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Abstract: Damage to porous materials in heritage buildings caused by salt mixture crystallization
is driven by the surrounding environmental conditions. To understand the crystallization behavior
of a mixed salt solution as a function of changing climatic conditions (i.e., relative humidity and
temperature), excluding factors such as the internal pore structure, the thermodynamic model
ECOS/RUNSALT is the only freeware available that requires simple input and includes the most
relevant ions for heritage buildings and solids. We suggest the use of specific terminology and
describe how to use the model and how to interpret the output, with emphasis on key limitations
for which solutions are provided. When used correctly, the model output can be trusted, specifically
when it is used to inform preventive conservation (e.g., environmental conditions in which salt
crystallization cycles should not occur). However, salt mixture kinetics and the internal pore structure
remain crucial parameters that are not considered in the model. These aspects need further attention
to develop a better understanding and correctly model salt damage in relation to climatic changes.

Keywords: salt mixtures; thermodynamic modeling; crystallization behavior; climate; built environment;
conservation; masonry

1. Introduction

Salt deterioration is a common issue when dealing with the conservation of porous
materials in built heritage [1–6]. However, understanding salt behavior is a complex subject
due to the presence of a wide variety of ions [7], which are often the result of groundwater
infiltration by capillary rising damp, rainwater infiltration, and atmospheric, biological,
or internal material contamination. Over time, these result in an accumulation of salts
in the first few millimeters or centimeters of a material’s drying front. Damage to the
material occurs when salts fill a porous material and crystallization cycles are provoked
by changing environmental conditions. The individual mixture composition found in
the material determines the crystallization behavior of each possible solid that can occur,
as described by Price and Brimblecombe [8] in the context of porous materials. This
behavior is further influenced by a wide range of internal and external factors of the salt-
bearing porous material and salt solution properties, such as supersaturation, viscosity,
pore characteristics, inner pore processes [9–15], and ambient environment. The sheer scope
of all the parameters involved limits our current understanding of the real-world processes
that underpin the damage potential of salts over time. However, the outcomes of specific
scientific projects contribute to the understanding of complex salt behavior, as described
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in Price (Ed.) [16]. This has resulted in a thermodynamic model, Environmental Control
of Salts (ECOS), used to determine the environmental conditions needed to reduce salt
damage in porous materials. Based on the ECOS model, Bionda [17] developed RUNSALT,
which is a graphical user interface (GUI) that takes care of the data pre-/postprocessing
and the visualization of outputs. The freeware and published work [18–31] of the first use
cases can be found on the RUNSALT website [32].

Since its development, the model has been used extensively to aid management
decisions for the preservation of built heritage worldwide. Although a limited amount of
literature is available [33–50], it is important to note that its use is mostly undocumented
in peer-reviewed literature; for example, in Belgium the software has been used for over
300 heritage sites [51]. Like any model, ECOS and RUNSALT have limitations and pitfalls,
with ineffective or non-existent transfer from research to practice, a challenge faced more
widely in heritage science, as recently explored by Richards and Brimblecombe [52]. Some
of these limitations are linked to data processing and issues with the input parameters and
outputs. Several of the limitations are reported on and addressed in this paper with the
aim to advance the conservation field when considered or adjusted in future versions of
the software. Additionally, when dealing with salt crystallization, an ambiguous use of
terminology and discrepancies can be found in the literature; thus, specific terminology
and abbreviations are suggested for salt mixtures.

2. Models and Theory

When dealing with salt mixtures, there are several models available that output,
amongst others, specific saturation, crystallization, dissolution, and transition relative
humidity points, that allow a deeper understanding of the mixture behavior under changing
climatic conditions. However, most programs or models are designed for specific purposes,
such as atmospheric, industrial (brines) or (sea) water chemistry, e.g., FREEZCHEM [53], E-
AIM [54,55], and [56–61]. Since these programs and models have been developed primarily
to address specific applications, they exclude relevant ions and data for salts typically found
in building materials [7]. The computer program PHREEQC [62] and the ECOS/RUNSALT
model [16,17] are the most cited in literature for this purpose. PHREEQC includes a variety
of options and incorporations of ions, such as those described by, e.g., Benavente et al. [63]
and Pérez-Diez et al. [64]. However, an important limitation in the aqueous model is the
lack of internal consistency in the databases [62]. PHREEQC has a limited pre-installed
dataset of solids and non-validated parameters, which the user needs to update. Moreover,
experimental data are often lacking or contain inconsistencies in the literature [65]; it is
thus a complicated and tedious task to complete the datasets and derive reliable results,
particularly for systems containing nitrate. However, the program has potential in stone
conservation, as it permits the implementation of, e.g., kinetics and in-pore situations.

