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Abstract

This document expands our structural knowledge of topological modular forms
TMF in two directions: the first, by extending the functoriality inherent to the
definition of TMF, and the second, being tools to calculate the effect that en-
domorphisms of TMF have on homotopy groups. These structural statements
allow us to lift classical operations on modular forms, such as Adams opera-
tions, Hecke operators, and Atkin—Lehner involutions, to stable operations on
TMF. Some novel applications of these operations are then found, including a
derivation of some congruences of Ramanujan in a purely homotopy theoretic
manner, improvements upon known bounds of Maeda’s conjecture, as well as
some applications in homotopy theory. These techniques serve as teasers for the
potential of these operations.

Dit document breidt onze structurele kennis van topologische modulaire vor-
men TMF in twee richtingen uit: de eerste, door de functoraliteit uit te breiden
die inherent is aan de definitie van TMF, en de tweede, door hulpmiddelen te
zijn om het effect te berekenen dat endomorfismen van TMF hebben op ho-
motopiegroepen. Deze structurele verklaringen laten toe om klassieke operaties
op modulaire vormen, zoals de operaties van Adams, de operatoren van Hecke
en de involuties van Atkin en Lehner, op te heffen naar stabiele operaties op
TMF. Vervolgens worden enkele nieuwe toepassingen van deze operaties gevon-
den, waaronder een afleiding van enkele congruenties van Ramanujan op een
zuiver homotopie-theoretische manier, verbeteringen van gekende limieten van
Maeda’s vermoeden, alsook enkele toepassingen in de homotopie theorie. Deze
technieken dienen als teasers voor het potentieel van deze operaties.

This thesis is a combination of [Dav20], [Dav21a], [Dav21b], and [Dav22],
with some elaborations and added context.
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Chapter 1

Introduction

For those of us who write, it is necessary to
scrutinise not only the truth of what we speak, but
the truth of that language by which we speak it.
For others, it is to share and spread also those
words that are meaningful to us. But primarily for
us all, it is necessary to teach by living and
speaking those truths which we believe and know
beyond understanding. Because in this way alone
we can survive, by taking part in a process of life
that is creative and continuing, that is growth.

Audre Lorde, The Transformation of Silence into
Language and Action

The cohomology theoryE| Tmf of topological modular forms, as well as its
periodic and connective variants (denoted by TMF and tmf, respectively), have
been of intense focus in modern homotopy theory. A lot of attention surrounded
its initial construction and connections to modular forms and elliptic genera
([Hop95l Hop02]). This excitement has continued until now, with further uses of
these cohomology theories to make conclusions about elements in the stable ho-
motopy groups of spheres ([WX17, TWX20]), study resolutions of the K(2)-local
sphere ([Beh06, [GHMRO05]), and construct E..-forms of BP(2) ([HLI10, HM17]).
The looming figures of equivariant elliptic cohomology ([GM20]), Lurie’s series
of papers [ECT] [EC2] [EC3|, [SUR09] born out of spectral algebraic geometry, and
the hope for a geometric model connected to physics ([ST11]) also promise that
this will be an active area of study in the future.

One of the main goals of this thesis is inspired less by the geometric side of
TMF, and rather its connections to number theory and arithmetic geometry.
The homotopy groups of TMF naturally map into the ring MF, of (mero-

IThe reader who is not a practicing homotopy theorist may want to start with
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morphic) modular forms—a classical object in number theory. The original
definition of MF, is as a complex vector space of holomorphic functions on the
half-plane satisfying a certain modular transformation property. However, the
algebraic geometry of the mid-twentieth century recast each group MFy as the
global sections of a k-fold tensor product of a line bundle w on the moduli stack
of elliptic curves Mgy. The connection to TMF comes from the construction of
TMEF as the global sections of a sheaf &P of E,.-rings on Mgy with the prop-
erty that each mo, &P can be identified with w®*. The map mox TMF — MF,,
is then the natural comparison map between a limit (global sections) applied
before or after taking homotopy groups.

To better study MF,, in either the classical sense over C or the neoclassical
sense with stacks, one considers many operations and symmetries such as Hecke
operators T,, whose simultaneous eigenvectors span MF,. There has long been
a lack of such operations on TMF due to some nontrivial technical hurdles. One
can define Hecke operators T,,: MF, — MF, using the neoclassical approach
above with stacks, but this is not a construction that lies solely in the small
étale site of Mgy, upon which 0P is traditionally defined. To mimic this
construction for TMF, our solution is to expand the functoriality of &*°P using
a result of Lurie; originally made public without proof in [BL10, Th.8.1.4]. It is
with this result of Lurie that we start the mathematical content of this thesis.

1.1 Summary of results

The powerful statement of Lurie which promises to expose more symmetries of
TMF is known as Lurie’s theorem. This theorem posits the existence of a sheaf
ﬁ’g)Tpﬁ of E,.-rings on a stack of p-divisible groups (also called Barsotti-Tate
groups) of height n which resembles the Landweber exact cohomology theories
of the 1980s. What follows is a simplified version; a more precise version appears
as Th[2.1.7 and is proven throughout Part [[] of this thesis.

Theorem A (Lurie’s theorem (Th2.1.7)). Let p be a prime andn = 1 a positive
integer. Then there is a sheaf of By -rings ﬁg’Tpp from a site over the moduli
stack of p-divisible groups of height n such that its value on a p-divisible group

G over a ring R is an E-ring & with the following properties:
1. € has a complex orientation and is Landweber exact.
2. There is an isomorphism of rings mo€ ~ R.

3. The homotopy groups m«E vanish for all odd integers and otherwise mor€
is the k-fold tensor product of a line bundle on R.

4. There is an isomorphism between the formal group of the p-divisible group
G and the formal group of &.

Our proof of Th[A]uses much of Lurie’s work from [EC2] as well as important
results from [HAL[SAG]. Let us reiterate that the above theorem is due to Jacob
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Lurie—we only feel obliged to provide a proof as this thesis relies so heavily
upon the result and due to the lack of a publicly available proof. This theorem
is incredibly powerful and we give some examples of how one can utilise this
statement in Chapter [b} The most important example for the rest of this thesis
is the following; one can find details in §5.3]

Ezample 1.1.1. Recall TMF,, is the p-completion of the global sections of the
Goerss—Hopkins-Miller, Lurie sheaf &*°P on the moduli stack Mgy of elliptic
curves. Associated to each elliptic curve F is a p-divisible group E[p*], the
collection of p-power torsion for F. This assignment of an elliptic curve to a
p-divisible group yields a map of stacks Mg, — MBT§~ If we restrict our atten-
tion to p-complete rings, then the classical Serre—Tate theorem says this map of
stacks is formally étale—deformations of elliptic curves are precisely determined
by deformations of their associated p-divisible group. We can pullback ﬁg’Tpg of
ThJA] along this map of stacks to a sheaf of E, -rings over the p-completion of
Megn. This pullback can be identified with the p-completion of °P as these
sheaves are uniquely determined up to homotopy by (a subset of) the conditions
1-4 of Th[A} we prove this folklore uniqueness statement in Appendix [B} This
means that TMF,, can be reconstructed from the p-divisible group &[p™] asso-
ciated with the universal elliptic curve over Mgy; this object has many more
symmetries than & itself (which by universality has essentially no symmetries).
In particular, for integers n not divisible by p, the n-fold multiplication map [n]
on &[p*] is an equivalence and hence induces an automorphism of E,.-rings on
TMF,,. We call these operations stable Adams operations due to the analogy
with those operations on K-theory.

Equipped with Lurie’s theorem, we walk straight towards our first result—an
integral reinterpretation of the previous example.

Theorem B (Th.[6.1.9). Write Isoggy for the site (Df.|6.1.4) whose objects

are those from the small étale site of Mgn and whose morphisms include those
isogenies of elliptic curves of invertible degree. Then there is an étale hypersheaf
0P on Isogp; whose restriction to the small étale site of Mgy is equivalent to
the sheaf 0*°P of [DFHHT])].

These isogenies of elliptic curves in Isogy; then induce extra symmetries on
the sections of %P including TMF. To construct highly structured operations
on TMF using transfer maps, we need to improve the functoriality of &P in
yet another direction—using span oo-categories:

Theorem C (Thl6.2.3). Write fin for the wide subcategory of Isogg; spanned
by finite morphisms. Then there is a unique functor OYP in the following com-
mutative diagram of co-categories:

Isogmn AN CAlg

|

otop
Spang,, (Isoggy) ——— Sp
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Together, Th. and Th. represent the most structured definition of &P
to date—we also hope to soon apply these techniques to obtain a similar (albeit
more subtle and complicated) extension for the sheaf &*°P over the compactifi-
cation Mgy of MEgn; see for some preliminary discussion in this direction
With all this extra structure on O'°P, we can define (Df. stable Hecke
operators

T,: TMF[1] — TMF[L]
n n
with remarkable formal properties. For instance, these Hecke operators nat-
urally commute with Adams operations (Pr. and agree with the more
classical operations on complex modular forms (Pr.. Despite the lack of
“calculations with g-expansions” in the topological case, we are also able to
prove the following composition formulae for stable Hecke operators by manip-
ulating the stacks involved.

Theorem D (Th.7.2.7). Let m and n be positive integers. Then there is a

homotopy of morphisms of spectra

1 1
T, 0T, ~ AT mn : TMF[——] —» TMF[——
’ d%:n v [m”¢] - [mnqS]

where ¢ = ged(6, p(mn)) and ¢(mn) is Euler’s totient function. The above
sum ranges over those positive integers d dividing both m and n. In particular,
T, 0T, is homotopic to T, 0T,,, and if gcd(m,n) = 1 then both are homotopic
to Tmnﬂ

Combining Th[B]and a little inspiration from the classical theory of modular
forms, we can also construct stable Fricke and Atkin—Lehner involutions on
periodic topological modular forms with various level structures

wg: TMFg(N) — TMF(N)
where @ divides N and ged(Q, N/Q) = 1; see

The properties of our stable operations are as good as could be expected
(modulo the dream of their existence on Tmf), however, the key step to encour-
age their usage and applicability is to make some calculations. To this end, we
set up some general principles to calculate the effect of endomorphisms of tmf
or TMF on their homotopy groupsﬂ Let us make two qualitative statements in
this direction.

2My personal and sincere apologies to those who have read the first version of [Dav21ia)
or listened to me give talks on the topic where I claimed such a functorial construction on the
compactification already exists. I was excited and hasty; see §7.7| or the updated [Dav21al.

3The appearance of the number ¢ in this theorem is rather unfortunate, and could be
removed if one can show the group mo TMFo("*) contains no torsion for each dlm,n; see
Rmkm The author has also recently obtained a homotopy between T, 0 Ty, and Ty, 0 Ty,
over TMF[%] which will appear in [Dav22).

4Recently, Candelori-Salch [CS22al [CS22h] have made some new computational steps
in calculations of stable Hecke operators on the elliptic cohomology of spaces which are not
necessarily spheres. Some of their work can be translated into our setting over TMF, however,
as mentioned in [CS22al Rmk.3.3], there is not much point in doing so.



1.1. SUMMARY OF RESULTS

Theorem E (Thi8.0.1). Writing Tors for the torsion subgroup of mwy tmf, there
is a splitting of abelian groups

Ty tmf ~ Free @ Tors

which is natural with respect to endomorphisms of the spectrum tmf. In par-
ticular, if f: tmf — tmf is a map of spectra, then one has the containment
f(Bree) € Free. This result is compatible with localisations and completions at
primes, and also holds for TMF.

One can wonder about how general the above phenomenon is. It holds
for other likable spectra such as topological K-theories for trivial reasons and
some variants of topological modular forms we tried, but it does not hold for the
Eilenberg-MacLane spectrum Z@Z/2Z nor does it hold if we allow shifts (think
of multiplication by a torsion element). The proof of Th. uses the theory of
synthetic spectra or C-motivic homotopy theory, and a basic application of these
tools also yields the following general computational statement.

Theorem F (Th[8.0.2). Let x € 7, tmf be a homogeneous torsion element with
DSS decomposition a-t (D and f: tmf — tmf be an morphism of spectra.
Then f(x) is represented by fag(a)t on the E.-page of the descent spectral
sequence for tmf, where fag is the map f induces on Es-pages. Moreover, if
@ is nearby the Hurewicz image (Df[8.3.]), then f(z) = f(1)x. This result is
compatible with localisations, completions, and also holds for TMF.

Combining Ths[E] and [F] and applying these statements to the Adams oper-
ations and Hecke operators on TMF, we obtain a complete calculation of these
operations on homotopy groups.

Theorem G (Ths}9.0.1l and [9.0.2)). Given an integer k we have the following

equality for every homogeneous element x € Ty, TMF[%]:

'L/)k(x) _ {:17 x € Fors

||
k= x x € Free

The same also holds for p-adic Adams operations. Fix a positive integer n.

e For each homogeneous element x € Free S TMF[%] the image of x
under T,, satisfies T, (x) = nT&(x), where T2® are the classical Hecke
operators acting on x considered as a classical modular form.

e For each homogeneous element € Tors € 7, TMF[] the element T, (z)
is represented by nT28(a)t on the E.,-page of the descent spectral sequence,
where at is a DSS decomposition (Df}8.3.1)) for x.

We can also use the generic methods of Ths[E]and [F]to show the necessity of
inverting k or n when defining the stable Adams operation 1* or Hecke opera-
tor T,, on TMF, at least in the cases when k and n are powers of 2 and 3; see
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After we have defined Adams operations and Hecke operators on TMF,
checked some of their basic properties, and calculated their effects on homotopy
groups, it remains to explore various applications of these operations. The ap-
plications we discuss in this thesis are of two varieties: using their existence and
the calculations above to obtain various congruences between modular forms,
and using inspiration from topological K-theory to make statements in stable
homotopy theory. Let us now give examples of both.

1.1.1 Arithmetic applications

First, recall the normalised Eisenstein series Eop is a modular form of weight
2k with the g-expansion

Eo(7) —1—7202/9 1 q=emr

where By, are the Bernoulli numbers and oa9p_1(i) = Zd‘i d?*=1 are the gener-
alised divisor sum functions. One also defines the modular discriminant A by
the equation and g-expansion

E} - E2

o8]
A="2_"F A(T)=Z7'qu
1728 &

where 7(i) is Ramanujan’s T-function. The coefficients in the g-expansions of
the above modular forms are of much interest in number theory and also nat-
urally appear in our calculations of Hecke operators on the homotopy groups
of TMF. In particular, using the torsion inside 7, TMF, we can reprove simple
congruences of Ramanujan such as n7(n) =3 o1(n) for n not divisible by 3 and
nt(n) =g o(n) for all odd n. One can further exploit other simple congruences
occurring from our calculations to prove some extra cases of Maeda’s conjecture.

Write S, © mka for the subspace of weight k cusp forms, those holomorphic
modular forms with vanishing constant term in their g-expansion. The classical
Hecke operators T2# act on mf, and preserve the subspace of cusp forms Sj.
The following is due to Maeda [HM9S].

Conjecture 1.1.2. For every integer n = 2, the characteristic polynomial F of
T,, acting on S is irreducible over Q and the Galois group of the splitting field
of F is the fully symmetric group on d letters, where d = dimq Sk.

Using some congruences acquired from analysing the action of T, on the
homotopy groups of TMF, we verify the following cases of Maeda’s conjecture.

Theorem H (Th.[10.2.5). Let k,n = 2 be two coprime integers with n not
divisible by 3 satisfying the following conditions:

1. k < 1,000 and for all 1 < i < k—1, the coefficient of ¢* in the q-expansion
of A" is divisible by 3.
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2. For each prime factor p of n with exponent e, if p =3 1 then e =¢ 0,1, 3,4,
and if p=3 2 then e is even.

Then Ty, acting on Siok satisfies Maeda’s conjecture.

Example values of k < 20 are 2,3,6,9, and 18.

Another more complicated statement is also made at the prime p = 2; see
Th([10.2.6] We are restricted to the primes 2 and 3 for these kinds of statements,
as we rely on the torsion elements in 7w, TMF. If our stable operations above
extend to coherent operations over the compactified moduli stack Mgy, then
one could obtain statements at other primes. In fact, we do this in some isolated
cases, constructing handicraft stable p-adic Adams operations ¥ : tmf, — tmf,
for p-adic units k € Z;. This leads us to some topological applications.

1.1.2 Topological applications

Inspired by the Adams summand £, a p-complete spectrum for odd primes p
which is a direct summand of connective p-complete complex K-theory ku,, we
define height two Adams summands u and U in the connective and periodic
cases, respectively. These constructions share some formal properties with ¢,
but not all of them.

Theorem I (Th. Let p be an odd prime. The canonical map of B -rings
U — TMF,, witnesses the codomain as a quasi-free module over the domain of
rank p—;l. The canonical map of E.-rings u — tmf, recognises the codomain
as a quasi-free module over the domain of rank ”2;1 if p— 1 divides 12, and
otherwise tmf, is never a quasi-free u-module.

We hope that such splittings may simplify computations of tmf,-based Adams
spectral sequences. In general, it seems that the cofibre of a certain map
(‘B(p—1 , X4 — tmf, is equivalent as a u-module to a sum of shifts of ¢; see
Conj . Another speculative application of u is its close relation to forms
of BP(2). Inspired by topological K-theory yet again, we define a height two
image of J spectra jo, whose formal properties immediately describe part of the
image of the unit map S — jo in homotopy.

Theorem J (Th|10.4.2). At the prime 2, all elements c;); € T2;_1S2 detected
by classes in the 1-line of the Adams—Novikov spectral sequence for the sphere
have nontrivial image in mTo; _1js.

Our applications of stable operations on TMF (and tmf) indicate that even
more highly structured operations would yield stronger results, and how stronger
results in homotopy theory, such as a calculation of the Adams spectral sequence
for jo, would yield strong number-theoretic congruences. This continues the
ongoing theme of this thesis: more sophisticated homotopy theoretic techniques
yield stronger number theoretic results.
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1.2 Outline

This thesis contains three main parts and three additional small appendices. We
have tried to phrase each chapter in isolation, so the reader interested in stable
Hecke operators can jump straight to Chapter [7] without having to go through
all of Part [[] for example. The same goes for the calculations and applications
found in Chapters [9 and

1.2.1 Summary of Part [I]

The first part of this thesis concerns a discussion, proof, and applications of
a statement known as Lurie’s theorem (Th.[A)). Originally stated in [BLIO,
Th.8.1.4] without proof, this powerful theorem is crucial to the rest of this
thesis, so we conclude that here and now is the correct place to give a proof.
We also discuss applications to TMF and beyond.

Chapter [2] — The statement of Lurie’s theorem is a little involved, so in
this chapter, we discuss the precise statement thereof Th- This involves
defining the sites upon which the sheaf ot Tp of Lurie’s theorem is defined
(Df. and discussing the motivation behind some of the conditions on the
objects defining these sites. We also conclude with an outline of our proof (

Chapter (3| — The phrase formally étale is not discussed in [SAG], however,
it can be used to simplify some arguments revolving around deformation theory
in spectral algebraic geometry. In this chapter, we first define what formally
étale means for morphisms between presheaves of discrete rings (, then for
presheaves of connective E, -rings (7 as well as discuss their basic properties
and some examples. In §[3.3] we show that applying this theory to formally
étale maps into the moduli stack of p-divisible groups can be uniquely realised
in spectral algebraic geometry (Th.

Chapter [4— Here we define the sheaf orer BT? in the statement of Lurie’s theo-
rem and prove it satisfies the desired conditions. The construction Df of
this sheaf applies the deformation theory of Chapter [3|together w1th a globahsa—
tion (§4.1)) of the orientation theory of [EC2]. This leads to a natural definition
of ﬁto ™ and we use Lurle s orientation theory to further identify the image of

affine ObJeCtb under O BTp with an orientation classifier (Pru In ' we

use this construction of ﬁBTp to prove Lurie’s theorem.

Chapter [5|— The strength of Lurie’s theorem lies in its wide variety of appli-
cations. In this chapter, we prove that many of our favourite stable homotopy
types can be recovered from ﬁto ™ and we emphasise the use of Lurie’s theorem
to obtain operations on these Cohomology theories. In particular, we discuss
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topological K-theory (§ and periodic topological modular forms (§ in-
depth, and mention Lubin—Tate theories (which naturally generalise to Barsotti—
Tate theories here) (§5.2) and topological automorphic forms (§5.4). We also
initiate a general study of stable Adams operations ( on sections of ﬁ’g)Tpﬁ —a
precursor for the operations to come in Part [[I}

1.2.2 Summary of Part [[I|

The middle part of this thesis provides us with the Adams operations, Hecke op-
erators, and Atkin—Lehner involutions on topological modular forms and proves
their basic properties.

Chapter [6] — In this chapter, we prove two functoriality results concerning
the sheaf 0*°P defining TMF. First, we show that &*°P can be extended (Th/B])
from the small étale site of Mgy to another site Isoggy (Df which also cap-
tures isogenies of elliptic curves of invertible degree. This is done using Lurie’s
theorem of Part [[] together with some rational information. Next, we show that
O'*°P can be further extended to a kind of spectral Mackey functor (Th which
encodes the homotopy coherence of transfer maps of finite morphisms in Isogg;.

Chapter [7] — The titular stable operations are defined in this chapter. In
§ we define the stable Adams operations ¢ on TMF[] and discuss their
basic properties (Th[7.1.2). In §[7.2] we define stable Hecke operators, show
their compatibility with the stable Adams operations (Pr, and state our
desired composition formula (Th. This latter statement requires two more
sections and to prove, as we have to carefully study the stacks involved
in the definition of composing two Hecke operators—something that ought to be
classical, and yet this approach seems to be new. In we compare these stable
Hecke operators on TMF with the classical Hecke operators arising in number
theory (Pr. In we define Atkin-Lehner involutions wg on TMF( (V)
and discuss there basic properties. We finish this chapter with a short section
explaining a patchwork solution to extending some of these stable operations
to the compactified moduli stack Mgy and hence to Tmf. In particular, we
outline how one could obtain stable Adams operations on Tmf, although the
answer is far from satisfactory. We only use this final section as an opportunity
to emphasise how clean our constructions are over Mg and to provide extra
examples to discuss in Part [[T]]

1.2.3 Summary of Part [IT]]

The final part of this thesis is concerned with the basic calculations and some
applications of the stable operations constructed in Part [l We will assume
at this stage that the reader is familiar with some of the basics of topological
modular forms, as can be found in [DFHHI14] and [Beh20)], for example.



1.2. OUTLINE

Chapter [8|— In this chapter, we discuss general tools for calculating the effect
of endomorphisms of the spectra tmf and TMF on homotopy groups. The first
is Th[E] which states that a torsion-free element of 7, tmf is sent to a torsion-
free element under an endomorphism of tmf, which allows one to carry out
calculations by rationalisation. The second is Th[F] which allows us to compute
the effect of endomorphisms of tmf on arbitrary elements of 7, tmf using the
descent spectral sequence without any fear of extension problems. Both of these
statements are proved using the theory of synthetic spectra (or equivalently, C-
motivic homotopy theory) and the object mmf of motivic modular forms. We
discuss the basic properties of this object and its bigraded homotopy groups
in §B8.1} and use these calculations to prove Th[E| and Th[F] We also discuss
how Anderson and Serre duality can be used to extend our calculations to Tmf

(§).

Chapter [9]— Using the general theory of Chapter [8] we can now calculate the
effect of our Adams operations and Hecke operators on the homotopy groups
of TMF. Apart from Chapters [6] and [7] where we build some technology and
define these stable operations, we think this section will be the most useful to
the general homotopy theory community, as the formulae found in Th.[G] are
reasonably easy to use. We end this chapter with a conjecture (Conj.@ on
the duals of multiplicative endomorphisms of self-dual ring spectra inspired by
our calculations, and some statements (§ on the necessity to invert n to
define stable Hecke operators.

Chapter — In this final chapter, we advertise the utility of the stable
Adams operations and Hecke operators of Chapter[7] Our first main application
is using the existence of Hecke operators on TMF to obtain various congruences
of modular forms. This allows us to recover known number-theoretic congru-
ences due to Ramanujan as well as apply some newer-looking congruences to
obtain improved bounds of Maeda’s conjecture (Th.. Our second main col-
lection of results is applications in stable homotopy theory. By adapting ideas
from topological K-theory due to Adams, we define a summand u of p-complete
connective tmf, at odd primes p, a kind of height two Adams summand. We
show that, unlike the height one situation, tmf,, rarely splits as a sum of shifts of
u (ThI), although this always holds if we “invert A.” Connections to the height
one image of J spectrum j are also made, and we construct a spectrum jo whose
homotopy groups contain m,j as a summand (Th.. This eclectic collection of
applications is hopefully just a warm-up for future applications.

1.2.4 Summary of appendices

Our three appendices are of three very different flavours and are used to com-
plement other parts of this thesis.

10



1.3. NOTATION, CONVENTIONS, AND BACKGROUND

§[A] Our first appendix was originally an appendix for Part [, as there we
use many facts about formal spectral algebraic geometry which cannot (yet)
be found in [SAG] but which are obvious extensions of ideas from elsewhere in

[SAG].

This second appendix concerns another statement that can be found (and
is vitally used) in the literature, but for which there is no publicly available
proof. The proof is much more straightforward than that of Lurie’s theorem,
however, it still contains its subtleties. The statement claims that the sheaf &*°P
used to define Tmf is uniquely defined (up to homotopy) as a sheaf of E -rings
which takes values in elliptic cohomology theories. This theorem is used time
and time again in the literature to compare various constructions of Tmf and
TMF, and we need to use it in for the same reason.

The final appendix includes summaries for a general audience.
There is the following logical dependency of our chapters:
A

LI

2+34+4

8 —9 —— 10

1.3 Notation, conventions, and background

Broadly speaking, we use the language of oo-categories as a framework for our
homotopy theory. What follows in this subsection is only particularly relevant
to Part [l as there we follow a few conventions the reader may not be familiar
with.

Higher categories and higher algebra

We will make free and extensive use of the language of oo-categories, higher
algebra, and spectral algebraic geometry, following [HTT09], [HA], [SAG], and
especially the conventions listed in [EC2]. In particular:

e For an co-category C and two objects X and Y of C, we write Map,(X,Y)
for the mapping space and Home(X,Y) for the set of maps if C happens
to be the nerve of a 1-category.

e We will write X[n] for the n-fold suspension of an object X, so X[1] is
the pushout of # « X — = in an oco-category C with finite colimits and a
terminal object #. In stable co-categories, n can be negative.

11



1.3. NOTATION, CONVENTIONS, AND BACKGROUND

e All rings will be commutative, and commutative rings and abelian groups
will be treated as discrete E..-rings and spectra. Moreover, the smash
product of spectra will be written as ® even if the spectra involved are
discrete (this does not mean the output will be discrete). The same goes
for completions, and in this case the oc-categorical completions will be
written as (—)7 following [SAGL §7].

e All module categories Modp refer to the stable oo-category of R-modules,
where R is an E,.-ring. In particular, if R is a discrete commutative ring,
then Modpg will be the stable co-category of R-module spectra, and not
the abelian 1-category of R-modules. The same holds for co-categories of
quasi-coherent sheaves.

e Following [EC2] (and contrary to [SAG] and [ECI]), we will write Spec R
for the nonconnective spectral Deligne—-Mumford stack associated to an
E, -ring R.

Moreover, all n-categories are (n,1)-categories, for n = 1,2,00 (except very

briefly in Df}6.1.4)

Sites and sheaves

Lurie’s theorem concerns sheaves between co-categories. The co-categories which
we want to consider as sites are not necessarily (essentially) small, so we a priori
do need to be careful about potential size issues. However, we are interested in
constructing particular functors and proving they are sheaves, so we only really
need to step into a large universal to quantify the definition of a sheaf.

Definition 1.3.1. Given co-category T with a Grothendieck topology 7 ([HTT09,
Df.6.2.2.1]) and an oo-category C then a functor F': T°P — C is a C-valued 7-
sheaf on T if for all T-sieves ’77}( € 7T/x, the composite

((7%)7)

is a limit diagram inside C.

op

= ((T0)7) " = TP e

A hypercover is a generalisation of a cover in a Grothendieck site. In general,
our sheaves, including the sheaf occurring in the statement of Th.[A] will be
hypersheaves. Following [SAG] §A], this variation on a sheaf comes with a more
concrete description.

Definition 1.3.2 ([SAG| Df.A.5.7.1]). Let A, 1 denote the 1-category whose
objects are linearly ordered sets of the form [n] = {0 <1 <--- <n} forn > —1,
and whose morphisms are strictly increasing functions. We will omit the + when
considering the full co-subcategory with n > 0. If T is an oo-category, we will
refer to a functor X,: A‘;f; — T as an augmented semisimplicial object of T.
When 7 admits finite limits, then for each n > 0, we can associate to an

12



1.3. NOTATION, CONVENTIONS, AND BACKGROUND

augmented semisimplicial object X, the nth matching object and its associated
matching map

X, — lim X; = M,(X.)
[i]=[n]

where the limit above is taken over all injective maps [¢] < [n] such that i < n.
Given a collection of morphisms S inside 7, we call an augmented semisimplicial
object X, an S-hypercover (for X_; = X) if the matching maps belong to .S for
every n = 0. Given a Grothendieck topology 7 on T, then a presheaf of spectra
F on T is called a T-hypersheaf if for all 7-hypercovers X,, the natural map

F(X_1) — lgIOIIl’F(X.)
is an equivalence of spectra. Some useful general references for the prefix hyper
in the homotopy theory of sheaves are [CM21], [DHI04], and [SAG] §A-D].

Given T and 7 from Df[I.3.2] then for each 7-covering family {C; — C} in C
one can associate a Cech nerve C, which is a 7-hypercover of C. It is then clear
that 7-hypersheaves are T-sheaves. It is also obvious that if S € S’ then S’-
hypersheaves are S-hypersheaves. We find the following diagram of implications
useful, and they will often be used implicitly:

fpqc hypersheaf =——=> fpqc sheaf

J !

étale hypersheaf ——=> étale sheaf

Let us now state two lemmata regarding hypersheaves. Recall the special
case Un: @at, s — Cat, of the unstraightening functor of [HTTQ9, §3.2].

Lemma 1.3.3. Let T be an co-category with a Grothendieck topology T and let
F: TP — @aty s be a T-sheaf such that the composite

G: 7?05 Caty s — Caty

is also a T-sheaf, where the second functor is the canonical projection. Then the
functor H defined by the composite

Tor £, Caty s Un, Caty,
is a T-sheaf. If F and G are T-hypersheaves, then H is a T-hypersheaf.

More informally, applying a Grothendieck construction to a sheaf is a sheaf.

Proof. Write [[,Co — C for a 7-cover of an object C' in 7. We then note
the following composite of natural equivalences is equivalent to the natural map
H(C) - lim H(C,):

H(C) =Un(F(C): G(C) - S) = Un(lim F(C,): imG(Cy) — S)

13



1.3. NOTATION, CONVENTIONS, AND BACKGROUND

= lim Un(F(C,): G(Cy) — S) = lim H(C,,)

The first equivalence comes from the fact that F' and G are both 7-sheaves and
the second equivalence is from the fact that Un is a right adjoint. The proof for
T-hypersheaves is the same, with 7-covers replaced by 7-hypercovers. O

Lemma 1.3.4 ([SAG, Cor.D.6.3.4 & Th.D.6.3.5]). The identity functor on
CAlg is a hypercomplete CAlg-valued sheaf (with respect to the fpgc topology).
In particular, for any Ey -ring R and any fpqc hypercover R* of R, the following
natural map is an equivalence:

RS limR*

Notice that if R — R*® is an fpqc hypercover of an E,-ring R, then there
are natural equivalences

Ts0R = Tolim R® = lim 70 R* (1.3.5)

from the above lemma and the fact that 7>q: CAlg — CAlg® commutes with
limits as a right adjoint.

Topological rings and formal stacks

With experience, one knows that the study of deformation theory comes hand-
in-hand with the study of rings with a topology and the associated algebraic
geometry. We will follow the definition of an adic E..-ring from [EC2] Df.0.0.11]
except we will only consider the connective case.

Definition 1.3.6. An adic ring A is a discrete ring with a topology defined
by an [-adic topology for some finitely generated ideal of definition I < A.
Morphisms between adic rings are continuous ring homomorphisms, defining a
subcategory CAlng of CAng?. An adic Ey-ring is a connective E,-ring A
such that myA is an adic ring. We define the co-category of adic Eq -rings as
the following fibre product:

CAlgSh = CAlg™ x CAlgY,
CAlg®

An adic E..-ring A is said to be complete if it is complete with respect to an
ideal of definition I; see [SAGL Df.7.3.1.1 & Th.7.3.4.1]. An E..-ring R is local if
o R is a local ring, and we call an adic E,,-ring R local if the topology on 7y R is
defined by the maximal ideal of moR. We give CAlng and CAlg:y the fpqc and

étale topologies via the forgetful functors to CAng and CAlg®™, respectively.
The definition of a formal (spectral) Deligne-Mumford stack follows.

Definition 1.3.7. Let Spf: CAlggq — 0Topgyjs be the functor described in
[SAG| Con.8.1.1.10 & Pr.8.1.2.1]—here ooTop%Ef@ is the co-category of strictly
Henselian spectrally ringed oo-topoi of [SAG, Con.1.4.1.3 & Df.1.4.2.1]. A

14
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spectrally ringed oo-topos X is said to be an affine formal spectral Deligne—
Mumford stack if it lies in the essential image of Spf. A formal spectral Deligne—
Mumford stack is a spectrally ringed co-topos with a cover by affine formal
spectral Deligne-Mumford stacks; see [SAG| Df.8.1.3.1]. Let fSpDM denote the
full co-subcategory of ooTopSCIfffé spanned by formal spectral Deligne-Mumford
stacks. Similarly, one can define a 2-category fDM of classical formal Deligne—
Mumford stacks (Df[A.I.I)—in the classical case, we will further assume all

formal Deligne-Mumford stacks are locally Noetherian.

Definition 1.3.8. Let X = (X, 0%) be a formal spectral Deligne-Mumford
stack. We call an object U inside X affine if the locally spectrally ringed oco-
topos (X, Ox|v) is equivalent to Spf A for some adic E,.-ring A. We will also
say that X is locally Noetherian if for every affine object U of X', the E_ -ring
0Ox(U) is Noetherian in the sense of [HA| Df.7.2.4.30].

Note that Spf B is locally Noetherian if and only if B itself is a Noetherian
E,.-ring; see [SAG, Pr.8.4.2.2].

Functor of points

The classical moduli stack ./\/lgTp is neither a Deligne—Mumford nor an Artin
stack. This necessitates our use of a functorial point of view, for classical, formal,
and spectral algebraic geometry.

Notation 1.3.9. Write Aff = CAlg®?, to which we will add superscripts and
subscripts such as (=), (=)aq, and (—)% as they apply to CAlg.

When working in P(Aff¥) = Fun(CAlg®,S) or P(Aff®) = Fun(CAlg™, S),
we will abuse notation and not distinguish between the objects representing
functors and the functors themselves. This is justified by the following commu-
tative diagram of fully faithful functors of co-categories:

AffY N Affe
\ Q (C)\ cn
(a) Aﬁ‘ad,loc‘N J{ Aﬁad
DMloc.N SpDM
(b) (d)
fDM fSpDM —— P(AfF™)

(1.3.10)
The loc.N subscript denotes those full co-subcategories spanned by Noetherian
or locally Noetherian objects; see Df[I.3.8] The definitions and fully faithfulness
of the functors above are explained in Cor[A.1.5] except the functors (a)-(d),
which can be justified as follows:
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1.3. NOTATION, CONVENTIONS, AND BACKGROUND

(a) is fully faithful as this holds without the locally Noetherian hypotheses;
see [SAGlL Rmk.1.2.3.6] and restrict to the underlying 2-category.

(b) is fully faithful by using part (d) below and Pr Indeed, if Go F and
G are fully faithful, then so if F.

(c) is fully faithful by making a connective version of [SAGlL Rmk.1.4.7.1]; this
is justified by [SAG, Cor.1.4.5.3].

(d) is fully faithful as both SpDM and fSpDM being defined as particular
full co-subcategories of ooToplé’j;lg and because spectral Deligne-Mumford

stacks are formal spectral Deligne-Mumford stacks by [SAGl p. 628].

Similarly, we will consider most of classical algebraic geometry as living in
the 2-category FU.H(CAlg@,Sgl) which we then embed inside the oco-category
P(AfY) using the inclusion S<; — S, which preserves limits.

Warning 1.3.11. When we consider quasi-coherent sheaves on a formal spec-
tral Deligne-Mumford stack X, then what we write as QCoh(X) is what Lurie
would write as QCoh(hz), in other words, we consider the co-categories of quasi-
coherent sheaves of formal spectral Deligne-Mumford stacks through their func-
tors of points. By [SAGL Cor.8.3.4.6], we see that these two notations are equiv-
alent as long as one restricts to almost connective quasi-coherent sheaves on
both sides. As all of our quasi-coherent sheaves of interest will be cotangent
complexes, which are almost connective by definition ([SAG] Df.17.2.4.2]), this
distinction does not matter to us.

Cotangent complexes

Given a natural transformation X — Y between functors in P(AT") which
admits a cotangent complex ([SAGL Df.17.2.4.2]), we will write this cotangent
complex as Lxy and consider it as an object of QCoh(X); see [SAG, §6.2]. A
few specific cases can be made more explicit/[]]

(1) If X — Y is a morphism of spectral Deligne-Mumford stacks and X — Y is
the associated transformation of functors in P(Aff"), then Ly y is equivalent
to Ly/y, defined in [SAG] Df.17.1.1.8] using spectrally ringed oco-topoi, under
the equivalence of categories QCoh(X) ~ QCoh(X) by [SAG| Cor.17.2.5.4]. If
X = Spec B and Y = Spec A, then we have further identifications of Ly with
Lpya, defined in [HA] using E.-rings, under the equivalence of co-categories
QCoh(Spec A) ~ Mod 4; see [SAG], Lm.17.1.2.5].

(2) If X is a formal spectral Deligne-Mumford stack, and X is the associ-
ated functor in P(Aff"), then Lx is equivalent to L%, the completed cotangent
complez of [SAG| Df.17.1.2.8], under the equivalence of categories

~

Ox: QUoh(X)*™ =5 QCoh(X)*"

5Thank you to an anonymous referee of [Dav20] for vastly simplifying example 3 for us.
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of [SAG] Cor.8.3.4.6], where the superscript acn indicates full oo-subcategories
of almost connective objects. If X = Spf A for an adic E,,-ring A, then Lgpt 4
corresponds to (L4)7 (under the equivalence QCoh(SpfA) ~ Mod‘;{’1 of oo-
categories, where [ is a finitely generated ideal of definition for the topology on
moA; see [SAG, Ex.17.1.2.9].

(3) If f: X - 2 is a morphism of formal Deligne-Mumford stacks and we
write F': X — Y for the associated morphism of functors in P(Aff"), then
the cofibre L% ) of the natural map f*Lgy — Lx is naturally equivalent to

~

Lx;y under the equivalence of categories ©x: QCoh(X)*" — QCoh(X)*";
see [SAG] Df.17.1.2.8] for a definition of Lx/q). Indeed, the naturality of ©x in
X ([SAG Con.8.3.4.1]) yields an equivalence Oxo f* ~ F*00gy of functors. Our
desired identification then follows from the existence of the (co)fibre sequences

f*Ly — Lx — Lyy F*Ly — Lx — Ly)y,

the absolute case above§, and the fact that QCoh(X)*® and QCoh(X) are sta-
ble under (co)fibre sequences; see [SAG] Cor.8.2.4.13 & Pr.6.2.3.4], respectively.

Due to the equivalences above, we will drop the completion symbol from our
notation for the cotangent complex between formal spectral Deligne-Mumford
stacks. The following standard properties of the cotangent complex of functors
will be used without explicit reference:

e For a map of connective E. -rings A — B, we have a natural equivalence
in Mod,, B
~ 1 .
moLlpja = Q Bimgas

see [HAL Pr.7.4.3.9].

e For composable transformations of functors X — Y — Z in P(Af"),
where each functor (or each transformation) has a cotangent complex, we
obtain a canonical (co)fibre sequence in QCoh(X)

Lyiz|y = Lxjz = Lxv;
see [SAG] Pr.17.2.5.2].

e If we have transformations X — Y « Y’ of functors inside P(Aff"),
where Ly exists, then Ly, y//y: exists and is naturally equivalent to
7t Lxy; see [SAG, Rmk.17.2.4.6].

Warning 1.3.12 (Topological vs algebraic cotangent complexes). The cotangent
complexes considered in this article are not the same as those developed by
André and Quillen; see [Stal, 08P5]. In particular, for an ordinary commutative
ring R considered as a discrete E-ring, then L is what some call the topological
cotangent complex. For more discussion, see [SAG| §25.3].
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Deformation theory

We will be using ideas from classical deformation theory as well as Lurie’s spec-
tral deformation theory, so we take a moment here to clarify our definitions.
What we discuss below is mostly taken from [EC2] §3].

Definition 1.3.13. Let Gy be a p-divisible group over a commutative ring
Ry and write CAlg;f’il for the co-subcategory of CAlgSy spanned by complete

connective adic E,.-rings. Define a functor Defg, : CAIgZﬂl — & by the formula

Defg,(A) = colim (BTP(A) X HomCRing(RO,ﬂ'oA/I)>
I BT?(moA/I)

where the colimit is indexed over all finitely generated ideals of definition I for
moA. A priori Defg,(A) is an oo-category, but [EC2, Lm.3.1.10] states this is an
oo-groupoid. Let (R, G) be a deformation of Gy, so an element inside Defg, (A);
see [EC2, Df.3.1.4]. We say G is the universal spectral deformation of Gy with

spectral deformation ring R if for every A in CAlg;ﬁl, the natural map

MapCAlgzgl (R, A) = Defg,(A)

is an equivalence. If R is discrete, we say G is the universal classical deformation
of Gg with classical deformation ring R if for every discrete A in CAlg;gl, the
natural map

Mapep gen (B, A) = Defg, (4)

is an equivalence. If such universal spectral (or classical) deformations (R, G)
exist, they are evidently uniquely determined by the pair (Rg, Go).

The above definition agrees with [EC2, Df.3.1.11] in the cases that the R
above is connective. Indeed, in this case, if A is a nonconnective complete adic
E -ring, the fact connective cover is a right adjoint and BT?(A) = BT?(1204)
by definition yields the following equivalences:

Mapgpjged (R, A) =~ Mapgpgea (R, T504) =~ Defg, (T204) =~ Defg,(4)

The following will help us identify many classical deformation rings.

Remark 1.3.14. If a spectral deformation ring R exists for a pair (R, Go), then
a classical deformation ring also does, and it can be taken to be myR. Indeed,
if B is a discrete object of CAlggﬁ1 as in Dff1.3.13] then the fact the truncation
functor is a left adjoint on connective objects yields the equivalences

Defg,(B) ~ MapCAlgzgl (R,B) ~ MapCA1g§§1 (moR, B)

showing that moR is the classical deformation ring of (R, Go).
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Part 1

A proof of Lurie’s theorem






Chapter 2

Statement and outline

Mit der grofitmoglichen Deutlichkeit erblickt man
die winzigsten Details. Es ist, als schaute man
zugleich durch ein umgekehrtes Fernrohr und
durch ein Mikroskop.

W. G. Sebald, Die Ringe des Saturns

The titular theorem promises the existence of a sheaf ﬁBOl?p on some site over

the classical moduli stack of p—divisible groups satisfying certain properties. The
idea behind the definition of &% Tp is to construct morphisms of stacks
M@ _) Mun (_ or
BTH BT, BT?,

and set ﬁg)j?p = D*Q, OF; ™" and check this possesses the desired properties. The

maps of stacks above do not quite exist in our set-up, but the above formula
for ﬁ p is instructive. In this chapter, we state a precise version of Lurie’s
theorem and give a detailed outline of the proof.

2.1 The precise statement

First, let us recall the definition of a p-divisible group over an E, -ring; see [EC2,
Df£.2.0.2] for this definition, and [ECI] §6] or [EC3| §2] for a wider discussion.

Definition 2.1.1. Let R be a connective E.-ring. A p-divisible (Barsotti—Tate)
group over R is a functor G: CAlgR' — Mody' with the following properties:

1. For every connective E, - R-algebra B, the Z-module G(B)[1/p] vanishes.
2. For every finite abelian p-group M, the functor
CAlgy — S B+ Mapyj,q, (M, G(B))

is corepresented by a finite flat E..- R-algebra, which we write as G(M).



2.1. THE PRECISE STATEMENT

3. The map p: G — G is locally surjective with respect to the finite flat
topology.

A p-divisible group over a general E..-ring R, is a p-divisible group over its con-
nective cover. The oo-category BTP(R) of p-divisible groups over an E..-ring
R is the full co-subcategory of Fun(CAlg?? p,Modgz') spanned by p-divisible
groups. Let Mprr be the moduli stack of p-divisible groups, which is the func-
tor inside P(Aff™") defined on objects by sending R to the oo-groupoid core
BT?(R)=; see [EC2| Df.3.2.1]. We say a p-divisible group G has height n if the
finite E, -R-algebra G(Z/pZ) has rank p”; see [ECI, §6.5]. Using this notion
of height, we can further define a subfunctor Mprr for all n > 1 consisting of
all p-divisible groups of height n.

The reader is invited to check for herself that the definition above agrees
with that of [Tat67, §2] when R is discrete.

Remark 2.1.2 (Height is an open condition). We claim Mpr» — Mpr» is an
open embedding. Lurie’s definition of a commutative finite flat group scheme
over R ([ECI, Df.6.1.1]) states that moR — moG(Z/pZ) realises noG(Z/pZ)
as a projective mgA-module of finite rank equal to p"”. By [Stal 00NX], this
rank is locally (with respect to the Zariski topology on | Spec R| = | Spec moR|)
constant. In particular, if R is a local connective E_,-ring then the commutative
finite flat group scheme G(Z/pZ) has a well-defined height and we obtain the
formula:

SpecR ht(G) =n

Speci x MBT?L:{ Z  Wt(G)#n

Mgy
Definition 2.1.3. Let X be a formal spectral Deligne-Mumford stack. A p-
divisible group over X is a natural transformation G: X — Mpre in P(AT").
We say G has height n if this map factors through Mpre. By [EC2, Pr.3.2.2(4)],
this is equivalent to a coherent family of p-divisible groups Gg, on Spec(B;)] ,
where the collection {Spf B; — X}; form an affine étale cover of X and J; is an
ideal of definition for B;.

Our main object of study is the spectral moduli stack Mpyr, although we
are also interested in its relationship to the underlying classical moduli stack.

Notation 2.1.4. For a functor M: CAlg™ — S, write M for its restriction
along CAlg” — CAlg™. We will only use this notation in Part This commutes
with finite products:

(X xY)¥ 5 X9 xvy?

Given an adic Ey-ring B, write M\B for the product M\B = M x Spf B in
P(AT")—the hat indicates a base-change over Spf, rather than Spec.

Notation 2.1.5 (Fixed adic E,.-ring A). Let A denote a fixed complete local
Noetherian adic E,.-ring with perfect residue field of characteristic p. Write Ag
for mg A, m4 for the maximal ideal of Ag, and k4 for the residue field.
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2.1. THE PRECISE STATEMENT

The reader should keep in her mind the initial case of the p-complete sphere
A = S, with associated A, the p-adic integers Z,. Other choices include the
spherical Witt vectors of a perfect field of characteristic p; see [EC2] §5.1].

We can now define the sites occurring in Lurie’s theorem. Adjectives used
in the definition below will be discussed shortly.

Definition 2.1.6. Recall the conventions of Nt[2.1.5l Let

Ca, S P(ARY) s

BT] ,Aq

Q
BT?, Ao

where Xy is a locally Noetherian chsﬂ formal Deligne-Mumford stack with
perfect residue ﬁeldﬂ at all closed points, the cotangent comp on Pl
BTP A
$3.1]

is almost perfecﬂ inside QCoh(X), and Gy is formally étale (§3.1) in P(AfFY).
Similarly, let

denote the full co-subcategory spanned by those objects Gg: Xy — M

Ca C P(AF™)

//(/[\BT%,A

denote the full co-subcategory spanned by those objects G: X — M\BTEL _A Where
X is a locally Noetherian qcgs formal spectral Deligne-Mumford stack with per-
fect residue fields at all closed points and G is formally étale (§3.2)) in P(AF").
We will endow Cy4, and C4 with both the fpqc and étale topologies through the
forgetful map to P(AffY) and P(AF), respectively.

A simplified criterion for an object X — M\ETQ, Ao to lie in C4, is discussed
in Pr2.1.9] For transparency, let us explain the adjectives in the definition of
C4 and Cy,.

(Locally Noetherian) We assume our formal Deligne-Mumford stacks are
locally Noetherian (Df]1.3.8]) because completions of rings in the classical world
and derived world do not necessarily agree; see [SAGL Warn.8.1.0.4]. Moreover,

even in the world of spectral algebraic geometry such objects behave better
([SAG! §8.4]). For example, such objects have natural truncations; see Pr

6 A locally Noetherian and quasi-compact scheme is called a Noetherian scheme. We choose
to keep these two adjectives separate though, as they play different roles in this thesis.

7As our fixed A is assumed to be p-complete, all these residue fields are necessarily of
characteristic p.

8This relative cotangent complex exists as one does for Xo and M\BT?L,A*B' consequence
of [SAG] Pr.17.2.5.1] and [EC2| Pr.3.2.2], respectively.

9Paraphrasing [SAG] §6.2.5], recall that a quasi-coherent sheaf F on a functor
X: CAlg™ — S is almost perfect if for all connective Ex-rings R and all morphisms of
presheaves n: Spec R — X, the R-module n*F is almost perfect; see [HA| Df.7.2.4.10 &
Pr.7.2.4.17] for the latter definition and a simple criterion for Noetherian E-rings, respec-
tively.
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2.1. THE PRECISE STATEMENT

(Qcgs) This acronym stands for quasi-compact and quasi-separated; see Df
When a scheme X is qcgs, then it has an affine Zariski cover Spec A — X (qc)
and the fibre product P = Spec A x x Spec A also has a Zariski cover Spec B — P
(gs). Eventually, we will define an étale (hyper) sheaf DaBﬁTg on the affine objects
of C4, and to extend this to a formal Deligne-Mumford stack X inside C4, we
will rely upon the adjective qcqgs; see Rmk[4.2.3] One could write this thesis
again, with the word separated replacing the word quasi-separated and deleting
all occurrences of the prefix hyper, although the extra generality of hypersheaves
can be useful in practice.

(Formal geometry) One reason we work with the formal variety of spectral
Deligne-Mumford stacks (§A] and [SAG, §8]) is related to topological modular
forms. In one interpretation of the classical Serre-Tate theorem, one must work
with schemes where p is locally nilpotent, ie, over Spf Z,; see Ex[3.1.7] Another
reason is for deformation theoretic purposes. As stated in [EC2, Rmk.3.2.7]:

“The central idea in the proof of Theorem 3.1.15 (of [ECZ]) is (...) to
guarantee the representability of Mptr in a formal neighborhood of any
sufficiently nice R-valued point.”

As our moduli stack of interest is Mprr, we embrace formal spectral algebraic
geometry.

(Closed points have perfect residue fields) A crucial step in showing

our definition of ﬁ]goTpp satisfies the conditions of Th is to reduce ourselves

to the closed points of the affine objects of C4,, essentially reducing us to the
Lubin-Tate theories of [EC2, §5]. It will also be important that these residue
fields are perfect (they will already be of characteristic p as we are working over
SpfZ,) to apply some of our formal arguments; see Pr

(Formally étale over M\BTZ) Again, one inspiration for Lurie’s theorem is
the classical Serre-Tate theorem, which posits that M\gll,zp is formally étale
over M\ng,zp' The phrase formally étale is used in this thesis to control and
package our deformation theory; see §3|

(Cotangent complex conditions in C4,) These conditions are finiteness
hypotheses, however, they are necessary to apply a deep existence criterion of

Lurie; see Th[3:3:10]
The precise version of Lurie’s theorem (ThJ[A]) can now be stated.

Theorem 2.1.7 (Lurie’s Theorem). Given an adic E, -ring A as in Nt[2.1.5,

there is an étale hypersheaf of Eo.-rings ﬁgil{)p on Ca, such that for a formal

affine Ggo: Spf By — //\/\lgTP in Ca, the B, -ring ﬁga?p (Go) = & has the follow-
ing properties: '
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2.1. THE PRECISE STATEMENT

1. & is complex periodicIEI and Landweber exactE

2. There is a natural equivalence of rings mo€ ~ By and & is complete with
respect to an ideal of definition for By. In particular, £ is ma-complete,
hence also p-complete.

3. The groups m,€ vanish for all odd integers k. Otherwise, there are natural
equivalences of By-modules o€ ~ w%ﬁ where w%ﬁ 1s the dualising lin
of the identity Componen@ G§ of Go.

4. There is a natural equivalence of formal groups G§ ~ é?" over By where
the latter is the classical Quillen formal grouﬂ of €.

We have included a few more details compared to the original statement
[BLL10, Th.8.1.4] by incorporating some work of Behrens-Lawson involving Landwe-
ber exactness.

Let us now discuss a simple criterion to check if an object lies in C4,.

Definition 2.1.8. A morphism f: Xy — Spf Ay of classical formal Deligne—
Mumford stacks is locally of finite presentation if for all étale maps Spf By — Xg
the induced morphisms of rings Ay — By are of finite presentation. By the usual
arguments, it suffices to check this on a fixed collection of étale morphisms
Spf By — X which cover Xy. We say f is of finite presentation if f is locally
of finite presentation and quasi-compact (Df.

10Recall from [ECZ, §4.1], that an Eq-ring A is called complex periodic if A is complex
ortentable and weakly 2-periodic. An object E of Sps/ is said to be complex orientable if the
map given map e: S — E admits a factorisation e:

S ~ §2[-2] ~ CP'[-2] » CP*[-2] 5 E;

see [Ada74, §II] or [EC2] §4.1.1]. An Eo-ring A is weakly 2-periodic if A[2] is a locally free
A-module of rank 1, or equivalently, that m2 A is a locally free w9 A-module of rank 1 and the
natural map T2 A ®r,4 T-2A4 — mA is an equivalence. Notice this is a condition, not data.

1A formal group G over a ring R is Landweber exact if the defining map from Spec R to
the moduli stack of formal groups is flat. A complex periodic E-ring is Landweber exact if
its associated Quillen formal group is.

I2Recall from [EC2, §4.2.5], the dualising line of a formal group G over a commutative
ring R is the R-linear dual of its Lie algebra Lie(é). This Lie algebra of a formal group can
be defined in multiple ways, but we will define it as the tangent space of G over R at the unit
section g — R; see [Zin84] for a discussion about Lie algebras associated to formal groups
or here for an English translation.

ISRecall from [EC2, Th.2.0.8], for each p-divisible group G over a p-complete Eo.-ring R
there is a unique formal group G° over R such that on connective Eo-750R-algebras A which
are truncated and p-nilpotent we can describe G°(A) as the fibre of G(A) — G(A™4) induced
by the quotient by the nilradical; see [Tat67, (2.2)] for a classical reference.

MRecall from [EC2, Con.4.1.13], that a complex periodic Eo-ring A comes with an as-
sociated Quillen formal group é% over A. The classical Quillen formal group é%o is the

image of é% under the functor FGroup(A) — FGroup(mpA), or equivalently as the formal
spectrum Spf A°CP®. Notice the above definition is independent of the choice of complex
orientation for A—such a choice would yield a chosen coordinate for our formal group, ie, a
formal group law; see [Goe08|, §2].
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2.1. THE PRECISE STATEMENT

Proposition 2.1.9. Let A be as in Nt. and Gqg: X9 — MB » Ao be a
p-divisible group defined on a formal Deligne— Mumford stack Xy of ﬁmte pre-
sentation over Spf Ay such that the associated map into M is formally
étale. Then Gg lies in Cy,.

