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Abstract. The isotopic composition of molecular hydro-
gen (H2) produced by photochemical oxidation of methane
(CH4) and Volatile Organic Compounds (VOCs) is a key
quantity in the global isotope budget of (H2). The many
individual reaction steps involved complicate its investiga-
tion. Here we present a simplified structure-activity approach
to assign isotope effects to the individual elementary reac-
tion steps in the oxidation sequence of CH4 and some other
VOCs. The approach builds on and extends the work by
Gerst and Quay(2001) andFeilberg et al.(2007b). The de-
scription is generalized and allows the application, in princi-
ple, also to other compounds. The idea is that the C-H and
C-D bonds – seen as reactive sites – have similar relative re-
action probabilities in isotopically substituted, but otherwise
identical molecules. The limitations of this approach are dis-
cussed for the reaction CH4+Cl. The same approach is ap-
plied to VOCs, which are important precursors of H2 that
need to be included into models. Unfortunately, quantitative
information on VOC isotope effects and source isotope sig-
natures is very limited and the isotope scheme at this time
is limited to a strongly parameterized statistical approach,
which neglects kinetic isotope effects. Using these concepts
we implement a full hydrogen isotope scheme in a chemi-
cal box model and carry out a sensitivity study to identify
those reaction steps and conditions that are most critical for
the isotope composition of the final H2 product. The reac-
tion scheme is directly applicable in global chemistry mod-
els, which can thus include the isotope pathway of H2 pro-
duced from CH4 and VOCs in a consistent way.

Correspondence to:T. Röckmann
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1 Introduction

Molecular hydrogen H2 is an attractive candidate as future
energy carrier because combustion of H2 produces H2O only.
In addition to saving the CO2 emissions (if the H2 is formed
from carbon-free energy sources), also the massive energy-
related emissions of other compounds like carbon monox-
ide, nitrogen oxides and soot could be drastically reduced,
leading to improvements in air quality (Schultz et al., 2003).
Nevertheless, unavoidable leakage in the production, distri-
bution, storage and consumption of H2 could drastically alter
the mixing ratio of H2 in the atmosphere. Although it is not
a greenhouse gas itself, H2 affects the atmospheric lifetime
of the greenhouse gas methane and many other species via
its reaction with the hydroxyl (OH) radical (Schultz et al.,
2003). In addition, H2 is an important source for strato-
spheric water vapor, which provides the substrate for polar
stratospheric clouds that play a key role in the formation of
the stratospheric polar ozone hole. Therefore, increasing lev-
els of H2 in the atmosphere will counteract the predicted re-
covery of the ozone hole (Tromp et al., 2003; Warwick et al.,
2004; Feck et al., 2008). For those reasons, the prospect of
a potential future economy based on the energy carrier hy-
drogen (H2) has recently invigorated the interest in the atmo-
spheric budget of H2. It seems adequate to investigate and
understand its atmospheric cycle in more detail before a po-
tentially drastic anthropogenic change take place. The main
sources of H2 are combustion processes (fossil fuel combus-
tion and biomass burning) and atmospheric oxidation sources
(from CH4 and VOCs), with smaller contributions from the
oceans and terrestrial nitrogen fixation. H2 is removed from
the atmosphere by deposition to the soil and oxidation by
OH. However, the quantitative estimates of the respective
source and sink strengths are highly uncertain (Novelli et al.,
1999) and should be improved to enable more reliable pre-
dictions of the effect of a hydrogen economy.
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A useful method to further constrain the strengths of the
individual production and destruction processes of H2 is the
investigation of its stable isotope budget. The ultimate goal
is to incorporate a realistic representation of the isotope sig-
natures for all sources and sinks into global models. An
important step was recently realized byPrice et al.(2007),
who presented the first global hydrogen isotope model. One
result from this model study was that the global average
isotope signature of photochemically produced H2 must be
+162+57

−57‰ in order to close the isotope budget with the pa-
rameters used there. However, at the same time, this is a
gross simplification, since photochemical production occurs
via many pathways and from numerous source molecules,
such as methane (CH4) and many other Volatile Organic
Compounds (VOCs) like isoprene or methanol. Different
isotope signatures are expected due to the different isotope
content of the various source molecules and kinetic and
branching isotope effects in the individual steps of the re-
action chains.

In the case of CH4 oxidation, the largest H2 source, those
isotope effects were discussed for the first time in the study
of Gerst and Quay(2001). Building on this work, recent
studies have attempted to investigate the overall fractionation
in the oxidation chain from CH4 to H2 (Rahn et al., 2003;
Röckmann et al., 2003; Rhee et al., 2006b,a, 2008), using
measurements in the stratosphere where CH4 oxidation is the
only relevant source of H2 and can be studied without inter-
ference from other sources. In parallel, the isotope effects in
some of the individual reaction steps have been investigated
(Feilberg et al., 2004, 2005, 2007a,b; Rhee et al., 2008). The
isotope fractionation in the initial atomic hydrogen H and
atomic deuterium D abstraction step is well known (Cantrell
et al., 1990; Saueressig et al., 1996, 2001). Mar et al.(2007)
studied in detail the deuterium content in stratospheric H2,
using a chemistry model for the stratosphere. Another recent
study (Zahn et al., 2006) modeled the full isotope chemistry
of the CH4 oxidation chain, but H2 was not considered.

The present paper reanalyzes the isotope effects in the pho-
tochemical production of H2 with the goal of deriving flexi-
ble and consistent isotope reaction schemes that can be incor-
porated into models even in the absence of a full knowledge
of all relevant isotope effects. Structure-activity analysis pro-
vides the basis to assign relative or absolute reaction proba-
bilities to unknown reactions based on the chemical struc-
ture of the reactants and known reaction rates for similar
molecules. In fact,Gerst and Quay(2001) and following
papers in principle already applied this theory to investigate
the isotope effects involved in the different steps of the CH4
oxidation chain. Here, we provide a general and formal ap-
proach and present an in-depth analysis of the photochemical
production of H2 from CH4 (Sect.2) and extend it to other
molecules (Sect.3). In addition, we implement the full hy-
drogen isotope chemistry in a chemical box model and carry
out a sensitivity study to identify those reaction steps that are
most critical for the isotope composition of the final H2 prod-

uct (Sect.4). Available data are used to derive parameteriza-
tions for missing kinetic isotope effects and branching ratios
and data that may become available in the future can be eas-
ily implemented to assess their effect directly in the model.
This condensed reaction scheme is suitable for incorporation
into global chemistry models, which can thus include the iso-
tope pathway of H2 produced from CH4 in a consistent and
fundamental way. First results from the implementation in
the TM5 model will be presented in a separate paper.

2 Methane oxidation

This section starts with the elementary chemistry equations
for the oxidation of methane to H2 and will focus on de-
veloping a scheme for the stratosphere as well as the tro-
posphere. The oxidation of atmospheric CH4 is based on
the complete description byRavishankara(1988) shown in
Fig. 1. TablesA1 to A4 in AppendixA summarize the com-
posing reactions. All rate constants are fromSander et al.
(2006) unless stated otherwise. As the abundance of deu-
terium (D) atoms is much lower than that of hydrogen (H)
atoms (D/H=1.56×10−4) and due to the fact that most sur-
face sources of methane as well as hydrogen are depleted in
heavier stable isotopologues (Levin et al., 1993; Rahn et al.,
2002b, 2003; Rhee et al., 2006b; Price et al., 2007), we limit
our analysis to isotopologues that contain either one deu-
terium atom or none at all.

There are three processes that have to be taken into ac-
count in deriving any isotope chemistry scheme. First, as a
general rule (but not without exceptions) the heavier isotopo-
logues are removed at a lower rate than the lighter isotopo-
logues (e.g.Brenninkmeijer et al., 2003). This is called the
Kinetic Isotope Effect (KIE). This effect causes an isotopic
depletion in the product species. Second, the isotopic com-
position is measured inδD(H2) units as the ratio of D to H
atoms, whereas chemical kinetics equations are usually cal-
culated on the basis ofmolecules. The simple fact that the
number of H in a chemical species is reduced in the oxida-
tion chain (e.g. in the oxidation process of CH4 to CH2O and
H2 two hydrogens are lost), means that the ratio D to H atoms
is larger than that of D and H substituted product molecules,
when compared to the initial molecule. We will call this ef-
fect the molecular isotopic enrichment (MIE), which is actu-
ally a counting effect. Finally, there is also a probability that
somewhere along the deuterated oxidation chain a D atom
will be removed. In such a scenario less deuterated molecu-
lar hydrogen will be formed than in a, less realistic, scenario
where deuterium is fully conserved along the deuterated ox-
idation chain. We will call the competition of H abstraction
versus D abstraction Isotopic Branching (IB). Only the KIE
and the IB are chemical isotope effects, whereas the MIE is
basically a counting issue. Nevertheless, it often causes con-
fusion, which is why we have explicitly included it in this
overview. Figure2, shows the isotope chemistry scheme that
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Fig. 1. Full methane oxidation scheme.

we will elucidate in the following sections. For clarity, only
the reservoir species relevant to the final isotopic composi-
tion of H2 are shown here.

In principle, it is possible to perform molecular kinetics
calculations to derive the reaction rates for such interactions.
However, isotope effects are small and depending on the cho-
sen model that describes the molecular interactions, such cal-
culations often yield very different reaction rates. Therefore,
we use a simplified approach and test its effectiveness in de-
scribing the involved isotope effects. Generally, the incom-
ing radical molecules will show a certain interaction prefer-
ence for the different functional groups present in a certain
target molecule. Recent studies byMcGillen et al.(2006b,a,
2007) show that a single topological descriptor can be used
to estimate the reaction rates of large sets of different VOCs.
The Structure-Activity Relationship (SAR), later renamed to
Structure-Reactivity Relationship (SRR), analysis described
by Atkinson (1986, 1987); Kwok and Atkinson(1995) has
also proved to be a very effective method for predicting the
reaction rates of VOCs. A simplified statistical approach
similar to these methods is therefore used to derive expres-
sions for the KIE’s and IB ratios for all steps in this scheme.
Like the method introduced byFeilberg et al.(2007a), it as-
sumes independence of the stability of the remaining bonds
of a certain chemical species upon substitution of one of the
hydrogen-atoms by a deuteron. Here, a rigorous derivation

is made for the whole methane oxidation chain as well as
the oxidation chain of some major volatile organic species.
The general concept is presented in the following subsection
for the simple example of the CH4+OH reaction. This is a
good illustration, because the formal approach returns a re-
sult that is easily understandable (and does itself not require
the formal treatment). The derivation of the more compli-
cated expressions for the other reaction steps is deferred to
AppendixB.

2.1 CH4+OH reaction

A useful illustration for the derivation of isotope effects us-
ing the independent bond approximation is the Venn diagram
(Venn, 1880), which is shown in Fig.3 for the concurrent ox-
idation of CH4 and CH3D by the hydroxyl radical (OH).