ECOS/RUNSALT is currently the only model with simple inputs that include the most
relevant salt phases found in the built environment, and can handle more complex systems
when compared to PHREEQC. ECOS (Environmental Control of Salts) is a chemical equilib-
rium model initially developed on the molality-based thermodynamic approach of the ion
interaction model of Pitzer [66]. There, the solubilities of the included mineral phases, as
well as the water vapor–salt solution equilibrium, are considered. It is based on a molality-
dependent expression for excess Gibbs energy which includes empirically determined
interaction parameters and, by its minimization, allows the iterative determination of the
activity and osmotic coefficient. While the latter coefficient is related to the water activity of
the electrolyte solution, the activity coefficient corrects for the non-ideal behavior of ions in
the solution. During the development of ECOS, it turned out that the parameterization of
the model was well suited for the calculation of solubilities in mixed electrolyte solutions
in the desired range, but in combination with the algorithm used for the calculation of the
amounts of crystallized salts and solution, partly incorrect results were obtained. Especially
in cases of high concentrations, the algorithm based on the original Pitzer molality-based
model passed unrealistic conditions in ranges where the model was already invalid. It was
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possible to overcome this hurdle by using equations in terms of mole fractions [55,67–69],
which was implemented in Fortran [70]. Having equivalent principles to the molality-
based model, the mole fraction one, generally known as the Pitzer–Simonson–Clegg model,
includes ion concentrations expressed as mole fractions [71]. Nevertheless, the original
molality-based approach was later improved, as described by Steiger et al. [72], and should
be considered as a valid alternative. In either case, it must be noted that ECOS always
considers equilibrium conditions, neglecting kinetic aspects. Thus, certain metastable
pathways are possible, and salt damage is linked to the kinetically driven supersaturation
of the salt solution.

To further understand the ECOS calculations, we refer to the literature, e.g., [16,73–78],
including data related to activity coefficients and (solubility) phase diagrams (solution con-
centration as molality (number of moles of dissolved salt per kilogram water) (m(salt)/mol·kg−1),
volume (V), relative humidity (RH), or water activity (aw) over temperature (T)). Phase
diagrams are best suited for binary or ternary systems to illustrate the crystallization path-
ways at given concentrations. However, the graphical representation of quaternary or
higher systems becomes more complicated. If all data from such phase diagrams should be
derived, x-y-z plots are required with, for example, x as RH, y as the number of moles of
crystalline salt (n) or volume (V), and z as temperature (T). Such a plot is, in principle, the
same as a combination of RUNSALT plots derived from calculations at different T or RH
and presented with three axes, as shown by Menéndez [33].

Equilibrium conditions also mean that at each RH, ECOS considers an equilibration
with the surroundings. In reality, RH changes are generally faster where non-equilibrium
dynamic RH changes occur, so there are larger gradients between the vapor pressure of the
solution and the surrounding air influencing evaporation.

When looking at phase diagrams in the context of ions found in building materials, at
least senary or septenary systems should be considered that include the most important
ions (CO3

2−, Cl−, NO3
−, SO4

2−, Na+, K+, Mg2+, and Ca2+) while excluding less common
ions such as fluoride, phosphate, oxalate, ammonium, acetate, or formate, as previously
described [79,80]. Since the least soluble salts will rapidly crystallize from a mixed salt
system, carbonates and gypsum can be excluded in most cases. Thus, a senary system of
more soluble salts will remain, including Cl−, NO3

−, Na+, K+, and Mg2+ with either SO4
2−

or Ca2+, as further described in [7], which is implemented in ECOS.