BT?, Ao

These simplified hypotheses are practical, but they do not apply to one of our
favourite examples, Lubin—Tate theory, as power series rings R[z] are simply
never of finite presentation over R.

Proof. First, we note that Xy is locally Noetherian, qcgs, and has all residue
fields corresponding to closed points perfect of characteristic p as the morphism
Xo — Spf Ay is of finite presentation@ It remains to show that the cotangent
complex in question,

L= LxO/M\BTZﬁ,A

is almost perfect. To see this, we consider the composition in P(Af")
G() e T2
%0 I MBTQ,,A I SpfA
which induces the following (co)fibre sequence in QCoh(Xy):

GIL o

Myzp a/SPEA Laxg/spta — L

Abbreviating the above to G§L; — Ly — L, we first focus on G{L;. As a
quasi-coherent sheaf on a formal spectral Deligne-Mumford stack Xy, to see
G§ Ly is almost perfect, it suffices to see that n*G{L; is almost perfect inside
QCoh(X) for every morphism 7: X — Xy where X is a spectral Deligne-Mumford
stack; see [SAG| Th.8.3.5.2]. Using the base-change equivalence

Ly = LM\BTﬁ,A/SpfA = ”TLMBTg
it suffices to show L} = n*Ggmi L, c» 18 almost perfect. By [SAG, Cor.8.3.5.3],
it suffices to check the affine case of X = Spec R, where R is a connective E. -
ring. Note p is nilpotent in myR as Spec R maps into Spf A, and p € m4 by
assumption; see Nt. Our conclusion that L is almost perfect in Modpg
then follows from [EC2| Pr.3.2.5] and the fact that the adjective almost perfect
is preserved under base-change; see [SAGl Cor.8.4.1.6]. Therefore, G§ L, is al-
most perfect.

Focusing on Ls now, we consider the composition Xy — Spf Ay — Spf A and
the induced (co)fibre sequence of quasi-coherent sheaves over Xg:

Lspon/spfA|3€O — Lxy/spta = La = Lxy/spt a, (2.1.10)

5Tndeed, for locally Noetherian one can use [Stal, [00FN], for qcgs one can use [GW10, §D],
and the residue fields are perfect as finite field extensions of perfect fields are perfect by [Stal
05DU]J.
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2.2. OUTLINE OF THE PROOF

By Pr. we see Lgpt 4,/ spf 4 18 almost perfect in QCoh(Spf 4g), and pull-
backs preserve almost perfectness ([SAG, Cor.8.4.1.6]), hence the first term of
is almost perfect. To see the third term of is almost perfect, we
may work locally and replace Xy with Spf By where By is a complete discrete
adic ring. In this case we use the assumption that Ay — By is of finite presen-
tation, which implies Lg,,4, is almost perfect in Modg,; see [HAL Th.7.4.3.18].
By [SAG] Pr.7.3.5.7], L4, is complete with respect to an ideal of definition
J for By, and it follows the By-module

Lp,ja, ~ (LBO/AO); >~ Lgpt By/ Spf Ao

is almost perfect. Therefore Lo is almost perfect, hence L itself is almost perfect.
O

2.2 Outline of the proof

Our proof moves in three distinct, but connected, stages.

(I) First, we move from classical algebraic geometry (in ’P(Affv)) to spectral
algebraic geometry (in P(Aff")) using deformation theory, presented here
through the adjective formally étale. Given an object Ggo: Xg — /(/l\ng’Ao

inside C4,, we consider the object X inside the following Cartesian dia-

gram in P(AT"):

X —— 7%,%

I
A f x AAQ

Mprz A ’ TSOMBTﬁ,AO

The functor 7% P(AfFY) — P(AfF™) above is induced by precomposition
with 7<o: CAlg™ — CAlg”, and the maps X (R) — 7%, X(R) = X (moR)
are induced by the truncation map R — myR. The assumption that Gg
was formally étale in P(AffY) implies that X is what Lurie calls the de

Rham space of the map Xo — Mpyr 4 and that G is formally étale; see
Pr. Most of the adjectives defining C4, then allow us to employ a
powerful representability theorem of Lurie (Th, which identifies X
as a formal spectral Deligne-Mumford stack, which we denote as X. Some
analysis shows G: X — Mgqpr 4 lies in C4 and that the functor

D: Ca, — Ca, (X0, Go) = (X, G)
is an equivalence of co-categories (Th{3.3.5).

(IT) Next, we apply the orientation theory of p-divisible groups devised by
Lurie in [EC2]. This yields a moduli stack of oriented p-divisible groups
MP» and a map of presheaves on p-complete E, -rings

. or un
Q: Mppp — Mpre;
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(I11)

see Df[1.1.6] The bulk of this section globalises the work of [EC2, §4]. We
then define BTp : C — CAlg by pushing forward the structure sheaf of
Mrs along Q—"it will follow rather formally that applying Ofrr to an
affine obJect of C4 yields the orientation classifier constructlon of Lurie;
see [EC2] §4.3.3].

Finally, we set ﬁBT,, to be the composition of D followed by DBTP In

other words, we first send (X, Gg) to its spectral deformation (X, G) using
D, and then take the orientation classifier of the identity component of
G; see Df. To check this definition of €', satisfies the properties

BT?,
described 1 Th[2.1.7] we use descent ideas of Lurie.

The following two chapters carry out these three steps given above.
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Chapter 3

Formally étale morphisms

At the heart of spectral algebraic geometry is deformation theory as indicated
by the heuristic
{spectral algebraic geometry}

= {classical algebraic geometry} + {deformation theory}

from [SAG] p.1385]. The adjective formally étale will help us navigate between
the two worlds of classical and spectral algebraic geometry. More concretely,
given a (nice enough) formally étale morphism Xq — M, where X is a classical
formal stack, there is a universal spectral deformation of Xy, say X, such that
Xo can be viewed as the Oth truncation of X. This process allows us to lift
objects in classical algebraic geometry to spectral algebraic geometry without
changing the underlying classical object; see Th[3.3.5]

3.1 Presheaves on discrete rings

Let us first consider formally étale maps between presheaves of discrete rings.

Definition 3.1.1. A natural transformation f: X — Y of functors in P(AfY)

is said to be formally étale if, for all surjective maps of rings R — R whose kernel
is square-zero, also called square-zero extensions of R, the following natural
diagram of spaces is Cartesian:

X(R) —— X(R)

! |

Y(R) —— Y(R)

Moreover, we say that f is formally unramified if the fibres of the map

X(R) > X(R) Vo Y (R)

are either empty or contractible.



3.1. PRESHEAVES ON DISCRETE RINGS

Let us state some classical formal properties of formally étale morphisms;
the reader may enjoy verifying them herself.

Proposition 3.1.2. Formally étale morphisms in ’P(Aff@) are closed under
composition. If X L v 5 7 are composable morphisms in P(AHO) such that
g 1s formally unramified and g o [ is formally étale, then g is formally étale.
Formally étale (resp. unramified) morphisms are closed under base-change.

Let us now relate Df.[3.1.0] to the definitions found in classical algebraic
geometry.

Definition 3.1.3. A map f: X — Y between functors in P(Affv) is affine if
for every ring R, and every R-point n € Y(R), the fibre product Spec R xy X
is represented by an affine scheme.

Note that maps between (functors represented by) affines in P(Aff¥) are
always affine, as the Yoneda embedding Aff¥ — P(Affo) preserves limits.

Proposition 3.1.4. Let f: X — Y be a natural transformation of functors
mn ’P(Aﬁ@). Then f is formally étale if and only if for every ring R, every
square-zero extension of Tings R — R, and every commutative diagram of the
form

SpecR —— X

| lf (3.1.5)

Specé — Y
the mapping space

MapP(Aff@)R//y (Spec Ea X)

is contmctiblem Moreover, if f is affine, then f is formally étale if and only
if for every ring A, and every A-point n € Y(A) such that the fibre product
Spec A xy X is equivalent to an affine scheme Spec B, the natural projection
map A — B is formally étale as a map of m’ngsﬂ

Proof. Given a ring R, a square-zero extension R — R, and a commutative
diagram (3.1.5|), consider the following commutative diagram of spaces:

Mapg,y (R, X) — Map,y (R, X) —— Map,y (R, X)

l | |

Mapg, (R, X) ——— Map(R, X) ——— Map(R, X)

J | |

Mapg,(R,Y) —— Map(R,Y) ——— Map(R,Y)

)

16Te, “there exists a unique lift Spec R — X for (3.1.5I .
7For the definition of a formally étale map of rings simply apply Df[3.1.1]to the transfor-
mation (co)representing this map of rings, or see [Stal, 02HF].
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By definition, the rows and columns are fibre sequencesE we have abbrevi-
ated the categories above to express only the over/under categories, and we
suppressed the functor Spec. By the Yoneda lemma, the bottom-right square
is naturally equivalent to (3.L5)), hence f is formally étale if and only if this
bottom right square is Cartesian. In turn, this is equivalent to the space in the
top-left corner being contractible.

For the “moreover” statement, suppose that f is affine. If f is formally
étale, then Pr[3.1.2] states that the map Spec B — Spec A4 is formally étale by
base-change. Conversely, suppose we are given a diagram of the form ,
then by assumption the fibre product Specﬁ xx Y =~ SpecB is affine and
Spec B — Spec R is formally étale, giving us the following diagram:

Spec R i\j

SpecB —— X

Lol

Specf% — Y

One then observes the sequence of natural equivalences of spaces

Map, (R, B) ~ Mapg/(R,B) ~ x __ {idz}
MapR/(R,R)

~ MapR/(RX) X MapR/(ﬁ7 ﬁ) x  Aidg} =~ MapR//Y(E,X)

MﬂpR/(ﬁivy) Ma‘pR/(EvR)
where we have used the same abbreviations from earlier in the proof. The first
space above is contractible as Spec B — Spec R is formally étale, hence f is
formally étale as the last space is contractible. O

Let us see some examples of formally étale morphisms found in classical
algebraic geometry.

Ezample 3.1.6 (Formally étale morphisms of schemes). In the setting of classical
algebraic geometry, we usually take the existence of a unique map Spec R—>X
(under Spec R and over Y) as the definition of a formally étale maps of rings
(or schemes); see Pr. An object in P(Aﬁm) represented by a scheme
factors through Fun(CAlg”, Set), as mapping spaces between classical schemes
are discrete, and we see Pr precisely matches [Stal, 02HG].

Ezample 3.1.7 (Classical Serre-Tate theorem). The classical Serre-Tate theorem
(see [CS15, p.854] for the original source, or [ECI] Th.7.0.1] for statement of the

18The fibres in this diagram have been taken with respect to the maps from (3.1.5).

31


https://stacks.math.columbia.edu/tag/02HG
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spectral version) states that if R—> Risa square-zero extension of commutative
rings wherein p is nilpotent, then the diagram of 1-groupoids

AVarg(ﬁ’,): —— AVar,(R)™
J[m bpw] (3.1.8)
BT}, (R)* —— BT}, (R)>

is Cartesian. This implies the morphism of classical moduli stacks
*L7. Vv Q
[p”]: Mivar, = MBng

sending an abelian variety X to its associated p-divisible group X[p*] ([Tat67,
§2]) is formally étale after base-change over Spf Z,. This base-change is crucial,
as there only exists a map Spec R — Spf Z,, is when p is nilpotent inside R, as
the continuous map of rings Z, — R must send {p'}i=0 to a convergent sequence
in R, where R is equipped with the discrete topology. If we fail to make this
base-change, then may not be Cartesian@

Another classical example of a formally étale map in P(Aff@) comes from
Lubin—Tate theory. The original source for this is [LT66] with respect to formal
groups, but we will follow [EC2] §3] as our intended application is for p-divisible
groups; see [EC2, Ex.3.0.5] for a statement of the dictionary between deforma-
tions of formal and p-divisible groups.

Ezample 3.1.9 (Classical Lubin-Tate theory). Let Gg be a p-divisible group of
height 0 < n < o over a perfect field k of characteristic p. Then there exists
a universal classical deformation G of Gg over the classical deformation ring

RIéTO; see [EC2, Df.3.1.4] or the proof of Pr}3.1.10

This formally implies that the map into Mng defining G is formally étale.

In fact, we generalise the Lubin-Tate case above using [EC2l §3] to formally
obtain:

91ndeed, consider the elliptic curve E over F3 defined by the equation y? = z3 + 22+ +1.
The 2F-torsion subgroups of E are, by [KMS85, Th.2.3.1], equivalent to the constant group

schemes (Z/QI“Z)2 over F3, hence the associated 2-divisible group F[2%] is equivalent to the
constant 2-divisible group (QQ/ZQ)2 over F3. Define two deformations E1 and Es of E over

the dual numbers F3[¢] (augmented by the morphism e — 0), by the following formulae:
Eir:y? =422 +z+14+4e¢ FEy:y?=a+22+z+1—c¢

We again calculate E1[2%] and E2[2%] to both be the constant 2-divisible group (Qz/Z2)?
over F3[e], and hence these 2-divisible groups also base-change to E[2%°] over F3. As a final
observation, note that E; and Fa are not equivalent as elliptic curves over F3 [€], as one can
calculate their j-invariants ([Sil86) §III.1]):

J(E1) =e—1#e+1=j(E2)

Hence [2%°]: Mgn - MY

pre 18 not formally étale over Spec Z.
2
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3.1. PRESHEAVES ON DISCRETE RINGS

Proposition 3.1.10. Let Ry be a discrete Fp-algebra such that Ly is an almost
perfect R- modulﬂ and Gg 18 a nonstatlonaryP_T| p-divisible group over Ry of
height n. Then the map Spf Rg, — ./\/lBTp induced by the universal classical

deformation of Gg is formally étale. Com;ersely, if G: Spf R — M Tp A

formally étale for a complete Noetherian discrete ring R and Ay from Nt_
then for every maximal ideal m S R such that the residue field R/m = k is
perfect, the p-divisible group Gy is the universal classical deformation of G.

Proof. The existence of such an Rg, follows by taking mq of the spectral defor-
mation ring; the spectral deformation ring exists by [EC2, Th.3.4.1] and then
we apply Rmk. Let R — R/J be the quotient map where R is discrete
and J is a square-zero ideal. First, we wish to show the following commutative
diagram of spaces is Cartesian:

(Spf Re, ) (R) —— (M) (R)

Jl l (3.1.11)

(Spf Ray ) (R/J) —— (M) (R/J)

Recall the definition of Defg,(A) for a commutative ring A with the discrete
topology from Df]1.3.13] As Rg, is the universal deformation of G one obtains
an equivalence of (discrete) spaces

HomCAlgfd (RGO s A) i» DefGO (A) =

colim ( BTP(A x  Hom Ry, A/I 3.1.12
jim (BIPA) e Homengo (R A/D) (3112
where the colimit is taken over all finitely generated nilpotent ideals I inside
A; see [EC2, Th.3.1.15]. By assumption, the cotangent complex Lg, is almost
perfect in Modpg,, and [EC2| Pr.3.4.3] then implies that the natural map

Def A 1 F
ef(4) = colim Fy 1

is an equivalence, where now the colimit is indexed over all nilpotent ideals
I € A and Fa ; is the fibre product of . Given a fixed nilpotent ideal
J € A, denote by Nil;(A) the poset of nilpotent ideals of A which contain J.
We obtain a natural inclusion functor Nilj(A) — Nil(A), which is cofinal, as
any nilpotent ideal I lies within the nilpotent ideal I + J. Hence the natural
map

colim Fy g = cohm Far
IeNil; (A) Nil(A)

20Gee [EC2, Pr.3.3.7 & Th.3.5.1] for many equivalent conditions to L being almost perfect.

21Recall the definition of a nonstationary p-divisible group Go from [ECZ, Df.3.0.8], or
the equivalent condition for Gg over a discrete Noetherian Fy-algebra Rg whose Frobenius
is finite, that the cotangent complex Lgpec R/Mpypp induced by the defining morphism of
Gy is 1-connective; see [EC2, Rmk.3.4.4 & Th.3.5.1]. In particular, by [EC2| Ex.3.0.10], all
p-divisible groups over Fj-algebras Rg whose Frobenius is surjective are nonstationary.
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is an equivalence. The map [ of (3.1.11)) is then equivalent to

l .
) g colim FR/J,I/J

colim Fg
IeNil; (R)

IeNil; (R)

)

where we used the fact that ideals in R/J correspond to ideals in R containing
J. If (Spf Rg,)(R/J) is empty, then so is (Spf Rg,)(R) and we are done. Oth-
erwise, choose some z in (Spf Rg,)(R/J) and consider the fibre of [ over z. As
filtered colimits of spaces commute with finite limits we calculate this fibre as

. g
0> g s (s )

using the fact that Nil;(R) is filtered. To simplify this further, we contemplate
the following diagram in % at..:

BT?(R) x Hom(Ry, R/I) — BTP(R)
BT?(R/I)

s |
BT”(R/J) - Hom(Ry, R/I) —— BTP(R/.J)

| J

Hom(Ry, R/I) —— BTP(R/I)

The lower square and the whole rectangle are Cartesian by definition, so the
upper square is also Cartesian. This means the natural map fib(g) — fib(f) is
an equivalence in %at,., hence our fibre of [ can be rewritten as follows:

. /

fib,(1) = | colim (ﬁbb(m)(BT”(R) ER BTP(R/J)))
~ fiby(y) (BTP(R) ER BTP(R/J))

This shows the fibre of f lies in the essential image of S — Fat.. as fib,(l) is.

As ris f= we obtain a natural equivalence fib(l) ~ fib(r). As the fibres of [ and
r are naturally equivalent, we see that (3.1.11]) is Cartesian, so the composition

Spf RGO i M\BTﬁ,Zp i MBTEL - MBTP
is formally étale. To see the first map in the composition above is formally étale,
we use that the last map is open (Rmk[2.1.2)) and hence formally étale, the second

last map is the base-change of the formally unramified map Spf Z,, — SpecZ,
and the cancellation statement from Pr[3.1.21

Let us omit a proof of the converse statement; the E,.-version is PrJ3.3.13
and the proof strategy is the same in both cases. O
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3.2. PRESHEAVES ON E_-RINGS

3.2 Presheaves on E.-rings

We are now in the position to make a spectral definition. See [HAL §7.4] for the
definition of (trivial) square-zero extension of E. -rings, and [SAG], §17.2] for
the definition of (infinitesimally) cohesive and nilcomplete functors in P(Af")
and the definition of Ly ,y.

Definition 3.2.1. Let f: X — Y be a natural transformation of functors in
P(Af"). For an integer 0 < n < o, we say [ is n-formally étale if for all
square-zero extensions of connective n-truncated E -rings R — R the natural
diagram of spaces

X(R) — X(R)

! |

Y(R) —— Y(R)
is Cartesian. We abbreviate co-formally étale to formally étale.

Remark 3.2.2. If f is n-formally étale, then f is also m-formally étale for all
0 <m < n < . In particular, for any 0 < n < oo, if f is n-formally étale then
X% - Y7 is formally étale inside P(AfY).

A converse statement also holds.

Remark 3.2.3. Write 7%: P(AfFY) — P(AfF™) for the functor induced by the
truncation CAlg™ — CAlg”. If X — Y is formally étale in P(Aff%), then it
follows that 72, X — 7<oY is (00-) formally étale inside P(Aff"). Indeed, for
each square-zero extension of connective E-rings R — R we want to show the
diagram of spaces

X(moR) —— X(moR)

! J

Y (moR) — Y (moR)

is Cartesian. If we can show the map p: Woﬁ — moR is a square-zero extension
of classical rings, we are done by our hypotheses. The (co)fibre sequence

M—>R—>R

of connective R-modules shows that p is surjective. Notice the kernel of p is
not moM, but the image of the map mgM — myR. This does not worry us, as
the multiplication map M ®z M — M is nullhomotopic by [HAL Pr.7.4.1.14],
hence the image of mgM in ToR squares to zero, and we see p is a square-zero
extension of rings.

Remark 3.2.4. If X — Q) is a formally étale morphism of (locally Noetherian)
classical formal Deligne-Mumford stacks inside P(Affo), then the correspond-

ing morphism inside P(Aff") is O-formally étale. This follows by the fully
faithfulness of fDM — fSpDM; see Pr[A1.4]
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3.2. PRESHEAVES ON E_-RINGS

Remark 3.2.5. Our definition of formally étale deviates from Lurie’s definition of
étale morphisms ([HAL Df.7.5.0.4]) as there is no flatness assumption. However
even in P(AffY) a formally étale morphism of discrete rings need not be flat
This means there is no inherent descent theory for formally étale morphisms.
For more in this direction, the reader is advised to make her way to Rmk[3.2.13]

The basic properties of Pr also hold in P(Af™").

Proposition 3.2.6. Let0 < n < w0 and X Ly % 7 be composable morphisms
in P(AfT") where g is n-formally étale. Then [ is n-formally étale if and only
if h is n-formally étale. Moreover, n-formally étale morphisms are closed under
base-change.

We would now like alternative ways to test if a map X — Y is formally étale
in P(Aff"). Although Lurie does not directly discuss the adjective formally
étale in [SAGL §17], many of the techniques below follow his ideas.

Proposition 3.2.7. Let X — Y be a natural transformation of functors in
P(A) and 0 < n < 0.

1. The map X — Y is n-formally étale for finite n if and only if X - Y
is 0-formally étale and for every connective n-truncated Eq.-ring R the
natural diagram of spaces

X(R) —_— X(ﬂ'oR)

| |

Y(R) —— Y (moR)
is Cartesian. If X — Y is nilcomplete, then the n = oo-case also holds.

2. If X — Y is infinitesimally cohesive, then X — Y is formally étale if
and only if for all trivial square-zero extensions of connective truncated
E -rings R — R the natural diagram of spaces

X(R) — X(R)

is Cartesian.

22For example, the map of discrete rings C [t9|q € Q,q > 0] — C sending ¢ — 0 is formally
étale but not flat. Indeed, one can always lift square-zero extensions of rings uniquely, as we
have all square roots of ¢ in the above ring, hence it is formally étale. To see that this map is
not flat, we can tensor it with the exact sequence

0— () - C[t] - C[t]/(t) - 0
which yields the following clearly not exact sequence:
0-C—->C—->C->0
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3.2. PRESHEAVES ON E_-RINGS

3. If X — Y is infinitesimally cohesive and admits a connective cotangent
complex Ly, then X —'Y is formally étale if and only if Lx v vanishes.

If X — Y is infinitesimally cohesive, nilcomplete, and L x/y exists and is con-

nective, then X — Y is n-formally étale if certain Ext-groups Ext (n* Lxy, M)
vanish in a range, for certain discrete objects (R, 7, M) of Modifl, a la the defor-
mation theory of [[II71]. There is also a sharpening of part 4 above which deals
with an n-connective cotangent complex Ly y, which we note for the readers
benefit is not equivalent to X — Y being n-formally étale. These ideas will not

be used here though.

Thank you to an anonymous referee for correcting a previous version of (2)
above.

Proof. Write f for the transformation X — Y in question.

(1) Suppose f is n-formally étale for a finite n > 0, then f is O-formally
étale by Rmk[3:2.2] Given a connective n-truncated E..-ring R, then for any
0 < m < n we can consider the following diagram:

X(temi1R) —— X(t<mR) —— X(moR)

l l l (3.2.8)

Y(7<ms1R) —— Y(7g¢mR) —— Y (moR)

Above, the left square is always Cartesian by virtue of f being n-formally étale as
Tem+1R = T<m R 18 a square-zero extension of E,,-rings; see [HAl Cor.7.1.4.28].
To show the outer rectangle Cartesian we use induction. The base-case of m = 0
is tautological. For m > 1, the right square is Cartesian by our inductive
hypotheses, hence the whole rectangle is Cartesian. Conversely, if the second
condition of part 1 holds, we consider a square-zero extension of n-truncated
connective E,-rings R — R and the following natural diagram of spaces:

X(R) X(moR)
. ™~
X(R) i X(mR)
Y(R) Y (moR)
. .
Y (R) Y(moR)

The back and front faces are Cartesian by the second condition of part 1, and
the rightmost face is Cartesian as the second condition of part 1 also assumes
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3.2. PRESHEAVES ON E_-RINGS

f is O-formally étale. Hence by a base-change argument, we see the leftmost
square is Cartesian, and we are done. For the n = oo-case, suppose X — Y
is nilcomplete, meaning that for every connective Ey-ring R, the diagram of
spaces

X(R) —— lim X (1<, R)

| |

Y(R) —— limY (1<, R)

is Cartesian. Combining this diagram with the finite case above yields the
desired conclusion.

(2) If f is formally étale, then logic implies the second condition holds. Con-
versely, let e: R— Rbea square-zero extension of a connective E,.-ring R by
a connective R-module M and a derivation d: Lr — M|[1]. By definition ([HA
Df.7.4.1.6]) R is defined by the Cartesian diagram of connective E,, -rings

where the bottom-horizontal map is induced by the zero map Ly — M|[1] and
the right-vertical map is induced by the derivation d. This Cartesian diagram
of connective E.,-rings then induces the following natural diagram of spaces:

~ X(e)

X(R) X(R)
N ~
X(R) X(R®M[1]) — X(R)
Y(R) Y(R) "
\ o) \
Y(R) Y(R®M[1]) —— Y(R)

(3.2.9)
The left cube is Cartesian from our assumption that f is infinitesimally cohesive.
By assumption the rightmost square is Cartesian, and the only rectangle in the
diagram is also Cartesian as the composition R — R@ M|[1] — R is equivalent
to the identity, hence the left square in that same rectangle (the front face of
the cube) is Cartesian. By a base-change argumentla we see that the desired

23This base-change argument is simple, but let us give an outline. Write I for the poset
of nonempty subsets of {1,2,3}, ordered by inclusion, and use this poset to index the cube
in (3.2.9) by setting Fy = X(R), Fi = X(R) (in the top-right), F» = X(R) (in the centre),
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3.2. PRESHEAVES ON E_-RINGS

back square of the cube (containing X (e) and Y (e)) is also Cartesian, and we
are done.

(3) Our proof here is roughly that of [SAG] Prs.17.3.9.3-4]. On the one hand,
by [SAG] Pr.6.2.5.2(1)] and [SAG] Df.6.2.5.3], we see that for some fixed integer
m, an object F of QCoh(X) is m-connective if and only if for all connective E.-
rings R and all transformations n: Spec R — X, the object n*F is m-connective
inside QCoh(Spec R) ~ Modg. Furthermore, if F is connective and m > 0, the
object n*F is m~-connective if and only if the mapping space

Mapyoage (n*F,N) ~ Mapyroqsn (T<mn*F, N)

is contractible, for all connective (m—1)-truncated R-modules N, by the Yoneda
lemma. On the other hand, the object Lx/y in QCoh(X) exists if and only if

the functor F': Modgil — &, given on objects by

F(R,n, M) = fib (X(R ® M) — X(R) 5 Y(R® M)) (3.2.10)

is locally almost representable, meaning that we have a (locally almost; see
[SAG| Df.17.2.3.1]) natural equivalence for all triples (R,n, M) in Mod§'

F(R,n, M) ~ MapModR (W*Lx/% M)

where R is a connective E,,-ring, n: Spec R — X a map in P(Aff"), and M a
connective R-module. If Ly vanishes, then we immediately see F'(R,n, M) is
contractible for all triples (R, n, M), which by part 3 implies X — Y is formally
étale, courtesy of the definition of F. Conversely, if X — Y is formally
étale, then F(R,n, M) is contractible for all triples (R, n, M), hence the mapping
space

Mapyioa, (0¥ Lx v, M) ~ F(R,n, M)

is contractible for all triples (R,n, M) and L,y vanishes. O

Let us explore some formally étale maps in spectral algebraic geometry.

Note that all formal spectral Deligne-Mumford stacks are cohesive, nilcom-
plete, and absolute cotangent complexes always exist, which follows by copying
the proof of [SAG| Cor.17.3.8.5] (the same statement for SpDM), as all of the
references made there also apply to fSpDM.

F3 = Y(l'%)7 etc. As the whole cube is Cartesian we have Fy =~ lim ) e7F7, and as the front
face is also Cartesian we have F» ~ lim (Fi2 — Fi23 < F»3). These two facts, together with
[MV15] Ex.5.3.8] give us the following natural chain of equivalences of spaces

Fy ~ }imIFI0 ~ lim (Fo — G123 < G13) ~ Gi3,
0€E

where G123 = lim (F12 — Fi23 < Fa3) ~ F» and G13 = lim (F1 — Fi3 < F3). This shows
the back face of the cube (indexed by @, {1}, {3}, and {1, 3}, is Cartesian.
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3.2. PRESHEAVES ON E_-RINGS

Example 3.2.11 (Etale morphisms of connective E,.-rings). Let A — B be an
étale morphism of connective E -rings, then by [HAl Cor.7.5.4.5] we know L /A
vanishes, hence A — B is also a formally étale morphism of E.,-rings by Pr[3.2.7]

Ezample 3.2.12 (Relatively perfect discrete F,-algebras). Another classic ex-
ample, which will not show up explicitly in this thesis but is at the heart of
much of the work done in [EC2], is that a flat relatively perfect map of discrete
commutative F,-algebras has a vanishing cotangent complex ([EC2, Lm.5.2.8]),
and hence is formally étale.

Remark 3.2.13. In RmkJ3.2.5] we noted that formally étale morphisms of con-
nective E..-rings were not necessarily flat. However, [EC2] Pr.3.5.5] states that
morphisms of (not necessarily connective) Noetherian E,.-rings with vanishing
cotangent complex are flat. Combining this with Pr[3.:277] we see formally étale
morphisms of connective Noetherian E..-rings are flat. It follows (as in classical
algebraic geometry [Stal (02HM]|) that formally étale morphisms of almost finite
presentation between connective Noetherian E..-rings are étale.

The functor Mpr» is cohesive, nilcomplete, and admits a cotangent complex
by [EC2) Pr.3.2.2]. It follows that Mpyr (as well as all base-changes Mptr 4)
also satisfy these properties as Mpgrr — Mpt» is open (Rmk]2.1.2)).
Ezample 3.2.14 (Spectral Serre-Tate theorem). It follows from the spectral
Serre-Tate theorem ([ECI, Th.7.0.1]) and Pr[3.2.7] that the morphism
[pl]: M\A\larg,sp g M\BTP S,

29>
is formally étale.

Ezample 3.2.15 (Spectral Lubin—Tate theory). Given some nonstationary
p-divisible group Gg over a discrete ring Ry where p is nilpotent and whose
absolute cotangent complex Lg, is almost perfect, Lurie uses his de Rham space
formalism to construct a map G: Spf R — Mprre ([EC2, Th.3.4.1]) which is
formally étale by [SAG] Cor.18.2.1.11(2)] and Pr[3.2.7 The p-divisible group G
is the universal spectral deformation of Gy and R its spectral deformation ring;

see Df[T.3.13

Ezample 3.2.16 (Formal spectral completions). Let X be a spectral Deligne—
Mumford stack and K < |X| be a cocompact closed subset, then the natural
map from the formal completion of X along K ([SAGl Df.8.1.6.1]) Xp — X is
formally étale by [SAGL Ex.17.1.2.10] and Pr

Ezample 3.2.17 (de Rham space). Given a morphism X — Y of functors in
P(Aff™), one can associate a de Rham space (X /Y )qr inside P(Aff"), whose
value on a connective E.-ring R is(

(X/Y )ar(R) = colim (Y(R) v X(WOR/I))

where the colimit is taken over all nilpotent ideals I € moR; see [SAG §18.2.1].
By [SAG] Cor.18.2.1.11(2)], the natural map (X/Y)ar — Y is nilcomplete, in-
finitesimally cohesive, and admits a vanishing cotangent complex, so by Pr|3.2.7]
it is formally étale.
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3.3. APPLIED TO P-DIVISIBLE GROUPS

This last example will help us study the moduli stack Mgy».

3.3 Applied to p-divisible groups

Let us now apply the theory of formally étale natural transformations to the
functor Mpye and the sites C4, and C4 of Dfl2.1.6

Notation 3.3.1. Write (—)¥: CAlg” — CAlg®™ for the inclusion (a right ad-
joint, inducing a left adjoint (—)% on presheaf categories), and 7<o for the
truncation functor (a left adjoint, inducing a right adjoint 7%, on presheaf cat-
egories) CAlg®™ — CAlg”. Also write 7« for the composition (—)¥ o 7<o—this
should seldom cause confusion. For each functor M in P(Aff") there is a nat-
ural unit M — 7Z; M induced by the truncation R — moR of a connective
E.-ring R. The functor 7%, M is equivalently the right Kan extension of M®

along ¢.

Warning 3.3.2. In §[A2] we introduce the truncation of a locally Noetherian
formal spectral Deligne-Mumford stack 7<oX & la Lurie [SAG] §1.4.6] and we
note that this is not equivalent to 7%,X.

For mostly formal reasons, we obtain a functor C4 — Ca,.

Proposition 3.3.3. The functor

(=)¥:C4s — P(Aﬁ”)/ﬂgTP .

factors through Ca,.
Our proof of the above proposition relies on §A]

Proof. By definition, an object X of C4 is qcgs, hence has an affine étale hy-
percover U, — X ; see Pr[A:3.6] The formal spectral Deligne-Mumford stack
T<oX = Xp then lies in the essential image of f{DM — fSpDM and hence can be
considered as a classical spectral Deligne-Mumford stack. Moreover, X% and
%(? are naturally equivalent inside P(Affo) by Cor. As each affine for-
mal spectral Deligne-Mumford stack U, is locally Noetherian, X% = X, has an
affine étale hypercover by U — X% = X, inside fDM. By Pr we see Xg
is qegs. As XV ~ %g we see Xy and X have the same closed points. As Z/{ép is
a Noetherian affine classical formal Deligne-Mumford stack, we also see Xg is

locally Noetherian. It also follows from Rmkl3.2.2 that Xg — M\ET,, A, 18 for-
mally étale inside P(AffY). Finally, to see the cotangent complex L of the map
Xo = Mprr 4 is almost perfect inside QCoh(Xy), consider the composition in

PAF™)

Tg0f=%0—>x—>MBTPA

ny

from which we obtain a (co)fibre sequence in QCoh(Xy):

L —>L—>Lx0/x

36/-/\/llzrrﬁ,A Xo
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By part 3 of Pr. the first term in the above (co)fibre sequence vanishes
as X — Mgz 4 is formally étale. Our desired conclusion follows as Ly, x is

almost perfect by Pr[A-31]

To see (—)¥: Ca — Ca, is an equivalence of oo-categories, we will construct
an explicit inverse.

Definition 3.3.4. Define a functor D: C4, — P(Aﬂcn)/ﬁ , by sending an
BTP A

object Go: Xg — MY of C4, to the de Rham space of [SAG] §18.2.1] (and
Ex[32.17):

BTh, Ao

D(Go) = (xO/M\BTﬁ,A)dR

The notation D is supposed to conjure the word “deformation”.

Theorem 3.3.5. The functor D factors through Ca, preserves affine objects
and étale hypercovers, and is an inverse to (—)%.

This equivalence of co-categories fits into the general paradigm of spectral
algebraic geometry—a well-behaved site over a classical moduli stack should be
equivalent to the same site over the associated spectral moduli stack; see the
example of the moduli stack of elliptic curves in [ECI, Rmk.2.4.2] and [EC2,
§7], or the affine case in [HAlL Th.7.5.0.6].

To prove Th[3.3.5 we will use the interaction of the de Rham space tech-
nology of Lurie ([SAG], §18.2.1]) with formally étale morphisms and a repre-
sentability theorem also due to Lurie.

Proposition 3.3.6. Recall Nt.[2.1.5 Let X be a formal spectral Deligne-
Mumford stack and X — MBT” 4 be a 0-formally étale map whose associated

cotangent complex is almost perfect Then the following natural diagram of
functors in P(AfT")

(%/MBTp )dR #) Téox
J{de\ G (3.3.7)
MBTP A — 7'<0MBTP A
is Cartesian, the natural map X — (:{/M\BTﬁ _A)dR induces an equivalence when

evaluated on discrete By, -rings, and Ggr is formally étale.

The above proposition and its proof generalise to a wider class of functors
in P(Aff") of which we could not find a neater classification than our leading
example—we leave the reader to explore the general example as she wishes.

Proof of Pr[3.5.6. Recall the value of the de Rham space (X/Y)4r on a con-
nective E; -ring R from Ex[3.2.17]

(X/Y)ar(R) = colim (Y(R) e X(ﬂoR/I)> (3.3.8)
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where the colimit is taken over all nilpotent ideals of mgR. Define a functor
(X/Y)%g: CAlg™ — S by the same formula as above but index the
colimit over finitely generated nilpotent ideals of myR. One readily obtains a
map of functors

(X/Y)ar = (X/Y)ar

and we claim this map is an equivalence for X = X and Y = M\BTﬁ, 4 In our
hypotheses. Indeed, one can copy the proof of [EC2], Pr.3.4.3] mutatis mutandis,
exchanging only Ry for X; the crucial step comes at the end and uses the almost
perfect assumption on our cotangent complex. Writing F'r 1 for the fibre product
within the colimit of where X = X and Y = /(/l\BTg“A, we place Fr ; into
the following commutative diagram of spaces:

Frj ————— X(moR) ———— X(moR/I)

J{ J{fﬂo R J{f moR/I

M\BTfL,A(R) — MBTP A(7T0R) — MBTP A(WOR/I)

The outer rectangle is Cartesian by definition and we claim that the right square
is also Cartesian. Indeed, this follows as I is finitely generated and hence is
nilpotent of finite degree n for some integer n > 2, and our O-formally étale
hypotheses can be sequentially applied to the composition of square-zero exten-
sions:

R— R/I" > R/I"' - --- - R/I* - R/I

This implies that the left square above is also Cartesian, so the R-points of the
de Rham space in question naturally take the form

colim Mgrr a(R) x  X(mR) |~ Mgy a(R) x  X(mR)

MBT{’I,A(T((’R) MBTg,,A(ﬂ—UR)

as the diagram indexing our colimit is filtered. This implies that is
Cartesian. For the second statement, we use the facts that is Cartesian
and d induces equivalences when evaluated on discrete rings to see that u induces
an equivalence when evaluated on discrete rings. Noting that the maps

(%/M\BTﬁ,A)dR > T X <X

induce equivalences on discrete rings, the natural map X — (X/M\BTZ A)dR
induces an equivalence on discrete rings as well. Finally, to see that the map

(X/Mgpre a)dr = Mpre 4

is formally étale we use Rmk 3| to see 7£,G is formally étale and then base-
change Pr[3.2.6] Alternatively, we can refer to Ex[3.2.17| which states such maps
from de Rham spaces are always formally étale. O
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Remark 3.3.9 (D produces universal spectral deformations). Recall that asso-
ciated to a classical p-divisible group Gg: Spf By — /T/l\ng 4.» Such as those
in Cy4,, then we can ask if there exists a universal spectral ’Hefqormation of Gy
with associated spectral deformation ring; see Df[I.3.13] It follows from the
proof of Pr. above, that if Gg lies in C4,, then the formal spectrum Spf
of the spectral deformation ring of Gg is equivalent to the de Rham space
(Go: Spf By = Mprr 4)ar- By Th)3.3.5, we see that this de Rham space is
represented by a formal spectral Deligne-Mumford stack Spf B. This means
that D(Gy) is represented by the universal spectral deformation of Gg. This is
even true in a nonaffine sense, but we will not need to venture further in that
direction.

The following representability theorem of Lurie is crucial to prove Th[3.3.5]

Theorem 3.3.10 ([SAG, Th.18.2.3.1]). Let f: X — M be a map of functors
in P(AfE™) such that X is a formal spectral Deligne-Mumford stack, M is
nilcomplete, infinitesimally cohesive, admits a cotangent complex, and is an
étale sheaf, and Lxjaq is 1-connective and almost perfect. Then (X/M)ar is
represented by a formal thickeninﬂ of X.

Importantly, we can apply this theorem to Cy4,,.

Remark 3.3.11. By definition, the cotangent complex L = L corre-

XO/M\BT?L,A
sponding to an object inside C4, is almost connective, meaning L[n] is connec-
tive for some positive integer n; see [SAG, Var.8.2.5.7 & Rmk.8.2.5.9]. However,
we claim that L is actually 1-connective. Indeed, by [SAG, Cor.8.2.5.5] we may
check this étale locally on X, so let us replace Xy with Spf By for some com-
plete Noetherian discrete adic ring By. In particular, L is now an almost perfect
J-complete By-module, where J is an ideal of definition for By. As L is almost
perfect, the fibrewise connectivity criterion of [SAGl, Cor.2.7.4.3] shows that
it suffices to check L/, is 1-connective for every maximal ideal m S By which
contains J. Moreover, considering the maps

Spf(BO)r/l\l - Spf Bo - Spec BO

the composition is formally étale in P(Aff") by Ex and hence in P(AffY)
by Rmk[3.2.2] and the latter map is unramified, so by Pr[3.1.2 we see the first
map is formally étale. We may then assume By is a complete local Noethe-
rian ring. The morphism G: Spf By — MgTﬁ Ao is formally étale, so by the
converse statement in Pr.3.1.10, we sce that By is the classical deformation
ring of G, where k is the residue field of By, which is necessarily perfect of
characteristic p by assumption. For such a pair (G, k), there exists a spectral
deformation ring B by [EC2, Th.3.1.15], as & is perfect and G is nonstationary

24Recall from [SAGL Df.18.2.2.1], a morphism f: X — 9 of formal spectral Deligne—
Mumford stacks is called a formal thickening if the induced map on reductions x4 — gred
is an equivalence ([SAG) §8.1.4]) and the map f is representable by closed immersions which
are locally almost of finite presentation.
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by [EC2, Ex.3.0.10], which implies mgB ~ By by Rmk/|1.3.14 This means the
map Spf By — Mprr 4 in P(Aff™) factors as

Spf By — Spf B — Mprs 4 (3.3.12)

where the first map is induced by the truncation. Associated with the above
composition is the following (co)fibre sequence of complete By-modules:

L

Spf B/ Mgy 4 = L Bo/Mgyp 4 Lspt Bo/sot B

Spf BO

The first object vanishes as Spf B is the de Rham space for the composite
(3.3.12)) and such objects always vanish; see ExJ3.2.17, We then see the middle
cotangent complex above is 1-connected and almost perfect as this holds for

Lspr By/spr 8 by Pr[A3.]

Proof of Th]3.5.5 First, let us check D factors through C4. Using Th[3:3.10]
and Rmk. we see D(Gy) is represented by a formal thickening X of Xo;
see [SAG], §18.2.2] or (24). To see X satisfies the conditions of Df2.1.6] we note
the following;:

e X is locally Noetherian, as it is a formal thickening of the locally Noethe-
rian Xo; see [SAG, Cor.18.2.4.4].

e X is qcgs as a formal thickening of a qcgs formal spectral Deligne-Mumford
stack is qecqgs; see Pr[A.3.8

e X has perfect residue fields at closed points as this is true for Xy and
Xo = 7<0X has the same residue fields as X.

e G is formally étale by Pr[3.3.6

If Xy ~ Spf By is affine, then the image of any Gg: Spf By — M\gTﬁ,Ao in
C4, under D is also affine as formal thickenings of affines are affine; see [SAG
Cor.18.2.3.3]. To see D is inverse to (—)%, notice the composite (—=)VD is
equivalent to the identity as Gy — D(Gyg) induces an equivalence on discrete
rings by Pr[3:3.6] For the other composition, part 1 of Pr[3:2.7] states that the

following diagram of spaces is Cartesian for every connective E, -ring R:

X(R) ———— X(moR) = 72,X(R)

Je !
Mprz A(R) —— Mprr a(moR) = 720 Mprz A (R)
It follows that the natural map D((G)¥) — G is an equivalence in C4. Finally,
to see D preserves étale hypercovers, we first note this may be checked étale

locally, so take an étale hypercover )9 = Spf C§ — Spf By = Xp in C4, and
write Spf C* — Spf B for its image under D. From the above, we know that
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3.3. APPLIED TO P-DIVISIBLE GROUPS

Spf C* — Spf B is an étale hypercover on zeroth truncations, so it suffices to see
each map B — C" is étale as a morphism of adic E.. -rings. Two applications
of Pr show the commutative diagram in P(Af")

. X M\BTﬁ,A

L] |

% o0 % % AA
TZ20De — TE0X0 —— TE¢Mprr 4

consists of Cartesian squares, hence the map Spf C™ — Spf B is formally étale
by Rmk[3.2.3|and base-change Pr[3.2.6] It follows from Rmk[3.2.13|that B — C™
is flat and we know its of finite presentation on my by assumption. This follows
that B — C™ is étale by Rmk[3.2.13] again, and we are done. O

Finally, let us solidify some of the connections between formally étale mor-
phisms and universal deformations (Df[1.3.13]). The following is analogous to
Prf3.1.10| and our proof follows that of [EC2, Pr.7.4.2].

Proposition 3.3.13. Recall Nt.. Let G: Spf B — M\BTZ,A be formally
étale map where B is a complete adic Noetherian Ey, -ring with ideal of definition
J. Fiz a maximal ideal m C moB containing J such that moB/m is perfect
of characteristic p. Then the p-divisible group Gp, is the universal spectral
deformation of G, where k is the residue field of By,.

Proof. As k is perfect of characteristic p, combining [EC2] Ex.3.0.10] with [EC2]
Th.3.1.15] one obtains the spectral deformation ring RE = B"™ with a uni-
versal p-divisible group G"". By definition, Gp, is a deformation over G,
([EC2, D£.3.0.3]), so from the universality of (B"™, G"") we obtain a canonical
continuous morphism of adic E.-rings B" < B} = B inducing the identity
on the common residue field x. By [EC2, Th.3.1.15], we see B"™ belongs to the
full oo-subcategory C of (CAlggy) . spanned by complete local Noetherian adic
E_ -rings whose augmentation to x exhibits k as its residue field. To see « is
an equivalence in this oo-category, consider an arbitrary object C' of C and the
induced map on mapping spaces:

~ *
MapiEdl,, (B,C) <5 Map@gl,, (B, C)

By writing C as the limit of its truncations we are reduced to the case where C'
is truncated, and by writing moC' as a limit of Artinian subrings of moC we are
further reduced to the case when moC' is Artinian@ In this situation, we have
a finite sequence of maps

C=Cp—->Chph_1 > —>C-Ch=k

25Qur conventions demand that local adic E--rings have their topology determined by the
maximal ideal.
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3.3. APPLIED TO P-DIVISIBLE GROUPS

where each map is a square-zero extension by an almost perfect connective
module. Hence, it would suffice to show that for every C' — & in C, and every
square-zero extension C' — C' of C' by an almost perfect connective C-module,
with C also in C, the natural diagram of spaces

Mapgloglfg/n (év 5) E— h/[ap%OXltg/,_i (Bun’ 5)

l l (3.3.14)

Mapisty, (B,C) —— Mapiyl, (B*.C)

is Cartesian, the C' = &k case being tautological. As B is the m-completion of
By, then for any D in C (which in particular is complete with respect to the
kernel of its augmentation D — k) the map

Mapgalg,, (B, D) = Mapgry,, (Bw, D)

induced by By, — é, is an equivalence. Moreover, for any D inside C we have
the following natural identifications:

Map%oxfg/m (B"™,D) ~ fib (Map%oglfg(B“n, D) — Map%Ong(Bun, m))

Bun S

~ fib ((Spf B"")(D) — (Spf B"")(k)) ~ fib (Defg, (D) — Defg, (k))

Bun_, . Gun

~ Defg, (D, (D — k)) ~ BT?(D) ff( : {Gx}
The first equivalence is a categorical fact about over/under categories, the sec-
ond is the identification of the R-valued points of Spf B"™ ([SAG], Lm.8.1.2.2]),
the third is from universal property of B"* (JEC2] Th.3.1.15]), and the fourth
and fifth can be taken as two alternative definitions of Defg, (D, (D — k))
(IEC2l Df.3.0.3 & Rmk.3.1.6]). These natural equivalences show is
equivalent to the upper-left square in the following natural diagram of spaces:

Mapifl, (B, 0) —— BTHO) | x (Gu} —— BTL(C)

J |

Mapccoglfg/n(Bm,C’) —— BTZ2(C) BT;<( ){GK} — BT2(C)= (3.3.15)

|

{G,} ———— BT? (k)

~

The bottom-right square and right rectangle are both Cartesian by definition,
so the upper-right square is Cartesian. It now suffices to see the upper rectangle
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3.3. APPLIED TO P-DIVISIBLE GROUPS

is Cartesian, so we consider the following natural diagram of spaces:

(Spf Bm)(c) (Spf Bm)(c)
BTY(0)> J BTY(C)>
(Spf Bm)(k) (Spf Bw) (k)

I i

The top square is Cartesian as Spf B — /(/I\BT;J“ 4 (and hence Spf By, — M\BTZ, 4)
is formally étale, and the bottom square is trivially Cartesian. Taking the fibres
of the vertical morphisms (at the given map By, — k) we obtain the upper
rectangle of 7 whence this upper rectangle is also Cartesian and we are
done. O
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Chapter 4

Construction of the
structure sheaf

The study of orientations of p-divisible (and formal) groups over E..-rings is
the focus of [EC2]. Using Lurie’s work, we construct a “derived stack” classify-
ing oriented p-divisible groups, My, defined on (not necessarily connective)
p-complete E..-rings. The technical complications of this section stem from the
necessary movement between presheaves on connective and general E..-rings.

We suggest that the reader keeps a copy of [EC2] in her vicinity when reading
this section.

4.1 Orientations on p-divisible groups

Recall the concept of an orientation of a formal groupﬁ] over an E . -ring, as
detailed in [EC2, §1.6 & 4.3].

Definition 4.1.1. Let R be an E-ring and G be a formal group over R. A
preorientation of G is an element e of QQ(Q”‘(A})(TN)R) Alternatively, assuming
that R is complex periodic (|1 , then an orientation of G is a morphism of formal
groups GQ — G over R, where G% is the Quillen formal group of R; see 1)
Such a preorientation e: G% — G is an orientation if it is an equivalence of
formal groups over R; see [EC2| Pr.4.3.23]. Denote by OrDat(é) the component
of Q2(Q* G)(=0R) consisting of orientations— by definition this is empty if R is
not complex periodic. An orientation of a p-divisible group G over a p-complete
E, -ring is an orientation of G°, its identity component .

26Recall from [EC2, Df.1.6.1 & Var.1.6.2], a that a formal group over an Eq-ring R is a
functor G CAlg_Cr‘;OR — Mod3' whose postcomposition with Q% : Mod' — S is a formal
hyperplane over 7>0R in the sense of [EC2] Df.1.5.10]. The latter can be identified as the

essential image in P(AHS—;()R) of the cospectra of smooth coalgebras; see [EC2] §1.5].



4.1. ORIENTATIONS ON P-DIVISIBLE GROUPS

Recall that when we associate to a functor F': C — @at,, (resp. C — S)
a coCartesian (resp. left) fibration {, F — C, or visa versa, we are using
the straightening—unstraightening adjunction of [HTT09, Th.3.2.0.1]—the oo-
categorical Grothendieck construction.

Definition 4.1.2. 1. Let M}%,: CAlg — S be the composite of the trunca-
tion functor T>0 CAlg — CAlg®™ and Mpr»; see [EC2, Var.2.0.6]. Define
a functor My, : CAlg — S analogously.

2. Denote by CAlg? the full co-subcategory of CAlg spanned by p-complete
E, -rings and write Aff” for (CAlg?)°P. Let M}, : CAlg? — S be the
composition of MJT» with the inclusion CAlg? — CAlg. Define a functor

pre © CAlg? — S analogously.

3. Let R be a p-complete E . -ring. Write OrBT?(R) — BT?(R)= for the left
fibration associated to the following functor ([EC2, Rmk.4.3.4]):

BT?(R)™ — S G — OrDat(G°) = OrDat(G)
Define OrBT? (R) analogously.

We restrict to p-complete E.-rings above as we will often use [EC2| Th.2.0.8]
to associate to a p-divisible group G its identity component G°. This is not
strictly necessary, as demonstrated by [EC3| §2], however, we only care about
the p-complete case to prove Th2.1.7 anyhow.

Our goal here is to define a moduli functor My, : CAlg? — S sending R to
OrBT?(R)=, a sort of iterated Grothendieck construction. To do this honestly
in the language of co-categories, we will construct the associated left fibration;
the reader is invited to skip the following technical construction for now, and
only return if she is unconvinced by this heuristic.

Construction 4.1.3. Let CAlg? be the full co-subcategory of CAlg? spanned
by those p-complete complex periodic Ey-rings. Using [EC2, Rmk.1.6.4], define
the functor Mpgroup(—)

CAlg?, FGrowp(3), g R — FGroup(R)~

sending a p-complete Eg-ring to the oo-groupoid core of its associated oo-
category of formal groups (JEC2, Df.1.6.1]), and write F': Mpgroup — CAlgh,
for the associated left fibration. The functor F has a section Q which sends
a p-complete complex periodic E.-ring R to its Quillen formal group GQ
([EC2| Con.4.1.13)); this association is functorial as taking the R-homology and
cospectrum operators are functorial. Let Mo,rgroup be the comma co-category
(QF | id Mpgronp)s 0 Other words, there is a Cartesian diagram inside @at..

Al
MOrFGroup —_— (MFGroup)

i J(S’t) (4.1.4)

(QF xid)oA
MFGroup MFGroup X MFGroup
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4.1. ORIENTATIONS ON P-DIVISIBLE GROUPS

where Al is the l-simplex, A is the diagonal map, and (s,t) sends an arrow
in MpGroup to its source and target. More informally, an object of MorrGroup
is a complex periodic p-complete E, -ring R, a formal group G over R, and a
equivalence GI% ~ G of formal groups over R. By [EC2, Pr.4.3.23], such an
equivalence of formal groups over R is precisely the data of an orientation of é,
hence the name OrFGroup. The functor

MOrFGroup - MFGroupa (R, é, 6) = (R, é) (415)
is a left fibration with associated functor to spaces
Mecronp =S (R, G) — OrDat(G).

Indeed, this assignment is a functor by [EC2, Rmk.4.3.10] and the above iden-
tification comes by contemplating the fibre product of categories

{(R7 é)} X MOrFGroup = MapMFGX.Oup(R) (é%a é’) = OrDat(é),

MFGroup

where the second equivalence again comes from [EC2, Pr.4.3.23]. Now, write
G: M2, — CAlgl, for the left fibration associated with the following compo-
sition:

un
MBTP

o (—): CAlgP, 2% CAlgP S R~ BTP(R)™

The natural assignment sending a p-divisible group G over a p-complete E -
ring R to its identity component induces a functor (—)°: MEr» — MpGroup
between categories over CAlg? . Define an co-category Mopr» by the following

Cartesian diagram of co-categories:

MOrBTP ” MOrFGroup

| !

(=)°
CBOTP —_— MFGroup

As (4.1.5)) is a left fibration, then Moyprr — My, is also a left fibration by

base-change. Similarly, we define the co-category M1C30T$L , which comes with a
natural map Mg, — M, associated to the inclusion BT} (R)™ — BT"(R)™.
Finally, define a left fibration Mg,pr» — Mg, by the following Cartesian di-
agram in €aty;:

Mogre —— MowpTr

| |

Bro, — Mg
In total, we have a left fibration

MOrBTP — MBTp g CAlglgo
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4.1. ORIENTATIONS ON P-DIVISIBLE GROUPS

and unravelling the construction above, one can calculate the functor associated
with this composition:

CAlg?, —» S R — OrBT?(R)
Similarly, we have Mqo,grr — CAlgh, and its associated functor.

Definition 4.1.6. Given a morphism A — B in CAlgP, then if A is complex
periodic, we see B is also complex periodic; see [EC2, Rmk.4.1.3]. Define a
functor M, : CAlg? — S first on CAlg?, as the functor associated with the
composition of left fibrations

Morprr = Mg — CAlgl,

defined in Conf4.1.3] and then as the empty space on objects in CAlg?” who are
not complex periodic. More informally, M, is the assignment:

R OrBT?(R)= if R is complex periodic
—
[ if R is not complex periodic

Define M%.» by the Cartesian square in P(Aff”)

or or
BT?, > Mprs

ol

un un
BTS > MBT»

where right 2 is the functor naturally induced by Con[4.1.3]

The notation  is reminiscent of the word “orientation”. At present, we
have constructed a presheaf M}, on p-complete E,.-rings, and a routine check
shows this functor is a sheaf.

