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We discuss power corrections associated with the infrared behavior of the perturbative running coupling
in the eikonal approximation to Drell-Yan and other annihilation cross sections in hadron-hadron
scattering. General properties of the eikonal approximation imply that only even powers of the energy
scale are necessary.

1 Introduction

Power corrections 1,2 are phenomenologically

significant in many QCD hard-scattering

cross sections for which the operator product

expansion is not directly available. Examples

that have received considerable attention in-

clude event shapes in electron-positron anni-

hilation and transverse momentum distribu-

tions in Drell-Yan cross sections. In each of

these cases, a perturbative description of the

cross section leads to integrals of the form

Ip ≡ Q−p
∫ Q

0 dµµp−1 αs(µ) with Q the hard

scale and p ≥ 1. In perturbation theory with

a fixed coupling, Ip is just a number, but

when the coupling runs, the integral becomes

ill-defined at its lower limit. This observa-

tion requires us to introduce a minimal set

of power corrections of the form λp/Q
p, one

for each ambiguous Ip that we encounter 3,4.

The perturbative expression is cut off, or oth-

erwise regularized to make it finite without

changing the set of exponents p. The values

of the coefficients λp are then to be found by

comparison with experiment; they depend on

the nature of the perturbative regularization

that is employed. In any case, it is only the

sum of regularized perturbation theory and

power corrections that has physical meaning.

The first step in this process is to show

that in some self-consistent approximation

the cross section at hand may be written in

terms of integrals like the Ip above. In many

cases, this step involves the resummation of

logarithms associated with soft gluon emis-

sion, for which the eikonal approximation is
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useful. In this talka, we discuss an expression

for the eikonal approximation in hadronic col-

lisions, where the analysis of power correc-

tions through the running coupling is partic-

ularly transparent.

2 The Eikonal Cross Section

To be specific, we discuss the eikonal approx-

imation as it appears when partons a and

b combine through an electroweak current,

such as the Drell-Yan annihilation of quark

with antiquark to a lepton pair or gluon fu-

sion to a Higgs boson,

σ
(eik)
ab (q) =

∫

d4x eiq·x〈0|W †
ab(x)Wab(−0)|0〉.

(1)

The operators Wab are defined by

Wab(0) ≡ Φ†
β′ (0)Φβ(0) , (2)

in terms of nonabelian phase operators for

a and b, Φβ(0) = P e
−ig

∫

∞

0

dλβ·A(λβ)
, with

lightlike velocities β and β′, β · β′ = 1.

The eikonal cross sections reproduce

the logarithms, as singular as (Q/q0)α
n
s

ln2n−1(q0/Q) and (Q/qT )α
n
s ln2n−1(qT /Q),

that characterize the edges of partonic phase

space at which the energy of radiation, q0, or

its total transverse momentum, qT , vanish.

The resummation of these logarithms is most

convenient in terms of transforms,

σ̃
(eik)
ab (N,b) =

∫

d4q e−Nq0−ib·q σ
(eik)
ab (q) .

(3)

In the transformed functions we find loga-

rithms at each order up to αn
s ln

2n N and

αn
s ln

2n(bQ), which exponentiate. The ex-

ponentiation of energy logarithms is known

as threshold resummation 5,6,7, of transverse

momentum logarithms as kT resummation
7,8.
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3 Exponentiation

Transforms of the eikonal cross section may

be written in exponential form on the ba-

sis of algebraic considerations that have been

known for a long time,

σ̃
(eik)
ab (N,b) = exp

[

E
(eik)
ab (N,bQ, ǫ)

]

, (4)

where the exponent is an integral over func-

tions wab, sometimes called “webs” 9, which

are defined by a modified set of diagrammatic

rules,

E
(eik)
ab = 2

∫ Q d4−2ǫk

Ω1−2ǫ

× wab

(

k2,
k · βk · β′

β · β′
, µ2, αs(µ

2), ǫ

)