This diagram represents the different possibilities for the
extraction of hydrogen or deuterium atoms from methane
(the four C-H bonds on the left side) and deuterated methane
(from the three C-H bonds and one C-D bond on the right
side). The KIE for this reaction can be expressed as:

KIECH3D+OH ≡
P(CH4)

P(CH3D)
, (1)

i.e. as the ratio between the probability to abstract a H atom
from the methane molecule to the probability to abstract
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either a H or D atom from the deuterated methane molecule.
By definition:

P(CH4)+P(CH3D) ≡ 1. (2)

One can also look at the ensemble probability to abstract a
hydrogen atom,P(CH) and the ensemble probability to ab-

stract a deuterium atom,P(CD). It is straightforward to see
that:

P(CH)+P(CD) ≡ 1. (3)

In principle, these expressions form the basis for calculat-
ing the KIE and IB ratios for the methane-hydroxyl reac-
tion but do not enable one to calculate these quantities ex-
plicitly. The conditional probability for a certain eventA

to happen provided that eventB has already happened is
P (A|B)≡

P(A∩B)
P (B)

. Thus the conditional probability that a
deuterium atom is abstracted provided that it is abstracted
from a deuterated methane molecule is:

P(CD|CH3D)=
P(CD∩CH3D)

P(CH3D)
=

P(CD)

P(CH3D)
. (4)

The key assumption in our approach is that the probability
of abstracting a H atom from a compound is independent of
the presence of a heavy isotope at another location in this
compound, i.e., that secondary isotope effects are negligi-
ble. Therefore, the probability of abstracting an atom from
a methane or deuterated methane molecule, provided that a
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hydrogen atom is abstracted from a C-H bond, scales linearly
with the number of hydrogen atoms in the molecule and:

P(CH4|CH) ∼=
4

3
P(CH3D|CH). (5)

Thus, our approach neglects that in reality this probability
can, and very often will be affected by the presence of the
deuterium atom in the deuterated methane molecule. Equa-
tion (5) can also be written as:

P(CH4∩CH)

P(CH)
∼=

4

3

P(CH3D∩CH)

P(CH)
. (6)

BecauseP (CH) cancels out, the left-hand side of this expres-
sion is equal toP (CH4). The expression on the right-hand
side can be written asP (CH)−P (CH4). After rearranging
the resulting expression we find:

P(CH)

P(CH4)
∼=

7

4
. (7)

Most of the equations up to now can be derived without the
formal equations from the assumption that the abstraction
probability of a H atom does not depend on the isotopic sub-
stitution of the CH4 molecule. Equation (1) can be rewritten
in the form:

KIECH3D+OH=
P(CH)

P(CD)

P(CD)

P(CH3D)

P(CH4)

P(CH)
. (8)

Equation (7) provides an explicit value for the last ratio on
the right-hand side. The two remaining ratios can be calcu-
lated by introducing a ratioηCH|CD

CH4+OH, i.e., the preference of
abstraction from hydrogen atoms over the abstraction from
deuterium atoms:

P(CD)

P(CH)
=

1

7η
CH|CD
CH4+OH

, (9)

and:

P(CD)

P(CH3D)
=

1

3η
CH|CD
CH4+OH+1

. (10)

The final expression for the KIE becomes:

KIECH3D+OH
∼=

4η
CH|CD
CH4+OH

3η
CH|CD
CH4+OH+1

. (11)

Again, it should be kept in mind that this simple expression
is based on the assumption that the extraction of the hydro-
gen atom from deuterated methane is not affected by the
presence of the deuterium atom (reflected by Eq.5). The
actual value ofηCH|CD

CH4+OH can be calculated using the Ar-
rhenius parameters for the methane and deuterated methane
reaction with hydroxyl provided bySander et al.(2006);
KIECH3D+OH=1.285. The corresponding value forη

CH|CD
CH4+OH

is 8.800. This means that the rate for OH abstracting hydro-
gen from CH in methane is almost nine times larger than the
rate of deuterium abstraction from CD. This factor will vary
from one compound to another. This can be related to the
activation energy (Atkinson, 1986, 1987); Due to the larger
mass of the deuteron, a C-D bond is more stable than a C-H
bond. Therefore, the required energy to break this bond is
larger. The first IB ratio for this reaction can be calculated by
applying Bayes’ rule for conditional probabilities, given by
P (A|B) =

P(B|A)P (A)
P (B)

to Eq. (5):

αH
CH3D+OH ≡ P(CH|CH3D) ∼=

3

4
P(CH|CH4)KIECH3D+OH.

(12)

The top indexH indicates that this is the fraction of the prod-
uct molecule that stays in theheavybranch of the oxidation
chain, i.e., ends up as CH2D. The second IB ratio, the frac-
tion of deuterated methane that is transferred CH3, thus to
the light chain (top indexL), is:

αL
CH3D+OH ≡ P(CD|CH3D) ∼= 1−P(CH|CH3D). (13)

At 288 K, the values of the IB ratios for this reaction cor-
respond to the values shown in Fig.2. A practical feature of
the independent bond approximation is that it enables the use
of a measured KIE to deriveη as well as the IB ratios. For
the simple example CH4+OH discussed here, the indepen-
dent bond approximation returns the same results that have
already been employed in the past using the same assump-
tions but a less formal derivation (Gerst and Quay, 2001;
Feilberg et al., 2007b). The formal approach introduced here
allows application of the same assumptions to other com-
pounds, where the results are not immediately clear. All the
steps in the CH4 oxidation sequence that are associated with
isotopic branching from the deuterated to the non-deuterated
reaction sequence have been examined and the derivations
are shown in AppendixB. As AppendixB6 illustrates, the
approach also has its limitations. It does not provide a phys-
ically plausible solution for the reaction CH4+Cl, which in-
dicates that secondary isotope effects, which are neglected
in the independent bond approximation, become important.
The final values for the KIE’s and IB ratios are summarized
in Table1, and the required abstraction probability ratios for
these reactions are summarized in Table2.

2.2 Remaining reactions

The reactions that do not have isotopic branching do not re-
quire further analysis. Table3 shows the parameters that
were introduced for these reactions in TableA1 and Ta-
bleA4.
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Table 1. Reaction parameters for the reactions with a kinetic isotope effect and isotopic branching.

Number Reaction Parameter Value

B1b CH3D+OH
αH

CH3D+OH
−−−−−−−→ CH2D+H2O αH

CH3D+OH 0.964

αL
CH3D+OH

−−−−−−−→ CH3+HDO αL
CH3D+OH 0.036

KIECH3D+OH 1.285

B2b CH3D+Cl
αH

CH3D+Cl
−−−−−−→ CH2D+HCl αH

CH3D+Cl 0.935

αL
CH3D+Cl

−−−−−−→ CH3+DCl αL
CH3D+Cl 0.065

KIECH3D+Cl 1.459

B3b CH3D+O
(

1D
) α1H

CH3D+O
(
1D

)
−−−−−−−−−→ CH2D+OH α1H

CH3D+O
(
1D

) 0.595

α1L

CH3D+O
(
1D

)
−−−−−−−−−→ CH3+OD α1L

CH3D+O
(
1D

) 0.155

α2H

CH3D+O
(
1D

)
−−−−−−−−−→ CH2DO+H α2H

CH3D+O
(
1D

) 0.159

α2L

CH3D+O
(
1D

)
−−−−−−−−−→ CH3O+D α2L

CH3D+O
(
1D

) 0.041

α3H

CH3D+O
(
1D

)
−−−−−−−−−→ CHDO+H2 α3H

CH3D+O
(
1D

) 0.026

α3L

CH3D+O
(
1D

)
−−−−−−−−−→ CH2O+HD α3L

CH3D+O
(
1D

) 0.024

KIECH3D+O
(
1D

) 1.058

B6b CH2DOO+CH3OO
α1

CH2DOO
−−−−−−→ CH2DO+CH3O+O2 α1

CH2DOO 0.333

α2a
CH2DOO

−−−−−−→ CH2DOH+CH2O+O2 α2a
CH2DOO 0.334

α2b
CH2DOO

−−−−−−→ CH3OH+CHDO+O2 α2b
CH2DOO 0.222

α2c
CH2DOO

−−−−−−→ CH3OD+CH2O+O2 α2c
CH2DOO 0.111

B7b CH2DOH+OH
α1

CH2DOH+OH
−−−−−−−−→ CH2DO+H2O α1

CH2DOH+OH 0.189

α2H
CH2DOH+OH

−−−−−−−−→ CHDOH+H2O α2H
CH2DOH+OH 0.715

α2L
CH2DOH+OH

−−−−−−−−→ CH2OH+HDO α2L
CH2DOH+OH 0.096

KIECH2DOH+OH 1.262

B7c CH3OD+OH
α1H

CH3OD+OH
−−−−−−−→ CH2OD+H2O α1H

CH3OD+OH 1.000

α1L
CH3OD+OH

−−−−−−−→ CH3O+HDO α1L
CH3OD+OH 0.000

KIECH3OD+OH 1.176

B9b CH2DOOH+OH
α1

CH2DOOH+OH
−−−−−−−−−→ CH2DOO+H2O α1

CH2DOOH+OH 0.755

α2H
CH2DOOH+OH

−−−−−−−−−→ CHDOOH+H2O α2H
CH2DOOH+OH 0.216

α2L
CH2DOOH+OH

−−−−−−−−−→ CH2OOH+HDO α2L
CH2DOOH+OH 0.029

KIECH2DOOH+OH 1.079

B10b CH2DO+O2

αH
CH2DO+O2

−−−−−−−→ CHDO+HO2 αH
CH2DO+O2

0.882

αL
CH2DO+O2

−−−−−−−→ CH2O+DO2 αL
CH2DO+O2

0.118
KIECH2DO+O2 1.323
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Table 2. The abstraction probability ratios for the reactions with a kinetic isotope effect and isotopic branching.

Number Reaction Ratio Value

B1b CH3D+OH η
CH|CD
CH4+OH 8.800

B2b CH3D+Cl η
CH|CD
CH4+Cl 5.610

B3b CH3D+O
(

1D
)

η
CD|CH
CH4+O

(
1D

) 0.781

η
CH|HH
CH4+O

(
1D

) 22.500

η
OD|OH
CH4+O

(
1D

) 0.781

η
OH|HH
CH4+O

(
1D

) 6.000

η
HH|HD
CH4+O

(
1D

) 1.123

B7b, B7c CH2DOH+OH,CH3OD+OH η
CH|OH
CH3OH+OH 1.889

η
CD|CH
CH3OH+OH 0.268

η
OH|OD
CH3OH+OH 1000

B9b CH2DOOH+OH η
OOH|CH
CH3OOH+OH 7.000

η
CH|CD
CH3OOH+OH 3.730

η
OOH|CD
CH3OOH+OH 26.110

B10b CH2DO+O2 η
CH|CD
CH3O+O2

3.730

Table 3. Parameters for remaining reactions.

Number Reaction Parameter Value Unit

B11b CHDO+OH KIECHDO+OH 1.280a

P1a CH3OOH+hν JCH3OOH 1.35×10−6 b s−1

P1b CH2DOOH+hν KIECH2DOOH+hν 1.000
P2a CH2O+hν1 Ja

CH2O 7.37×10−5 b s−1

P2b CHDO+hν1 KIECHDO+hν1 1.580a

P3a CH2O+hν2 Jb
CH2O 4.63×10−5 b s−1

P3b CHDO+hν2 KIECHDO+hν2 1.580a

aAverage measured value, taken fromFeilberg et al.(2007b).
bValue derived using solar irradiance data provided by theJMA and NASA-WFF(2008).