3. Terminology for Mixed Salt Systems and Methodology for Using RUNSALT

Understanding salt mixture behavior in porous media under changing climatic con-
ditions is not a straightforward task and requires in-depth knowledge of the mixture
composition and material characteristics, as well as internal and external factors. A first
step, however, is knowing the correct salt mixture present, which requires data input
preparation for the model, as described further in Steiger and Heritage [79] and recently
verified by applying the method to a large dataset including several additional steps in
Godts et al. [7].

Before moving forward with the methodology for using RUNSALT, Table 1 is given
to overcome the ambiguous use of terminology found in the literature and to clarify the
crystallization pathways of mixed salt systems shown in RUNSALT plots (see example
Figure 1). Specific RH points of interest are linked to the suggested symbols presented
in the table, and the letters A to F are further detailed in the legend of Figure 1. Note
how RH points of interest overlap depending on how a plot is read from a humid to a dry
environment or vice versa. The term mutual (m) is chosen as the behavior of each solid is
influenced by the mixture composition, and m is removed when dealing with single salts.
The symbols are recommended for future use to make scientific information comparable.
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Table 1. Overview of terminology and suggested symbols to describe RUNSALT plots showing the
crystallization pathway of mixed salt systems under changing RH. Refer also to Figure 1, the legend
of Figure 1, and Table 2.

Meaning Base Symbol Species-Specific Symbol 1

Explanation following RUNSALT plots (example Figure 1)

1. Mutual crystallization relative humidity RHm
cry RHm

cry1

RH point at the onset of any line shown in a plot corresponding to the start of crystallization; the number shown in the
specific symbol refers to the species/solid in order of appearance from a humid to a dry environment. The use of the number
(e.g., 1) in relation to the solids can be useful to understand the sequence of crystallization. The solution at this point is
saturated with respect to a specific solid. When available, the first letters of the mineral name or chemical formula can used to
replace the number, e.g., RHm

cry1
is aphthitalite = aph and thus RHm

cryaph
(letter A in Figure 1). Aphthitalite is the first that

crystallizes in the mixture and the same base symbol is used for the mutual crystallization relative humidity of all solids that
crystallize (indicated with the letter B in Figure 1). This is only relevant when solution is still available before crystallization
takes place (reactions in solution in Table 2).

2. Mutual dissolution relative humidity RHm
dis RHm

dis1

RH point at the end of a horizontal line in a plot, looking from a dry to a humid environment, equals the start of dissolution;
e.g., in Figure 1 this is illustrated by the RH points indicated with the letter C, and thus when solution becomes available.

3. Mutual deliquescence relative humidity RHm
del RHm

del1

RH point at the end of a horizontal line in a plot when no more solution is available, looking from a dry to a humid
environment, e.g., indicated as letter D in Figure 1. Here, the last solid that crystallizes is darapskite, and afterwards no more
solution is available. Thus, RHm

del dar
, as further illustrated by reaction number 2 shown in Table 2.

4. Mutual transition relative humidity RHm
tra RHm

tra[3−5]

RH point at which salt transitions occur. The numbers refer to the solids involved in the transition, starting with solids before
the dash (e.g., 3 in [3–5]) at more humid conditions transitioning to solids after the dash (e.g., 5 in [3–5]) at dryer conditions.
Either a phase change (hydration, dehydration), decomposition, or the formation (addition) of solids occur under both
wetting and drying conditions. For example, the transition of mirabilite to thenardite is RHm

tra[mir−the]
, or is more complicated,

as shown by reaction 3 in Table 2 (letter E in Figure 1).

Additional terms that are useful when calculating water activities or concentrations.
Values that are not included in the RUNSALT output data yet could be derived from the ECOS calculations.

5. Mutual equilibrium relative humidity RHm
eq

Any RH point at which a solution is in equilibrium with its environment = water activity at any concentration if solution is
available, e.g., in Figure 1 any RH point above D, and thus RHm

deldar
.

6. Mutual saturation relative humidity RHm
sat

Any RH point at which a solution is saturated (points on the curves, e.g., in Figure 1, all RH points between A and C on the
curve of aphthitalite crystallization), equal to the RHm

eq points during crystallization (when solid and solution are available).

