we will employ the same technique to transform the graviton propaga-
tor from a non-de Sitter invariant, average gauge9,10 to the exact and de Sitter invariant, de Donder
gauge. Adding the compensating transformation shows that the breaking of de Sitter invariance in
this propagator is physical,16 so the expectation is that the transformation technique will not
remove it. Because the transformed propagator will obey a de Sitter invariant gauge condition, this
should settle the issue about whether or not free gravitons have any de Sitter invariant states. Note
that simply obeying a de Sitter invariant propagator equation does not guarantee a de Sitter
invariant solution, as the case of the massless, minimally coupled scalar proves.6 Note also that
physical graviton modes obey precisely the same equation as the massless, minimally coupled
scalar.4

Constructing the de Donder gauge propagator is a worthy goal in its own right for two
reasons. First, exploiting the gauge condition makes a vast simplification in tensor algebra.15

Second, using a de Sitter invariant gauge would preclude the need for noninvariant counterterms
even though the actual propagator is not de Sitter invariant.14,15

A significant technical result of this paper is the “convolution identity” �131� for integrating
the propagator i�A of a massless, minimally coupled scalar up against the propagator i�
 of a
massless scalar with conformal coupling,

� =
1

D�D − 1���D − 1

2
�2

− 
2� . �241�

The result follows from Green’s second identity,

− i�
V

dDx��− g�x��i�A�x;x��i�
�x�;z�

=
i�
�x;z� − i�A�x;z�

��D − 1

2
�2

− 
2�H2

− i�
�V

dD−1x��− g�g���
�

i�
�x�;z����i�A�x;x�� − i�A�x;x�����i�
�x�;z�

��D − 1

2
�2

− 
2�H2 � . �242�

We expect this to be of great utility in the subsequent graviton project because field-dependent
gauge transformations result in precisely such convolutions.
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