Proposition 4.1.7. Let R be an Ey-ring and n a positive integer. Then the
functors
%I’ll“P7 %I’lI‘f’La %rTP7 M%rTz : CAlgp - S

are all fpgc (hence also étale) hypersheaves.

As a first step, let us state a slight generalisation of [EC2, Pr.3.2.2(5)]; the
proof is exactly as Lurie outlines in ibid but with fpqc hypercovers replacing
fpqc covers.

Lemma 4.1.8. The functors Mpre, Mprr : CAlg™ — S are fpqc hypersheaves.

Proof of Theorem[{.1.7. To see M}, in P(Aff?) is an fpqc hypersheaf, it suf-
fices to see MBT, in P(Afl) is an fpqc hypersheaf as the inclusion CAlg? — CAlg
sends fpqc hypercovers to fpqc hypercovers. To see MpB%» is an fpge hypersheat,
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4.1. ORIENTATIONS ON P-DIVISIBLE GROUPS

take an E. -ring R and an fpqc hypercover R — R*. From Lm/|1.3.4] (1.3.5),
and Lm[4.1.8| we see that the natural maps

B (R) = Mprs(120R) = Mpre (lim (720R)*)
i) lim MBTP((T}OR).) = lim M%(EI’P (R.)

are all equivalences. Hence Mp7,, and also M3%s, are fpqc hypersheaves. It

follows that MYT, is also an fpqc hypersheaf as it is an open subfunctor of

M, : see Remark

By Lm.[I.3.3] to see My » is a sheaf, it suffices to see that the functor
Bre: CAlg? — S is an fpqc hypersheaf, and that the functor F defined on
objects by

BT’(R)> — &

: P, —
F: CAlg (Caty)/s, R ( G o OrDat(G°)> (4.1.9)

is an fpqc hypersheaf; to define this functor honestly, one can use the standard
techniques as done in Con %.1.3} We have just seen My, is an fpgc hypersheat,
so it suffices to see that (4.1.9)) is an fpqc hypersheaf. Again, write R — R*® for
an fpqc hypercover of R in CAlg?. As Mpt»: CAlg™ — S is an fpqc hypersheaf
(Lm., we obtain the following natural equivalence from the definition of
OrDat(lim R*):

—
—

BT?(lim R*)™ S

G OrDat(G®)
=, limBT?(R*)® — S
G, +— OrDat((limG,)°)
Above, we have written G, for the base-change of G over R*®. Using the char-
acterising property of the identity component (as seen in [EC2, Th.2.0.8]), we
take some A € & (using the notation of [EC2, Th.2.0.8] and (13)) and obtain
the following sequence of natural equivalences where all fibres are taken over
the identity element:

(4.1.10)

(lim G,)°(A) = fib(lim (G,)(A) — lim (G, )(A™?))
~ lim fib(G.(A4) = G,(A™)) = lim (GS(A4)) < (lim G)(A)

The first equivalence comes from the fact that fibres commute with small limits
and the second equivalence from the fact that limits in functor co-categories are
computed levelwise. From this we see that (4.1.10]) is naturally equivalent to

<1imBTP(R')” - S >

G. — OrDat(lim(G°).) (4.1.11)

where (G°), is the base-change of G° over R*. For a fixed pointed formal
hyperplane X over an E_.-ring R, the functor

CAlgp > S, A~ OrDat(Xy)
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is representable by [EC2l Pr.4.3.13], hence it commutes with small limits. In
particular, this implies that the expression (4.1.11}) is naturally equivalent to

limBTP(R*)~ — S o .
< G. — lim OrDat(G?) ) = lim F(R?)
Combining everything, we obtain the natural equivalence F(R) — lim F(R*)
hence MY, is an fpqc sheaf. The corresponding statement for MBT;. follows
as it is a fibre product of fpqc hypersheaves. O

4.2 Orientation classifiers

It is our goal now to try and understand universal orientations and their relation
to MBTP We would like to formally construct a presheaf DBT" of E,-rings on
Ca which behaves like the pushforward of the structure sheaf on Mg along
Q. We perform this construction by first restricting ourselves to affines.

Definition 4.2.1. Recall Nt.2.1.5 Write C4T (resp. C3T) for the full oo-
subcategory of C4, (reps. C4) spanned by affine objects.

We will now define a CAlg-valued presheaf O3, on C4 as a composite of
certain functors, which we describe now.

Definition 4.2.2. Write Aﬂ”;’Mun for the oo-subcategory of P(Affp)/M;nTp
spanned by affines. Define a functor a: C3fF — Aﬁ;’ An by sending an ob-
BT

Jec I G: Spf By — M\BTp .4 first to the composite with the canonical maps
MBTP A — Mgprr, then from Spf B} — Mpr» to its algebmzsatzo

G™8: Spec B} — Mg

which naturally lives in P(Aff*"?) as m 4, and hence J, contains p, and then we
apply 7%,: P(Aff"") — P(Aff”). Define a functor

(s, AP . )P — CAl
(2 (=): (A ) — CAlg
by pullback along : MBTp BT followed by the global sections functor

(Aff7 Mo, )°P — CAlg?, which is just a forgetful functor. Let

ouft, : (€5)P — CAlg

27Recall that the formal spectrum Spf B is equivalent to Spf Bj; where J is a finitely
generated ideal of definition for B; see [SAG| Rmk.8.1.2.4].

28Recall from [EC2, Th.3.2.2(4)], the map MpTr(Spec B) — Mpre (Spf B) is an equiv-
alence of spaces if B is complete with respect to its ideal of definition. We call any
G?2lg: Spec B —» Mprp the algebraisation of the corresponding G: Spf B — Mprp. This
also implies the natural map Mgz (Spec B) — Mprp (Spf B) is an equivalence for B which
are complete with respect to their ideal of definition, and we likewise use the phrase algebrai-
sation.
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4.2. ORIENTATION CLASSIFIERS

be the composition of a followed by I'(€2,(—)), which is an étale hypersheaf as
a sends étale hypercovers to étale hypercovers by construction, and M“Tp and

MG are étale hypersheaves by Prid.1.71 We also define OY - C¥ — CAlg

by right Kan extension along the inclusion (C3f)°P — CY¥. As a right Kan
extensions preserve limits, we see O BT? is an étale hypersheaf

Remark 4.2.3. The right Kan extension defining DBrTﬁ on C4 can be made more
explicit. Indeed, by assumption, each object X in C4 1s qcgs, so by Pr[A.3.6] we
have an étale hyper cover ), — X such that each 2),, = Spf B,, is affine. The
fact that OF;, is an étale hypersheaf (as this is true étale locally on affines)

then gives us a formula for Oy, (X):

BT, (X) ~ lim (DBTP (Spf BY) = DBTP (SpfB') = - )
By Pr below, the terms in the above limit take a known form.

Proposition 4.2.4. Given a p-complete E,-ring R and an associated p-divisible
group G of height n, then there is a natural equivalence of p-complete E.-rings

I(Q.(G)) ~ Dg-
where the latter is the p-completion of Dao, the orientation classiﬁe@ for G°.

Proof. From the definition of T'(24(—)), it suffices to show that the following
natural square of presheaves of p-complete E. -rings is Cartesian:

SpecODgo —— %rTﬁ

J lﬁ (4.2.5)

Spec R LS SN MBTp

Fix a p-complete E-ring A and evaluate the above diagram at A. If there
are no maps of p-complete E. . -rings R — A, then the two left-most spaces are
empty and we are done, so let us then fix a map ¥: R — A. We then note
the following chain of natural equivalences between the fibres of the vertical
morphisms from left to right:

Spec 53G° (A) ~ MapCAlg(DG"a A) ~ OrDat(G%) ~ {¢} X N OBrTg(A)

The first equivalence follows as p-completion is a left adjoint, the second from
[EC2| Pr.4.3.13], and the third from the construction of Q; see Conf4.1.3] As
these equivalences are natural in A, this shows is Cartesian. O

Now that we can calculate D‘"Tp when restricted to affines, so we are ever
n

so close to definition ﬁto ™ and a proof of Th-

29Recall from [ECZ, §4.3.3], for a formal group G over an Ex-ring R, the orientation
classtifier of G is the corepresenting R-algebra for the functor CAlgp — S mapping A to
OrDat(GA).
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4.3. THE SHEAF OF LURIE’S THEOREM

4.3 The sheaf of Lurie’s theorem

The definition of };F, mirrors Lurie’s definition of ¢*°P ([ECZ, §7.3]) and the

proof that this definition satisfies Th also follows Lurie’s ideas.

Definition 4.3.1. Fix an adic E,-ring A as in Nt Let ﬁ];OTpp be the étale
hypersheaf on C4, defined by the composition

) oo
e 2% cop 2, CAlg (4.3.2)

or in other words, first one calculates the universal spectral deformation of

Go: Xp — M\ng 4, 8iving D(Go) = G (Rmk3.3.9), then the identity compo-

nent G° of G, and ﬁg%)p (Go) is then the p-completion orientation classifier of
G°; we will see in the proof of Th[2.1.7] below that this p-completion is unnec-

essary. It follows from Thi3.3.5| and Df}4.2.2| that ﬁg%)p is an étale hypersheaf.

With our sheaf in hand, we can prove Lurie’s theorem; our proof follows the
outline of the proof of [EC2, Th.7.0.1].

Proof of Th|2.1.7. We have an étale hypersheaf of E, -rings ﬁg%’ﬁ on Cy4, from
Df. It remains to shqw that on objects Gg: Spf .BO - MQB?TQ,AO 1n Cifg,
where we may assume By is complete with respect to its ideal of definition J,

the E-ring £ = ﬁg)j?p (Gy) has the expected properties 1-4 of Th Under

D, the object Gg is sent to the affine object Gy,: Spf B — M\BTﬁ,A of Cjﬂ
such that moB ~ By and G, is equivalent to G¢ over Spf By; see Df[3.3.4] By
Pr and , we see & is the p-completion of the orientation classifier of
the identity component G° of G, denoted by Dqge. First, we will argue that the
E. -ring Ogo satisfies the desired properties 1-4, and then for £.

Firstly, note that as Dgeo is an orientation classifier, [EC2] Pr.4.3.23] states
that Do is complex periodic (we will discuss Landweber exactness at the very
end). Tt follows that & is complex periodic as it receives an E-ring homomor-
phism Ogo — &; see [EC2, Rmk.4.1.10].

To see conditions 2 and 3 (except for the identification of 79, &), it suffices
to show the formal group G° is balanceﬂ over B. Indeed, as we have proven
condition 1 of Th.2.1.7, we know that Oge[2] is a locally free of rank 1 so
each w9 qgo is a line bundle over O go. If G° is balanced over B, then each
T qo is complete with respect to the ideal of definition J of mpODge ~ By, so
Do itself is J-complete, hence also m4-complete and p-complete. This would
also imply that £ ~ Ogo. To show that G° is balanced over B, we use [EC2|
Rmk.6.4.2] (twice) to reduce ourselves to showing that G%. is balanced over
B for every maximal ideal m € myB =~ Bjy; these ideals contain J as By is

30Recall from [EC2] §6.4.1], that a formal group G over a connective E . -ring R is balanced
if the unit map R — Da induces an equivalence on 7 and the homotopy groups of Dé are
concentrated in even degree.
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J-complete. By Prj3.3.13] we see G, is the universal spectral deformation of
G,;, where £ is the residue field of B},. A powerful statement of Lurie [EC2]
Th.6.4.6] then implies the identity component G, of Gp, is balanced. Hence
Dago ~ & satisfies conditions 2 and 3 (except for the identification of ma,&).

For condition 4, [EC2] Pr.4.3.23] states that the canonical orientation of the
p-divisible group G over £ supplies us with an equivalence CA;Q = G° of formal
groups over £ between the Quillen formal group of £ and the identity compo—
nent of G. In particular, this implies the classical Quillen formal group G 01
isomorphic to the formal group G§ after an extension of scalars along the unlt
map By ~ mgB — m€. As G° is a balanced formal group over B, this unit
map is an isomorphism, giving us property 4.

To round off condition 3 and calculate 7o, &, we note this follows from the
facts that £ is weakly 2-periodic, the p-divisible group G over £ comes equipped
with a canonical orientation and hence a chosen equivalence of locally free £-
modules of rank 1 §: wg — £[—2], and the equivalence of mowe ~ wa,:

)® ®k

Tor€ =~ (7r25)®k ~ (mowea ~ wé,

Finally, to finish condition 1 and the Landweber exactness of £, we appeal
directly to Behrens-Lawson’s arguments in [BL10, Lm.8.1.6 & Cor.8.1.7], as
they are checking the same conditions on a sheaf with the same properties as
ours above. O

Remark 4.3.3. Let us close this section by stating that there have been other
iterations of Lurie’s theorem; see [BL10L Th.8.1.4] and [Beh20] §6.7]. The state-
ments made there are certainly not aesthetically identica]@ to our Th.
however, we believe that the chapter to follow, detailing applications of Lurie’s
theorem, justifies that all available statements of Lurie’s theorem apply to the
same set of examples. In particular, as we can construct Lubin—Tate theories,
TMF, and TAF, all using Th[2.1.7 we do not find any reason to compare all
available statements in too much detail—meither would we know how to.

31Phrases such as “(locally) fibrant in the Jardine model structure” can be translated
to “étale hypersheaf”, and compatibility between checking fibres are universal deformation
spaces and the adjective “formally étale” is explained in [Beh20l Rmk.6.7.5]; see Pr for
a similar iteration of that idea.
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Chapter 5

Applications of ﬁgﬁp

To advertise Lurie’s theorem to a wider audience and lay (known) groundwork
for future applications, let us now discuss how this theorem (Th. can be
used. A vast majority of the applications below can be found in either [Beh20,
§6.7], [BL10], or [EC2].

5.1 Topological K-theory

As our first application of Th.2.1.7] we would like to prove that one of the
simplest p-divisible groups gives us an example of an E,,-ring near and dear to
stable homotopy theory: complex topological K-theory. To define the E_ -ring
KU, we will follow the construction of [EC2, §6.5], which we will repeat here for
the readers’ convenience.

Construction 5.1.1. Denote by Vectg the 1-category of finite dimensional
complex vector spaces and complex linear isomorphisms. Considering this as a
topologically enriched category with a symmetric monoidal structure given by
the direct sum of vector bundles, the (topological) coherent nerve N(Vectg) is
a Kan complex with an E-structure. The inclusion

[ [ BU(n) — N(Vectg)

n=0

classified on each summand BU(n) by the universal n-dimensional complex vec-
tor bundle, is an equivalence of spaces and the E,.-structure restricts to one on
the domain. The group completion of this E. -space is the zeroth space of a
connective spectrum ku, connective complex topological K-theory. The natural
group completion map can be identified with the map

¢ [[BUM) ~ N(Vectg) — Q" ku ~ Z x BU

n=0
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sending each BU(n) component to {n} x BU via the canonical inclusion, which
represents the universal complex vector bundle &, over BU(n). There is also
a multiplicative E, -structure on N(Vectg) given by the tensor product of vec-
tor bundles, which also gives the connective spectrum ku the structure of a
connective E.-ring; see [GGNI15, Ex.5.3(ii)]. The map ¢ is also a morphism
of E -spaces with respect to this multiplicative E..-structure. By identifying
CP” ~ BU(1) as a summand of N(Vectg,), then space CP” inherits the multi-
plicative E..-structure, as the tensor product of line bundles is a line bundle. As
¢ restricted to CP” lands in the identity component of Q% ku, that is {1} x BU,
we obtain a map of E -spaces CP* — GL;(ku). Under the adjunctiorﬁ

Y%7 : CMon 2 CAlg: GL,y

we obtain a morphism of E. -rings p: XX CP” — ku. Furthermore, the based
inclusion

11 8 ~ CP? - CP”
postcomposed with the unit
n: CP* - Q*Y*CP”
followed by 2% of the inclusion into the first summand
j: Z¥CP* - 7CP* @S ~ L7 CP”
gives us an element § inside m,XXCP*. The image of 8 under the map p

is also called 8 € w9 ku, which one can identify with the element [y;] — 1 in-

side l?ﬁo(CPl)7 where v, is the tautological line bundle over CP'—this is a
consequence of Pr[5.5.60 We define the E. -ring of periodic complex topological
K -theory as the localisation KU = ku[371]; see [EC2] Pr.4.3.17] for a discus-
sion about localising line bundles over E,.-rings, and [HA| §7.2.3] for the E;-ring
case.

With this geometric definition of KU, let us define an algebraic object to
compare it to.

Definition 5.1.2. Let ﬂ;?w denote the multiplicative p-divisible group over
SpecZ. For each positive integer n, the R-valued points (for a discrete ring
R) are defined as

ufn(R) = {xeR|m”n = 1}.

This lifts to a p-divisible group p,» over SpecS by [EC2| Pr.2.2.11].

32Recall the (X%, GL1)-adjunction (see [ABG* 14l §2] for a modern reference) is the com-
posite of two adjunctions:

. nr
. b

CMon8'P mz’: CMon 5 CAlg
f .

The superscript (—)&P denotes those Es-spaces whose mp is a group. The functor
GL;: CMon — CMon®'P sends an Ey-space X to the subspace GLjX spanned by those
path components of X with inverses in 7o X.
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Proposition 5.1.3. The object ugﬁ over Spf Zy, is an object of Cz, (forn =1),
and there is a natural equivalence of Ey.-rings
t V]
ﬁB(aE)f (=) =~ KU,.
One can view this proposition as a special case of the Lubin—Tate example
Pr but a more direct comparison to the geometric discussion above is also

possible using Lurie’s machinery from [EC2 §6.5]. Our argument below is a
combination of [EC2| §3-4 & 6.5].

Proof. The fact that ,uz?y, lies in Cz, follows immediately from Pr. and
Pri3.1.10] Alternatively, one can view this as a special case of Pr

We now follow the argument of Lurie from [EC2]. First, notice the natural
equivalence D(,ugy,/Spf Z,) ~ (up»/SpfS,). Indeed, [EC2, Cor.3.1.19] states

that the universal spectral deformation of ,LL], over Z, is pp» over Sy, and this
is identified with D(y,. / Spf Z,) via Rmk

By [EC2l Pr.2.2.12], we see that the identity component of p,» over SpfS,
is precisely the multiplicative formal group ém over SpfS,. Our desired E-
ring then takes the form of the orientation classifier £ of ém over S,. By
the p-completion of [EC2, Pr.4.3.25], the preorientation classifier of é‘:m over
S, is ¥ZCP,. Taking a p-completion in Con5.1.1, we obtain a map of E-
rings p,: XX CP, — ku,. Similarly, by [EC2] Cor.4.3.27], the localisation
YYCP,[57'], where § € mEXTCP” is the Bott element of Con. from
[EC2, §6.5], is the orientation classifier £ we are after. By construction, this
naturally admits a map of E.-rings p,[37!]: £ —» KU,. We claim this map is
an equivalence.

Now we follow [EC2| §6.5]. As pp»/S, is the universal spectral deformation
of both ,ugx/Spf Z, and 11y / Spec F, (Pr|3.3.13), it follows from [EC2| Th.6.4.6]

that G, is balanced over S,. This and the complex periodicity of £
yield an isomorphism of graded rings Z,[3%] ~ 74€ defined by the invertible
element 5 € mo€. The p-completion of the classical Bott periodicity theorem
then states the composite Z,[3+] — 7+KU, through p,[3~!] is an equivalence,
hence p,[37'] is an equivalence. O

There is a standard trick to obtain the integral E, -ring KU from the col-

lection ﬁgﬁf’p ([L;?w) for all primes p by purely algebraic methods.
1

Remark 5.1.4. Consider the symmetric monoidal Schwede—Shipley equivalence

of oco-categories
Modg ~ D(R) (5.1.5)

where R is a discrete commutative ring; see [SS03] or [HAL Th.7.1.2.13]. Re-
placing R with Q, we note that the E..-Q-algebra kugq, the rationalisation of
ku, has homotopy groups 7, kug >~ Q[S], for |8| = 2. Define a map of Q-cdgas
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Aq[z2] — kugq from the free Q-cdga on one element in degree 2 to kuq, defined
by the element . This is easily seen to be an equivalence of Q-cdgas, and one
obtains an equivalence upon localisations at x»

Aq[z3'] = kug[8™'] ~ KUq

where KUq is the rationalisation of KU. Carrying out the same construction in
CAlg, we obtain a morphism A[x%l] — KU, of E..-rings from the free E..-ring
on a single invertible generator in degree two to KU, defined by S € mKU,.
Taking the product of these morphisms over all primes p and rationalising gives
a morphism in CAlgq

0: Aq[zF'] — <H KUp>

where we note that (A[z3'])q is naturally equivalent to Agq[z3']. One then

obtains KU from the following Hasse Cartesian square of E -rings:

Q

KU —— [],KU,

| |

AqlzF'] —2= (I1,KUp)q

where the two products are taken over all prime numbers p; see [Bauld].

The E,-ring KO can also be obtained through these means. The following
is a carbon copy of Con replacing C with R.

Construction 5.1.6. Write Vecty for the topological category of real vector
spaces of finite-dimension and real linear isomorphisms. As this category has
two symmetric monoidal structures given by the direct sum and tensor product
of vector bundles, the (topological) coherent nerve N(Vecty) is a commutative
monoid object in the co-category of E.. -spaces. Moreover, the functor

c¢: Vectg — Vectg Vi VEeRrC

is symmetric monoidal with respect to both monoidal structures, hence we ob-
tain a morphism of commutative monoid objects in E.,-spaces:

¢: N(Vecty) — N(Vectg)

The group completion (with respect to the direct sum E . -structure) of N(Vecty )
is the zeroth space of the connective E,.-ring ko, connective real topological K -
theory, and c induces a morphism ko — ku of E, -rings. There is an element
Br inside mg ko and ¢(Br) = B* inside mg ku; see [Ada74, §II1] for example. We
define the E, -ring of periodic real K-theory as the localisation KO = ko[ﬂr_{l],
and we notice this induces a morphism ¢: KO — KU. By [HS14], the map ¢
can be identified with the E_-inclusion of the Cs-fixed points of KU through
the Cs-action given by complex conjugation of vector bundles.
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Definition 5.1.7. Let BC5 be the quotient stack SpfZ,/Cy with respect to
the trivial action on SpfZ,. This formal spectral Deligne-Mumford stack has
a cover Spf Z,, — BC; given by the canonical quotient map. By [LN14, A.3-4],
this is the base-change over SpfZ, of the moduli stack of forms of the multi-
plicative group scheme G,,. The reason for the quotient by C5 is to remove
the automorphism on Gy, given by inversion. Moreover, the multiplicative p-
divisible group ,u;?ﬁ lives over BC5, so we obtain a map BCy — MgT’fvzp'
Proposition 5.1.8. The map BCy; — M\ET” z lwes in Cz,, and there is a
1P
natural equivalence of Eq,-rings

Oy (BC:) ~ KO.

Moreover, the map ﬁg’Tpf(Spf Z, — BCy) is homotopic (as maps of spectra) to
the p-completion of the map ¢: KO — KU.

The proof below uses some results about stable Adams operations which we

discuss in §5.5

Proof. As SptZ, — BC, is a finite étale cover and the composite

SpfZ, — BCy — Mgy 5

lies in C4,,, then so does BCy. It suffices now to show that ﬁ]t;%)p (BCs) = £ is the
1
inclusion of the Cs-fixed points of KU, with respect to the complex conjugation

action on KU,. We can rewrite £ using the fact that ﬁ’g)j?p is an étale sheaf:
1

£ ~lim (ﬁ;% (110 / SPE Z) = Ot (11 / SPE Z W, SPEZy) = )
As SpfZ, — BC; is a Cy-torsor by construction and using Pr[5.1.3] we can
rewrite the above limit as

lim <KUP:>HKU,,;> I] KU,,-..>
Cy

Cz XCQ

which is simply the homotopy fixed points KUZCz. We are only left to check
that this Cs-action on KU, is homotopic as maps of spectra to that given by
complex conjugation. By the construction of ‘BCy, we see that SpfZ, — BC,
is the quotient by the inversion action on the multiplicative group scheme G,
hence £ — KU, is the inclusion of the Cz-homotopy fixed point of KU, with
action given by [—1]*. These Cs-homotopy fixed points are equivalently given
by the [—1]*-fixed points. As we will discuss in Pr.[5.5.5] the map [—1]* is
homotopic to the stable Adams operation 1 ~'. Following arguments of ibid we
see this is determined as a map of spectra by what it does on line bundles on
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KU ,-cohomology of finite spacesﬁ We now refer to [MS74], p.168], which states
that the complex conjugate of a complex line bundle L is isomorphic to the dual
of a complex line bundle L, the latter also being given by ¢~!(L). This finishes
the proof. O

5.2 Lubin—Tate and Barsotti—Tate theories

The above example of ﬁg?l?p (,u;f ») ~ KU, can be extended to arbitrary heights.
1
The following is a combination of [EC2l §5-6]. Recall the Lubin—Tate deforma-

tion theory of Ex

Proposition 5.2.1. Let éo be a formal group of exact height n over a per-
fect field k and Go for a p-divisible group over r whose identity component is
equivalent to Go; see [ECZ, Pr.4.4.22]. Write G for the classical universal de-
formation of Gg, which is a p-divisible group over the discrete ring R%; The

object G: Spf RLaT — /\/lng . lies in Cz,. Moreover, there is an equivalence
0 n>bp

of Ey.-rings @’ga?p (G) ~ E,, where E,, = E(éo) is the Lubin-Tate E, -ring of
Gy (also known as Morava E-theory); see [EC2, §5].

This will follow from a more general statement.

Proposition 5.2.2. Let Ry be a discrete Noetherian F,-algebra such that the
Frobenius endomorphism on Ry is finite and Gg be a nonstationary p-
divisible group of height n over Ry. Write R for the universal spectral defor-
mation adic E,-ring of Gg from [EC2, Th.3.4.1] and assume the residue fields
of moR are perfect of characteristic p. Then G: SpfmyR — M\gTﬁ,ZZJ’ the
morphism defined by the base-change of the universal spectral deformation of

Gy along R — moR, lies in Ca,. Moreover, there is a natural equivalence of
E,. -rings D(G) ~ R.

The E.-rings produced by applying ﬁgﬁf’p to the p-divisible groups G oc-

curring in Prl5.2.2| seem interesting enough to name.

Definition 5.2.3. Let Ro, Go, and G be as in Pr We call 1%, (G) the
Barsotti-Tate Ey -ring associated to (Rg, Go).

Proof of Pr[5.2.3 Let us first see that G lies in C4, by checking the conditions
of Df2.1.6] It is shown in Pr[3.1.10] that the morphism G is formally étale. As
Ry is Noetherian, then [EC2, Th.3.4.1(6)] tells us that R and hence also moR
are also Noetherian. Consider the maps in P(Aff")

Spf mgR — Spf R — M\BT,{’L,A

33Recall from [HA] Nt.1.4.2.5], that the co-category of finite spaces is the full co-subcategory
of § generated by the terminal object under finite colimits.
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and the associated (co)fibre sequence of complete moR-modules:

L

Spf R/ Myyrp Lt mo iy My, > LSptmor/spt R

N
AlSpf o R

By construction ([EC2, Pr.3.4.3]), R corepresents the de Rham space of the map

Spec Ry — Mgprr, or equivalently, the de Rham space of Spec Ry — Mgtz 7, .
as Ry is an Fp-algebra and Gg is of height n. Identifying R as representing

this de Rham space and using Ex/|3.2.17] we see that LSpf B/ Ry s vanishes.
Hence LSpf o R/ Mo x is almost perfect as Lgp ror/spt g 18 almost perfect; see

Pr Rmk identifies R with D(G). O

Proof of Pr[5.2.1 The fact that G lies in Cz, follows from Pr[5.2.2} The fact
that Oppn, (G) is equivalent to E,, follows as the universal spectral deformation
of Gy is given by D(G) (Prf5.2.2) and the orientation classifier of D(G) is E,,
([EC2, Cor.6.0.6]). O

From the functoriality of ﬁ p we obtain an action of the automorphism

group of the pair (k, Go) on the E -ring F,. In other words, F, obtains an
action of the extended Morava stabiliser group; see [EC2, §5] and [GHO4, §7]. Tt
is not clear from these techniques that these account for all E.,-automorphisms
of E,; this requires a dash of chromatic homotopy theory as done in [EC2, §5].

5.3 Topological modular forms

Another exciting application of Th2:1.7]is to construct the Ey -ring TMF of pe-
riodic topological modular forms. Of course, this also uses the ideas of Lurie from
[EC2] and [SUR09], but reinterpreting TMF, as a section of ﬁBTp yields addi-

tional endomorphisms to those previously known—that is the toplc of Part [[I]

Proposition 5.3.1. The map [p™]: /\7511 z, — M\ETP z, sending an elliptic
curve E to its associated p-divisible group E[ ], lies inside Cz,.-

Proof. Using Pru we only need to show that the map [p*] above is formally
étale inside P(Affv) and that ./\/lE11 z, is finitely presented over SpfZ,. The
former follows from ExB.1.7 a consequence of the classical Serre-Tate theorem
The latter follows by base-change from [Ols16l Th.13.1.2], which states that
Mgn is smooth, separated, and of finite type over SpecZ, hence it is finitely
presented over SpecZ. O

As promised in the introduction, we should relate ﬁBTP to a more classical
object:

Definition 5.3.2. Let ﬁ’to,p denote the Goerss—Hopkins—Miller sheaf of E..-
rings on the étale site DM;’E\A@ of Mpy; see [EC2, Th.7.0.1], or [Behid] and
Ell

[GoelOl Th.1.2] for versions over the compactification of MEH. The global
sections O't°P (./\/lgn) are the E.-ring TMF of periodic topological modular forms.
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We also have functors DM, o — fDMSt defined by base-change along

/Mgy /MEH Zyp
the canonical map Spf Z,, — Spec Z and fDMt-

along the map [p™] of Pr

Theorem 5.3.3. The following diagram of co-categories commutes up to ho-
motopy:

/MEH,ZP - Czp by postcomposition

t
(DM CAlg

l [(),?
ﬁtop

op
(fDM?ﬁME“ Zp) — (Cz,)™" P CAlg

) op otop

In particular, there is an equivalence of E . -rings:
t A0
ﬁBC:FP ([ ik MEIIZ - MBTg,zp> ~ TMF,

The following proof is essentially that of [EC2, Th.7.0.1] which proves an
integral statement.

Proof. As done in the proof of [EC2, Th.7.0.1], we will conclude the proof by
checking that for each affine object Ey: Spec By — /\/lEll of DM¢ the E-

ring £ = ﬁg’Tpp (E[p™]) satisfies the following conditions:

MGy

1. & is weakly 2-periodic; see (|10)).

2. The homotopy groups mp& vanish in odd degrees, so in particular, £ is
complex orientable.

3. There is a natural (in DM o ) isomorphism of rings (Bo), ~mo€.

/MEII

4. There is a natural (in affines in DM% isomorphism of formal groups

a5,

~

E(p,), ~ (A}ggo over Spf(Bo), -

Once one applies [EC2], Pr.7.4.1] to identify E~E *1°, these conditions above

are precisely the properties of ﬁlg?l?p by Th.[2.1.7}, hence they hold. The p-

completion of the étale sheaf of E.. -rings &P is determined up to homotopy
by the four conditions above, the desired diagram of oo-categories commutes
up to homotopy. This is a folklore statement, see [EC2, Rmk.7.0.2] or [Goel0,
Th.1.2], but a precise statement and proof can be found in T h O

As done in [Beh20l §6], we can use the collection of all p-complete E -rings
TMF, and a little rational information to construct integral TMF, similar to

Rmk[5.1.4] This is generalised in
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5.4 Topological automorphic forms

The first examples of new cohomology theories constructed with Th[2.1.7] come
from Behrens-Lawson [BL10]. The main idea is that the Serre-Tate theorem,
which was vital in our construction of TMF,, from ﬁg)j?g, actually applies to
the moduli stack of dimension g abelian varieties for any g > 1; the g = 1
case recovers the moduli stack of elliptic curves. A new problem now arises:
we need our p-divisible groups to be of dimension 1, and then and only then
can they have an orientation. To obtain a 1-dimensional p-divisible group from
an abelian variety A of dimension g > 2, one needs more structure on A to
split its associated p-divisible group into one of dimension 1 and another of
dimension g—1 (which we forget about). This comes in the form of polarisations,
endomorphisms, and level structure, leading us PEL-Shimura varieties; for a
full introduction to the subject and the intended application to stable homotopy
theory, see [BL10]. What appears below is simply a restatement of [BL10] and
[Beh20)].

Notation 5.4.1. Fix an integer n > 1. Let F be a quadratic imaginary ex-
tension of Q, such that p splits as wu, and write &g for the ring of integers
of F. Let V be an F-vector space of dimension n equipped with a Q-valued
nondegenerate Hermitian alternating form of signature (1,n — 1). Finally, fix
an Op-lattice L in V such that the alternating form above takes integer values
on L and makes L, self-dual.

Definition 5.4.2. Write Xy 1, for the formal Deligne-Mumford stack over Spf Z,,
(of [BLI0L Th.6.6.2] with K? = K[)) where a point in Xy (S) for a locally
Noetherian formal scheme S over Spf Z,, is a triple (4,4, A) where:

e A is an abelian scheme over S of dimension n.

e \: A — AV is a polarisation (principle at p), with Rosati involution t on
Endo(A)(p)
* i: Oy — Endo(A), is an inclusion of rings satisfying i(z) = i(z)".
These triples have to satisfy two additional conditions assuring they are locally
modelled by V' and L; see [Beh20, §6.7].

In the situation above, the splitting p = ww induces a splitting of p-divisible
groups
A"~ Alu*] @ A[" ]
and our assumptions on (4,4, A) ensure that A[u™] is a 1-dimensional p-divisible

v

BT Z, which sends

group. This yields a morphism of stacks [u*]: Xy, — M
(A, N, i) to Alu™].

Proposition 5.4.3. Given V and L as in Nt[5..1], then the morphism
w07, AAQ
[w”]: Xv.p = My 5

defines an object of Cz,,.
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Proof. Pr2.1.9 reduces us to show that [u*] is formally étale inside P(AfF")
and that Xy, is of finite presentation over Spf Z,. The first statement follows
straight from the definitions of a formally étale morphism and [BL10, Th.7.3.1],
which itself is a consequence of the classical Serre-Tate theorem. We now use
[BL10, Cor.7.3.3] to see Xy, is of locally finite presentation over Spf Z,, so it
suffices to show now that Xy 1, is qcgs. To do this, we first use [BL10, Th.6.6.2],
which states that &y, has an étale cover by a quasi-projective scheme. As a
quasi-projective formal scheme X is separated and qc, we see X itself has a
Zariski cover by an affine formal scheme Spf B, meaning Xy, has an étale cover
by Spf B. By Pr[A:3.6] this implies X,z is qcqgs. O

We can now define the E.-rings of topological automorphic forms as done
in [BLI10, §8.3].

Definition 5.4.4. Let V and L be as in Nt.[.4.1] Define the E, -ring of
topological automorphic forms
TAFy,, = O}%, (XM L Y. 7zp>
One can also define variants of TAFy ;, which incorporate level structures.

Such extra structure can then be used to define restriction maps, transfers, and
Hecke operators on TAFy, 1; see [BL10| §11].

5.5 Stable Adams operators

Let us now explore the simplest functoriality intrinsic to ﬁg’{fp.
Definition 5.5.1. Let k = (k1,k2,...) be a p-adic integer and G a p-divisible
group over an arbitrary scheme (or stack) S. Write

[k]: G - G

for the endomorphism of G given on p"-torsion by the k,-fold multiplication
[kn]: Gr, = Gj. These assemble to an endomorphism of G as the sequence
(k1, k2, ...) represents a p-adic integer and the closed immersions G,, —» Gy, +1
witness the equality G,, = Gp41[p"]. If k is a unit inside Z, then each [k,] is
an isomorphism of finite flat group schemes on S, hence [k] is an automorphism
of G. If G defines a morphism S — 'A//l\gTﬁ,Ag inside C4, and k € Z;, then
write

OF [R]*: O (G) = Oppy (G)

for the induced automorphism of E.,-rings. These are the (p-adic) stable Adams

operations ﬁgﬁlﬂ) (G); we will justify this name shortly.

Many properties expected of Adams operations are formal.
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Proposition 5.5.2. Let I,k be two units in Z,, G be an object of Ca,, and
write £ = ﬁg:l{)ﬁ (G). Then ' is canonically homotopic to the identity map on
the Ey-ring £, and the maps of B..-rings Y% and Y'* on & are canonically
homotopic.

The homotopy H between ¢'* and 1'* is canonical with respect to mor-
phisms in C4,. For example, if j is another p-adic unit, then the homotopy
between ¥7ply* and ¢7'* factors through H. This follows straight from the
fact that ﬁgﬂf’ﬁ : C — CAlg is first and foremost a functor of co-categories,
and the calculations [I][k] = [Ik] hold up to equality in Cy,.

Proof. As these facts hold for [k] in C4, and ﬁ’g)Tpp is a functor, we are done. [

Using the information we already have at hand, we can calculate [k]* on the

homotopy groups of the E..-rings ﬁgiﬁp (G) over affine objects of Cg4,,.

Proposition 5.5.3. Let k be a unit in Z,, and G be a p-divisible group defining
an affine object in C4,. Then for every integer n, we have the following equality
of morphisms of Z,-modules:

[K]* = k™ : 720 Oprn (G) = T2 Oppn (G)

Proof. Using Th we see that Wznﬁg’gp (G) is naturally isomorphic to the

line bundle wgn over Woﬁg’%’g (G) = B. It then suffices to calculate the n = 1
case. As wg is the dualising line for the identity component G° of G, we see the
B-module wg is naturally equivalent to the dual of the Lie algebra Lie(G°) (12),
so it now suffices to calculate [k]* on this Lie algebra. This is quite elementary,
but let us recall some details. The question can be answered by localising at
each minimal ideal m of B containing its ideal of definition J. Over By, the 1-
dimensional formal group G° has coordinate ¢t and an associated formal group
law G—the choice of coordinates forms a line bundle over B, and line bundles
over local rings are trivial; see [Goe08, §2]. Assume B is local then. If & is an
integer, can write [k] on B[t], the global sections of G° using the coordinate ¢,
as the composite

[k]: B[t] 2> B[ty,...,t:] % B[t] (5.5.4)
where the first map is the k-fold comultiplication on B[t] induced by G and the
second is the completed multiplication map sending each ¢; to t. As we have
the congruence

Ck(t) =t 4+ -+ 1

modulo higher degree terms, then [k](t) = kt modulo higher powers of ¢. Finally,
the Lie algebra Lie(G®°) can be written as a Zariski tangent space:
Lie(G°) ~ Homwoa, (tB[t]/(tB[t])?, B)

It is now clear that [k]*: Lie(G°) — Lie(G®°) is simply multiplication by k if k
is an integer. For a general p-adic unit k, we approximate k by integers using
its p-adic expansion, and our conclusion then follows in this more general case
by taking the limit. O
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Let us justify why we call the operations [k]* stable Adams operations.

Proposition 5.5.5. For integers k not divisible by p, the map of B -rings
[£]*: KU, — KU, is homotopic to classical stable Adams operation PF; see
JAti67, §3.2].

Using a slight variant of Rmk.[5.1.4] one can construct maps of E,-rings
[n]*: KU[L] - KU[Z1] for every integer n. It is well-known ([Ada74, §II.13])

1

n
that to construct a stable Adams operation 1™ as a map of spectra, one must
invert n. To prove Pr[5.5.5] we need some preliminaries.

Proposition 5.5.6. The composition
cp” 2 o*xrcp” 2, 0P srep” 228 0%k
~0
represents the class [£1] — 1 in ku (CP™), where & is the universal line bundle

over CP™*.

Let us recall that for a spectrum E and a based space X, one defines the
unreduced and reduced E cohomology groups of X as the abelian groups:

E%(X) = mo Mapg, (53 X, E) = mo Mapg (X, Q" E)

E°(X) = mo Mapg, (5" X, E) ~ mo Mapg, (X, Q" E)

Let us also state a lemma we will use regarding the (37, GL;)-adjunction; we
only state it to keep track of base-points.

Lemma 5.5.7. If R is an Ey . -ring, then the composite
GLi(R) > GLy(R), 5 Q* N7 GLy(R) 5 Q"R

is homotopic to the inclusion GL1(R) — Q”R, where e: XX GL(R) — R is
the counit of the (X7, GL1)-adjunction.

Note that the unit and the counit appearing in the lemma above do not
come from the same adjunction.

Proof. The (X%, GLq)-adjunction is a composite of the adjunctions

CMon®? & CMon & CAlg
GL; Qx
so the counit e: T GL;(R) — R factors as the map induced by the defining
inclusion GL;(R) — QR and the counit of the (X%, Q”)-adjunction. This

implies the diagram of spaces

GL;(R) — GL,(R); —*» Q*Y7GLy(R)

! | |~

QR —— (Q*R), — Q*S7Q*R — Q"R
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commutes, where the vertical maps are all induced by the defining inclusion.
Similarly, the first two maps in the bottom composition compose of the unit of
the (X%, Q™)-adjunction on Q* R, and by the triangle identity for this adjunc-
tion, the bottom horizontal composite is the identity. This is what we wanted
to prove. O

Proof of Pr[5.5.6 Consider the natural commutative diagram of spaces

CP* —— CP} — ™ Q*x%CP”

Q% p
5|BU(1)J( leU(1)+l QZ:&lBU(l)l \

GL; (ku) —— GL;(ku); —2 Q757 GL, (ku) 2% 0Py

where € is the counit of the (X7, GL;)-adjunction. By Lm.m the bottom
horizontal composite is the inclusion GL1 (ku) — Q% ku. Hence the composition
CP” — Q* ku above corresponds to the maps {|gy(1): CP™ — Q” ku which
lands in {1} x BU defining the universal line bundle &; over CP”*. As this mor-
phism represents [¢;] in ku’(CP™), it follows by the (%, Q% )-adjunction that
p also represents the element [£1]. Our desired composite is then represented
by the image of p under the map

, ~0 .
j*: ku’(CP”) - ku (CP%).
To identify j* we write down the split (co)fibre sequence of spectra
*CP* L ¥7CP* ~ X*CP* ®S L S

where ¢ is induced by the unique map of pointed spaces CPY — SO which is
surjective on my. We can calculate ¢*: kuo(*) — ku CP*—it induces a map
of rings on ku’-cohomology, and kuo(*) ~ 7, so ¢* is the unique map. More
explicitly, ¢* sends an integer n to the n-dimensional virtual vector bundle
on ku’ CP*. One can also calculate that the splitting i of ¢ induces a map
i*: ku’ CP* — Z sending a virtual vector bundle to its dimension. Indeed,
this can be seen geometrically, as a class z: CP* — Z x BU is sent to the
composition * - CP* — Z x BU which only remembers which Z-component
the original x landed in, ie, its virtual dimension. We can then identify the map
p* induced by the splitting p of j with the inclusion of the kernel of i*, ie, the
inclusion of those virtual vector bundles over CP™ with dimension 0. It follows
that j* can then be identified by the formula:

j*(x) =z — ¢"i*(z) = v — dim(x)

Back to the question at hand, we wish to calculate j*(p). Using the above yields
our desired conclusion:

7*(p) = j*([&]) = [&] =1 O
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A consequence of the above is that we obtain the usual complex orientation
on KU.

Remark 5.5.8. The map j: E°CP” — ST CP” defines a class
j € (RECP*)°(CP™),

Let us also write j € gO(CPI) for the image of the above element under the
localisation map:

SYCP” - SYCP* [~ =€
A complex orientation xg can be defined as xg = % € 52(CP°C) as we have
*(zg) = B B~' = 1 where 1: CP' — CP™ is the canonical inclusion. It
follows that the image of z¢ inside KU under the map

plB1]: E=27CP”[B ] - ku[p '] =KU

is a complex orientation xky of KU, as complex orientations are sent to complex
orientations by morphisms of E, -rings; see [EC2, Rmk.4.1.3]. This complex
orientation on KU is also the orientation we were all expecting, as by Pr}5.5.6
we obtain the equalities

20 = palae) = [51]5‘ L e K0°(cP~)

where & is the universal line bundle over CP”.

Proof of Pr[5.5.5 By restricting ourselves to the case of an integer k not divisi-
ble by p, we have assured that [k]: /1,;?«/; — ,ugr is an automorphism of p-divisible
groups.

Let us write £ = ﬁg% (ugx). We claim that [k]* can be calculated on
the universal line bundle over CP” using just the algebraic geometry of ém.
By (the proof of) Pr. the map p,[871]: &€ - KU, is an equivalence of
E -rings, and Rmk/[5.5.8] states this equivalence sends the canonical complex
orientation x¢ of £ to the usual complex orientation zxy of KU,. We obtain
orientations (now in the sense of Df ec and exy of the formal multiplicative
group G, over € and KU,, respectively, ([EC2, Ex.4.3.22]) with the additional
property that p(eg) = exy. As these orientations of ém determine morphisms

from the associated Quillen formal group to Gy, ([EC2| Pr.4.3.23]) and p(eg) =
exu, we obtain the commutative diagram of equivalences of formal groups:

*® ~

ém,Zp

2
Gk,
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Focusing on KU, now, let us rewrite the above diagram of equivalences of formal
groups over Spf Z,:

Spf KUS(CP*) = Spt Z,[t] = Gy, (5.5.9)

By definition, [k] acts by taking k-fold multiplication, which on the multiplica-
tive formal group is an operation represented by the map of rings:

]2 Zo[t] <> Zo[tr, .. 0] 2 Z,[t], e (¢ +1)F—1

Recall from that the first map is the k-fold iteration of the comultiplica-
tiorﬂ and the second map is the completed multiplication map. As the map
induces a map of adic rings sending ¢ to Sxky, we then obtain the same
formulae for [k]* in KU)(CP™):

[k]*(Brku) = (Brxu + 1)F =1

As Bzku € KUg(CP‘I‘) is represented by [£1] — 1 one obtains:

[k]*([&1]) = [K]* (Bzku + 1) = [k]*(Baxu) + 1 = (Brku +1)F — 14+ 1 = [£P¥]

It follows that for any finite space X and any complex line bundle £ over
X with corresponding map g: X — CP%, the inherent naturality of [k]* gives
us the formula:

[K1*([€]) = [k]*([g"€1]) = g™ ([K]* (1)) = g™ [€2]" = [£®"]

It follows from [Afi67), Pr.3.2.1(3)] that the operations [k]* on KUS(X) are the
Adams operations ¢* as maps of cohomology theories.

To lift this statement from one about cohomology theories to one about
the spectra that represent them, we need to see there are no phantom maps of
spectra KU, — KU,—this is the only obstacle to the fully faithfulness of the
functor

hSp — CohomTh E— E*(-)

where CohomTh denotes the 1-category cohomology theories on finite spaces;
see [HS99, §2 & Cor.2.15] and [CHTI10, Lec.17]. As KU, represents an even
periodic Landweber exact cohomology theory, it follows there exist no phantom
endomorphisms of KU,; see [CHT10, Cor.7, Lec.17]. O
Remark 5.5.10. There is a Cs-action on the sections of ﬁgﬁlﬁ)ﬁ
inversion action on p-divisible groups, ie, from 1 ~!. Any Ch-action on an E.-
ring £ can be used to upgrade £ to a genuinely commutative Ca-ring spectrum

coming from the

34The comultiplication on the ring Z,[t] representing the multiplicative formal group is
given by
Zplt] = Zp[z,yl,  t+loaytzty+l=(x+1)+1).
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(the kind with norms); see [HMI7, Th.2.4]. When p = 2, this has interesting
results, for example, the Cy-structure on sections of ﬁ]t;%’% can be used to obtain
a Co-equivariant refinement of part 1 of Th.2.I.7 the complex orientability
and Landweber exactness of affine sections of ﬁngpﬁ can be upgraded to Real
orientability and Real Landweber exactness a la [HMI1T, §3]. This essentially
follows from the regular homotopy fized point spectral sequences of [Mei22], the
descent theory developed by Lurie in [EC2 §6], and the analogous result of

Hahn-Shi [HS20] for Lubin-Tate spectra.

Remark 5.5.11. Let p be an odd prime. Using the Teichmiiller character, a
map of groups F — ZJ, which sends d to the limit of the Cauchy sequence
{d”" },,=0, one obtains an action of F) ~ Cp_1 on any sections of @’gﬁ&. In
particular, for any G in C4, (it need not be just an affine object), the E -ring
&= ﬁ;oTpﬁ(G) has an E, -F-action, and the homotopy fixed points ENFy split
off a summand of £ using the idempotent map:

Z% Z Yl &

deF; SZy

In particular, if £ = KU, as in § this summand is the periodic Adams
summand.

As some obvious foreshadowing for the rest of this thesis, let us concretely
define stable p-adic Adams operations on TMF,, using what we have seen so far.

Definition 5.5.12. For any p-adic unit k € Z; we obtain an automorphism of

E, -rings ¢*: TMF, — TMF, by specialising Df}5.5.1{ to Th
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Chapter 6

The functoriality of ¢'°P

The nihilist recognizes that the highest conceivable
ideals that command our respect and admiration
exist nowhere except in our own minds.

John Marmysz, Laughing at Nothing

In this chapter, we prove Th.B] and Th.C] in §[6.1] and §[6.2] respectively,
which show that ¢'*°P has more structure than previously known.

Warning 6.0.1. In the previous chapter, we wrote M for an object of P(AfF")
and M for an object of ’P(Aﬁ“@). As there will not be any more explicit work
with derived or spectral stacks, let us drop the (—)% from our notation for the
rest of the thesis. In other words, our study of stacks takes place inside P(Aff?).

6.1 Isogenies of invertible degree

In Th we showed that the sheaf of E.-rings &7°" on the small étale site
on the moduli stack of elliptic curves, can be factored as follows:
é op é P [p™] nrp

(DM ) = (DMxsprz,) > G ——> CAlg (6.1.1)
Above, the first functor in induced by base-change with SpfZ,, [p*] sends
an elliptic curve E over a p-complete ring to its associated p-divisible group
E[p™], and ﬁga{)p is a sheaf of E . -rings. One consequence of this is that ﬁ;"p is

2

functorial with respect to morphisms ¢: E — E’ of elliptic curves which induce
an isomorphism on the associated p-divisible group. Such morphisms of elliptic
curves have a simple classification.

Proposition 6.1.2. Let ¢: E — E' be a morphism of elliptic curves over a
formal Deligne-Mumford stack X over Spf Z,. Then ¢ induces an isomorphism
on the associated p-divisible group if and only if ¢ is an isogeny of degree prime
to p, meaning that ¢ is finite locally free of rank prime to p.



6.1. ISOGENIES OF INVERTIBLE DEGREE

Proof. Note that by [KMB85, Th.2.4.2], a morphism of elliptic curves £ — E’ is
either an isogeny or the zero map, so we immediately see ¢ must be an isogeny.
For to calculate its rank, we notice this question is local on X, so we may work
over Spf A for some adic ring A with adic topology generated by an ideal I.
Writing Spf A = colim Spec A/I™, we are reduced to the case of a classical (non
formal) affine scheme X. It is a general fact that we have the following exact
sequence of étale sheaves over X
0 K Elp™ "] oo
- K, = E[p"] — E'[p"] =0

where K, is the component of the finite group scheme K = ker(E — E’) of
maximal p-power order. The vanishing of K, is then equivalent to the degree
of E — E’ being prime to p. O

Using the language of isogenies of degree prime to p, our reinterpretation
of Th.[5.3.3| states 0;°P is functorial with respect to such isogenies of elliptic
curves. We will often work over Spec Z rather than Spf Z,,, and in this case, we
can still use p-divisible groups to test if an isogeny of elliptic curves has degree
invertible on X.

Corollary 6.1.3. Let ¢: E — E’ be a morphism of elliptic curves over a
Deligne—Mumford stack X. Then ¢ induces an isomorphism on the associated
p-divisible group base-changed over Spf Z,, for every prime p if and only if ¢ is
an isogeny of invertible degree.

Proof. If p is invertible in X, then X x SpfZ, vanishes and the condition is
vacuous. If p is not invertible on X, then we apply Pr[6.1.2]to X x SpfZ,. [

The two statements above inspire the following definition.
Definition 6.1.4. Let Zsogy,, be the following (2, 2)-category:

e Objects are those in the small étale site of Mgy, so pairs (X, E) where X
is a Deligne-Mumford stack and E is an elliptic curve over X defining an
étale morphism X — Mgy;.

e 1-Morphisms are pairs (f,¢): (X, E) — (X, E’) where f: X — X' is a
morphism of Deligne-Mumford stacks and ¢: E — f*E’ is an isogeny of
elliptic curves over X of invertible degree.

e 2-Morphisms «: (f,¢) — (g,4) are isogenies a: f*E’ — ¢g*FE’ of elliptic
curves over X of invertible degree such that oo ¢ = .

Write Isogg, for the initial (2, 1)-category which receives a functor of (2,2)-
categories from Zsogyy. This can be obtained by formally inverting all of the

2-morphisms inside Zsoggy. Also, define categories Zsogg; and Isogy, by re-

placing Mgy with M\En = Mg x Spf Z,, in the definition above, and working
with formal Deligne-Mumford stacks and isogenies of elliptic curves of degree
prime to p.
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Remark 6.1.5 (Grothendieck topologies). There is a forgetful functor Isogg, to
DM sending a pair (X, E) to the underlying Deligne-Mumford stack X. Give
Isogg; the étale topology through this forgetful functor. We claim this forgetful
functor is a morphism of sites following [Sta, 00X0]. The only condition left
to check is that this forgetful functor preserves fibre products, so it suffices to
calculate fibre products inside Isogg,;, which we detail now. Consider the span

fé 9,
(X0, Eo) 9, (Xo1, Eo1) o) (X1, E1)
inside Isoggy, so ¢: Ey — f*Ep1 and ¥: By — ¢g* Ey; are isogenies of invertible
degree on Xy and Xj, respectively. Let X and E denote the following fibre
products of stacks:

XOXX1=X E()XE1=E

Xo1 Eo1

Above, the map Ey — FEjy; is the composition
D rx
Eq — f*Eoq1 — Eo1

of maps of stacks over Xg1, and similarly for F; — Ep;. Let us write f/: X — X;
for the base-change of f, and similarly for ¢’. To see E is an elliptic curve over
X and the maps F — E; induce maps o': E — f*E; and §': E — ¢'* Eg which
are isogenies of invertible degree, consider the following Cartesian diagram of
stacks over X:

E—2  f*E
lﬁ’ Lf’*,@
1% g*a Ee £y
9 Ey —— g™ [*Eo1 ~ [ g* Ep1
This witnesses that the canonical maps £ — X and X — FE give E the structure

of an elliptic curve over X, and that 3’ “and o are isogenies of invertible degree
over X. Likewise, the forgetful functor Isoggy; to the category of formal Deligne-

Mumford stacks gives Ig(;gEH the étale topology and is also continuous.

Remark 6.1.6 (Small étale site of Mgy ). Consider the (2,1)-subcategory of
Tsoggy with the same objects but with those 1-morphisms (f, ¢) where ¢ is an
isomorphism, which forces any 2-morphisms « to be isomorphisms as well. This
(2, 1)-category is precisely the small étale site DM%ME“ of Mgy inside in Zsogyy;.

Let us write ¢ for the composition DM%[EH — Isogp). The same comment holds

over Mg.

The above discussion yields the following consequence of Th

Corollary 6.1.7. Fiz a prime p. There is an étale hypersheaf ﬁ;,‘)p of Eq -

rings on Ig(;gEu such that its restriction along v is equivalent to the sheaf ﬁzt,of’
of |[Behl1d).
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The prove the above statement and many similar ones, we need to discuss
elliptic cohomology theories. Recall that Mgy denotes the Deligne-Mumford
compactification of the moduli stack Mgy. The moduli description of Mgy
involves the use of generalised elliptic curves; see [CeslT], [Con07], or [DR73]
for some background.