3 Oxidation of volatile organic compounds

3.1 Overview and importance of VOC reactions

Virtually all photochemical production of H2 proceeds via
formaldehyde (CH2O). The most significant contributions
from VOCs to the chemical production of CH2O are the ox-
idation of isoprene, methanol, monoterpenes, ketones, alka-
nes, alkenes, aldehydes, aliphatic acids, and aromatic hydro-
carbons (Novelli et al., 1999; Endresen et al., 2003; van der
Werf et al., 2003; Lathière et al., 2005, 2006). Due to the
involved complexity, a full treatment of the chemistry for the
VOCs is impossible at the present state of knowledge and
one has to chose a practical approach to implement a hydro-

gen isotope scheme into a global CTM. To assess the im-
portant pathways that lead from VOC to formaldehyde, we
analyzed the formaldehyde budget of a one-year simulation
of the global chemistry transport model TM5 (Krol et al.,
2005). This model employs the modified version of the Car-
bon Bond Mechanism (mCBM:Gery et al., 1989; Houweling
et al., 1998). In this chemical scheme, the most relevant ox-
idation pathways towards formaldehyde are the oxidation of
isoprene, ethene and olefins. Less important are the paraf-
fins, methylglyoxal and the aldehydes that are not only emit-
ted but also produced chemically from isoprene, and in case
of aldehydes also from ethene. Note that some important
contributing species, in particular methanol, monoterpenes
and ketones, are not incorporated into the mCBM chemistry
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scheme. This means that roughly 35% of global VOC emis-
sions is missing (van der Werf et al., 2003; Lathière et al.,
2005, 2006).

In the present version of the TM5 model, about 30% of the
CH2O is produced from VOC. On the global scale, the major
contributions are direct formation from the oxidation of iso-
prene (∼7%), olefins (∼7%), and ethene (∼2%) and some
indirect contributions. The most important indirect contribu-
tion comes from peroxyacetyl radicals (PA, CH3C(O)OO),
which are mainly formed in the OH oxidation chain of iso-
prene and ethene. Because the relative contributions of the
O3 and NO3 oxidation pathways in the formaldehyde budget
were generally very low (i.e. at most 1%), we will restrict the
implementation of the isotope scheme to the reactions that in-
volve OH. The condensed bimolecular reactions with deuter-
ated isoprene, olefins, and PA radicals is shown in TableC1
in AppendixC and the condensed termolecular reaction of
ethene with OH is shown in TableC2 in AppendixC. These
pathways are, directly or indirectly, the main contributors to
the isotope budget of formaldehyde. All reaction rate param-
eters are fromAtkinson et al.(2006) unless mentioned oth-
erwise. The secondary products are omitted for clarity. For
a similar reasons, motivated in the next section, the reactions
leading to the formation of PA and deuterated PA radicals are
also not shown. We will now continue to derive parameteri-
zations for the KIE’s and IB ratios for the reactions shown in
TablesC1andC2, starting with isoprene.

3.2 The oxidation of isoprene

3.2.1 Chemical reaction pathway

For the derivation of the isotope scheme for the oxidation of
isoprene, we will use the reaction scheme proposed byFan
and Zhang(2004) (Fig. 4) as guideline.

In the first reaction step OH is added to one of the two
double bonds of isoprene. This leads to the formation of four
different hydroxyalkyl radicals (ISOA-ISOD). In the atmo-
sphere, these radicals interact directly with oxygen, forming
hydroxy peroxy radicals (ISO2A,ISO2D-ISO2H), hydrox-
yalkyl peroxy radicals (ISO2C) and hydroxy isoprene rad-
icals (CO51). The reaction of the first two radical groups
with NO or with other hydroxyalkyl peroxy radicals leads
to the formation of methacrolein (MACR), methyl vinyl ke-
tone (MVK) and formaldehyde, whereas the hydroxy iso-
prene radicals form C5 carbonyls, C4 hydroxycarbonyls, and
C5 hydroxycarbonyls. The hydroxy peroxy radicals also
form MACR, MVK and formaldehyde via self reactions. Via
subsequent intermediate steps, MACR and MVK eventually
react to form formaldehyde and PA radicals (Pöschl et al.,
2000). Furthermore,Pöschl et al.(2000) also include the re-
action of HO2 with the hydroxy peroxy radicals to form hy-
droxy hydroperoxides, that react to form MACR and MVK
in the presence of OH.

3.2.2 Isotope parameterization

Clearly, it is not straightforward to find an appropriate repre-
sentation for the KIE’s and IB ratios for this complex set of
chemical reactions. Also, data on isotope effects in isoprene
oxidation are only scarcely available, see e.g.Atkinson et al.
(2006). Therefore, it is necessary to reduce the full mecha-
nism to a phenomenological description of the most impor-
tant features in the isoprene oxidation reaction chain. This
means that only isotope effects in the intermediate steps that
are expected to affect the isotopic composition of the reaction
products significantly are included.

First, the majority of the formaldehyde that is formed from
the hydroxyperoxy radicals (C5 molecules) is abstracted as
an entire molecule. The probability of the formation of
deuterated formaldehyde is then equal to the probability that
a deuterium atom is present in the active group for these re-
actions. For this first study and in the absence of further in-
formation, we neglect possible non-random localization of
the D atom in isoprene that may originate from its produc-
tion processes. Because the KIEC5H7D+OH (see TableC1) is
close to unity for singly deuterated isoprene (Atkinson et al.,
2006), we will approximate this probability as 2/8=0.25.

The fate of MVK and MACR was further investigated us-
ing the Master Chemical Mechanism (MCM:Saunders et al.,
1997; Derwent et al., 1998; Saunders et al., 2003; Jenkin
et al., 2003). In this scheme, the majority of the MVK and
MACR molecules eventually reduce to PA radicals. MACR
and MVK molecules contain 6 hydrogen atoms, whereas PA
contains 3 hydrogen atoms. Following a similar approach as
for the formation of formaldehyde from hydroxy peroxy rad-
icals, we assert that the KIE is still close to unity for this tran-
sition and therefore that the probability of forming deuterated
PA radicals is 3/6=0.50. Deuterium atoms that do not end
up in PA radicals are not necessarily lost because formalde-
hyde is also formed in the numerous intermediate reactions
towards the formation of PA radicals. Although hydrogen
atoms are added and abstracted in these intermediate reac-
tions, we will approximate the probability of the formation
of deuterated formaldehyde in these intermediate reactions
as 2/6=0.33.

Overall, this means that deuterated formaldehyde is
formed from deuterated isoprene with a probability of
0.25+0.75×0.33=0.50, i.e.αH

C5H7D+OH=0.50, and deuter-
ated PA is formed with a probability of 0.75×0.50=0.375.
Because of the underlying assumption that the KIE is unity
up to the formation of the PA radical, the increase of the iso-
topic composition due to a decrease in the number of hydro-
gen atoms (MIE) is exactly cancelled by the decrease due to
isotopic branching. As a result, the isotopic composition of
the PA radicals will be the same as the isotopic composition
of isoprene.

In the MCM, the main reaction pathways involving the
destruction of PA radicals lead to the formation methylper-
oxy radicals (CH3OO). The main reactions paths include
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Fig. 4. Isoprene oxidation scheme, as proposed byFan and Zhang(2004).

the self-reaction of PA, and the reactions of PA with NO
or HO2. In the results of tentative global calculations with
the TM5 model, the self-reaction of PA proved to add
less than 1% to the formation of formaldehyde on an an-
nual basis. Therefore we will neglect isotope effects in
this reaction. Because the methyl-group from the PA rad-
ical is not altered in the reaction with NO or HO2, i.e.
αDPA+NO=αPA+NO, αDPA+HO2=αPA+HO2, the isotopic com-
position of the CH3OO radicals will be the same as the com-
position of the original PA radicals. The CH3OO radicals are
also formed in the oxidation sequence of methane (see Reac-
tion (T1) in TableA2 in Sect.2), and therefore we refer to
the methane oxidation scheme (see TablesA1 to A4).

3.3 The oxidation of ethene

3.3.1 Chemical reaction pathway

In the global simulation with the TM5 model, 90% of the
ethene (C2H4) is lost via oxidation by OH radicals on a an-
nual basis. The remaining 10% is removed by O3. The

oxidation of C2H4 in the termolecular reaction with OH is
very complex (Niki et al., 1981; Barnes et al., 1993; Or-
lando et al., 1998). In the first step of this reaction se-
quence, the hydroxyl radical adds to the double bond fol-
lowed by O2 addition to the other end to form a peroxy rad-
ical, HOCH2CH2O2. In the presence of NO, HOCH2CH2O
radicals are produced that either decompose directly into
formaldehyde and hydroxy methyl radicals (>25%), or form
glycol aldehyde (HOCH2CHO) in the presence of O2. The
reaction of this radical with OH leads to the production
of 80% HOCH2CO3 and 20% glyoxal (CHOCHO) (Bacher
et al., 2001; Karunanandan et al., 2007). Further reduction of
HOCH2CO3 leads to the formation of CH2O. The photolysis
of glyoxal produces H2, CH2O, or CO and hydroperoxide.
The possible reactions of glyoxal with OH do not lead to the
formation of CH2O, or H2. In all, approximately 90% of the
ethene that reacts with OH will produce CH2O.
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3.3.2 Isotope parameterization

In the reaction of C2H4 with O3, CH2O is formed in the first
reaction step (Jenkin et al., 2003). Because of the small direct
contribution of the oxidation of ethene to the formation of
formaldehyde in TM5 (∼2%), no kinetic isotope effects are
considered at this stage. In the main ethene oxidation reac-
tions that were outlined here, two out of four hydrogen atoms
from the original C2H4 molecule will be conserved in the
CH2O product. Therefore the probability that a deuterium
atom from a deuterated ethene molecule is conserved is as-
sumed to be 2/4=0.50, i.e.αH

C2H3D+OH=0.50. We assume
that no deuterated formaldehyde is formed in other branches
of the ethene oxidation chain. Therefore, the isotopic com-
position of the CH2O formed from C2H4 is similar to that of
the substrate.

3.4 The oxidation of higher olefins

In TM5, approximately 90% of the olefins are produced from
the oxidation isoprene on an annual basis. After closely ex-
amining the MCM for the oxidation of isoprene, we found
that the olefins in this scheme are mainly represented by
propene (C3H6). In the absence of isotope measurement
data, we assume that this compound is formed from isoprene
without isotope effects and will therefore have the same iso-
topic composition. In the MCM, the majority of the reactions
involving the destruction of C3H6 eventually leads to the for-
mation of PA radicals, and some reactions to formaldehyde.
Similar to the reasoning for MVK and MACR in Sect.3.2
we will assume that the PA radicals formed from C3H6
will have the same isotopic composition as propene. How-
ever, the choice for the appropriate branching ratios of re-
action T3,αH

CnH2n−1D+OH andαL
CnH2n−1D+OH, is not straight-

forward. If CH2O is exclusively and quantitatively formed in
the first reaction step, the probability for formation of deuter-
ated formaldehyde isαH

CnH2n−1D+OH=2/6=0.33. However,
CH2O is also formed in the intermediate reaction steps to-
ward the formation of the PA radicals. After the first reac-
tion step, the probability of forming deuterated formaldehyde
in the intermediate reaction steps towards the formation of
PA is 2/4=0.50. Following the derivation for the probabil-
ity of the formation of deuterated CH2O in Sect.3.2, one
would arrive at a value of 0.33+0.67×0.500=0.67. As a
first approximation, we will use the intermediate value of
αH

CnH2n−1D+OH=0.50 for our calculations. Evidently, this pa-
rameter is very uncertain and, considering that the higher
olefins form a significant part of the CH2O budget, this un-
certainty will affect the model results significantly. We will
address this issue again in the sensitivity study in the next
section.