1 For practical considerations, double subscripts can be replaced by a comma between subscripts, e.g., RHm
cry,aph.

Table 2. Summary of the reactions under drying conditions shown in the RUNSALT plot (Figure 1,
noted as # 1, 2 and 3 above the figure).

Start Composition of the Solution (mol): 2Na+ + 2K+ + 1Cl− + 1NO3− + 1SO42−

# Reactions in solution
1. 2Na+ + 6K+ + 4SO4

2− → Na2SO4·3K2SO4 (cr)
2. Na2SO4·3K2SO4 (cr) + 11Na+ + Cl− + 10NO3

− + 4H2O→ NaCl (cr) + 6KNO3 (cr) + 4NaNO3·Na2SO4·H2O (cr)

Solid-state reactions
3. 6NaNO3·Na2SO4·H2O (cr) + Na2K SO4)4 (cr)→ 6KNO3 (cr) + 10Na2SO4 (cr)

The reactions presented in the RUNSALT plot shown in Figure 1 are further detailed
in Table 2.

Legend by Figure 1, with the letters A to F indicating specific RH points of interest:

A. The first mutual crystallization relative humidity of the mixture (RHm
cry1

) represents
the RH at which crystallization initiates for the first solid that appears under drying
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conditions (aphthitalite here, and thus RHm
cryaph

). The solution is saturated with respect
to aphthitalite, and above this RH all solids are dissolved.

B. The mutual crystallization relative humidity of all the following solids that crystallize
from the solution in the mixture, and thus is the RH at which crystallization first
begins for RHm

cryhal
, RHm

crynit
and RHm

crydar
.

C. The mutual dissolution relative humidity of all solids in the mixture when solution
becomes available is equal to the RH points when a crystal starts to dissolve for
RHm

disaph
, RHm

dishal
, RHm

disnit
and RHm

disdar
. B and C are often at the same RH; here, the

resolution of the plot distorts the position for halite and niter, a phenomenon explained
further on.

D. The mutual deliquescence relative humidity of the mixture is the RH determined by
the solids in the mixture at which the first dissolution starts to occur and solution
becomes available; here, RHm

deldar
also equals the dissolution relative humidity of

RHm
disaph

, RHm
dishal

and RHm
disnit

.

E. The mutual transition relative humidity RHm
tra[dar/aph]−[nit/the]

. Here, under drying condi-
tions, thenardite is formed and the amount of niter increases from the decomposition
of darapskite and aphthitalite in a solid-state reaction.

F. Plot stacking artifact caused by transition reactions, herein identified by chloride that
is not available in other solids.
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Figure 1. Example of an ECOS/RUNSALT output with 2 mol Na+ and K+, and 1 mol Cl−, NO3
−,

and SO4
2−, calculated at 20 ◦C with RH (%) from 15% to 95% (resolution 1.6% RH points), with the

latter on the x-axis and the amount of crystalline salt, n (mol), stacked on the y-axis. The red arrow
illustrates the absolute amount of the solid NaCl (halite) at the specific RH, here from 0.16 to 1.16 mol,
thus with an absolute amount of 1 mol. The letters A to F indicate specific RH points of interest and
are explained in the legend below. The numbers 1 to 3 indicate the RH points at which reactions take
place when looking from a humid to a dry environment, as further detailed in Table 2.

As described in the previous section, the ions used for the model input are Cl−,
NO3

−, Na+, K+, and Mg2+, with either SO4
2− or Ca2+. This excludes, amongst others,

carbonates and the equimolar contents of calcium and sulfate, with the latter considered
as the gypsum content. Hence, the model primarily calculates a maximum of six ions.
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The system composition is entered into the RUNSALT interface as mol or weight, with
the selection of either a RH range between 15% and 98%, or a T range between −30 and
+50 ◦C, after which either the T or RH value is fixed. The RUNSALT interface generates a
temporary .DAT file that includes the inputs required by the model. These inputs are read
in by the batch executable .EXE file which then initiates the model. In another temporary
file, ECOS outputs the equilibrium composition at 50 equally spaced intervals for either
the specific temperature or humidity range, and is then read by RUNSALT to produce a
graphical representation of the crystallization behavior. The output can be exported in
graphical and textual (.CSV) formats for further analysis through RUNSALT.