Definition 6.1.8. Let E be a generalised elliptic curve over a ring R with
irreducible geometric fibres, which is equivalent data to a morphism of stacks
Spec R — Mgy. We say that a homotopy commutative ring spectrum & is an
elliptic cohomology theoryﬁ for E (or Spec R — Mpgy) if we have the following
data:

1. & is weakly 2-periodic and even, meaning that 7€ vanishes for all odd
integers k (so, in particular, £ is complex orientable), and the £-module
€ is locally free of rank 1;

2. There is a chosen isomorphism of rings € ~ R; and

3. There is a chosen isomorphism of formal groups E~ é?o over R, between
the formal group of E and the classical Quillen formal group of &; see
[Lurl8) §4].

We say a collection of such £ is natural if the isomorphisms in parts 3-4 above
are natural with respect to some subcategory of affine schemes over Mgy, for
example, affine objects of Isoggy.

The folklore theorem Th[B.0.2states that as a sheaf of E,-rings on the small
étale site of Mgy, the sheaf &*°P is determined up to homotopy by the fact that
it produces natural elliptic cohomology theories; see §B] This is already used to
prove Th[5.3:3] and we will find a similar use for this statement in the proof of
Corl6.I. 7 and ThG.T.O

Proof of Cor[6.1.7. By Pr[5.3.1} which states that the functor [p*] of (6.1.1))
is well-defined, and Pr.6.1.2L there is a functor from Isoggil to the site Cz,
of Df[2.1.6] (and of height n = 2) sending (X, E) to (X, E[p™]). The desired
hypersheaf ﬁ;"p can then be given as the following composite:

top

Tsogpy — Cgf ——> CAlg

Restriction along ¢ yields 6’;"" as this sheaf is characterised up to homotopy
by the fact it defines an elliptic cohomology theory (Th7 a property also
satisfied by the restriction of the above sheaf to the small étale site over Mg —
we have already seen this argument in Th[5.3.3] O

With a little extra care, we obtain the integral statement and Th[B]

35These were previously called generalised elliptic cohomology theories in [Dav2lal, §2.2],
and other variations on this theme can be found elsewhere; see [AHS01, Df.1.2], [Beh14) §6]
or [Lur09al Df.1.2], for example.
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Theorem 6.1.9. There is an étale hypersheaf of B, -rings O*°P on Isogg, whose
restriction to the small étale site of Mgy is equivalent to the sheaf 0P from
Behrens’ construction [Beh1j]. In particular, 0*°P defines a natural elliptic
cohomology theory on affine objects inside Isogpy,.

The fact that ¢*°P on Isoggy, restricts to something well-known on the wide
subcategory DM/ My, means that many classical statements about 0P still
hold. For example, evaluating &*°P on affines in Isogg; produces elliptic coho-
mology theories which are Landweber exact. Most importantly for us, the global
sections of 0P on Isogg still yield TMF (up to homotopy). To prove this
theorem, we will use the following two standard lemmata.

Lemma 6.1.10. Write IsogEH for the full subcategory spanned by affine objects.
Then for any complete co-category D, the inclusion i: IsogEH — C induces the
following equivalence of oo-categories of D-valued sheaves:

i*: Shvp(Isogg;) — Shvp(Isogih)
Moreover, the same holds for hypersheaves if D = Sp or CAlg.

Proof. Using the “comparison lemma” of [Hoyl4, Lm.C.3], which applies as
Mgy is a qegs Deligne-Mumford stack, we obtain the middle equivalence in the
following chain of equivalences of co-categories:

.
55, Shvp(Shvs(Isoghl)) => Shvp (Tsoghh ).
The first and last equivalences follow by [SAG, Pr.1.3.1.7]; all of the inverses
to the above equivalences are given by the evident right Kan extensions. The
naturality of [SAG| Pr.1.3.1.7] show the above composite is equivalent to *.
For the hypersheaf statement, by [CM21], Ex.2.5] a sheaf is a hypersheaf if it is
hypercomplete in the sense of [SAGL Df.C.1.2.12], and this adjective is preserved
by the equivalences above. O

The following statement is essentially [HL16, Lm.4.5].
Lemma 6.1.11. Let E: Spec R — Mgy be a morphism of stacks, and

E—— &

i l (6.1.12)

51 e 501

be a Cartesian diagram of E. . -rings such that mo€ ~ R, and each Ey -ring
& is an elliptic cohomology theory for E|specroe; Such that the isomorphisms
a;: E|Spec7r08 o~ GQO both agree with the isomorphism s : E|Spec71'0€01 ~ GgQOO1
of formal groups over m€o1- Suppose that mo&y @ €1 — m€o1 is surjective.
Then & obtains the unique structure of an elliptic cohomology theory for E such
that the tsomorphism E~ GQO base changes to the isomorphisms a; over my&;
fori=0,1.
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Proof. By assumption, we have an isomorphism 7€ ~ R, so £ satisfies criterion

3 of Equation ([6.1.12)). The Mayer—Vietoris sequence associated to (6.1.11]) and
the assumption that &; are elliptic cohomology theories shows that mor& ~ w%k

for every integer k. This latter fact, and the assumption that & — £y «— &
are jointly surjective on mg, imply that these maps are jointly surjective on 7y,
which shows that & satisfies criterion 2. This same Mayer—Vietoris sequence
combined with the fact that each &; is complex orientable gives & complex
orientable restricting to those on &; and shows & is weakly 2-periodic, giving us
criterion 1. Using the compatibility of ctg and a1, one obtains the commutative
diagram

é?o ® mp&y —— é?o ® €y —— éng ® m&r

:lao %mn :lo” (6.1.13)

E@Wogo — E®ﬂ0801 —_— E@Wogl

and the fact that my of (6.1.12)) yields a Cartesian diagram of discrete rings, we
obtain an isomorphism of formal groups GSQo — F over R restricting to those
given by (6.1.13]). This yields criterion 4, and we are done. O

Proof of Th]6.1.9. Let us first produce a rational sheaf ﬁg)p on Isogg,. By
Lm. it suffices to define ﬁg) P on the subcategory of Isogg, spanned by
affine objects. Recall from that wp = psQp/s is the dualising line of
E and the equivalence of symmetric monoidal co-categories Modg ~ D(Q) of
. Following [Beh14, §9] and [HLI6, Df.5.13], we define 65 (R, E) for
a pair (R, E) by the formal Q-cdga w} ® Q defined by placing the invertible
R-module wg" ® Q in degree 2n for all n € Z. This defines an étale hypersheaf
as each of the discrete sheaves w%m have this property. Using this definition,
the functoriality of ﬁg) P with respect to Isoggy is clear as nonzero isogenies of
rational elliptic curves induce isomorphisms on the associated dualising lines wg.

For each prime p, there is a morphism of sites
P Isoggy — IEO\gEn

induced by base change along the projection SpfZ, — SpecZ. The construc-
tion O3°P of Cor.[6.1.7) yields an étale hypersheaf 7307°P on Isoggy. Let us

now construct a map of étale hypersheaves a: ﬁ’g) P (I, ™0,)q- By
Lm[6.1.10] we again restrict our attention to affines, so for each étale morphism
FE: Spec R — Mgy we want a map of E, -rings

OSP(R,E) - [ [(n26/°P(R, E) @ Q (6.1.14)

p

which is natural in Isoggy;. By definition, the left-hand side is the formal Q-cdga
w*®Q. By [Mei2ll, Pr.4.8], we see the sheaf (7} 04°P)[p~'] on Spec R is formal
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6.1. ISOGENIES OF INVERTIBLE DEGREE

for each p, hence the right-hand side is the formal R ® Q-cdga ]_[p(w%)* )y ®@Q.
We then define our desired « as the rationalisation of the product over all primes
of the natural completion map w%* — (w%*)g This clearly yields a collection

of maps (6.1.14)) natural in the category Isoggy.

The sheaf %P is then defined by the following Cartesian diagram of étale
hypersheaves:

t P ~t
0" —— [, 7L o%P

J |

t
i = (1),

By virtue of Lm. O*°P defines a natural elliptic cohomology theory on
Isoggy. In particular, this allows us to apply Th.[B.0.2] and conclude that
restriction to the small étale site of Mgy is homotopy equivalent to &P of
[Beh14]. O

It is claimed in our first version of [Dav2la] that Th extends over the
cusp of Mgy, however, there is a mistake in the argumentation there—we give
some partial fixes in §7.7}

Let us end with an application of Th[6.1.9| to produce Behrens Q(N) E.-
rings of [Beh06]. In loc. cit., even though some intuition with a modular defini-
tion is given, these spectra are constructed explicitly using K (2)-local chromatic
methods. Using Th[6.1.9] we can make this modular definition precise, which
yields an almost integral description of the E.-rings Q(N), and §|ﬂ gives these
spectra Adams operations, Hecke operators, and a kind of Atkin—Lehner invo-
lution.

Ezample 6.1.15. Let N be a positive integer, My(N) be the moduli stack of
elliptic curves with chosen cyclic subgroup H of order N (Df and Df7
and p,q: Mo(N) — MEH}Z[%] be the structure and quotient maps given by
(E,H) » FE and (E,H) — E/H, respectively, of Df. Moreover, write
T: Mo(N) = My(N) for the involution given by (E, H) — (E/H, HY)—this
is discussed in the proof of Pr[7.3.3] We then obtain the following diagram of
stacks:
T idug
Mo(N) E Men 1 Mo(N) : Men

id idup

We can enhance the above diagram to one in Isogp;, as follows. Equip each object
M and My(N) with their respective universal elliptic curves & and &(N).
Equip each occurrence of p with the canonical isomorphism &5(N) ~ p*&,
the left and upper-right occurrences of id with the identity on the associated
elliptic curves, the lower-right occurrence of id with the N-fold multiplication
map [N]: & — &, and finally equip both 7 and ¢ with the canonical quotient
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map Q: &(N) — &(N)/H of the universal elliptic curve by its universal cyclic
subgroup H. This produces the following diagram in Isogg:

(+,Q)
(Mo(N), E0(N)) — (i) — (Mg, &) 1 (Mo(N), & (V)

(idid) ﬁde)u(pﬁan)L l@dmhﬂ)u<q¢z
(MElla (g))

As in [Beh06) §1.1], these morphisms satisfy the semisimplicial relations up to
homotopy in Isogg;—the n-simplices for n > 3 are all degenerate. Moreover,
all of the morphisms above lie in Isoggy, so we can apply €°P to the above
diagram by Th. and obtain a semicosimplicial Ey-ring Q(N)*. Behrens
defines Q(INV) as the limit of this diagram of E, -rings.

6.2 Spectral Mackey functors

In § we extended the functoriality of the sheaf &P to include isogenies
of elliptic curves of invertible degree. To define stable Hecke operators with as
much homotopy coherence as possible, we extend the functoriality of *°P again,
this time to encode the homotopy coherence of certain transfer maps. These
kinds of coherence and functoriality questions for transfer maps have long been
a source of technical complications in homotopy theory, but luckily for us, the
rather general framework of [BH21] suits us perfectly; see the proof of Th
First a little set-up; see [Barl7, §5] or [BH21, §C] for details on the following
constructions.

Definition 6.2.1. Given an co-category C with pullbacks equipped with a class
of morphisms M closed under composition and pullback, then there is an oo-
category Span,;(C) of M-spans in C. The objects of Span,,(C) are those of C,
1-morphisms from X to Y are spans

xlz4%y

where f is any map in C and g belongs to M, and composition is given by
pullback. A functors Span,,(C) — Sp is called spectral Mackey functors a la
Barwick; see [BarlT].

Informally, a functor F': Span,;(C) — D is a functor from C°P to D which
associates to each f € M a forward map f; which satisfies a kind of Beck—
Chevalley formula. We are only interested in one example of a span co-category.

Definition 6.2.2. Let fin be the collection of morphisms in Isogg;; of the form
(f,a): (X, E) > (X', E') where f: X — X’ is a finite morphism of stacks.

The condition above that « be an equivalence means that fin is more accu-
rately a collection of morphisms in the small étale site of Mg;. We can now
state our second extension theorem for &*°P which also appeared as Th
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Theorem 6.2.3. There is a unique functor QP in the following commutative
diagram of co-categories:

Isogmn AN CAlg

| |

otop
Spang,, (Isoggy) ——— Sp

The same holds for Is/o\gEH and ﬁ;"p at any prime p.

In particular, for a morphism (f,«): (X, E) — (X', E’) in fin, we obtain a
transfer map of spectra

(f, Q)i 0P(X, E) —» 6P (X', E)

and this association of transfer maps is functorial and commutes with base
change. In particular, this is an ¢*P (X', E’)-module map.

Proof. Let C be either Isogg, or Igo\gEH for a prime p. Our goal is to apply
[BH21l, Cor.C.13] to the above situation. This means that C = C, ¢ will be the
étale topology, m = fin, F' = 0P, and D = Sp. Let us now check the required
hypotheses:

e First, we need to show C is extensive, meaning C admits finite coproducts
which are disjoinﬂ and where finite coproduct decompositions are stable
under pullback; see [BH21l Df.2.3].

e Next, we want to show Shv®*(C) € Shv'(C), where the latter is the oo-
category of sheaves with respect to the Grothendieck topology with covers
given by finite fold maps.

e Then we want to see that all finite fold maps are contained in fin, written
as fold C fin.

e Finally, we want to show every morphism in fin is étale locally in fold.

To see the first condition, consider that finite coproducts in Isogg;; are given
in the stack and elliptic curve variables separately, and it quickly follows that
Isoggy, is extensive. The second and third conditions are clear, and the fourth
is classical and uses that isogenies of invertible degree are in particular étale
morphisms; see [Stal |[04HN]. We can now apply [BH21, Cor.C.13] which yields
an essentially unique dashed arrow in the commutative diagram of co-categories

cor 9 CAlg

l !

Spang,, (C) o, CAlg™(Sp)

36Recall that in an oo-category with finite coproducts, we say coproducts are disjoint if for
all objects X, Y, the fibre product X x x_y Y exists and is the initial object.
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where CAlg™ (Sp) is the oo-category of E..-objects in Sp with the Cartesian
monoidal structure. This is what we want, even though not aesthetically. In-
deed, there are equivalences of co-categories

CAlg™(Sp) = CAlg"'(Sp) <= Sp;

the first as finite products and coproducts agree in Sp, and the second is an
equivalence as every object in a cocomplete co-category has an essentially unique
w-monoidal structure. O

These transfer maps are not so mysterious after taking homotopy groups.

Remark 6.2.4. By [BH21], Cor.C.13], the spectral Mackey functor O*P of Th|6.2.3]
is the right Kan extension of the functor

0;31%1 Spangq (Isoggy) — Sp
whose value on fold maps X-"™ — X is given by the addition of spectra map:
Opla(X=") = O (X)" = O (X)

On homotopy groups, this is also the n-fold addition map. A finite étale mor-
phism f: X — Y in the small étale site over Mgy is étale locally on Y a fold
map, so the induced transfer map

fi = 0"P(X = X L v): 0P(X) — OP(Y)

is étale locally on Y given by the sum Q%P(Y=") ~ Q%P(Y)" — O%P(Y). In the
affine case where X = Spec B and Y = Spec A and the finite étale map f: A - B
has constant rank n, then there is an étale cover Spec C' — Spec A such that
C ®a B ~ C™. The morphism of O%P(A)-modules f,: O*P(B) — O™P(A) is
given étale locally on mpO'"P(A) ~ A as the fold map of spectra

fll Otop(cn) ~ Otop(c)n s Otop(C)

and we can recover f; as the limit of the Cech nerve of fl. As étale morphisms
of E . -rings are nicely behaved on homotopy groups and &*°P (hence also QP)
has controllable homotopy groups on affines, we see that for each integer k the
induced map 7, O%P(B) — 7, 0%P(A) induced by f; is the map of modules
over A = mpO'"P(A) which étale locally looks like a fold map. In fact, this is
a characterisation of this map of A-modules; see [AGV ™73, Exposé IX, §5] or
[Stal, 03SH].

There is not much extra work to extend the Hill-Lawson construction of
0P on the small log étale site of Mgy to a spectral Mackey functor. Indeed,
just apply [BH21l, Cor.C.13] and the fact that log étale morphisms are log étale
locally fold maps; see [HL16l Df.2.26]. The same would hold for many variations
of Df over the small log étale site of Mgy.

We will need the following lemma concerning the above transfer maps—the
argument is standard; see [HM17, Lm.4.9].
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Lemma 6.2.5. Let (f,a): (X, E) = (X', E') be a morphism in fin within Isoggy
and assume [ has constant rank d. Suppose that in the descent spectral sequence
for O%°P(X',E"), the EX® column (abutting to mo0*°P (X', E')) is concentrated in
filtration zero, so E3° =0 if s > 0. Then there is a homotopy

(f,a) 0 (f,0)* = d: O (X', E') - O%P(X', EY)
of maps of OPP(X', E')-modules, where d indicates multiplication by d.

The above homotopy is not necessarily natural in any sense—we only claim
that these two maps agree in the homotopy category hModgter(x!, g1y -

Remark 6.2.6. The descent spectral sequence condition above applies in many
cases of interest. The following three examples cover everything we will use in
this thesis.

e If X’ is affine the descent spectral sequence collapses on the Fs-page, so
the condition holds.

o If X’ = Mr is a moduli stack of elliptic curves with I'-level structure and
we further assume that I' is tame as defined in [Mei22] Df.2.2], then by
part 4 of [Mei22] Pr.2.5], the descent spectral sequence for TMF(T) is
concentrated in filtration zero. This applies to the E.,-rings TMF(n) and
TMF;(n) for n = 2, as well as TMF(n) if we invert ged(6, ¢(n)), where
¢(n) is Fuler’s totient functionﬂ

o If X' = Mgy g where R is any localisation of the integers, then by the
calculations of [Bau08| (which applies to TMF as explained in [Konl2] or
Chapter 13 of [DFHH14]), we see the E,-page of the associated descent
spectral sequence is concentrated in filtration zero in the desired column.

We will often use the second condition above, which is why Th[D]demands that
ged(6, ¢(n)) is inverted.

Proof of Lm[6.2.5 Let us drop the elliptic curves from our notation for brevity.
Let Spec A — X’ be an affine étale cover, and as X — X' is finite and hence also
affine, we see that Spec B ~ Spec A xxs X is also affine. As Spec B — Spec A
is finite étale by base change, there is a further étale cover Spec C — Spec A
such that C ®4 B = D is isomorphic to C% and the map h: Spec D — SpecC
is isomorphic to the canonical fold map. As in Rmk. it follows from
[BH2I, Cor.C.13] that O™P is right Kan extended from O]}, so in particular
we see that hy: OP(D) ~ O%P(C)" — OP(C) is homotopic to the d-fold
addition map of spectra. Moreover, the compatibility of these coherent transfer
maps with base change, we see h; is homotopic d-fold addition map as a map of
O%P(C)-modules. This shows that the base-change of f,o f* along Spec C' — X'

37Recall Euler’s totient function ¢: N — N is defined as setting ¢(n) to be the number of
positive integers less than n which are relatively prime to n. This can be characterised as the
multiplicative function satisfying ¢(p®) = p® — p*~! for primes p and e > 1, with ¢(1) = 1.
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is homotopic to multiplication by d.

Write A — C* for the Cech nerve of the étale cover A — C. The descent
spectral sequence for Q%P (X') = £ also abuts to the internal mapping spectrum
Fe(€,€) ~ E. Recall there is an edge map e,.: mp& — EX° to the E,-page for all
1 < r < 0. As this spectral sequence is concentrated in the upper half-plane,
there are inclusions E,;; — FE, which commute with these edge maps, hence
we have the following commutative diagram of abelian groups:

7TOF€(575)

ex e1
€2

£ o E2° E™®

By assumption, the map e, is an equivalence, and as the horizontal maps above
are injective, it suffices to show that the image of fio f* and the multiplication
by d map under e; agree. The E;-page of the descent spectral sequence is given
by the groups m£% where £5 = O'P(C?), which can also be written in terms of
internal mapping spectra £° ~ Fg+(€°,£%). Under this identification, the map

€71: 7TOFg(5,5) - WoFgO(go,go)

is induced by base-change along & — £° = O'P(C), hence fj o f* (resp. the
multiplication by d map on £) is sent to hy o h* (resp. the multiplication by d
map on &Y). The first paragraph of this proof shows these maps agree up to
homotopy, and hence agree in mFgo(£%,£%) on the nose. O

88



Chapter 7

Our stable operators

In this chapter, we use the two structural statements (Th. and Th.
proven in the previous chapter to define a variety of stable operations on TMF.
We start with Adams operations ¢™, followed by a detailed look at Hecke oper-
ators T,,, and we finish with Atkin-Lehner involutions wg and some discussions
towards extensions to Tmf.

7.1 Stable Adams operations

There are only two isogenies of the universal elliptic curve & over Mgy of
invertible degree: the identity and the inversion map [—1]. If we invert n, then
the n-fold multiplication map [n]: & — & is also an isogeny of invertible degree
over My, 717, as it has degree is n? (JKMS5, Th.2.3.1]). This gives us our first
family of morphisms in Isogg;.

Definition 7.1.1. Let n be an integer. Define the nth stable Adams operation
Y™ on TMF[%] by applying &°P (Th. to the following morphism inside
Isoggy:

(id, [n]): (MEH,Z[}L]75) - (MEH,Z[%]ﬂg)

Recall Df}5.5.12] where we defined p-adic Adams operations on TMF,,.

One might have been able to squeeze out the above operations on TMF using
Goerss—Hopkins obstruction theory, but this approach would lack the functori-
ality of our construction above. For instance, using Df[7.1.1] one immediately
obtains the following statement.

Theorem 7.1.2. The maps of E..-rings ¥ and ¢ ~" are both homotopic to the
identity morphism on TMF. Given two integers m and n, then there are the
following natural homotopies of morphisms of E..-rings:

1
mn

Yo"~ pM ~ h o ™ TMF[%] — TMF[—]
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Given a prime p and two p-adic units ¢,k € Z,, then there is the following
natural homotopies of B -rings:

Pl o™t ~ P ~ pF o pf: TMF, — TMF,,

By natural homotopy, we mean that there is a natural choice of homotopy
Hyypt ™ o™ >~ 1™ 0 9p™ for the above, and given another integer k, there is
a natural higher homotopy between ¥* % H,, n, and Hy, , x Y™, where x denotes
whiskering, and another pair of natural homotopies between these homotopies
and Hy, ,, . These are all a consequence of applying ¢*°P to higher morphisms
in Isog%tn which is a 2-category where these higher morphisms are given by
equalities.

Proof. All of the above follows from the functoriality of ¢*°P and &;°P, but
let us explain the identification of ¢)~! in more detaﬂ@ The trivial 02 action
(id,id) of (Mg, &) is homotopic to the Cy-action (id,[—1]) of (Mgn, &) in
Isogé]iltn. In fact, this homotopy exists in the small étale site of Mgy, and is
given by the invertible 2-morphism [—1]: (id,id) — (id,[—1]). Applying &*°P
we obtain a natural homotopy id ~ ¢~!: TMF — TMF. O

Recall that for every positive integer N and each subgroup I' < GL2(Z/NZ),
called a congruence subgroup of level N, there is a moduli stack M (T") of elliptic
curves with I'-level structure; see [KM85] for more background on the cases we
are interested in, where I' = I'(N), I'; (IV), or I'g(IN). The structure morphism
M(T) = Mgy 717 is étale, hence we can define TMF(T') = O*P(M(T)). If T
is one of the classical congruence subgroups I'(N), T'1(N), or T'o(N), then we
will write TMF(N), TMF; (N), and TMFy(N), respectively. Note that TMF(I")
is by definition an E..-TMF[;]-algebra.

Definition 7.1.3. Given integer n and N with N > 1, then the n-fold multi-
plication map [n] on the universal elliptic curve & (I") over M(T") is an isogeny
of invertible degree. We define the nth stable Adams operation

1

¢ TMF(D)[ ] — TMEF()[ ]

S

as 0P applied to the endomorphism (id, [n]) of (M(T) @ Z[1], &£(T)).

The functoriality of this definition, combined with the fact that &(I") is the
pullback along M(I') — Mgy of the universal elliptic curve, we see the following
diagram of E, -rings commutes up to natural homotopy:

TMF[1] — 5 TMF[]

| l

TMF(D)[1] —2— TMF(T)[4]

38We learned this argument from Lennart Meier—see [Mei22] Ex.6.12] for the same ar-
gument with respect to Mg with level structures. The added generality of level structures
produces a less opaque proof, in our opinion.
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The same can be said in the p-complete world for the stable p-adic Adams
operations.

7.2 Stable Hecke operators

A vitally important tool in the study of classical modular forms is the existence
of Hecke operators. As stated by Zagier in Section 2 of Chapter 4 in [WMLI92]:

The key to the rich internal structure of the theory of modular forms
is the existence of (...) operators Ty, (...).

Our goal of this section is then to introduce a collection of stable Hecke opera-
tors on the Ey-ring TMF. First, let us define the stacks that we need for our
construction.

For any positive integer n, write M,, for the moduli stack over Z[ -] of elliptic
curves F/ with a chosen finite subgroup H of order n. Note that ./\/ln is not the
same as Mo(n) unless n is squarefree. Let us write p,q: M, = Mg 71y for
the maps of stacks defined by p(E,H) = FE and ¢(E,H) = E/H; see § for
more about these stacks, including the fact that both p and ¢ are étale.

Definition 7.2.1. Let n be a positive integer. Define the nth stable Hecke
operator T,,: TMF[1] — TMF[1] by applying O*P (Th)6.2.3) to the span

(p,can)

(M zg11.6) <22 (M1, ) (Mg zg21.6)
where Q: &, — &,/H is the canonical quotient map of the universal ellip-
tic curve over M, by the universal order n subgroup and can is the canon-
ical equivalence &, ~ p*&. In other words, T, is given by pullback along
(q, Q) followed by the transfer p; along (p,can). Make the same definition for
T,: TMF(I') - TMF(T) by pulling back the above span along the structure
map Mp — Mgy 71y, as long as the level N of I' is coprime to n; see the
discussion before the proof of Prl[7.5.4] for more details.

Warning 7.2.2. The stable Hecke operators above differ by the unit % from the
conventional Hecke operators upon taking homotopy groups; see Pr[7.5.3] This
is by design though, as we find division by n to be an unnecessary extra step and
we prefer the formula T,,(1) = o(n) to T28(1) = # implied by Pr where
o(n) is the divisor function@ None of the results of this section depend on the
choice to divide by n or not, however, one should be careful when considering
the calculations made Part [T

39Recall the generalised divisor function op(—): N — N for a nonnegative integer k is
defined by the formula oy (n) = 34, d* ranging over all positive divisors d of n. When k = 1
we drop it from our notation.
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Remark 7.2.3. Inspired by Venkatesh [Venl9], we would like to define derived
stable Hecke operators for each positive integer n and each o € 7y TMF,,, where
TMF,, = 0*°P(M,,), by the following composite:

1 ¢ a , 1
TMF[=][d] +> TMF,[d] % TMF,, &> TMF[-]

n n
These have the conceptual advantage of being stable cohomology operations
of degree d and may relate to a kind of derived spectral Hecke algebra. This
is currently wild speculation which the author plans to follow up on. Such

operations will not be discussed elsewhere in this thesis.

The stable Hecke operators on TMF (and TMF(T")) have a nice relationship
with the stable Adams operations of §7.1]

Proposition 7.2.4. Let m,n be integers withn = 1. Then we have the following
natural homotopy of morphisms of spectra:

1 1
Tpotp™ ~9¢p™oT,: TMF[—] - TMF[—]
mn mn

Similarly, if p is a prime not dividing n and k is a p-adic unit, we have the
following natural homotopy of morphisms of spectra:

T, o¢F ~¢* o T, : TMF, - TMF,

The same holds for stable Hecke operators with I'-level structure where the level
N of T is coprime to n.

This proposition implies that the Cs-equivariant version of TMF(T") studied
in [HMI7] carry stable Hecke operators. Similarly, the height two periodic
Adams summand U and the height two periodic image of J spectrum S of
and respectively, also carry stable Hecke operators.

Proof. Both T,, and 9™ are the application of O'P to morphisms in Isogg, so
by functoriality of Q%P it suffices to provide a natural homotopy between the
two spans in Spang, (Isoggy)

M

My
(@.Q) <id7[ry \ (7.2.5)
/ (pvcan\
M M

M

M M,
(id,[ny \ (q,Q)/ Yean) (7.2.6)
M M M

where M is an abbreviation for Mgy, z;_1 | and we have suppressed the elliptic
curves in our notation for objects in Isogg;;. Recall that to compose morphisms
in Spang, (Isogg;) we take fibre products. The pullbacks of both (7.2.5) and
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are easily identified with M,,, and the associated morphisms on the
right are both naturally equivalent to the map (p,can): M, — M. We are left
to compare the two compositions of the left legs, which involves contemplating
the following diagram in Isogg;:

A, D
(m)i yq,cz)
PRI

The upper-right composition comes from and the lower-left composi-
tion from . Unwinding the definitions, the fact that there exists a nat-
ural 2-cell in the above diagram boils down to the fact that the quotient map
Q: &, > &,/H, of the universal elliptic curve over M,, commutes with multi-
plication by m, which is clear as @ is a homomorphism of elliptic curves.

The proof for stable Hecke operators on TMF(T") is the same after pullback
along Mp — MEH,Z[#} The p-adic proof is also the same, as isogenies of el-
liptic curves of invertible degree also induce homomorphisms on their associated
p-divisible groups. O

We showed that there exists a homotopy ¥™ o)™ ~ ¥™™ as endomorphisms
of TMF[-L-]. Most of the rest of this chapter is now focused on proving the
analogue for stable Hecke operators.

Theorem 7.2.7. Let m and n be positive integers. Then there is a homotopy
of morphisms of spectra
1 1

] = TMF[—]

~ d mn .
T,, 0T, ~ Z AT my - TMF[mn —

d|m,n

where ¢ = ged(6, p(mn)) and ¢(mn) is Euler’s totient function. The above
sum ranges over those positive integers d dividing both m and n. In particular,
T,,0oT, is homotopi@ to Tp,0T,,, and if gcd(m,n) = 1 then both are homotopic
to Ty

As one will see in our proof of the above theorem, the homotopy above is
close to being natural. It will end up being a composition of a bunch of nat-
ural homotopies and one non-canonical homotopy—the singular non-canonical
homotopy comes from Lm[6.2.5] We do not claim it is impossible to obtain a
natural homotopy, but this seems beyond our reach for now.

Unlike in the classical world of modular forms, we cannot prove the above
theorem by calculating g-expansions. Instead, we show that in Isogy,; the stacks
involved in the definition of the composite of T, and T,, split (Th, and one
then obtains Th by applying &P to this splitting and carefully analysing
the result.

40 As to-be mentioned in Rmk[7.4.8] the author has recently proven that there is a homotopy
between Ty, o Ty, and Ty, 0 Ty, over TMF[

1
]
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7.3 Moduli stacks of subgroups

We need to define and discuss the stacks used in Df[Z.2.7]in more detail as well
as some auxiliary objects. We refer the reader to [KMS85] §1] for the background
on moduli problems for subgroups of curves of a given type, and particularly
[KMS85| §1.5] for what it means for a subgroup of an elliptic curve to have a
type of a finite abelian group A.

Definition 7.3.1. Let A, B be finite abelian groups and d, e, m,n > 1 be posi-
tive integers.

1. Let M4 denote the moduli stack of elliptic curves with chosen subgroup
H of type A over Z[ﬁ]. In particular, we have M¢, = Mgy(n), where C,,
is the cyclic group of order n. We will also write M, ,) for Mc,, xc,,-

2. Let M,, denote the moduli stack of elliptic curves with chosen étale sub-
group of order n over Z[%]

3. Let M a<p denote the moduli stack of elliptic curves with a chosen pair
of nested subgroups K < H of type A and B, respectively, over Z[ﬁ].
If A=Cy xC,, and B = C, x C),, then we will write

Meyxe,<c.xc, = Mam)y<(en)-

4. Let M,,<n denote the moduli stack of elliptic curves with a chosen pair

: 1
of nested subgroups K < H of order m and n, respectively, over Z[].
In the definitions above, we leave open the possibility that these moduli stacks
are empty. For example, if A is not isomorphic to a finite subgroup of S! x S*
in part 1, or m t n in part 4. Each of the stacks above come with structure
maps p to Mgy, and those of the form M4 and M., also come with quotient
maps ¢ to Mgy which quotient by the given subgroup.

We will spend the rest of this section discussing some basic facts about these
stacks, starting with something simple.

Proposition 7.3.2. Let m,n = 1 be positive integers. There are the following

decompositions of stacks, first over Z[1] and then over Z[-1-]:

Mp= [] Ma Mupsn = [] Mass
|Al=n |Al=m
|Bl=n
Proof. This follows straight from the definitions. O

Let us show these stacks lie in Isogy;.

Proposition 7.3.3. All of the stacks of Df{7.5.1] are Deligne—Mumford stacks.
All of the structure p and quotient ¢ morphisms to Mgy are finite étale.
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Proof. Fix two finite abelian groups A and B. By |[KMS85, Pr.1.6.4], we see
that for a fixed scheme S and an S-point E inside MEILZ[ﬁ](S), the moduli

scheme of A-structures on E is finite étale (although potentially empty) over
S. Therefore the structure map p: M4 — MEH’Z[‘%] is finite étale and M4 is

a Deligne-Mumford stack. The same argument used to prove [KM85| Pr.1.6.4]
shows that the moduli schemes of A < B-structures on elliptic curves are finite
étale over S, and we see the structure map p: Ma<p — MEILZ[\AﬁBH is finite
étale and M 4<p is also Deligne-Mumford. This covers the stacks and structure
maps in parts 1 and 3 of Df[7.3.1]and parts 2 and 4 follow by the decompositions
of Pr[7.32] To see the quotient morphisms are étale, note there exists an
involution of stacks

T: My — My (E,H)— (E/A,H)

and that the quotient maps M4 — MEH,Z[@] are a composition of 7 with the

finite étale projections. Back to 7, we have written HY for the kernel of the
isogeny E/A — E dual to the quotient isogeny, which can be identified with the
Cartier dual of H by [KM85] (2.8.2.1)]. Notice that H" has the same type as H
as are working where | A| is invertible. We also see that 72 is naturally equivalent
to the identity on M 4 as the composition of isogenies E — E/A — FE is equal
to the |A|-fold multiplication map ([KMS85, Th.2.6.1]) which induces a natural
equivalence E/E[|A|] ~ E, and (HV)" is naturally equivalent to H. O

We will now focus on some relations between the stacks defined above. The
first relation states one can shave off common factors in products of cyclic
groups.

Proposition 7.3.4. Let a,b,c = 1 be integers. The morphism of stacks over
Z[ ;]

M(ab,ac) - M(b,c) (E7 H) e (E’ [G]H)

is an equivalence whose inverse is given by the following map:
M(b,c) - M(ab,ac) (E7K) = (E7 [a’]*K)

To be clear, [a]H is the image of H in F under the a-fold multiplication
map [a] on F, and [a]* K is the pullback of a subgroup K < E along [a].

Proof. To justify that the second map is well-defined, note that when given a
pair (E, K) inside M, ) (S) for a scheme S, we have the following commutative
diagram of schemes:

Ela] — [a]*K —— E

l Il([a] i[a]

S E

95



7.3. MODULI STACKS OF SUBGROUPS

The right and outer rectangles are Cartesian by definition, hence the left square
is also Cartesian, so we have the short exact sequence of finite étale group
schemes over S

O—»E[a]—)[a]*KﬂK—)O

occurring inside E[a?bc]. Suppose for a moment that S is connected. Choosing
a geometric point s: Spec k — 5, consider the equivalence of categories between
finite étale commutative group schemes over S and finite abelian groups with
an action of 7¢*(S, s); see [Stal, (03VD] or [Gro03]. From this equivalence, we
see that [a]* K must have type Cup X Cy, as that is the unique subgroup of
Ca2pe X Cu2p whose image under the a-fold multiplication map is Cy x C.. For a
general scheme S we may apply this argument over each connected component,
and we see that [a]* K has the correct type.

It is clear that [a][a]* K is isomorphic to K, given a point (£, K) in M ) (S)
for any scheme S. Conversely, take a point (E, H) in M4, 4c)(S) for a general
scheme S. The finite étale subscheme [a]*[a]H of E is defined by the following
Cartesian diagram of schemes:

la]*[al —— [a]H

bow

There is also a natural diagram of schemes

H——[aJH —— S

l l J (7.3.5)

E E E/[a]H

so it suffices to see the left square above is Cartesian. The right square is
Cartesian by inspection, so it suffices to show the whole rectangle above is
Cartesian, ie, we need to show the kernel of the composition

EY S B/laH

is exactly H. There is a short exact sequence of finite étale group schemes over

S
0 Ela] » H [a]H >0

from the definition of [a]H. Indeed, by definition the latter map is surjective
whose kernel K is contained in E[a], and as E[a] < H as H has type Cyp X Ce,
we see K = E[a]. In particular, this short exact sequence yields an isomorphism

H/E|a] e, [a]H compatible with the classical isomorphism E/E[a] bl~ g
We then identify the bottom composite of (|7.3.5)) as the following composite of

quotient maps:
E — E/E[a] — (E/E[a])/(H/E[a])
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By one of the numbered isomorphism theorems from algebra, the above is nat-
urally equivalent to the quotient map F — E/H, and we are done. O

Our second relation states that the moduli stacks M 4 are not much of a
generalisation of the stacks Mg(n) after all.

Proposition 7.3.6. Let A be a finite abelian group and denote the order of A
by n. If A is not isomorphic to a subgroup of C,, x Cy, then My = &, and
otherwise there exists a unique positive integer d such that A ~ Cyq x Cz and
d?|n. In this case, the equivalence of Pr, takes the following form.:

Ma =Mz = Maz) = Mo (c%>

Proof. The first statement is clear. For the second statement, it is clear there
exists an d such that A ~ Cy x Cz. The minimal such d has the property that
ged(d, %) = d which is equivalent to the condition that d*|n. The last statement
is a special case of Pr[7.3.4 with a =d, b=1, and ¢ = 4. O

To any of these stacks of Df[7.3.1] we can associate a stable Hecke operator
on TMF, which will come in handy when proving Th

Definition 7.3.7. Write Mr for any of the stacks of Df[7.3.1] defined by a sin-
gle subgroup, pr, gr: Mr — Mgy, Z[1] for the associated structure and quotient
maps, respectively, &1 for the universal elliptic curve over M which is canoni-
cally isomorphic to pf&, and Qr: & — &r/Hr for the quotlent by the universal
subgroup. We define the stable T'-Hecke operator Tr: TMF[L] — TMF[1] as
the image under QP of the following span:

(gr,Qr) (pr,can)
(Mg z[1): 6) S (M, &) (Mg z[11,€)
When Mr = M, ) we will write T(q )1 TMF (4 ) — TMF (4 4).

A corollary of the identifications above are the following canonical identifi-
cations of varying types of stable Hecke operators—we will only list those we
will use later.

Corollary 7.3.8. Let a,b,c be positive integers. Then we have the following
natural homotopies between endomorphisms of TMF[%] and TMF[ respec-
tively:

abc]7

Z Tia,e) = Tq Tabacy = V" 0Ty e
d?|a

Proof. The first statement follows directly from Prl[7.3.2] so let us move on to
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the second. Consider the following diagram in Isogg:

M(ab,ac)

(02:@2) (F[al)
r
M(b,c) (f,can) M(b,c) (7-3~9)
/ i o) J (i) \
(q1,Q1) (id, ~ 7 (p1,can)
M M) M

Above we have suppressed the universal elliptic curves from our notation and
abbreviated Mgy 711y as M, the maps (gi, Qi) and (p;,can) are the obvious
maps, and f is the equivalence of Pr[7.3.4 Both of the two middle triangles
tautologically commute. It is also tautological that the right-most region com-
mutes, so we are left with the left-most region. This commutes by inspection:

1. First, take a point (E, H) inside M qp,qc)(S) for some fixed scheme S.
Applying ¢1 o f yields (¢1 o f)(E,H) = E/[a]H. As in the proof of
Pr.|7.3.4] [a]H fits into the exact sequence of finite étale commutative
groups schemes over S

0— Ela] » H [a]H >0
which provides an isomorphism [a]|H ~ H/FE[a] compatible with the iden-
tification of E with E/E[a]. Using this, we obtain the first natural iso-
morphism

~[a] E/E[a]
E/[a]H H/E[] = /

and the second natural isomorphism above is one of the usual numbered
isomorphism theorems from algebra. This yields a canonical isomorphism

qof=q.

2. Next, we consider the maps of universal elliptic curves. This is comparing
the quotient Q2: & — &/H of the universal elliptic curve over M q4p )
by the universal subgroup H with the following composite:

ﬂg-»é”/[a]?—l

As in the proof of Pr[7.3.4] we can naturally identify the above composite
with @2, which shows the morphisms of universal elliptic curves are also
equivalent.

Unwinding the definitions, we see the two paragraphs above imply the left-most
region of commutes up to natural equivalence. The fact that the vertical
arrow (f,can) in is an equivalence by Pr|7.3.4] shows the span defining
T (ab,ac) is naturally equivalent to the lower span in (7.3.9). The same argument
as in the proof of Pr[7.2.4] shows this second span is naturally equivalent to the
composition of spans defining 1) o T{y ). This finishes the proof. O
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The last two statements in this section are purely combinatorial but are key
ingredients in our proof of Th[7:2.7]

Proposition 7.3.10. Let m,n = 1 be positive integers and d,e = 1 be positive
integers such that d*|m and 62|mn.

1. If d e, then M(d?)g(ei) = @. If both m { de and e { dn, then this

moduli stack is also empty.

2. If dle|ldn and m 1 de, then the structure map

e,

e

M(IL%)S( ) —>./\/l(e771n) (7.3.11)

is a finite étale surjection of degree 3

3. If dle and m|de, then the structure map (7.3.11) is a finite étale surjection
of degree 1) (%) where 1) denotes the Dedekind v functionﬁ

Proof. For part 1, note that if an injection of groups

Z.:CdXC%—)CEXC%

exists, then either dle or d|™", and either %|e or Z|™%. This last condition

immediately reveals that either m|de or e|dn, so now we will focus on if d
divides e or not. Suppose d t e, then y; from i(1,0) = (z1, y1) must generate the
standard cyclic subgroup of Cmn of order d. Likewise, as d { e then % { e, and
yo from i(0,1) = (x2,y2) must generate the standard cyclic subgroup of order
o As d|%, we see there is an a such that ay; = yo. Our assumption that d {e
1mphes (e —ae) is nonzero in Cyq x C'm, however, we have

i(e, —ae) = (e(z1 — axa),e(y1 — ayz)) = (0,0) € Ce x Cmn
a contradiction, hence d|e must hold if such an injection ¢ exists.

For parts 2 and 3, we note that the maps in question are finite étale as
they jointly form a disjoint union of maps which are finite étale by Pr.[7.3.3]
Moreover, as long as the domain of is nonempty this map is clearly an
étale cover, which will follow from the nowhere vanishing of the degree of this
map, which we discuss now. Denote the degree of ((7.3.11] m by ¢m,n(d,e), which
is exactly the number of subgroups of C¢ x C'mn which have the isomorphism
type of Cy x C'm. By [T614, Th.4.5], there is the closed formula for Cmn(d; €)

o) = ¥ o(2)

ile,j| mn
mlij
lom(ing) =2

41Recall the Dedekind 1 function is a multiplicative function 1: N — N defined on prime
powers by ¥(p¢) = p® + p~! where e > 1 and with (1) = 1. It can equivalently defined as
the degree of the map of stacks Mo(n) — My, Z[1]"
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ranging over all permitted positive integers ¢ and 7, and where ¢ is Euler’s totient
function. It is well-known that ¢ and the formulae given in the statement of this
proposition are multiplicative with respect to prime decompositions, hence we
may fix a prime ¢ and replace d,e, m,n with ¢¢, ¢, ™ (", respectively. Doing
this, our old assumptions that d?|m and e?|mn are replaced by the inequalities
2d < m and 2e < m + n, and the condition dle is replaced with d < e. In this
case, the formula above reads:

Comun((4,05) = N g (Lethmm) (7.3.12)
0<a<e
os<b<m+n—e
m<a+b
max(a,b)=m—d

We will often split the above sum into two parts depending on if a or b achieves
the maximum m — d. For part 2, we assume that e < m — d, then a < e cannot
reach the maximum m —d, so b = m —d. We also know m <a+b=a+m—d,
so d < a < e. The formula for then becomes

Z o) =1+ Z (¢a=d — ga—d=1y = pe—d

d<a<e d+1<a<e

as desired, using the expression of Euler’s totient function for prime powers.
For part 3, we have the added assumption that m — d < e. Consider the half
of where the maximum is obtained by a (and potentially also b), so we
have a = m —d and b < m —d, and the variable b ranges over 0 < b < m+n —e.
From the fact that m < a+b = m —d + b, we see that d < b < m — d.
The assumptions that m < d + e and 2e < m + n show that 2e < d+e+n
and so e < d + n@ Adding m to both sides we see m + e < m +n + d, hence
m—d < m+n—e, and so the range of the variable b is seen to be d < b < m—d.

The first half of (7.3.12) is then given by
Z ¢(€b7d) _ €m72d

d<bsm—d

as in part 2. For the second half of the maximum is obtained by
b = m—d and is strictly greater than a < m—d—1. As with the argument for the
variable b above, we see the variable a ranges over the valuesd < a < m—d—1,
and by the assumption that m — d < e, this is a necessarily tighter bound than
a < e. This second half of produces £ 24-1 and we obtain the desired
result:

Com gn (gd,ge) — em—Qd +£m—2d—1 — w(em—Qd) |

The following is essentially a piece of bookkeeping involving the numbers
¢m,n(d, €) which occurred in the proof above—to us it signifies that these num-
bers are a little magical.

42This shows that in part 3 we can also assume e < d + n, but this will not factor into
what follows.
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8+7 | 645 | 4+3 | 2+1 | O

8+7 | 645 | 4+3 | 241 | O 443 | 241 | 0
8+7 | 6+5 | 4+3 | 2+1 | O 4 3 24110
7 6+5 | 44+3 | 241 | O 413 2 1 0
6 ) 443 | 2+1 | 0 413 |2 1 0

5 4 3 24110 4131211 0

4 3 2 1 0 3121110

3 2 1 0 21110

2 1 0 110

1 0 0

0

Table 7.1: Values of c¢/(d, e) for (m,n) = (8,12) and (12,4), respectively. An x
(resp. = +y) above refers to c‘(d, e) = ¢* (resp. £* + £¥) where d runs along the
horizontal axis and e along the vertical.

Proposition 7.3.13. Let m,n > 1 be positive integers. Define a function

Cm.nt N2 — N by setting ¢y, . (d, €) to be the degree of the map of stacks (7.5.11
where we set ¢y, ,(d, e) = 0 if the domain is empty. Then the following equality
of polynomials in x holds:

Z Cmon(d,€)x Z Y

d?|m blm,n
e2|lmn a? v

Proof. As in the proof of Pr{7.3.10| the function ¢, »(d, ) is multiplicative, so
it suffices to prove the following:

Claim 7.3.14. For any prime ¢ and integers m and n, we have the equality of

polynomials in x
Z (d,e)z’ = Z ozt
0<2d<m 0<t<min(m,n)
0<2es<m+n 0<2us<m+n—2t
where cf(x,y) = com gn (£, 0Y).

This equality is clear, once one analyses the following N2-table of values of
c‘(—,—); see Table for two examples tables, and Tables and at the
end of this section for the general case. In a bit more detail, by Pr note
that for e < d we have c/(d,e) = 0 so our tables vanish below the diagonal.
The conditions 0 < 2d < m and 0 < 2e < m + n further confine our table to
a bounded region of N2. If n < m, we also see a vanishing triangle in the top
left corner, corresponding to the constraint that e < n + d in this case. The
desired formula appears by summing together the monomials of Y. cf(d, e)x*
of the form ¢tz*" for each fixed ¢, and note the range of such t is precisely
0 <t < min(m,n). Moreover for every fixed t, the range of possible powers of
z with coefficient ¢! are ¢ for 0 < 2u <m +n — 2t. O
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m+(m—1) (m—2)4(m—3) (m—4)—(m—5) s 645 443 241 0
mA(m—1) | (m—2)+(m—3) | (m—4)—(m—5)
mA(m—1) | (m—2)+(m=3) | (m—4)—(m—>5)

m—1 (m—2)+(m—3) | (m—4)—(m—5)

m—2 m—3 (m—4)—(m—>5)

m—3 m—4 m—>5

645 443 241 0

5 443 241 0
4 3 241 0
3 2 1 0
2 1 0

1 0

2 1 0

1 0

0

Table 7.2: Values of c‘(d,e) where m < n, concentrated in 0 < 2d < m and
0 < 2e < m+n. We have also assumed m is even for the above picture, however,
the m is odd case simply has 1 + 0 in the final column instead of simply 0’s,
and the other columns are shifted appropriately. Each = above corresponds to
c’(d,e) = £* and = +y to c’(d,e) = £* + ¢¥, where the horizontal axis is the
d-axis and the vertical axis is the e-axis.
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n+(n—1) | (n—2)+(n—3) 443 | 2+1
n (n—1) (n—2)+(n—3)
n (n—1) (n—2) (n—3) 443 241
(n=1) | (n=2) (n—3) (n—4) 3 241
n (n=2) | (n=3) (n—4) 2 1
n (n—1) (n=3) | (n—4) 2 1 0

(n—1)

(n—2)

(n—4)

(n—=2) | (n=3) 2 1 0
(n=3) | (n—4) 2 1 0
(n—4) 1 0

Table 7.3: Values of ¢/(d, e) where n < m, which is concentrated in 0 < 2d < m
and 0 < 2¢ < m +n. As in Table we have assumed m and n are even, but

the other cases are similar.

103



7.4. HECKE COMPOSITION FORMULA WITH STACKS

7.4 Hecke composition formula with stacks

The formula of Th[7.2.7 will boil down to the following algebro-geometric state-
ment and the combinatorics of these numbers ¢, ,,(d, ) discussed above.

Theorem 7.4.1. Let m,n be positive integers. Then there exists the following
Cartesian diagram of stacks over Spec Z[-]:

HM(d

g( m,n) _— ./\/lm

€, e

1) Jq (7.4.2)

M, —FL—s Mgz

The above coproduct ranges over positive integers d,e such that d*|m, e?|mn,
dle, and either m|de or e|dn.

Proof. Define the stack F,,, over Z[ﬁ] as the pullback in the following dia-
gram:

’
q
Fopn — M,

[E

M'fyL L>./\/lzl: 1]

mn

This has a natural modular interpretation: for a fixed scheme S, we can identify
the groupoid F), ,(S) with that of pentuples

(Ema Hm7Ena Hnaa)

where E,,, E, are elliptic curves over .S with finite closed subgroups H,, < E,,
and H, < FE, of order m and n, respectively, and a: E,, ~ E,,/H,, is an
isomorphism of elliptic curves over S. Given such a pentuple, one can consider
the following commutative diagram of schemes over our fixed S:

H, — ™H, ——— E,,

L F

S H, E, & B,/H,,

The right square above is Cartesian by construction, the whole rectangle is
Cartesian by inspection, so we see the left square is also Cartesian. This left
square then witnesses the following short exact sequence of finite étale groups

schemes over S:
0—-H,, »n*H, - H, -0

From the above short exact sequence, it is clear that 7*H, has order mn.
These observations justify the well-definedness of the following map of stacks
over Spec Z[-L-1]:

mn

Fm,n - Mmgmn) (EmaHmvEn)H’rua) = (EmaH’I’TL < Q*Hn)
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We claim this map is an equivalence of stacks, which is easy to check using the
following inverse:

Mmémn_’FnL,n (E;KgH)H(E,K,E/K,H/K,Id)

Indeed, all of the homotopies used to show these two functors are inverse to
each other are canonical. By Pr the stack M,<mn decomposes as

MmSmn =~ H MASB
[Al=m
|B|=mn

where A < Cp, X Cp, and B < Cpppy X Chy. By elementary group theory (see
the proof of Prl7.3.6] for example), for each A (resp. B) there exists a unique
positive integer d (resp. ) such that d*|m and A ~ Cy x Cm (resp. ¢*|mn and
B ~ (. x Cmx). Notice that d|e and either e[nd or m|de by Pr. which
gives us the desired indexing set for our coproduct. O

Finally, we can now prove Th[D] which we restate for convenience.

Theorem 7.4.3 (Th|D]and Th[7.2.7). Let m and n be positive integers. Then
there is a homotopy of morphisms of spectra

1 ;- TMF[——]

~ d mn | —_—
T, 0T, ~ Z AT my - TMF[mn —

dlm,n
where ¢ = ged(6, p(mn)) and ¢(mn) is Euler’s totient function.

Proof. Consider the diagram of stacks over Z[-1-]

[ M [ M
rx /
q(e,%) ]_[Mii,e p(e,n;n) ( )
7.4.4
M, M.,
MeEgn Megu MeEgu

where we have abbreviated M 4 m\<(e mny as M/, | M, mny as M’ written p
(1{1)\(7(3) d,e (.79,) 'e

for the structure map (7.3.11)), the two coproducts are indexed as in Th/7.4.1]

and mn is implicitly inverted. To see this diagram commutes, we only need

to check the left and right regions—the centre is given by Th.[7.4.1} Clearly,

the right region commutes: given a scheme S and an S-valued point in the

middle coproduct given by a triple (F, K < H), then we see both composites

send this triple to E in Mgy (S). For the left region, first take such a triple
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(E,K < H). The upper composition sends this triple first to the pair (F, H),
then to E/H. The lower composition sends this triple first to (E/K, H/K) and
then to (E/K)/(H/K) which is naturally isomorphic to E/H by one of the usual
numbered isomorphism theorems from algebra.

We can enhance ) to a diagram in Isogy;—just pair the universal el-
liptic curves with all the Stacks above, and pair each map labelled with a “p”
with a canonical equivalence of elliptic curves, and each map labelled w1th a
“q” with the obvious quotient (as in Df- 7.2.1| for T,,, for example). We can now
apply O%P to this diagram, meaning that all of the maps going to the left are
realised by the induced maps of E.,-rings, and the maps going to the right are
realised by transfer maps. This yields the diagram of spectra

D cm,nle,d)

QTMF! DTMF
/
C—DTMF(Q e '(91%)
% Pn\t
MF,,
TMF
(7.4.5)

where we used analogous notation to and suppressed inverting m and
n. Above we display the definitions of T,, and T,,, so the bottom two triangles
commute by definition. The centre diamond commutes up to natural homotopy
by the functoriality of QP as a spectral Mackey functor on Isoggy, and simi-
larly, the left and right regions also commute up to natural homotopy, as they
did so in Isoggy. We are left with the composition p, with pi, which is not the

identity—by Lm.6.2.5| and Pr[7.3.10] it is (non-canonically) homotopic to the
constant functor ¢, ,(d,e) for this number is the degree of the map of stacks

1. = M;. To apply Lm. we crucially use Rmk{6.2.6} - 6| which applies to
us as M/, ~ My (m") by Pr hence TMF,, ~ TMF, ( ) these cases are
covered by Rmk[6.2.6] if we 1nvert 0.