4 Box model study

For a first application, the isotope chemistry scheme de-
scribed above was implemented into a box model configura-
tion with a customized chemistry solver in order to examine
the sensitivity of the final H2 isotopic composition to (1) in-
dividual reaction steps in the CH4 oxidation sequence and (2)
VOCs and photochemical conditions. As mentioned above,
the goal is to implement the scheme into a global CTM. Since
at the present state of knowledge (and computing power) it
may not be possible to implement it in full detail, it is impor-
tant to identify the most critical parameters that determine
the H2 isotopic composition. The general model setup will
be described in this section, a sensitivity study to individual
reaction rates and photochemical parameters in the following
section.

In the box model, the concentrationc (in moleccm−3) of
n chemical species can be described with the following non-
linear first order differential equation:

dci [t ]

dt
= Rij [p,T ,c]cj [t ] . (14)

In this reaction,ci [t ] is the concentration of the primary reac-
tant speciesi andRij [p,T ,c] is the rate matrix that contains
the temperature and pressure dependent rate coefficients of
speciesi, multiplied with the concentration of the secondary
reactant speciesj . Depending on the type of reaction (bi-
molecular, termolecular, dissociative, or photo-dissociative)
different expressions (Sander et al., 2006) are used to calcu-
late the rate coefficients using the parameters in TablesA1 to
A4 and TablesC1 andC2. Because of the non-linear behav-
ior and the large differences in the chemical lifetime of the
different species, it is not straightforward to solve this equa-
tion. We have used a modified semi-implicit Euler algorithm
(Press et al., 1992) with variable time-step size to obtain solu-
tions that are first order accurate in the convergence criterion
that was set to a target precision of≤0.1‰. The model does
not perform transient calculations, but is always run from an
initial state to equilibrium. To assess the sensitivity, we in-
vestigate changes in the equilibrium state that originate from
changes in various model parameters and the initial state.

4.1 Implementation

The box model has been set up to incorporate also the other
H2 sources and the soil deposition sink of H2 to enable qual-
itative comparison with previously reported isotope budgets
and typical isotopic compositions. In Table4, the relative
contributions of the different terms to the global budget and
their isotopic signatures are summarized. Although the mag-
nitude of the contributions for N2 fixation sources are small,
and the uncertainty of the isotopic signatures are large, it is
currently believed that these processes produce highly de-
pleted H2 (Rahn et al., 2003; Price et al., 2007) and will have
a significant impact on the isotope budget. In absence of

Atmos. Chem. Phys., 9, 8503–8529, 2009 www.atmos-chem-phys.net/9/8503/2009/



G. Pieterse et al.: Hydrogen isotope chemistry 8513

Table 4. Considered sources and sinks of H2 and their isotopic
signatures.

Relative contribution Isotopic signaturea

[%]

Sources
Fossil fuel 24 −196b

Biomass burning 20 −290b

Ocean N2 fixation 6 −628c

Soil N2 fixation 4 −628c

Chemistry 46 Calculated

Sinks
Soil 74 0.943b

Chemistry 26 0.568d

aIsotopic signatures for sources are listed in ‰, isotopic signatures
of sinks are listed as fractionation factors, i.e., the ratio of the re-
moval rates of HD and H2.
bFromGerst and Quay(2001).
cFromPrice et al.(2007).
dFromSander et al.(2006).

any experimental data showing less depleted H2 emissions
related to N2 fixation, we will assume the values introduced
by Price et al.(2007). The relative contributions were calcu-
lated by averaging the different relative source and sink con-
tributions proposed byEhhalt(1999), Novelli et al. (1999),
Hauglustaine and Ehhalt(2002), Sanderson et al.(2003), and
Price et al.(2007). For our 1-box model, we do not consider
the stratospheric sink of H2.

As a first step, the global mean isotope signature for the to-
tal surface source (i.e. all sources except for the photochem-
ical production) was calculated using the individual isotope
signatures and relative contributions to the global budget ac-
cording to Table4. This yields a value of−309‰ for the
combined surface emissions. The total magnitude of the sur-
face source was then set equal to 54/46≈1.2 times the at-
mospheric source. Similarly, the soil deposition sink was set
equal to 2.8 times the atmospheric sink.

An average surface temperature of 288 K and standard
pressure (1013.25 hPa) were used for the default calcula-
tions and no diurnal variation was considered. The branch-
ing ratios were also calculated for these conditions. Further-
more, we fixed the CH4 concentration at 1750 ppb and as-
sumed that the contributions of Cl and O

(
1D

)
to the H2 bud-

get of the troposphere are negligible. The concentrations of
OH (9.10×105 cm−3), NO (26.3 ppt) and HO2 (3.6 ppt) were
taken from the yearly averaged tropospheric values from a
global TM5 model simulation. The concentrations of the
VOCs were tuned to match the different chemical fluxes from
the VOCs to the production of formaldehyde with the values
summarized in Sect.3. For the default calculations, the iso-

Table 5. Simulated isotopic composition of the intermediate species
in the methane oxidation chain.

Species Isotopic composition
[‰]

CH4 −86
CH3 −86
CH3OO −76
CH3OOH −16
CH3O +217
CH2O +729
H2 +64

topic composition of CH4 was set to−86‰. In absence of
reliable data, the isotopic composition of isoprene, ethene
and the higher olefins were also set to the same value. The
concentrations of all other species were initialized to zero.

It turns out that the model with the above implementation
of sources simulates isotopic compositions that are within
reasonable range of the real atmospheric values and thus the
model allows assessment of the relative impact of various
parameters on the isotopic composition of atmospheric H2.

4.2 H2 concentration and chemical lifetime

Figure5 shows the simulated H2 concentration as a function
of simulation time. The simulation has converged to an equi-
librium concentration of 532 ppb which is within the range
of uncertainty of the average value of 531+6

−6 ppb for the tro-
posphere reported byNovelli et al. (1999). An exponential
function with an atmospheric lifetime of 1.7 years was fitted
to the data with a correlation ofR2

=1.00. Considering the
large uncertainties in the sink terms, this value is also within
the range of uncertainty of the expected atmospheric lifetime
of 2.1+2.5

−0.7 years (Novelli et al., 1999). It should also be kept
in mind that the relative contributions of the VOCs to the for-
mation of formaldehyde were optimized to match the results
of TM5 model calculations. But apart from this optimiza-
tion, using the relative contributions derived from the aver-
age of the previously reported global budgets for H2 leads to
a correct prediction of the mean tropospheric average value.
The very good agreement between the box model results and
the global average values is considered fortuitous since the
model neglects the transport processes in the atmosphere, lat-
itudinal and seasonal variations and the stratospheric sink.

4.2.1 Isotopic composition of H2

Table5 shows the isotopic composition of the key intermedi-
ate hydrogen-bearing species in the methane oxidation chain.
The final value ofδD(H2)=64‰ is not too far off from the
reported average tropospheric value of +130+4

−4‰ (Gerst and
Quay, 2000), especially considering that the impact of the
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Table 6. Simulated isotope budget for H2.

Process Number Relative contribution Signaturea Weighted signaturea

[%]

Sources
CH2O+hν1 P2 53 95 50
Surface sources – 47 −309 −146
Total 100 −96

Sinks
H2+OH B12 26 0.568 0.146
Deposition – 74 0.946 0.703
Total 100 0.849

aSignatures for sources are listed in ‰, signatures of sinks are listed as fractionation factors, i.e. the ratio of the removal rates of HD and H2.
The isotope effect associated with the troposphere-stratosphere exchange is not included into the model and would increase the tropospheric
reservoir by about 37‰ (Price et al., 2007).
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stratosphere and the expected KIE’s in the VOC oxidation
on the isotopic composition of H2 were not taken into ac-
count. The effect of the choice of several model parameters
will be investigated below.

Table5 shows an enormous dynamic range as regards iso-
tope fractionation from the CH4 substrate via CH2O to H2.
Mainly due to the molecular isotope effect (see Sect.2), the
isotopic composition of CH2O is increased by more than
800‰ in CH2O relative to CH4 (note thatδ values do not
add linearly).

It is also interesting that there is no isotope change from
CH4 to CH3. This is because the kinetic isotope effect (KIE)
in CH4 removal exactly cancels out with isotopic branching
(IB), and the molecular isotope effect (MIE) due to the re-
duction in the number of H atoms (see Reactions (B1a) and
(B1b) in TableA1). No isotope effects are associated with
the addition of O2 to CH3, but small isotope effects in the re-

cycling reaction system CH3OO-CH3OOH effectively enrich
CH3OO relative to CH3. The CH3O gets strongly enriched
again via the kinetic isotope effect in the H abstraction reac-
tion. As will be shown below in more detail, the long-lived
CH2O intermediate is then further enriched primarily by the
strong isotope effects in its removal reactions. These results
confirm the similar findings from a steady-state analysis pre-
sented byFeilberg et al.(2007b). In the following, we will
discuss the isotope effects in the oxidation chain in detail by
examining the isotope budgets for H2 and CH2O.

4.3 Isotope budgets

4.3.1 H2 isotope budget

Table6 shows the isotope budget for H2. It is obvious that
the H2 produced photochemically according to our default
isotope chemistry scheme is strongly enriched compared to
the flux-weighted average surface source. The isotope sig-
nature of the photochemical source (+95‰), is in the lower
range of reported values (Gerst and Quay, 2001; Rahn et al.,
2003; Röckmann et al., 2003; Rhee et al., 2006b; Price et al.,
2007). The combined source flux from surface and atmo-
spheric sources in the model yields a source signature of
−96‰, and the atmospheric reservoir is further enriched to
the +64‰ shown in Table5 by the strong isotope effects in
the H2 sink processes. Overall, the simple box model pro-
vides a surprisingly realistic description of the molecular H2
budget in the atmosphere in terms of the global average mix-
ing ratio, atmospheric lifetime and global average isotopic
composition. Therefore, it is suitable to investigate the sen-
sitivity of the isotopic composition of H2 to fractionation
constants in individual reaction steps, initial concentrations
and isotope values and photochemical conditions as done be-
low. But before proceeding to this step, the isotope budget of
CH2O is investigated in detail.
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Table 7. Simulated isotope budget for CH2O.

Process Number Relative contribution Signaturea Weighted signaturea

[%]

Sources
CH3OO+CH3OO B6 0 −539 0
CH2OH+O2 B8 0 −416 0
CH3O+O2 B10 81 217 176
C5H8+OH B15 8 −86 −6
C2H4+OH T2 2 −86 −2
CnH2n+OH T3 7 −86 −6
CH2OOH D1 2 −15 0
Total 100 162

Sinks
CH2O+OH B11 25 0.781 0.198
CH2O+hν1 P2 46 0.663 0.290
CH2O+hν2 P3 29 0.663 0.182
Total 100 0.670

aSignatures for sources are listed in ‰, signatures of sinks are listed as fractionation factors, i.e., the ratio of the removal rates of HD and
H2.

4.3.2 CH2O isotope budget

The hydrogen isotope budget for CH2O is shown in Table7.
The total flux-weighted isotope signature of the combined
photochemical CH2O sources is +162‰, and the box model
reservoir is enriched to the average value of +729‰ (Table5)
by the large overall KIE of 0.67 in the sink processes. This
has important implications for the atmosphere. Since CH2O
source and sink terms vary on diurnal time scales, it is ex-
pected that its isotopic composition varies strongly depend-
ing on whether its concentration is building up (source>

sink) or decreasing (sink> source). This disequilibrium ef-
fect of CH2O is likely larger than the dependency on the rel-
ative removal rates of CH2O by OH and photolysis, which
has been proposed byRhee et al.(2006a).