×
(

e−N(k0/Q)+ik·b − 1
)

. (5)

The variable k in this expression may be

thought of as the momentum contributed by

the web to the final state. The webs factor

from each other under the transforms, and

indeed in any symmetric integral over phase

space. 11

Webs have a number of restrictive prop-

erties. At fixed k, they are invariant un-

der rescalings of the velocities in the eikonal

phases, which corresponds to boost invari-

ance under the axis defined by the two. In

addition, at any fixed order, the web func-

tion has only one overall collinear and IR

divergence, from kT → 0 and k0 → 0, re-

spectively. Finally, the web functions have

no overall renormalization:

µ
d

dµ
wab

(

k2,
k · βk · β′

β · β′
, µ2, αs(µ

2), ǫ

)

= 0 .

(6)

Using boost invariance in the large-N

limit, we find that the exponent takes the

form

E
(eik)
ab = 2

∫

d2−2ǫkT
Ω1−2ǫ

(7)

×

∫ Q2−k2

T

0

dk2 wab

(

k2, k2T + k2
)

2



×

[

e−ib·kT K0



2N

√

k2T + k2

Q2





− ln

√

Q2

k2T + k2

]

+O
(

e−N
)

.

This expression, which requires dimensional

regularization for its collinear divergences, is

completely general for the eikonal cross sec-

tion.

4 Factorization

The factorized hard-scattering function,

σ̂
(eik)
ab , for the eikonal cross section may be

constructed in moment space to O(1/N) by

dividing by moments of eikonal distributions,
10

φ̃
(eik)
f (N,µ, ǫ) (8)

= exp

[

− ln (NeγE )

∫ µ2

0

dµ′2

µ′2
Af

(

αs(µ
′2)

)

]

,

where Aa, with A
(1)
a = Ca, is the coefficient

of lnN in the Nth moment of the a → a split-

ting function. Factorization theorems ensure

the cancellation of collinear divergences in

the resulting hard-scattering functions. In-

voking this requirement, we find an explicit

relation between the webs and the anomalous

dimensions,

∫ Q2−k2

T

0

dk2 wab

(

k2, k2T + k2
)

(9)

=
Aa

(

αs(k
2
T )

)

+Ab

(

αs(k
2
T )

)

(k2T )
1−2ǫ

+ . . . .

In this fashion, we derive a general form

for the eikonal approximation to the hard-

scattering functions σ̂ab of electroweak anni-

hilation,

σ̂
(eik)
ab (N,b, Q, µ) =

σ
(eik)
ab (N,b, Q)

φ̃a(N,µ)φb(N,µ)

= exp
[

Ê
(eik)
ab (N, b,Q)

]

, (10)

where the collinear-finite exponent (here

shown in a simplified form, accurate to NLL)

is:

Ê
(eik)
ab =

∫ Q2

0

dk2T
k2T

∑

i=a,b

Ai

(

αs(k
2
T )

)

×

[

J0 (bkT ) K0

(

2NkT
Q

)

+ ln

(

NeγEkT
Q

)]

.

(11)

This result is the basis of the joint threshold-

kT resummation 12 developed in Ref. 13.

As described above, the resummation of

logarithms as in (11) requires the inclusion

of power corrections in both Q−1 as well as

b, to compensate for the ill-defined behavior

of the strong coupling at low scales. In 3 it

was shown that for the Drell-Yan cross sec-

tion only integer powers ofQ−1 are necessary;

in 14 models of the running coupling were in-

voked to suggest that power corrections begin

at order Q−2. Eq. (7) implies that only even

powers of Q are present in all generality for

the eikonal approximation. This is because,

up to a single log, the expansion of the Bessel

function K0(z) at small z involves only even

powers of z. This conclusion includes, and

requires, an expression which, like Eq. (7),

is accurate to the level of “constant terms”,

(lnN)0. Other consequences of this approach

have been discussed in Ref. 13.
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