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Epilepsy affects around 50-70 million people worldwide, making it the 

most common serious neurological disorder in the world.1,2 Although 

there are differences in prevalence, epilepsy occurs in people of all ages, 

social classes, sexes and ethnicities. Epilepsy is defined as an enduring 

predisposition of the brain to develop seizures and it is recognized since at 

least three millennia. Historically, it was often thought of as a supernatural 

or spiritual disorder, caused by possession by the devil.3 We now know that 

epilepsy has a pathophysiological basis, caused by hyperexcitability of the 

brain. This hyperexcitability can affect either part of the brain, causing 

focal onset seizures, or both hemispheres at once, causing generalised onset 

seizures.4 Seizures can have a wide variety of manifestations, depending 

on the location and extent of the brain involved. For example, a seizure 

with focal onset in the temporal lobe can cause an experience of déjà 

vu, while maintaining awareness. A seizure involving both hemispheres 

can cause contraction of muscles throughout the body due to bilateral 

excitation of motor neurons, and impaired awareness, since normal 

activity throughout the brain is disturbed. Depending on the seizure types, 

epilepsy can be classified as focal, generalised or a combination thereof.5 

With a combination of specific seizure types, age at onset, provoking 

factors, electroencephalography (EEG) findings and imaging results, it is 

possible to define specific electroclinical syndromes in about half of the 

patients. Epilepsy subtypes can be further distinguished by underlying 

aetiology, which is broadly grouped into structural, infectious, metabolic, 

immune, genetic and unknown aetiology.5 It is increasingly recognised that 

understanding the aetiology of such epilepsy syndromes has important 

implications to improve counselling and treatment. 

Epilepsy heritability and genetics
John Russel Reynolds already recognised in 1861 that epilepsy often 

affects multiple family members.7 As late as in the mid-20th century, such 

observations have led to abominable laws to forbid marriage for people with 

epilepsy, and even forced sterilisation of women to prevent its spread.8 Later 

work by William Lennox in 1951 confirmed that epilepsy is highly heritable, 

by showing that many forms of epilepsy occur much more frequently in 

relatives of people with epilepsy, and almost always if a monozygotic twin 
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1is affected.9 Similar studies have later shown that almost three-quarters of 

people have an at least partly heritable basis of their epilepsy.9,10 Inheritance 

studies showed that some forms of epilepsy have a dominant or recessive 

pattern of inheritance, driven by DNA changes in a single gene (called 

‘monogenic’), whereas the great majority of people have a more complex 

inheritance pattern, assumed to be caused by changes in multiple genes 

(‘polygenic’) in combination with potential environmental factors.11 

With the advent of widespread genomic sequencing in the 1990s, it was possible 

to pinpoint the first epilepsy genes causing monogenic familial epilepsy.9 

Further advances in accuracy, speed and affordability of sequencing technology 

have resulted in the discovery of hundreds of epilepsy genes. Furthermore, we 

now know that many of the most severe forms of genetic epilepsy (so called 

‘developmental and epileptic encephalopathies’) are not mendelian inherited, 

but occur de novo in the gametes of the parent, or in the developing embryo.12 

Another surprise was the finding of genetic causes of not only generalised 

but also some forms of focal epilepsy. Although monogenic types of epilepsy 

are individually very rare, collectively they now add up to a considerable 

proportion of people with epilepsy. A further proportion of epilepsy genetics 

can be explained by copy number variants (CNV), i.e. deletions or duplications 

of large chunks of the genome. Such CNVs can  increase epilepsy risk, or even 

be sufficient to cause epilepsy by themselves.13 

Despite enormous advances in epilepsy gene discovery, the large majority 

of common epilepsy heritability remains unexplained. In particular, the 

group of genetic generalised epilepsies (GGE) – also known as idiopathic 

generalised epilepsy – is long known to be highly heritable. The most 

common GGE syndrome is juvenile myoclonic epilepsy (JME), which is 

characterised by an adolescent age at onset, myoclonic seizures provoked 

by sleep deprivation, and 4 to 6 Hz polyspikes and waves on EEG, without 

abnormalities on structural neuroimaging.14–16 Twin based studies have 

estimated heritability of GGE to be around 65-76%.17 However, discovery 

of GGE genes has remained elusive. Although various monogenic GGE 

candidate genes have been identified,18–20 such genes can only explain a 

small proportion of cases. Instead, it is increasingly understood that the 

majority of GGE heritability is polygenic in nature, where multiple common 

genetic variants together explain the heritable risk of epilepsy. 
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Figure 1: The concept of a genome-wide association study (GWAS).  The aim of a 
GWAS is to identify the genetic variants that underlie a disease, in this case epilepsy. 
This is performed by comparing all common variants in the genome (generally 
several millions) between large groups (generally several thousands) of people with 
epilepsy with people without epilepsy, while correcting for potential confounders 
such as population stratification. Since around 1 million independent variants are 
assessed, a stringent significance threshold (p=5*10-8) is set to correct for multiple 
testing. After identifying epilepsy risk variants, downstream analyses can elucidate 
involved genes, pathophysiological mechanisms and potential drug targets. Figure 
created using images from smart.servier.com. 

Discovering common genetic variants through genetic association studies 

requires large sample sizes, since these variants individually only have a small 

effect on epilepsy risk. Common genetic variants are usually identified through 
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1genome-wide association studies (GWAS), which utilize large sample sizes 

to compare the frequency of all common genetic variants in the population. 

Typically, thousands of subjects are required to identify risk variants at 

nominal significance, after correction for around 1 million independent 

tested variants. The first epilepsy GWAS meta-analysis identified three risk 

variants by increasing sample sizes through large-scale collaborations,21 

however, these still only explain a negligible fraction of epilepsy risk. Further 

increases in sample size in GWAS of other diseases have already shown that 

genetic data from tens of thousands, or even millions of individuals, can 

drastically increase the amount of risk loci and explained heritability.22 Such 

findings can be used for clinical prediction, increased understanding of 

disease pathophysiology and lead to novel therapeutic approaches.22 

Epilepsy treatment
The mainstay of epilepsy treatment consists of anti-seizure medication (ASM). 

Such drugs generally work by decreasing brain excitability, which could also 

lead to adverse effects.24 In a large study, 88% of people reported one or more 

adverse effects, which negatively impacted on quality of life.23 When ASM 

therapy fails, surgical resection of a lesion can be a curative option for a subset 

of people with focal epilepsy, however, this is not an option for generalised 

epilepsy. Further non-pharmacological treatment options include vagal nerve 

stimulation and the ketogenic diet, however, such treatment options also 

suffer from limitations in applicability and efficacy.26 Although the majority 

of people with epilepsy can be effectively treated with ASMs, around a third 

continue to have seizures. This proportion of drug resistance remained stable 

over the last decades, despite the availability of numerous new drugs.27 One 

likely reason is that many of the current ASMs were found serendipitously, and 

many of the ASMs work by similar mechanisms. Potentially, new therapeutic 

targeted approaches, informed by underlying pathophysiology, could increase 

the proportion of people becoming seizure free. 

Epilepsy prediction
Improved prediction could further improve and personalise treatment, 

within the arsenal of current treatment options. Individualized prediction is 
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an important part of modern precision medicine approaches. Prediction can 

be broadly categorised into diagnostic and prognostic prediction. Diagnostic 

prediction includes an earlier diagnosis of epilepsy or an earlier or more specific 

diagnosis of an epilepsy subtype. For example, after a first event – possibly a 

seizure – it is often difficult to know if the patient will eventually be diagnosed 

with epilepsy or not. Early and accurate diagnostic prediction can accelerate 

treatment initiation in individuals highly suspected of having epilepsy, and 

prevent unnecessary medication in those not at risk. A prediction model 

based on information known after a first event could aid an earlier diagnosis 

and treatment.27,28 Genetic diagnostics have the potential to further expedite 

predictions. Since genetic variants generally remain stable throughout life, it 

is possible to use genetics to predict epilepsy risk even before someone has a 

first seizure. Theoretically, such a genetic predisposition for epilepsy could be 

detected even by newborn screening technologies. This could be of especial 

relevance for people with a familial burden of epilepsy.  

Improved prediction of prognosis will aid personalised treatment and 

counselling of people with epilepsy. Currently, the standard approach of 

epilepsy treatment is trial-and-error.23 People are prescribed a drug that 

is selected based on efficacy in broad populations. When the drug fails 

to control seizures, a second or more consecutive drugs are attempted. 

This process often takes years, during which a patient might experience 

many debilitating seizures and adverse drug reactions, and it is currently 

impossible to predict the chances of any individual to become seizure-free 

with treatment. Improved prediction of drug resistance could expedite triage 

of people at risk to specialised care and  improve treatment outcome.27,28 For 

people who have managed to become free of seizures while on ASM, it is 

often a difficult dilemma whether to continue or withdraw ASM medication. 

Continuing treatment could maximise chances of remaining seizure free 

and eligibility for a driving license, however, it comes at the cost of taking 

daily medication with potential adverse effects.30,31 Predicting risk of seizure 

relapse after withdrawal could guide who should continue treatment and 

who could safely withdraw treatment, thereby potentially improving quality 

of life.14–16 Such predictions are already available based on broad cohorts of 

people with epilepsy,32 however, predictions could potentially be improved 

by basing them on people with the same specific subtypes of epilepsy. In 
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1addition to clinical predictors, genetics could also aid prognosis prediction, 

since people with the same genetic aetiology often have similar treatment 

outcomes. This is currently of most relevance for monogenic epilepsies. 

For example, sodium channel blocking drugs like phenytoin can be very 

effective to treat epilepsy due to gain-of-function variants in the sodium 

channel gene SCN8A, whereas they could worsen seizures in people with 

epilepsy due to loss-of-function SCN1A variants.

Outline and aims of this thesis
The overarching aim of this thesis is to increase understanding of genetic risk 

factors for epilepsy, and to use this knowledge to improve and personalize 

epilepsy treatment. We employed a broad arsenal of research techniques 

that we hope will aid to pave the road towards precision therapy for 

common genetic epilepsies. In chapter 2 we describe a large-scale GWAS of 

common epilepsies, where we identified 16 epilepsy risk loci to improve our 

understanding of epilepsy heritability and pathophysiology. We followed-

up on a lead from our GWAS and assessed a potential genetic association 

between GGE and altered vitamin-B6 metabolism in chapter 3. In chapter 

4, we assessed whether there is a genetic relation between epilepsy and 

background EEG measures, which could potentially aid epilepsy diagnosis. 

The aim of chapter 5 was to assess how GWAS data could be used to find 

effective epilepsy drugs and guide drug repurposing. Chapter 6 describes a 

GWAS with an almost doubled sample size compared to chapter 2, which 

further improves our understanding of epilepsy. We used this increased 

sample size in chapter 7 to assess whether differences on brain MRI scans 

in people with epilepsy reflect the cause or consequence of epilepsy or its 

treatment. In chapter 8, we investigated whether common genetic variants 

identified in GWAS, combined in polygenic risk scores, could improve 

diagnosis and classification of common epilepsies. Chapter 9 describes how 

knowledge about monogenic focal epilepsies could guide which patients might 

benefit from epilepsy surgery. In chapter 10, we assessed how often people 

with JME are drug-resistant and how many people experience a relapse after 

ASM withdrawal. We built upon this in chapter 11, by creating and validating 

individualised prediction models of treatment outcomes, which can be of use 

to personalise treatment and counselling of people with JME.
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Abstract
The epilepsies affect around 65 million people worldwide and have a 

substantial missing heritability component. We report a genome-wide 

mega-analysis involving 15,212 individuals with epilepsy and 29,677 

controls, which reveals 16 genome-wide significant loci, of which 11 are 

novel. Using various prioritization criteria, we pinpoint the 21 most likely 

epilepsy genes at these loci, with the majority in genetic generalized 

epilepsies. These genes have diverse biological functions, including coding 

for ion-channel subunits, transcription factors and a vitamin-B6 metabolism 

enzyme. Converging evidence shows that the common variants associated 

with epilepsy play a role in epigenetic regulation of gene expression in the 

brain. The results show an enrichment for monogenic epilepsy genes as 

well as known targets of antiepileptic drugs. Using SNP-based heritability 

analyses we disentangle both the unique and overlapping genetic basis to 

seven different epilepsy subtypes. Together, these findings provide leads 

for epilepsy therapies based on underlying pathophysiology.
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Introduction
The epilepsies are a group of brain disorders characterized by recurrent 

unprovoked seizures affecting up to 65 million people worldwide1. There are 

many different types of epilepsy, and its classification has recently evolved, 

driven by advances in clinical phenotyping, imaging, and genetics2. Since 

the identification of CHRNA4 as a cause of autosomal dominant nocturnal 

frontal lobe epilepsy3, genes underlying many different rare monogenic 

forms of epilepsy have been characterized, and discovery in this area has 

accelerated with the application of next generation sequencing4. This 

is particularly true of the relatively rare but devastating infantile group 

of epileptic encephalopathies, which are now emerging as a genetically 

heterogeneous group of largely de novo dominant disorders5. In contrast, 

single gene causes of the more common forms of epilepsy appear to be 

relatively rare. The common forms broadly comprise generalized and 

focal epilepsies, with the former having the highest heritability, yet the 

lesser yield in single gene discovery6. These common forms are likely 

multifactorial, with a significant and complex genetic architecture7,8,9.

Consistent with the experience from many other disease fields, early 

attempts to disentangle the genetic architecture of the more common, 

sporadic forms of epilepsy were limited by study power and scope10,11,12,13,14. 

In 2011, the International League Against Epilepsy (ILAE) launched the 

Consortium on Complex Epilepsies, to facilitate meta-analysis in epilepsy 

genomics. In 2014, the first such meta-analysis was reported comprising 

8696 cases and 26,157 controls. This led to the identification of 2q24.3, 

4p15.1, and 2p16.1 as epilepsy loci15.

Here we present an expanded analysis involving 15,212 cases and 29,677 

controls, which leads to identification of 16 genome-wide significant loci. 

Importantly, 11 of these loci are associated with the genetic generalized 

epilepsies; the group of epilepsies where despite having the highest 

heritability we have made the least genetic progress to date. We show that 

the genes associated with each locus are biologically plausible candidates, 

despite having diverse functions, particularly as there is a significant 

enrichment for known monogenic epilepsy genes and antiepileptic drug 

targets.
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Results
Study overview

We performed a genome-wide mega-analysis on the ILAE Consortium cohort 

now comprising 15,212 epilepsy cases, stratified into 3 broad and 7 subtypes 

of epilepsy, and 29,677 control subjects (Supplementary Table 1). The 

current study includes a further 6516 cases and 3460 controls in addition to 

the 8696 cases and 26,157 controls from our previously published analysis15. 

Thus, this mega-analysis is not a formal replication of our previously 

published meta-analysis. We do not attempt any formal replication of 

novel association signals detected in this analysis. Furthermore, 531 cases 

of Asian descent, and 147 cases of African descent were included through a 

meta-analysis. However, we refer to our GWAS as a mega-analysis as the 

vast majority of our samples (96%) were analyzed under that framework.

At the broadest level, cases were classified as (a) focal epilepsy where 

seizures arise in a restricted part of the brain, a form traditionally not 

regarded as genetic although a number of genes for monogenic forms have 

been identified; (b) genetic generalized epilepsy where seizures arise in 

bilateral networks and evidence for a genetic component is very strong, yet 

genes have been hard to identify, and (c) unclassified epilepsy2,16.

Subjects were assigned to three broad ancestry groups (Caucasian, Asian 

and African-American) according to results of genotype-based principal 

component analysis (Supplementary Fig. 1). Linear-mixed model analyses 

were performed stratified by ethnicity and epilepsy subtype or syndrome, 

after which trans-ethnic meta-analyses were undertaken.

Genome-wide associations

Our analysis of all epilepsy cases combined revealed one novel genome-

wide significant locus at 16q12.1 and reinforced two previous associations 

at 2p16.1 and 2q24.3 (Fig. 1 and Supplementary Fig. 2)15. When conditioning 

on the top SNP within the 2q24.3 locus, we demonstrate the existence of a 

second, independent signal within that locus (Supplementary Fig. 3). This 

locus was also significantly associated with focal epilepsy. Our analysis of 
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genetic generalized epilepsy uncovered 11 genome-wide significant loci, of 

which seven are novel (Fig. 2).