Table7 also shows the very wide range of isotope signa-
tures for CH2O emitted from different sources that span a
factor of about 4 in the D/H ratio. It is important to note,
however, that only those pathways with a significant frac-
tion of the total production rate contribute to the isotopic
composition of the final global source mix. Locally, how-
ever, the sources of CH2O may vary strongly depending on
the chemical environment. The most important global CH2O
source is the abstraction of H from the methoxy radical (Re-
action B10), followed by the reaction of alkanes, alkenes and
isoprene with OH (Reactions B15 and T3). It further should
be kept in mind that these are model predictions that need
to be tested. In particular, in our simplified parameterization
of the VOC isotope chemistry, the CH2O produced from iso-
prene directly has an extremely enriched isotope signature,
leading to an even larger overall enrichment of H2 than from
CH4 oxidation alone.

Reactions (B6) and (B8) produce very depleted CH2O, be-
cause D is preferentially lost in those reactions. However the
relative contributions of these reactions to the CH2O budget
are negligible on the global scale. Because of small isotope
effects in the reaction of CH3OOH with OH, see Sect.B2,
the final product CH2OOH is slightly depleted and will form
slightly depleted formaldehyde via Reaction (D1). However,
the relative magnitude of the contribution of this reaction is
too small to lead to a significant change in the isotopic com-
position of formaldehyde. The fractionation constants of the
removal processes (B11, P2, and P3) correspond to the val-
ues stated in Table3. It is clear that large uncertainties in
these parameters lead to a large uncertainty in the predicted
isotopic composition of formaldehyde.

The first published data ofδD(CH2O) (Rice and Quay,
2006) show a very large range inδD from −294‰ to +210‰
in samples taken in Seattle. This on the one hand confirms
the large variability that is expected based on the arguments
above, but on the other hand did not show the very high
enrichment (>800‰) that the box model predicts in equi-
librium. Since no further information on the samples were
given byRice and Quay(2006), it is premature to speculate
whether this may arise from the disequilibrium effect dis-
cussed above or from certain source categories. In any case,
the very wide range of CH2O isotope source signatures pre-
dicted with our model identifies CH2O as a particularly inter-
esting molecule for future isotope research. Different source
categories could be examined to test the validity of our iso-
tope chemistry scheme.
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Table 8. Simulated sensitivity of isotopic composition of H2 to
changes in the rate coefficients for the different reactions and reac-
tion branches (see TablesA1 to A4 and TablesC1 to C2).

Process Number Isotopic change Isotopic change
Full model Chemistry only

[‰] [‰]

Default 0 (+126) 0 (+745)
CH3D+OH B1ba

−49 −127
CH2DO+O2 B10ba

−58 −148
CH2O+OH B11a 17 44
CHDO+OH B11b −19 −50
H2+OH B12a 27 160
HD+OH B12b −18 −119
C5H8+OH B15a −5 −13
C5H7D+OH B15b(H) 4 10
PA+NO B16a −8 −20
DPA+NO B16b 8 21
PA+HO2 B17a −1 −2
DPA+HO2 B17b 1 2
C2H4+OH T2a −1 −3
C2H3D+OH T2b(H) 1 3
CnH2n+OH T3a −5 −13
CnH2n−1D+OH T3b(H) 4 10
CH2O+hν1 P2a −24 −86
CHDO+hν1 P2b 37 95
CH2O+hν2 P3a 20 50
CHDO+hν2 P3b −18 −46
H2 deposition – 79 0
HD deposition – −81 0
H2/HD sources – −11 0

aOnly the branching ratios for the branch of this reaction were
changed. The branching ratio that leads to the deuterated product
was changed by−10%, and the other branching ratio was changed
accordingly.

4.4 Sensitivity analysis

To investigate the global (isotope) budget of H2 using atmo-
spheric measurements, it is important to know which pro-
cesses will be actually measurable in terms of contributions
to the concentration and the isotopic composition of atmo-
spheric samples. Typical accuracies of H2 concentration
measurements are in the order of±1% (Novelli et al., 1999),
whereas the accuracy of isotope measurements are in the or-
der of±3‰ (Rhee et al., 2004). The induced variability of an
identifiable process should be significantly larger than these
limits to enable statistically significant analysis. In addition,
it is important to identify those parts of the CH4 and VOC ox-
idation schemes that should be implemented in global mod-
els for a realistic representation. In the following subsections
we will investigate the sensitivity of the isotopic composition
of H2 to individual reaction and photochemical parameters.

4.4.1 Changes in rate coefficients

To investigate the sensitivity of the isotopic composition to
changes in rate coefficients of individual isotope specific re-
actions (and thus fractionation constants) in the CH4 oxida-
tion scheme, the rate coefficients of all individual reactions
in the CH4 and VOC oxidation schemes of the default model
were varied sequentially by +10%. It should be noted that
varying individual rate constants in an isotope scheme means
varying the fractionation constants by a similar amount. The
chosen variations are large, and for quantitative interpreta-
tion this should be taken into account. For example the rel-
ative removal rates of CH4 and CH3D are very well con-
strained by experiment. However, the parameter that re-
mains unconstrained is the relative branching between the
H and D abstraction in Reaction (B1b). This means that al-
though the kinetic isotope effect for CH4 removal is well es-
tablished (Sander et al., 2006), the actual enrichment of H2
by this reaction is still uncertain because the ratio between
CH3 and CH2D produced from CH3D is unknown. There-
fore, rather than changing the kinetic isotope effects, we suc-
cessively decreased the branching ratios for the pathways in
Reaction (B1b) and (B10b) that lead to the deuterated target
molecules by−10%.

Because in the full model the true changes in the chem-
istry scheme are damped by the surface sources and sinks,
we performed the sensitivity tests both with and without sur-
faces sources and sinks. Table8 shows the results of this
sensitivity study.

Reactions that did not influence the isotopic composition
of H2 upon variation of their rates are not shown in the ta-
ble. This includes the reactions that are usually fast interme-
diate steps without a possibility for isotopic branching. In
this case, all H and D atoms present in the reactant species
are simply processed and even if large isotope fractionation
occurs the reservoir is small and the effect of fractionation
is negligible. The default reaction set with surface sources
and sinks yields an isotopic composition of +126‰, whereas
the reaction set without surface sources and sinks produces
an isotopic composition of +745‰. The latter case is purely
synthetic, but illustrates that without surface sources and
sink, atmospheric chemistry alone would enrich hydrogen
produced from methane and VOCs enormously because the
surface sources are depleted and the surface sink has the
much smaller KIE. In fact, this phenomenon is the cause for
extreme enrichment in the isotopic composition of H2 in the
stratosphere (Rahn et al., 2003; Röckmann et al., 2003). Es-
pecially the column without surface effects in Table8 shows
that the isotopic composition is sensitive to only a small num-
ber of reactions or processes.

In the chemistry onlyscheme, the largest effect is ob-
served for a change in the rate constant for the H2+OH
Reaction (B12). However, this reaction does not influence
the source signature of photochemically produced H2 and its
fractionation constant is well established (Note that in the
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full model, the isotope effect for this reaction is much more
strongly damped than the others, because here the surface
sink also contributes in addition to the sources).

For Reactions (B1) and (B10), the sensitivity to the
changes in the branching ratios is large, as expected. Regard-
ing (B10), the second H abstraction step,Nilsson et al.(2007)
report an error of only 1% in the branching ratio between the
two channels. In contrast, (B1) is only constrained by indi-
rect evidence derived from the systematics in the rate con-
stants of multi-deuterated methane isotopologues with OH.

The isotope signature of the photochemical sources is the
most sensitive to changes in the two CH2O photolysis chan-
nels (P2 and P3), and the reaction of CH2O with OH (B11).
Clearly, if the molecular photolysis channel that produces
HD is increased by 10%, the isotopic composition of the H2
is increased dramatically. If the CH2O removal via Reac-
tion (B11) and (P3) is increased, the remaining reservoir of
CH2O is enriched and thus the H2 product is also enriched,
but only as a secondary and thus smaller effect. Conversely,
if CHDO is preferentially removed via Reaction (B11) and
(P3), less is available for production of HD in Reaction (P2).
It is again useful to put the perturbations applied in this sen-
sitivity study into perspective by comparing them to the ex-
pected uncertainties in the measured fractionation constants.
In fact, the error reported for the KIE in (B11) is±1% (Feil-
berg et al., 2007b), hence the imposed variations in the sen-
sitivity study shown here are large. For CH2O photolysis,
however, the range in the literature values suggests an uncer-
tainty range of 50%, and even more when the fractionation
constant for the radical channel byRhee et al.(2008) is taken
into account.

Reactions (B15) and (B16) provide the isotope input from
the main VOC substrate, isoprene, which also has a large ef-
fect on the total available H and D reservoirs, as reflected
by the strong sensitivity. Since no strong isotope effects are
included into the VOC reactions, changing those rate coeffi-
cients is effectively identical to changing the source isotope
composition of the VOCs, which is one of the largest uncer-
tainties in our photochemical model. Similarly, uncertain-
ties in the parameters concerning the oxidation of the higher
olefins (Reaction T3) will also affect the uncertainty in the
global hydrogen (isotope) budget significantly. These results
show that it is important to determine the isotope signatures
of VOCs and include them in future hydrogen isotope chem-
istry schemes.

The sensitivities to changes in the rates of Reactions (B17)
and (T2) are small. In practice, it will also be difficult to
collect information about these and other omitted reactions
from atmospheric measurements and it is not mandatory to
implement isotope effects for these reactions.

Any condensed hydrogen isotope chemistry scheme
should at least include the isotopic features represented by
Reaction (B1), (B10), (B11), (B12), (B15), (B16), (T3), (P2),
and (P3). However, it is important to note that although the
chemistry involving the destruction of methanol (CH3OH)

was implemented in the model (via Reaction B6), the direct
emissions of this compound were not considered at the time
of this study. Novelli et al. (1999) clearly indicate that this
compound will probably contribute significantly (up to 30%
of the total VOC contributions) to the global budget of H2
and emissions of this compound should be accounted for as
well. For the same reasons, the inclusion of an oxidation
scheme for the monoterpenes is recommended.

4.4.2 Different isotopic composition of the VOCs

In a further set of experiments, the sensitivity of the isotopic
composition of H2 to a different isotopic composition of the
VOCs was investigated. Decreasing the default isotopic com-
position of the VOCs to−172‰, resulted in an decrease of
17‰ in the final H2 isotope signature. Although the CH4
isotope signature is well known, the average VOC signature
is still unknown. This still results in a large uncertainty in
the global H2 isotope budget. Nevertheless, deviations of the
isotope signature in the order of 17‰ are measurable quan-
tities, provided that the magnitude of other contributions to
the H2 (isotope) budget are known.

4.4.3 Formaldehyde photolysis

The results of the above described sensitivity study combined
with the known uncertainty of measured fractionation con-
stants, clearly illustrate that the isotope effects in the photol-
ysis of formaldehyde are by far the most critical parameters
in the H2 isotope scheme. The large discrepancies between
the results ofFeilberg et al.(2007b) andRhee et al.(2008)
clearly call for further studies. As noted above, the isotope
mass balance between the molecular channel, radical channel
and total KIE reported by (Feilberg et al., 2007b) require an
unrealistic distribution between the removal via the 2 chan-
nels (77% through the molecular channel and 23% through
the radical channel), contrary to the distribution obtainable
via Sander et al.(2006) (60% through the molecular chan-
nel and 40% through the radical channel). The origin of this
result is not resolved at present, but inserting the original val-
ues reported byFeilberg et al.(2007b) into the model, leads
to a change in the isotope composition of the photochem-
ical source of−197‰. In this case, the isotopic composi-
tion of the total H2 reservoir changes by−122‰. Looking
at the results from the sensitivity study, other parameters in
the budget would need large adjustments to compensate for
this difference. Hence, we believe that the values reported
by Feilberg et al.(2007b) should be reconsidered. On the
other hand, the implementation of our isotope scheme in a
simple box model might result in an incomplete represen-
tation of reality, resulting in the observed difference in iso-
topic composition. Implementation and verification in a full
chemistry transport model is required to either validate or in-
validate this finding. Therefore, the isotope effect in CH2O
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photolysis should remain the focus of current and near-future
experimental investigations.