The commutativity of (7.4.5) gives us the first homotopy between maps of
the spectrum TMF][

77L7l]

Ton oTn_Zcmnde ~ 37 bT(gp,ma)
blm,n
a®| o

where the first sum is indexed as the sums in are, and the second natural

homotopy comes from the bookkeeping in Pr 3| by setting z¢ = T, mn).
Using the natural homotopies provided in part 2 (5) owed by part 1 of Cor
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we obtain the desired conclusion:

~ b ~ b
D VTavmpy > D) T myy > Y] b Tmp O
blm,n blm,n blm,n
a?| mp e

Remark 7.4.6. Let us work with the classical algebraic Hecke operators T2# of
Df[7.5.2) for a moment, and observe that Th[7.2.7] implies the classical formula

alg alg __ k—1
ToEoTHe = ) d* 'Tus

dlm,n

on the space MF}, of meromorphic modular forms of weight k—the same state-
ment then holds on the space mfy of holomorphic modular forms as the classical
Hecke operators preserve the inclusion mfy, — MFy. Indeed, using the compari-
son result Pr below, and the fact that on MF;, the Adams operation ¢ acts
by multiplication by d*, we obtain the following equalities of homomorphism on

MFZ[ﬁ]:

1 1
alg alg d " k—1malg
Tm o Tn = —mnTn oT,, = —mn E dy TL;Q = E d Tﬁ’zn

dlm,n dlm,n

In fact, the comparison result Pr is not necessary—just apply H°(—, w®")
to (7.4.4)) and argue as in the proof of Th above.

Remark 7.4.7. There is a singular moment in our proof of Th[7.4.3] where we
use the fact that fi o f* is homotopic the degree of f, in other words, where
we use LmJ6.2.5] This is also the only moment where we need to invert ¢. If
we could apply Lm. directly to TMF (%) without inverting ¢, then we
would be done. In other words, if one could show that in general mo TMFy(n)
has no torsion, then one would obtain a version of Th[7.4.3] without inverting

¢. We are currently investigating this.

Remark 7.4.8. The author has recently shown that T,, o T,, is homotopic to
T, oT,, over TMF[#], skipping the splitting of Th over TMF[#W] Our
proof is very much in the spirit of the rest of this thesis, but as we came across
this argument as the thesis committee was reviewing this thesis, let us delay

this until [Dav22].

7.5 Comparison of Hecke operators

There is another kind of Hecke operator that we claim our operations on TMF
generalise—the classical Hecke operators of Hecke himself.

Definition 7.5.1. Let R be a subring of C and k an integer. Define the space
MFkR of weight k meromorphic modular forms over R by the sheaf cohomology

group
MFE = H°( Mgy g, w®)
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where w is the line bundle on Mgy defined by the pushforward of the sheaf
of differential ps{g 1y, on the universal elliptic curve. Write MFf‘ for the
associated graded R-algebra. If R = Z we will drop it from our notation.
Define the space mf,lf of weight k holomorphic modular forms over R by the
analogous sheaf cohomology group over Mgy g.

By [DI95, Th.12.3.7], we see the g-expansion map MF5 — R((q)) is injective
whose image are those meromorphic modular forms over C whose g-expansion
has coefficients in R. The canonical quotient map &, — &, /H, of the universal
elliptic curve over M,, induces an isomorphism §: wg, /3, — we, , which we will
use in our definitions of classical Hecke operators now.

Definition 7.5.2. Let k£ and n be integers with n > 1. The nth algebraic Hecke

1
operator T2!& on MFf["] is defined as the composition

* 1 Trp
WO (Mypag) D B (M) S e (M) 25 0 (M)
where Tr,: Pep*w®F — WO is the transfer map associated to finite locally free
morphism p; see JAGVT 73, Exposé IX, §5] or [Stal |03SH].

By [Kat73], §1.11] (or [Con0T7, §4.5]), we see the above definition agrees with
the even more classical definition over C.

Proposition 7.5.3. Let n be a positive integer. Writing e for the edge map in
the descent spectral sequence for TMF[%], then the following diagram of graded
abelian groups commutes:

7ax TMF[L] — 75, TMF[L]

nalg 1
201 T el

1
In particular, we have an equality T,, = nT2® of homomorphisms on MFZ[G"].

We will make more explicit calculations in Chapter[0] The following is mostly
a formal exercise.

Proposition 7.5.4. Let n be a positive integer. The stable Hecke operator T,

on TMF[%] induces a map of descent spectral sequences

1 1
Th: DSS(TMF[H]) — DSS(TMF[;])
whose effect on the FEs-page
Tp: HO(MEH,Z[%]aw@t) - HO(MEH,Z[%]vw@t)

can be identified with the multiple nTX® of the algebraic Hecke operators.
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For use in the following proof, let us note that for every object (X, E) of
Isogp;, we can define a stable Hecke operator TSLX’E) on 0P (X, F) by pullback.

This means we consider the Cartesian diagrams inside Isogg,

(X, En) —222 (X, E) X, En) —29 (X, E)

[ Jra e v

(M, &) M (MEH,Z[%]’(?) (My, &) —— (MEH,Z[%]v@@)

and then define TSZX’E) as the following composition:

4 ok / can)
oo (X, B) L2, grev(x,,, 1) L, glor(x, B

The functoriality of pullback and transfers combine to give us sheafy stable
Hecke operators
. top top
Tni Ogpa) = Oapy
as maps of sheaves of spectra on Isoggy.

Proof. Let S = Spec A — My 7117 be an étale cover, and let us suppress

inverting n in our notation from now. Write S, for the Cech nerve of this cover
and £° for the augmented cosimplicial E..-ring resulting from applying *°P to
S.:
S = (Spec A)*Men™ EM™ = 0P (S,,)

Using these EW—TMF[%]—algebras E™ and the functorial stable Hecke operators
TSm defined above, we obtain the stable Hecke operators T¢ on the cosimplicial
spectrum £°, the case « = —1 being the stable Hecke operator T,, on TMF. The
Bousfield-Kan spectral sequence associated with £° is by definition the descent
spectral sequence for TMF, and the functoriality of this spectral sequence im-
plies our morphisms T, of cosimplicial spectra induce a morphism T,, between
descent spectral sequences

T,: DSS(TMF) — DSS(TMF).

We are trying to identify T,, on the zeroth line on the Fs-page of this spectral
sequence, so it suffices to show that these operations agree on the FEj-page,
which is given by the groups m,.&*. In fact, each row E} 2t of the E;-page can
be identified with the Cech complex for w®! using the cover Spec A — Mgy we
started with. It then suffices to show that for any affine étale Spec B — Mgy,
the induced map T,,: w91 O*°P(B) — m9; O*°P(B) agrees with the pullback of the
classical Hecke operator T2 to w%t multiplied by n, now as maps of sheaves of
abelian groups on Spec B. A slight rewriting of the stable Hecke operators as
the composite

can *
G'oP (M, &) TN gt (M, &,/ H,)
l(id,@*
OGP (M, &) L grop (A, &)
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shows that it suffices to calculate the composition for all t € Z

can *
00 (B, ) BN o, 010 (B,, Ep, JH)
fid’ 0ny* (7.5.5)
WQtﬁtOp(BT“an) M 0P (B, &)

where Spec B,, = M,, X pmy,, Spec B. Using the fact that ¢p is étale, and hence
(¢B,can)* is an étale morphism of E,-rings, we can identify the first map of
(7.5.5) with the base change of the map ¢* of Df. along Spec B —» Mgy.
Similarly, the map @Qp, is the quotient of elliptic curves &5, — &p,/H. By
Th. 0P defines a natural elliptic cohomology theory on Isogg, so the
isomorphism 7g; 0'°P(B) ~ w®' commutes with the morphisms induced by such
quotients of elliptic curves. In other words, (id, Qp,)* agrees with £ of Df
Finally, the spectral transfer agrees with the classical transfer as both are defined
étale locally as summing fold maps; see Rmk[6.2.4l Importantly, Df[7.5.2] now
divides by n to obtain T2!#, which explains the discrepancy between stable Hecke
operators and their classical counterparts. O

Proof of Pr[7.5.3 This is simply a statement of the existence of the natural edge
map of the descent spectral sequence and the Es-identification from Pr[7.5.4 O

Remark 7.5.6. Using the notation Th.8.0.2] we can rephrase Pr.[7.5.4] as the
identification of the morphisms on Ex-pages (T, )aly and nT2e.

It also seems likely that our stable operators T, agree (up to homotopy)
with Baker’s stable Hecke operators nTE2ker gver the Landweber exact theory
g = TMF[%]. To show this, one should reduce to the prime case n = p
and explicitly compare the two constructions; a task we have not been able to
complete yet.

7.6 Stable Fricke and Atkin—Lehner involutions

In the realm of classical modular forms, the Fricke involution is an endomor-
phism

wy: MFg(N)y — MFo(N),
where MF((N) is the ring of modular forms of level I'g(IV) defined by the sheaf
cohomology groups:

MFo(N) = H*(My(N), p*w*®)

There is a modular interpretation of this map. Recall the S-valued points of
My(N) can be equivalently described as pairs (E, H) of an elliptic curve E over
S and a cyclic subgroup H < E of order N, or pairs (E, ¢) where ¢: E — E’
is an isogeny of elliptic curves whose kernel is cyclic of order N. The bijection
between these pairs is given by the following maps:

(E,H)— (E,E - E/H)
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(E, ker(9)) < (E, ¢)

Definition 7.6.1. Let N > 2 be an integer and @ be a positive divisor of IV with
ged(Q, N/Q) = 1. Define the Atkin-Lehner involution wg: Mo(N) — My(N)
of stacks on S-valued points as follows: given a pair (F, ¢) in Mo(N)(S) then
the kernel K of ¢ uniquely splits into a product of the subgroups K¢q x Ky/q,
where K, has order m. The isogeny ¢ can then be factored in two ways:

E/Kq

EV¢\

E' = E/K

E/Knjq

We then define wq(E, ¢) = (E/Kq, dn/q © ¢5) where (—)¥ denotes taking the
dual isogeny—it is easy to check the kernel of ¢/ © ¢¢) is cyclic of order N. If
@ = N, then we call wy the Fricke involution of My(N).

This algebraic construction combined with Th immediately leads us to
a spectral definition.

Definition 7.6.2. Let N > 2 be an integer and @ be a positive divisor of N
with ged(Q, N/Q) = 1. Define the Atkin—Lehner involution on TMFq(N) by
applying 0*°P to the morphism

(wq, ¢rg): (Mo(N),80(N)) = (Mo(N), &0(N))

in Isoggy, where ¢, : &(IN) — 60(N)/Kq = w§éo(N) is the natural quotient
map of the universal elliptic curve over Mo (V) with K¢ the Q-primary part of
the universal cyclic subgroup K of order N.

Calling these operations “involutions” is a little misleading.

Proposition 7.6.3. Let N > 2 be an integer and Q be a positive divisor of
N with ged(Q,N/Q) = 1. Then we have the following natural homotopy of
E, -rings:

wg o wg ~ Yp?: TMFy(N) — TMF,(N)

In other words, the Atkin—Lehner involutions are a square root of the Adams
operations on TMFy(N).

Proof. By functoriality of &P we are left to show the composition

(Mo(N), (V) L2229), (Ao (), & (V) L2222 (Mo (), Gy (N))

in Isoggy, is homotopic to (id, [@Q]). This follows rather easily if one remembers
how to compose in Isogg). Indeed, wg o wg is naturally equivalent to the
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identity on Mo(NN) by construction and the fact that the dual of a dual isogeny
is naturally equivalent to the original isogeny; see [KM85, Cor.2.6.1.1]. For the
maps of elliptic curves over Mo(N), we note that the composition

¢ 5¢
E(N) 2 6(N) /K == 6(N)
can be identified with ¢ o ¢ which is naturally equivalent to [Q] by [KM85)
Th.2.6.1]. Applying &*°P to the map (id, [Q]) on (My(N), & (N)) is our defi-
nition of the Qth Adams operation on TMFq (V). O

These operations also behave well with respect to themselves and all of the
other operations we have seen so far.

Proposition 7.6.4. Let k,n, and N be integers, with n, N = 2 and coprime, and
Q and R be two positive divisors of N with ged(Q, N/Q) = ged(R,N/R) = 1.

Then there exist the following natural homotopies of morphisms of E..-rings:

wg o PP ~ Yk owg: TMFO(N)[%] - TMFo(N)[i]

3

1 1
WQ OWR ~ WROWQ: TMFO(N)[E] - TMFO(N)[n]

There also exists the following natural homotopy of morphisms of spectra:

1 1
wgo Ty, ~Tyowgy: TMFO(N)[E] - TMFO(N)[E]

Proof. The natural homotopy witnessing wg o Pk ~ ko wq follows as in the
proof of Pr[7.2.4}—the map ¢x, is one of elliptic curves, hence it commutes with
the k-fold multiplication map [k]. For the second family of homotopies, note
that if Q = R we are done; this is also covered by Pr[7.6.3] Otherwise, if Q # R
we see that ged(Q, R) = 1 from our assumptions, hence the universal cyclic
subgroup K of order N splits uniquely into g x Kr x Kas, where N = QRM
and neither @) nor R divide M. Using this fact, we quickly see that wg o wg is
naturally equivalent to wr o wg as maps of stacks. The fact that the diagram
of elliptic curves

&(N) ———— &(N)/Kq

|

& (N)/Kr —— 0(N)/(Kq x Kr)

naturally commutes, where all of the maps are the expected quotients, we see
that the two composites (wq, ¢k, ) © (Wr, ¢xr) and (wr, ¢xy) © (Wg, P, ) are
naturally equivalent in Isogy;. This gives the second collection of natural ho-
motopies of E,.-rings. The final case of the natural homotopy between wg o T,

and T,, o wg follows for similar reasons, where we again crucially use that
ged(n, N) = 1. O
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As with everything we do here, we should clarify how these operations induce
those studied classically.

Proposition 7.6.5. Let N = 2 be an integer and @ a positive divisor of N
with ged(Q, N/Q) = 1. Then the edge map e for the descent spectral sequence
induces a commutative diagram of graded abelian groups

Tow TMFo(N) —25 75, TMFg(N)

Lo b

w

MF(N) ——2—— MF(N)

where the bottom horizontal map is the classical Atkin—Lehner involution on
MFy(N).

The definition of the algebraic operations w%lg: MF(N) —» MFy(N) can be
found in the introduction of [Xue09], and by design is given by applying o, &P
to the morphism (wq, ¢x, ) of Df This fact alone essentially gives Pr

Proof. As in the proof of Pr.[7.5.3] and Pr[7.5.4] we have to show that after
base change along an étale map Spec B — Mg (INV), taking mo; of the morphism
of E,-rings (wg)p: O*P(B) — O"P(B) agrees with a classical definition of
the Atkin—Lehner involution wglg on my0'P(B) ~ . This follows as in
the proof of Pr. as wq is étale (even an automorphism) and the isomor-

phism 79, 0*P(B) ~ w%t is natural with respect to isogenies of elliptic curves
of invertible degree, such as ¢i,, : &(N) = &(N)/Kq. O

It can be very hard to obtain a generators-and-relations expression for the
graded rings 7, TMFo(N) and even for MF(N). There are calculations how
Atkin—Lehner involutions act on these coefficient rings in the casesof Q = N = p

for p = 2, 3, and 5 in the literature; see [Beh06l §1.3], [MRQ9], and [BO16, §1.4],
respectively.

7.7 Handicraft operations on Tmf

In this section we construct some underwhelming operations ¥* on Tmf, for
each p-adic integer k € Z,’. The constructions below do not show any compati-
bility of these operations as k varies nor does it show compatibility with potential
Hecke operators—each construction is done for each k insolation. This is much
less satisfying than what we have already seen for TMF, and we expect to prove
coherence in the long run with methods other than what is described below; see
the final paragraph of this section. We do not claim the construction of ¥* on
Tmf, that follows is the “correct” definition, but it will nevertheless be useful

to study TMF,, as done in §10.3 and
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The details and proofs for the outline that follows can be found in the up-
dated version of [Dav21al.

In our first version of [Dav21al, it was claimed that Th[6.1.9]also holds over
MeEgq. This statement might still be true, but our proof skips an important step,
so we cannot claim to provide a complete proof here. At least two remedies that
can be made though, and we would like to discuss them now. To avoid bloat, we
will use much of the language and statements of [Dav2la] without hesitation,
such as generalised elliptic curves and logarithmic geometry.

Sites of fractured quasi p-divisible groups A minor error in [Dav2lal
claims that there is a multiplication map & — & on the universal generalised
elliptic curve. The construction outlined there was to define this isogeny as
the quotient & — &/&" [n] and then identify this quotient with & as this is
clear over Mg and also holds over M, using a uniqueness property of the
Tate curve from [Con07, Th.2.5.2]. This does not work though, as [Ces17] only
guarantees the existence of a quotient E/H of a generalised elliptic curve by a
subgroup H when H is finite locally free, and in particular, is flat. The sub-
group & [n] € & is not flat, as one can see in the case of the Tate curve T
over Spec Z[q]: upon specialisation to ¢ = 0, the degree of the subgroup scheme
T5™[n] jumps from n? to n, meaning T [n] is not flat.

The above reason does not change the proof of [Dav2lal Th.A], it sim-
ply means that this specific theorem cannot be used to define Adams oper-
ations on Tmf [%] There is an easy, albeit ugly, fix. Rather than study a
site whose objects are log étale morphisms of log stacks X — Mg and whose
morphisms are isogenies of generalised elliptic curves (a concept taken from
[Ces17l, Df.2.2.8]) of invertible degree (analogous to our Isoggy;), one should use
a site with the same objects but whose morphisms can be defined as follows:
a morphism between affine objects (Spec R, E) — (Spec R/, E’) are a system of
isomorphisms a,,: E[p”] ~ f*E'[p™] of quasi p-divisible groupﬁ and an iso-
morphism «p: E~ f * B’ of formal groups over Spec R, such that for each prime
p, the identity component of v, over Spec R} agrees with o over Spec R} [p~1].
One then shows the stack classifying these morphisms satisfies étale descent, and
we obtain an expression for morphisms between not necessarily affine objects
with log étale maps to Mgy. Write qBTy,, for this site, equipped with the log
étale topology. One can then extend the proof of [Dav2lal, Th.A] to this new
site with ease, and define Adams operations on Tmf using the evident multi-
plication maps on the quasi p-divisible groups (and formal groups) associated
with the universal generalised elliptic curve.

43 As mentioned above, the n-torsion of a generalised elliptic curve is not necessarily flat
over the base, meaning the collection of p-power torsion is not a p-divisible group, but rather
a quasi p-divisible group—an Ind collection of finite (not necessarily flat) group schemes with
the expected p-divisibility property.
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This new site is necessary to try and obtain the desired functoriality of
O*°P over Mgy, however, it is not strictly necessary, as our updated version
of [Dav2la] shows. There is a more subtle problem with the proof of [Dav2lal
Th.A].

Naturality of the gluing map In the proof of [Dav2lal Pr.2.35], an im-
portant step in the proof of [Dav2lal Th.A], we followed Hill-Lawson ([HL1G,
Pr.5.9]) and used Goerss—Hopkins obstruction theory to construct the following
natural gluing map for an affine Spec R — Mgy, is Weierstrafl form:
¢: O"(R[ATY])) — 6T (RR)[AT]) (7.7.1)

The naturality of this gluing map in the small log étale site of My is evi-
dent in Hill-Lawson’s proof, as they construct ¢ as a morphism of K(1)-local
E.-tmf g (1)-algebras. We do not want to construct tmf g (;)-algebra maps, as
isogenies of the universal generalised elliptic curve of invertible degree, should
also act nontrivially on tmfg ;). For example, it is clear from the fact that "
is not the identity (using the calculation of §9| for example) that the morphism
of E,-ring ¢": TMF[1] — TMF[1] is not a TMF-algebra map, and the same
should hold over the cusp.

We can think of (at least) two alternative ways to construct the desired ¢:
more obstruction theory or constructive methods; these points are explained in
detail in the updated version of [Dav2la].

(More obstruction theory I) To fix the proof of [Dav2ial, Pr.2.35], fix
an log étale morphism E: Spec R — Mgy, and write the domain and codomain
of as Esm and Erate. By the arguments of [HL16, Pr.5.9], we obtain a
morphism ¢: E, — Erate which commutes with the tmf-algebra structures. On
the domain, this algebra structure comes from the natural maps

tmf, - TMF, — &

the first the canonical localisation map and the second from the construction of
0*™ and the identification of its global sections from Th[5.3.3] On the codomain,
this algebra structure comes from the natural maps

tmf — KO[q] — Erate

the first now coming from [HL16, §A] and the second from the construction of
0" and the identification of the global sections of 6™ as KO from Prs
and [5.1.8] As A is inverted in Erate, we see this algebra structure naturally
factors as follows:

tmf — TMF — KO((q)) — Etate

In other words, ¢ is a TMF,-algebra map. Fix a p-adic unit k € Z;. Let
[k]: & — & be the morphism in qBTy,; on the universal generalised elliptic curve
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over Mgy x Spf Z,, defined as the k-fold multiplication map on quasi p-divisible
groups and formal groups—these maps clearly glue where necessary. This map
[k] yields two maps of E..-ring ¥£ 1 g — Em and V&, ETate — ETate, and
the question is whether or not ¢ naturally commutes with these maps. Consider
the following diagram of morphisms of E , -rings:

k
TMF, Yo TMF,

™.

ESIII

N
J T e
KO((q)) KO((9))p ¢

™~ I

gTate
Our goal is to naturally construct a homotopy for the front face of the above
cube. The right and left faces commute by the construction of ¢ as a tmf-,
and hence TMF-, algebra map. The top and bottom faces commute by the
functoriality of 5™ and 0T, respectively.

Claim 7.7.3. For each p-adic unit k € Z), the back face of (7.7.2)) can be chosen
to commute up to homotopy.

k
IZ”Tate

gTate

Assuming this claim, for now, it follows from Hill-Lawson’s arguments that
the front face naturally commutes. Indeed, the commutativity of the rest of
shows that all the maps of E-rings in the front face are TMF,-algebra
maps, where we view the right hand £ and Erate as TMF,-algebras through
(any of) the obvious composites. By precomposition, this also yields a diagram
of tmf-algebra maps we wish to see commutes. As Erate is K(1)-local, we may
K (1)-localise &y and when then find ourselves in the position to use the Goerss—
Hopkins obstruction theory of [HLI16, Pr.4.49], which states that the mapping
space

MapCAlgfI(:()l) tmf (LK(l)gSHU g'}‘pate)
is discrete where we use the superscript ¢ to denote a twist in the Ly ;) tmf-
algebra structure on Et,e by Adams operations. In fact, loc. cit. shows the
above mapping space is equivalent to the set of V-6-algebra maps commuting
with Adams operations between the p-adic K-theories of the above E. . -rings;
Hill-Lawson write V for what Behrens [Behl4] writes as V). The p-adic K-
theory of an E.-ring comes equipped with natural stable Adams operations,
which we will call the algebraic Adams operations 1/’§1g for every £ € Z,7. As the
map on p-adic K-theory induced by ¢ commutes with these algebraic Adams
operations 7/’§1g for every £ € Z, it is a map of Ey.-rings, it suffices to show
that % and w’l}ate induce the algebraic Adams operations w(fflg on p-adic K-

theory. For 4% _, this follows by construction and the identification of ™ with

sm?’
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O'*°P restricted to Mpy; see [Behl4, Rmk.6.3]. For ¢%, ., we make two simple
observations:

1. There is an isomorphism of Z,-algebras Wrate >~ KUJ Erate where W is
the adic ring defined by the Cartesian diagram of formal schemes

——ord

Spf Wrate ——— Mgy, (p™)

| !

Spf RTa,te E— MEII X Spf Zp

where M&d(p*) ~ SpfV classifies generalised elliptic curves with ordi-
nary reduction modulo p and a chosen isomorphism with CA}m; see the proof
of Lm or [Beh14) p.14]. Indeed, this follows by [Beh14l Pr.6.1]. Note
that the p-adic K-theory of tmf is V.

2. The algebraic Adams operations ¢§1g on Spf Wryie come from the universal
operations on V', which in turn come from the k-fold multiplication map
on G,, using the chosen isomorphism.

By construction, ¥, . induces the k-fold multiplication map on Etate, from
the construction of &2, Hence 9% . induces the same map on p-adic K-
theory as wflg, and the front face of commutes—modulo our claim from
earlier.

Proof of Clm, Copying the proof of [HLI6L Pr.A.6], but replacing tmf
with TMF, the path components of the mapping space of K(1)-local maps of
E. -rings from TMF, to KO((q)) is equivalent to the Cs-fixed points of the
set of V-f-algebra maps commuting with Adams operations from the p-adic K-
theory of TMF,, to that of KU((q)). We have to only check now that the two
composites on the back face of Equation induce the same map on p-adic
K-theory, but this follows from the same arguments made above about what the
stable Adams operations on TMF,, and KO((¢)) induce on p-adic K-theory. A

(More obstruction theory II) Fixing an odd prime p, rather than ask-
ing for ¢ to commute with a particular stable Adams operation as done above,
one can ask ¢ to be Ff-equivariant with respect to the p-adic Adams operations
Y* where k € FY < ZX. As discussed in [Stol2, §5.1], there is an equivariant
form of Goerss—Hopkins obstruction theory, and if the order of our group is not
divisible by p, which happens to be the case for F;, then the arguments by
Hill-Lawson [HLI6, Pr.5.9] follow through with little change.

In total, we have outlined a proof of the following unsatisfying statement—a
preliminary version of an extension of Th to Mgy; see [Dav21al for more
details.
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Theorem 7.7.4. Fiz a prime p and a p-adic unit k € Z;. There exists a
morphism of E..-rings 1* : Tmf, — Tmf, which commutes with both E.,-maps
Tmf, - TMF, and Tmf, — KO where the Y* acts on TMF, and KO, as in
, If p is odd, this can be further enhanced to an ¥ -action of E.-rings
on Tmf, which restricts to the actions of the p-adic Adams operations when
restricted to TMF), and the map E.-map Tmf, — KO[q] to be F ) -equivariant.

Let us reiterate:
These methods above do not prove any compatibility for varying k.

This highlights the moral difference between the obstruction theoretic con-
struction of TMF and the construction using spectral algebraic geometry given
by Lurie. In the first case, one proves that TMF exists and is unique up to ho-
motopy by showing the vanishing of various obstruction groups. In the second
case, one does not know if TMF is uniquely defined, but the construction does
provide a canonical model; see [EC2] Rmk.7.0.2]. It seems likely that one could
work harder to obtain maps Tmf — Tmfy(p) which act as the quotient map
appearing in the definition of stable Hecke operators Df. (although these
quotient maps over the cusp pose a whole new set of problems; see [Ces17]). As
everything else we have done so far avoids obstruction theory, it seems morally
bankrupt to appeal to it now, when we have come so far already.

Constructive methods We do not yet know of a direct way to use Lurie’s
constructive methods to construct ¢, however, remain optimistic that [EC2]
holds the key...somewhere. Indeed, by construction, we see that &, is the
orientation classifier of the identity component of the universal spectral defor-
mation of Spec Rgy, — Mgy, where Spec Ry, is the pullback of Spec R along
the affine inclusion Mgy — Magy. Mapping out of such an E.-ring with such
a description is simple, as highlighted by the proof of [EC2, Th.5.1.5], however,
we cannot follow loc. cit. verbatim, as Er__ does not have a formally connected
p-divisible group and it defines an ordinary (as opposed to a supersingular) el-
liptic curve on most of Spec Ry,,. This seems to be the right way to go to obtain
the map ¢ in a way that naturally commutes with maps induced by isogenies of
generalised elliptic curves of invertible degree or compatible collections of auto-
morphisms of quasi p-divisible groups. The author is currently experimenting
with these ideas.
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Chapter 8

Generalities on
endomorphisms of tmf

Maintenant le principal est fait. Je tiens quelques
évidences dont je ne peux me détacher. Ce que je
sais, ce qui est str, ce que je ne peux nier, ce que je
ne peux rejeter, voila ce qui compte.

Albert Camus, The Myth of Sisyphus

To calculate the effect of Adams operations or Hecke operators on the homo-
topy groups of Tmf, we appeal to a general paradigm first discussed in [Dav21al
§3.2]. This is the idea that the homotopy groups of tmf (and TMF) can be
partitioned into two subgroups Tors @ Free: the first summand containing all
torsion elements, and the second generated by certain torsion free elements.
This decomposition is natural with respect to endomorphisms of spectra on
tmf, meaning that for such an endomorphism f, then both Tors and §ree are
preserved by f. This fact is obvious for Tors but highly nontrivial for §ree. The
following is a generalisation of [Dav21al, Cor.3.17] and has appeared as Th@

Theorem 8.0.1 (Splitting of 7, tmf). Writing Tors for the torsion subgroup of
w4 tmf, there is a splitting of abelian groups

7y tmf ~ Tors @ Free

which is natural with respect to endomorphisms of the spectrum tmf and is
compatible with localisations and completions, and also holds for TMF.

The above theorem states that we can calculate the effect of endomorphisms
of tmf on Free after rationalisation as f(§ree) € Free. Using similar arguments
used to prove the above theorem, we can also produce a formula for calculating
the effect of endomorphisms on Fors. The following is Th[8.0.2]



8.1. SYNTHETIC SPECTRA AND mmf

Theorem 8.0.2 (Calculations using DSS representatives). Let x € my tmf be a
torsion element with DSS decomposition a - ¢ (Df, and f: tmf — tmf be
an morphism of spectra. Then f(x) is represented by fag(a)t on the E. -page,
where fag is the map fag induces on the Eo-page. Moreover, if x is nearby
the Hurewicz image (Df[8.3.1)), then f(z) = f(1)z. The same result holds for
TMF, as well as after localisation and completions at primes.

Combined, these two theorems allow anyone to boil down a calculation of
an endomorphism of tmf on homotopy groups to a rational algebraic calcula-
tion. Both theorems can be viewed as solving extension problems in a spectral
sequence: given an element x € 7, tmf, we can represent x by an element y
in the descent spectral sequence (read: Adams-Novikov spectral sequence) for
tmf, and we ask if f(y) jumps in filtration or not. A reinterpretation of both
Ths and is that these jumps never occur, at least, not for endomor-
phisms f: tmf — tmf of spectra.

Remark 8.0.3. The above theorems also work for other nice spectra like S and
KO for tautological reasons. As mentioned in the introduction, statements such
as Th[8.0.1] do not work for Eilenberg-MacLane spectra such as Z @ Z/2Z. We
suspect the same is true for Tmf—we are currently mulling the details.

In we discuss the synthetic spectra and the synthetic E..-ring of motivic
modular forms mmf. These modern techniques are crucial to our proofs of
Ths[8:0.1] and which are carried out in §8:2] and §8.3] In §8.4] we discuss
how Anderson and Serre duality can help us with some calculations involving
Ty Tmf.

8.1 Synthetic spectra and mmf

The collection of tools we will use to prove Th[8.0.1] comes from motivic homo-
topy theory. In [GIKRIS], the authors define a candidate for (the 2-completion
of) the motivic E,-ring mmf of (connective) motivic modular forms. This is
done by constructing an artificial co-category C equivalent to the 2-completion
of the cellular C-motivic stable homotopy category Spo and a lax monoidal
functor Sp — C. One then defines mmf as the image of tmf under this functor
to C. Our approach to studying a version of motivic modular forms is very
much inspired by [GIKR18] and [Isa09]. Recently an alternative construction of
an artificial co-category equivalent to Sp¢ after p-completion has been achieved
by Pstragowski; see [Pst19]. As the framework of Pstragowski betters fits our
applications, we will use his approach called synthetic spectra, which we now
axiomatise.

Theorem 8.1.1 ([Pst19l §4-7]). There is a symmetric monoidal stable co-
category Syn of synthetic spectra and a subcategory Syn®" together with functors
t: Sp — Syn, L: Syn — Sp, ©: Syn® — Spg such that the following conditions
hold true:

1. The functor v is lax symmetric monoidal.
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2. The functor L is symmetric monoidal and a left adjoint.
3. The composite L o is naturally equivalent to the identity functor on Sp.
4. The functor © is an equivalence on p-complete objects.

Furthermore, let us write SHY = L1~%,8Y inside Syn for any pair of integers
t,w, and T4, Y for the associated bigraded homotopy groups of a synthetic spec-
trum Y. Then for any spectrum X, there is a natural map

et X — T X (8.1.2)

which exhibits ;X as the T-localisation of my «1.X, where T is a canonical element
Of 71'07_180’0.

Proof. In [Pst19], Syn is denoted by Synyy, Syn®" by Synyyy, ¢ is v, L is 771,

and O is ©*. Part 1 is then [Pst19, Lm.4.4], part 2 is [Pst19, Pr.4.32], part 3 is
[Pst19l Cor.4.33], and part 4 is [Pst19, Th.7.34]. The “furthermore” statement
is [Pst19l Rmk.4.40]. O

The following definition is essentially that of [GIKR18].

Definition 8.1.3. The synthetic spectrum mmf of connective motivic modu-
lar forms is (tmf). This has a canonical E.-structure as ¢ is lax symmetric
monoidal.

One can calculate the homotopy groups of mmf just as Isaksen did in [Isa09,
§5]—the added advantage of this setup with synthetic spectra is we have an
integral definition before we make local calculations.

Proposition 8.1.4. The bigraded homotopy groups of mmf[%] are given by the
formula
e mmf[%] ~ (74 tmf[%])[T] ~ mf2lE],
2
The bigraded homotopy groups of the 2-localisation of mmf are described in
[I5a09, §5] (up to faithfully flat base-change), and the 3-localisation is described
n Fz'gs and . In this latter diagram, empty squares are a copy of Z3)[T],
black circles are a copy of F3[t], red circles are a copy of F3[r]/m2, yellow
circles are a copy of F3[7]/m*, dashed lines are evotic multiplication (filtration
Jumps), red lines are multiplication by «, and blue lines are multiplication by 3.
If one ignores the coloured dots, one obtains the homotopy groups of tmfs, as
Litmf ~ L mmf ~ tmf.

Proof. By [BHS19, Th.A.6], the Es-page for the :MU-based Adams—Novikov
spectral sequence for mmf has Fs-page the classical MU-based Adams—Novikov
spectral sequence for tmf tensored with Z[7], and all synthetic d,-differentials
are equal to 771dS for a classical d-differential. We can now determine
T, mmf[%] as the tMU-based Adams-Novikov spectral sequence is concen-
trated in filtration zero. At the primes 2 and 3, we refer to [Bau08] to obtain
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0 - N
{TTT‘YTT‘TTT‘TTT‘TTY‘TTT‘TTT‘TTT‘TTT‘TTT{

0 4 8 12 16 20 24 28 32 36 40

Figure 8.1: Homotopy groups of mmf 3 in the range 0 < s < 40.

the classical Es-page and the classical differentials which in turn gives us the
calculation of 7y  mmfy and 7y 4 mmf (3y. This is precisely how Isaksen calcula-
tions 7y , mmfs in [[sa09l §5], so his calculations apply here (using the faithfully
flat map Z,y — Z3). The simpler calculation of 7 , mmf 3 appears in Figs
and O

Using the bigraded homotopy groups of mmf calculated above at the primes
2 and 3, we can now prove our first main result of this section.

8.2 Proof of the splitting theorem

In this section, we will prove Th.8.0.1 We first have to define our subgroup
Sree of m, tmf. Intuitively, this subgroup is generated by the “modular forms”
in 7, tmf, which we make precise now. We will follow the notation of [Bau(§],

[DFHHI4] §13], and [Konl2]—the relationship with [BR21] is also mentioned

below at the prime 2.

Notation 8.2.1. The elements of Tors & 7, tmf are simply the torsion ele-
ments, which can also be interpreted as elements in strictly positive filtration in
the descent spectral sequence; see [Bau08|. The elements of Free in nonnegative
degree are then described in the following three cases:

e When 6 is inverted, §ree is multiplicatively generated by the classes ¢4
and cg corresponding to the normalised Eisenstein series of weight 4 and
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Figure 8.2: Homotopy groups of mmf ) in the range 40 < s < 80.

6, respectively, which are uniquely determined by the collapsing descent
spectral sequence. In this case Free = , tmf[F].

e Using the notation of [DFHHI14, §13], when localised at 3, Free is multi-
plicatively generated by the classes

Cy4,Cg, [3A], [C4A], [CGA], [3A2], [C4A2], [CGAQ], A3.

e When localised at 2, §ree is multiplicatively generated by the classeslfl
C4, [266]7 [8A2i+1], [4A4j+2]7 [2A4]7 [C4Ak+1]7 [QCGAkJrl]a AS

for i € {0,1,2,3}, j € {0,1}, and k € {0,1,2,3,4,5,6}. Using the notation
of [BR21, §9.1], these correspond to the following elements:

B,C, Daiy1, Dyjy2, Dy, Bpy1, Crq1, M

Define the splitting Tors @ Free ~ m, TMF by inverting A4,

44We define ¢4 as the unique class in 7g tmf (o) which is mapped to the well-defined c4 in
73 tmfq and which is also s-torsion. The same goes for the classes [c4AF*+1] below, which we
furthermore take to be both x- and ®-torsion. We also define [2c6A?] similarly by demanding
it is ®-torsion. For [2cgA%], we can equivalently define this as the element Cg as in [BR2I],
§9.1], or using mmf as the image under the localisation map 7156, mmf — 74 tmf of the
element [ZCGAG] € m156,0 mmf, itself defined to hit 2¢6AS in mf%2 and also by demanding it
to be v-torsion; see [[sa09l §5].
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Proof of Th]8.0.1 From the definition of Free (Nt.[8.2.1)) it suffices to prove
Th after completing at the primes 2 and 3—the case away from 6 follows
as m, tmf[$] has no torsion.

The p = 3 case At the prime 3, we note that the only degrees d where §ree
and Tors have a nontrivial intersection are those congruent to 20 or 40 modulo
72. Due to A3-periodicity, the argument that follows works equally as well for
any choice of positive d congruent to 20 (resp. 40) modulo 72, so let us only
prove the d = 20 (resp. d = 40) case explicitly.

For a class x in Sreegg, we see that 8 = 0 from the multiplicative structure
of m,tmfs. Using this, and the fact that f is a map of spectra and hence
commutes with elements in the image of the unit map S — tmf, we obtain
the equality f(z)3 = f(x8) = 0. All of the nonzero classes in TorsZ? support
nonzero multiplication by 3, so we see that f(z) must lie in Sreegzg’ in this case.
For the d = 40 case, consider the commutative diagram from the “furthermore”

part of Th]81.]

of
Tk, mMmfs —— 7y, mmfs

JZ il (8.2.2)

Tl tmf3 % Tk tmfg

where k is an integer and the vertical maps are the 7-localisations. The associ-
ated graded of the homotopy group 749, mmfs can be found in the 40th column
of Fig@ and 740, mmfs is the summand with weight w, ie, with 7-degree w.
Using the degree 3 calculation, we can also determine that the generator « of
mg tmfs ~ Z/37Z has a lift (under {) in 73 o mmfs, which we will also denote by
a. Using this calculation of 7490 mmfs, we see that every element z in Sreef@”
has a lift y inside m40,0 mmfs such that y is a-torsion. It is clear ¢f(y) is also
a-torsion—this is same argument made above inside w0 tmfs. The next key
observation is that a-torsion elements inside w40 o mmfs are sent to a-torsion—
this is the same argument as the d = 20 case inside mg tmfs. By Fig[8:2] we see

a-torsion elements of 49,0 mmfs are sent to S’reefg inside 749 tmf3s.

Altogether, the commutativity of (Equation (8.2.2))) then shows that the el-
ement f(z) = (lovf)(y) lies in FreeZ?, as desired.

The p = 2 case By A3 periodicity we only consider those degrees between
0 and 191. For those degrees d equal to 8,28,32,52,104,124,128,136, and 148
we note that Freey contains only k-torsion and the map -x: Torsy — Torsgii4
is injective; one can check this on any copy of the 2-primary homotopy groups
of tmf. We conclude that for x € Freey in these degrees, we have f(x) € §reeg,
if not f(x) would be nonzero, contradicting the fact that xf(z) = f(kx) = 0.
For d equal to 80, we apply the same trick with x replaced by %. The only d
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between 0 and 191 left to check, where Tors and §ree are both nonzero, are
those in the following set of numbers:

Dy = {20,40, 60, 68, 100, 116, 156, 164}

Now we appeal to mmfs, the calculations found in [Isa09], and mimic the ar-
guments from the p = 3 case. For d equal to 20 or 116, consider the &-torsion
elements of 740 mmf,, and for all other d € D, consider the v-torsion inside
mq,0 mmfy. It is clear that ¢ f preserves both - and v-torsion elements, and the
tables for 7, . mmf, found in [[sa09] show that each x € Frees? lifts to an y in
mq,0 mmf which is either ®- or v-torsion. Observing that in these degrees the
R-torsion and v-torsion elements of w4 ¢ mmf; are sent to Sree2 as argued for
Sreefg above, then an application of the 2-complete version of concludes
our proof.

For TMF one runs the same arguments as for tmf above and uses A2%-
periodicity. The only difference is that w4 TMF is nonzero, however, this group
is torsion free so we have no additional problems. O

8.3 Torsion in homotopy groups

Let us now discuss how morphisms of spectra f: tmf — tmf (or endomorphisms
of TMF) behave on the torsion classes of 7, tmf (or 7, TMF).

Definition 8.3.1. Let z be a homogeneous element of Tors. We say x is nearby
the Hurewicz image if it can be written as a linear combination of any of the
following three families of elements:

1. The image of the map induced by the unit S — tmf on homotopy groups.

We call this the Hurewicz image.

2. Those torsion elements x such that for some elements y in the Hurewicz
image, the product xy is also in the Hurewicz image, and the product map

YTy tmf — x| +|y| tmf
is injective.
3. Those torsion elements r = yz, where y is in the Hurewicz image and z is
in the second case above.

Let x be a torsion element of m, tmf. If x is represented on the Fs-page of the
descent spectral sequence (DSS) for tmf by a permanent cycle a - t where a lies
in E‘;l’o and t is a permanent cycle of strictly positive filtration representing an
element in the Hurewicz image, then we call a -t a DSS decomposition of x.

It is clear that every class x € Tors is a linear combination of DSS decom-
positions. Using these decompositions, one can delegate the task of calculat-
ing endomorphisms evaluated on torsion classes to calculate endomorphisms on
classes in Jree.
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Proposition 8.3.2. Let f be an endomorphism of the spectrum tmf, TMF, or
any of their localisations at a set of primes or completion at a particular prime.
Then for any homogeneous torsion element x which is nearby the Hurewicz
image, we have the equality f(x) = xf(1) in homotopy groups.

Proof. If x is in the Hurewicz image, then the S-linearity of f implies that
f(x) =xf(1). For z in the second case of Df}8.3.1] we see the map

YTy tmf — x| +|y| tmf

is injective and f commutes with this map by S-linearity, so it suffices to com-
pute f(xy), which reduces us to the first case. For the third case, we use
S-linearity and the second case. O

We can now prove the second main result of this chapter.

Proof of Th]8.0.3. The “moreover” statement is precisely Pr so let us fo-
cus on the first statement. As in the proof of Th the cases for TMF follow
more easily than those for tmf, so let us focus on the latter.

First, note the functoriality of the Adams—Novikov spectral sequence with
respect to MU for tmf; see [Rav04, Th.2.2.3]. It follows that fas(a)t detects
f(x) up to higher filtration on the F,,-page, so our goal is now to show that there
are no elements in higher filtration to worry about. We know that faz(a)t +w
detects f(x), where w is a permanent cycle of filtration strictly higher than a-t.
This implies that f(x) = [fag(a)t] + y inside the homotopy groups of mmf),
where y is detected by w and fag: E ’t — E3" is the morphism on Fs-pages
induced by f. To show y = 0 (and hence also w = 0), we will work case-by-
case, starting in nonnegative degrees. The argument is rather like the proof of

ThR01l

As is often the case, a glance at the homotopy groups of tmf shows that the
only time a DSS decomposition a -t is not the class in highest filtration on the
FE,-page of the DSS is at the prime 2. Let us then implicitly complete at the
prime 2. The only nonnegative degrees of x such that a DSS decomposition a -t
is not the class in highest filtration are those degrees d congruent modulo 192
to an element in the following list Ds:

3,9,17,27,33, 34,41, 42,51, 54, 57, 65, 66, 90, 99, 105

110,113,123, 130, 137, 138, 147, 150, 153, 161, 162

By AB3-periodicity, we must only consider classes with degree equal to an ele-
ment in Ds. Let us detail the cases of d = 17 and d = 3, and only outline the
other cases where the same arguments should be made.
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(d = 17) In this case we have f(z) = [fag(a)t] +y, where y is a multiple
of the class vk € w17 tmf. The morphism f commutes with multiplication by v,
as the latter lies in the Hurewicz image inside 7, tmf, so this would imply

0= fvz) =vf(z) = v([fag(a)t] +y) = vy

where we used that v[fag(a)t] = 0 which follows from the ring structure on
7y tmf. As vy vanishes in moo tmf only if y = 0, we see that f(x) = [fag(a)t].

(d = 3) In this case we have f(x) = [fag(a)t] + y, where y is a multiple
of the class 4v € w3 tmf. Rather than looking at the ring structure on m, tmf,
we use Ty, mmf (completed at the prime 2). The functor ¢ applied to f yields
a map ¢f: mmf — mmf which in turn induces a map 73, mmf — 73 , mmf.
Recall the elements K € m3,0S and 7 € mp,_1S, and that both of these elements
have no zero image inside 7, , mmf; see [Isa09l §5]. Let us now play the same
game as the d = 17 case above, but applied to 72 as opposed to v. Inside
T4, mmf we have the equalities:

Rrix =0€ Z/AZ[T]/m*  Rr?v #0€ Z)2Z[r]/7° (8.3.3)

As f(z) = [faig(a@)t] +y inside 7, tmf, then inside 7, . mmf we have the equality
f(x) = [fag(a)t] +y + 2z, where z is T-power torsion, in particular, it is linearly
independent from y. We then consider the equalities

0 = 1f(Rr2z) = Rr2uf(z) = Rr? ([fag(@)t] +y + 2) = Rr2(y + 2).

From (8.3.3), the above only holds if y = 0, as y and z are linearly independent,
which yields the desired result.

(d € D3) For the rest of the degrees, let us mention if our intended argu-
ment requires mmf or not, and what class in the (synthetic) Hurewicz image
can be used as we used v and 72 above.

d 9 27 | 33|34 | 41 | 42 | 51 54 | 57 | 65 66
mmf v v v |V v v
Hurewicz | & |rr? | R | R | B | n |Re2 | RP2 | v | R v | %
d 90 | 99 | 105 | 110 | 113 | 123 | 129 130
mmf v v v v v v
Hurewicz | & | "’72 | Rk | Rore | v | Rr2 | R | R270, %
d 137 | 138 | 147 150 153 | 161 | 162
mmf v v v
Hurewicz | ® *x | ®r? | B2, RS v v *

Take d = 9 for example, we use the fact that &nc; = 0 and ®v? is nonzero
in o4 0 mmf and apply the same arguments as above. The cases marked with a
* follow from the previous case by multiplication by 7. In degrees 65, 105, 130,
and 150, there are two higher filtrations to consider, and they can be dealt with
using the elements that appear in the table. This completes our proof. O
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8.4 Anderson and Serre duality

The following section is superfluous for those interested solely in TMF and tmf,
however, Tmf satisfies a kind of duality that can help in calculations.

Definition 8.4.1. For an injective abelian group J, we write I; for the spec-
trum represented by the following cohomology theory:

Sp — Ab, X — Homap, (7—+ X, J)

For a general abelian group A, take an injective resolution 0 —» A — J; — J
which induces a morphism of spectra I;, — I;,. The fibre of this morphism we
denote by I4, and for a spectrum X, we define the Anderson dual of X to be
the function spectrum I, X = F(X,14).

From the definition above one can calculate
Tl X ~ Homg (m_ X, J)

for an injective abelian group J. When A is a general abelian group, we obtain
the following natural exact sequence of abelian groups for all k£ € Z

0 — Bxty(m_p_1X,A) = 1] X — Homz(n_1 X, A) - 0 (8.4.2)

which non canonically splits when A is a subring of Q. More basic facts about
Anderson duality, such as the fact that the natural map X — I 14X is an
equivalence when X has finitely generated homotopy groups, can be found in
[SAG| §6.6], under the guise of Grothendieck duality in spectral algebraic ge-
ometry. Anderson duality is of interest to us as Tmf is Anderson self-dual; see
ExR.4.4]

Definition 8.4.3. Let X be a spectrum and A an abelian group. We say that
X is Anderson self-dual if there is an integer d and an equivalence of spectra
b: XIX S 14X

We also want to define a stricter form of self-duality for ring spectra. Let
R be an Ej-ring with mgR ~ A such that m_y4R is a free A-module of rank
one. We say an element D € w_y4R witnesses the Anderson self-duality of R
if the following holds: the isomorphism ¢p: 7_4R — A sending D — 1 which
identifies D as an A-module generator of w_4R, lifts to an element DY € myls R
under the surjection of , and the representing map of left R-modules
DY: ¥R — I4R is an equivalence.

Example 8.4.4. There are some famous examples of Anderson self-duality.
e The class 1 € mgKU witnesses the Anderson self-duality of KU, ie,
1Y: KU = IzKU

is an equivalence. This is originally due to Anderson [And69|, and is an
immediate consequence of the fact that Homgz (7, KU, Z) is a free m,KU-
module; see [HS14] p.3].
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e The class vur_{l € m_4 KO witnesses the Anderson self-duality of KO, ie,
(vugh)¥: Z*KO = Iz KO

is an equivalence. This result is also due to Anderson, and an accessible
modern proof (with an eye towards spectral algebraic geometry) can be
found in [HS14, Th.8.1].

e Theclass D = [chcGAfl] € m_o1 Tmf witnesses the Anderson self-duality
of Tmf, ie,
DY : 22 Tmf = Iz Tmf
is an equivalence. This result is due to Stojanoska; see [Stol2, Th.13.1]
for the case with 2 inverted and [Stol4] where it is announced in general.

e The class ﬁ € m_g Tmf(2) witnesses the Anderson self-duality of Tmf(2),
ie,

1\ N

is an equivalence. This is also due to Stojanoska; see [Stol2, Th.9.1].

e There are classes D, in 7, Tmf;(m), with m and [,,, taking the values

m | 2 (34|56 7|8|11 |14 | 15| 23
b, |1319 (7551313 ]1]1|1]|-1

which witnesses the Anderson self-duality of these particular Tmf; (m), ie,
the map

DY : Sl Tmf (m) = Izp 1) Tmfy(m)
is an equivalence. This result is due to Meier [Mei22 Th.5.14], where it is
also shown the above are the only m > 2 such that Tmf;(m) is Anderson
self-dual.

Studying endomorphisms of Anderson self-dual spectra leads us to dual en-
domorphisms.
Definition 8.4.5. Let A be an abelian group, X an Anderson self-dual spec-
trum, and F': X — X an endomorphism of X. Define the dual endomorphism
of F' as the composite

~ ~ —d ~
Fox &2 s-dp, x EaAF y—dp v B>

Given A, X, and F' from the above definition, then the naturality of (8.4.2])
yields the following commutative diagram of abelian groups with exact rows for
all k € Z:

0 —— Bxty(m_p_1-4X, A) X Homgz (m_p_qX, A) —— 0
lExtlz(F,A):Fl* lﬁ lHomz(F,A):F[jk
0 —— Extlz(ﬂ,k,l,dX, A) X Homg(r_j_4¢X,A) —— 0
(8.4.6)
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Our calculations of 9" on Tmf in negative degrees will rest upon explicit cal-
culations of ¥" and using l)

When working with 6 inverted, these also exists a kind of algebro-geometric
duality on My called Serre duality. The following can be found in [Mei20),
Ap.A] using the well-known identification of ME]I,Z[ 17 with the weighted pro-
jective line ’PZ[%](ZL, 6); see [Mei20, Ex.2.1].

Theorem 8.4.7. The dualising sheaf for ﬂEle[é] is w™10. In particular, for
any integer k the natural cup product map

HO(MEII,Z[%]vwk) ®H1(HE11,Z[%]7 TE10) — HY (Mg g (1w w1%) ~ Z[g]

is a perfect pairing of Z[%]—modules.

Let us note that the stack Mgy certainly has no Serre duality before inLert-
ing 6, which can be seen through the cohomology calculations of w* over Mgy
from [Konl12].

Remark 8.4.8. A simple consequence of the above theorem is that one can
immediately see the E, -ring Tmf[] is Anderson self-dual. Indeed, as dis-
cussed on [StoI2| p.8], the Serre duality statement of Th[8.4.7 the calculation
of H*( Mgy Z[1] ,w*) in [Konl2l §3], and a collapsing descent spectral sequence,

immediately 1mphes the Anderson self-duality of Tmf as in Ex-

When 6 is inverted, dual endomorphisms on Tmf deﬁned using Anderson
duality can be computed directly using Serre duality.

Lemma 8.4.9. Let k be a positive integer, and P be a set of primes containing
both 2 and 3 and implicitly localise everywhere away from P. If F: Tmf — Tmf
is a morphism of spectra, then F can be written as follows:

F 7, Tmf ~ Hl(mEmw—%_lo)v x, Hl(ﬂEu,w_g_lo)v ~ 7, Tmf

F: m_p Tmf ~ H (MEu,w En 10)V £ HO(MEH w' T 10) ~ m_; Tmf
Above, we have implicitly used the Serre duality isomorphism from Th[8.7.7

Proof. This follows immediately from the definitions, as in this case, the Ander-
son duality equivalence comes directly from Serre duality; see Rmk [8:4.8] O
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Chapter 9

Fundamental calculations

The previous two chapters defined endomorphisms of TMF and discussed how
to calculate their effect on homotopy groups—this proves Th[G] In this chapter,
we carry out these calculations explicitly. First, is our calculation of (p-adic)
stable Adams operations. Let us use the handicraft operations ¥* on Tmf, as
well as make a statement for TMF,,.

Theorem 9.0.1. Given a prime p and a p-adic unit k € Z; we have the fol-
lowing equality for every homogeneous element x € m, Tmf,:

z/Jk(:E) _ {x T € Tors

k[%]m T € Jree

In particular, for ¥* acting on TMF,, this states that YF(x) = x if x is torsion

and k= x if x lies in Free.

Our result for Hecke operators is less explicit as it relies on some arithmetic
input: the algebraic Hecke operators T28 of Df

Theorem 9.0.2. Given a positive integer n = 1 then:

e For each homogeneous element x € Free C m, TMF[%] the image of x
under T,, satisfies T, (x) = nT&(x), where T® are the classical Hecke
operators acting on x considered as a classical modular form.

e For each homogeneous element x € Tors € m,, TMF[L] the element Ty, ()
is represented by n T8 (a)t on the E.,-page of the descent spectral sequence,

where at is a DSS decomposition (Df]8.3.1)) for x.

The above theorem is stated abstractly, but with some knowledge of the
classical Hecke operators (Df]7.5.2)), one can perform many calculations. In
we see many examples of such calculations, but let us list a few important ones
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here inside TMF[%] First, recall from the generalised divisor function
or(n), as well as the Ramanujan’s T-function T(n)ﬁ

T,(1) = o1(n) T, (ca) = o3(n)cy T, ([24A]) = nT(n)[24A]

Using the DSS decompositions (8.3.1)), it is also easy to do calculations on torsion
elements. Let us list some examples inside w, TMF5, so assume that n is odd:

Tn(n) =o(n)n  Tulne) = o3(n)nes Tu([2vA]) = nr(n)[2vA]

We can prove our calculation for Hecke operators immediately using the results
we have already seen.

Proof. If x € Free, then by Th8.0.1] we may work rationally, in which case the
edge map e is an isomorphism and the result follow from Pr[7.5.3] For = € Tors,

apply Th and use Rmk to identify (T,)alg with nT2le. O

Our calculation for the stable Adams operations is more explicit, so the proof
is a little longer, and will occupy the following section.

9.1 Calculation of Adams operations

Proof of Thl9.0.1 First consider homogeneous elements x in 7, Tmf, lying in
Free. As the natural localisation map

1
my Tmf, — 7, Tmfp[;?]

is injective on the submodule §ree of 7, Tmf,, and the morphism " preserves
Sree by Th[8.0.T} then it suffices to work inside m, Tmf ®Q,,. If the degree of
x is nonnegative, the descent spectral sequence collapses immediately (as 6 is
inverted) and we see that ¢*(z) = k%x, as this what the k-fold multiplication
map induces on w; see Pr[5.5.3] for the case over Mgy. The ceiling function, in
this case, is unnecessary.