Figure 1: Manhattan plots for epilepsy genome-wide association analyses. Genome-
wide association analyses of a all epilepsy, b focal epilepsy, and c genetic generalized 
epilepsy. Negative log10-transformed P-values (Y-axis) are plotted against chromosomal 
position (x-axis). P-values were calculated with METAL using fixed-effects trans-
ethnic meta-analyses. The red line represents the genome-wide significance threshold 
(p < 5 × 10−8). Previously known loci are indicated in black; novel loci in red. The names 
above each locus represent the prioritized gene in the locus (see Fig. 2) or the name of 
the locus itself in case of multiple prioritized genes in the locus



Chapter 2

24

Figure 2: Genome-wide significant loci of all analyses and prioritized biological 
epilepsy genes. Genes were prioritized based on 6 criteria and scored based on the 
number of criteria met per gene (filled red boxes). The highest scoring gene, or 
multiple if they have the same score, in each locus is reported as ‘prioritized biological 
epilepsy gene(s)’. Similar to previous studies17,18, we used a minimum score of 2 to 
define these genes and we noted ‘none’ if no gene in the locus reached this score. 
Filled blue boxes indicate overlap with known targets of anti-epileptic drugs and 
established monogenic epilepsy genes. The lead SNP is defined as the SNP with the 
lowest P-value in the locus and the minor allele is displayed in brackets. P-values 
and Z-scores for All epilepsy, Focal epilepsy and Generalized epilepsy were calculated 
with fixed-effects trans-ethnic meta-analyses. P-values and Z-scores for JME, CAE, 
and Focal HS were calculated with BOLT-LMM. MAF minor allele frequency in the 
Human Reference Consortium reference panel. The direction of the Z-score is signed 
with respect to the minor allele. TWAS: significant TWAS association (based on data 
from the CommonMind Consortium), eQTL: significant eQTL within locus (based on 
data from the ROS/MAP projects), Brain exp: the gene is preferentially expressed in 
the brain, Missense: epilepsy GWAS missense variant in locus, PPI: gene prioritized 
by protein-protein interaction, KO mouse: relevant knockout mouse phenotype.

Considering that focal and generalized epilepsy are clinically broad 

and heterogeneous classifications, we next assessed whether loci are 

specifically associated with any of the seven most common focal epilepsy 

phenotypes and genetic generalized epilepsy syndromes (Supplementary 

Fig. 4 and 5). We found  a novel genome-wide significant association with 



Epilepsy GWAS 2018

25   

2

juvenile myoclonic epilepsy (JME) and two novel loci associated with focal 

epilepsy with hippocampal sclerosis. Moreover, we found two genome-

wide significant associations with childhood absence epilepsy (CAE) in 

loci that were previously associated with absence epilepsy and generalized 

epilepsy12. We did not find any significant loci associated with generalized 

epilepsy with tonic-clonic seizures (GTCS) alone, juvenile absence epilepsy 

(JAE), lesion-negative or lesional focal epilepsy (other than hippocampal 

sclerosis). Further analysis of the association signals for each locus in the 

different syndromes suggested that some signals display specificity for a 

single subtype, while others show evidence for pleiotropy (Supplementary 

Fig. 6). However, the relatively small sample sizes of these phenotype 

subsets warrant caution for over-interpretation.

In total, we found 11 novel genome-wide significant loci associated with the 

epilepsies and we replicated the association of five previous known loci12,15 

(Supplementary Fig. 7). Two previous reports of association did not reach our 

threshold for significance. This included a locus (rs2292096; 1q32.1) for focal 

epilepsy detected in an Asian population 14 (p = 0.057 in our trans-ethnic 

fixed-effects meta-analysis), and rs12059546 (1q43) detected previously for 

JME12 (p = 7.4 × 10−5 in our Caucasian-only BOLT-LMM analysis).

Gene mapping and biological prioritization

The genome-wide significant loci from all analyses were mapped to a total of 

146 genes (Supplementary Data 1) using a combination of positional mapping 

(±250 kb from locus) and significant distal 3D chromatin interactions of the 

locus with a gene promoter (FDR < 10−6). Considering that most loci encompass 

several genes, we devised criteria to systematically prioritize the most likely 

candidate genes per locus based on established bioinformatics methods and 

resources. This biological prioritization was based on six criteria (Fig. 2), 

similar to previous studies17,18. Each gene was given a score based on the 

number of criteria that were met (range 0–6). The gene(s) with the highest 

score in each locus, with a minimum of 2, were defined as biological epilepsy 

risk genes. We validated this approach using established epilepsy genes 

within our data (Supplementary Table 2). Using this approach, we were able 

to refine these loci to the 21 most likely biological epilepsy genes (Fig. 2).
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These prioritized genes include seven ion-channel genes (SCN1A, SCN2A, SCN3A, 

GABRA2, KCNN2, KCNAB1, and GRIK1), three transcription factors (ZEB2, STAT4 

and BCL11A), the histone modification gene BRD7, the synaptic transmission 

gene STX1B and the pyridoxine metabolism gene PNPO. Notably, a conditional 

transcriptome-wide association study (TWAS) analysis suggests that the 

signal for genetic generalized epilepsy at 17q21.32, which was also observed 

in an earlier study12, seems driven by regulation of expression of PNPO 

(Supplementary Fig. 8). This suggests that the biology behind pyridoxine 

(vitamin-B6)-responsive epilepsy19,20 could be relevant to common genetic 

generalized epilepsies. Biological prioritization implicates SCN1A, SCN2A, 

SCN3A, and TTC21B as the most likely genes underlying the signal at 2q24.3 

for all epilepsy, focal epilepsy and genetic generalized epilepsy. Pathogenic 

variants in the sodium channels SCN1A, SCN2A and SCN3A are associated with 

various epilepsy syndromes16 and mutations in TTC21B impair forebrain 

development21,22. Our analyses implicate STX1B as a potential gene underlying 

the association of JME at the 16p11.2 locus and the top variant in the locus is 

an eQTL that strongly correlates with expression of STX1B in the dorsolateral 

prefrontal cortex (Spearman’s correlation: Rho = 0.33, p = 3 × 10−14)23. 

Interestingly, for one of the prioritized genes in genetic generalized epilepsy, 

PCDH7, an eQTL was recently detected in epileptic hippocampal tissue24. 

Prioritized genes associated with focal epilepsy with hippocampal sclerosis 

include the gap-junction gene GJA1.

In addition we identified eight genes from Fig. 2 (BCL11A, GJA1, ATXN1, 

GABRA2, KCNAB1, SCN3A, PCDH7, STAT4) with evidence of co-expression in at 

least two independent brain expression resources, using a brain gene co-

expression analysis with brain-coX25. These eight candidates are embedded 

in several established epilepsy gene co-expression modules (Supplementary 

Fig. 9; Supplementary Table 9).

SNP annotation and tissue-specific partitioned heritability

We functionally annotated all 492 genome-wide significant SNPs from all 

phenotypes (Fig. 3a–c) and found that most SNPs were either intergenic

(29%) or intronic (46%); 78% were in open chromatin regions (as indicated 

by a minimum chromatin state of 1–726,27, and 50% of SNPs showed some 
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evidence for affecting gene transcription (RegulomeDB score ≤628). Four 

were coding SNPs of which two were missense variants.

Figure 3: Functional annotation and heritability enrichment of epilepsy GWAS 
results. a functional categories of all genome-wide significant SNPs in all phenotypes. 
b Minimum (most active) chromatin state across 127 tissues for all genome-wide 
significant SNP in all phenotypes; TSS - transcription start site. c The RegulomeDB 
score for all genome-wide significant SNPs in all phenotypes, where 7 represents no 
evidence for affecting regulation and lower scores represent increasing evidence; NA 
- the variant does not exist in RegulomeDB. d Heritability enrichment for genetic 
generalized epilepsy with 6 different chromatin markers in 88 tissues, calculated with 
stratified LD-score regression using data from the Roadmap Epigenomics Project. The 
main bar chart represent the 10 tissues with the strongest heritability enrichment 
and the inset shows the full distribution of all chromatin markers in all tissues. e 
Heritability enrichment of genes expressed in 53 tissues, calculated with stratified 
LD-score regression using data from the gene-tissue expression (GTEx) Consortium.
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To gain further biological insight into our results, we next used a partitioned 

heritability method29 to assess whether our genome-wide significant 

signals contained SNPs associated with enhanced transcription in any of 

88 tissues. We found significant enrichment of H3K4me1 markers in all 

epilepsy (stratified LD-score regression; p = 4 × 10−5) and H3K27ac markers 

in genetic generalized epilepsy (stratified LD-score regression; p = 1.3 × 10−6), 

specifically in the dorsolateral prefrontal cortex. Moreover, the distribution 

of heritability enrichment P-values was strongly skewed towards brain 

tissues for all epilepsy phenotypes (Fig. 3d, Supplementary Figs. 10–12).

H3K27ac and H3K4me1 are epigenetic markers associated with regulating 

gene transcription, suggesting that altered transcription in the dorsolateral 

prefrontal cortex could be one of the underlying mechanisms of epilepsy. 

This is further supported by a tissue-specific heritability enrichment analysis 

(using data from the GTEx Consortium), showing strongest enrichment 

for genetic generalized epilepsy with genes expressed in Brodmann Area 

9 (stratified LD-score regression; p = 1.56 × 10−6), which encompasses the 

dorsolateral prefrontal cortex (Fig. 3e). These findings further corroborate 

our TWAS results (using data from the unrelated CommonMind Consortium 

database), which shows significant associations of epilepsy with gene 

expression of several genes in the dorsolateral prefrontal cortex (Fig. 2; 

Supplementary Table 3). Although genetic generalized epilepsy has been 

regarded as a generalized process, anatomical, electrophysiological, 

cognitive, and functional imaging studies implicate dysfunction in the 

frontal lobes30,31,32,33,34. Altogether, we have converging evidence from 

several unrelated methods and databases suggesting epigenetic regulation 

of gene expression in the dorsolateral prefrontal cortex as a potential 

pathophysiological mechanism underlying our epilepsy GWAS findings.

Finally, we leveraged the Brainspan database, as implemented in FUMA35, 

to assess whether the genes implicated by our GWAS are differentially 

expressed in the brain at various prenatal and post-natal ages. These 

analyses were performed for the genes prioritized in any epilepsy phenotype 

(21 genes), any focal epilepsy subtype (8 genes) or any genetic generalized 

epilepsy syndrome (15 genes). The results suggest that the expression of 



Epilepsy GWAS 2018

29   

2

genes associated with focal epilepsy is up-regulated in late-infancy and 

young adulthood, whereas expression of those genes associated with genetic 

generalized epilepsy is down-regulated in early childhood and differentially 

expressed prenatally and at adolescence (Supplementary Fig. 13).

Enrichment analyses

A previous exome-sequencing study found an association for common 

epilepsies with ultra-rare variants in known monogenic epilepsy genes36. 

To assess whether common epilepsies are also associated with common 

variants in monogenic epilepsy genes (see Methods), we pooled the 

146 genes that were mapped to our genome-wide significant loci and 

performed a hypergeometric test. Results illustrated an enrichment of 

known monogenic epilepsy genes within the genes mapped to our genome-

wide significant loci (6 genes overlapped; hypergeometric test: odds ratio 

[OR] = 8.45, p = 1.3 × 10−5). This enrichment is considerably more significant 

when limited to the 21 genes with the highest biological priority from Fig 

2 (5 genes overlapped; hypergeometric test: OR = 61.4, p = 9.9 × 10−10). We 

did not find a bias for gene size in our enrichment analyses when using a 

conservative method to correct for this (see Methods). This suggests that 

both common and rare variants in monogenic epilepsy genes contribute 

to common epilepsy susceptibility, corroborating and further extending 

previous observations8,37. Further studies are required to establish whether 

the signals from common and rare variants are independent of each other.

Using public databases of drug-targets, we found that 13 out of 24 currently 

licensed anti-epileptic drugs target genes that are implicated in our GWAS. 

Using the same list of 146 genes as described above, we performed a 

hypergeometric test which shows a significant enrichment of genes that are 

known targets of anti-epileptic drugs (8 genes overlapped; hypergeometric 

test: OR = 19.6, p = 1.3 × 10−9). This enrichment is considerably more significant 

when limited to the 21 most biologically plausible candidate genes (5 genes 

overlapped; hypergeometric test: OR = 101.2, p = 5.7 × 10-11). This observation 

suggests that other drugs that target genes from our GWAS could also have 

potential for the treatment of epilepsy. The Drug-Gene interaction database 
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(http://dgidb.org) lists 166 drugs that target biologically prioritized genes 

from our GWAS (see Supplementary Data 2 for a full list), that may be 

further investigated for their anti-seizure potential.

Next, we used a complementary approach38 to search for repurposable 

drugs. By comparing GWAS-imputed and drug-induced transcriptomes, we 

predicted drugs capable of rectifying epilepsy-associated gene expression 

changes (see Methods). Our predictions are enriched with licensed 

antiepileptic compounds (permutation based p-value <1.0 × 10−6) and with 

other licensed compounds that have proven antiepileptic efficacy in animal 

models (permutation based p-value<1.0 × 10−6). We list 30 of our predicted 

drugs that are licensed for other conditions and have published evidence of 

efficacy in animal models of epilepsy (Supplementary Table 4).

Heritability analyses

Twin-based and genetic heritability studies have suggested that while 

epilepsy is strongly heritable8,39, there is a substantial missing heritability 

component40,41. We used LDAK to estimate  the proportion of 

heritability that can be attributed to SNPs42,43,44. We estimate  = 32.1% 

(95%CI: 29.6–34.5%) for genetic generalized epilepsy and  = 9.2% 

(8.4–10.1%) for focal epilepsy (estimates are on the liability scale, assuming 

a prevalence of 0.002 and 0.003, respectively) which are consistent with 

previous estimates8. These results indicate that SNPs explain a sizeable 

proportion of the liability of genetic generalized epilepsy syndromes, but 

less so for focal epilepsy phenotypes (Fig. 4). To delineate the heritability 

of the different epilepsy phenotypes, we used LDAK to perform genetic 

correlation analyses between the different forms. We found evidence for 

strong genetic correlations between the genetic generalized epilepsies, 

whereas we found no significant correlations between the focal epilepsies 

(Fig. 4). Interestingly, we found a significant genetic correlation between 

JME and lesion-negative focal epilepsy (LDAK genetic correlation: R2=0.46, 

p=8.77 × 10−4), suggesting either pleiotropy and/or misclassification. It is 

known that focal EEG features can be seen in JME45.



Epilepsy GWAS 2018

31   

2

Figure 4: Heritability estimates and genetic correlations between epilepsy 
syndromes, calculated using LDAK. Subjects with a diagnosis of both CAE and JAE were 
excluded from both phenotypes. The genetic correlation coefficient was calculated 
with LDAK and is denoted with a color scale ranging from 0% (white) to 100% (red). 
#P < 0.05; *P < 0.0024 (Bonferroni threshold);  SNP-based heritability on liability 
scale (95% CI); †heritability estimate exceeded 100%, possibly due to small sample 
size and large SD; CAE - childhood absence epilepsy, JAE - juvenile absence epilepsy, 
JME - juvenile myoclonic epilepsy, GTCS alone - generalized tonic-clonic seizures 
alone, focal HS - focal epilepsy with hippocampal sclerosis.

In view of the increasing data on comorbidities with epilepsy, we next used 

LD-score regression to analyze the genetic correlation between epilepsy and 

various other brain diseases and traits from previously published GWAS (Fig. 