4.4.4 Cl and O
(
1D

)
chemistry

In the final part of this study, we show the sensitivity of
the isotopic composition of H2 to Cl and O

(
1D

)
chemistry.

Cl and O
(
1D

)
mixing ratios were taken from the bottom

boundary layer of the stratospheric water vapor model by
Zahn et al.(2006), corresponding to 7.03×103 cm−3 and
5.86×10−1 cm−3 at 288 K at 1013.25 hPa. The contribution
of Cl to tropospheric chemistry and its effect on various iso-
tope budgets is a topic of current research. Average Cl levels
of 1.8×104 cm−3 have been recently postulated to explain
13C seasonal cycle of atmospheric CH4 (Allan et al., 2007).
A recent study reported similar Cl concentrations in the ma-
rine boundary layer (e.g.Arsene et al., 2007). Including Cl
chemistry at those levels leads to a decrease of 4‰ in the
isotopic composition of the H2 reservoir whereas the contri-
bution of O

(
1D

)
oxidation was found to be negligible.

5 Conclusions

We have derived a photochemical hydrogen isotope scheme
using a simplified structure-activity relationship analysis.
The basic assumption underlying our analysis is that the ki-
netic isotope effect (KIE) and isotopic branching (IB), i.e.
the preferential removal of the lighter stable hydrogen iso-
topologue (H) over the removal of the heavier hydrogen iso-
topologue D in the abstraction reactions, can be related sta-
tistically by introducing abstraction preferences for the dif-
ferent independent bonds in the target molecules. The differ-
ent reactions of the methane oxidation chain that show iso-
topic branching were analyzed using Venn diagrams (Venn,
1880) to derive the KIE’s and IB ratios based on abstrac-
tion preferences for the different independent bonds of the
target molecules of these reactions. A similar but more phe-
nomenological approach was chosen for the oxidation reac-
tions for the VOCs.

The resulting scheme was implemented and evaluated in
a 1-D box model. The resulting H2 equilibrium concentra-
tion of 532 ppb was within the range of uncertainty of the
average value of 531+6

−6 ppb for the troposphere reported by
Novelli et al.(1999). The simulated atmospheric lifetime of
1.7 years was also within the range of uncertainty of the ex-
pected atmospheric lifetime of 2.1+2.5

−0.7 years.
The isotopic composition of H2 was evaluated in

Sect.4.2.1. Although the simple 1-D model was not in-
tended for determination of the hydrogen budget, the final
value ofδD(H2)=64‰ was reasonably close to the reported
average tropospheric value of+130+4

−4‰ (Gerst and Quay,
2000). Mainly due to the molecular isotope effects in the
chemical source, viz. the enrichment in terms ofδD due to
the removal of H atoms, and the strong isotope effects in its

removal reactions, the isotopic composition of CH2O was
found to increase by more than 800‰ in CH2O relative to
CH4. These results confirm similar findings from a steady-
state analysis presented byFeilberg et al.(2007b). Consid-
ering chemistry only, the isotopic composition of H2 proved
to be most sensitive to the branching ratio of the reaction of
CH3D with OH (B1b). The composition was found to be one
order less sensitive to the KIE of the photochemical reac-
tions involving the destruction of CH2O, (B11, P2, and P3),
and the KIE of the oxidation reaction of H2 itself (B12). The
oxidation of isoprene, the peroxyacetyl radicals, and higher
olefins were found to be of similar importance. When consid-
ering all processes that determine the isotopic composition of
H2, the isotopic composition was found to be most sensitive
to the fractionation constant of deposition.

Although these findings indicated that the model is able to
reproduce the basic required features adequately, our results
depend critically on several parameters, as the results for the
isotope budgets (see Sect.4.3) clarified.

The main recommendations for future work are:

– Implement the proposed scheme in a global CTM to
simulate the global isotope composition of H2

– Measure the isotopic composition of CH2O under dif-
ferent photochemical conditions

– Resolve the isotopic mass balance in the CH2O photol-
ysis channels

– Measure the isotopic composition of VOCs and their
KIE’s

Appendix A

Overview of full CH 4 oxidation reactions

Please view TablesA1 to A4.

Appendix B

Detailed derivation of KIEs and branching ratios
for critical reactions in the CH 4 oxidation chain

This appendix contains the full derivation of the kinetic iso-
tope effects and isotopic branching ratios for all remaining
reactions in the methane oxidation chain. The rationale be-
hind these derivations is similar to the approach introduced
for the reaction of CH4 and OH in Sect.2.1.

B1 CH3O+O2 reaction

The isotope effects involved with this reaction were recently
investigated byNilsson et al.(2007). Although the reaction
kinetics of the methoxy radical and oxygen are quite different
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Table A1. Considered bimolecular methane oxidation reactions.

Number Reaction A E/R KIE[
cm3molec−1s−1

]
[K]

B1a CH4+OH → CH3+H2O 2.45×10−12 1775

B1b CH3D+OH
αH

CH3D+OH
−−−−−−−→ CH2D+H2O 3.50×10−12 1950 KIECH3D+OH
αL

CH3D+OH
−−−−−−−→ CH3+HDO

B2a CH4+Cl → CH3+HCl 7.30×10−12 1280

B2b CH3D+Cl
αH

CH3D+Cl
−−−−−−→ CH2D+HCl 7.00×10−12 1380 KIECH3D+Cl
αL

CH3D+Cl
−−−−−−→ CH3+DCl

B3a CH4+O
(

1D
)

0.700
−−−→ CH3+OH 1.50×10−10 0
0.250
−−−→ CH3O+H
0.050
−−−→ CH2O+H2

B3b CH3D+O
(

1D
) α1H

CH3D+O
(
1D

)
−−−−−−−−−→ CH2D+OH KIECH3D+O

(
1D

)
α1L

CH3D+O
(
1D

)
−−−−−−−−−→ CH3+OD
α2H

CH3D+O
(
1D

)
−−−−−−−−−→ CH2DO+H
α2L

CH3D+O
(
1D

)
−−−−−−−−−→ CH3O+D
α3H

CH3D+O
(
1D

)
−−−−−−−−−→ CHDO+H2
α3L

CH3D+O
(
1D

)
−−−−−−−−−→ CH2O+HD

B4a CH3OO+NO → CH3O+NO2 2.80×10−12 -300
B4b CH2DOO+NO → CH2DO+NO2 1
B5a CH3OO+HO2 → CH3OOH+O2 4.10×10−13 -750
B5b CH2DOO+HO2 → CH2DOOH+O2 1

B6a CH3OO+CH3OO
0.333
−−−→ 2CH3O+O2 9.50×10−14 -390
0.667
−−−→ CH3OH+CH2O+O2

B6b CH2DOO+CH3OO
α1

CH2DOO
−−−−−−→ CH2DO+CH3O+O2 1
α2a

CH2DOO
−−−−−−→ CH2DOH+CH2O+O2
α2b

CH2DOO
−−−−−−→ CH3OH+CHDO+O2
α2c

CH2DOO
−−−−−−→ CH3OD+CH2O+O2

B7a CH3OH+OH
0.150
−−−→ CH3O+H2O 2.90×10−12 345
0.850
−−−→ CH2OH+H2O

B7b CH2DOH+OH
α1

CH2DOH+OH
−−−−−−−−→ CH2DO+H2O KIECH2DOH+OH
α2H

CH2DOH+OH
−−−−−−−−→ CHDOH+H2O
α2L

CH2DOH+OH
−−−−−−−−→ CH2OH+HDO

B7c CH3OD+OH
α1H

CH3OD+OH
−−−−−−−→ CH2OD+H2O KIECH3OD+OH
α1L

CH3OD+OH
−−−−−−−→ CH3O+HDO
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Table A1. Continued.

Number Reaction A E/R KIE[
cm3molec−1s−1

]
[K]

B8a CH2OH+O2 → CH2O+HO2 9.10×10−12 0
B8b CH2OD+O2 → CH2O+DO2 1
B8c CHDOH+O2 → CHDO+HO2 1

B9a CH3OOH+OH
0.700
−−−→ CH3OO+H2O 3.80×10−12 -200
0.300
−−−→ CH2OOH+H2O

B9b CH2DOOH+OH
α1

CH2DOOH+OH
−−−−−−−−−→ CH2DOO+H2O KIECH2DOOH+OH
α2H

CH2DOOH+OH
−−−−−−−−−→ CHDOOH+H2O
α2L

CH2DOOH+OH
−−−−−−−−−→ CH2OOH+HDO

B10a CH3O+O2 → CH2O+HO2 3.90×10−14 900

B10b CH2DO+O2

αH
CH2DO+O2

−−−−−−−→ CHDO+HO2 KIECH2DO+O2
αL

CH2DO+O2
−−−−−−−→ CH2O+DO2

B11a CH2O+OH → HCO+H2O 5.50×10−12 -125
B11b CHDO+OH → Products KIECHDO+OH
B12a H2+OH → H2O+H 2.80×10−12 1800
B12b HD+OH → Products 5.00×10−12 2130
B13a H2+Cl → HCl+H 3.05×10−11 2270
B13b HD+Cl → Products 2.46×10−11 2526
B14a H2+O1D → OH+H 1.10×10−11 0
B14b HD+O1D → Products 1

Table A2. Considered termolecular methane oxidation reactions.

Number Reaction k0 ku n m[
cm6molec−2s−1

] [
cm3molec−1s−1

]
T1a CH3+O2 → CH3OO 4.0×10−31 1.2×10−12 3.6 −1.1
T1b CH2D+O2 → CH2DOO 4.0×10−31 1.2×10−12 3.6 −1.1

Table A3. Considered dissociation methane oxidation reactions.

Number Reaction k[
s−1

]
D1a CH2OOH → CH2O+OH 1.0×10−6

D1b CHDOOH → CHDO+OH 1.0×10−6

from the kinetics involved with the methane-hydroxyl reac-
tion, we choose to follow a similar approach to derive the IB
ratios using the KIE reported byNilsson et al.(2007). Fig-
ureB1 shows the Venn diagram for this reaction.

As the derivation is equivalent to the derivation shown in
the previous section, we only state the final expression for
the KIE:

KIECH2DO+O2
∼=

3η
CH|CD
CH3O+O2

2η
CH|CD
CH3O+O2

+1
, (B1)

and for the first and second IB ratio, respectively:

αH
CH2DO+O2

≡ P (CH|CH2DO)

∼=
2

3
P (CH|CH3O)KIECH2DO+O2, (B2)

and:

αL
CH2DO+O2

≡ P (CD|CH2DO) ∼= 1−P (CH|CH2DO). (B3)
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Table A4. Considered photo dissociation methane oxidation reactions.