The crystallization behavior of the mixture is graphically represented by RUNSALT
with the specified relative humidity (RH) or temperature (T) range on the x-axis, while the
y-axis returns the amount of substance (mol) (Figure 1). After the plot is generated, one can
choose to show the y-axis as volume (V) in cm3 (molar volume of salt, that is, equilibrium
crystal volume) (Figure 2), which gives a more realistic visualization of the salt content in
the pores. For example, aphthitalite is present in approximately one tenth of the total mol
content (Figure 1), and at least a third of the total solid volume (Figure 2). The latter is thus
more indicative of risk in the pore structure and will determine the overall interpretation
and conservation advice. The use of volume in the outputs was recently illustrated in
relation to climatic conditions by Costa et al. [81]. Expressing the results as volume is
additionally useful to estimate pore filling, as the molar volume (Vm) can be used as an
input value in the calculation, as described in Gulotta et al. [82]. All values on the y-axis are
cumulative (stacked), meaning that the amount of the first solid should be deducted from
the second to know the absolute value of each individual solid. The individual amount of
salt is illustrated for halite (NaCl) at the given RH with the arrow in Figure 1.
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rectangles illustrate plot artifacts caused by the RH resolution; the non-vertical lines are to be read as
vertical ones and the gap between darapskite and thenardite is closed.
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As the data points are systematically calculated for 50 points within the chosen range
of environmental parameters (RH or T), the smaller the range the higher the resolution.
Hence, data related to smaller successive intervals can be stitched together to obtain a more
detailed output. However, changes in stacking order in the detailed plots can occur at
higher resolution. This process can be an important step to correct certain artifacts caused
by the resolution of the chosen environmental parameters. For example, in Figure 3, if
the RH range between 60 and 70% is entered into RUNSALT, the resolution of the plot
increases to 0.2% RH, as opposed to 1.6% RH when generating a plot from 15 to 95% RH
(Figure 1). Thus, the thermodynamically calculated mutual relative humidity points of
interest, for example, RHm

crynit
and RHm

cryhal
, are more accurate. The plot also shows that

RHm
crydar

or RHm
deldar

is equal to RHm
disnit

, RHm
dishal

, and RHm
tra[aph]−[hal/nit/dar]

. The resolution
makes little to no difference to the final conservation advice given to the field in terms of the
risk assessment of RH ranges of crystallization/dissolution. However, selecting a narrower
range in the environmental parameters can clarify certain artifacts and uncertainties in
the plot. In particular, the slightly non-vertical lines of aphthitalite, halite, and niter are
caused by the resolution 0.2% RH, and these lines are in fact to be read as vertical (location
shown by the dashed rectangles in Figures 2 and 3). The same is true for the gap (transition
RHm

tra [dar/aph]−[nit/the]
) and all non-vertical lines at lower RH at approximately 43% (shown in

Figure 2).
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Figure 3. Detail of the ECOS/RUNSALT output shown in Figure 1, calculated at 20 ◦C with RH (%)
from 60% to 70% (resolution 0.2% RH points), with the latter on the x-axis and the amount moles of
crystalline salt, n (mol), stacked on the y-axis. The dashed rectangle illustrates plot artifacts caused by
the RH resolution; the non-vertical lines are to be read as vertical.

When reading the complete RUNSALT plot, we can start looking at the x-axis from a
more humid environment on the far right (95% RH) to a dry environment on the far left (15%
RH). Under more humid conditions, and before the first line appears, all salts are in solution.
The solution has a certain concentration corresponding to the given RH; the further away
from the first solid, the more the solution is diluted, which is theoretically infinite until
pure water is reached at 100% RH. Just before the RH at which the first solid crystallizes (for
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example, in Figure 1, aphthitalite (Na2SO4·3K2SO4)), the solution is at its highest degree
of saturation. The solution is saturated and in equilibrium with the environment, and
is referred to as mutual saturation relative humidity (RHm

sat). In a mixture, this can be
defined at any RH point where curved lines are visible in the RUNSALT outputs. The lines
indicate the crystallization of a solid. Looking further at Figure 1, aphthitalite starts to
crystallize at approximately 92% (20 ◦C); this point is the mutual crystallization relative
humidity of the solution (RHm