5; see Supplementary Table 5 for values). Perhaps surprisingly, we did not 

find significant correlations with febrile seizures. Similarly, we did not find 

any significant genetic correlations between epilepsy and other neurological 

or psychiatric diseases. However, we did observe significant correlations for 
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all epilepsy and genetic generalized epilepsy with cognitive ability. We then 

used the method Multi-Trait Analysis of GWAS (MTAG)46 to leverage the 

larger sample size of the genetically correlated GWAS of cognitive ability 

(n = 78,308) in order to boost the effective sample size of our all and genetic 

generalized epilepsy GWAS to 53,244 and 41,515 respectively. Using this 

approach, we found a novel genome-wide significant locus at 10q24.32 in 

all epilepsy (MTAG p = 2.2 × 10-8) and genetic generalized epilepsy (MTAG 

p = 4.0 × 10-8) which encompasses the Kv-channel-interacting protein 2 

(KCNIP2) gene (Supplementary Fig. 14), loss of which is associated with 

seizure susceptibility in mice47.

Figure 5: Genetic correlations of epilepsy with other phenotypes. The genetic 
correlation coefficient, calculated using LD-score regression, is denoted with a color 
scale ranging from -100% (blue) to 100% (red). #: P < 0.05 *P < 0.001 (Bonferroni 
threshold; 0.05/48)

Discussion
The increased sample size in this second ILAE Consortium GWAS of common 

epilepsies has resulted in the detection of 16 risk loci for epilepsy and 

illustrates how common variants play an important role in the susceptibility 

of these conditions. But compared to other common neurological diseases 

our sample size is modest. For example the latest GWAS in schizophrenia 

considered 36,989 schizophrenia cases and 113,075 controls, resulting in 

the identification of 108 risk loci48. Larger efforts would deliver further 

insight to the genetic architecture of the common epilepsies.

The majority of the loci are associated with genetic generalized epilepsy. 

This observation is a welcome partial explanation for the high heritability of 

genetic generalized epilepsy, in light of the relative lack of rare variant variants 
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discovered to date. We also show that there is substantial genetic correlation 

between the generalized syndromes. We speculate that the subtypes share a 

large part of the genetic susceptibility for generalized epilepsies, with specific 

modifying factors determining the specific syndrome.

Some syndrome-specific associations were detected, such as the relatively 

strong signal for STX1B in JME, and the association of GJA1 with focal 

epilepsy-hippocampal sclerosis. Interestingly, although the association 

signal for STX1B was only significant in the JME analysis, rare pathogenic 

variants in STX1B have been recently found in a spectrum of epilepsies, 

including genetic epilepsy with febrile seizures plus (GEFS+), genetic 

generalized epilepsies (including JME), epileptic encephalopathies and 

even some focal epilepsies49,50 (Wolking et al., Manuscript submitted (2018). 

Further, mutations in the gap-junction gene GJA1 are associated with 

impaired development of the hippocampus51 and different expression has 

been reported in epileptic hippocampal and cortical tissue52,53. These findings 

represent a tantalizing glance of the different biological mechanisms 

underlying epilepsy syndromes that may guide us to the introduction of 

genetics for improved diagnosis, prognosis and treatment for these common 

epilepsies. However, the relatively low sample size of our subtype analysis 

warrants a conservative interpretation and follow-up with a larger cohort.

At least three association signals are shared between focal epilepsy and 

genetic generalized epilepsy. The clearest overlapping signal remains the 

2q24.3 locus, as we reported previously15. However, this association signal 

is complex and we demonstrate that the locus consists of at least two 

independent signals (Supplementary Fig. 3). Our Hi-C chromatin analysis 

suggests the complexity includes levels of functional association to SCN2A 

and SCN3A, that are located more distally to the SCN1A locus. Mutations in 

SCN2A and more recently SCN3A are established monogenic causes of epileptic 

encephalopathy that, like SCN1A, cause dysfunction of the encoded ion-

channels, which is believed to disturb the fine balance between neuronal 

excitation and inhibition. This may involve independent variation that either 

affects regulation of SCN1A, SCN2A, or SCN3A independently. However, the 

complex association may also reflect multiple rare risk variations, and large 

resequencing studies will shed further light on this issue.
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The number of association signals we detected and increased power relative to 

our previous meta analysis15 allowed us to explore the biological mechanisms 

behind the observed genetic associations. We show that the signals converge 

on the dorsolateral prefrontal cortex as the tissue in which most functional 

effect is observed; this is broadly consistent with the importance of the frontal 

lobes in generalized epilepsies. Indeed, our analyses of the epigenetic markers 

H3K27ac and H3K4me1, TWAS, and tissue-specific heritability enrichment 

analysis all point towards epigenetic regulation of gene expression in the 

dorsolateral prefrontal cortex as a potential pathophysiological mechanism 

underlying our epilepsy GWAS findings.

Altogether, we found 16 loci that are associated with the common epilepsies. 

Our heritability analyses show that collectively, common genetic variants 

explain a third of the liability for genetic generalized epilepsy. Our analyses 

suggest that the associated variants are involved in regulation of gene 

expression in the brain. The 21 biological epilepsy candidate genes implicated 

by our study have diverse biological functions, and we show that these are 

enriched for known epilepsy genes and targets of current antiepileptic drugs. 

Our analyses provide evidence for pleiotropic genetic effects that raise risk 

for the common epilepsies collectively, as well as variants that raise risk 

for specific epilepsy syndromes. Determining the shared and unique genetic 

basis of epilepsy syndromes should be of benefit for further stratification and 

eventually lead to possible applications for improved diagnosis, prognosis, 

and treatment. Future studies including pharmacoresponse data, imaging, 

and other clinical measurements have the potential to further increase the 

benefit of these studies for people with epilepsy. In combination, these 

findings further our understanding of the complex genetic architecture of the 

epilepsies and could provide leads for new treatments and drug repurposing.

Methods
Ethics statement

We have complied with all relevant ethical regulations. All study participants 

provided written, informed consent for use of their data in genetic studies 

of epilepsy. For minors, written informed consent was obtained from their 
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parents or legal guardian. Local institutional review boards approved study 

protocols at each contributing site.

Cohorts and phenotype definition

A list of the sites included in this study is described in Supplementary 

Table 6. We classified seizures and epilepsy syndromes according to the 

classification and terminology outlined by the ILAE15,54. For all cases, epilepsy 

specialists assessed each phenotype at the contributing site. Individuals 

with epilepsy were initially assigned to one of three phenotypic categories: 

genetic generalized epilepsy, focal epilepsy, or unclassified epilepsy. Based 

on EEG, MRI and clinical histories we further classified our cohort into the 

epilepsy subtypes listed in Supplementary Table 1. We used a combination of 

population-based datasets as controls. Some control cohorts were screened 

by questionnaire for neurological disorders. 53.4% of cases were female 

compared to 51.6% of controls.

Study design

We conducted a case-control study in subjects of Caucasian, Asian (Han 

Chinese) and African-American ethnicities. Our primary analyses were 

structured to test common genetic variants for association with epilepsy 

according to broad epilepsy phenotypes. We pooled cases from cohorts of 

the same ethnic group to perform linear mixed model analysis, followed 

by subsequent meta-analyses of regression coefficients across the three 

ethnic groups. Our secondary analyses tested for associations with specific 

syndromes of genetic generalized epilepsy (childhood absence epilepsy, 

juvenile absence epilepsy, juvenile myoclonic epilepsy, and generalized 

tonic-clonic seizures alone) and phenotypes of focal epilepsy (lesion 

negative, focal epilepsy with hippocampal sclerosis, and focal epilepsy with 

other lesions). The secondary analyses were limited to Caucasian subjects 

due to sample size. We prioritized the results of the GWAS by incorporating 

eQTL information, transcriptome-wide analysis, and biological annotation. 

Finally, we estimated the genetic correlation of epilepsy phenotypes using 

Linkage-Disequilibrium Adjusted Kinships (LDAK).
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Genotyping

The EpiPGX samples were genotyped at deCODE Genetics on Illumina 

OmniExpress-12 v1.1 and OmniExpress-24 v1.1 single nucleotide 

polymorphism (SNP) arrays. The EPGP samples were genotyped on Illumina 

HumanCore beadchips at Duke University, North Carolina. The remainder 

of the samples were genotyped on various SNP arrays, as previously 

published15.

Genotyping quality control and imputation

Quality control of genotyping was performed separately for each cohort 

using PLINK 1.955. Each genotype cohort was temporarily merged with a 

genetically similar reference population from the 1000 Genomes Project 

(CEU, CHB, or YRI). A test for Hardy–Weinberg equilibrium (HWE) was 

performed and SNPs significant at p < 1 × 10−10 were removed. All samples 

and all SNPs with missing genotype rate >0.05 and all SNPs with minor 

allele frequency (MAF) <0.01 were removed. Next, we pruned SNPs using 

the PLINK --indep-pairwise command (settings: window size 100 kb, 

step size 25, R2 > 0.1). Using this subset of SNPs, we removed samples 

with outlying heterozygosity values (>5 SD from the median of the whole 

cohort). Identity by descent (IBD) was calculated in PLINK to remove sample 

duplicates (>0.9 IBD) and to identify cryptic relatedness. We removed one 

from each sample pair with IBD>0.1875, with the exception of the EPGP 

familial epilepsy cohort. Subjects were removed if sex determined from 

X-chromosome genotype did not match reported gender. Array-specific 

maps were used to update all SNPs positions and chromosome numbers to 

the Genome Reference Consortium Human Build 37 (GRCh37), and remove 

all A/T and C/G SNPs to avoid strand issues. We applied pre-imputation 

checks according to scripts available on the website of Will Rayner of the 

Wellcome Trust Centre for Human Genetics (www.well.ox.ac.uk/~wrayner/

tools/) to remove SNPs with allele frequencies deviating >20% from the 

frequency in the Haplotype Reference Consortium. Samples were submitted 

to the Sanger Imputation Service (https://imputation.sanger.ac.uk/)56. We 

selected the Human Reference Consortium (release 1.1; n = 32470) dataset as 

reference panel for Caucasian and Asian datasets and the African Genome 
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Resources (n = 4956) for the African-American datasets. Post-imputation 

quality control filters were applied to remove SNPs within each imputed 

cohort with an imputation info score <0.9 or HWE p<1e-6. Imputed genotype 

dosages with a minimum certainty of 0.9 per subject were converted to 

hard-coded PLINK format after which all samples were pooled into a single 

cohort. We performed a principal components analysis using GCTA. From 

the PCA results we stratified our subjects into three broad ethnic groups 

(Caucasian, Asian and African) while removing extreme outliers. After 

stratifying by ethnicity, we removed SNPs with HWE p < 1e-6, call rate <0.95 

or MAF<0.01. In total 816 subjects out of 45705 subjects were filtered out by 

quality control procedures, leaving 44889 subjects for analyses.

Study power

We estimated using PGA57 that the study had 80% power to detect a genetic 

predictor of relative risk for all epilepsy (approximated to odds ratio) 

≥1.45 with MAF = 1% and an alpha level of 5 × 10−8. We estimated that our 

meta-analyses had 80% power to detect genome-wide significant SNPs of 

MAF = 1% with relative risks ≥1.5 and ≥1.8, for focal and generalized epilepsy 

respectively (see Supplementary Figure 15). Our analysis of generalized 

epilepsy sub-phenotypes had 80% power to detect genome-wide significant 

SNPs of MAF = 1% with relative risks ≥2.6, ≥3.3, and ≥2.4 for CAE, JAE, and 

JME respectively. Our analysis of focal epilepsy sub-phenotypes had 80% 

power to detect genome-wide significant SNPs of MAF = 1% with relative 

risks ≥1.9, ≥2.8, and ≥1.9 for focal epilepsy lesion negative, focal epilepsy 

with hippocampal sclerosis and focal epilepsy with lesion other than 

hippocampal sclerosis, respectively.

Statistical analyses

Association analyses were conducted within the three ethnic subgroups 

using a linear mixed model in BOLT-LMM58. A subset of SNPs, used to 

correct for (cryptic) relatedness and population stratification by BOLT-

LMM, were derived by applying SNP imputation info score >0.99, MAF 

>0.01, call rate >0.99 before pruning the remaining variants using LDAK 

with a window size of 1 Mb and R2 > 0.243. All analyses included gender as a 
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covariate and the threshold for statistical significance was set at 5 × 10−8. We 

compared χ2 values of the BOLT-LMM output between all pairs of SNPs in 

high LD (R2 > 0.4) and removed pairs of SNPs with extreme χ2 differences 

using a formula that scales exponentially with magnitude of χ2 and LD: χ2 

difference cutoff = ; where SNP1- χ2 and SNP2− χ2 are the 

χ2-statistic of the two SNPs in each pair and R2 is their squared correlation 

(LD). We tested the homogeneity of all SNPs by splitting the pooled cohort 

into 13 distinct clusters of ethnically matched cases and controls and 

removed SNPs exhibiting significant heterogeneity of effect (Phet < 1 × 10−8). 

Fixed effects, trans-ethnic meta-analyses were conducted using the 

software package METAL59. Manhattan plots for all analyses were created 

using qqman. Considering that our study had unequal case-control ratios, 

we calculated the effective sample size per ethnicity using the formula 

recommended by METAL: Neff = 4/(1/Ncases + 1/Nctrls). Since >95% of all cases 

were Caucasian, we included all SNPs that were present in at least the 

Caucasian dataset (~5 million).

Conditional association analysis was performed with PLINK on loci containing 

significant SNPs to establish whether other genetic variants in the region 

(500 Kb upstream and downstream) were independently associated with 

the same phenotype. The conditional threshold for significance was set at 

2 × 10−5, based on approximately 2500 imputed variants per 1MB region.

Assessment of inflation of the test statistic

Potential inflation of the test statistic was assessed per ethnicity and 

phenotype by calculating the genomic inflation factor (λ; the ratio of the 

median of the empirically observed distribution of the test statistic to the 

expected median) and the mean χ2. Since λ is known to scale with sample size, 

we also calculated the λ1000, i.e λ corrected for an equivalent sample size of 1000 

cases and 1000 controls60. We observed some inflation of the test statistic 

(λ > 1) across the different phenotypes (Supplementary Table 7), suggesting 

either polygenicity or confounding due to population stratification or cryptic 

relatedness. Therefore, we applied LD score regression61, estimating LD 

scores using matched populations from the 1000 GP (EUR for Caucasians 
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(n = 669), AFR for African-Americans and EAS for Asians). These LDSC results 

suggested that inflation of the test statistic was primarily due to polygenicity 

for most analyses (Supplementary Table 7). Only the Caucasian focal and all 

epilepsy analyses had LDSC intercepts >1.1, suggesting confounding or an 

incomplete match of the LD-score reference panel. Our focal and all epilepsy 

analyses included cohorts from various Caucasian ethnicities, including 

Finnish and Italian focal epilepsy cohorts, and it has been shown that LD 

differs considerably between Finnish and Italian populations61. Therefore, 

we consider an incomplete match of the LD-score reference panel the most 

likely cause of the observed inflation, since we used a mixed-model analysis 

that corrects for population stratification and cryptic relatedness58.

Gene mapping and biological prioritization

Genome-wide significant loci of all phenotypes were mapped to genes in 

and around these loci using FUMA35. Genome-wide significant loci were 

defined as the region encompassing all SNPs with P < 10-4 that were in LD 

(R2 > 0.2) with the lead SNP (i.e. the SNP with the lowest P-value in the 

locus with P < 5 × 10−8). Positional mapping was performed to map genes that 

were located within 250 kb of these loci. Additionally, we mapped genes that 

were farther than 250 kb away from the locus using chromatin interaction 

data to identify genes that show a significant 3D interaction (PFDR < 10−6) 

between their promoter and the locus, based on Hi-C data from dorsolateral 

prefrontal cortex, hippocampus, and neural progenitor cells62. This resulted 

in a total of 146 mapped genes across all phenotypes, of which some genes 

(e.g. SCN1A) were associated with multiple epilepsy phenotypes.