If the degree of x is negative we have to compute the morphism
Y H' (Menq,,«") = H' (Men,q,,«")

for all k& < 0. This we can do with a calculation of the cohomology of the stack
with graded structure sheaf (Mg q,,w™), which is equivalent to the weighted
projective line Pq, (4, 6); see [Mei20, Ex.2.1]. In this case we can use the fact

that groups H*(Pq,(4,6),w*) are isomorphic to the groups H*(P(4,6),0),

45Define the Ramanujan T-function as the coefficients in the g-expansion of A:

Srm)gt =q [ —qm)*

n=1 n=1
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~

where (P(4,6), 0) is (Spec A — {0}, 0), where A = Q,[ca, cg], together with the
G, ,-action given by the gradings |c4] = 4 and |cg| = 6. As discussed for M(2)
in [Stol2 §7], one can use the long exact sequence on cohomology induced by
the inclusions P(4,6) < Spec A 2 {0} [Har83, Exercise 111.2.3], and the fact
that RI'gpy(Spec A, &) can be computed via the Koszul complex

Lyeat

A—- A
[04 Co C4Ce

to obtain the following exact sequence
0 — A — HO(P(4,6),6) = 0 — 0 — H'(P(4,6),0) > A/(c},cf) — 0
Using this, we can explicitly calculate /" on H'(P(4,6), 0) ~ A, cd):
Ly L

i i
€4 €y

C»('L
S4

As C.l - represents a class in 7, Tmf ®Q,, of topological degree —8i — 125 — 1,

i C']

this gives us the desired result.

Let us now consider an element x € m, Tmf, inside Tors, and leave our p-
completion implicit for the rest of this proof. It suffices to consider p = 2 or
3, otherwise Tors = 0. If 2 has nonnegative degree, then using Th[8.0.2] we see
¢F(z) is represented by k'3 at for a DSS decomposition a-t of x, in other words,
we are multiplying by k‘%, where |a| denotes the degree of a. By inspection,
at the primes 2 and 3, all elements x have DSS decomposition at where a has
degree divisible by 8. Using Fuler’s theorem@ we see that modulo 8 or 3 the
number k'3 is congruent to 1. This means that in the torsion of 7, Tmf, which
is at most 3-torsion or 8-torsion, the element 1)*(x) is represented by a-t, hence

YF(z) = z.

If z is an element of Tors of negative degree, then we will consider (8.4.6)
for Tmf, which yields the following commutative diagram of abelian groups for
every integer n:

Exty (7 2o Tmf) —— m, Tmf —— Homg(7_,, o1 Tmf)
lwk)i“ }Ek JW’)S‘ (9.1.1)

Ethz(Tr_n_QQ Tmf) —— 7, Tmf —— Homz(7_,,_91 Tmf)
The Ext- and Hom-groups above have Z as a codomain and the rows are short

exact—the zeroes on the ends have been dropped. As 9* induces a map of
abelian groups on homotopy groups, we can then detect the effect of ¥ on

46Recall Euler’s theorem states that for coprime positive integers m,n, the value m®() ig
congruent to 1 modulo n, where ¢(n) is Euler’s totient function (37)).
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Tors C 7, Tmf by the effect of (¢¥)¥ on the above Ext-groups. Using (9.1.1)), we

are left to calculate 12)/’“ on elements in Tors of nonnegative degree, which follows
a similar pattern to our calculation of ¥ for torsion elements in nonnegative
degree. Again, we first note that 1/* on torsion-free elements can be calculated
rationally, so we then apply Lm[8:4.9]and the above calculations of ¢™ to obtain

an equality
151

() =k E
for every f € ree in nonnegative degree. As mentioned above, we can now
calculate % (x) = k~'%2 on torsion elements in positive degree, using the DSS
decompositions mentioned above. One then notices that k=19 is congruent to 1
modulo 24 as this is true modulo 3 and modulo 8 separately. Using , we
see that ¥*(z) = z for x € Tors of negative degree, and we are done. O

The calculations of 12’“ above lead us to a conjecture.

Conjecture 9.1.2. Let R be an E;-ring and write A = moR. Suppose that
there is a class D € m_4qR such that D witnesses the Anderson self-duality of
R; see Df[87.3 Then, for any endomorphism F: R — R of algebra objects in
hSp such that F(D) = AD for some X\ € A, the composites F o F and F o F are

equivalent to multiplication by A on w4 R, where F s the dual endomorphisms

of F; see Df[8Z.5

Perhaps this equality is witnessed by a homotopy of spectra—although this
is mostly careless optimism. One can validate this conjecture in the following
cases:

e For KU[1] and 9" one has D = 1 and A = 1. In this case, the above
conjecture can be checked using (8.4.6)).

e For KO[1] and ¢" one has D = vug! and A\ = n~2. In this case, the
above conjecture can be checked using again. Furthermore, Heard—
Stojanoska verified that in the stable homotopy category localised at the
first Morava K-theory at the prime 2, there is a homotopy between 1))
and X121/ where [ is a topological generator of ZJ /{+1}; see [HAS14,

Lm.9.2].

e For Tmf, and ¢* for a p-adic unit k € Z),one has D = [cy'ceA™!] and
A = n~10 In this case, the above conjecture can be checked (in a range
of degrees) using the proof of Th

Remark 9.1.3. Let us note a counter-example if we do not assume F' is multi-
plicative, as mentioned to us by Lennart Meier. Consider F' = id + ¢! as an
endomorphism of KU. Then A = 2, however F(u) = u — u = 0 on the usual
generator u € mKU, so Conj[9.1.2] cannot possibly hold in this case.
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9.2 Nonexistence of integral operators

In Chaptermwe constructed an array of stable operations on TMF and TMFy(N)
lifting the analogous operations from number theory, however, one cannot ex-
pect all operations of modular forms to lift to stable operations on TMF. Baker
[Bak94, §12] gives the important operator ¢ as an example that cannot lift to
a stable operation on elliptic cohomology@ For stable Adams operations and
Hecke operators on topological modular forms we have a direct computational
argument that stable operators do not exist integrally. Let us start with Adams
operations.

Proposition 9.2.1. Let p = 2,3. There exists a map " : TMF, — TMF, of
spectra which agrees with the operation V" : TMF[%] — TMF[%] of Df on
rational homotopy groups if and only if p1 k.

Proof. If p 1k, then we are done by Df Conversely, suppose that k£ = p™m,
where p{m and n > 1, and now work prime-by-prime:

(p = 2 case) We know that on rational homotopy groups ¥*(f) = 2"4m?
where d is the weight of the modular form f. In particular, we see that
P2 (1) = 1 and 2"™(3) = 25"mB¢} inside 7 TMF(3y. Consider the ele-
ment x = n%ci € g TMF () >~ Z/2Z. As this element lies in the Hurewicz
image of S — TMF, we obtain the following equality:

VF(z) = ap*(1) = (9.2.2)

The operation ¥ also induces a morphism on the Fy-page of the descent spectral
sequence for TMF 3y, so we can calculate the effect of ¥* on the class h?c? in

E22 18 which represents x in homotopy. We know 1% acts on the Eo-page as
SR = 0B = W) = 2l = 0

where we use that 9* is linear with respect to the Adams-Novikov spectral
sequence for the sphere (as anm) is a morphism of spectra. As there are no
classes in higher filtration in ES ** this calculation survives to the E..-page and

shows that 1*(x) = 0, a contradiction to (9.2.2).

(p = 3 case) The same argument works at the prime 3, using the class

Oz[OzA] = 53 € T30 TMF(g). O
Now onto stable Hecke operators and the simpler p = 3-case.

Proposition 9.2.3. Let e be a positive integer. There is no map of spectra
Tsze: TMF(3y — TMF(3y (or on Tmfsy) which agrees with the stable Hecke

operator Tse: TMF[3] — TMF[3] of Df]7.2.1| on rational homotopy groups.

4TInterestingly enough, Baker, just like us, can only show nonexistence stably. This leaves
the door open for constructions of unstable operations. For Hecke operators, this could mean
an unstable Hecke operator T, on TMF,-cohomology, which one might hope to prove is
congruent to F' + V modulo p—a lift of the famous FEichler—Shimura relation.
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Recall the generalised divisor function oy (n) from and the Ramanujan’s
7-function (n) from (45).

Proof. Suppose such an operator did exist, then we choose to calculate such
an Tze on the group moy TMF(3)y ~ Z/3Z{[aA]}, where « is the 3-primary
part of the Hopf map v: S® — S detected in 73 TMF. In this case, we can
use Th[8.0:2] our hypotheses, and the fact that classically one has the equality
Tale(A) = 7(n)A, to calculate Tse([@A]) = 37(3%)[aA] = 0. Alternatively, as
[@A] is nearby the Hurewicz, as a - [¢A] = 32 is in the image of the Hurewicz,
then Pr.8.3.2 states that Ts([aA]) = Tse(1)[aA] = o(3°)[aA] = [aA] as
o(3¢) = 3¢ +3°"1 4+ ... + 3 + 1, which is congruent to 1 modulo 3.

This calculation also holds in Tmf 3y and we obtain the same contradiction.
O

Notice that the factor of n, the difference between our stable Hecke opera-
tors T, and the algebraic operators nT#¢ (Pr|7.5.3), is not the problem here as
7(3¢) is also divisible by 3@

A similar argument holds at the prime 2.

Proposition 9.2.4. Let e be a positive integer. There is no map of spectra
Toe: TMF(9) — TMF(2y (or on Tmf ) which agrees with the stable Hecke
operator Tae : TMF[%] — TMF[%] of Df on rational homotopy groups.

Proof. Consider such a hypothetical operation Tae on mas TMFy ~ (Z/2Z)>
where one summand is generated by [2nA]. Using the fact that 7(2¢) is always
divisible by 2 (see §9.2)), then Th[8.0.2shows that Tae ([2nA) = 2°7(2¢)[2nA] = 0
in mo7 TMF3[*’| However, we also note that v-[2nA] is equal to %2, which lies in
the Hurewicz image, so Tae (v - [2nA]) = Tae(1)x2. As Tae(1) = 0(2¢) is even,
we see that Tq acting on v - [2nA] is nonzero in meg TMFa. As T is S-linear,
we arrive at our contradiction, as Ta(v[2nA]) = vT3([2nA]) = 0 from earlier in
the proof.

This calculation also holds in Tmf(;), so we obtain the same contradiction
there. 0

48This is a classical result of Ramanujan but also follows from the basic theory of modular
forms. Indeed, the Hecke operators on A show that if 7(p) = 0 modulo p, then 7(pn) = 0
modulo p. On then only has to calculate 7(3) = 252 to see that 7(3¢) is always divisible by
3. The same goes at the prime two, as 7(2) = —24 is divisible by 2.

49We emphasis again that had we asked that Taec agrees with Tng on rational homotopy
groups, we would still obtain a contradiction as 7(2¢) is divisible by 2.
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Chapter 10

Applications of operations
on TMF

Our goal for this chapter is to demonstrate how a cursory glance at the calcula-
tions of Ths[0.0.1 and [0.0.2 combined with either a little number theory (§10.1
and §10.2) or homotopy theory (§10.3| and §10.4) produces interesting results.
Our general motto is:

More sophisticated homotopy theoretic techniques
lead to stronger number theoretic statements.

For example, we will easily calculate nr(n) = o(n) modulo 2 using the
existence of stable Hecke operators T,, on TMF (Pr, but employing the
use of Toda brackets we can improve this to a congruence modulo 8 (Pr.
This theme is repeated throughout this chapter. For definiteness, let us write a
clear basis of (meromorphic) modular forms we will use.

Notation 10.0.1. Let k& be an even integer. Write 9, for the basis of MFy
given by

{A B ™m0
where k is uniquely written as k = 121 + k' for k¥’ in the set {0,4, 6,8, 10,14},
the symbol j = % denotes the j-invariant, and Ej is the weight &' normalised
(meaning with linear term 1) Eisenstein series which can be summarised by the
following formulae:

2 2
EO =1 E4 =C4 E@ = Cg Eg =Cy E10 = C4Cg E14 = C4Cq

The fact that 2 is a basis follows by direct inspection—one could alterna-
tively refer to the basis {A'Ey Fi. p(j)} used in [DJ08], as F p(x) is a monic
polynomial with integer coeflicients of degree D =1 +m’ for m’ > —L.

Notation 10.0.2. For a modular form f, be it meromorphic or holomorphic,
we will write a,(f) for the coefficient of ¢™ in the g-expansion of f.
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Let us also assume the reader is familiar with the homotopy groups of
tmf, Tmf, and TMF. The calculation for 7, tmf can be found in [Bau08], for
Tmf in [Kon12], and the results for TMF follow by inverting A4 in either of the
previous two calculations. Another good resource is [DEHHI14, §13]. We will
also assume results about the Hurewicz image, so the image of the unit map S
into any of the above E.-rings. This image is denoted by the colourful classes
in [DFHHT4, §13], and a proof this is exactly the Hurewicz image can be found
in [BMQ20] and [BS21], for the cases at the prime 2 and 3, respectively.

10.1 Congruences of modular forms

The simplest applications of our stable Hecke operators to classical number
theory come in the form of divisibility results.

Proposition 10.1.1. Let d be a positive integer and f an integral meromorphic
modular form of weight 12d inside MF124 which is in the image of the edge map
€. T24d TMF — MFlgd.

1. If d # 0 modulo 3, then for any positive integer n not divisible by 3, the
Al-coefficient of T2 f is divisible by 3.

2. If d # 0 modulo 8, then for any positive integer n not divisible by 2, the
A‘-coefficient of T8 f is divisible by 2¢2(d) yhere ey(d) = 3 — va(ds),
va(—) is 2-adic valuation, and dg is the mod 8 reduction of d.

If d # 0 modulo 24, then for any positive integer n not divisible by 2 nor 3, the
A?-coefficient of T2 f is divisible by 229334 where e3(d) = 1 — v3(d3).

Proof. For Part 1 first. By Pr[7.5.3] which expresses the compatibility of sta-
ble Hecke operators with their algebraic counterparts, we have the following
commutative diagram of abelian groups:

iT’lZ
7T24dTMF[ ] - 7T24dTMF[ ]

1 1
n n

z[] T Z[1]
MFi,;" ——— MFyy;

As f lies in the image of e we can use the above diagram to compute T2&(f)
upstairs in m24g TMF[]. As 3 n, we notice that A? is not in the image of e

(in the descent spectral sequence for TMF (3 the element Ae Eg’24d supports
a ds-differential), only the element [3A?]; see [Bau08, §6]. This implies that in

1

1\/[13‘122[(7]7 the Ad-coefficient of the element T2!2(f) must be divisible by 3. A
similar story happens at the prime 2, and the mixed case is a combination of
those at 2 and 3. O
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As the proof above shows, the differentials in the descent spectral sequence
for TMF can contribute to calculations between modular forms. Let us further
explore this.

Given a torsion element x in 7, TMF which is nearby the Hurewicz image

(Df8.3.1)), then Th.[8.0.2[ and Pr.[8.3.2] together give us two different ways of

calculating T,,(z). The discrepancy between these two techniques allows us to
make congruency statements about divisor functions and Ramanujan’s T func-
tion—recall the definition of these functions from and 7 respectively.

Proposition 10.1.2. If n is odd, then nt(n) =2 o(n). If n is not divisible by
3, then nT(n) =5 o(n).

Recall that T218(1) = @, so by Pr we see that T, (1) = o(n) for our
stable Hecke operators.

Proof. Let us explain the p = 2 case—the p = 3 is entirely similar. Consider
[2vA] € a7 TMFy ~ Z/4Z and an odd n; an even n would kill the torsion in
7« TMF5 and hence the following argument too. We know that n[2vA] = Re
by looking at [Bau08, Pr.8.4(2)], which implies that T, ([2vA]) is congruent
to o(n)[2vA] modulo 2 as Re is 2-torsion and our stable Hecke operators are
S-linear. Using Th. the obvious DSS decomposition (Df for [2vA],
and the fact that A is a Hecke eigenform with eigenvalue 7(n), we also obtain
the following equalities inside w97 TMF:

T, ([2vA]) = [2vnT28(A)] = [2vnT(n)A] = n7(n)[2vA]

Combining the two computations above, we conclude that nr(n) =2 o(n) for
odd n. The same goes for the argument at the p = 3 using [aA]. O

If we use slightly more sophisticated techniques in homotopy theory such as
Toda brackets, we can improve one of the congruences above.

Proposition 10.1.3. If n is odd, then nt(n) =g o(n).

To prove the above proposition, we will use the following statement about
Toda brackets; see [Sch12l Pr.IV.2.3].

Lemma 10.1.4. Let f: A — B be a morphism of E-rings, N a B-module,
and ¢: M — fN a morphism of A-modules. If {x,y, z) is a well-defined Toda
bracket in m. M with x € T, M and y,z € w4 A, then we have the containment

¢ ((x,y,2)) S<o(x), f(y), f(2))

of subsets inside wy N .

Proof. Using Th.[8.0.1] and the classical fact that A is a Hecke eigenform of
eigenvalue 7(n), we see that T, ([8A]) = n7(n)[8A] inside 7oy TMF;. We also
have a Toda bracket expression (8, v, &) for [8A], which we will explain in some
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detail now. One can calculate the Massey product (8, hs,g) in the Es-page
of the descent spectral sequence for TMFy, where hg (resp. g) represents v
(resp. Eg in homotopy. Indeed, for degree reasons we see (8, ha, gy is the set
{8z € B2 | ds(x) = hag}. Bauer’s calculation of the descent spectral sequence
[Bau08| §8.3] shows the collection of such = is A + acy + 8bA, where a,b € Zs.
In particular, working modulo 8 and c4, we see that (8, ha,g) =g, 8A. The
Moss convergence theorem (see [Mos70] for the original statement for the Adams
spectral sequence and [BK21] for the adaptation to other multiplicative spectral
sequences) for the descent spectral sequence of TMF5 then shows our desired
Toda bracket (8,v,&) is congruent to [8A] modulo 8 and ¢4. From this and
Lm[10.1.4] we obtain the following chain of containments:

Th([8A]) =s.c, Tn((8,v,R)) € (Ty(8),v, k) S o(n){8,v,K) =g, 0(n)[8A]
These containments are in fact equalities of a one-element subset of the quotient
24 TMF2 / (8 s o4 TMF2 (—BC4 - T16 TMFQ)

as o(n){8,v,Ky has trivial indeterminacy in this group. It follows that, modulo
8 and ¢4, we have n7(n)[8A] = o(n)[8A]. As A and ¢4 are linearly independent,
we see that nr(n) =g o(n). O

The above does not quite match Ramanujan’s congruence 7(n) =s o(n) for
odd n, but the extra factor of n does not change the value of 7(n) modulo 8.
Indeed, for odd n we see from Pr. that 7(n) is odd if and only if n is a
square, and in this case n =g 1, hence it does not contribute. Otherwise, 7(n) is
even. If 7(n) is divisible by 4, then we are also done, as 4k =g 4 for all odd k, so
we are left in the case where 2 is the largest power of 2 dividing 7(n). Using Ra-
manujan’s congruence 7(n) =g o(n) for odd n, we notice that 7(n) =4 2 if and
only if n has odd primes factors whose exponents are all even except precisely
one p with exponent e, and for this pair we have p =4 e =4 1 (see Pr..
In this case, we notice that n =g p© is congruent to 1 or 5 modulo 8, and if 2
is the largest power of 2 dividing 7(n), we have 7(n) =g n7(n) in either situation.

Ramanujan’s classical congruence 7(n) =g o(n) for odd n cannot be ex-
tended to higher powers of 2 without more restrictions on n, for example:

0'(5) =6 5—'&16 14 =16 4830 = 7'(5)

Curiously, it seems that our congruence nt(n) =g o(n) does actually hold mod-
ulo 16—a quick SAGE check shows this holds for odd n < 10°. One might hope
this equivalence could be strengthened to one modulo 16 using variations on our
homotopy theoretic arguments above.

We can generalise Prs.[10.1.2] and [10.1.3| to other torsion-free elements in
7 TMF which support nontrivial multiplication by torsion elements. Recall

the basis B of Nt[I0.0.1]
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Proposition 10.1.5. Let d be a nonnegative integer and n a positive integer,
and write b, for the A®-coefficient of TS(A®) with respect to the basis Bae.

1. If n is odd, then o(n) is congruent to:

(a) nbde and nbS4! modulo 8;
(b) nbBd+2 ppBdtd ppBd+s and nb34t6 modulo 4; and

(c) nb84*+3 and nbS4*7 modulo 2.
2. If n is not divisible by 3, then o(n) is congruent to nbe modulo 3.

Proof. Let us start with the p = 2 case. We will use two arguments repeatedly,
so let us call them the Hurewicz argument and the Toda argument. Let
us demonstrate these two arguments in the two cases of (a), respectively.

(Hurewicz argument) Notice that Bggq is also a basis for 799 TMF(2), and
the only element in this basis supporting multiplication by & is A%, Consider
the following equalities in m1924420 TMF (3):
o(M)RAM = FAMT, (1) = T, (RA™) = [nT(gAM)] = 7 - [T (A)]

The first equality comes from the classical calculation TS (1) = #, the second
from the fact that RAS? € T1924420 TMF (2 lies in the image of the unit map
S — TMF ([BMQ20]), also called the Hurewicz image, and T, is S-linear, and
the third and forth from Th|[3.0.2] combined with the facts that [g] represents
% on the Ey-page of the descent spectral sequence (DSS) for TMF (5, and that
no nonzero classes live in higher filtration than gA8? in that degree on the E.-
page. As Bogq is also a basis for w192 TMF (3), and the only element in this basis

supporting multiplication by % is A%¢, we see that nbS? is equal to o(n) inside
Z/8Z. This is the first case of (a).

(Toda argument) For the second case of (a), consider the Toda bracket
(8,1, KA8?) as a subset of T1924148 TMF (5). We will now discuss this bracket in
some detail. One can calculate the Massey product (8, hy, gA%?) on the E5-page
of the DSS, where ho (resp. g) represent v (resp. k). Indeed, on the E5-page we
have 8hy = 0 so we have the following equality of sets:

(8, ha, gAy = {8z € B0 dy () = hagAD?}

Bauer’s calculation of the homotopy groups of tmf ([Bau08|) shows that the
above set is equivalent to those elements

: - 24
aABT 4 AR 4 ABTIS 4 a8d+1Cy d+3

where ¢ = 1 modulo 8. In particular, modulo 8 and all the elements in the
basis Bosq4 12 not of the form A8+ the Massey product (8, hy, g) is congruent
to the singleton set of 8A. The Moss convergence theorem (see [Mos70] for
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the original statement for the Adams spectral sequence and [BK2I] for the
adaptation to other multiplicative spectral sequences) shows our desired Toda
bracket (8,v,FA8?) is congruent to [SA] modulo 8 and the elements of the
complement Boggi1o — {ASHL By Lm. and the above, we obtain the

following containment of sets:
T, ([8A]JASY) = T,,(¢8, v, RASY) € (T, (8), v, RAS?)

C o(n){8,v,RA%Y = o (n)[8A]ASY

The first and last elements are singleton sets giving us the equality
T, ([8A]A%) = o(n)[8A]AS

modulo 8 and the elements of Bgggr1o — {A%FT1). We can also use Th.
to see T, ([SA]A8Y) is represented by the class [nTS(8A8+1)]. In total, this
shows that the A8+ coefficient of TS (8A%*+1) multiplied by n is congruent to
o(n)—our desired result.

(Remaining 2-local cases) The justifications for parts (b) and (c) follow
from slight variations on the Hurewicz and Toda arguments given above, so let
us only outline the differences in all the cases. First, by A® periodicity, let us
only consider the d = 0 cases.

For (b), we use the Hurewicz argument with respect to the element [2A*]# for
the bi-case. This is straightforward, as [2A%]# lies in the Hurewicz image, is 4-
torsion, and no nonzero elements exist in higher filtration on the E,.-page of the
DSS in the 116*" column. We can also use the Hurewicz argument with respect
to the elements [vA?] and [vAS] for the b2- and bS-cases, respectively, however,
we should be more careful. Neither of these elements lie in the Hurewicz image,
but in both cases their image under multiplication by v does, and this image is 4-
and 8-torsion, respectively. This implies that these elements are T,,-eigenvectors
modulo 4 with eigenvalue o(n). There are also classes in higher filtration that
both of these classes, but we can kill these classes of higher filtration and work
modulo 4, which yields our result. The last case for (b) is to apply the Toda ar-
gument to {4, e116, V) inside w120 TMF (59), where e;16 is represented by [2gA%]
on the Es-page of the DSS. One then calculates this Toda bracket is equal to
[8A5] modulo 4 and elements in B¢ not of the form A®. This yields the b3 -case.

For (c), first consider the class z = neA® = v3A8. We would like to apply
the Hurewicz argument here, but we will use a slight modification. Indeed, this
lies in the Hurewicz image, leading us to the following equality:

T, (3A%) = o(n)v3A8

This class has representation ch; AA” on the Ey-page of the DSS where chi A
represents the class ¢ in homotopy, which also lies in the Hurewicz image. Using
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this, and the fact that there are no nonzero classes in filtration higher than x
in this column of the DSS, we obtain

T, (VA% = [nT (chi AAT)] = [nchi ATS(AT)]

using Th as per usual. On the Ey-page of the DSS, we see the only classes
in degree 168 and filtration zero (where A7 lives) the support multiplication by
chiA are multiples of A7, leading us the equality

Tp(3A%) = [nchi AT (AT)] = nb” [chi AAT] = nb! 3 A8

and our desired congruence nb! = o(n) modulo 2. For the b-case, apply
the Toda argument to {2,er,n), where e7g is the unique nonzero class in
770 TMF (9y. This Toda bracket is then calculated to be equal to [8A3] modulo
8 and the elements of B3¢ not of the form A3,

(The 3-local cases) In the 3-local world, we use the Hurewicz argument with
respect to the elements SA3? and a[aA]A3? to obtain the b3%- and b3?+!-cases,
respectively. For the b3¢+2_case, use the slightly altered Hurewicz argument (as
done in the b7-case at the prime 2) applied to the element aBA39+3, as this
class lies in the Hurewicz image and has Es-representation [aBAA39+2] and
afBA represents a class in the Hurewicz image. O

For some values d and n, one can calculate b% by hand. For example, if n
is not divisible by 3, then b2 = 7(n)? = 7(n) modulo 3 which gives another
proof of Pr[I0.1.2] at the prime 3. For higher d, we have to do a little more
bookkeeping. We give a few examples now, although more can be produced
with more time and willpower.

Corollary 10.1.6. Let n be a positive integer.

1. If n is odd, then we have the following congruences:

o(n)=4n (T +2Z 7(2n —19) ) (10.1.7)
o(n) =g n (T +6 Z T(2n — z)4> (10.1.8)

2. If n is not divisible by 3, then o(n) is congruent modulo 3 to the following
exPressions:

n (7(m)? + 2305 7(@)r(2n - 1)) n=;1
n (r(n)? +2 (S r@)r@n =) + XL 7 ()5 —9)) n=a2
n(7(n)* +27(%)

230 ()20 — ) + X T()T(2 — 5)) n=40
(10.1.9)
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We can also combine some of the above congruences. For example, if n is
divisible by neither 2 nor 3, then one obtains the following;:

n—1
o(n) =13 n (T(n)2 +2 Z 7(3)T(2n — z))

Before we prove Cor[10.1.6] let us mention a small combinatorial lemma to help
us calculate the powers of power series.

Lemma 10.1.10. Let r > 1 be an integer, R a ring, and f(x) = > oo @ma™
a power series with coefficients in R. Then we have the equality

I /r! m
fla) = X e a o
m20 | I={ir iy} T
B1,00ytp 20
i1t ti=m
where the interior sum is taken over all unordered r-tuples of nonnegative inte-
gers summing to m, Ry is the product of n,! indexed over each unique integer
x appearing in I, and n, is the number of times x occurs in I.

Proof. For some integer m > 0, the 2™-coefficient of f(x)" is given by

Z ail...aiT

(i1,000ir)

B1yenyipr 20

i1+ ie=m
where the sum is taken over all ordered r-tuples (i1, ..., %,) of nonnegative inte-
gers summing to m. As R is commutative the order of these r-tuples does not
matter so we are left to count how many ordered r-tuples there are of the form
(i1,...,1,) for each choice of r-many integers i1, ...,4.—call this unordered r-
tuple I. We claim this number is ¢; = 1% given in the statement of this lemma.
Indeed, this is now just the statement of the multinomial coefficients from ones
school days; see [DLMF| §26.4]. O

Proof of Cor[10.1.6 First, suppose n is odd, and consider [vA?] € 751 TMF
which we denote by 2. Now v - [vA?] is 4-torsion inside the image of the unit
map 7S — 7w, TMF5, so x is almost nearby the Hurewicz—as multiplication
by v sends x, which is 8-torsion, to something that is 4-torsion, we only have
T,(z) = o(n)z modulo 4. One can also calculate T, (z) by applying Th[8.0.2]
to x = [vA?%] with the obvious DSS decomposition (Df:

Tn(2) = Ta([vA%]) = [vnTRE(A?)] = nb; [vA?]

We can easily calculate this b2 modulo 8. Classical formulae for Hecke operators
give the coefficient of ¢ and ¢? in the g-expansion of T#8(A2) as the following
two numbers:

D) dPan (M%) = a,(A?)

d|1l,n
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D7 dPaz, (A?) = az,(A?)
a2

d|2,n

Consider the following basis for the cusp forms in mf%;:
{ea = A% e = A — ax(c3A)A?}

Using this basis, the above values for the first two coefficients in the g-expansion
for T28(A2), and the equality az(cjA) = 216, which one can do by hand, we
obtain the following equations:

Tzlg(AQ) = a,(A?)e; + agn(A%)es = a, (A?)EA + (a0, (A?) — 2164, (A?))A?

Importantly, we see that modulo 4, the coefficient of A? is as,(A?) which can

be given as the sum ZZII 7(2)7(2n — 1). Summarising the above and a little
simplification yields the desired result (10.1.7)) for all odd n:

o(n)z4n(7 +22 2n—z>

For (10.1.8)), we use the same tactics applied to the element y = RA® inside
ma12 TMF5. Indeed, one easily obtains the congruence nbi = o(n) modulo 8.
Because the g-expansions for A and c4 take the form

A(T) =q+0(¢%)  ca(r) = 1+240(0(q))

then for all 1 <d < 7and d+1 < i < 8, the coefficient a;(c3?A%%) is congruent
to 0 modulo 8. This implies that cr( ) =g agn(A®). Using LmJ10.1.10 and the
fact that z® =g z* for all =, we obtain the desired congruence for all odd n:

n—1
o(n) =g nag,(A®%) =g n (T(n)8 +6 Z 7(i)r(2n — i)4>

Finally, for suppose that n is not divisible by 3 and consider the element
2z = BAS € 54 TMF3 ~ Z/37Z. This element lies in the Hurewicz image, and
using the evident DSS decomposition as well as the arguments made above, we
quickly see that o(n) is congruent to nag(T28(A%)) modulo 3. The classical
formula for Hecke operators takes the form

a6n(A6) 2*71

as(TRH(AD) = D) d"lasy (A%) =5 {aenmﬁ) (4% 2fn

d|6,n

a3n
2

and we are left to compute the various values of a,,(A®) modulo 3. Using
Lm{10.1.10} we obtain the congruence

agn(AS) = +2Z r(2n —i)% = +2Z T(2n —1)
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as the only I for which g—! is not divisible by 3 are
I
{n,n,n,n,n,n} {i,1,1,2n —4,2n — 1,2n — i}

for 1 <7< n— 1. Similarly, for n =4 2 we obtain the congruence

and in this case the only I for which }% is not divisible by 3 is

{.73]7];5_],5_]75_3} 1<]< -1

as 7 is not an integer. Similarly again, for n =4 0, we obtain the congruence
3n i} n
as (M%) =5 7(50) +2 ), 7()7(5 — )
j=1
modulo 3. This finishes our proof. O

One can push the above techniques as far as one has the patience and neces-
sities, however, with more advanced homotopical methods, one can obtain con-
gruences using the above ideas which do not just relate o(n) and 7(n). Indeed,
the only modular forms in 7w, TMF which support nontrivial multiplication by
torsion elements and this multiplication yields something in the Hurewicz im-
age are powers of ¢4 and powers of A. However, other spectra do have a more
intimate relationship with elements coming from the homotopy groups of S, for
example, the height 2 Adams summands and height 2 image of J spectra in

§10.3| and §10.4] and Behrens’ Q(N) spectra of ExJ6.1.15

There is another algebraic application of Pr.[10.1.5| that we would like to
explore.

10.2 An expanded range of Maeda’s conjecture

Let us first recall Maeda’s conjecture from Conj Write S, for the subspace
of mka spanned by cusp forms, so weight k holomorphic modular forms with
vanishing constant term in their g-expansion.

Conjecture 10.2.1 (Maeda’s conjecture). For every even integer k > 4 and
every positive integer n, the characteristic polynomial Ty, 11(X) for the operation
Tale: S — Sy is irreducible over Q and has Galois group the full symmetric
group X4, , where di, = dim Sy
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There is experimental evidence for this conjecture—[GM12] summarises the
state of affairs in 2012. In loc. cit., it is shown that the above conjecture holds
for all n, k where k < 12,000 and either n < 10,000 or n is a prime not congruent
to £1 modulo 5 or 7. We can add a few n to this list, using the following result
of Ahlgren.

Theorem 10.2.2 ([Ahl08, Th.1.4]). Write S}, for the subspace of Sy spanned
by modular forms with vanishing constant and linear term in their q-expansion.
Let k be a positive integer such that dimq S, = 2 and suppose there exists an m
such that Maeda’s conjecture holds for T, (X). Then for any positive integer
n = 2, the following are equivalent:

1. Maeda’s conjecture holds for Ty, 1(X).
2. There ezxists a modular form f € S; with a,(f) # 0.

Using this result, we are left to find a few modular forms of particular weights
such that specific coefficients in their g-expansions do not vanish. To do this,
we will use Pr{l10.1.5[ and the following elementary non vanishing results.

Proposition 10.2.3. Let n be an odd positive integer.
1. Then o(n) #2 0 if and only if n is a square.

2. Then o(n) #4 0 if and only if there is at most one prime factor p of n
whose exponent e is odd, and in that case we demand that both e and p
are congruent to 1 modulo 4.

3. Then o(n) #s 0 if and only if exactly one of the following two statements
18 true:

(a) There are at most two prime factors of n whose exponents are odd,
and in this case, we demand such primes and their exponents are
congruent to 1 modulo 4.

(b) There is at most one prime factor p of n with odd exponent e such
that either e =g 1 and p =g 3, ore =g 3 and p=4 1, or e =g 5 and
p=sT.

Proof. Fix our odd n with odd prime factors p; and exponents e;. For part 1,
note that o(n) = | [, o(p;’) is odd if and only if each o(p;") is odd. In this case,
we have

o) =1+p+p°+--+p° = (e+1)

using Fermat’s little theorem, which is odd if and only if e is even. In other
words, every exponent e; in n is even, so n is an odd square. For part 2, we
note that for o(n) to be nonzero modulo 4, we can have at most one o(p®¢) with
odd exponent, and in this case we need o(p®) =4 2. Assuming e is odd, then
have the congruences

e+1

o) =1+p+p*+--+p°=4(1+p) 5
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using Euler’s theorem . We see the above vanishes modulo 4 if p =4 3 so
we must have p =4 1 and also e =4 1, hence part 2. Part 3 is simply a more
subtle version of the previous parts, but is still elementary. We see that for
o(n) #s 0 to hold, we need either at most two primes py,ps with exponents
e1, ez, respectively, such that o(p;’) =4 2, or at most a single prime p with
exponent e such that o(p®) =g 4. The first case is covered by the argument
for part 2 above, so we focus on the second case, classifying odd primes p and
exponents e such that o(p®) =g 4. Writing o(p®) and using Euler’s theorem, we
obtain the following:

S1+p+p*+p°)+1 e=40

a(pE):ipiES T pt ) 1ty e=i1
P LA +p+p?+0°)+1+p+p* e=42
SAL(1+p+p? +p?) e=43

Note the sum 1+p+p? +p3 is always divisible by 4. If e =4 0, we see o (p®) #g 4
for any choice of p, so we ignore this case. Likewise for the e =4 2 case. If e =4 1,
then we are divided into two further cases: if e =g 1 then 611 is even, and we
demand p =g 3; if e =g 5, then we similarly demand p =g 7. In the last case,
when e =4 3, the fact the sum 1+ p +p? + p? is always divisible by 4 forces ¢t
to be odd so e =g 3. We also want the sum 1 + p + p? + p® to be congruent to
4 modulo 8, so we also require p =4 1. This finishes part 3. O

Proposition 10.2.4. Let n be a positive integer not divisible by 3. Then
o(n) #3 0 if and only if for each prime factor p of n with exponent e, if p =3 1
then e =6 0,1,3 or 4, and if p =3 2 then e is even.

Proof. As in the proof of Pr[10.2.3) write n = | [ p;* where each prime is different
than 3. For o(n) #3 0, we need all o(p®) #3 0. Using Fermat’s little theorem,
we obtain the following congruences:

(p+1)<tL forodde

o) =1l+p+p*+--+p°=
") pp P 3{(p+1)§+1 for even e

For odd e, we see that for o(p®) not to vanish modulo 3, we need p =5 1 and
e #¢ 5. If e is even, then we either require p =3 1 and e #3 2, or p =3 2 in
which case e can be an arbitrary even number. Collecting these observations,
we see obtain our claimed result. O

We then have the following general two statements concerning Maeda’s con-
jecture. Let us begin with the simpler statement at the prime 3. Thank you to
Gerd Laures for pointing out a mistake in a previous argument here.

Theorem 10.2.5. Let k,n = 2 be two coprime integers with n not divisible by
3 satisfying the following conditions:

1. k < 1,000 and for all 1 < i < k—1, the coefficient of ¢* in the q-expansion
of A" is divisible by 3.
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2. For each prime factor p of n with exponent e, if p =3 1 then e =¢ 0,1, 3,4,
and if p=3 2 then e is even.

Then Tip 12k(X) satisfies Maeda’s conjecture.

In particular, as there are an infinite number of primes p with p =3 1, we see
TZ;g satisfies Maeda’s conjecture on Syo; for valid k. A computer check shows
that the only k satisfying the condition 1 above in the range 2 < k£ < 500 are
k=2,3,6,9, 18, 27, 54, 81, 162, 243, and 486.

The situation at the prime 2 is similar, albeit more complicated.

Theorem 10.2.6. Let k,n = 1 be coprime integers where n is odd satisfying
the following conditions:

1. k£ < 1,000 and for all1 < i < k—1, then writing e; for the 2-adic valuation
of the coefficient of ¢* in the g-expansion of A*, we require that

1 kEg3,7
i =142 k=g24,5,6
3 kzgo,l

2. Selting e = min(e;), then we require that if:

(a) e =1 then n is a square.

(b) e =2 thenn has at most one prime factor with odd exponent, and in
this case, the prime and the exponent are congruent to 1 modulo 4.

(c) e = 3 then n satisfies the equivalent conditions in part 3 of Pr|10.2.5
Then Tin126(X) satisfies Maeda’s conjecture.

In particular, as there are infinitely many primes p =4 1, there are infinitely
many TZ;g satisfying Maeda’s conjecture on Syo; for valid k. A computer check
shows that the only k satisfying the condition 1 above in the range 2 < k£ < 500
are k = 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, and 384. This
leaves those 2 < k < 500 satisfying both conditions 1 and 2 as the following set:

{2,4,6,8,12,16,24, 32,48, 64, 96, 128, 192, 256, 384}

Both Ths[T10.2.5] and [10.2.6] seem to be the first examples that show Maeda’s
conjecture holds for infinite families of Hecke operators T2# on a space of cusp
forms of a fixed weight k where n is not assumed to be prime.

The strategies to prove both Ths.[10.2.5] and [10.2.6] are the same: we use
Th[10:2:2] to reduce ourselves to show certain coefficients of particular modu-
lar forms do not vanish, and then we use Pr[I0.1.5 in tandem with Prs[10.2.3]
and to make some approximations modulo 3 or powers of 2, respectively.
An eagle-eyed reader will notice that a more careful proof that pays close at-
tention to the g-expansions of powers of A could lead to a sharper result; here
we prefer to focus on the results obtains from our congruences.
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Proof of Th{10.2.5 Consider the following basis for Syog:
(AR = e, AP = ¢y, .. .,ci(k_l)A =e1}

Notice that ¢4 has g-expansion 1 + 240(O(q)), which implies that modulo 3 the
above basis is congruent to {A, A2, ..., A}, By assumption, the ¢¥-coefficient
in the g-expansions of A? vamsh for all 1 < i < k—1. This means that for
each cusp form f € Sigp, the ¢F-coefficient in 1ts g-expansion is congruent to
its A*-coefficient using the above basis, modulo 3. Now consider the cusp form
f = Tal2(A*) using the classical Hecke operator T#8. There is the following
elementary formula for the coefficient of ¢* in the g-expansion of this f:

> d* @ ( (A*) = a4, (AF) (10.2.7)
d|k,n

Above, we used that ged(k,n) = 1. We now have the following chain of congru-

ences modulo 3:

ank(Ak) =3 bk =3 #

The first congruence comes from @ and our discussion above, and the
second from Pr[I0.1.5] By Pr[10.2:4] we know that for our chosen n, the above
quantity does not vanish modulo 3. This implies the coefficient of ¢*" in the
g-expansion of A¥ € S!,, does not vanish modulo 3. By Th.[10.2.2] we see
that Maeda’s conjecture holds for Tzlf acting on Sy, as this is true for T3 by
[GM12, Th.1.5]. O

Proof of Th{10.2.60. We leave the proof to the reader—the eclectic conditions
reflect the hypotheses of Pr{10.1.5| and Pr{10.2.3 O

In the proof of CorJ10.1.6] we played with some more explicit congruences,
and a continued study of these kinds of congruences promises to further improve
on the known range where Maeda’s conjecture is valid.

10.3 Height 2 Adams summands

By § we see that KU, and TMF, both have p-adic Adams operations "
for each k € Z;. When p is odd, then Z; splits as F)\ x Z, (the latter is
now viewed as a group additively). This implies that both KU, and TMF,
have E. -actions of the group F, which by Gauf} is isomorphic to the cyclic
group of order p — 1. A clabsmal construction in homotopy theory is called

X

the Adams summand KUZF” and is usually denoted by L, and with connective
cover £. Both L and ¢ have simple homotopy groups as we are working with
p-complete spectra and the group F has order prime to p. In particular, we
have isomorphisms

b= Zoi]  mL o~ Z0f]
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where v; = uP~! is the first Hasse invariant from chromatic homotopy theory.
When written like this, it is clear that £ is an E.-form of p-complete BP{1).
These E-rings L and ¢ are summands of KU, and ku,, respectively, associated
to the idempotent map

Z PF (10.3.1)

keFX

which reveals why they are called Adams summands. In fact, more is true,
as one can easily check that the canonical maps of E.,-rings L — KU, and
¢ — ku, recognise the codomain as a quasi—freelﬂ module over the source of
rank p — 1. Given we have the same p-adic Adams operations on TMF,, (and
tmf, from Th, we would like to see how much of the above works at the
height two—the results are not what one might first expect; see Thi[10.3.3]

Definition 10.3.2. For an odd prime p, recall the F action on the E, -rings
TMF,, and tmfp glven by Th- and Th[7.7.4] respectively. Define the E..-

rings u = tmf and U = TMF Fy and called them the height two Adams
summands. By Th_, 7.7.4] the natural map tmf, — TMF, factors through a map
of E,-rings u — U, and tmf,, — ku, factors through a map of E,.-rings u — ¢.

We choose these names as u is to tmf, as £ is to ku,—we are open to other
conventions. The homotopy groups of u and U as still simple to write down if
p= b

me = (Zypla,y))*? ~ Z, [#'y7]i, 7 = 0 such that 4i + 65 =, ; 0]

7:U =~ Z,, [2'y? A¥|i, j > 0,k € Z such that 4i + 65 + 12k =,_1 0]

where x = ¢4 has degree 8, y = ¢g has degree 12, and A = mf;Qy;. Both u and
U are summands of tmf, and TMF,, respectively, using the same idempotent
(10.3.1) as the height one case. What is curious, is that the inclusions u — tmf,

and U — TMF, behave differently to the height one case.

Theorem 10.3.3. Let p be an odd prime. The map U — TMF,, recognises the
codomain as a rank Y5~ L quasi- free module over the domain. The map u — tmf,
recognises the target as a rank 5= L quasi-free module if p — 1 divides 12 and for
all other odd primes tmf,, is never a quasi-free u-module.

The proof of this theorem is rather elementary and consists of formal stable
homotopy theory and some dimension formulae for spaces of (meromorphic)
modular forms.

Proof. Let us start with the connective case—it is a little simpler. For p = 3,
the map u — tmfs is an equivalence, as FJ act trivially on m, tmf; and the

50Recall from [HAl Df.7.2.1.16] that for an E-ring R and an R-module M, we say M is
quasi-free if there exists an equivalence M ~ @, R[na], and M is free if all of the n, can be
taken to be zero.
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order of this group is invertible in 7 tmfs ~ Z3 so the associated homotopy
fixed point spectral sequence collapses. Let us focus on larger primes then. At
p =5, we claim the map of u-modules

u@®uf[12] 199, tmf

defined by the elements 1,y € 7w, tmfs, is an equivalence. This is clear as the
first summand contains all the monomials z*y? where j is even, and the second
summand those where j is odd. Similarly, we can define maps of u-modules

u @ u[8] ® u[16] 2€7, ¢,

1 ® u[8] ® u[12] @ u[16] @ u[20] ® u[28] ~E2EvE GrydeTy
at the primes 7 and 13, respectively. As in the p = 5 case, one easily checks these
maps are equivalences on homotopy groups. For the negative cases now. For
p = 11, we notice that m,u is precisely the summand of 7, tmf,; supported in
nonnegative degrees divisible by 20. Any potential splitting of tmf;; into sums
of u would have to start by hitting generators in degrees 0, 8, 12, 16, and 24. The
problem is that we need two summands u[24] to hit both y? and 2 in degree
24, which would mean that our sum of u’s has dimension at least 4 in degree 64.
This contradicts the fact that the dimension of the Zi;-module mg4 tmf;; has
dimension 3. Similar problems happen for primes p > 17. Indeed, for each of
these primes, m4u is the summand of 7, tmf, supported in nonnegative degrees
divisible by 2(p — 1). A potential splitting of tmf,, into sums of u would have
to hit the two generators in degree 24, as 2(p — 1) > 2(16) = 32 is greater than
24, so myau = 0. However, writing d for the dimension

tmf13

d= dimzp (772(1,,1) tmfp) = dimzp (772(1,,1)11) =2

where the inequality comes from the fact that 2(p — 1) = 32, we obtain the
following:

dimzp (772(1)_1)+24 tmfp) =d+1<2d= dimzp (7T2(p_1)+24u[24] @ u[24])

This shows that there can be no splitting of tmf, purely in terms of suspensions
of u.

Onto the periodic case. For primes p = 3,5,7, and 13, we can simply take
the connective equivalence and invert A € mo4U. For primes p > 17 and p = 11,
consider the basis B of Nt. Let us write f, = A'Ey for the generators
of MFZ” as a module over Z,[j] ~ MF? . Note these basis elements have some
multiplicativity properties which we will implicitly use in what follows:

k
fkl 'f{2k2 = fkl 'f12’r‘k2 = fkl 'AT 2= fk1+127“k2

We now have four cases to consider depending on the remainder of p modulo
12, Essentially, f,—1 € my(;,—1)U is the first nonzero generator of m, U after
moU. Our splitting of TMF,, will depend on if f,_; is purely a power of A, or a
power of A multiplied by z2y, x, or y. These are precisely the four cases below,
respectively.
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(The p =12 1 case) Consider the following map of U-modules:

or:Ulpl® @ Ulad]) L2284 oy,
0§2;l<p71
#1

We claim ¢; is an equivalence. First note the map is injective on homotopy
groups, as m, U is concentrated in degrees divisible by 2(p—1) and each summand
in the domain of the map ¢; only hits elements in MFZP in degrees which are
pairwise distinct modulo 2(p —1). In the range 0 < k < p—2, every f is hit by
@1 by construction—the only case up for debate is fo, however, f,_; = AT
lies in my(,—1)U with inverse AT inside To(1-p)U, and we then obtain the
following:

for iy = A Tty A = =
It then follows that all other fi are hit, for all even k € 2Z. Indeed, for each
such k, there is an integer r such that k + r(p — 1) lies in the range between 0

and p— 2. As fryr(p—1) = fr - [p—1 is hit by ¢1, and f)_; and its inverse lies in
Tor(p—1)U, we see that the 7, U-module map induced by ¢ hits f.

(The p =12 11 case) Consider the following map of U-modules:

. @ fr2a=A"
b11: (—D U[24d] ———— TMF,
0<2d<p—1

We claim this map is an equivalence. As in the p =15 1 case above, we see
the induced map on 7, is injective. To see each fi in MFfp is hit by ¢11, we
first note that fg,—1) = f§7 = A" lies in T12(p—1)U, and the above map
hits every power of A less than fg,_1) by construction. Given an even integer
k, then clearly fi is hit by ¢1; if k is divisible by 12. Also, note the following
equalities inside 7, U:

fp—l = A%xy f2(p71) = Ap%11+1x2

p—11 p—11
f3p-1) = A7 2y Jap—1) = A3 R
Fop1y = AT +32y

If f, is of the form A'Ey for k not divisible by 12, then the equations above
show there exists an integer r» and an 7 in the range 1 < 7 < 5 such that
Jr = A" fi(p—1) simply because this range of f;(,_1) contain the five remaining
possible Ej. Writing r = a + b% for an integer b and 0 < a < pT_17 we see
that fi is in the image of ¢1;

fo= A" fipo1y = A% AYT - fi 1y = A fE 4 Fipe)

as A® lies in the image of ¢1; and the other elements lie in 7, U.

The following two cases are a mixture of the previous two—Ilet us only detail
the first.
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(The p =12 5 case) Consider the following map of U-modules:

650 @  un2d 2L Tvr,
0<2d<p—1
As previously discussed, the induced map on homotopy groups is injective, so

it suffices to see ¢5 hits all the generators of MFZP. By inspection, we see that
¢5 hits all f;, of the form A® and A%y for all 0 < i < 1’4;5. Moreover, note the
following equalities in 7, U:

fp-1= A g fap-1) = AT g f3p—1) = AT

It follows that every f; of the form A? and Ay is hit by ¢s, for all integers i
now. As in the p =15 11 case above, the fi’s of the form Alz, Alz?, Alzy, and
Alz?y, are then hit by ¢5 as every one of these Ey’s is a product of elements in
the image of ¢5 by construction or in 7, U. This shows that ¢5 is an equivalence
of U-modules.

(The p =12 7 case) The map of U-modules
@D faa
¢7: @ U[8d] =5 TMF,
0<2d<p—1

is an equivalence by an analogous argument to the previous case—we omit the
proof. O

The negative fact that tmf, is not a quasi-free u-module for primes p > 17
and p = 11 seems salvageable.

Conjecture 10.3.4. For primes p = 17 and p = 11, there exists a cofibre
sequence of the following form.:

D 7] tmf, > 7]
0<2k<p—1

The map of u-modules ¢p localises to ¢ from the proof of Th{10.5.5, and only
depends on the mod 12 reduction p of p.

The only real mathematical hurdle left in proving the above conjecture seems
to be a combinatorial argument involving the known dimensions of spaces of
modular forms of a fixed weight. Let us now see the example for p = 11 in more
detail, and quote the results for p = 17,19, 23, and 37.

Fix p = 11 and recall we have the following commutative diagram of Eg-
rings, a consequence of Thl[7.7.4}

u— tmfn

L

{ —— kuu
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Consider the map of u-modules
y10: 2120y g

and its cofibre, which we write as u/y'?. If one inspects the homotopy groups
of u/y*%, one will find they look just like those of the following u-module:

@ ¢ = @ ([40] @ £[60] @ £[80] @ £[120]

To prove that these u-modules u/y'® and @ ¢ are equivalent, and more impor-
tantly, to later obtain a morphism of u-modules from ¢ to a quotient of tmfq,
consider the cohomological Ext-spectral sequence

E;’t =~ Eth,’:: (s M, T4 N) = 7_s_1F(M, N)

for any pair of u-modules M and N. Setting M = u/y'?, the short exact
sequence defining m,u/y? shows it has projective dimension 1 as a 74u-module,
meaning the above spectral sequence is supported in s = 0,1 and immediately
collapses. This degeneration yields a surjection of groups

T‘-OFu(u/ylov N) - Ethf(ﬂ—*u/y107 N)

Setting N = @ ¢ and using the desired isomorphism on homotopy groups as
mxu-modules, we obtain an equivalence of u-modules

w/y' ~Pe

The u-module ¢ then naturally maps into u/y'® as the first summand of @ ¥,
and with this inclusion, we will study a quotient of tmf,. Consider the map of

u-modules
4

¢11 . @ u[24d] g tmf11
d=0
defined by the elements 3¢ for d = 0, ...,4—this is the the connective version

of the map ¢11 from the proof of Th{10.3.3] Write tmfy; /¢ for the cofibre of
this map. Consider the map of u-modules

x: u[8] — tmfy,

given by x € mg tmf,, and the following diagram of u-modules:

[128] — w[8] —— u/y'0[8]

|e

tmf11 E— tmf11 /¢

The composite u[128] — tmfy; /¢ vanishes. Indeed, this map of u-modules is
represented by the class xy'0 in 7o tmfy; /¢ and y'% = 0 € w90 tmfyy /é by
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the construction of ¢1;. Hence, we obtain a map u/y'°[8] — tmfy; /¢ which
induces multiplication by x on homotopy groups. Precomposing this map with
the inclusion £ — @ ¢ and the equivalence u/y'® ~ @ ¢, we obtain the following
map of u-modules:

iz {[8] = tmf1y /&

Repeating this process for the classes z € 7, tmfy; in the set
2 .3 .4 .3 .6 7.9 12
Z11={y7x7x7x7y7xum7x7x }

we obtain corresponding maps of u-modules i, : ¢[|z|] — tmfi; /¢. These mor-
phisms sum to give the following map of u-modules:

in: @ 2] - tmfy /¢

ZEle

It is now a purely combinatorial exercise to check that this is an equivalence.
Altogether, this yields the following cofibre sequence of u-modules:

4
P u24d] 2 tmtyy - P =[]
d=0 ZEle
Other examples validating Conj are the cofibre sequences:

d
uf12d] 255 tmfy; —» @ 7]
12

P~

IS8
Il
o

P

D’
0 9

d
u[24d] — tmfys 225 @ [7]

= o
@O Il

d=0 55
2 0@ f2a44Df
u® P ufdd + 8] ®X"%u 2R, tmfsy — @ 7]
d=0 18

The question marks above signify our lack of understanding of the pattern be-
hind the types of shifts of £ that occur, although everything above seems to only
truly depend upon the residue of the prime modulo 12.

10.4 Height 2 image of J spectra

Fix a prime p and a generator g of Z) /F where F is the maximal finite subgroup
of Zy. At the prime p = 2 (take g = 3 in this case), a classical construction
in homotopy theory is that of the connective image of J spectrum j, defined by

the following cofibre sequence of spectra:

. $I—1
j — kog —— 754 kog
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This is to be thought of as the Z)-fixed points of kuy, or the Z) /{+1}-fixed
points of ko. The map 19 — 1: kos — koy factors through 74 ko as it induces
the zero map on the first three non vanishing homotopy groups of kos as a quick
calculation shows.

We will use Th[7.7.4] to copy this construction, and compare the results to
the classical case—we restrict ourselves to the p = 2 case for simpler exposition;
see others primes in [Dav21al §3].