cry). Following the crystallization of aphthitalite to dryer
conditions, the remaining ions are still in solution and become more concentrated until
halite starts to crystallize, followed by niter and darapskite. Each solid has a crystallization
relative humidity (RHm

cry) of 67, 66, and 64% (±0.1), respectively. Similar to aphthitalite,
for both halite and niter, the solid amount increases over a RH range, while all darapskite
crystallizes at a specific RH point, as shown in Figure 3. This RH of 64% is also the point at
which no more solution is available. This is the mutual deliquescence relative humidity
(RHm

del) of the mixture.
Looking further down the remaining crystallization pathway at dryer conditions be-

low RHm
crydar

(=RHm
del of the mixture), while keeping in mind that no solution is available,

the following solid-state reactions can be observed. First, a small amount of aphthitalite
decomposes at the same RH as RHm

crydar
, and from 64% to 43% RH all solids remain crystal-

lized. For this mixture, the RH of 64% is the most important to avoid crystallization cycles
and damage to porous materials. In practice, it would be common to advise a stable RH
between 50% and 60% RH at 20 ◦C; that is, if all water sources are eliminated, other artifacts
in the area remain well preserved under these conditions, the mixture compositions are
representative for the entire salt risk assessment, and the location allows such a narrow
range of RH to be maintained. However, some flexibility should be considered, specifically
toward the lower RH range as the solid-state reactions might have limited effect on the
substrates. Additionally, an RH increase over a limited time should be acceptable due to
the kinetics considering dissolution/crystallization rates [43]. However, more research is
needed to further understand these processes.

As shown in Table 2, the formation of thenardite is the result of the decomposition
of aphthitalite and darapskite, which also explains the increase in niter at the same RH of
approximately 43%. The decrease in halite at the same RH is an artifact of plot stacking
(amount of substance or volume) on the y-axis. This can be derived from the fact that no
other salt is formed with Cl−. In drier conditions (below 43%), all salts remain crystallized.

Looking back at higher RH in the figures, it is important to understand that, for
example, aphthitalite in the system will only start to dissolve if all other salts have gone into
solution and the solution has reached the specific dilution above 64% RH. Specifically, the
dissolution of aphthitalite is dependent on the concentration of the surrounding solution.
The solution will accumulate moisture, which can cause discoloration, moisture stains, the
peeling of paint layers, and attract biological growth. At RHm

cryaph
of 92%, the solution is

saturated with respect to aphthitalite. Above this RH point, the solution becomes further
diluted (until infinity at 100%). The amount of water vapor absorbed by the solution at
a given RH can be calculated with ECOS; however, the data are currently not given in
RUNSALT. Details on the backend calculations of the model are extensively described in
Price et al. [16].

The above example shows the value of the model to derive specific advice for environ-
mental salt risk assessment. The model has proven extremely valuable for the field and
certain aspects have been verified with four ion mixtures by Rörig-Dalgaard [83]; however,
several limitations and issues should be taken into consideration before application. In the
following, the most common limitations and solutions are provided, while we abstain from
considering deviations in the crystallization pathways if a solid becomes isolated from the
remaining solution.
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4. ECOS/RUNSALT Limitations and Solutions

Comparable to any model, ECOS/RUNSALT has limitations and pitfalls. An impor-
tant obstacle in the calculations is caused when there are extremely high concentrations or
supersaturation in hygroscopic mixtures, including calcium nitrate and calcium chloride,
resulting in water activities higher than expected from thermodynamics. This obstacle was
overcome by the incorporation of certain assumptions and non-verified solids, such as
MgCa(NO3)4·10H2O, which rarely appears in the outputs. However, it is as yet unclear
whether extreme hygroscopic solids crystallize in these conditions.