We next devised various prioritization criteria to prioritize the most likely 

biological candidate genes out of the 146 mapped genes, similar to previous 

studies17,18,63, based on the following 6 criteria:

1. A significant correlation between the epilepsy phenotype and expression 

of the gene, as assessed with a transcriptome-wide association study 

(TWAS). Default settings of the FUSION software package64 were used 

to impute gene-expression based on our GWAS summary statistics 

and RNA-sequencing data from dorsolateral prefrontal cortex tissue 

(n = 452, CommonMind Consortium65), after which the association 
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between the epilepsy phenotype with gene-expression was calculated. 

It was possible to test the TWAS expression association for 53 out of 

our 146 mapped genes, since only the expression of these 53 genes 

was significantly heritable (heritability p-value <0.01, as suggested 

by Gusev et al.64). We set a Bonferroni corrected p-value threshold of 

0.05/53 = 0.00094 to define significant TWAS associations.

2. Genes for which a SNP in the genome-wide significant locus (as defined 

above) is a significant cis-eQTL (Bonferroni corrected P < 8 × 10−10)23 

based on data from the ROS and MAP studies, which includes RNA-

sequencing data from 494 dorsolateral prefrontal cortex tissues23.

3. The gene is preferentially expressed in the brain. This was assessed by using 

gene-expression data from all 53 tissues of the Gene-Tissue expression 

(GTEx) Consortium66. Genes were considered to be preferentially expressed 

in the brain when the average expression in all brain tissues was higher 

than the average expression in non-brain tissues.

4. Genes for which a SNP in the genome-wide significant locus (as defined 

above) is a missense variant, as annotated by ENSEMBL67.

5. Genes prioritized by protein-protein interaction network, as calculated 

using the default settings of DAPPLE68, which utilizes protein–protein 

interaction data from the InWeb database69. The 146 genes implicated 

by our GWAS were input after which DAPPLE assessed direct and 

indirect physical interactions to create a protein-interaction network. 

Next, DAPPLE assigned a significance score to each gene according to 

several connectivity parameters; genes with a corrected P < 0.05 were 

considered to be prioritized by DAPPLE.

6. Genes for which a nervous system or behavior/neurological phenotype 

was observed in knockout mice. Phenotype data of knockout mice was 

downloaded from the Mouse Genome Informatics database (http://

www.informatics.jax.org/) on 17 January 2018 and nervous system 

(phenotype ID: MP:0003631) and behavior/neurological phenotype 

(MP:0005386) data were extracted.

All 146 genes were scored based on the number of criteria met (range 0–6 

with an equal weight of 1 per criterion), see Supplementary Data 1 for a full 

list. We considered the gene(s) with the highest score in each locus as the 

most likely biological epilepsy candidate gene. Multiple genes in a locus were 
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selected if they had an equally high score whilst no genes were selected in a 

locus if all genes within it had a score <2, similar to previous studies17,18.

Gene co-expression analysis for epilepsy with brain-coX

In silico gene prioritization was performed using brain-coX25. brain-coX 

uses a compendium of seven large-scale normal brain gene expression data 

resources to identify co-expressed genes with a set of given genes (known, 

or putative, disease causing genes) likely to encapsulate gene expression 

networks involved in disease. This approach can identify, and thus leverage 

networks that are not currently known and not present in available 

resources such as PPI networks and is a complementary approach to these. 

We used a set 102 monogenic epilepsy genes (Supplementary Table 8) as 

the set of known disease genes. An FDR of 0.2 was used to identify genes 

that significantly co-express with the known set of genes. Prioritization in 

at least three datasets at an FDR of 0.2 led to a specificity of 0.925.

In the first analysis we used a set of 16 candidate epilepsy genes identified 

by the GWAS analysis and prioritized using additional methods (Fig. 2). 

These excluded any genes already included in the set of known epilepsy 

genes (Supplementary Table 8). Supplementary Fig. 9 shows the gene co-

expression pattern using the weighted average gene co-expression across 

all seven datasets for candidate genes from the GWAS that show significant 

gene co-expression with any of the 102 known epilepsy genes.

In the second analysis we used the set of all the 146 candidate genes identified 

in the GWAS analysis (Supplementary Data 1). Only 140 of these were identified 

as having available expression data in the gene expression resources. Many 

genes showed some evidence of gene co-expression but few showed co-

expression in more than 2 datasets (18 out of 140). BCL11A (6) and GJA (6) 

remain the most robust candidate genes co-expressed with known epilepsy 

genes. The complete results are shown in Supplementary Table 9.

Functional annotations

We annotated all genome-wide significant SNPs (p < 5 × 10−8) from all 

phenotypes using the Variant Effect Predictor of ENSEMBL67 and the 
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RegulomeDB database28. We annotated chromatin states using epigenetic 

data from the NIH Roadmap Epigenomics Mapping Consortium70 and 

ENCODE71. We used FUMA35 to annotate the minimum chromatin state (i.e. 

the most active state) across 127 tissues and cell types for each SNP, similar 

to a previous study27.

Heritability enrichment of epigenetic markers and gene-
expression

We used stratified LD-score regression72 to assess tissue-specific heritability 

enrichment of epigenetic markers in 88 tissues, using standard procedures29. 

We used the same settings and pre-calculated weights that accompanied 

the paper by Finucane et al. to calculate the heritability enrichment of all 

epilepsy, focal epilepsy and generalized epilepsy, based on epigenetic data 

of 6 chromatin markers in 88 tissues from the Roadmap Consortium and 

gene-expression data in 53 tissues from the GTEx Consortium.

Enrichment analyses

Hypergeometric tests were performed with R (version 3.4.0) to assess 

whether the genes mapped to genome-wide significant loci and the subset 

of prioritized biological epilepsy genes (see above) were enriched for: (i) 

known monogenic epilepsy genes (n = 102) and (ii) known anti-epileptic 

drug target genes (n = 64), relative to the rest of the protein-coding genes 

in the genome (n = 19180). We supplemented the list of 43 known dominant 

epilepsy genes36 with an additional 59 monogenic epilepsy genes from the 

GeneDX comprehensive epilepsy panel (www.genedx.com). We compiled 

the list of drug target genes from73, supplemented with additional FDA & 

EMA licensed AEDs. The full list of gene targets considered in each analysis 

are listed in Supplementary Tables 8 and 10.

Enrichment analyses corrected for gene size

Brain expressed genes are known to be larger in size than non-brain 

expressed genes. To assess whether gene size could be a cause of bias 

for our enrichment analyses, we first assessed whether the size of the 
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genes mapped in our analyses was different than non-mapped genes in 

the genome. We found that the size of the 146 genes mapped to genome-

wide significant loci was 65.6 kb, whereas the average gene size of all other 

protein-coding genes is on average 62.2 kb, suggesting there is no strong 

bias towards preferentially mapping loci to small or large genes.

We also observed that the 102 established monogenic epilepsy genes are on 

average 2.44 times longer than non-epilepsy genes (152.0 kb vs 62.2 kb). 

As a conservative approach to correct for this size difference, we have used 

the Wallenius’ noncentral hypergeometric distribution, as implemented 

in the R-package ‘BiasedUrn’. Using this distribution, we repeated our 

hypergeometric analyses under the conservative assumption of a 2.42 times 

increased likelihood of mapping epilepsy genes as opposed to non-epilepsy 

genes. Using this distribution, the 146 genes that were mapped to genome-

wide significant loci were significantly enriched for monogenic epilepsy 

genes (Wallenius’ noncentral hypergeometric test p = 8.3×10−3). When 

limiting our results to the 21 biological prioritized genes, the enrichment of 

monogenic epilepsy genes became more significant (Wallenius’ noncentral 

hypergeometric distribution p = 5.3×10−4).

Similarly, we observed that the targets of AEDs are on average 2.43 times 

longer than non-AED target genes (151.8 kb vs 62.4 kb). When correcting for 

this gene-size difference under the assumption of a 2.43 times increased 

likelihood of mapping our genome-wide significant loci to AED target genes, 

we find that the 146 mapped genes were significantly enriched for AED 

target genes (Wallenius’ noncentral hypergeometric test p = 1.7×10−5). When 

limiting our results to the 21 biological prioritized genes, the enrichment 

of AED target genes became more significant (Wallenius’ noncentral 

hypergeometric test p = 1.0×10−8).

Connectivity mapping

Connectivity mapping was performed using our GWAS results in order to 

identify drugs which can potentially be repurposed for the treatment of 

epilepsy, enabling significant savings in the time and cost of antiepileptic 

drug development. Recently, So et al. identified candidate drugs that could 
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be repurposed for the treatment of schizophrenia by using GWAS results to 

impute the gene-expression changes associated with the disease and, then, 

identifying drugs that change gene-expression in the opposite direction 

in cell lines38. Interestingly, the set of candidate drugs they identified was 

significantly enriched with antipsychotics. We adopted a similar strategy.

Gene-expression changes associated with epilepsy were imputed from the 

all epilepsy GWAS summary statistics using the FUSION software package64 

and dorsolateral prefrontal cortex tissue RNA-sequencing data (n = 452, 

CommonMind Consortium65). We calculated z-scores for the association 

between epilepsy and changes in expression of all 5261 significantly heritable 

genes, using default settings of the FUSION software package as described 

above64. The top 10% of the gene-expression changes most strongly 

associated with epilepsy were used to construct the disease signature. Then, 

we identified drugs that change gene-expression in the opposite direction 

in cell lines, using the Combination Connectivity Mapping bioconductor 

package and the Library of Integrated Network-Based Cellular Signatures 

(LINCS) data74. This package utilizes cosine distance as the (dis)similarity 

metric75,76. A higher (more negative) cosine distance value indicates that 

the drug induces gene-expression changes more strongly opposed to those 

associated with the disease. A lower (more positive) cosine distance value 

indicates that the drug induces gene-expression changes more similar to 

those associated with the disease. In the LINCS dataset, some drugs have 

been profiled in more than one cell line, concentration, and time-point. 

For such drugs, the highest absolute cosine distance, whether positive or 

negative, was selected, as this value is less likely to occur by chance. The 

output of this analysis comprised 24,051 drugs or ‘perturbagens’, each with 

a unique cosine distance value.

To demarcate the set of drugs predicted to significantly reverse epilepsy-

associated gene-expression changes, the threshold of statistical significance 

for cosine distance values was determined. For this, we performed 100 

permutations of the disease gene-expression z-scores and compared 

them to drug gene-expression signatures. We combined the distribution 

of cosine distance values across all permutations, such that the null 

distribution was derived from 2,405,100 cosine distance values under H0. 



Epilepsy GWAS 2018

45   

2

The cosine distance value corresponding to α of 0.05 was −0.386. Of the 

drugs with a cosine distance less than −0.386, thirty were experimentally-

validated drug repurposing candidates from the Prescribable Drugs with 

Efficacy in Experimental Epilepsies (PDE3) database—a recently published 

systematic and comprehensive compilation of licenced drugs with evidence 

of antiepileptic efficacy in animal models77. We determined whether this 

is more than expected by chance, by creating 1,000,000 random drug-

sets of the same size as drugs with a significant cosine distance. Next, 

we counted the number of subsets containing an equal or higher number 

of experimentally-validated drug repurposing candidates, as those found 

within drugs with a significant cosine distance. This permutation-based 

p-value was 1.0 × 10−6.

Supplementary Table 4 lists the 30 candidate re-purposable drugs that 

are predicted to significantly reverse epilepsy-associated gene-expression 

changes, have published evidence of antiepileptic efficacy in animal models, 

and are already licensed for the treatment of other human diseases. Of this 

list, 22 drugs have corroborated evidence of antiepileptic efficacy from 

multiple published studies or multiple animal models. For each drug, we 

list the studies demonstrating antiepileptic efficacy in animal models, the 

animal models used, and the licensed indication(s).

Validation of connectivity mapping results

Validation of the connectivity mapping results was performed using two 

non-overlapping sets of drugs with known antiepileptic efficacy: (1) a set 

of ‘clinically-effective’ drugs that have antiepileptic efficacy in people, 

and (2) a set of ‘experimentally-validated’ drugs that have antiepileptic 

efficacy in animal models. For the clinically-effective drug-set, we used 

the names of all recognized antiepileptic drugs, as listed in category N03A 

of the World Health Organization (WHO) Anatomical Therapeutic Chemical 

(ATC) Classification System, and of benzodiazepines and their derivatives 

(ATC codes N05BA and N05CD), and of barbiturates (ATC code N05CA), 

as these drugs are known to have antiepileptic efficacy in people. For the 

experimentally-validated drug-set, we extracted drug names from the 

PDE3 database77.
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We determined whether, in our results, clinically effective drugs are ranked 

higher than expected by chance. The median rank of all drugs was 12,026. The 

median rank of clinically effective drugs was 3725. Hence, the median rank 

of clinically-effective drugs was 8301 positions higher than that of all drugs. 

A permutation-based p-value was determined by calculating the median 

ranks of 1,000,000 random drug-sets, each equal in size to the number of 

clinically effective drugs in the LINCS database. This permutation-based 

p-value was <1.0 × 10−6. Similarly, we determined whether, in our results, 

experimentally-validated drugs are ranked higher than expected by chance. 

The median rank of experimentally-validated drugs was 6372. Hence, the 

median rank of experimentally-validated drugs was 5654 positions higher 

than that of all drugs. A permutation-based p-value was determined by 

calculating the median ranks of 1,000,000 random drug-sets, each equal in 

size to the number of experimentally-validated drug repurposing candidates 

in the LINCS database. This permutation-based p-value was <1.0 × 10−6.

Heritability analysis

Linkage-Disequilibrium Adjusted Kinships (LDAK42,43) was used to calculate 

SNP-based heritability of all epilepsy phenotypes. Since these analyses 

require homogeneous cohorts, only Caucasian subjects (which represent 

>95% of epilepsy cases) were used for these analyses. SNP based heritabilities 

(h2oho2) were converted to liability scale heritability estimates (h2LhL2) 

using the formula:  where K is the disease prevalence, 

p is the proportion of cases in the sample, and Z is the standard normal 

density at the liability threshold. We estimated disease prevalence based on 

a combination of previous studies8,78,79 (Supplementary Table 11). Although 

prevalence estimates vary between studies, the h2LhL2 estimate has been 

shown to be fairly robust to such differences8. Similarly, we have modeled 

h2LhL2 using half and double of our prevalence estimates which lead to 

h2LhL2 estimates that varied between 0.4 and 11% (Supplementary Table 

11). In addition, we compared the heritability estimates from LDAK with 

the alternative methods BOLT-REML80 and LDSC58 (Supplementary Table 

12). Next, LDAK was used to calculate the genetic correlation between the 

7 epilepsy subtypes. Subjects with a diagnosis of both CAE and JAE were 

excluded from heritability and genetic correlation analyses.
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We computed the genetic correlation between all, focal and genetic 

generalized epilepsy with other brain diseases and traits using LDSC, as 

implemented in LD hub81. LD hub is a centralized database that contains 

publicly available GWAS summary statistics from various diseases and 

traits. We selected published GWAS of psychiatric, neurological, auto-

immune diseases with known brain involvement and cognitive/behavioral 

traits from LD hub. We contacted the authors of published GWAS to provide 

us with summary statistics when no summary statistics were available on 

LDhub or when a more recent GWAS of a disease/trait was published that 

was not included on LDhub. The Caucasian subset of our data was used for 

all analyses and only other GWAS with primarily Caucasian subjects were 

included in our analyses. We used a conservative Bonferroni correction to 

assess significance of genetic correlations (p = 0.05/48 = 0.001).

Multi-trait analysis of GWAS (MTAG)46 was used with default settings to 

increase the effective sample size from our Caucasian all and generalized 

epilepsy GWAS by pairing it with the significantly correlated GWAS on 

cognitive ability (as assessed above) with a larger sample size (n=78,307). 

MTAG utilizes the fact that estimations of effect size and standard error of 

a primary GWAS, in this case epilepsy, can be improved by matching them 

to a genetically correlated secondary GWAS, in this case cognitive ability.