Number Reaction J KIE[
s−1

]
P1a CH3OOH+hν → CH3O+OH JCH3OOH
P1b CH2DOOH+hν → CH2DO+OH KIECH2DOOH+hν

P2a CH2O+hν1 → H2+CO JaCH2O
P2b CHDO+hν1 → HD+CO KIECHDO+hν1

P3a CH2O+hν2 → H+HCO JbCH2O
P3b CHDO+hν2 → Products KIECHDO+hν2

CH
CH
CH

CH
CH CD

Fig. B1. Venn diagram for CH3O+O2 reaction.

CH
CH
CH

OOH

CH
CH

OOH

CD

Fig. B2. Venn diagram for CH3OOH+OH reaction.

We re-emphasize the underlying assumption that the removal
of the hydrogen atoms from CH2DO is not affected by the
presence of a deuterium atom. In contrast to the assumption
followed by Feilberg et al.(2007b) the value ofηCH|CD

CH3O+O2
differs from the value used for the methane-hydroxyl reac-
tion because the branching ratios reported byNilsson et al.
(2007) yield a KIE equal to 1.323. The corresponding value

for η
CH|CD
CH3O+O2

is 3.730. Because no relevant measurement
data are available for the active CH3-group of the molecules
discussed in the next sections, we will also assume this value
for these molecules.

B2 CH3OOH +OH reaction

For the reaction of methyl hydroperoxide with hydroxyl, the
derivation becomes more complicated. In fact, there are now
two functional groups; The methyl and hydroperoxide group.
The non-deuterated reaction has two pathways:

CH3OOH+OH
0.700
−−−→ CH3OO+H2O, (B4)
0.300
−−−→ CH2OOH+H2O, (B5)

and the abstraction probabilities can be visualized by the
Venn diagram shown in Fig.B2.

For the deuterated form, it is important to note that methyl
hydroperoxide is formed from the reaction of the methyl per-
oxy radical with hydroperoxide. The sequence of the preced-
ing reaction steps leads to the assertion that the deuterium
atom present in the methyl peroxy radical remains situated
in the methyl group. Furthermore, it is considered unlikely
that the methyl peroxy radical will encounter a deuterated hy-
droperoxide molecule. This means that, apart from the KIE
introduced by the second branch represented by Eq. (B5), the
first branch (Eq.B4) remains unchanged. We can formulate
the branching ratios of the non-deuterated reaction as:

P (OOH|CH3OOH) = 0.700, (B6)

and:

P (CH|CH3OOH) = 0.300. (B7)

Furthermore, we assume that the abstraction probability of
H from methyl groups and OOH groups is similar for both
isotopologues:

P (CH3OOH∩OOH) ∼= P (CH2DOOH∩OOH), (B8)

and:

P (CH3OOH∩CH) ∼=
3

2
P (CH2DOOH∩CH). (B9)
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The inverse of the KIE for this reaction can be written as:

KIE−1
CH2DOOH+OH= (B10)

P (CH2DOOH∩OOH)+P (CH2DOOH∩CH)+P (CH2DOOH∩CD)

P (CH3OOH∩OOH)+P (CH3OOH∩CH)
.

We will reduce the three parts of the numerator-denominator
couples on the right-hand side of this expression separately.
Using Eq. (B8), the first numerator-denominator term can
also be written as:

P (CH2DOOH∩OOH)

P (CH3OOH∩OOH)+P (CH3OOH∩CH)

∼=
1

1+
P(CH3OOH∩CH)

P (CH3OOH∩OOH)

≡ A. (B11)

A can be calculated explicitly using Eqs. (B6) and (B7). Us-
ing Eq. (B9), the second numerator-denominator term on the
right-hand side of Eq. (B10) becomes:

P (CH2DOOH∩CH)

P (CH3OOH∩OOH)+P (CH3OOH∩CH)

∼=
1

1+
P(CH3OOH∩OOH)
P (CH3OOH∩CH)

≡ B. (B12)

The third and last term on the right-hand side of Eq. (B10)
can be simplified using:

P (CD|CH2DOOH) =
1

1η
OOH|CD
CH3OOH+OH+2η

CH|CD
CH3OOH+OH+1

≡ X. (B13)

In this expression,ηOOH|CD
CH3OOH+OH is the ratio between the ab-

straction probability for hydrogen atoms from the hydroper-
oxide group and the abstraction probability for deuterium
atoms from a C-D bond.ηOOH|CD

CH3OOH+OH can be calculated

as η
OOH|CH
CH3OOH+OHη

CH|CD
CH3OOH+OH, where η

OOH|CH
CH3OOH+OH can be

calculated using Eqs. (B6) or (B7). For reasons stated in
Sect.B1, we will assume thatηCH|CD

CH3OOH+OH has the same

value asηCH|CD
CH3O+O2

. Using the definition of the conditional
probability on Eq. (B13), the simplified expression for the
third numerator term on the right-hand side of Eq. (B10) be-
comes:

P (CH2DOOH∩CD)

P (CH3OOH∩OOH)+P (CH3OOH∩CH)

∼= XKIE−1
CH2DOOH+OH. (B14)

Now we can write down the final expression for the KIE for
this reaction:

KIECH2DOOH+OH
∼=

1−X

A+B
. (B15)

Using Eq. (B8), the branching ratio of the deuterated reaction
described in Eq. (B4) becomes:

α1
CH2DOOH+OH ≡ P (OOH|CH2DOOH) (B16)

∼= P (OOH|CH3OOH)KIECH2DOOH+OH.

Finally, Eq. (B9) is used to calculate the IB ratios for the
deuterated version of the reaction defined by Eq. (B5):

α2H
CH2DOOH+OH ≡ P (CH|CH2DOOH) (B17)

∼=
2

3
P (CH|CH3OOH)KIECH2DOOH+OH,

and:

α2L
CH2DOOH+OH ≡ P (CD|CH2DOOH) (B18)

∼= 1−P (OOH|CH2DOOH)

−P (CH|CH2DOOH).

B3 CH3OO+CH3OO reaction

The branching ratios of the two reaction paths of the self-
reaction of non-deuterated methyl peroxy radicals (CH3OO)
in TableA1 (Reaction B6a) were taken from the recommen-
dations bySander et al.(2006) for 288 K. The exact mech-
anism of this reaction is an ongoing subject of numerous
studies (e.g.Weaver et al., 1975; Minato et al., 1978; Light-
foot et al., 1992; Henon et al., 1997; Tyndall et al., 1998,
2001; Feria et al., 2004). The current view is that first an
unstable intermediate is formed that can either decompose
into its reactants or decompose form the products shown for
the two reaction channels. Because of this complexity and
lack of experimental data about isotope effects in this reac-
tion, we neglect the isotope effect in Reaction (B6a) in Ta-
ble A1. The sensitivity study of the box model shown in
Sect.4.4 also shows that isotope effects in this reaction are
not significant for the final H2 product. Therefore, the IB ra-
tios for reaction channels B6b can be easily calculated using
the non-deuterated branching ratios and a statistical proba-
bility for the three possible channels, i.e.α1

CH2DOO=0.333,

α2a
CH2DOO=0.334,α2b

CH2DOO=0.222, andα2c
CH2DOO=0.111.

B4 CH3OH+OH reaction

The reaction of methanol (CH3OH) with OH has also been a
subject of numerous studies (e.g.Hess and Tully, 1989; Mc-
Caulley et al., 1989; Jiménez et al., 2003; Atkinson et al.,
2006). In the proposed hydrogen isotope scheme, the re-
action of deuterated methyl peroxide with non-deuterated
methyl peroxide leads to the formation of two types of
deuterated methanol molecules, i.e. CH2DOH and CH3OD.
These molecules react with OH via Reaction (B7b) and
(B7c), shown in TableA1. The reaction possibilities for these
two isotopologues are shown in Fig.B3.

A strong KIE=3.015+1.206
−0.779 was measured byMcCaulley

et al. (1989) for deuterated methanol with fully deuterated
methyl groups, whereas within the limits of measurement
uncertainty, no significant KIE was observable for methanol
isotopologues with a deuterium atom located in the hydroxyl
group. However, this reaction was only investigated using
deuterated hydroxyl radicals. Their data also indicate that the
KIE for a fully deuterated methanol molecule is even higher
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CH
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CH
CH

OH

CH
CH

OD

CH

Fig. B3. Venn diagram for CH3OH+OH reaction.

(KIE=5.233+2.267
−1.410) than for the isotopologue with a deuter-

ated methyl group. Together with the branching ratios of
this reaction, these data provide sufficient information to de-
rive the required abstraction probability ratios;η

CD|CH
CH3OH+OH,

η
CH|OH
CH3OH+OH, andη

OH|OD
CH3OH+OH. Using the same argument as in

Sect.B1, we choose to setηCD|CH
CH3OH+OH equal to 1/ηCH|CD

CH3O+O2
.

The second ratio can be calculated using the non-deuterated
reaction branching ratios and is equal to 1.889. We will cal-
culate the third ratio at the end of this section. Similar to the
derivation for methyl hydroperoxide in Sect.B2, we can im-
mediately write the following expressions for Reaction (B7b)
in TableA1:

KIECH2DOH+OH
∼=

1−X

A+B
, (B19)

with:
P (CH2DOH∩OH)

P (CH3OH∩OH)+P (CH3OH∩CH)

∼=
1

1+
P(CH3OH∩CH)
P (CH3OH∩OH)

≡ A, (B20)

P (CH2DOH∩CH)

P (CH3OH∩OH)+P (CH3OH∩CH)

∼=
1

1+
P(CH3OH∩OH)
P (CH3OH∩CH)

≡ B. (B21)

and:

P (CD|CH2DOH) = (B22)

1η
CD|CH
CH3OH+OHη

CH|OH
CH3OH+OH

2η
CH|OH
CH3OH+OH+1η

CD|CH
CH3OH+OHη

CH|OH
CH3OH+OH+1

≡ X.

The branching ratio for the reaction with the non-deuterated
hydroxyl group becomes:

α1
CH2DOH+OH ≡ P (OOH|CH2DOH)

∼= P (OOH|CH3OH)KIECH2DOH+OH. (B23)

The IB ratios for the reaction with the deuterated methyl
group become:

α2H
CH2DOH+OH ≡ P (CH|CH2DOH) (B24)

∼=
2

3
P (CH|CH3OH)KIECH2DOH+OH,

and:

α2L
CH2DOH+OH ≡ P (CD|CH2DOH) (B25)

∼= 1−P (OH|CH2DOH)−P (CH|CH2DOH).

The derivation of the expressions for Reaction (B7c) in Ta-
bleA1 is also straightforward. First, we assume that:

P (CH3OH|CH) ∼= P (CH3OD|CH), (B26)

and:

P (OD|CH3OD) =
1

3η
CH|OH
CH3OH+OHη

OH|OD
CH3OH+OH+1

≡ X.

(B27)

Together with the definition of the conditional probability,
these two expressions can be used to calculate the inverse of
the KIE from the following expression:

KIE−1
CH3OD+OH=

P (CH3OD∩OD)+P (CH3OD∩CH)

P (CH3OH∩OH)+P (CH3OH∩CH)
.