Concerning the input data, an issue occurs with the autobalance option in RUNSALT.
When using theoretical charge input data with integer numbers (e.g., 1Cl− and 1Na+),
the autobalance works correctly. However, with experimental output of ion analyses,
values with several decimal places are common and the autobalance only corrects the
chloride content, rendering the output incorrect. It is thus recommended to abstain from
using the ‘autobalance’ feature and consider the use of charge balance calculations as
described in [7], including the downloadable calculation sheet and R script (.R and .xlsx)
at [51]. Furthermore, an error message can occur due to rounding issues produced by the
thermodynamic calculations, which is caused by the number of decimals of each ion value
entered. This can be resolved by changing the place values of all ions equally to ones, tens,
hundreds, or thousands, depending on the initial concentration; although the total amount
on the y-axis (mol or volume) varies, the output remains identical.

In certain cases, an error message appears when either entering the full RH range
from 15 to 98% as input in the environmental parameters, or under certain temperatures,
depending on the mixture composition. Both errors are easily overcome by limiting the RH
to 95% or increasing or decreasing the temperature by one to five degrees. In either case,
the results obtained from the model for the limitations of output values are considered
more than sufficient. Another issue in the environmental parameters is the possibility to
use values below 0 ◦C, although the formation of ice is not incorporated in the outputs. It
is thus advised not to use a temperature input values below 0 ◦C in RUNSALT.

Moving forward to complications specifically related to single salts in the ECOS
calculations and RUNSALT outputs, inconsistencies are seen with more recent studies
related to Ca(NO3)2, K2SO4, and MgSO4 hydrates [84]. The critical RH values calculated
by the ECOS of Ca(NO3)2, K2SO4, and MgSO4 are presented in the RUNSALT output
in Figures 4 and 5, respectively. The crystallization behaviors of Ca2+ and NO3

− show
two critical RH values (Figure 4, left), the first at 51.82% for tetrahydrate (nitrocalcite)
and the second at 37.98% for anhydrous calcium nitrate (at 20 ◦C RH resolution = 0.02%;
resolution not represented in the figure). However, it is known that dehydration of the
tetrahydrate only occurs over extended periods of time and at extreme low RH with
transition values between the anhydrous di-, tri-, and tetrahydrate at 8.3%, 12.4%, and
20.5%, respectively [75]. Thus, considering that the dehydration of nitrocalcite is kinetically
hindered, one can expect that the crystallization RH of the tetrahydrate is the only one to
be considered, keeping in mind that more research is needed to understand the in-pore
effects under realistic climatic conditions.
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The RUNSALT outputs of K+ and SO4
2− (calculated at 20 ◦C) show two critical RH

values (Figure 4, right) with a relative humidity crystallization of potassium sulfate mono-
hydrate starting at 97.7%, followed by dehydration to form arcanite at 89.7%. However, as
detailed further by Archer and Kirklin [85], it has been found in several studies that the
monohydrate phase does not occur below 9 ◦C, and if stable at all this is less probable at
higher temperatures. Furthermore, the RHcry should decrease with decreasing temperature;
currently, the outputs show the opposite at lower temperatures, with a decreasing amount
of the monohydrate (not illustrated). Thus, caution should be taken when looking at the
critical RH values of potassium sulfate. Here, at 20 ◦C, K2SO4 is likely to start at 97.7% and
the monohydrate can be ignored.

For magnesium sulfate (Figure 5), four critical RH values are shown at 20 ◦C, starting
with the crystallization relative humidity, RHcryeps

at 91.54% for MgSO4·7H2O (epsomite),
followed by the transition to MgSO4·6H2O (hexahydrite), RHtra[eps−hex]

at 81.94%, and to
MgSO4·4H2O (starkeyite) and MgSO4·1H2O (kieserite), with RHtra[hex−sta]

and RHtra[sta−kie]

at 62.3% and 27.16%, respectively. However, from experimental results and improved
thermodynamic calculations (see [72,84]), important deviations specifically concerning
starkeyite are derived. The data show that the values used in ECOS for this phase are
inaccurate and no change in the mixtures from one to the other hydrate should be taken into
consideration within the range of 5–40 ◦C. The original data from the ECOS/RUNSALT
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outputs are shown in Figure 5, while the corrected data are given in Figure 6. Here, at
20 ◦C, the RHdel of MgSO4·7H2O (epsomite) is 91.2% RH with a transition to MgSO4·1H2O
(kieserite) at 46.6% RH; the hexahydrate only occurs at higher temperatures. The latter
figure illustrates how ECOS/RUNSALT outputs with a wide RH range calculated in a
variety of temperatures will correspond to the phase diagram, following the transition
between kieserite, hexahydrite, and epsomite, and the RHdel at different temperatures. In
addition to the described issues that should be considered in the model outputs, it remains
important to understand that certain phases can be metastable and kinetically hindered, as
further described for magnesium sulfates in Steiger et al. [84].