Supporting information
Additional supporting information may be found at: https://tinyurl.com 

/4j3srm5j
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Abstract
Altered vitamin B6 metabolism due to pathogenic variants in the gene 

PNPO causes early onset epileptic encephalopathy, which can be treated 

with high doses of vitamin B6. We recently reported that single nucleotide 

polymorphisms (SNPs) that influence PNPO expression in the brain are 

associated with genetic generalized epilepsy (GGE). However, it is not known 

whether any of these GGE-associated SNPs influence vitamin B6 metabolite 

levels. Such an influence would suggest that vitamin B6 could play a role in 

GGE therapy. Here, we performed genome-wide association studies (GWAS) 

to assess the influence of GGE associated genetic variants on measures of 

vitamin B6 metabolism in blood plasma in 2232 healthy individuals. We 

also asked if SNPs that influence vitamin B6 were associated with GGE in 

3122 affected individuals and 20,244 controls. Our GWAS of vitamin B6 

metabolites reproduced a previous association and found a novel genome-

wide significant locus. The SNPs in these loci were not associated with GGE. 

We found that 84 GGE-associated SNPs influence expression levels of PNPO 

in the brain as well as in blood. However, these SNPs were not associated 

with vitamin B6 metabolism in plasma. By leveraging polygenic risk scoring 

(PRS), we found suggestive evidence of higher catabolism and lower levels 

of the active and transport forms of vitamin B6 in GGE, although these 

findings require further replication.
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Introduction
Treatment with vitamin B6 can control seizures in a subset of children 

with early-onset intractable seizures [1]. Such vitamin B6-responsive 

epilepsy can be caused by mutations in a number of genes, particularly 

pyridoxal-5′-phosphate oxidase (PNPO [[2], [3], [4], [5]]), which is 

essential to convert pyridox(am)ine-5′-phosphate into the active form of 

vitamin B6, pyridoxal-5′-phosphate (PLP). In mammals, PLP is a cofactor 

for >160 different enzymatic reactions, including the metabolism of the 

neurotransmitters glutamate and GABA [6].

Interestingly, PLP levels are also reduced in some patients with common 

forms of epilepsy [7,8], possibly due to the effects of anti-epileptic 

drugs [9,10]. Moreover, dietary depletion of PLP can induce seizures and 

epileptiform EEG abnormalities in healthy individuals [11,12]. PLP treatment 

can reduce seizure frequency in some refractory epilepsy patients without 

documented pathogenic variants [7,13].

Our recent genome-wide association study (GWAS) of genetic generalized 

epilepsy (GGE) confirmed and strengthened a genome-wide significant 

association between GGE and a haplotype containing PNPO as the most 

likely causal gene [14]. We found that GGE-associated SNPs alter expression 

of PNPO in the dorsolateral prefrontal cortex [14], suggesting that altered 

vitamin B6 metabolism might be involved in the pathophysiology of GGE. If 

so, metabolic pathways involving vitamin B6 might be a therapeutic target. 

However, it is unknown whether SNPs that influence metabolite levels in 

blood also predispose to GGE. Likewise, it is not known if GGE associated 

SNPs are associated with changes in vitamin B6 levels in blood. We sought 

to answer both of these related questions.

Here, we assessed the genetic association of vitamin B6 metabolites with 

GGE, utilizing data from two independent large studies, one which compared 

genetic variants between people with and without epilepsy [14] and the 

other which evaluated genetic influences of blood vitamin B6 metabolites 

in healthy individuals [15]. Our previously reported GWAS on 2232 healthy 

individuals assessed the influence of genetic variants on three different 

pyridoxine metabolite concentrations measured in blood: PLP, the cell-
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membrane transport form pyridoxal (PL), and the catabolite pyridoxic acid 

(PA) [15]. To fully capture genetic contribution to vitamin B6 metabolism, we 

repeated these genome-wide analyses with imputed genotypes and examined 

two additional, derived markers of pyridoxine metabolism [6]: the ratios  

(“PLP:PL”) and  (“PAr index”). We then used two approaches to determine 

whether genetic contribution to vitamin B6 metabolism or GGE might be 

reciprocally informative. First, we assessed whether the GGE-associated 

SNPs that alter PNPO expression are associated with these 5 measures of 

pyridoxine metabolism. Second, we utilized polygenic risk scoring (PRS) 

to assess whether the SNPs that influence pyridoxine metabolism are also 

associated with GGE by comparing PRS for the five measures of pyroxidine 

metabolism between 3122 people with GGE and 20,244 controls.

Methods
Subjects

A sample of 2232 healthy individuals from the Trinity Student Study 

(TSS) were studied to assess genetic variants that influence pyridoxine 

metabolism. TSS participants are ethnically Irish people aged 18 to 28 years 

without any serious medical conditions [15,16].

A subset of 3122 non-related subjects with GGE and 20,244 controls from 

the epilepsy GWAS of the ILAE Consortium on Complex Epilepsies were 

studied for PRS analyses [14]. These consisted of a subset of the subjects 

with European ancestry drawn from the more ethnically diverse subjects in 

the original GWAS. Moreover, the TSS, which served as a control cohort for 

the original epilepsy GWAS, was excluded from the current PRS analyses. 

Approval was obtained by all relevant institutional review boards and all 

study participants provided written informed consent.

Measurement of pyridoxine metabolism

We collected non-fasting EDTA blood samples for measurement of B6 vitamer 

concentrations in the TSS cohort. Samples were centrifuged and plasma was 

frozen within 3h of phlebotomy. Details of stability of B6 vitamers under 

the conditions of collection have been determined [17]. B6 vitamers were 
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measured using liquid chromatography–tandem mass spectrometry, as 

described previously [15]. The methodology included measurements of the 

primary B6 vitamers (PLP, PL and PA) plus the less abundant vitamers 

(pyridoxamine, pyridoxamine phosphate, pyridoxine, pyridoxine phosphate). 

These latter vitamers were below the limit of detection in most samples and 

were not included in the GWAS analysis. From the primary B6 vitamers, 

the ratios  (“PLP:PL”) and  (“PAr index”) were calculated. The amount of 

vitamin B6 intake from supplements and fortified foods was quantified using 

a standardized questionnaire in which study participants reported their 

recent intake from a list of commonly used vitamin supplements. Active 

nutrient information was obtained for each supplement and converted to μg 

of nutrient per day as previously described [15,16].

Genotyping and quality control

We performed genotyping, imputation and genotype quality control for the 

TSS and the ILAE cohorts identically for both cohorts, as described earlier 

[14]. In addition, we excluded related subjects from each cohort. Genetic 

relatedness was calculated in the TSS with PLINK [18,19] and in the ILEA 

using KING [20] and one individual from each pair with 3rd degree or 

stronger relatedness (kinship coefficient > 0.0442) was retained.

Pyridoxine metabolite GWAS

We repeated the previously published GWAS on log-transformed PLP, PL 

and PA levels [15]. In addition, we now used imputed genotype data (~6 

million SNPs instead of ~750 thousand) and quality control procedures that 

were the same for TSS and the epilepsy GWAS. We also performed a GWAS 

on PLP:PL and the PAr index. We performed linear-mixed model association 

analyses with Emmax [21], and included age, gender and log-transformed 

vitamin B6 supplement intake as covariates. Genome-wide significance 

was defined as P 5 × 10−8.

PNPO eQTL analyses

Summary statistics from the previously published GGE GWAS [14] were used 

to specifically assess SNPs in the previously found genome-wide significant 
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PNPO locus. This locus was defined as the lead SNP (SNP with the lowest 

P-value) and all SNPs that were in linkage disequilibrium with the lead SNP 

(R2 > 0.2) and had a P-value<10−4. We next used FUMA [22] to assess which 

of these variants is significantly associated with PNPO expression in blood, 

using expression quantitative trait loci (eQTL) data from the eQTLgen study 

(based on RNA-sequencing data from 24,886 whole blood and n = 4798 

peripheral blood mononuclear cell samples [23]). Finally, we assessed the 

association P-value of these SNPs in the 5 different pyridoxine metabolism 

GWAS.

Polygenic risk score analyses

We used default settings of PRSice to perform PRS analyses to establish 

whether people with GGE have different pyridoxine metabolism PRS scores 

compared to controls. In brief, every SNP was assigned a weight according 

to its association in the 5 different pyridoxine metabolism GWAS. Individual 

PRS were than calculated as the sum of weighted effect alleles, standardized 

using a Z-transformation: . Only high-quality SNPs with a genotype call-

rate > 0.99 and a minor allele frequency > 0.01 were used. SNPs were 

pruned to a subset of uncorrelated SNPs (R2 < 0.1) and PRS values were 

calculated with a range of different P-value thresholds from 0.0001 to 0.5, 

in steps of 0.0005 (default for PRSice). Logistic regression analyses were 

used to assess whether pyridoxine metabolite PRS scores were significantly 

different in people with GGE compared to controls, while controlling for 

10 principal components of ancestry. The ‘best-fit’ P-value threshold was 

selected, defined as the PRS with the strongest association with GGE. We 

corrected for multiple testing by using a conservative significance threshold 

of P < .001, as recommended for PRSice [24]. We calculated the explained 

variance (Nagelkerke’s R2) by subtracting the full logistic regression model 

(PRS + covariates) with the null model (covariates only).

Results
Genetic variants that influence vitamin B6 metabolite levels

Our GWAS analyses on vitamin B6 measures (Fig. 1) replicated the genome-

wide significant signal at 1p36.12, implicating the ALPL gene (Fig. 1A). 
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Figure 1: Manhattan plots for each genome-wide association analysis of the five 
measures of vitamin B6 metabolism. Each genome-wide association analysis was 
performed using an imputed SNP set and log10-transformed values. A) pyridoxal 
5′-phosphate (PLP), B) pyridoxal (PL), C) pyridoxic acid (PA), D) PLP:PL ratio, E) 
PAr index. X-axis: Tested SNPs according to chromosomal position. Y-axis: Negative 
log10-transformed p-values. Red line: Genome-wide significance (p < 5 × 10−8). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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This signal was signifi cantly associated with PLP concentrations as well as 

the PLP:PL ratio (p = 7.4*10−16 and p = 1.1*10−8, respectively). In addition, 

we found a novel PLP:PL locus at 10q24.2 (Fig. 1D), which includes a 

missense variant of the gene pyridine nucleotide disulfi de oxidoreductase 

domain 2 (PYROXD2, rs2147896; p = 3.7*10−8; Fig. 2). We note an additional 

locus associated with PLP (Fig. 1A) in an intergenic region on chromosome 

7 that is just under the threshold for genome-wide signifi cance (lead 

SNP rs61295180, p = 5.6*10–8). Last, there is a single imputed SNP on 

chromosome 12 associated with PL (rs4765900, Fig. 1B), but there is no LD 

signature and this singleton is likely to be a spurious signal.
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Figure 2: Locusplot of the genome-wide signifi cant locus associated with the PLP:PL 
ratio. This locus includes a missense variant of the gene PYROXD2 (rs2147896). 
Chromosomal position including gene annotations are displayed on the X-axis and 
negative log10-transformed P-values are displayed on the Y-axis. SNPs are plotted 
as circles whose colors represent the correlation (linkage disequilibrium) with the 
lead SNP rs942813.

Eff ect of PNPO SNPs on vitamin B6 metabolite levels in blood

A genome-wide signifi cant locus identifi ed in the GGE GWAS implicated 84 

SNPs around the gene PNPO [14]. To assess whether these SNPs infl uence 
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vitamin B6 levels in blood, we leveraged an eQTL database including data 

from 29,684 subjects and found that all 84 SNPs are associated with PNPO 

expression in blood (eQTL p-values between 1.6*10−85 and 8.5*10−8; see 

Supplementary Table 1).

We tested these 84 SNPs for association with vitamin B6 metabolites levels 

and found that only 20 of these SNPs reached nominal significance (p < .05) 

for association with any of the 5 measures of vitamin B6 metabolism 

(Supplementary Table 2). None survived correction for multiple comparisons, 

suggesting that GGE-associated variants that influence PNPO expression 

are not associated with concentrations of vitamin B6 metabolites in blood.

Polygenic association of vitamin B6 metabolite SNPs with 
GGE

To assess whether vitamin B6 metabolism is different in GGE, we first 

assessed whether the genome-wide significant SNPs from the pyridoxine 

metabolite GWAS showed an association with GGE. Two out of 44 SNPs from 

the ALPL locus and none from the PYROXD2 locus from the PLP and PLP:PL 

GWAS showed a nominally significant association with GGE, but these did 

not survive correction for multiple testing (Supplementary Table 3).

At just over 2000 individuals, the vitamin B6 metabolite GWAS had limited power 

to detect associations at the stringent genome-wide significance threshold. It is 

likely that there are additional, undetected genetic variants with smaller effect 

sizes than we had the power to detect that influence vitamin B6 metabolite 

levels. Therefore, we next used PRS analyses to leverage the full distribution 

of SNPs from the pyridoxine metabolite GWAS, to assess whether people with 

GGE have a genetic predisposition for different metabolite levels compared to 

controls. Briefly, polygenic risk scores were generated by determining which 

genomic SNPs collectively contribute to vitamin B6 metabolite measures in 

the TSS above a set threshold. These SNPs were used to generate PRS scores in 

GGE participants and controls to ask whether genetic contribution to vitamin 

B6 metabolism differs in these groups.

These polygenic score analyses showed a trend towards lower scores for 

PLP and PL, but higher scores for PA, PLP:PL and the PAr index in GGE 

participants (Fig. 3; see Supplementary Table 4 for values). However, 



Chapter 3

68

these associations did not meet the stringent P < .001 threshold that is 

recommended for analyses with PRSice [24].

Figure 3: Logistic regression to assess the diff erence in pyridoxine-related 
metabolite PRS scores between people with GGE compared to controls. Standardized 
beta regression coeffi  cients ±standard error are displayed. See Supplementary Table 
2 for values. None of the associations reached the signifi cance threshold of P < .001 
that is recommended for analyses with PRSice.

Discussion
In this study, we assessed the genetic association between vitamin B6 

metabolism and GGE. We previously found that all 84 GGE-associated SNPs 

in the PNPO locus signifi cantly infl uenced gene expression of PNPO, which is 

essential to convert vitamin B6 into its active form PLP. In this study, these 

SNPs were not associated with alterations in vitamin B6 metabolite levels or 

ratios in blood plasma. However, we cannot rule out the possibility that these 

SNPs infl uence vitamin B6 metabolism in the brain or other tissues, where 

it is needed to convert pyridox(am)ine 5-phosphate to the active form PLP. 

Indeed, the correlation of PLP as measured in CSF or plasma in children 

with an intellectual disability was found to be signifi cant but not complete 



Epilepsy and vitamin B6

69   

3

[9], indicating that genetic influence on PLP and the ability to detect it may 

differ in CSF and plasma. It is possible that GGE-associated PNPO SNPs 

specifically influence metabolism of vitamin B6 in the brain, which could 

affect neurotransmitter metabolism and influence seizure susceptibility, 

without altering detectable levels in plasma. However, it is not feasible to 

collect CSF samples at the scale required for GWAS analyses to ask this 

more directly. Another caveat to consider is the potentially reductive effect 

anti-epileptic drugs may have on PLP in the GGE population. This potential 

influence may have reduced our ability to detect contribution of genetic 

modifiers of vitamin B6 metabolism to epilepsy in the GGE population.

We reproduced previous GWAS of vitamin B6 levels [15], which confirmed the 

locus around the gene ALPL, which codes for the enzyme that converts PLP 

into PL. In addition, by performing a GWAS on PLP:PL, we found a new locus 

implicating the gene PYROXD2. The same SNPs in this locus are associated 

with levels of several other metabolites in blood (dimethylamine [25], 

unknown X-12092 [26,27], caprolactam [28], asymmetric dimethylarginine 

[29]) and urine (trimethylamine [25,30]) but a role for PYROXD2 in vitamin 

B6 metabolism has not been previously established. PYROXD2 was initially 

identified for binding the X protein of human hepatitis B (HBx) in a protein 

interaction assay [31]. It has been further characterized as having tumor 

suppressor activity [32], although its exact function remains unknown. Its 

protein sequence includes sequence conservation with an NAD(P)-binding 

Rossman-like domain (HomoloGene [33]), which may contribute to a 

reduction-oxidation activity. The association of PYROXD2 with a measure 

of vitamin B6 metabolism in the current study may be a helpful clue in 

elucidating its biological function.