Definition 10.4.1. Define j5 as the fibre of the following map:

3_
tmfg u) T=8 tmfg

This comes with a unit S — jy as the unit S — tmfs vanishes in 7g tmfs. For
an odd prime p, fix a generator g of Z) /F). By Th. the E.-ring U of
Df. has an action of Z) /F ). Writing g for a fixed generator of Z) /F,
define Jo as the fibre of the following map:

u¥-Lyu

Again, there is a unit S — Jo as ¢9(1) = 1.

Note that jo and J, are not just the 2-completions of j and J = jla~!], but
rather the 2 indicates height. The notation s and S is also tempting, but it
seems too close to the sphere S. We also want to make a connective definition
of jo at odd primes, but in this case, we would like to first take the Z; /F-fixed
points of u from Df[10.3.2] but Th[7.7.4] does not yet give us compatible Adams
operations on tmf,,.

Due to the classical results and the fact we have a map jo — j factoring the
units from S to j and jo, one obtains the following.

Theorem 10.4.2. All elements Qi € mo; 1S detected by elements in the 1-line
of the Adams—Nowvikov spectral sequence for the sphere have nontrivial image in
Ti—1j2-

We do not obtain a similar result for Jo at odd primes as we lack a map
to K-theory from TMF—this is one reason why we would like to extend our
constructions of coherent stable Adams operations “over the cusp” to tmf.

Proof. The elements «;,; are all nonzero in 7,j and the map 7S — m,j is a
split surjection with image exactly these o;/;—the image of J; see [Mah75] for
the original construction of j and [Koc90, §4] for statement mentioned here.
This implies that m,jo — 7] is split surjective, as splitting can be given by the
composite

M) = TS — Tyjo

which implies the result. O
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If we had stable Hecke operators T, on tmf, commuting with stable Adams
operations a la Pr[7.2.4] then we could obtain stronger congruences than those
obtained in § using jo in place of tmf,. For example, one could show that
given odd positive integers k and n with k¥ > 3, then o1(n) is congruent to
nog(n) modulo ay, where ay, is defined 8 if £ = 1 modulo 4 and the 2-primary
part of the denominator of Bji//k + 1 if k = 3 modulo 4. This would be
proven using the techniques discussed in combined with Th[10.4.2]

This is just the tip of the iceberg. For example, we have only used formal
properties of jo to analyse the map m4S — m.jo, but one could try an Adams
spectral sequence to further calculate the Hurewicz image inside m4jo which
would yield further congruences in number theory via Hecke operators. One
could also replace jo with Behrens Q(N) spectra, or perhaps even connective
versions thereof, and play the same tricks. This could give us further cases of
Maeda’s conjecture, or might shed some light on Lehmer’s conjectur@ on the
non vanishing of 7(n). These ideas are all future research directions for the
author and anyone else in the community.

51Recall Lehmer’s conjecture states that Ramanujan’s 7 function never vanishes and was
originally stated in [Leh34].
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Appendix A

Formal spectral algebraic
geometry

All work and no play makes Jack a dull boy.

English proverb

Throughout Part || we have used basic properties of formal spectral Deligne—
Mumford stacks that are not explicitly contained in [SAG] (at least not obviously
to the author), so we have arranged this appendix to prove these statements.
Every single statement in this subsection is an extension of a proof in [SAG]
and the author claims no originality for the ideas below.

A.1 The embedding fDM — fSpDM

To formalise the relationship between the classical and spectral worlds of formal
algebraic geometry, we need a functor fDM — fSpDM. Let us begin by defining
these categories.

Definition A.1.1. Let A be a classical adic Noetherian ring with finitely gen-
erated ideal of definition I € A, cutting out a closed subset V' < | Spec A].

1. Define the topos Shvid, (CAlg®) as the full co-subcategory of Shve' (CAlg?)
spanned by those étale sheaves F such that if the space V' x| gpec 4| Spec B]
is empty, then F(B) is a point.

2. One has a sheaf of discrete rings Gspec 4 on Shviy, (CAlgY) as in [SAG,
Df£.1.2.3.1], which we complete at I to obtain a sheaf €. As 0(B) ~ B}

vanishes whenever the image of I generates the unit ideal of B, we can
regard @ as a sheaf on Shvid (CAlg%).

Define the ringed topos Spf A = (Shvad, (CAlg%), 5), the formal spectrum of
A, leaving the dependency on the specific topology on A implicit. A locally
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Noetherian formal Deligne—Mumford stack is a ringed topos X = (X, Ox) such
that &' has a cover U, such that each ringed topos Xy, is equivalent (in the
2-category of ringed topoi of [SAGI Df.1.2.1.1]) to Spf A, for some discrete adic
Noetherian ring A,. Write fDM for the full 2-category of 1Toplé’zlg@ spanned
by locally Noetherian formal Deligne-Mumford stacks.

The oo-category of formal spectral Deligne-Mumford stacks fSpDM can be
defined similarly; see [SAGL Df.8.1.3.1].

As in [SAG] §8], when dealing with classical formal Deligne-Mumford stacks,
we restrict ourselves to the locally Noetherian case by definition, as opposed to
the spectral case, when we only add this assumption when we need it. As
mentioned in [SAG, Warn.8.1.0.4], this is due to the incompatibility between
completions in the classical and derived worlds.

Remark A.1.2. If an adic discrete ring A has a nilpotent ideal of definition, then
Spf B is naturally equivalent to Spec B by definition. In this way, we can see
(Noetherian) affine Deligne-Mumford stacks as affine formal Deligne-Mumford
stacks with ideal of definition (0). It immediately follows from the definitions
that DMjc.n is a full 2-subcategory of fDM.

The following is [SAG, Rmk.1.4.1.5].

Construction A.1.3. There is a fully faithful embedding of co-categories from
classical ringed topoi to spectrally ringed co-topoi

1T opcalg® — 0T 0Pcalg (X,0x) — (Shv(X), 0).

In other words, it associates to a classical Grothendieck topos X the associ-
ated oo-topos Shv(X) (this is done using [HTT09, Pr.6.4.5.7]) and by [SAG]
Rmk.1.3.5.6] we obtain a connective O-truncated structure sheaf on Shv(X),
denoted as €. In fact, the essential image of the above embedding is spanned
by the spectrally ringed co-topoi (X, Ox) where X is 1-localic, meaning the
canonical geometric morphism X — Shv(XY) is an equivalence, and Oy is
connective and O-truncated.

By [SAGl Rmk.1.4.8.3], the fully faithful embedding of ConJA.1.3| restricts
to the full-faithful embedding DM — SpDM. Let us show that the same holds
for formal Deligne-Mumford stacks.

Proposition A.1.4. The functor of Con[A.1.3, when restricted to fDM factors
through fSpDM. Moreover, the essential image of this fully faithful functor
fDM — fSpDM consists of those locally Noetherian formal spectral Deligne—
Mumford stacks X = (X, O%) for which the co-topos X is 1-localic ([HTTO09,
Df.6.4.5.8]) and the structure sheaf Ox is O-truncated.

Proof. The fully faithful functor of Con[A:1.3|descends to a fully faithful functor
between (not full) co-subcategories of local topoi:

loc

loc
1Topigee = ©ToPCAl,
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Indeed, we say 2" = (X,04) in 00T 0py, is local if 904 is local on X
([SAG] Df.1.4.2.1]), and given 25 = (Xp, Op) in 1T0pgao, then the ringed
topos (Shv(X)Y,m0) is naturally equivalent to 2y by [HTT09, Pr.6.4.5.7].
Local morphisms between local spectrally ringed co-topoi are morphisms of spec-
trally ringed co-topoi whose underlying morphism of ringed topoi is local.

Let Xg = (X, 0p) be a classical formal Deligne-Mumford stack, and write
X = (X, 0) for the image of Xo under Con[A.1.3] so X = Shv(X;). By [SAG,
Pr.8.1.3.3], the property of being a formal spectral Deligne-Mumford stack is
a local one, so it suffices to show that there exists a cover U, of X such that
each Xy, is in fSpDM. Consider a formal affine cover of X in 170pgy e, S0
a collection of U, inside Xj such that [ [U, — 1x, is an effective epimorphism
and (Xo),y, is equivalent in 170pc a0 to Spf A,. Considering U, as a discrete
object V of X (as in [HTT(09, Pr.6.4.5.7]), then [SAG] Lm.1.4.7.7(2)] states that
Xy is 1-localic, as X is 1-localic and V' is O-truncated in X. One then notes
the following natural equivalences:

Xy = ShV((X/V)O) ~ Shv((&Xo),v,.)

~ Shv(Shvig, (CAlgY )) < Shv*!(CAlgY )

The first equivalence holds as Xy, is 1-localic, the second by identifying Xy as
the underlying discrete objects of X (and then [HTT09, Rmk.7.2.2.17]), the
third from the choice of U, as an affine object of A, and the forth from the
fact that affine formal spectral Deligne-Mumford stacks are 1-localic; see [SAG,
Rmk.8.1.1.9]. Furthermore, as & was defined as the sheaf of connective 0-
truncated E -rings on X associated to the commutative ring object 0y on Xj,
we claim that by [SAG, Rmk.1.3.5.6] the spectrally ringed oo-topos Xy, is
equivalent to Spf A,. To see this, one notes that &(Spf B) = B} for some
étale morphism Spf B — Spf A, in Xy € X, and one also has a natural equiva-
lence Ogsps 4, (Spf B) ~ By by [SAGl Con.8.1.1.10]. The “moreover” statement
follows by [SAG] Rmk.1.4.1.5]. O

Combining the functor of points approach with the above, we obtain the
following:

Corollary A.1.5. The following diagram of co-categories and fully faithful
functors commutes:

Aﬁ.l((?)C‘N — Aﬁagd,locN —— DM

T

A — 5 A 9 fSpDM "y PAR™)

Warning A.1.6. One might want to place P(Aﬁo) in the top-right corner of
the diagram above, however, we do not see a functor P(Aff¥) — P(AF) such
that the diagram above commutes. Indeed, the obvious right Kan extension
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along CAlgo — CAlg®™ does not commute with the other constructions above
by inspection and a left Kan extension would not necessarily preserve sheaves.
The existence of the functors ¢, d, and e above, are all due to nontrivial theorems
of Lurie, and the lack of a similar functor P(Aff¥) — P(Aff") indicates one
reason why we restrict our attention to (formal) Deligne-Mumford stacks.

Proof of Cor[A-1.5, The functors a, b, f, and g are all the inclusions of full co-
subcategories, ¢ and d are the inclusions of co-subcategories as shown by Lurie
([HA] Pr.7.1.3.18]), e is Con|A.1.3] and h is the functor-of-points functor. The
diagram commutes as ¢ and d are restrictions of e. To see why each functor is
fully faithful, we have:

e By definition, we see that a, b, f, and g are fully faithful.
e By [HA| Pr.7.1.3.18], we see ¢ and hence d are fully faithful.

o Pr][AT.4shows e is fully faithful.
e The fact that h is fully faithful is the content of [SAGL Th.8.1.5.1]. O

A.2 Truncations

We would like to show that for locally Noetherian formal spectral Deligne—
Mumford stacks, there is a well-defined truncation functor. The following is a
generalisation of [SAG| Pr.1.4.6.3] to formal spectral Deligne-Mumford stacks;
we will even use the same proof and notation.

Proposition A.2.1. Let X = (X, O%) be a locally Noetherian formal spectral
Deligne—Mumford stack. For each n = 0, the object T<nX = (X, 7<nO%) is a
locally Noetherian formal spectral Deligne—Mumford stack. Moreover, for ev-
ery (), Oy) inside OOTop%}kl‘é, if Oy is connective and n-truncated, then the
canonical map T<, X — X induces an equivalence of spaces

MapxiTopﬁ‘cfffl‘é ((y7 ﬁy)a 7—$nx) - Mameopgx‘g‘: ((ya ﬁy), x)

Proof. The first half of the proof of [SAG] Pr.1.4.6.3] applies mutatis mutandis.
That is, by copying that proof we see that for every strictly Henselian spectrally
ringed oo-topos (Y, @y) which is connective and n-truncated, the canonical map

MapITop%}fflfé((y’ ﬁy)’ TSTL%) - MapxiTop%}fl‘é ((yv ﬁy)7 %) (A22)

is an equivalence of spaces. Hence, we are left to show that 7<,X = (X, 7<,O%)
is a locally Noetherian formal spectral Deligne-Mumford stack. By [SAG]
Prs.8.1.3.3 & 8.4.2.7], being a formal spectral Deligne-Mumford stack and being
locally Noetherian are local conditions, hence we may assume X = Spf A for a
complete Noetherian adic E..-ring A. Set B = 1<, A, equipped with the same
topology as A induced by I € myA using the isomorphism mgA ~ myB. We now
need to show Spf B is connective, n-truncated, and construct an equivalence
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with 7<, X.

By [SAG, Pr.8.1.1.13], we see Spf B = (Xspr B, Ospr B) is connective. For n-
truncatedness, one can argue as follows: for affine objects U of Xgpr p we have
Ospi B(U) ~ Cf for some étale B-algebra C. As C is an étale E. - B-algebra,
then it is almost of finite presentation, and as B is Noetherian (as a truncation
of the Noetherian E.-ring A), then the spectral Hilbert basis theorem ([HAL
Pr.7.2.4.31]) implies that C is also Noetherian. It then follows from [SAGL
Cor.7.3.6.9] that the natural map of E..-A-algebras C — C} is flat. As the
composition

B—>C—>CIA =~ ﬁspr(U)

is flat, we see Ogpr p(U) is n-truncated as B is so. The co-topos Xspr p is gener-
ated by affine objects under small colimits ([SAG], Pr.8.1.3.7]) and the structure
sheaf Ogpr g Xé)l‘;fB — CAlg preserves limits, so it follows that Ogps g(X) is n-
truncated for all X € Xgp¢ g, hence Spf B is n-truncated; see [SAGl, Rmk.1.3.2.6].
By , the natural map Spf B — Spf A = X factors as:

Spf B % 70, % = (X, 72, 0%) — (X, 0x) = X

Using [SAG, Rmk.8.1.1.9], we see the map of underlying oo-topoi induced by
¢: A > 1<, A = B is an equivalence,
ShvfrtoB/I ~ Shv’y! P, Shvi! ~ Sthé)A/I

where we used the notation of [SAG] Nt.8.1.1.8]. Under this map, the structure
sheaf of Spf B is sent to the functor

G4 Ospi p: CAlgY — CAlg™ D (D®4 B)} =~ (r<nD);.  (A2.3)

The equivalence above comes from the facts that A — D is étale and a degen-
erate Tor-spectral sequence calculation; see [HAL Pr.7.2.1.19]. To see ¢ is an
equivalence, it therefore suffices to see that is equivalent to T<, Ospf A-
This is slight variation on an argument made above. As D is étale over the
Noetherian E . -ring A, then the spectral Hilbert basis theorem implies that D
is also Noetherian. It follows straight from the definition that the E,-ring 1<, D
is Noetherian, so the natural completion map of E - A-algebras
T<nD — (7<n D)7

=

is flat. This implies that (1<, D)} is n-truncated. As 7<,(D;}) is I-complete
by [SAGL Cor.7.3.4.3], there is a natural equivalence of E, -A-algebras:

(TSnD)? = TSn(Df\)
Hence ¢ is an equivalence of spectrally ringed co-topoi. O]

The following is a formal generalisation of [SAGL Cor.1.4.6.4]:
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Corollary A.2.4. For each integer n > 0, write fSpDMEZN for the full oo-
subcategory of fSpDM,,. n spanned by those n-truncated locally Noetherian for-
mal spectral Deligne—Mumford stacks. The inclusion

fSpDMiZN - fSp])lv[loc.N
has a right adjoint, given on objects by
X=(X,0%) » 17<nX = (X, 7<nO%).

Proof. This follows straight from the universal property of Pr[A.2.1] and the
observation that truncations of locally Noetherian formal spectral Deligne—
Mumford stacks remain locally Noetherian. O

Corollary A.2.5. Let X be a locally Noetherian formal spectral Deligne—Mumford
stack. Then for any integer n = 0 the truncation 7<, X and X represent the same
functor on n-truncated E,-rings.

Proof. Follows straight from Pr.[A21] as Spec R is a connective n-truncated
spectrally ringed oo-topos when R is a connective n-truncated E..-ring; see
[SAG| Ex.1.4.6.2]. O

A.3 Finiteness and compactness

Next, let us discuss finiteness and compactness conditions in fSpDM.

Proposition A.3.1. Let X be a locally Noetherian formal spectral Deligne—
Mumford stack. Then for any n = 0 the natural map 7<,X — X admits an
(n + 1)-connective and almost perfect cotangent complez.

Proof. These are local conditions, so we may take X = Spf A for a complete
Noetherian adic E, -ring A with finitely generated ideal of definition I € myA.
By the Hilbert basis theorem for connective E, -rings ([HAL Pr.7.2.4.31]) we see
T<nA is almost finitely presented as an E.- A-algebra and the cofibre of the map
A — 1<, Ais (n+1)-connective. By [HA| Cor.7.4.3.2] and [HAl Th.7.4.3.18], we
then see L = L._ /4 is (n + 1)-connective and almost perfect inside Mod,_, 4.
It follows from [SAG, Pr.7.3.5.7] that L is in fact I-complete, hence we have
a natural equivalence L =~ Lgpe,_ a/spra by [SAGL Df.17.1.2.8], and we are
done. O

Definition A.3.2. A formal spectral Deligne-Mumford stack ¥ = (X, 0%)
is quasi-compact (qc) if the underlying oo-topos X' is quasi-compact, ie, every
cover of X has a finite subcover; see [SAGl Df.A.2.0.12]. A morphism of formal
spectral Deligne-Mumford stacks

[ X=(X,0x) =Y = (Y, 0y)

is gc if for any qc object U of Y, the pullback f*(U) is qc in &', meaning &)y
is qc. A morphism of formal spectral Deligne-Mumford stacks is called quasi-
separated (qs) if the diagonal map A: Q) — 9 xx 9 is qc. We say X is gs if
X — SpecS is gs.
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It is a purely formal exercise that qc (and gs) maps are stable under base-
change—a fact we will use without further reference.

Proposition A.3.3. Let A be an adic Eo.-ring. Then Spf A is qc.

Proof. By [SAGL Rmk.8.1.1.9], we see the underlying oo-topos of Spf A is equiv-
alent to Shvf‘f0 a1 Where I is a finitely generated ideal of definition for the
topology on mpA. As this is the same underlying oo-topos of Spec(moA/I), it
follows from [SAGL Pr.2.3.1.2] that Spf A is qc. O

The following is a formal generalisation of a special case of [SAG] Pr.2.3.2.1].

Proposition A.3.4. Let X = (X, 0x) be a formal spectral Deligne—Mumford
stack. Then the following are equivalent.

1. X is gs.
2. For all qc objects U,V of X, the product U x V in X is qc.
3. For all affine objects U,V of X, the product U x V is qc.

Proof. Tt is clear that 1 implies 2 as U x V = A*(U, V) inside X x X, and 2 also
implies 1 as the quasi-compact objects of X x X are all of the form (U, V) for U
and V' quasi-compact in X. Pr shows that 2 implies 3. Conversely, for two
arbitrary qc objects U and V of X, using the fact they are qc, there exists two
effective epimorphisms U’ — U and V' — V where U’ and V' are affine. It then
follows that U x V is qc as there is an effective epimorphism U’ x V! - U x V
from a qc object of X. O

Corollary A.3.5. Let A be an adic E,-ring. Then Spf A is qcgs.

Proof. By Pr[A:3:3] we see Spf A is qc, and by Pr[A-37] it suffices to see that
for all affine objects U = Spf B and V = Spf C' inside Xspr 4, that the product
U x V in Agpra is qc. This product can be recognised as the fibre product
([SAG, Lm.8.1.7.3))

A

Spf B x SpfC ~ Spf <B®C>
Spf A A I

where [ is an ideal of definition for the topology on myA, which is qc by Pr[A:34]
O

The following statement is why we care about the adjectives of Df[A.3.2]

Proposition A.3.6. Let X be a formal spectral Deligne-Mumford stack. Then
X is qcgs if and only if there exists an étale hypercover U, of X such that each
U, is an affine formal spectral Deligne—Mumford stack for every n = 0. In
particular, the same holds for classical Deligne—Mumford stacks.
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Proof. First, let us assume X is qcgs, write X = (X, 0%), and set 4_; = X.
As a formal spectral Deligne-Mumford stack, there exists a collection of affine
objects U, in X such that | [, Uy cover X, and as X is qc, this collection can
be taken to be finite. As &)y~ Spf A, for some adic E.-ring A,, we see the
fact that [ [U, covers X is equivalent to the statement that

Spf Ay = Spf (H Aa) ~[[SpfAq — %

is an étale surjection, where we have used the finiteness of the above (co)product.
Set Yy = Spf Ag and Uy — My(US™1) ~ 4 | = X to be the étale surjection
above. The rest of this direction of the proof can be summarised informally by
inductively calculating the matching objects M, (4$"~!) which must be affine
as a finite limit of affine formal spectral Deligne-Mumford stacks. Using that
affines are qcgs (Cor. we find &l,,1 by taking an affine étale cover of
M, (Us"~1). To formalise this outline, we will need to play around with these
matching objects more carefully.

Inductively, let us assume the following three hypotheses:

1. Suppose we have the nth stage of an étale hypercover 4" such that
i, ~ Spf A,, is affine for each 0 < m < n.

2. Suppose that for every 0 < m < n, M, (Us™~1) is affine. The base case
that LUy ~ Spf A is affine holds by construction.

For every 1 < k < m < n, write ﬂfﬁ_k for the functor defined by precomposi-

tion with the shift functor, itself defined on objects by

ASTR 5 AST [7] = [i + k]

s,+ s,+

and on morphisms by sending ¢: [i] — [j] to ¢': [i + k] — [j + k] which sends
a+kw— ¢(a) + k for a =2 0 and —1 — —1. The third hypothesis is then:

3. Suppose that for every 1 < k < m < n, Mm_kﬂ(ilffr’fk) is affine. This
condition is vacuous in the base-case.

We claim that there is a natural equivalence

M =M, (U5") = lim US" ~8,  x MU (A.3.7)
[i]>[n+1] Mo (UE"Y) *

which occurs in fSpDM, as [SAGL Pr.8.1.7.1] states the oo-category fSpDM has
finite limits. To see ((A.3.7)) is an equivalence, recall that our diagram 1-category
above is the poset of proper subsets of [n + 1]. Using notation from [MV15]
§5.1], we see the opposite of this poset is precisely the 1-category Py(n + 2) of
nonempty subsets S of {1,...,n + 2}. This yields the equivalence:

M~ lim Us"®
SePo(nt2) "ISIHL
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Using the cubical limit manipulations of [MV15] Lm.5.3.6], we obtain the natural

equivalence of (A.3.7)):

M~ lim uiﬁ\SHl ~ $, X Mn(ui:ll_l)
SGPQ(?’L+2) M”(uf"—l)

Now, the map 4, — M, (US""1) is an étale cover by our first inductive hypoth-
esis and the natural map

Mn( .gffl) - Mn(uoén_l)

is an étale cover by base-change—each ,,, 1 — 4L, is an étale cover and M,,(—)
is a finite limit of such covers. We also note that M is qcgs, which follows
from (A.3.7), our inductive assumptions 1-3, and the fact that affines are qcqgs
(Cor|A.3.5)). This guarantees the existence of an étale cover 4, 1 — M, |1 (US"™)
with 1,41 an affine formal spectral Deligne-Mumford stack, from which we ob-
tain our first inductive conclusion for (n +1). As M = M, 1 (45") is qegs, we
also have our second inductive conclusion for (n + 1). For the third inductive
hypothesis, we consider M (k) = M, ff,jlfk), the only case left to con-
sider; the others fall under part 3 of the the previous inductive step. We claim
that M (k) is affine. To see this, use an index shift of to obtain:

M(k) = L[71—}’c-"—2 X Mn—k+1(ugn7k )

o fk+1
My e (US0)

The left and bottom objects in the fibre product above are affine by our induc-
tive hypotheses 1 and 2, respectively, so it suffices to show the right object in
the above fibre product is affine. This can be done by applying again,
noting the left and bottom objects are affine by inductive hypotheses 1 and 2
again and again considering the right factor. Applying this process (n—k)-many
times, it suffices to show Mo(U55,. 5) ~ $h,41 is affine, which follows from our
construction above.

Conversely, assume that X has an étale hypercover 4, — X where each 4, is
affine, which we write as U, — 1 when considered as objects in the co-topos X.
Given an arbitrary cover {V,}qer of X, so an effective epimorphism [[V, — 1
inside X, then we can consider the following Cartesian square inside X:

W —— Uy

L]

[ Vo — 1

All of the maps above are effective epimorphisms either by assumption or by
base-change; see [HTT09, Pr.6.2.3.15]. Products commute with colimits in an
oo-topos as colimits in co-topoi are universalﬂ hence we have a natural equiv-
alence in W ~ [ [, W, in X, where W, = V,, x Uy. As Uy is quasi-compact

52We say that colimits in a presentable oo-category C are universal if pullbacks commute
with all small colimits; see [HTT09, Df.6.1.1.2]. This holds in an co-topos due to the co-
categorical version of Giraud’s axioms; see [HTT09, Th.6.1.0.6].
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(as an affine object of X; see Pr , we can choose a finite subset of I, say
Iy, such that ] I Wo — Uy is an effective epimorphism. We then consider the
commutative diagram inside the oo-topos X

]—[Io Wy —— Uy

Lo

[ Vo —1

The top and right maps are effective epimorphisms by assumption, and the
bottom map is an effective epimorphism by [HTT09, Cor.6.2.3.12(2)], hence
X is qc. To see X is gs, we look at the Cartesian diagram of formal spectral
Deligne-Mumford stacks:

Ay
L[O E— Llo X L[Q

| |

X A%, xvxx

As {4, — X is an étale hypercover, the map Uy x Uy — 1 x 1 is an effective
epimorphism in X. As Uj is the oo-topos of an affine formal Deligne-Mumford
stack, then by Cor[A-3.5]we see £l is gs and the map Ay, is qc. It follows from
[SAGL Cor.A.2.1.5] that Ay is qc; in ibid, a qc morphism is called relatively
0-coherent. Hence, X', and therefore X, is gs. O

Let us now show the formal thickenings of [SAGL §18.2.2] preserve the ad-
jective qcgs.

Proposition A.3.8. Let Xg be a qcgs formal spectral Deligne—Mumford stack
and X9 — X a formal thickening. Then X is qcgs.

Proof. The adjective qcgs depends only on the underlying co-topoi, so it suf-
fices to show that Xy — X is an equivalence of co-topoi. To see this, consider
the reduction of a formal spectral Deligne-Mumford stack of [SAG] Pr.8.1.4.4].
From this one obtains the following commutative diagram of formal spectral
Deligne-Mumford stacks:

d
xred %,

L]

%red x

We know the natural map from the reduction of a formal spectral Deligne—
Mumford stack X back into X is an equivalence of underlying co-topoi (by [SAG]
Pr.8.1.4.4]), and the underlying oo-topoi of the reduction of a formal thickening
is also an equivalence (by [SAGL Pr.18.2.2.6]). Hence the horizontal and the left
vertical maps are equivalences of underlying co-topoi, hence the right vertical
map is as well. O
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Appendix B

Uniqueness of &P

It’s hell on Earth and the city’s on fire,

Inhale, in hell there’s heaven.

There’s a bull and a matador dueling in the sky,
Inhale, in hell there’s heaven.

Frank Ocean, Solo

For this chapter, which is based on [Dav21b], let us write My for the com-
pactification of the moduli stack of elliptic curves, and M} for the moduli stack
of smooth elliptic curves (written elsewhere as Mpgy). The main character in
this chapter will be Mgy, which classifies generalised elliptic curves (with irre-
ducible geometric fibres); see [Cesl7], [Con07], or [DR73] for some background
on these objects.

The following is a simple uniqueness statement for the Goerss—Hopkins—
Miller sheaf 0*°P on the small étale site of Mgy (of [DFHHI4]) as a functor
valued in homotopy commutative ring spectra.

Proposition B.0.1. The functor hO*°P: U°P — CAlg(hSp), from the small
affine étale site U of Mgy to the 1-category of homotopy commutative ring

spectra, is uniquely defined up to isomorphism by the property that it defines
natural elliptic cohomology theories (Df onU.

The proof of the above statement follows from the fact that each section
O0'*°P(R) is Landweber exact; see [Behl4, Rmk.1.6]. A remarkable fact about
O*°P is that the property that it defines a natural elliptic cohomology theory
characterises this sheaf with values in the co-category CAlg of E..-rings. The
following is stated (without proof) in [Lur09a, Th.1.1] and [Goel(, Th.1.2].

Theorem B.0.2. The sheaf of E..-rings 0*°P on the small étale site of Mgn
is uniquely defined up to homotopy by the property that it defines natural elliptic
cohomology theories on the small affine étale site of Mgn. The same holds for
the restriction O of 0P to the small étale site of M3.



B.1. A REDUCTION

The difference between the Pr[B.0.1] and ThlB.0.2]is two-fold: firstly, as the
former concerns presheaves of homotopy commutative ring spectra, rather than
the more structured E.-rings of the latter, and secondly, the natural transfor-
mations in the former exist in a l-category and in the latter such a natural
equivalence exists in an co-category of sheaves of E. -rings. At the end of the
day, both statements only show uniqueness up to some form of homotopy.

The utility of Th[B:0.2]is evident. For example, it retroactively shows that
the various constructions of 0*°P found in [Behl4], [HLI6], and [Dav2Ial §2]
(and also [Lurl8, §7] and [Dav20l §2.3] over the moduli stack of smooth ellip-
tic curves) all agree up to homotopy—we have used Th. several times in
this thesis already, such as in the proofs of Th[5.3.3] Cor[6.1.7, and Th[6.1.9]
Importantly, Th constructs noncanonical (see Rmk equivalences of
E -rings between all available definitions of Tmf; a conclusion which does not
follow directly from Pr[B.0.1] The author also finds the proof long enough to
warrant a publicly available write-up, even if the steps involved are mostly pre-
dictable.

To prove Th[B.0.2] we will first reduce the question to one of the connect-
edness of a certain moduli space (Th/B.1.1)) where we also formulate and prove
a statement about spaces of natural transformations which we will often use
(Pr[B.1.5). We then prove Th[B.1.1]which follows Behrens’ construction of Tmf
rather closely: first we work with the separate chromatic layers, before gluing
things together in both a transchromatic sense and then an arithmetic sense.
The K(1)-local case in this section requires a statement about p-adic Adams
operations on p-adic K-theory, which is the focus of Lm[B:3.1]

B.1 A reduction

Recall from Pr that h&™P is uniquely defined inside Fun (¢/°P, CAlg(hSp))
by the fact it defines an elliptic cohomology theory.
Theorem B.1.1. Write U (resp. Usm) for the (2-) category of affine schemes

sm

with étale maps to Mgy (resp. M%) Then the spaces

Z = Fun (U°?, CAlg) X {hotr}
Fun(U/°p,CAlg(hSp))

Z5M — Fun (U°P, CAlg) x {ho*or}
Fun(Ush,CAlg(hSp))

are connected.

Remark B.1.2. As mentioned in [Lurl8, Rmk.7.0.2], the moduli space Z5™ is
not contractible. In other words, Th[B.I.1]states that ¢'*°P is unique as a CAlg-
valued presheaf of elliptic cohomology theories on 5™ only up to homotopy,
and not up to contractible choice. We would like to guide the reader to an

explanation for this fact given by Tyler Lawson on mathoverflow.net; see
[Law].
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Proof of Th]B.0.2 from Th[B.1.1l The oo-category of sheaves of E.-rings on
the étale site of Mgy is equivalent, by restriction and right Kan extension,
to the oo-category of sheaves of E, -rings on the affine étale site of Mgy; see
Lm [6.1.10] for a similar argument. Note that the latter is an oco-subcategory
of Fun(U°P, CAlg), and that if a functor F': Y°P — CAlg defines a natural
elliptic cohomology theory and there is an equivalence F' ~ G, then G also de-
fines a natural elliptic cohomology theory. These two observations show that
it suffices to prove the space Z’ is connected, where Z’ is the component of
Fun (U4°P, CAlg)™ spanned by those functors which define natural elliptic coho-
mology theories. There is a map £ — Z’ as both 0P (defined by [Behl4],
for example) and any presheaf of E.,-rings equivalent to &*°P as a diagram of
homotopy commutative ring spectra, defines a natural elliptic cohomology the-
ory. The map Z — Z’ induces an equivalence on 7y as Pr[B.0.1] states that
any functor U°P — CAlg(hSp) which defines an elliptic cohomology theory is
isomorphic to h&**P. Th[B.1.1|then implies that the moduli space Z’, and hence
also Z, is connected. The same argument can be made for Z5™. O

Remark B.1.3. Write Uq for the small affine étale site of Mgy x Spec Q and
for each prime p write U, for the small affine étale site of Mgy x SpfZ,. The
construction of &*°P as found in [Behl4] for example proceeds first with a ra-
tional construction ﬁg’ P over Uq, and a p-complete construction ﬁ;"p over Up,.
The methods of our proof for Th. show that the moduli spaces Zq and
Zp, of realisations of hﬁg) P and hﬁf,of’ over these aforementioned sites, are also

connected. This means that analogs of T h. also holds for both ﬁ’g) P and
O}°P. The same holds for the p-completed and rational version of %P for simi-
lar reasons. Moreover, following the “arithmetic compatibility” discussed in the
proof of Th[B.1.1] it follows that the localisations ¢*°P[P~1] and &LP[P~!]
satisfy their own version of Th]B.0.2] where P is any set of primes.

The following is a short remark on the homotopy groups of elliptic cohomol-
ogy theories which will be important later.

Remark B.1.4. Let £ be an elliptic cohomology theory associated with a mor-
phism E: SpecR — Mpgy. It follows that there is a natural isomorphism
o€ ~ w® for all integers k, where wg is the dualising line for the formal
group E lj Indeed, as the odd homotopy groups of £ vanish, we see £ pos-
sesses a complex orientation which yields the classical Quillen formal group (A}gQ“
over mo& , for example. From this we see £ is complex periodic, meaning it
has a complex orientation and is weakly 2-periodic , and [Lurl8, Ex.4.2.19]
then implies that mo& is isomorphic to the dualising line for the formal group
G?O. Part 4 of Df states that mo& is naturally isomorphic to wg, and part
1 gives us the claim above.

To prove ThB.1.1} we will show that any two functors ¢ and ¢’ in Z can
be connected by a path in Z. In particular, we would like effective tools for
studying spaces of natural transformations between functors of co-categories.

The following is known to experts, and a model categorical interpretation can
be found in [DKS89].
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Proposition B.1.5. Let C,D be oo-categories and F,G: C — D be functors.
Suppose that for all objects X, Y in C the mapping space Mapp(FX,GY) is
discrete, meaning the natural map

Mapp(FX,GX) — Hompp(hFX, hGY)

is an equivalence of spaces. Then the mapping space MapFun(C,D)(R G) is also
discrete, so the natural map

MapF‘un(C7D)(Fa G) — Homy, Fun(C,'D)(F7 G) ~ HomFun(c,hD)(hR hG)

is an equivalence of spaces, where an h before a functor denotes post composi-
tion with the natural map D — hD; the unit of the homotopy category-nerve
adjunction of [Lur09b, Pr.1.2.3.1].

Proof. By [GHNI17, Pr.5.1], the space of natural transformations from F to G
is naturally equivalent to the limit of the diagram

Tw(C)P 1L ¢op x ¢ £2XG, pov  p Mepp(57), g (B.1.6)

where Tw(C) is the twisted arrow category of C (see [GHN17, Df.2.2]), and H is
the natural right fibration (see loc. cit,)ﬂ The limit of is by definition
the end of the composition C°? x C — S. Consider the following not a priori
commutative diagram of co-categories:

Tw(C)r —L— ¢op x ¢ — X9, pop x D

o e e T

—\:;
hTw(C)*P — = hC® x hC — e WD x hD — - — 2 S<o

(B.1.7)
Above, the vertical functors are the obvious ones, hence the left and middle
squares commute. Our hypotheses dictate that the dashed arrow above exists,
which we will now denote by P, such that the top-right and bottom left triangles
commute. As the inclusion of co-subcategories S<g € S, from the oco-category
of discrete spaces, preserves limits, we note it suffices to compute the limit of
(B.1.6) as the limit of P o T inside S¢g. As this limit lands in S¢g, which
is equivalent to the nerve of the 1-category of sets, we see the limit of P o T
can be calculated as the limit of the lower-horizontal composition of .
We then obtain the following natural equivalences, twice employing [GHNI1T7]
Pr.5.1], first for general oo-categories, and again in the classical 1-categorical
case:

MapFun(C,D) (F, G) = %;%)M(Fop X G)T = 'IlivI{IC)PT

53We will stick to the notation and conventions of [GHNTI7|, which is a particular choice
out of a possible two; see [GHNI17, Wrn.2.4].

176



B.2. PROOF OF UNIQUENESS

~ lim H(hF°® x hG)T' ~ H n hF,hG
TV\III(/I};IC) ( x hG) OMpyn(he,hD) )-

The final (discrete) space above is naturally equivalent to the set
HomFun(C,hD) (th hG)

from the natural equivalence of co-categories Fun(C,hD) ~ Fun(hC, hD). O

B.2 Proof of uniqueness

Our proof will follow the construction of &P presented in [Behl4] rather
closely—the reader may want to keep a copy at hand.

Let &: U°? — CAlg be an object of Z, hence it comes equipped with an
equivalence h¢: h@*°P — h& of functors U°P — CAlg(hSp). To see Z is con-
nected, it suffices to show h¢ can be lifted to an equivalence ¢: 0P — & of
presheaves of E.-rings on /. Fix such an h¢ for the remainder of this proof.
Let us work section-wise, so we also fix an object Spec R — My inside U, and
write

he: £°P = 6'P(R) - O(R) = &

for the given natural equivalence of homotopy commutative ring spectra. To
naturally lift this map to one of E. -rings we will work through the layers of
chromatic homotopy theory. This means we will first work K (2)-locally, K(1)-
locally, and then K (0)-locally, where K(n) denotes the nth Morava K-theory
spectrum at a prime p, before gluing these cases together with a p-complete
statement followed by an arithmetic statement.

(K (2)-local case) Fix a prime p. Writing (/—\) for base-change over SpfZ,,
we define Spf R — MZ, as the base-change of Spf R — Mgy over MEy,
where the latter is the completion of Mgy at the moduli stack Eu,F, of su-
persingular elliptic curves over F,,. This pullback Spf R® is affine by [Behl4l
Rmk.8.7]. Write E® for the elliptic curve defined by Spf R*® — M35,. Serre-
and Lubin—Tate theory yield another description of R%. Indeed, as Mi“sn,Fp is
zero-dimensional and smooth over SpecF,, it follows that Spec R%/I is étale
over F,, where I is the finitely generated ideal generating the topology on R*.
This implies R*/I splits as a finite product [ [, x; where each «; is a finite sep-
arably field extension of F,,. This provides a splitting of Ey, the reduction of
E® over R/I, into Ep ~ || EZ Writing R; ~ W (k;)[u1] for the universal defor-
mation ring of the pair (x;, EZ) with associated universal formal group Ess R,» We

obtain a natural equivalence R*® ~ [[. R; as E%: Spf R® — MJ, was étale;
see [Beh14, Cor.4.3], and we have seen this for p-divisible groups in Pr}3.1.10

By [Behl14, Pr.4.4], the K(2)-localisations 5;?5’2) and £k (2) are elliptic coho-

mology theories for R*, and also split into products 8; °P and &;. It follows from
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[GHO4, §7] (also see [Lurl8, Rmk.5.0.5] or [PVI9 §7]), that these K(2)-local
E_ -rings 5;??2) and Ek(9) are naturally equivalfz\nt to the product of Lubin—
Tate E.-rings associated to the formal groups £} over the (finite and hence
also) perfect fields x,;. By idem, we see that morphisms between these Lubin—
Tate E..-rings are defined by the associated morphisms on the pairs (x;, £ ).
As hog () yields an equivalence on my as well as an equivalence on associated
Quillen formal groups, we see ho (o) lifts to a morphism ¢ (o) : 5?&) — Ex(2)
of K(2)-local E,.-rings, which is unique up to contractible choice. This unique-
ness allows us to use Pr[B.I.5] to conclude that the collection of morphisms of
E.-rings define a natural morphism ¢x(): ﬁ;?(%) — Ok (2) of presheaves of
E.-rings on U; here (—) g (2) denotes K (2)-localisation.

(K (1)-local case) Fix a prime p. Consider the K(1)-localisation

h¢K . top _ ﬁtop

K(l) K(1 )(R) - ﬁK(l)(R) = 5K(1)

of the map h¢ of homotopy commutative ring spectra. Recall from [Behl4l
§6], that the p-adic K- theorylﬂ of an E, -ring has the structure of a §-m,KU,-
algebra, which is functorial in maps of E,-rings. Let us write M%r]‘li for the
moduli of generalised elliptic curves over p—complete rings with ordinary re-
duction modulo p (see [Behldl p.3]), and MEd(p*) for the moduli stack of
generalised elliptic curves F over p-complete rings and level structures given by
an isomorphism G ~ [ of formal groups.

Claim B.2.1. The following facts hold for the p-adic K-theory of Eﬁg(pl) and
EK(l)Z

1. Both are isomorphic in degree zero to the pullback of Spec R — Mgy with
the composite

d
MEL(p™) — ML — Men — Mu;

2. Both are concentrated in even degrees;

3. Both are ind-étale over R°*4, the base-change of Spec R over M%< in

degree zero; and

4. Both degree zero components have vanishing higher continuous group co-
homologies, with respect to its Z, -action inherited from part 1.

Proof of Clm[B.2.1] Part 1 is obtained from [Beh14) Pr.6.1] by base-change.
Part 2 also follows from a graded version of [Behl4, Pr.6.1]. Parts 3 and 4
follow from part 1, as the map M (p™*) — MZE¢ is not only ind-étale, but a
Z;-torsor; see [Beh147 Lm.5.1]. A

54Recall that for a spectrum X, one defines its p-adic K-theory as the homotopy groups
of the localisation K4 X = 7y L (1)(X ® KUp), or equivalently 74 ((X @ KUp), ).
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For another object Spec R’ — Mgy inside U, consider the map induced by
the p-adic K-theory functor
Ma‘pCAIgK(l) (5;?&), 5}((1)) - HomGAngQ (K,Qg;?a), K,Qc‘:}{(l)), (B.2.2)
where 5}((1) = Ok)(R'). Combining Clm. and the fact that R°™ is
smooth over Z, with [Behl4, Lm.7.5] implies that all the André—Quillen co-
homology groups in [Behl4l Th.7.1] vanish. By ibid, it then follows that the
above map is an equivalence of (discrete) spaces. Despite the fact that each
hox(1)(R) is currently just a morphism of homotopy commutative ring spectra,
Lm [B.3.] states that its zeroth p-adic K-theory is a morphism of f-algebras.
As Z-graded p-adic K-theory obtains a #-algebra structure from that in degree
zero, the p-adic K-theory of h¢g () defines an element inside the codomain
of the equivalence when R’ = R. By Pr[B.1.5, we can therefore lift
hép): hﬁ;?a) — hOk (1) to a morphism ¢ (q): ﬁ;?l) — Ok1 of presheaves
of E.-rings on U.

(K (0)-local case) The Morava K-theory spectrum K (0) is equivalent to Q,
the Eilenberg-MacLane spectrum of the rational numbers. We can lift h¢g
globally, meaning we will not have to work section-by-section. Consider post-
composing the functors *°P and & with the rationalisation functor from CAlg
to CAlgq, and denote the resulting presheaves with a subscript Q. By construc-
tion (also see [HL16, Pr.4.47]) the functor ﬁgp is formal, and by [Mei21) Pr.4.8]
the sheaf 0q is also formal. This yields the following chain of equivalences lifting
h(,ZSQ:

~ h¢Q,~ ~
bq: ﬁ&op = W*ﬁg)p — 5 1 0q < Oq

(Transchromatic compatibility) Fix a prime p. We now have morphisms
fitting into the following not a priori commutative solid diagram of presheaves
of p-complete E,-rings on U:

o to
o, Oy
N W
2 ‘
O Ok (2)
J (B.2.3)
t af‘,(;i)oln t
Oty — (O K (1)
d’KkA (¢K(2))K(X
Ok 1) F— (Ok@) k)

The right face commutes from the naturality of the unit of the K (1)-localisation
functor. We also claim that the bottom face commutes. In other words, we
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claim that for each Spec R — M inside U, there is a natural path v(R) between
Qehrom © e (1) and (Px(2)) k(1) © al?  as maps of E..-tmf-algebras. Note that
the E..-tmf-algebra structure on (& K(Q)) k(1) can come from either one of these
maps (and a posteriori these two choices will agree up to homotopy). By [Behl4l
p.44], the p-adic K-theory functor induces an equivalence of discrete spaces

Mapoayg, (7, Ex(2)) = Homy Algey ), (KULEYP KUpEk(2)  (B.24)

where everything above is implicitly K (1)-localised (for typographical reasons).
As ehrom © Gr(1) and (Pr(1)) k(1) © al¥P  are isomorphic as functors into
CAlg(hSp), by assumption, their effects on p-adic K-theory are equal. By
Lm[B:3.1] we see these morphisms of homotopy commutative ring spectra in-
duce morphisms of #-algebras on p-adic K-theory, and these morphisms agree
by the previous sentence. This yields two equal elements in the codomain of
(B:24), and hence a homotopy of K(1)-local E..-tmf-algebras between these

maps. By virtue of Pr. we obtain a homotopy between achrom © ¢k (1)
and (dx(2)) k(1) © azﬁﬁom as morphisms of presheaves of K (1)-local Ec-tmf g (q)-
algebras from ﬁ;?(pl) to (Ok(2))k(1)- Using the fact that the front and back
faces of are Cartesian, we obtain a natural morphism of presheaves of p-
complete E..-rings ¢,: ﬁ;"p — 0, on U, lifting h¢,,, as indicated by the dashed

morphism in (B.2.3]).

(Arithmetic compatibility) Currently, we have morphisms ¢q and ¢, fit-
ting into the not a priori commutative solid diagram of presheaves of E. -rings
on U:

ﬁtop\ Hp ﬁzt)op
\\\ ol H Pp
o Hp ﬁp
J (B.2.5)
ﬁtop (top
Q (Hp p ) Q

k (I ¢k

0q (Hp ﬁp>Q-

Similar to the transchromatic compatibilities, the right face naturally commutes,
so we are left to argue why the bottom face commutes. To study the bottom
face, let us first work on the open substacks Mgy [czl] and Mgn[A~] of Mgy,
which themselves form a cover of Mpgy; see [Behl4, §9]. We then follow an
analogous argument to the transchromatic situation above; see [Behl4, p.51]
which shows the discreteness of the desired mappings spaces. Indeed, as the
two homotopies witnessing the commutativity of the bottom face of re-
stricted to the substacks Mgy [czl] and Mgy [A™1] agree on their intersection
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Men[c;t, A~1] (as the mapping spaces in question are discrete) these homo-
topies then glue to a homotopy on Mgy. This yields a homotopy witnessing
the commutativity of the bottom face of . As the front and back faces of
(B.2.5)) are Cartesian, we obtain our final natural equivalence of presheaves of
E, -rings ¢: £°P — & on U, lifting he.

Therefore, Z is connected. The same argument can be made for Z5™. O

B.3 Compatibility of # structures

The above proof of Th[B.1.1]is contingent on Lm[B.3.1] whose proof we find
rather delicate. Recall from [Beh14l §6] that the p-adic K-theory of an E..-ring
has the structure of a f-algebra, a Z,-algebra with stable Adams operations 9
and a f-operator (see [GHO4, §2.2]), and this structure is functorial in morphisms
of E, -rings.

Lemma B.3.1. Fiz a prime p. Let O be an object of Z and h¢: hO*P = ho be
the given equivalence of diagrams of homotopy commutative ring spectra. Then
for any étale Spec R — My, the map induced by

ho: F'P = O, (R) = Ok1y(R) = F
on the zeroth p-adic K-theory ring is a morphism of 0-algebras.

In general, it is not true that a morphism of homotopy commutative ring
spectra between E,-rings should induce a morphism of #-algebras upon taking
their p-adic K-theory. However, in the situation above the sections of the K (2)-
localisation of the sheaf of E-rings & have a prescribed E -structure given
by Lubin—Tate spectra (also called Morava E-theory); see the K(2)-local case
in the proof of Th|B.I.1] above. The comparison map in the chromatic fracture
square between the K (1)-localisation of & and the K (1)-localisation of its K (2)-
localisation is a map of E . -rings, and if we can show it induces an injection on
p-adic K-theory we would obtain Lm/[B:3.1} This is first done for an explicit
étale morphism into Mgy, which has the properties that it covers Mg} and
each of its connected components is an integral domain. A little descent and
deformation theory then generalises this result for a general étale morphism.

Proof. To show \: K{ F'°P — K{ F, the map induced by h¢ on p-adic K-theory,
is a morphism of #-algebras, one must check it commutes with the stable p-adic
Adams operations ¢ for every £ € Z; as well as the action of the operator 6.
The stable p-adic Adams operations /¢ are constructed on the spectrum KU,,
so we automatically have compatibility with them for any map of spectra. It will
be shown shortly that both rings above are étale over the ring V., hence they
are V2 -torsion free. In particular, this implies that both K§ F*P and K§ F are
Z,-torsion free, in which case the operator 6 is equivalent datum to the unstable
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p-adic Adams operator ?; see [GH04, Rmk.2.2.5]. Therefore, suffices to show
that the following diagram of Z,-algebras commutes:

Ky Fror —2 Ky F
Mw f/’ (B.3.2)

KjFtor 2 Ko F

We will write 1f,, for these unstable Adams operations on p-adic K-theory to
differentiate them from what will come. Let us write R°™ for the base-change
of Spec R — Mgy over MEYH — ./\/lEu — Mgy, where MOErl‘f is the moduli
stack of generalised elliptic curves over p-complete rings whose reduction modulo
p is ordinary. By [Behl4, Pr.7.16], we see ]-';f(pl) is an elliptic cohomology

theory for Spf R'Y — M4 and we can also consider F (1) as an elliptic
cohomology theory for Spf R*Y — M4 using hop(1). Define W' using the
Cartesian diagram of formal stacks

SpEW ——— M (p”)

| |

Spf RO ——— Mgy

where MZd(p*) is the formal stack of generalised elliptic curves E over Spf R
with ordinary reduction modulo p with a given isomorphism 7: ém — E’; see
[Beh14, §5]. The stack M{(p™) is represented by the formal affine scheme
Spf V., which is ind-étale over MErH; see [Behldl p.14-5]. This W also has
the structure of a #-algebra (see [Behl4, §6]), and we denote the p-adic Adams
operation on W by wglg. By [Behldl Pr.6.1], or rather its proof, we obtain
isomorphisms of Z,-algebras v*°P: K§ F*°P >~ W and v: K{ F ~ W, which
are natural in complex orientation preserving morphisms in CAlg(hSp). These
isomorphisms are not a priori isomorphisms of f-algebras; see [Behl4, §6.2].
As F obtains the structure of an elliptic cohomology theory for R°™ from the
equivalence hop (1), we see that the following diagram of isomorphisms of Z,-
algebras commutes:

K§FoP — 2 S KQF

A

By the construction of %P (see [Behl4, Rmk.6.3]), we see v*™P is an isomor-
phism of f-algebras. To show A is a morphism of #-algebras, it suffices to show
v is a morphism of #-algebras, or in other words: (B.3.2) commutes if and only
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if the following diagram of Z,-algebras commutes:

K)F —2s W
WGP l e (B.3.3)
K¢ F —— W

Let us now prove this is the case for a specific étale map Spec R — Mgy.

(Choosing a particular étale morphism) Recall the moduli stack M5™(N)
of smooth elliptic curves with T';(N)-level structure, from [Beh20, (1.3.12)]
for example or the discussion before Df.[7.1.3] Importantly, recall the map
M§™(N) — ./\/lSErﬁ’Z[%] is an étale cover and that for N > 4 the moduli stack

M5™(N) is in fact affine. This implies that the morphism of stacks

Spec A = M7"(4) u MY (5) > M 7114 U Mgﬁ,z[é] — Mg — Mg

1
2
is étale, and the restriction to My} is an étale cover. By base-change over
Spf Z,, we obtain an étale map E: Spf A — Mpgy. Following [Behl4 p.42-3],
write A, for the graded ring defined by Ay = w%k(Spf A) were FE is the elliptic

curve over A defined by the map of formal stacks above. Note that the Hasse
invariant vy for E lives in Ay(,_1). Let us also make the following definitions:

AP = (A)'y AT = (A0, AT = AD)]y (B.34)

If we omit the subscript * we are implicitly considering the ring in degree zero.
By [Behl4, (8.6)], there is a canonical map ay: AYd — (A435)°" as v; is invert-
ible in (A45%)°" and we now define W*° using the diagram of stacks

Spf W™ —%— Spf W —— Mg (p”)

J J l (B.3.5)

Spf(Ass)ord (&3 Spf Aord M%Iﬁi7

where all squares are Cartesian. The ring W obtains a #-algebra structure
from the above diagram, and in such a way that &: W — W*® is a morphism of
f-algebras; see [Behl4dl p.40]. We claim that & comes from a map of E,,-rings.

Claim B.3.6. The zeroth p-adic K-theory of the canonical map of E. -rings
Qehrom: T = Ok 1y (A) = (Ok(2)(A)) k1) = (F*)°¢

is isomorphic to a.
Proof of Clm.. We have already seen that F°rd = F, k(1) is an elliptic
cohomology theory for the map Spf A4 — M, and similarly by [Behl4,

Lm.8.8], we see that (F*)°™ is an elliptic cohomology theory for the map

183



B.3. COMPATIBILITY OF ¢ STRUCTURES

Spf(A%)°rd — M@, The same is true for A = ﬁ;??l)(A) and (ﬁ;?é)(A))K(l) =

A’, and in this case we know that taking my of aly> : A — A’ is isomorphic
to a: A — (As8)°rd by construction; see [Behl14, p.43-4]. The naturality of
h¢: 0*°P — ¢ and the chromatic fracture square imply that my of the natural
map of E,.-rings achrom : FO'4 — (]-'SS)Ord also realises «, and hence taking ze-

roth p-adic K-theory realises &. This proves Clm A

Recall that Ford = & k(1) (A) for our choice of A above. Consider the diagram
of Z,-algebras

K4 Ford 11
’L/)fop Ké\ (fss)ord /s
J (B.3.7)
K Ferd W

. N

K(/)\ (]:ss)ord Wss’

where the maps are the obvious ones used above, and all the vertical morphisms
are the unstable Adams operations; wfop on the left, and w;’lg on the right. Note
that the top and bottom faces commute by Clm[B.3.6] the right face commutes as
a: W — W*S is a morphism of §-algebras, and the left face commutes as aenrom
is a morphism of E, -rings. Most importantly, the front face also commutes.
Indeed, from the arguments in the K(2)-local case of the proof of Th. we
see F*° is naturally equivalent to a product of K(2)-local Lubin—Tate spectra
recognising the given elliptic curve over Spf A%, and we can then apply [Behl4l
Th.6.10]; the hypotheses and proof of this theorem are dispersed between pages

21 and 24 of idem. The back face of (B.3.7) is precisely (B.3.3) for R = A.

Claim B.3.8. The morphism a: W — W** is injective.

Using this claim, to show that the back face of commutes, it suffices
to do so after post-composing with a. This follows from the above considerations
by a diagram chase. Hence the back face of commutes, which yields the
commutativity of for this particular choice of étale map Spec A — Mpy,.