Several solids are missing in ECOS/RUNSALT, although they can play a role in the
crystallization pathways and deterioration processes, such as Ca-K-NO3 double salts [86].
The efflorescence found on monuments [80,87–93] reveals salts that are currently not
available or not consistently incorporated in the model outputs, for example, humberstonite
(Na7K3Mg2(SO4)6(NO3)2·6H2O). Moreover, the removal of equimolar contents of calcium
and sulfate (gypsum) can alter the RUNSALT outputs, including double salts such as
glauberite (Na2Ca(SO4)2), gorgeyite (K2Ca5(SO4)6·H2O), and syngenite (K2Ca(SO4)2·H2O).
However, the formation of the latter three might be kinetically hindered or occur as solid-
state reactions over longer periods of time.
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As detailed in [35], the model is not capable of systematically integrating the presence
of an equimolar amount of calcium and sulfate ions. In rare cases, when the model allows
calculations with calcium and sulfate, the crystallization pathway can change. In these cases,
it is often observed that the common salt darapskite (NaNO3·Na2SO4·H2O) is replaced by
glauberite (Na2SO4·CaSO4), as illustrated in Figure 7. As mentioned earlier, several issues
are visible in the plot on the right, such as the kinetically hindered solid-state phase change
between gypsum and anhydrite. Additionally, due to the stacking of the solids and the RH
resolution, the vertical lines for glauberite and nitratine should remain horizontal; thus, the
latter is simply an artifact of the gap between the transition RHm

tra[gyp−anh]
. Further research

is needed to understand the formation of double salts containing calcium and sulfate.
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Furthermore, relevant carbonate salts such as thermonatrite (Na2CO3·H2O), natron
(Na2CO3·10H2O), trona (Na3CO3HCO3·2H2O), and kalicinite (KHCO3) are absent from the
model outputs. However, these soluble carbonates are rare and only seen in approximately
2% of samples taken in Belgium heritage [7]. Other rare anions not included but contribut-
ing to the total charge balance and crystallization pathway are fluoride, phosphate, oxalate,
acetate, ammonium, and formate [79].

5. Discussion and Conclusions

ECOS/RUNSALT is currently the only model that includes the most relevant salt
phases found in built heritage. We provide an overview to further the understanding
of its use and suggest specific terminology for salt mixture behavior to simplify and
clarify the model, and make scientific information comparable. Furthermore, as several
limitations and pitfalls exist when using the model, possible incorrect interpretations of the
derived outputs can occur. However, when the presented issues and solutions are taken
into consideration, the RUNSALT outputs can be considered highly accurate. The most
important issues described concern calcium nitrate, potassium sulfate, and magnesium
sulfate phases (hydrates), and the possible influence of calcium sulfate on the formation of
different solids under specific conditions.

It also remains important to examine the variety of factors that can cause deviations
from the modeled crystallization behavior. Some of these factors include the in-pore
situation, the material characteristics, impurities in the system, and salt kinetics. The
latter is specifically relevant to environmental conditions, the separation of solids from the
solution, gradients in solution concentrations, kinetically hindered salt crystallization, and
rates of crystallization/dissolution, including long-term solid-state reactions. In any case,
if a specific range of RH is considered safe when interpreting RUNSALT outputs, meaning
salt crystallization/transition cycles are less likely to occur in the specific environment,
the model outputs can be trusted, keeping in mind that different crystallization pathways
are possible when certain salts are separated from the solution. Overall, more research is
needed considering salt mixture kinetics in the pore system. An important aspect to focus
on is the rate at which phase transitions occur, as this can guide conservation scientists
towards a better prediction of salt damage in relation to climatic changes over time. Thereby,
updates of the current model and wider accessibility of the source codes are important for
the future.
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