Although we found that the genome-wide significant vitamin B6 metabolism 

loci were not significantly associated with GGE, we did find suggestive 

evidence for an association by leveraging the full distribution of SNPs with 

PRS analyses. These analyses suggested that people with GGE have a genetic 

predisposition for higher vitamin B6 catabolism (higher PA and PAr index) 

and lower levels of PLP and PL in blood. Moreover, PRS of PLP:PL was 

higher in GGE compared to controls, suggesting relatively lower levels of 

the transport form PL, which is required for delivery to the brain. However, 
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these analyses were limited by a relatively small sample size for the vitamin 

B6 GWAS (n = 2232) and did not meet the stringent P < .001 cutoff that is 

recommended for PRSice. Further studies with a larger sample size are 

needed to confirm these findings.

In summary, our study did not find evidence for an influence of GGE-

associated PNPO SNPs on vitamin B6 metabolism in blood, although these 

SNPs could still have a brain-specific influence on vitamin B6. We found 

a novel locus that influences the PLP:PL ratio and we found suggestive 

evidence for increased vitamin B6 catabolism in people with GGE, which 

needs further replication. However, it is unlikely that genetic differences 

in vitamin B6 metabolism described here are sufficiently large to be causal 

in the pathophysiology of GGE or to have direct therapeutic implications.
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Abstract
Objective

Paroxysmal epileptiform abnormalities on electroencephalography (EEG) 

are the hallmark of epilepsies, but it is uncertain to what extent epilepsy and 

background EEG oscillations share neurobiological underpinnings. Here, we 

aimed to assess the genetic correlation between epilepsy and background 

EEG oscillations.

Methods

Confounding factors, including the heterogeneous etiology of epilepsies 

and medication effects, hamper studies on background brain activity in 

people with epilepsy. To overcome this limitation, we compared genetic 

data from a genome-wide association study (GWAS) on epilepsy (n = 12 

803 people with epilepsy and 24 218 controls) with that from a GWAS on 

background EEG (n = 8425 subjects without epilepsy), in which background 

EEG oscillation power was quantified in four different frequency bands: 

alpha, beta, delta, and theta. We replicated our findings in an independent 

epilepsy replication dataset (n = 4851 people with epilepsy and 20 428 

controls). To assess the genetic overlap between these phenotypes, we 

performed genetic correlation analyses using linkage disequilibrium score 

regression, polygenic risk scores, and Mendelian randomization analyses.

Results

Our analyses show strong genetic correlations of genetic generalized 

epilepsy (GGE) with background EEG oscillations, primarily in the beta 

frequency band. Furthermore, we show that subjects with higher beta 

and theta polygenic risk scores have a significantly higher risk of having 

generalized epilepsy. Mendelian randomization analyses suggest a causal 

effect of GGE genetic liability on beta oscillations.

Significance

Our results point to shared biological mechanisms underlying background 

EEG oscillations and the susceptibility for GGE, opening avenues to 

investigate the clinical utility of background EEG oscillations in the 

diagnostic workup of epilepsy.
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Introduction
The power of oscillations in background electroencephalogram (EEG) is 

a highly stable and heritable human trait.1 It is easily acquired and can be 

automatically analyzed by software, rather than subjective interpretation. 

Epilepsy is highly heritable and is characterized by altered brain excitability.2, 

3 Oscillatory activity is believed to serve an essential role in corticothalamic 

functioning, and can be measured as power of oscillations in background EEG 

at different broadband frequencies.4 Neurophysiological relationships between 

background EEG and generalized epileptiform discharges have been well 

described.5-8 However, it is currently unknown whether background oscillatory 

activity is itself associated with epilepsy, and whether background EEG and 

epilepsy have a shared neurobiological and genetic basis.

There have been some studies where background EEG oscillation 

measurements have been directly compared between people with epilepsy 

and healthy controls. However, such studies have yielded conflicting 

results, most likely because sample sizes were small and antiseizure drugs 

can strongly affect EEG measurements.9-14These limitations and bias can 

be overcome by large-scale genetic studies, in which genetic determinants 

of background EEG measurements are assessed independently in healthy 

controls (presumably not taking antiseizure drugs). These genetic 

determinants can then be compared to genetic determinants of different 

epilepsy phenotypes, as assessed in a different study. Comparing these 

independent studies allows for a well-powered and unbiased assessment of 

shared genetic determinants of epilepsy and EEG oscillations.

Here, we therefore assessed whether oscillatory background EEG is genetically 

correlated with focal and generalized epilepsy. The association between 

genetic variants and background brain activity was previously investigated in 

a genome-wide association study (GWAS) on 8425 subjects without epilepsy.15 

We combined these data with our recently published large GWAS of epilepsy,16 to 

examine genetic correlations between several types of epilepsy and oscillatory 

brain activity across frequency bands (delta, 1–3.75 Hz; theta, 4–7.75 Hz; alpha, 

8-12.75 Hz; and beta, 13–30 Hz). Next, we utilized polygenic risk scoring (PRS) 

to assess whether people with GGE have a genetic predisposition toward altered 

background brain activity. We then replicated genetic correlation and polygenic 
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analyses using an independent cohort from the Epi25 Collaborative (n = 4851 

people with epilepsy and 20 428 controls). Finally, we performed Mendelian 

randomization (MR) to gain insight into possible causal relationships between 

genetic variants associated with epilepsy and those associated with background 

EEG. We thus provide converging evidence for consistent cross-trait genetic 

overlap between epilepsy and background EEG.

Materials and methods
Study population: Discovery dataset

The participants derived from the epilepsy GWAS16 for the current analyses 

were Caucasian subjects. The epilepsy GWAS included 13 control cohorts.16 

Case/control ascertainment and diagnostic criteria were previously reported.16 

As described previously,16 epilepsy specialists diagnosed people with epilepsy 

and ascertained phenotypic subtypes. Population-based datasets, some of 

which had been screened to exclude neurological disorders, were used as 

controls. However, due to the relatively low prevalence of epilepsy in the 

general population (~0.5–1%), screening to exclude epilepsy in control 

cohorts will have only a minor effect on statistical power. Summary 

statistics from the recent epilepsy GWAS conducted by the International 

League Against Epilepsy (ILAE) Consortium on Complex Epilepsies GWAS 

were available for n = 12 803 cases (with either focal or generalized epilepsy) 

and 24 218 controls.16 From those participants, the following subjects were 

excluded for those analyses requiring individual-level genotype data: Finnish 

ancestry (none had genetic generalized epilepsy [GGE]) and the subset of the 

EPICURE-SP1 cohort that lacked informed consent for the current analyses, 

resulting in subject-level genotype data being available for 11 446 people 

with epilepsy and 22 078 controls. Subjects with epilepsy were stratified into 

GGE (n = 3122) and focal epilepsy (n = 8324); GGE was further subdivided into 

childhood absence epilepsy (CAE; n = 561), juvenile absence epilepsy (JAE; n 

= 311), juvenile myoclonic epilepsy (JME; n = 1000), and generalized tonic–

clonic seizures only (GTCS only; n = 195). GGE subtype information was not 

available for 1055 people with epilepsy.

We downloaded summary statistics of the ENIGMA-EEG GWAS of resting 

state oscillation power in the delta (1–3.75  Hz), theta (4–7.75 Hz), alpha 
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(8–12.75 Hz), and beta (13–30 Hz) bands at the vertex (Cz) electrode (n = 

8425 participants).15 This EEG GWAS was based on five cohorts from four 

cooperating centers. Although the selection criteria varied across cohorts, 

all adult cohorts included epilepsy and prolonged unconsciousness after 

head trauma as exclusion criteria, which were communicated at the time of 

recruitment or at the first laboratory visit; because neurological disorders 

were an exclusion criterium, we do not expect subjects to be taking antiseizure 

drugs (although this was no explicit exclusion criterion). All these were self- 

or parent-reported retrospective questions. A full sample description and 

recording specifics are available in the supplement of the original study,15 and 

the EEG analysis protocol is available online at http://enigma.ini.usc.edu/

ongoing/enigma-eeg-working-group/. In brief, eyes-closed resting EEG 

was recorded or offline rereferenced to averaged earlobes, visually cleaned 

with standard criteria by local expert EEG analysts with rogue channels 

removed, and scanned for sleep transition (eye rolling, alpha dropout). 

Eye movement was removed using regression or independent component 

analysis. A minimum of 1 min of recording was required.

Approval for the source studies was obtained by all relevant institutional 

review boards, and all study participants provided written informed consent 

according to the Declaration of Helsinki.

Replication dataset

To replicate our findings, we used data from the Epi25 Collaborative (http://

epi-25.org/). This cohort currently comprises 4851 people with epilepsy, of 

whom 2612 have focal epilepsy and 2239 have GGE (no data on GGE subtypes 

were available). The cases were matched to a total of 20 428 controls from 

the Partners Healthcare Biobank (n = 14 857), the Epi25 Collaborative (n 

= 210), the Genetics and Personality consortium (n = 456), and an in-

house project on inflammatory bowel disease (n = 4905). The cohorts were 

genotyped on the Illumina Global Screening Array, with the exception of 

the Partners Healthcare Biobank participants, who were genotyped on 

the Illumina Multi-Ethnic Screening Array. Approval was obtained by all 

relevant institutional review boards, and all study participants provided 

written informed consent according to the Declaration of Helsinki.
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Genetic correlation analyses

Genetic correlations between epilepsy subtypes and oscillatory brain activity 

were computed using bivariate linkage disequilibrium score regression (LDSC).17 

For these analyses, as no individual-level genotype data were available from 

the EEG dataset, we used published summary statistics of the EEG frequency 

bands (alpha, beta, delta, and theta; n = 8425 participants) and the epilepsy 

subtypes (focal, GGE, CAE, JAE, JME, and GTCS only; n = 12 803 cases suffering 

from either focal or generalized epilepsy and 24 218 controls) from the ILAE 

consortium as a discovery dataset.16 For LDSC replication analyses, we used 

unpublished data from the Epi25 Collaborative (http://epi-25.org/; n = 4851 

people with epilepsy and 20 428 controls). For discovery and replication LDSC 

analyses, default settings of LDSC were used, with precomputed linkage 

disequilibrium (LD) score weights derived from the European subset of the 

1000 Genomes project.18 See Table S1 for the number of single nucleotide 

polymorphisms (SNPs) per LDSC analysis. The significance threshold was 

Bonferroni-corrected for the two main epilepsy subtypes studied (GGE 

and focal) but not for the EEG power spectra, because these were all highly 

correlated at p < 10−17 (Table S2), resulting in a significance threshold of p = 

.05/2 = .025. Similarly, we did not correct for the individual GGE subtypes, 

which are phenotypically similar and genetically highly correlated.16

PRS analyses

For PRS analyses, we used individual-level genotype data derived from the 

epilepsy GWAS16 and summary statistics from the EEG GWAS.15 Quality control 

was performed as reported in the published epilepsy GWAS.16 We then added a 

genotype filter for call rate greater than .99 and the exclusion of genetically 

related subjects to allow for highly conservative PRS estimates. Genetic 

interrelatedness was calculated with KING,19 and one subject from each pair 

with third-degree or higher relatedness (kinship coefficient > .0442) was 

excluded. PRSice20 was used with default settings to assess whether subjects 

with epilepsy had different EEG frequency power PRSs compared to controls. 

In brief, to each SNP we assigned a weight proportional to its association in the 

four EEG GWASs (alpha, beta, delta, and theta). Next, individual PRSs were 

calculated as the sum of weighted effect alleles for every subject from the 

epilepsy cohort. These PRSs were standardized with a Z-score transformation:
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. SNPs were pruned to a subset of genetically uncorrelated SNPs 

(LD R2 < .1), and PRS values were calculated using a number of different p-value 

thresholds from .0001 to .5. Next, logistic regression analyses, corrected for 

sex and 10 genetic ancestry principal components (PCs), were performed to 

assess the association of these PRS scores with GGE. The PRS with the highest 

association with GGE was chosen as the “best fit,” after which logistic 

regression analyses were repeated to assess the association of this PRS with 

the other epilepsy subtypes. We used a conservative p < .001 significance 

threshold to correct for multiple comparisons, as recommended for PRSice.20 

Explained variance represented by the Nagelkerke R2 was computed using a 

logistic regression of the PRS, subtracted from the baseline model (covariates 

only: sex and four PCs). To quantify the association of beta power PRS with 

GGE, we used PRSice standard settings to divide subjects into 10 deciles based 

on their beta power PRS scores. We then performed logistic regression to 

compare the risk of having GGE between every decile, with the lowest (0%–

10%) as a reference (corrected for sex and four PCs). We then repeated the 

analyses in the independent Epi25 cohort. This dataset contained approximately 

one third fewer GGE cases than the discovery cohort, providing insufficient 

power to exactly replicate our discovery PRS findings. We therefore performed 

quasireplication using a one-sample test of the proportion to assess concordance 

effect directions between discovery and replication PRS analyses, computing 

Z-scores that were converted into p-values.

Mendelian randomization

Two major limitations of observational studies and other types of studies 

are unmeasured confounding and uncertainties about cause and effect. MR 

has the potential to overcome these limitations, as MR leverages genetic 

instruments (most often SNPs) as exposures as well as outcomes. Because 

SNPs are not influenced by state-dependent factors, MR has the potential 

to shed light on potential causal mechanisms between two traits; SNPs 

strongly associated with two or more traits index these traits without 

confounding. MR can be done in two directions for two given traits, with 

each MR analysis testing whether one trait has a potential effect on the 

other. However, here, we could only conduct one-way MR due to lack of 

genome-wide significant loci in the EEG GWAS. Several MR techniques are 
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available, and the consensus is that results from different approaches show 

robustness and consistency of results across methods.

To explore possible causal effects of GGE genome-wide loci (exposure) on 

EEG background oscillations (outcome), we thus conducted MR analyses 

using GGE and EEG summary statistics data. Two hundred twenty-eight 

SNPs significantly associated with GGE (p < 5 × 10−8) were extracted from 

both the GGE and EEG GWASs. The summary statistics of 228 SNPs were 

harmonized to ensure the SNP effect direction corresponded with equal effect 

alleles across GGE and EEG. We used the “TwosampleMR” package21 in R to 

perform fixed effects inverse variance-weighted (IVW), weighted median, 

and MR Egger models. We then performed sensitivity analyses, including 

horizontal pleiotropic effects estimated by the intercept of MR Egger, residual 

heterogeneity due to pleiotropy estimated by Cochran Q test,22 and leave-one-

out analyses (for the fixed effects IVW model), to evaluate whether any single 

instrumental variable was driving the results. Generalized summary data-

based MR (GSMR) analyses were performed using the “GSMR”23 package in 

R. To that end, first the LD matrix of the selected SNPs was calculated using 

PLINK24 and GCTA25 within 1000 Genomes Phase 3 data.18 The minimum 

number of instrumental variables in the GSMR model was loosened from 

10 to five as there were only eight independent (r2 < .01, LD window = 10 

Mb) significant loci identified in the GWAS of GGE (and none in the EEG 

GWAS). We used default options in GSMR with heterogeneity in dependent 

instruments (HEIDI) testing for instrumental outliers’ detection. At the end, 

we repeated GSMR with loosened LD prune thresholds (i.e., r2 < .1, r2 < .15, 

and r2 < .2), because GSMR takes LD structure into account by adding the LD 

matrix. The significance threshold was Bonferroni corrected for all seven of 

these MR models (p = .05/7 = .007).