Proof of Clm|B.5.8, As M@ (p”) — M is ind-étale (see [Behl4, Lm.5.1]),
it is flat. By base-change, we see that A°™® — TV is also flat, hence & is injective
if we can show « is injective. To do this, we will show a,: AYY — (A$)°rd is
injective. Using the notation above, we find ourselves with the following com-
mutative diagram of graded rings, where all maps are the indicated localisations
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or completions:

Ay —— A*[vl_l] _ A*[Ul_l]lf = Aord

J{’Y lﬂ l&*
A s Ao Y] —— Ao = (AR,

Let us now make the following remarks from this diagram:

1. From our choice of A, we have A = A; x Ay, where A; and A5 both integral
domains; see [BO16l Th.1.1.1] for the M5™(5)-case, and the M5™(4)-case
is similar It follows that v can be written in the following commutative
diagram of graded rings

Ay —— AT = (A},

J L

Y1 XY2 ss ss
A*71 X A*72 E— A*,l X A*,Q.

The ring A is Noetherian as it is finitely presented over SpecZ, so both
Ay and As are Noetherian integral domains. In particular, the completion
maps -y; are flat for i = 1, 2. If we know these maps ~; are nonzero, then it
immediately follows that they are injective. To see that they are nonzero,
it suffices to show that v; is not a unit inside both A, and A, o. This is
where our choice of A comes in. If our fixed prime p # 2,5, then for both
1 = 1,2 the image of the map

Spf A; — M\SEI{} — Mg

contains a supersingular elliptic curve, as all supersingular elliptic curves
are contained in the smooth locus of Mgy. This implies that v; cannot
be a unit, else Spf A; —» Mgy would define only ordinary ellipticAcurves
of height one. Similarly, if p = 2, then the p-completion of A is As, and
we again see v; is not a unit so 72 = 7 is injective. The same holds for
Ay when p = 5. This implies that v; x 7o is always injective, hence =y is
injective.

2. As [ is the vy-localisation of v, and localisation is exact, we see that [ is
also injective.

3. Standard arguments show that the p-completion of 5, also known as a,
is also injective. Indeed, limits are left exact, so it suffices to show each

55Indeed, following the proof of [BO16, Th.1.1.1], which in turn uses [Hus04, §4.4], each
elliptic curve E in Weierstrafl form over a Z[%]—algebra R with (0,0) a point of order 4 can
be moved into (non homogeneous) Tate normal form y? + (1 — c)xy — by = x> — bx?. As
(0,0) has order 4 we have [2](0,0) = [—2](0,0), which by [Hus04), Ex.4.4] yields ¢ = 0. As in
the proof of [BO16, Th.1.1], we see M1(4) is equivalent to spectrum of Z[%,b7 A~1] where
A =b*(1 + 16b).
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o in the following commutative diagram of rings is injective, for every

k=1
A*[”fl] — Ayfv 1]/Pk

Pk

Aoy '] —— Aoy /pk

Given an element T such that ok (Z) = 0, then we first note that any lift
x over T is sent to a $(x) such that p*3(z) = 0. However, A[v7 ] is flat
over Z, as we have the following composite of flat maps:

Z—>Zp—>ﬁ—>A* l)Aff—)Aff[vl_l];

the second map is flat as Spec A — Mgy is étale and Mgy is smooth
over Z, and the third map is flat as each w%k (Spf A) is a line bundle
and hence projective of rank 1. This implies that A5 [v] 1] is torsion-free,
hence 3(x) = 0. As f3 is injective, this implies z = 0 and T = 0, hence ¥
is injective.

It follows that & is injective. A

Reduction to a general étale morphism Let Spec R — Mgy be an arbi-
trary étale morphism now, and consider the Cartesian diagram of stacks

Spec B —— Spec A

l |

Spec R —— MEH,

where Spec A = M§™(4) u M5™(5) is that of the previous paragraph; the stack
Spec B is affine as My is separated. All of the morphisms above are étale by
base-change, so we can consider the morphism of E,-rings ¢(A) — €(B).
Claim B.3.9. The morphism of E, . -rings &(A) — O(B) is étale.

Proof. Recall from [Lurl?, §7.5] that a morphism A — B of E.-rings is

étale if the morphism mp A — 785 of discrete commutative rings is étale and the
natural map of mgB-modules

B ® me A — m.B
Tro.A

is an isomorphism. The fact that mo0(A) — m(B) is étale follows from the
facts that A — B is étale and & defines a natural elliptic cohomology theory.
The condition on the higher homotopy groups also follows as & defines a natural
elliptic cohomology theory; see Rmk[B.1.4] A
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By [Lurl?, Th.7.5.0.6], the mp-functor induces an equivalence of co-categories
CAlgh 4y ™ CAlgY,

where the superscript indicates subcategories of étale algebras. By Clm[B:3.9]
for any étale E, -0(A)-algebra B such that moB is isomorphic to B as an A-
algebra, there is a equivalence of E.-0(A)-algebras €/(B) ~ B, which is unique
up to contractible choice. As we have proven Lm[B.3.1] for Spec 4, it follows
from the proof of Th.B.I.1] above that the equivalence of homotopy commu-
tative ring spectra h¢(A): 0*°P(A) ~ O(A) can be lifted to a morphism of
E,.-rings. The composite 0(A) ~ O%°P(A) — O¥P(B) is also an étale E-
O (A)-algebra recognising B, hence we obtain a natural equivalence of E-&(A)-
algebras 0*°P(B) ~ 0(B). As 0*°P(B) is 6-compatible (see [Behl4, Rmk.6.3]),
we see O(B) is also f-compatible, meaning that commutes for R = B.
Finally, let us turn our attention to &(R) — O(B).

Claim B.3.10. The morphism induced by 0(R) — €(B) on zeroth p-adic K-
theory is injective.

Assuming the above claim, it immediately follows that for our arbi-
trary R. Indeed, Clm[B:3.10| provides us with an injection of #-algebras induced
by ¢(R) — ¢'(B), which allows us to check the commutativity of in the
same diagram for R = B, which we know commutes by the above paragraph.

Proof of Clm]B.3.10, The morphism Spec B — Spec R can be factored into
the following diagram of formal stacks:

Spf W —— Spf W]S{m —_ Spf Wrp —— MoErﬁi(p"/v)

| | I !

Spf éord Spf Eord,sm J’%ord M%rﬁi

! ! | |

SpfB —— SpfR*™ — 5 Spf R ——— My

l l l |

Spec B —— Spec "™ ——— Spec R ———— Mgy

| | |

Spec A ——— My ——— Mg

(B.3.11)

—

Every square above is Cartesian, and the (—) indicates base-change with Spf Z,,.
By [Behl4l Lm.6.1], the morphism Wxr — Wy above is isomorphic to the mor-
phism induced by O(R) — 0(B) on p-adic K-theory, hence it suffices to see the
composite map

Wgr —» Wit - Wp, (B.3.12)

featured in the top-left corner of (B.3.11)), is injective. As Spec A — My is
an étale cover, then by base-change we see Wi" — Wpg is also faithfully flat,
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and hence injective. Observe that Wr — W™ is an open immersion of formal
affine schemes by base-change as M} — Mgy is an open immersion of stacks.
Moreover, we claim the open immersion R — R°™ has scheme theoretically
dense image as A is a nonzero divisor in R; see [Stal [Tag 01RE]. Indeed, to see
A is not a zero divisor, it suffices to show that the image of Spec R — Mgy
has nontrivial intersection with the image of Mgj;. This is clear on the level of
underlying topological spaces, as the inclusion |[MPE;| — |Magn| is equivalent to
open immersion of coarse moduli spaces |AL| — |P}| which adds the point at
o0, and the map |Spec R| — |Mgy| is open as étale morphisms are in particu-
lar flat and locally of finite presentation; see [Sta, Tag 06R7]. As all the right
vertical maps in are flat, and R — R®™ is quasi-compact (as a map
of affine schemes), then [Stal Tag 0CMK] tells us that Wr — W™ also have
scheme theoretically dense image. Another application of [Stal [Tag 01RE] shows
this open immersion Wr — WZ" must be injective. Therefore, the composite

(B.3.12)) is injective. A
This finishes our proof of Lm|[B.31] O
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Appendix C

Summaries

On a distant beach, lonely and wild,

At a later time, see a man and a child,

And the man takes the child up into his arms,
Takes her over the breakers to where the water is
calm.

Paul Kelly, Deeper Water

C.1 Summary for a general audience

The goal of this thesis is to further demonstrate that the philosophy and lan-
guage of homotopy theory, when applied to number theory, produces interesting
results in both disciplines. Homotopy theory was born to aid in the study of
geometry, but since the 1960s it has been viewed as a new philosophy to study
mathematics. Number theory, on the other hand, has its roots in ancient Baby-
lon and Egypt and seeks to understand numbers and the relationships between
them. In this summary, I discuss some of the motivations behind homotopy the-
ory and highlight the point-of-view that this theory is built to understand the
whys and the hows (rather than just the whats) before we see this philosophy
in the world of number theory.

The concept of a space—a set with a notion of “closeness”—frequently oc-
curs in mathematics. Some examples quickly come to mind, like a sphere and a
doughnut, as well as more complex pictures, like a dragon; see Fig[C.I] Quite
often, you might also find yourself with something you want to understand, like
the equation y? = 23 — 2z + 2 or the iterative equation f.(2) = 22 + ¢, and
produces a space of solutions; see Fig[C.2] A thorough study of these spaces of
solutions can help discover new and interesting things about the equations you
started with. In more general terms, many things that you want to study in
mathematics can be understood through a space whose elements are what one
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(b) A doughnut D
(a) A sphere S

Figure C.1: Some expected examples of spaces

-

Mandelbrot set

y =3 —2z+2

Figure C.2: Some less expected examples of spaces

is truly interested in. With this in mind, one then wants a collection of tools
to study spaces in general, before undergoing a study to learn what these tools
say about our favourite spaces.

For example, you might want to prove that the plane R? is not the same
as space R3 (two dimensions vs three dimensions). We might hope this is true,
but how could you prove these spaces are different? One way is to use a tool
that counts the holes in a space X, written as hi(X), and the “removing a point
trick”. In more detail, notice that if you remove a point p from R2, you create
a hole, meaning there is a looped path around p which cannot be deformed
so that it does not go around p without this deformation crossing through p.
This means there is a hole in R? — p, and it turns out this is the only hole, so
hi(R? —p) = 1. When you remove a point ¢ from R?, any looped path you
draw around ¢ can be deformed so that it doesn’t go around g anymore—there
is an extra dimension of wiggle room to do this compared to the case in two
dimensions! This means that hy (R? —¢) = 0, and so R? — p and R? — ¢ cannot
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be the same, and hence R? and R? are also not the samem For an example
used in this thesis, a question about the uniqueness of a certain object &P is
rephrased in terms of a space Z having the property that any two points on
that space can be connected with a line; this is Th[B.I.1] and the focus of §B]

What does this all have to do with homotopy theory? Superficially, it is the
fact that the deformations of the paths in the above example are called homo-
topies. More importantly, these homotopies are individual pieces of data that
witness that a loop can be deformed in a certain way, and the lack of such a ho-
motopy confirms that such a deformation does not exist! A deeper exploration
into the mathematics behind loops will further expose why these homotopies
are important.

We all know the equation x + (y + z) = (z + y) + z, or at least we find
its implications obvious—picking up 2 apples when I already have 3 in my left
hand and 1 in my right totals the same number as picking up 1 apple when I
already have 5 in my hands. In these simple cases, we do not need to remember
the reason why an equation is true, we just need to remember the fact that it
is true. This can lead us into trouble further down the mathematical path, for
example, if we want to build a theory of adding loops together. To be more
precise, a loop a on a space X is a drawing of a circle on X where the pen does
not leave the space, and let us assume it always takes 1 minute to draw a loop.
We do not just want to remember the picture of this circle on X, we want to
remember how we drew it—otherwise, we cannot tell if someone drew one circle
in 60 seconds, or drew that same circle in 1 second 60 times in a row. Using
all of this information, we can add two loops a and 3 together as long as they
start at the same point. Indeed, we can define the loop « + 3 by first drawing «
and then immediately drawing S—as they start at the same point the pen does
not leave X—making sure to draw each loop twice as fast as they were defined
to assure that together it still only takes 1 minute to draw « + 5. Let us now
consider what happens when we add three loops «, 3, and 7y together in a row.
There are (at least) two ways to do this:

e a+ (S +7), which travels twice as fast around « for 30 seconds, and then
four times as fast around 8 and as well as v for 15 seconds each, or

e (a+ )+, which travels four times as fast around « and as well as 3 for
15 seconds each, followed by going around ~ twice as fast for 30 seconds.

Both of these options have the same picture (see Fig., but these loops are
just not the same! At 15 seconds, on the first loop, we are halfway through
a, but on the second loop, we have just finished . However, you can deform
between these two options by drawing « for 30—t seconds, then 3 for 15 seconds,
and finally « for 15 + ¢ seconds, as ¢ varies between 0 and 15. This is the very
definition of a homotopy H, g~ between a+(5+~) and (a+3)+~. As ¢ varies,

56 As an exercise to the reader: can you calculate h1(S) or hi(D), ie, can you count the
holes on the sphere and the doughnut? What does the answer say about S and D?
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Figure C.3: Three loops «, 3, and  all starting at a common point x.

this homotopy gives us a little path from one loop to the other. We write this
as:

Hopria+(B+7) = (a+8)+y

More geometrically, in the space of loops on X, suggestively denoted by QX
the loops a + (8 ++) and (a+ 3) + v are two different points in this space QX
and H, g is a path between these two points; see Fig{C.4} It seems this single
homotopy has saved the day, as it witnesses that a + (8 + ) can be deformed
into (a + B) + 7, in other words, this homotopy witnesses these two different
loops are equivalent. However, now we can investigate the sum of four loops «,
B, v, and 6. It turns out there are five different ways to add four loops together,
but, even worse, there are two different ways to deform between these choices
using the homotopy H above:

(a+p8)+(v+9)

a+ B+ (y+9)) (a+B)+v)+6 (CL1)
O‘+Hﬂ,mél THa,ﬁ,w""‘s

a4+ ((B+7v)+9) (a+(B+7)+0

Ha g1v,5

It is not clear which direction from a+(5+(y+9)) to ((c+ ) +7)+4 is better—
to go up and over, or down and under—just as it was not clear if « + (8 + )
was better than (a+ ) ++. Similar to how the homotopy H was a deformation
between two loops, there is a higher homotopy between the top two arrows and
the bottom three—another kind of deformation (which you could write down
with enough patience). Just as H is a path in the space of loops on X, this
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ox (o7

e

—

Figure C.4: A part of the space of loops QX of X, and a path H, g from the
point a + (8 + ) to the point (o + 8) + 7.

higher homotopy is a surface in the space of loops: the space in the middle of
. You may wonder about adding together five loops, or six, or as many
as you can count, and you may ask if it is possible to write down all of the
higher homotopies as well. This particular problem was solved by Jim Stasheff
in [Sta63], where he shows that all of this structure, the homotopies and all of
the higher homotopies, can be captured using polygons called associahedmﬂ

There are many things you might want to do in homotopy theory other than
add loops together, but whatever you do, you need to make sure to remember
all of the homotopies and higher homotopies—to remember all of the whys, and
the whys between the whys, etc. This seems like an unwieldy thing to do, and in-
deed, it took homotopy theorists many years and many different systems to try
and make this intuition rigorous. Recently, this has culminated in the theory of
oo-categories, where the oo indicates that we are interested in an infinite amount
of homotopical data (all of the higher homotopies). This is not the only system
used to control all of these homotopies, but it is the system used in this thesis,
and it allows us to easily work with all of this data at once without becoming
(too) confused. Let us now discuss how this philosophy of homotopy theory can
be applied to study certain equations.

There is a mathematical concept known as a ring which is a place where
many of our favourite equations make sense—for any two elements x,y in a
ring R, you can ask if 22 + 22 = y holds inside the ring R. In more detail, a
ring R is a set with an addition and a multiplication operation that satisfy the
usual algebraic conditions from high school, such as z + (y + 2) = (v + y) + 2,
for example. To introduce homotopy theory into the study of rings, you want

57The curious reader might find the Wikipedia page for associahedron quite entertaining.

193



C.1. SUMMARY FOR A GENERAL AUDIENCE

to replace the equalities in the algebraic conditions for a ring with something
of a homotopical flavour. A derived ring R is a space with an addition and a
multiplication operation satisfying a list of algebraic conditions not up to equal-
ity, but up to a particular choice of homotopy (and higher homotopies between these
homotopies, and even higher homotopies . . )@ For example, given a triple of points x,y, z
in a derived ring R, there is a homotopy (so a path in R) from x + (y + 2) to
(x + y) + z which witnesses the fact that these two points are “the same”, and
higher homotopies like those between the different ways to add loops together
above. The space of loops on X discussed above gives this space of loops half
of the structure of a derived ring (either the addition or multiplication). The
homotopies (and all higher homotopies) that remember that the space R is a
derived ring is a lot of extra information to carry around, but if we are going
to be honest homotopy theorists we need to keep track of this!

A natural question in the readers’ mind might be:
What do these derived rings have over the classical notions of rings?

Well, there are some reasons, a few of which you can find with a quick google
search of “applications of derived algebraic geometry”. I want to focus on one
particular reason for now though. Given two rings R and S, a morphism from
R to S is a way of assigning to each element in R an element in S, such that
for any pair of elements z, y inside R, the image of z + y in S is the same as the
sum in S of the image of x with the image of y, and likewise for multiplication.
For example, if an equation like 22 + 2z = y holds in R, then writing f(x)
and f(y) for the image of  and y inside S, respectively, we have the equation
f(2)? +2f(z) = f(y) also in S. For a non-example, the morphism from the
integers Z to itself which sends an integer n to f(n) = 2n preserves addition

f(n+m)=2(n+m)=2n+2m= f(n)+ f(m)
but it does not preserve multiplication:
f(2:3)=2.2.3=12#24=2-2-2-3 = f(2)- f(3)

This means f is not a morphism of rings In other words, morphisms of rings
have to preserve equations—why would we be interested in such morphisms
otherwise! The converse is not generally true though—if an equation holds in S
and f is a morphism from R to S, then we might not be able to find that same
equation in R. For example, consider the integers R = Z and let S = Z/12Z—
this is the ring that behaves like the hours on a clock. The elements of Z/127Z
are 0,1,2,3,...,10,11 and to add or multiply, we first do so pretending these
elements are integers, and then we ignore any factors of 12. For example,

10+5=3+12=3 4-5=20=8+12=38

580n any random page of this thesis you will most likely find the phrase Eo,-ring, which
is very similar to a derived ring.

59The curious reader might want to show that there is precisely one morphism of rings
from Z to Z.
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This reflects what you know about time—if your 5-hour shift at work starts at
10 o’clock, it ends at 3 o’clock (rather than 15 o’clock). There is a morphism of
rings from Z to Z/12Z which sends an integer n to its remainder after dividing
by 12@ Notice that some equations hold in Z/12Z but do not have a coun-
terpart in Z, like 5 + 7 = 12 = 0, which holds in Z/12Z but does not hold in
Z—the sum 5 + 7 = 12 is not zero in Z!

The mathematical word used to describe morphisms of rings which not only
preserve equations but where equations in the target can always find a counter-
part in the source, are called flat morphisms@ If a morphism of rings from R
to S is not flat, then there is a collection of data that remembers which equa-
tions in S are not true in R, although quantifying this data is very abstract
and can frequently be difficult in practice. If you have a morphism of rings that
is not flat, it is a lot of extra effort to carry around this abstract collection of
data, and it is not always clear how to deal with it. What is that? Carrying
around extra abstract data? Sounds like homotopy theory can provide a solu-
tion! Indeed, this is what I see as one of the main benefits of derived rings:
some of the extra data a derived ring carries around in all of its homotopies
and higher homotopies comprises exactly these collections of data that occur
when a morphism of derived rings is not flat. For example, the morphism of
rings Z to Z/12Z described above is not flat as there are equations in Z/127Z
with no parallel in Z. The classical ring Z/12Z ®z Z/12Z, which is supposed to
remember that the morphism from Z to Z/12Z is not flat, is simply Z/12Z, and
no extra data is floating around. However, when considered as a derived ring,
we see that Z/12Z ®z Z/127Z has a path from 0 to 5+ 7 which remembers that
this is true in Z/12Z, even though it was not in Z. I am stretching this analogy
pretty far now, but this is one reason why derived rings occur naturally in the
wild—regardless, this motivation for studying derived rings has many beneﬁts@

There is another reason for studying derived rings over classical rings, and
this brings us back to the first paragraph and the construction of tools to study
spaces. For each ring R, you can create an invariant H;(X; R) similar to hy(X)
we saw before. For example, in H1(X;Z) you can add holes together in a very
similar way to how we added loops together above, and in Hy(X;Z/12Z) you
simply demand that going around a loop twelves times is zero just as 12 = 0
inside Z/12Z. The objects H;(X; R) for i larger than 1 measure how many
i-dimensional holes there are in X and adds these holes together according to
R—mathematics is wonderful at these kinds of generalisation. These invariants
H;(X; R) are fantastic, but they do have their weaknesses. For example, there
are many examples of spaces X and Y such that H;(X; R) and H;(Y; R) are
the same for all 7 and all classical rings R, but the spaces X and Y are quite

60Check this is a morphism of rings yourself if you want to practice!

61Such a characterisation of flat morphisms can be found in [Stal 00HK].

62There is a further (more advanced) discussion in this direction in the introduction of
[SAG]. In particular, [SAG) Rmk.0.0.0.5] also highlights that derived rings should capture not
just the facts, but the why behind those facts.
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different. For a derived ring R, there is also an invariant H;(X; R), and this
captures much more information about X than the case where R is a classical
ring. This intuitively makes sense, as derived rings contain a lot more informa-
tion than classical rings, so its interaction with spaces X might also contain a
lot more information. If we consider the collection of invariants H;(X; R) for
all natural numbers 7 and all derived rings R, we obtain a pretty exhaustive list
of modern mathematics’ favourite ways to study spacesﬁ

The purpose of this thesis is to study derived rings coming from elliptic
curves[ meaning rings related to solutions of equations like y? = 2% — 2z + 2
as in FigC.2al These particular derived rings are called elliptic cohomology
theories. The universal elliptic cohomology theory is written as TMF, which we
call topological modular forms—wait a second, that is in the title of this thesis!
This thesis can then be summarised as follows:

e Part[[|proves a complicated theorem of Jacob Lurie which constructs many
natural examples of derived rings and elliptic cohomology theories from
number theory, and, in particular, shows that TMF has a lot of extra
symmetry compared to how it was originally defined.

e Part [T uses these extra symmetries on TMF, and some inspiration from
number theory, to construct operations on TMF and the powerful invariant
H;(X; TMF).

e Part then shows that these operations on H;(X; TMF), even in the
simplest case when X is a single point, give number-theoretic insight into
homotopy theory and also homotopy theoretic insight into number theory.
I hope that the more we know about H;(X; TMF) for more interesting
spaces X, the more these operations can say about number theory and
vice versa.

In essence, the operations constructed in this thesis are further evidence
that using homotopy theoretic techniques in number theory is beneficial to both
subjects.

C.2 Samenvatting

Het doel van dit proefschrift is om aan te tonen dat de filosofie van homotopie-
theorie, toegepast op getaltheorie, interessante resultaten opleverde in beide ge-

63For those with some more background, these invariants H;(X; R) contain information
such as isomorphism classes of vector bundles over X (topological K-theories), cobordism
classes of bundles over X whose fibres are various structured manifolds ((co)bordism theories),
linear combinations of n-dimensional triangles in your space X (singular (co)homology), and
many, many more.

64The interested reader should have a read through the Wikipedia page for Fermat’s last
theorem, which states that there are no whole number solutions to the equation =™ +y™ = 2™
for n > 2. This was proved over 350 years after it was originally claimed to be proven, and
the proof heavily relies on the theory of elliptic curves, which also has its own interesting
Wikipedia page!
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bieden van de wiskunde. In deze samenvatting bespreek ik het perspectief dat
homotopietheorie de waarom (en niet alleen de wat) onthoudt, en bespreek ik
hoe dit kan worden gebruikt in de getaltheoriem

We kennen allemaal de vergelijking « + (y +2) = (x +y) + 2, of in ieder geval
vinden we de implicaties ervan voor de hand liggend—2 appels oppakken als ik
er al 3 in mijn linkerhand en 1 in mijn rechterhand heb, geeft in totaal hetzelfde
aantal als het oppakken van 1 appel als ik er al 5 in mijn handen heb. In deze
eenvoudige gevallen hoeven we de reden waarom een vergelijking waar is niet
te onthouden, maar enkel dat de vergelijking waar is. Dit kan ons verderop op
het wiskundige pad in de problemen brengen, bijvoorbeeld als we een theorie
willen bouwen om lussen aan elkaar te plakken. Om preciezer te zijn, een lus
«a op een ruimte X is een tekening van een cirkel op X waarbij de pen X niet
verlaat; laten we hierbij aannemen dat het altijd één minuut duurt om een lus te
tekenen. We willen niet alleen het plaatje van deze cirkel op X onthouden, maar
ook hoe we hem hebben getekend—anders kunnen we niet zeggen of iemand één
cirkel in 60 seconden heeft getekend, of 60 keer diezelfde cirkel in één seconde
heeft getekend. Met al deze informatie kunnen we twee lussen « en [ aan elkaar
plakken, zolang ze maar op hetzelfde punt beginnen. Hier denken we over na
als een optelling: we definiéren de lus o + 8 door eerst « te tekenen en dan
onmiddellijk g8 te tekenen—aangezien ze op hetzelfde punt beginnen, verlaat de
pen X niet. Hierbij moeten we erop letten dat we elke lus twee keer zo snel
tekenen als voorheen, om ervoor te zorgen dat het in totaal nog steeds maar één
minuut duurt om « + 5 te tekenen. Laten we nu eens kijken wat er gebeurt als
we drie lussen «, 8 en « bij elkaar optellen. Er zijn twee manieren om dit te
doen:

e a+ (B +17), die twee keer zo snel a doorloopt in 30 seconden, en dan vier
keer zo snel 3 en v doorloopt in 15 seconden elk, of

e (a+ )+, die vier keer zo snel « en § doorloopt in 15 seconden elk, en
daarna twee keer zo snel door v heen loopt in 30 seconden.

Beide opties hebben weliswaar hetzelfde plaatje (zie Fig.7 maar de twee
lussen zijn gewoon niet hetzelfde! Na 15 seconden in de eerste lus zijn we
halverwege «, terwijl we in de tweede lus dan net klaar zijn met . We kunnen
echter deze twee opties in elkaar omvormen, door a te tekenen voor 30 — ¢
seconden, vervolgens 8 voor 15 seconden en tenslotte v voor 15 + ¢ seconden,
waar t varieert tussen 0 en 15. Dit is de definitie van een homotopie H, g
tussen a + (8 + ) en (a + B) + . Als ¢ varieert, geeft deze homotopie ons een
klein pad van de ene lus naar de andere:

Hopr:a+ (B+7) = (a+8)+y

Meetkundig gezegd: in de ruimte van lussen op X vormen de lussen «+ (8 +7)
en (a + ) + v twee verschillende punten, en vormt H, g een pad tussen die

65De Engelse samenvatting heeft nog een paar extra details.
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twee punten. Het lijkt erop dat deze homotopie ons heeft gered, aangezien het
getuigt dat a + (8 ++) kan worden vervormd tot (a + 3) +~—hierdoor kunnen
we toch nog doen alsof de twee lussen ‘hetzelfde’ zijn. Maar we kunnen ook
de som van wvier lussen «, 3, v en ¢ onderzoeken. Het blijkt dat er vijf ver-
schillende manieren zijn om vier lussen bij elkaar op te tellen, maar erger nog,
er zijn twee verschillende manieren om deze keuzes in elkaar om te vervormen
door middel van de homotopie H hierboven—zie Equation (C.1.1). Het is niet
duidelijk welke richting van a+(8+ (y+9)) naar ((a+8) ++) +0 beter is—langs
boven of langs onderen. Net zoals de homotopie H een vervorming is tussen
twee lussen, is er een hogere homotopie tussen de bovenste twee pijlen en de
onderste drie—een ander soort vervorming die men met voldoende geduld kan
opschrijven. Net zoals H een pad is in de ruimte van lussen op X, is deze hogere
homotopie een oppervlak in de ruimte van lussen. Je kunt je nu afvragen hoe
dit werkt met vijf lussen, of zes lussen, of zoveel lussen als je kunt tellen, en je
kunt je afvragen of je ook alle hogere homotopieén kunt opschrijven. Dit spec-
ifieke probleem is opgelost door Jim Stasheff in [Sta63], waar hij laat zien dat
al deze structuur, de homotopieén en alle hogere homotopieén, kunnen worden
vastgelegd met behulp van polygonen genaamd associahedra

Er zijn veel dingen die je zou willen doen in de homotopietheorie naast het
optellen van lussen, maar wat je ook doet, je moet ervoor zorgen dat je alle ho-
motopieén en hogere homotopieén onthoudt—om alle waaroms te onthouden,
en de waaroms tussen de waaroms, enz. Dit lijkt onpraktisch om te doen,
en inderdaad, het kostte homotopietheoretici vele jaren en veel verschillende
systemen om te proberen deze intuitie rigoureus te maken. Onlangs heeft dit
zijn hoogtepunt bereikt in de theorie van oo-categorieén, waarbij de o0 aangeeft
dat we geinteresseerd zijn in een oneindige hoeveelheid homotopische gegevens
(alle hogere homotopieén). Dit is niet het enige systeem dat wordt gebruikt
om al deze homotopieén te beschrijven, maar het is wel het systeem dat in dit
proefschrift wordt gebruikt. Laten we nu bespreken hoe deze filosofie van ho-
motopietheorie kan worden toegepast om bepaalde vergelijkingen te bestuderen.

Er is een wiskundig concept genaamd een ring, een plaats waar veel van onze
favoriete vergelijkingen zinvol zijn—voor elke twee elementen x,y in een ring R
kan men vragen of 22 + 2z = y geldt in de ring R. Meer in detail is een ring R
een verzameling met een optel- en een vermenigvuldigingsbewerking die voldoet
aan de gebruikelijke algebraische voorwaarden van de middelbare school, zoals
z+ (y+ 2z) = (z + y) + 2, bijvoorbeeld. Om homotopietheorie in de studie van
ringen te introduceren, moet je de gelijkheden in de algebraische voorwaarden
voor een ring vervangen door iets met een homotopische smaak. Een afgeleide
ring R is een ruimte met een optel- en een vermenigvuldigingsbewerking die
voldoet aan een lijst van algebraische voorwaarden, niet als gelijkheidheden,
maar tot op een bepaalde keuze van homotopieén (en hogere homotopieén tussen

66De nieuwsgierige lezer kan de Wikipedia-pagina over de associahedron lezen.
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deze homotopieén, en selfs hogere homotopicén )@ Bijvoorbeeld, gegeven een drietal
punten z,y, z in een afgeleide ring R, is er een homotopie (dus een pad in R)
van z + (y + z) naar (z +y) + z dat getuigt van het feit dat deze twee punten
“hetzelfde” zijn, en hogere homotopieén, die lijken op die tussen de verschil-
lende manieren om lussen bij elkaar op te tellen zoals eerder genoemd. De
eerder besproken ruimte van lussen op X geeft de helft van de structuur van de
afgeleide ring (ofwel de optelling of vermenigvuldiging). Deze homotopieén (en
alle hogere homotopieén) die onthouden dat de ruimte R een afgeleide ring is, is
veel extra informatie om mee te nemen, maar als we echte homotopietheoretici
willen zijn, mogen we die niet vergeten!

Wat is het voordeel van deze afgeleide ringen ten opzichte van klassieke
ringen? Er zijn een aantal redenen, waarvan je er een paar kunt vinden met
een snelle Google-zoekopdracht naar “toepassingen van afgeleide algebraische
meetkunde”. Tk wil me nu echter op één specifieke reden concentreren. Gegeven
twee ringen R en S, is een morfisme van R naar S een manier om aan elk element
in R een element in S toe te kennen (dat we zijn beeld noemen), zodanig dat voor
elke twee elementen x,y in R, het beeld van x +y in S hetzelfde is als de som in
S van het beeld van  met het beeld van y, en evenzo voor vermenigvuldiging.
Als bijvoorbeeld een vergelijking als #? + 2z = y in R geldt, dan schrijven we
f(x) (resp. f(y)) voor het beeld van x (resp. y). In S geldt dan de vergelijking
f(x)? + 2f(x) = f(y). Voor een niet-voorbeeld, het morfisme van de gehele
getallen Z naar zichzelf dat een geheel getal n naar f(n) = 2n stuurt, behoudt
weliswaar de optelling:

fm+m)=2(n+m)=2n+2m= f(n)+ f(m)
maar niet de vermenigvuldiging:
f(2:3)=2.2.3=12#24=2.2.2-3 = f(2)- f(3)

Dit betekent dat f geen morfisme van ringen is@ Met andere woorden, mor-
fismen van ringen moeten vergelijkingen behouden—waarom zouden we anders
geinteresseerd zijn in dergelijke morfismen! Het omgekeerde is echter over het
algemeen niet waar—als een vergelijking geldt in S en f een morfisme is van R
naar S, dan kunnen we diezelfde vergelijking misschien niet terugvinden in R.
Beschouw bijvoorbeeld de gehele getallen R = Z en laat S = Z/12Z—dit is de
ring die zich gedraagt als de uren op een klok. De elementen van Z/12Z zijn
0,1,2,3,...,10,11. Om op te tellen of te vermenigvuldigen in Z/12Z doen we
eerst alsof deze elementen gehele getallen zijn, en dan we negeren alle factoren
van 12. Bijvoorbeeld,

10+5=3+12=3 4-5=20=8+4+12=38

670p elke willekeurige bladzijde van dit proefschrift zal men hoogstwaarschijnlijk de term
E -ring vinden, wat erg lijkt op een afgeleide ring.

68De nieuwsgierige lezer wil misschien bewijzen dat er precies één morfisme is van ringen
van Z naar Z.
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Dit gedraagt zich als een klok—als mijn 5 uur durende vergadering op het werk
om 10 uur begint, eindigt deze om 3 uur in plaats van om 15 uur. Er is een
morfisme van ringen van Z naar Z/12Z die een geheel getal n stuurt naar de
rest na deling door 12@ Merk op dat er vergelijkingen zijn die gelden in Z/12Z,
maar die geen tegenhanger hebben in Z. Een voorbeeld is 5 + 7 = 12 = 0, wat
wel geldt in Z/12Z, maar niet in Z—de som 5 + 7 = 12 is zeker niet nul in Z!

Als een morfisme niet alleen vergelijkingen behoudt, maar ook de eigenschap
heeft dat vergelijkingen in het doel altijd een tegenhanger in de bron hebben,
wordt het morfisme een plat morfisme genoemdm Als een morfisme van ring-
en van R naar S niet plat is, dan is er een verzameling gegevens die onthoudt
welke vergelijkingen in S niet waar zijn in R, hoewel het kwantificeren van deze
gegevens erg abstract is en in de praktijk vaak moeilijk kan zijn. Als men een
morfisme van ringen heeft dat niet plat is, kost het veel extra moeite om deze
abstracte verzameling gegevens mee te nemen en is het niet altijd duidelijk hoe
ermee om te gaan. Wat is dat? Extra abstracte gegevens meesjouwen? Dat
klinkt alsof homotopietheorie een oplossing kan bieden! Dit is inderdaad wat
ik zie als een van de belangrijkste voordelen van afgeleide ringen: sommige van
de extra gegevens die een afgeleide ring in al zijn homotopieén en hogere ho-
motopieén met zich meedraagt, omvatten precies deze verzamelingen gegevens
die optreden wanneer een morfisme van afgeleide ringen niet plat is. Het hier-
boven beschreven morfisme van de ring Z naar Z/12Z is bijvoorbeeld niet plat
omdat er vergelijkingen zijn in Z/12Z zonder parallel in Z. De klassieke ring
Z/127 ®z Z/12Z die moet onthouden dat het morfisme van Z naar Z/12Z niet
vlak is, is gewoon Z/12Z, en deze ring onthoudt geen extra data. Als we het
echter als een afgeleide ring beschouwen, dan heeft Z/12Z ®z Z/12Z een pad
van 0 tot 5 + 7. Dit pad onthoudt dat de vergelijking 5 + 7 = 0 waar is in
Z/12Z, ook al is het niet waar in Z. Ik rek deze analogie nu vrij ver uit, maar
dit is een reden waarom afgeleide ringen van nature in het wild voorkomen—hoe
dan ook, deze motivatie om afgeleide ringen te bestuderen heeft vele Voordelenﬂ

Het doel van dit proefschrift is om bepaalde afgeleide ringen te bestude-
ren, namelijk afgeleide ringen die afkomstig zijn van elliptische krommenm
d.w.z., ringen die gerelateerd zijn aan oplossingen van vergelijkingen zoals y? =
2% — 2x + 2 uit in Fig Deze specificke afgeleide ringen worden elliptische
cohomologietheorieén genoemd. De universele elliptische cohomologietheorie
wordt aangeduid met TMF, wat staat voor topologische modulaire vormen—

69Controleer zelf of dit een morfisme van ringen is, als je wilt oefenen!

"OFen precieze karakterisering van platte morfismen staat bijvoorbeeld in [Stal 00HK].

"1Er is een verdere (meer geavanceerde) discussie in deze richting in de inleiding van [SAG].
In het bijzonder benadrukt [SAG, Rmk.0.0.0.5] ook dat afgeleide ringen niet alleen de feiten
moeten vastleggen, maar ook de waarom achter die feiten.

72De geinteresseerde lezer zou de Wikipedia-pagina moeten lezen voor de laatste stelling
van Fermat, die zegt dat er zijn geen gehele oplossingen zijn van de vergelijking =" + y™ = 2™
als n > 2. Pas 350 na de oorspronkelijke claim werd deze uitspraak bewezen, en het bewijs
is sterk afhankelijk van de theorie van elliptische krommen, die ook zijn eigen interessante
Wikipedia-pagina heeft!
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wacht even, dat staat in de titel van dit proefschrift! Dit proefschrift kan als
volgt worden samengevat:

e Deel[|bewijst een gecompliceerde stelling van Jacob Lurie die veel natuur-
lijke voorbeelden van afgeleide ringen en elliptische cohomologietheorieén
construeert uit de getaltheorie, en die in het bijzonder laat zien dat TMF
veel extra symmetrie heeft vergeleken met de oorspronkelijke definitie.

o Deel [l gebruikt deze extra symmetrieén op TMF, en enige inspiratie uit
de getaltheorie, om operaties op TMF te construeren.

e Deel [[T] laat vervolgens zien dat deze operaties op TMF getaltheoreti-
sche inzichten geven in homotopietheorie en ook homotopietheoretische
inzichten in de getaltheorie. Ik hoop dat hoe meer we weten over TMF
voor interessantere ruimtes X, hoe meer deze bewerkingen kunnen zeggen
over getaltheorie en vice versa.

In wezen laten de operaties uit dit proefschrift zien dat het gebruik van ho-
motopietheoretische technieken in de getaltheorie gunstig is voor beide vakge-
bieden.

C.3 Zusammenfassung

Vergiss die Techniken in dieser Doktorarbeit, und lass uns iiber ihren Kern
diskutieren. Das Ziel dieser Arbeit ist es zu demonstrieren, dass die Philosophie
der Homotopietheorie, angewendet auf die Zahlentheorie, interessante Ergeb-
nisse in beiden Bereichen hervorbringt. In dieser Zusammenfassung betone ich
die Perspektive, dass Homotopietheorie das Warum und das Wie kennt, und
zeige wie diese Philosophie in der Welt der Zahlentheorie funktionieren kannm

Wir kennen die Gleichung z + (y + 2) = (z + y) + z fiir drei natiirliche
Zahlen x,y, z. Zumindest finden wir ihre Konsequenzen klar: wenn du 2 Apfel
bekommst und du noch 3 in deiner rechten Hand und 1 in deiner linken hast, ist
dies dasselbe wie wenn du 1 Apfel bekommst und du noch 5 hast. In diesen ein-
fachen Szenarien wissen wir sofort die Tatsache, dass die Gleichung gilt, bevor
wir wissen Warum sie gilt. Wenn wir nur die Tatsachen wissen, konnen wir uns
im spéteren mathematischen Pfad irren. Nehmen wir zum Beispiel eine Theorie
des Zusammenfiigen von Schleifen. Eine Schleife o in einem Raum X ist eine
Zeichnung einer Kurve in X, bei der der Stift auf X bleibt. Nehmen wir auch
an, dass es eine Minute dauert um eine Schleife zu zeichnen. Wir wollen uns
nicht nur an das Bild der Schleife in X erinnern, sondern auch daran wie es
gezeichnet wird. Andernfalls konnen wir nicht unterscheiden, ob jemand in 60
Sekunden einen Kreis oder 60 mal denselben Kreis in 1 Sekunde gezeichnet hat.

73Die englische Zusammenfassung enthélt noch ein paar Details.
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Man kann zwei verschiedene Schleifen hinzufiigen solange beide am gleichen
Punkt beginnen. Bei zwei Schleifen «, 8 in X die am selben Punkt beginnen,
definieren wir die Schleifen « + 8 indem wir zuerst a zeichnen und dann, ohne
den Stift hochzuheben, die Schleife 5 weiterzeichnen. Wir zeichnen beide bei
doppeler Geschwindigkeit, also 30 Sekunden fiir a und 30 Sekunden fiir £, sodass
es nur 1 Minute dauert, um a + § zu zeichnen. Jetzt kénnen wir betrachten,
wie man drei Schleifen hinzufiigt. Es gibt zwei offensichtliche Méglichkeiten:

e o+ (8 +7), wo man « doppelt so schnell (30 Sekunden), dann S und ~
viermal so schnell (jeweils 15 Sekunden) zeichnet.

e (a+ )+, wo man o und S viermal so schnell (jeweils 15 Sekunden),
und 7 nur doppelt so schnell (30 Sekunden) zeichnet.

Diese zwei Schleifen haben das gleiche Bild in X (Fig.7 aber sie sind
nicht die gleiche Schleife! Es ist jedoch moglich, diese beiden Schleifen zu ver-
formen. Zum Beispiel, indem man zuerst « fiir 30 — ¢ Sekunden, dann g fiir
15 Sekunden, und zuletzt ~ fiir 15 4+ ¢ Sekunden zeichnet, solange t zwischen 0
und 15 variiert. Diese Verformung nennen wir eine Homotopie von o + (5 + )
nach (o + 8) + . Topologisch gesehen konnen wir einen Raum der Schleifen
in X bilden, bezeichnet als QX, wo die Punkte Schleifen in X und die Pfade
Homotopien zwischen Schleifen sind. Zum Beispiel, die Homotopie H, g ist
ein Pfade von a + (8 +7) nach (a + ) ++ in QX sieh Fig[C.4 Wir betrachten
diese Homotopie als Grund dafiir, dass diese beiden Schleifen gleichwertig sind.
Eine Homotopie ist ein Warum zwischen zwei Punkten (oder zwei Schleifen),
die dquivalent sind.

Als néchstes konnen wir fragen, ob wir vier Schleifen a, 3, 7, § zusam-
menfiigen konnen. Mit anderen Worten, wie viele Punkte in QX durch die
Schleifen «, 3, v, § entstehen konnen, und was die Pfade dazwischen sind. Es
stellt sich heraus, dass es flinf verschiedene Moglichkeiten gibt, vier Schleifen
hinzufiigen. Es kommt noch dazu, dass es zwei verschiedene Moglichkeiten zwis-
chen diesen fiinf Schleifen gibt; siche Diagram Es ist nicht klar, welche
Richtung wir von e+ (8+ (y+9)) nach ((a+ ) +) +d nehmen sollen—genauso
wie es nicht klar ist, ob wir oo+ (8 + ) oder (a + 8) + v nehmen sollen! Sollen
wir von a+ (8 + (v +9)) nach ((a+ 8) + ) + § mit den beiden obigen Wegen
oder mit den drei unteren? So wie die Homotopie H eine Verformung zwischen
zwei Schleifen war, gibt es eine hohere Homotopie zwischen den oberen beiden
Pfaden und den unteren drei Pfaden in Diagram [C.I.1}—eine andere Art der
Verformung, die man mit geniigend Geduld aufschreiben kann. So wie eine Ho-
motopie ein Pfad im Raum der Schleifen QX ist, ist diese hohere Homotopie eine
Fldche in QX—der leere Raum in der Mitte des Diagram Philosophisch
gesehen: ein horeres Warum zwischen anderen Warums. Man kann sich fragen,
ob man fiinf oder sechs (oder mehr) Schleifen hinzufiigen kann, und ob man
auch alle hoheren (und noch héheren) Homotopien aufschreiben kann. Dieses
spezielle Problem wurde von Jim Stasheff in [Sta63] gelost. Er nutzt Polygo-
nen, die sogenannten associahedra, um alle diese Strukturen, die Homotopien
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und alle héheren Homotopien zu erfassen@

Es gib viele Dinge, die man in der Homotopietheorie tun kann, neben Schleifen
hinzuzufiigen. Egal was man in Homotopietheorie tut, man muss sich immer
an alle Homotopien und héheren Homotopien erinnern—an alle Warums und
die Warums zwischen den anderen Warums. Das ist eine schwerféllige Aufgabe.
Homotopietheoretiker*innen haben in der Tat viele Jahre und viele verschiedene
Theorien gebraucht, um diese Intuition rigoros zu machen. In jiingster Zeit
kulminierte dies in der Theorie der oo-Kategorien. Das oo Symbol bedeutet,
dass wir an einer unendlichen Menge homotopischer Daten (alle Homotopien
und hoheren Homotopien) interessiert sind. Wir verwenden die Sprache der oo-
Kategorien in dieser Arbeit, da es uns erlaubt, gleichzeitig mit all diesen Daten
zu arbeiten, ohne (zu) verwirrt zu werden. Lasst uns nun erdrtern, wie die
Philosophie der Homotopietheorie auf die Untersuchung bestimmter Gleichun-
gen angewendet werden kann.

Es gibt ein mathematisches Konzept, das als Ring bekannt ist und in dem
viele unserer Lieblingsgleichungen einen Sinn ergeben—fiir zwei beliebige Ele-
mente z,y in einem Ring R kann man fragen, ob x? + 2z = y innerhalb des
Rings R gilt. Ein Ring R ist eine Menge mit einer Additions- und einer Multi-
plikationsoperation, die die iiblichen algebraischen Bedingungen aus der Schule
erfillt, z.B. z + (y + z) = (z + y) + z. Beispielsweise sind ganze Zahlen Z ein
Ring. Um die Homotopietheorie in das Studium der Ringe einzufiihren, méchten
wir die Gleichheiten in den algebraischen Bedingungen fiir einen Ring durch et-
was Homotopisches ersetzen. Ein abgeleiteter Ring R ist ein Raum (nicht nur
eine Menge) mit einer Additions- und einer Multiplikationsoperation, der eine
Liste von algebraischen Bedingungen nicht bis zur Gleichheit, sondern bis zu
einer bestimmten Wahl der Homotopien (und héheren Homotopien zwischen diesen
Homotopien, und noch hsheren Homotopien - . .) erfilllt. E Zum Beispiel gibt es bei drei
Punkten x,y, z in einem abgeleiteten Ring R eine Homotopie (einen Pfad in R)
von = + (y + z) nach (z + y) + z, die bezeugt, dass diese beiden Punkte “4quiv-
alent” sind. Zwischen vier Punkten w, x,y, 2z in R gibt es zwei Pfade zwischen
w+(z+(y+2)) und ((w+z)+y)+2 in R, und eine Flidche zwischen diese Pfaden;
wie in Diagramin QX. Diese Pfade und Flachen (Homotopien und hdhere
Homotopien) kennen die “Gleichungen”, die wir in einem Ring erwarten. Diese
Homotopien (und alle htheren Homotopien) sind eine Menge zusétzlicher In-
formationen, die man mit sich herumtragen muss. Diese Informationen konnen
schwer sein, aber wenn wir ehrliche Homotopietheoretiker*innen sein wollen,
miissen wir dies im Auge behalten!

Was haben diese abgeleiteten Ringe gegeniiber den klassischen Ringen? Es
gibt einige Griinde, die du mit einer schnellen Google-Suche nach “Applications
of derived algebraic geometry” finden kannst. Wir werden uns jetzt aber auf

"4Die neugierige Leserin kénnte die Wikipedia-Seite fiir associahedron interessant finden.
75 Auf einer beliebigen Seite dieser Arbeit wird man hochstwahrscheinlich die Formulierung
E . -ring finden, die einem abgeleiteten Ring sehr dhnlich ist.
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einen bestimmten Grund konzentrieren. Ein Morphismus von einem Ring R
nach einem Ring S ordnet jedem Element x in R genau ein Element f(z) in
S zu, sodass fiir jedes Paar =,y in R das Bild von = + y in S dasselbe ist, wie
die Summe des Bildes von x mit dem Bild von y in S. Das Gleiche gilt auch
fiir die Multiplikation. Wenn eine Gleichung wie 2 + 2z = y in R gilt, dann
haben wir die Gleichung f(z)% + 2f(x) = f(y) auch in S. Ein Gegenbeispiel:
Der Morphismus von den ganzen Zahlen Z zu Z, der eine ganze Zahl n die Zahl
2n zuordnet. Die Addition bleibt

fn+m)=2(n+m)=2n+2m = f(n)+ f(m)
aber die Multiplikation bleibt nicht erhalten:
f(2:3)=2-2-3=12#24=2-2-2-3= f(2)- f(3)

Das bedeutet, dass dieses f kein Morphismus von Ringen istm Mit anderen
Worten: Morphismen von Ringen miissen Gleichungen erhalten—warum sollten
wir uns sonst fiir solche Morphismen interessieren! Das Umgekehrte gilt jedoch
nicht generell: Wenn eine Gleichung in S gilt und f ein Morphismus von R
nach S ist, dann kann es sein, dass wir die gleiche Gleichung in R nicht finden
konnen. Betrachten wir zum Beispiel die ganzen Zahlen R = Z und die Ringe
S = Z/12Z—das ist der Ring, der sich wie die Stunden auf einer Uhr verhélt.
Die Elemente von Z/12Z sind 0,1,2,3,...,10,11, und um zu addieren oder zu
multiplizieren, tun wir zunéchst so, als seien diese Elemente ganze Zahlen, und
ignorieren, dass alle Faktoren von 12 sind. Zum Beispiel:

10+5=124+3=3 4-5=20=8+12=38

Das ist das, was du iiber Zeit weilt—wenn deine 5-Stunden-Schicht auf der Ar-
beit um 10 Uhr beginnt, endet sie um 3 Uhr. Es gibt einen Morphismus der
Ringe ¢ von Z nach Z/12Z, der eine ganze Zahl n nach der Division durch 12
in ihren Rest iiberfithrt. Beobachte, dass einige Gleichungen in Z/12Z gelten,
aber kein Gegenstiick in Z haben. Zum Beispiel: 5 +7 = 12 = 0 gilt in Z/127Z,
aber nicht in Z—die Summe 5 + 7 = 12 ist in Z definitiv nicht Null!

Das mathematische Wort zur Beschreibung von Morphismen von Ringen, die
nicht nur Gleichungen erhalten, sondern bei denen Gleichungen im Ziel immer
ein Gegenstiick in der Quelle finden, nennt man flache Morphismenm Wenn
ein Morphismus von Ringen von R nach S nicht flach ist, dann gibt es eine
Sammlung von Daten, die sich daran erinnern, welche Gleichungen in S in R
nicht wahr sind. Die Quantifizierung dieser Daten ist sehr abstrakt und kann in
der Praxis oft schwierig sein. Wenn man einen Morphismus von Ringen hat, der
nicht flach ist, ist es ein grofler zusitzlicher Aufwand, diese abstrakte Daten-
sammlung mit sich herumzutragen. Es ist jedoch nicht immer klar, wie man

"6Die neugierige Leserin méchte vielleicht zeigen, dass es genau einen Morphismus von
Ringen von Z nach Z gibt. Diese Leserin muss wissen, dass ein Morphismus zwischen Ringen
0 nach 0 und 1 nach 1 nehmen muss.

""Eine solche Charakterisierung von flachen Morphismen befindet sich in [Stal, 00HK].
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damit umgehen kann. Wie bitte? Zusétzliche abstrakte Daten mit sich herum-
tragen? Das klingt, als konnte die Homotopietheorie eine Losung bieten! In
der Tat sehe ich darin einen der Hauptvorteile abgeleiteter Ringe. Einige der
zusétzlichen Daten, die ein abgeleiteter Ring in (hoheren) Homotopien mit sich
herumtrigt, sind genau diese Datensammlungen, die daran errinern, Warum
ein Morphismus von abgeleiteten Ringen nicht flach ist. Zum Beispiel ist der
oben beschriebene Morphismus der Ringe ¢ von Z nach Z/12Z nicht flach, da
es Gleichungen in Z/12Z gibt, die keine Parallele in Z haben. Der klassische
Ring Z/12Z ®z Z/12Z, der daran erinnern soll, dass der Morphismus von Z
nach Z/12Z nicht flach ist, ist einfach Z/12Z, und es gibt keine zusétzlichen
Daten. Betrachtet man jedoch Z/12Z ®z Z/127Z als abgeleiteten Ring, so sieht
man, dass Z/12Z einen Pfad von 0 nach 5 + 7 hat, der daran erinnert, dass
dies in Z/12Z wahr ist, auch wenn es in Z nicht der Fall ist. Wir ziehen diese
Analogie jetzt ziemlich weit, aber das ist mitunter ein Grund, warum abgeleitete
Ringe in der Natur vorkommen. Unabhéngig davon hat diese Motivation fiir
das Studium abgeleiteter Ringe viele Vorteilem

Der Zweck dieser Arbeit ist die moderne Studie von abgeleiteten Ringen die
aus elliptischen Kurven stammenm In anderen Worten: Ringe, die sich auf
Losungen von Gleichungen wie 22 = 23 — 2z + 2, wie in Fig. dargestellt,
beziehen. Diese besonderen abgeleiteten Ring werden elliptische Kohomologi-
etheorien genannt. Die universelle elliptische Kohomologietheorie heifit topol-
ogische modulare Formen und wird als TMF geschrieben—Moment mal, das
steht doch im Titel dieser Arbeit! Diese Arbeit ldsst sich also wir folgt zusam-
menfassen:

e Teil [[[beweist ein kompliziertes Theorem von Jacob Lurie, das viele natiir-
liche Beispiele von abgeleiteten Ringen und elliptischen Kohomologiethe-
orien aus der Zahlentheorie konstruiert. Dieser Teil zeigt insbesondere,
dass TMF eine Menge zusatzlicher Symmetrien im Vergleich zu seiner
urspriinglichen Definition hat.

o Teil [[1] verwendet diese zusétzlichen Symmetrien auf TMF, und einige
Anregungen aus der Zahlentheorie, um Operationen auf TMF zu konstru-
ieren.

o Teil[[T]] zeigt dann, dass diese Operationen auf TMF einen zahlentheoretis-
chen Einblick in die Homotopietheorie, und einen homotopietheoretischen
Einblick in die Zahlentheorie geben. Ich hoffe, dass je mehr wir iiber TMF

"8Eine weitere (fortgeschrittenere) Diskussion in dieser Richtung gibt es in der Einfithrung
von [SAG]. Insbesondere hebt [SAGI Rmk.0.0.0.5] auch hervor, dass abgeleitete Ringe nicht
nur die Tatsachen, sondern auch das Warum hinter diesen Tatsachen erfassen sollten.

79Die interessierte Leserin sollte sich die Wikipedia-Seite fiir der Grofen Fermatscher Satz
durchlesen, die besagt, dass es keine ganzzahligen Losungen der Gleichung ™ + y™ = 2"
fiir n > 2 gibt. Dieser Satz wurde iiber 350 Jahre nach seiner urspriinglichen Behauptung
bewiesen, und der Beweis stiitzt sich stark auf die Theorie der elliptischen Kuren, die auch
eine eigene interessante Wikipedia-Seite hat!
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wissen, diese Operationen mehr iiber Zahlentheorie aussagen kénnen—und
umgekert.

Im Wesentlichen sind die in dieser Arbeit konstruierten Operationen ein
weiterer Beweis dafiir, dass die Anwendung homotopietheoretischer Techniken
in der Zahlentheorie fiir beide Facher von Nutzen ist.
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