(B28)

The final equation for the KIE becomes:

KIECH3OD+OH
∼=

1−X

A
, (B29)

with:

A ≡
1

1+
P(CH3OH∩OH)
P (CH3OD∩CH)

. (B30)
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The IB ratios become:

α1H
CH3OD+OH ≡ P (CH|CH3OD) (B31)

∼= P (CH|CH3OH)KIECH3OD+OH,

and:

α1L
CH3OD+OH ≡ 1−P (CH|CH3OD). (B32)

Similar to the fully explicit expression for KIECH3D+OH
(Eq. 11) the explicit forms of Eqs. (B19) and (B29) can be
derived:

KIECH2DOH+OH
∼=

3η
CH|OH
CH3OH+OH+1

2η
CH|OH
CH3OH+OH+1η

CD|CH
CH3OH+OHη

CH|OH
CH3OH+OH+1

,

(B33)

and:

KIECH2OD+OH
∼=

3η
CH|OH
CH3OH+OHη

OH|OD
CH3OH+OH+1η

OH|OD
CH3OH+OH

3η
CH|OH
CH3OH+OHη

OH|OD
CH3OH+OH+1

.

(B34)

The KIE’s for the relevant reactions investigated byMcCaul-
ley et al.(1989), KIECD3OH+OH and KIECD3OD+OH, can also
be expressed in a similar fashion. Finally, the last unknown
abstraction probability ratio,ηOH|OD

CH3OH+OH, can be determined
by fitting the algebraic values for the KIE’s to the measured
KIE’s. An optimum result was found for very large values
of η

OH|OD
CH3OH+OH, indicating that the probability of abstracting

a deuteron from the hydroxyl site is very small, as was al-
ready noted byMcCaulley et al.(1989). We therefore choose
η

OH|OD
CH3OH+OH equal to 1000.

B5 CH2OH+O2 reaction

The reaction of the hydroxy methyl radical (CH2OH) with
O2 was studied byGrotheer et al.(1988), Nesbitt et al.
(1988), and more recently byOlivella et al. (2001) and
Schocker et al.(2007). A complete overview of the avail-
able measurements of the rate coefficient of this reaction can
be found inAtkinson et al.(2006). The paper ofGrotheer
et al. (1988), states that, within the reported measurement
uncertainty of ±20%, no significant isotope effect was ob-
servable for the CH2OD+O2 reaction. The current consen-
sus is that this observation together with the observed strong
non-Arrhenius behavior as a function of temperature implies
that this reaction proceeds via an intermediate CH2OH·O2
complex, can either dissociate back to its reactants or iso-
merize to CH2O·HO2. This radical then decomposes into
CH2O and HO2. If we follow the proposed kinetics of this
reaction, any deuterium atom present in the hydroxyl-group
will be lost and any deuterium atom present in the methyl-
group will end up in formaldehyde.

CH
CH

CH

OH

CH

CH CD
CH CH

OH
OH
OH

OH
OH
OH OD

HH
HH

HH
HH

HH
HH

HH

HH
HH

HD

HD
HD

Fig. B4. Venn diagram for CH4+O(1D) reaction.

B5.1 CH4+O
(
1D

)
reaction

This reaction is very complicated to address because the oxi-
dation of CH4 with O

(
1D

)
proceeds via three different reac-

tion pathways with different products (Sander et al., 2006):

CH4+O
(

1D
)

0.750
−−−→ CH3+OH, (B35)

0.200
−−−→ CH3O+H, (B36)
0.050
−−−→ CH2O+H2. (B37)

The different reaction probabilities for the non-deuterated
and deuterated reactions are shown in Fig.B4.

In this figure, OH and OD denote the exchange of a hydro-
gen or deuterium atom with the impinging oxygen radical.
HH or HD denotes for the exchange of H2 or HD with the in-
coming oxygen radical. Note that there are 6 possible com-
binations for the simultaneous abstraction of two hydrogen
atoms. The three non-deuterated reaction branching ratios
can be described in terms of conditional probabilities:

P (CH|CH4) = 0.750, (B38)

P (OH|CH4) = 0.200, (B39)
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and:

P (HH|CH4) = 0.050. (B40)

The independent bond approximation leads to the follow-
ing expressions that relate the abstraction of hydrogen atoms
from the deuterated molecules to the abstraction of hydrogen
atoms from the non-deuterated molecules:

P (CH3D∩CH) ∼=
3

4
P (CH4∩CH), (B41)

P (CH3D∩OH) ∼=
3

4
P (CH4∩OH), (B42)

and:

P (CH3D∩HH) ∼=
3

6
P (CH4∩HH). (B43)

Now we define the abstraction ratios for the deuterium atoms,
derived directly from the conditional probabilities for the ab-
straction of one deuterium atom or the simultaneous abstrac-
tion of one hydrogen and one deuterium atom from CH3D:

P (CD∩CH3D)

P (CH3D)
=

1η
CD|HD
CH4+O(1D)

η̃
≡ X, (B44)

P (OD∩CH3D)

P (CH3D)
=

1η
OD|HD
CH4+O(1D)

η̃
≡ Y, (B45)

and:

P (HD∩CH3D)

P (CH3D)
=

3

η̃
≡ Z, (B46)

where:

η̃ ≡ 3η
CH|HD
CH4+O(1D)

+1η
CD|HD
CH4+O(1D)

+3η
OH|HD
CH4+O(1D)

+1η
OD|HD
CH4+O(1D)

+3η
HH|HD
CH4+O(1D)

+3. (B47)

All abstraction preference ratios are referred to the most im-
probable abstraction; The simultaneous abstraction of one
hydrogen and one deuterium atom. The abstraction proba-
bility ratios in the expressions above are defined as follows:

η
CH|HD
CH4+O(1D)

=η
CH|HH
CH4+O(1D)

η
HH|HD
CH4+O(1D)

, (B48)

η
CD|HD
CH4+O(1D)

=η
CD|CH
CH4+O(1D)

η
CH|HH
CH4+O(1D)

η
HH|HD
CH4+O(1D)

, (B49)

η
OH|HD
CH4+O(1D)

=η
OH|HH
CH4+O(1D)

η
HH|HD
CH4+O(1D)

, (B50)

and:

η
OD|HD
CH4+O(1D)

=η
OD|OH
CH4+O(1D)

η
OH|HH
CH4+O(1D)

η
HH|HD
CH4+O(1D)

. (B51)

The abstraction probability ratiosη
CH|HH
CH4+O(1D)

and

η
OH|HH
CH4+O(1D)

can be derived from the branching ratios

of the non-deuterated (Reaction (B3a) in TableA1). No
data was available to derive the values for the remaining
abstraction probability ratios. Therefore, we assumed
η

CD|CH
CH4+O(1D)

andη
OD|OH
CH4+O(1D)

to be equal to 1/ηCH|CD
CH4+OH. A

bit arbitrarily, the last probability ratio was defined as:

η
CD|CH
CH4+O(1D)

=
2η

CH|CD
CH4+O(1D)

η
CH|CD
CH4+O(1D)

+1
. (B52)

Due to the assumptions underlying the derivation above, the
uncertainty in the actual values for the KIE and IB ratios is
expected to be significant. Therefore, any results obtained
from model calculations including the oxidation of CH4 by
O

(
1D

)
in the hydrogen chemistry scheme can only be con-

sidered as indicative.
By writing the inverse of the KIE in a form similar to

Eq. (B10) in Sect.B2, we can reduce the four numerator-
denominator parts in the resulting expression to:

A ≡
3

4

1

1+
P(CH4∩OH)
P (CH4∩CH)

+
P(CH4∩HH)
P (CH4∩CH)

, (B53)

B ≡
3

4

1
P(CH4∩CH)
P (CH4∩OH)

+1+
P(CH4∩HH)
P (CH4∩OH)

, (B54)

C ≡
3

6

1
P(CH4∩CH)
P (CH4∩HH)

+
P(CH4∩OH)
P (CH4∩HH)

+1
. (B55)

and:

D ≡ (X+Y +Z)KIE−1
CH3D+O(1D)

. (B56)

The expression for the KIE for this reaction thus becomes:

KIECH3D+O(1D)
∼=

1−X−Y−Z

A+B +C
. (B57)

Finally, we will derive the expressions for the IB ratios for
this reaction. Using Eqs. (B41) to (B43) we can write the
following expressions for the set of IB ratios that belong to
the reactions for which the deuterium atom is preserved in
the product molecules that are a precursor for HD:

α1H
CH3D+O(1D)

≡ P (CH|CH3D)

∼=
3

4
P (CH|CH4)KIECH3D+O(1D), (B58)
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Table C1. Considered bimolecular VOC oxidation reactions.

Number Reaction A E/R KIE[
cm3molec−1s−1

]
[K]

B15a C5H8+OH
2.000
−−−→ CH2O 2.70×10−11

−390

B15b C5H7D+OH
αH

C5H7D+OH
−−−−−−−→ CHDO 1
αL

C5H7D+OH
−−−−−−−→ CH2O

B16a PA+NO −→ CH3OO 7.50×10−12
−290

B16b DPA+NO
αDPA+NO
−−−−−−→ CH2DOO 1

B17a PA+HO2 −→ CH3OO 5.20×10−13
−983

B17b DPA+HO2
αDPA+HO2
−−−−−−→ CH2DOO 1

Table C2. Considered termolecular VOC oxidation reactions.

Number Reaction k0 ku n m KIE[
cm6molec−2s−1

] [
cm3molec−1s−1

]
T2a C2H4+OH −→ CH2O 7.0×10−29 9.0×10−12 3.1 0.0

T2b C2H3D+OH
αH

C2H3D+OH
−−−−−−−→ CHDO 1
αL

C2H3D+OH
−−−−−−−→ CH2O

T3a CnH2n+OH
1.500
−−−→ CH2O 8.0×10−27 3.0×10−11 3.5 1.0

T3b CnH2n−1D+OH
αH

CnH2n−1D+OH
−−−−−−−−−→ CHDO 1
αL

CnH2n−1D+OH
−−−−−−−−−→ CH2O

α2H
CH3D+O(1D)

≡ P (OH|CH3D)

∼=
3

4
P (OH|CH4)KIECH3D+O(1D), (B59)

and:

α3H
CH3D+O(1D)

≡ P (HH|CH3D)

∼=
3

6
P (HH|CH4)KIECH3D+O(1D). (B60)

The second set of IB ratios follows directly from Eqs. (B44)
to (B46):

α1L
CH3D+O(1D)

≡ P (CD|CH3D) = X, (B61)

α2L
CH3D+O(1D)

≡ P (OD|CH3D) = Y, (B62)

and:

α3L
CH3D+O(1D)

≡ P (HD|CH3D) = Z. (B63)

B6 CH4+Cl reaction

The reaction of methane with chlorine is characterized with
an unusually large KIE; 1.459 at 298 K (Sander et al., 2006).
Contrary to the reaction of methane with hydroxyl (see
Sect.2.1), the KIE>4/3 can not be expressed as a ratio of
linear combinations of abstraction probability ratios if the ab-
straction probability of H is similar in both isotopologues. In
this case, our independent bond approximation fails since the
reactivity of the C-H bonds is clearly affected by the presence
of the C-D bond. As an ad hoc alternative to molecular ki-
netics calculations, we chose to introduce an extra parameter
f in the expression for the KIE for this reaction:

KIECH4+Cl=
4η

CH|CD
CH4+Cl

3η
CH|CD
CH4+Clf +1

. (B64)

In this expression,ηCH|CD
CH4+Cl is set equal toηCH|CD

CH4+OH and the
valuef =0.855 is chosen such that the resulting KIE equals
the target value. The IB ratios can be calculated using:

αH
CH3D+Cl ≡ P (CH|CH3D) ∼=

3

4
KIECH3D+Clf, (B65)
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and:

αL
CH3D+Cl ≡ P (CD|CH3D) ∼= 1−P (CH|CH3D). (B66)

Appendix C

Overview of VOC oxidation reactions

Please view TablesC1andC2.
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