Results
Genetic correlations between epilepsy and oscillatory brain 
activity

In a total study population of 45 446 subjects (n = 8425 from the EEG and n = 37 

021 from the epilepsy GWASs), we computed genetic correlations (Rg) of alpha, 

beta, delta, and theta oscillatory brain activity with focal epilepsy and GGE. We 
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found signifi cant correlations between GGE and beta power (Rg = 0.44 ± SE of 

.18, p = .01) and theta power (Rg = 0.25 ± 0.11, p = .02; Figure 1, upper panel, 

Table S1). This was further supported by the correlations between beta power 

and theta power with the GGE subtypes CAE, JAE, and JME; all had similarly 

high correlation coeffi  cients. We found no genetic correlations between focal 

epilepsy and any of the EEG phenotypes. We then attempted to replicate the 

genetic correlations using the unpublished Epi25 dataset and found genetic 

correlations similar (in both sign and eff ect size) to the discovery analyses 

(Figure 1, lower panel); GGE correlated with beta power (Rg = 0.52 ± 0.21, p = 

.01), whereas the genetic correlation between theta power and GGE paralleled 

the discovery cohort (albeit not reaching signifi cance: Rg = 0.16 ± 0.12, p = .18). 

All genetic correlation estimates with focal epilepsy were again nonsignifi cant. 

There were no data available for GGE subtypes.

Figure 1: Genetic correlations between electroencephalographic (EEG) frequency 
bands and epilepsy subtypes. Genetic correlations were calculated by comparing the 
EEG frequency band genome-wide association study (GWAS) with the International 
League Against Epilepsy (ILAE) GWAS (upper panel, discovery dataset) and the Epi25 
GWAS (lower panel, replication dataset). * p < .05. CAE, childhood absence epilepsy; 
GGE, genetic generalized epilepsy; GTCS, generalized tonic–clonic seizures; JAE, 
juvenile absence epilepsy; JME, juvenile myoclonic epilepsy.
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Oscillatory brain activity polygenic scores are associated 
with generalized epilepsy

We used polygenic scoring to utilize the full distribution of background 

EEG-associated SNPs to assess whether people with epilepsy have a 

different polygenic score for specific frequency bands compared to 

controls. We observed significant positive associations between beta and 

theta power PRSs with GGE, in line with the LDSC results (Figure 2). 

In particular, beta power PRSs were strongly associated with GGE (beta 

= .11, SE = .020, p = 5.3 × 10−8, explained variance = .21%; Figure 2),

 

Figure 2: Beta and theta power electroencephalographic (EEG) oscillation 
polygenic risk scores (PRSs) are associated with generalized epilepsy but not 
with focal epilepsy. The “best-fit” p-value threshold (pt) was chosen based on 
the most significant association with genetic generalized epilepsy (GGE), which 
was then applied to all other epilepsy subtypes. The numbers of single nucleotide 
polymorphisms included in each model were 2670 for alpha power (pt = .0105), 10 
861 for beta power (pt = .06245), 8182 for delta power (pt = .0446), and 3833 for 
theta power (pt = .01665). Logistic regression analyses were performed to assess the 
association between the PRSs and the different epilepsy subtypes, corrected for sex 
and 10 principal components. #p < .05, *p < .001, **p < 10−7. Childhood absence 
epilepsy (CAE), generalized tonic–clonic seizures only (GTCS), juvenile absence 
epilepsy (JAE), and juvenile myoclonic epilepsy (JME) are GGE subtypes. Focal, focal 
epilepsy.
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which was further supported by significant associations of beta power PRS 

with its subtypes CAE (beta = .15, SE = .044, p = 8.5 × 10−4) and JME (beta = 

.12, SE = .033, p = 3.6 × 10−4). Furthermore, of the participants in the GGE 

case–control cohort, those in the highest 10% decile of beta power PRS 

scores were 1.4-fold more likely to have GGE compared to the people in the 

lowest 10% PRS decile (Figure 3; odds ratio [OR] = 1.40, 95% confidence 

interval [CI] = 1.18–1.67, p = 1.5 × 10−4). When using the independent Epi25 

cohort as a replication dataset, we found that the directions of effect agreed 

with the discovery analyses for all associations between EEG PRSs and GGE 

(pone-sided = .023, ptwo-sided = .046; Figure S1). EEG PRSs were not significantly 

different between people with focal epilepsy and controls.

Figure 3: Polygenic risk score (PRS) analyses show that higher beta-power PRS is 
associated with an increased likelihood of having GGE. All subjects were divided 
into 10 deciles based on their beta-power PRS scores. Logistic regression analyses 
were performed to quantify the increased risk of having GGE between every decile 
compared to the lowest decile (0–10%) as a reference. The odds ratios of these 
analyses are displayed on the Y-axis. #p<.05; *p<.001.

MR analyses

MR analyses were performed to assess potential causative relationships 

between background EEG and GGE. Eight GGE-associated SNPs were 

selected as instrumental variables at a strict LD prune threshold (r2 < .01, LD 

window = 10 Mb). These were used in fixed effects IVW, weighted median, 

MR Egger, and GSMR (r2 < .01) models. After loosening the LD threshold, 

11 (r2 < .1), 12 (r2 < .15), and 14 (r2 < .2) SNPs were selected as instrumental 
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variables for GSMR models. Causal effects of GGE loci on beta oscillations 

were found at the LD r2 < .15 and r2 < .2 thresholds (OR = 1.79, 95% CI 

= 1.189–2.707, p = 5.2 × 10−3 and OR = 1.723, 95% CI = 1.180–2.516, p = 

4.8 × 10−3, respectively; Table S4, Figure S2). Significant heterogeneity was 

detected in the fixed effects IVW model (Q-statistic = 18.188, df = 7, p = .01) 

and MR Egger model (Q-statistic = 14.594, df = 6, p = .02). No SNPs altered 

the pooled β coefficient in the leave-one-out sensitivity analysis (β = .374, 

p = .314) in the fixed effects IVW model. We found no evidence of horizontal 

pleiotropic effects. Similarly, the HEIDI test detected no SNPs as pleiotropic 

outliers.

Discussion
Here, we leveraged the largest currently available GWASs to assess shared 

genetic underpinnings of epilepsy and of background EEG oscillations. In 

particular, we found strong genetic relationships between GGE and beta 

power oscillations, which were replicated in an independent sample.

Previous studies comparing EEG background oscillations between people 

with epilepsy and controls are inconsistent; some show increased power in 

all frequency bands (alpha, beta, delta, theta), whereas others show only 

increases in specific frequency bands or even decreases in power.9-14 This 

heterogeneity likely reflects multiple variables that are difficult to control for 

in clinical studies, such as antiepileptic drug (AED) usage, sleep deprivation, 

influence of (inter-)ictal epileptic brain activity, EEG processing, and 

electrode placement. We overcame such limitations by determining the 

genetic underpinnings of EEG frequency bands in people without epilepsy 

who are AED-naive, and with consistent electrode placement and signal 

processing. We applied several statistical models to assess this overlap and 

found that people with generalized, but not focal, epilepsy carry a relative 

abundance of genetic variation associated with higher beta oscillations. MR 

analyses pointed to causal effects of genetic liability to GGE on beta power.

We did not find genetic correlations between background EEG and focal 

epilepsy. Although power was limited for this analysis, this finding is 

consistent with the low contribution of common genetic variants in focal 
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epilepsy and the lack of genetic overlap between focal and generalized 

epilepsy.16 Focal epilepsy is likely to represent a more heterogenous group 

of different causes of epilepsy, many of which do not have a primary 

genetic cause (e.g., symptomatic epilepsy after traumatic brain injury). 

Moreover, focal epilepsy by definition only affects one part of the brain 

and is therefore less likely to be associated with germline genetic variation 

and background EEG oscillations, which most likely affect the whole brain. 

Although we found associations of common variants with focal epilepsy in 

our latest GWAS, the overall polygenic burden and SNP-based heritability 

was modest compared to GGE.16 This suggests that further studies assessing 

common genetic variants in focal epilepsy are less likely to yield major 

advances. Perhaps further studies on smaller, more homogenous focal 

epilepsy cohorts or studies assessing rare genetic variants could yield more 

insights into its pathophysiology. In contrast to focal epilepsy, the EEG 

discharges that characterize generalized epilepsy are dependent on the 

thalomocortical system.5, 26 Similarly, background oscillations have been 

functionally attributed to the thalamocortical system,27, 28 suggesting that 

thalamocortical functioning could represent a common neurobiological 

mechanism reflecting overall brain excitability, which influences both GGE 

risk and (beta power) background oscillations.

Our results should be interpreted in the light of several limitations. First, 

we are aware of the possible advantages of using genome complex trait 

analysis (GCTA) relative to LDSC, but because no subject-level genotype 

data are available for the EEG GWAS, we restricted our genetic correlation 

estimates to LDSC, which is based on summary statistics. LDSC has proven 

to be a reliable method for genetic correlation estimates, and results 

between LDSC and GCTA have proven consistent. Second, we found that 

the same genetic variants underlie both GGE and beta power oscillations, 

but our study does not prove that people with GGE have altered background 

oscillations, because we did not have EEG measurements of people with 

epilepsy in this study. Third, only one-way MR analyses were performed 

due to lack of genome-wide significant loci in the EEG GWAS. Our results 

suggest that GGE causally influences beta power oscillations. However, 

we cannot exclude the possibility of bidirectional causality between EEG 
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and GGE, and thus it could also be possible that beta power has a causal 

effect on GGE risk. Fourth, we had insufficient data available to carry out 

subgroup analyses on  subjects with nonlesional focal epilepsy.

Altogether, our results point to shared biological mechanisms underlying 

background EEG oscillations and the susceptibility for generalized 

seizures. Our findings thus open avenues to investigate the clinical utility 

of background oscillations in genetic generalized epilepsy. Potentially, 

prospective studies could confirm whether altered beta oscillatons could be 

a prodromal state of GGE or whether aberrant beta oscillations constitute a 

feature of epilepsy. Future studies may also integrate transcranial magnetic 

stimulation–EEG and/or event-related potentials to examine whether beta 

and theta powers correlate with altered brain excitability in subjects with 

high epilepsy liability. We hypothesize that the genetic correlation between 

GGE and background oscillations will be reflected by measurable differences 

in background EEG measures between people with and without GGE, which 

could be used in the diagnostic workup after a first suspected seizure. 

This information can be used in machine-learning studies by integrating 

background EEG with other sources of clinical and demographic data, which 

may one day increase the accuracy of epilepsy diagnosis.
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Abstract
Better drugs are needed for common epilepsies. Drug repurposing offers 

the potential of significant savings in the time and cost of developing new 

treatments. In order to select the best candidate drug(s) to repurpose for a 

disease, it is desirable to predict the relative clinical efficacy that drugs will have 

against the disease. Common epilepsy can be divided into different types and 

syndromes. Different antiseizure medications are most effective for different 

types and syndromes of common epilepsy. For predictions of antiepileptic 

efficacy to be clinically translatable, it is essential that the predictions are 

specific to each form of common epilepsy, and reflect the patterns of drug 

efficacy observed in clinical studies and practice. These requirements are not 

fulfilled by previously published drug predictions for epilepsy. We developed a 

novel method for predicting the relative efficacy of drugs against any common 

epilepsy, by using its Genome-Wide Association Study summary statistics and 

drugs’ activity data. The methodological advancement in our technique is that 

the drug predictions for a disease are based upon drugs’ effects on the function 

and abundance of proteins, and the magnitude and direction of those effects, 

relative to the importance, degree and direction of the proteins’ dysregulation 

in the disease. We used this method to predict the relative efficacy of all drugs, 

licensed for any condition, against each of the major types and syndromes of 

common epilepsy. Our predictions are concordant with findings from real-

world experience and randomized clinical trials. Our method predicts the 

efficacy of existing antiseizure medications against common epilepsies; in 

this prediction, our method outperforms the best alternative existing method: 

area under receiver operating characteristic curve (mean ± standard deviation) 

0.83 ± 0.03 and 0.63 ± 0.04, respectively. Importantly, our method predicts 

which antiseizure medications are amongst the more efficacious in clinical 

practice, and which antiseizure medications are amongst the less efficacious 

in clinical practice, for each of the main syndromes of common epilepsy, and it 

predicts the distinct order of efficacy of individual antiseizure medications in 

clinical trials of different common epilepsies. We identify promising candidate 

drugs for each of the major syndromes of common epilepsy. We screen five 

promising predicted drugs in an animal model: each exerts a significant 

dose-dependent effect upon seizures. Our predictions are a novel resource 

for selecting suitable candidate drugs that could potentially be repurposed for 

each of the major syndromes of common epilepsy. Our method is potentially 

generalizable to other complex diseases.
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Introduction
A total of 50 million people are affected by epilepsy.1 Current drug treatments 

for epilepsy fail to control seizures in~30% of patients2,3 and cause adverse 

effects in ~88% of patients4,5; ~20% of people with newly diagnosed epilepsy 

discontinue their first antiseizure medication (ASM) because of intolerable 

adverse effects.6 Hence, there is a need for new ASMs with higher efficacy 

and/or lower toxicity. Drug repurposing—treating a disease using drugs 

already licensed for other conditions—offers the potential of significant 

savings in the time and cost of developing new therapies. Numerous drugs 

licensed for other conditions have the potential of antiepileptic efficacy.7 

In order to select the best candidate drug(s) to repurpose for epilepsy, it 

is desirable to predict the relative clinical efficacy that drugs will have in 

people with epilepsy. One established strategy for discovering potentially 

effective drugs is to, first, identify the proteins that underlie a disease and, 

then, identify the drugs that affect the disease-proteins. In such analyses, 

genes associated with a disease are routinely used as proxies for disease-

proteins.8

Genetic factors can contribute to the development of epilepsies, either as 

single-gene mutations in rare monogenic epilepsies, or as multiple genetic 

variants in common epilepsies.9 Common epilepsies are complex traits with 

a polygenic origin, which means that the combined effect of many common 

risk variants contributes to their genetic risk.9 Common epilepsies are 

divided into different types and syndromes10; for brevity, we use ‘forms’ as 

a general term for both types and syndromes. Different forms of common 

epilepsy have important differences in their genetic determinants,11 clinical 

manifestations and response to medications.12 Hence, to be most useful for 

common epilepsies, methods of drug prediction must use the specific genes/

proteins underlying a particular form of common epilepsy, to make drug 

predictions that are specific for that particular form of common epilepsy. 

This has not been achieved by any of the published drug prediction studies 

for epilepsy.11,13–17 Some studies have pooled genes/proteins associated with 

different forms of epilepsy (including rare epilepsies), to produce a single list 

of drug predictions for all forms of epilepsy15–17; these methods are not readily 

adaptable to individual common epilepsies, as they require a large number of 
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genes/proteins definitively associated with a disease. Other studies have used 

genome-wide transcriptomic analysis of human brain tissue from epilepsy 

surgery14,15; such tissue is only available for a very limited number of epilepsy 

syndromes, and its analysis is hindered by the lack of suitable control brain 

tissue that is comparable, normal and has been exposed to ASMs. Of course, 

any transcriptomic changes detected in epileptic brain tissue could be a 

consequence, rather than a cause, of disease.

The Genome-Wide Association Study (GWAS) is becoming an increasingly 

powerful tool for revealing the distinct genetic determinants of different 

common epilepsies.11,18–20 GWAS results are routinely used to predict new 

candidate drugs for complex diseases. In the standard approach, significant 

variants from the GWAS are mapped to genes; drugs that are known to affect 

the (protein products) of the genes, are predicted to affect the disease.21 This 

simplistic approach has a number of methodological deficiencies. It reflects 

neither the polygenicity of common diseases, nor the polypharmacology 

of common drugs. It ignores drugs’ effects on disease-protein abundance, 

even though, in order to exert their therapeutic effect, drugs rectify the 

activity of disease-proteins by modulating their function or abundance or 

both.22–24 It disregards the magnitude and direction of change in disease-

proteins’ activity, and drugs’ effects upon it. Potential causal variants below 

the genome-wide disease significance threshold are ignored. Practically, it 

produces an unordered and unranked pool of drug names, with no indication 

of the relative predicted efficacy of the compounds, to enable selection 

of the most promising candidates. Ultimately, it is liable to producing 

poor results. Some limitations of the standard approach are addressed by 

recently developed enhanced techniques for using GWAS results to identify 

effective drugs,25–28 but these newer methods and their drug predictions for 

common epilepsy still leave room for improvement. None of the existing 

methods make drug predictions for a disease based upon drugs’ effects on 

the function and abundance of proteins, and the magnitude and direction 

of those effects, relative to the importance, degree and direction of the 

proteins’ dysregulation in the disease. Our aim was to develop such a 

method, and to use this method to predict the relative efficacy of drugs for 

each of the major types and syndromes of common epilepsy, and to make 
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our predictions available as a novel resource for selecting suitable candidate 

drugs that could potentially be repurposed for each of the major types and 

syndromes of common epilepsy.

Materials and methods
Methods are summarized below; further details can be found online in the 

Supplementary methods.

Overview

The common epilepsies are divided into different types, which are further 

subdivided into different syndromes.10 In the current work, we included the 

main types and syndromes analysed in the most recent epilepsy GWAS11:

i. All epilepsy, which is comprised of generalized, focal and unclassified 

epilepsies

ii. The two main types of all epilepsy: generalized epilepsy (GE) and focal 

epilepsy (FE)

iii. Two GE syndromes: juvenile myoclonic epilepsy (JME) and childhood 

absence epilepsy (CAE)

iv. A FE syndrome: FE with hippocampal sclerosis (HS)

Method summary

Genetic variants cause disease by modifying the function or abundance (or 

both) of proteins derived from the variant genes.29 Drugs exert a therapeutic 

effect by rectifying the abnormal function or abundance (or both) of the 

proteins underlying a disease.22–24 To predict the relative efficacy of drugs 

against a disease, we developed (Fig. 1) a novel score for drugs’ relative 

ability to affect the protein function and abundance changes caused by 

common genetic variations associated with the disease: the disease-protein 

function and abundance modulation (FAM) score.

For method development and benchmarking, we used the all epilepsy 

GWAS. Then, we applied the developed method to the GWAS for specific 

epilepsy types and syndromes.
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It should be noted that, to aid brevity and readability, we use the expressions 

‘disease-associated proteins’ and ‘disease-proteins’ as proxies for ‘proteins 

encoded by genes bearing variations associated with the disease’, and we 

use the expression ‘protein abundance changes’ as proxy for ‘changes in 

gene expression’.

Figure 1: Premise and conceptual explanation of the disease-protein function 
modulation (FM) and abundance correction (AC) scores, which are integrated to 
form the disease-protein function and abundance modulation (FAM) score. Before 
integration, the FM score is adjusted to control for the different number of proteins 
affected by each drug (see Supplementary material for details). Cosine distance is the 
(dis)similarity metric used for calculating the AC score.

The disease-protein FAM score: creation and benchmarking
The steps taken in developing the method for calculating the FAM score are 

detailed in Supplementary material. Below, we summarize the method (Fig. 

1) we developed for calculating the FAM score.

The FAM score is calculated by aggregating its two constituent scores:

i. The disease-protein function modulation (FM) score

ii. The disease-protein abundance correction (AC) score
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FM score

The FM score is based on the following premise: A drug’s ability to affect a 

disease can be predicted from:

i. the degree of disease-association of each protein whose function is 

affected by the drug, and

ii. the strength of the drug’s effect on the function of each of those proteins

The degree of disease-association of proteins is derived from GWAS gene-

based P-values. The strength with which drugs affect proteins’ function 

is derived from drug-target affinity data. Figure 1 presents a conceptual 

explanation of how the FM score is calculated from these two types of data. 

A more detailed explanation can be found in the Supplementary material.

AC score

The AC score is based upon the following premise: A drug is more likely 

to be effective for a disease if it is better able to rectify the protein 

abundance changes underlying the disease.30 Disease- and drug-induced 

transcriptomes were compared in order to predict each drug’s relative ability 

to rectify disease-associated protein abundance changes, as previously 

described11 and detailed in the Supplementary material. Briefly, the AC score 

for a drug is calculated as follows: For each disease-associated protein, the 

algorithm compares the magnitude and direction of change in the protein’s 

abundance found in the disease, with the magnitude and direction of change 

in the protein’s abundance caused by the drug. Then, drugs are ranked in 

accordance with their overall predicted corrective effect on the abundance 

of all disease-associated proteins. To measure the overall effect, a metric 

called ‘cosine distance’ is used.31

Aggregating the FM and AC sores to generate the FAM score

The FM and AC scores were converted into their respective z-scores. The 

FAM score for each is calculated by averaging its FM and AC z-scores (see 

Supplementary material for details).
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Comparing our method with existing alternative advanced 
methods

We compared our results with the results from two existing and contrasting 

advanced methods for GWAS-based drug predictions.

Network-based method

An approach employed in a number of studies is to identify the drugs that 

target genome-wide significant disease-proteins and, in addition, the drugs 

that target the proteins interacting with genome-wide significant disease-

proteins.32–34 We used the GUILDify v2.0 Web Server35 to identify such drugs.

Gene-set analysis method

In this method,36 GWAS gene-based P-values are first converted to 

z-statistics and, then, a single-sided two-sample t-test is used to determine 

if the mean z-statistic of the genes that are altered in function by a drug is 

lower than the mean z-statistic of the genes that are not.

Validation of the FAM score

For in silico validation of the FAM score, we examined the following 

hypotheses:

• The FAM score for all epilepsy specifically prioritizes the drugs that are 

effective in people with epilepsy: when drugs are ranked by their FAM 

score for all epilepsy, drugs used to treat epilepsy are ranked higher 

than drugs used to treat any other human disease

• The FAM score predicts which ASMs are more clinically effective, and 

which ASMs are less clinically effective, for each common epilepsy 

syndrome studied

• The FAM score predicts the observed patterns of relative efficacy 

of individual clinically-effective ASMs for each common epilepsy 

syndrome studied

The above hypotheses are further detailed in Results and in Supplementary 

methods.
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To test the above hypotheses, we used the following metrics:

1. Identification of effective drugs: we used area under receiver operated 

characteristics curve (AUROC) analysis to determine the accuracy with 

drugs’ scores discriminate ASMs from all other drugs, or discriminate 

more from less clinically-effective subsets of ASMs. AUROC was 

calculated using the package PRROC (version 1.3.1)37 in R (version 3.4.3). 

In assessing the discrimination of ASMs from all other drugs, there is 

a marked class imbalance, because a very small fraction of all drugs 

are ASMs. To correct for this imbalance, we employed the standard 

technique of random under-sampling, which is commonly used in 

published studies (see Supplementary material for further details and 

references). Specifically, AUROC was calculated using the set of ASMs 

and a randomly selected set of other drugs equal in number to the 

ASMs. This process was repeated 1000 times, and mean (± standard 

deviation) AUROC was calculated. When discriminating more from less 

effective ASMs, class imbalance is not an issue and, hence, random 

under-sampling was not employed.

2. Prioritization of effective drugs: amongst all the drug predictions for 

a phenotype, we determined the average rank of ASMs, or compared 

the average rank of more clinically-effective and less clinically-

effective ASMs. To ease conceptualization and interpretation of results, 

we converted ranks to percentile ranks. For example, a drug with a 

percentile rank of 90 is ranked higher/better than 90% of all drugs. 

Like numerous published studies, we used the median in order to 

compute the average of ranks, as it is less liable to skewing by outliers 

(see Supplementary material for further details and references).

Statistical analysis

We determined the statistical significance of drug identification and 

prioritization results by comparing the results to those from a null 

distribution generated by performing 106 random permutations of the 

scores assigned to drugs.
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Determining whether the drug predictions are driven by 
individual highly disease-associated proteins

For each epilepsy, FAM scores were re-calculated after excluding, one at a 

time, the top 10 most strongly disease-associated proteins (Supplementary 

Table 3). Drug ranks obtained after excluding a protein were compared with 

the original drug ranks, using Kendall’s τ. Kendall’s τ is a commonly used 

measure of rank correlation.38 Kendall’s τ ranges from +1 to –1, where +1 

means that two ranked lists are identical to each other, –1 means that they 

are the exact inverse of each other, and 0 means that there is no relationship 

between them.

Further details about this analysis can be found in the Supplementary 

material.

Top candidate drugs

To aid the selection of suitable candidate drugs for experimental validation 

and clinical evaluation, we demarcated the most promising candidate 

drugs for each phenotype: the topmost drug predictions with the greatest 

enrichment of (more) effective ASMs for that phenotype. A manually 

curated selection of top candidate drugs for different forms of common 

epilepsy was also produced.

Testing top candidate compounds in an animal model

As we used complex genetic data to make our drug predictions, we used a 

complex genetic model to test our drug predictions. We used a rodent model 

with a complex genetic seizure disorder39–42 that manifests as audiogenic 

generalized seizures: the DBA/2 mouse. We tested the five most highly 

ranked predictions for GE, after filtering out known ASMs, compounds 

with existing published evidence in the DBA/2 mouse model, drugs lacking 

evidence of blood–brain barrier permeability, drugs lacking evidence of 

safe long-term oral use in humans, compounds insoluble in water or saline 

and ‘controlled substances’ that require exceptional legal authorization for 

procurement under the laws of France, where the animal experiments were 

performed by a contract research organization.



Genetic prediction of epilepsy drugs

105   

5

The animal experiment protocol followed the method described by 

Dürmüller et al.43 The study was conducted in compliance with Animal 

Health regulations, in particular:

i. Council Directive No. 2010/63/UE of 22 September 2010 on the protection 

of animals used for scientific purposes and French decree No. 2013-118 

of 1 February 2013 on the protection of animals;

ii. Porsolt facility accreditation for experimentation (E 53 1031, renewed 

on 19 April 2016);

iii. The recommendations of the Association for Assessment and 

Accreditation of Laboratory Animal Care of which the accreditation was 

granted in June 2012 and renewed in 2018.

Porsolt has an in-house ethics programme, which covers animal care and 

use within the facility.

Additional experimental details about the animal model testing can be 

found online in the Supplementary material.

Code availability

The R code for computing FM and FAM scores is available at https://figshare.

com/projects/Using_common_variants_to_find_drugs_for_common_

epilepsies/78330. The code is for non-commercial use only.

Data availability

The following datasets are available for download from the project’s data 

repository page (https://figshare.com/projects/Using_common_variants_

to_find_drugs_for_common_epilepsies/78330):

i. GWAS gene-based and tissue-wide association study (TWAS) datasets 

used in our analyses.

ii. Ranked list of the top predicted drugs for each phenotype.

iii. Our complete set of predictions, listing each drug and its FAM score, for 

each phenotype.
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Results
The standard method is inadequate for predicting drugs 
effective against common epilepsies

In the standard method, drugs are predicted to be efficacious if they modulate 

the function of proteins that are associated with the disease, according to 

the GWAS, at a genome-wide level of significance.21 For all epilepsy, GE 

and FE, SCN1A is the only gene that both (i) reaches genome-wide level of 

disease-significance, and (ii) produces a protein that is known to be altered 

in function by any existing compound. For CAE, JME and HS, there are no 

genes that both (i) reach genome-wide level of disease-significance and (ii) 

produce a protein that is known to be altered in function by any existing 

compound. Predicting candidate compounds for epilepsy based upon their 

ability to affect the function of sodium channel protein Type 1 subunit alpha 

(the protein product of SCN1A) yields a recall (from amongst all ASMs, the 

fraction predicted to be effective) of 35% and precision (from amongst 

all drugs predicted to be effective, the fraction that are ASMs) of 32%, 

which equates to an F-score (harmonic mean of the precision and recall) 

of 33%. The standard method of drug prediction produces an unordered 

and unranked set of candidate drugs, with no metrics for the relative 

predicted efficacy of the candidate compounds. This precludes method 

evaluation based upon predicted drug rankings and AUROC, and hampers 

the selection of the most promising candidate drugs for experimental 

validation. The same set of ASMs is predicted to be effective for the two 

divergent phenotypes of GE and FE, even though some seizure types in the 

former are aggravated by the ASMs that are most effective for the latter. 

Hence, for different common epilepsies, this method either fails to identify 

the majority of known effective drugs, or identifies no candidate drugs at 

all, or identifies potentially aggravating drugs. By extension, applying the 

standard approach to common epilepsies will yield no or few candidates for 

repurposing, will not prioritize amongst the candidates, will fail to identify 

any or most of the efficacious compounds and will potentially identify 

aggravating drugs.
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Creating and benchmarking a new method for predicting the 
relative efficacy of drugs against common epilepsies

To predict the relative efficacy of drugs against common epilepsies, we 

devised the disease-protein FAM score, which is calculated using the 

method illustrated in Fig. 1.

For benchmarking, we used the FAM score and alternative existing advanced 

methods to predict drugs for all epilepsy, and compared the methods’ 

performance. For the identification and prioritization of ASMs, the FAM 

score achieved AUROC (mean ± standard deviation) of 0.83 ± 0.03 and average 

percentile of 94, respectively. In comparison, the best performing alternative 

method achieved AUROC (mean ± standard deviation) of 0.63 ± 0.04 and 

average percentile of 77. Results of all comparator alternative approaches 

are shown in Supplementary Table 1.

Validating the FAM score

Next, we present results of the analyses performed to test the validity of the 

predictions made using the FAM score.

The FAM score for all epilepsy specifically prioritizes the 
drugs that are effective in people with epilepsy

When drugs are ranked by their FAM score for all epilepsy, drugs used to 

treat epilepsy are ranked higher than drugs used to treat any other human 

disease. The median rank of drugs used to treat epilepsy is at least seven 

percentiles higher than that of drug-sets used to treat other human diseases. 

Permutation-based P-value = 1 × 10−4 that ASMs are ranked highest, and so 

much higher than all other drug-sets used to treat all other human diseases.

The FAM score predicts which ASMs are more clinically 
effective, and which ASMs are less clinically effective, for 
each common epilepsy syndrome

Different ASMs are most effective for different syndromes of common 

epilepsy. Clinical studies and experience show that, for each common 
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epilepsy syndrome, some ASMs can be classified into a more clinically-

effective subset and some into a less clinically-effective subset. For each 

common epilepsy syndrome, the FAM score predicts which ASMs are amongst 

the more efficacious in clinical practice, and which ASMs are amongst the 

less efficacious in clinical practice (Table 1). Specifically, for each common 

epilepsy syndrome, the FAM score (i) distinguishes the more from the less 

clinically-effective ASMs and (ii) prioritizes the more clinically-effective 

ASMs higher than the less clinically-effective ASMs (Table 1).

Epi Identification of AEDs (AUROC) Prioritisation of 
AEDs (average 
percentile)

P

More effective 
AEDs from all 
drugs  
(mean ± SD)

Less effective 
AEDs from all 
drugs  
(mean ± SD)

More from 
less effective 
AEDs

More 
effective 
AEDs

Less 
effective 
AEDs

HS 0.65 ± 0.13 0.36 ± 0.18 0.87 73 27 8 × 10–3 

GE 0.85 ± 0.04 0.69 ± 0.09 0.71 93 70 <1 × 10–6 

JME 0.88 ± 0.04 0.76 ± 0.08 0.72 96 86 <1 × 10–6 

CAE 0.75 ± 0.05 0.45 ± 0.15 0.79 85 48 2.9 × 10–5 

Table 1: Performance of the FAM score, measured by the identification and 
prioritization of AEDs. Constituents of the ‘More effective AEDs’ and ‘Less effective 
AEDs’ drug-sets are specific to each phenotype. ‘Less effective AEDs’ comprise the 
set of less effective, ineffective or aggravating AEDs for that phenotype. AUROC is 
calculated using drugs’ FAM scores. AUROC for identifying AEDs from all drugs is 
computed using the technique of random under-sampling, and presented as mean ± 
standard deviation (see Supplementary methods). Prioritization is calculated using 
drugs’ ranks, when all drugs have been ranked from highest to lowest predicted 
effect on the phenotype. Prioritization result shown is the average (median) rank of 
AEDs, expressed as a percentile; it is equivalent to the percentage of all drugs ranked 
below the middle-ranked AED (see Supplementary methods). AUROC, area under 
the receiver operating characteristics; CAE, childhood absence epilepsy; Epi, epilepsy 
type or syndrome; GE, generalized epilepsy; HS, focal epilepsy with hippocampal 
sclerosis; JME, juvenile myoclonic epilepsy; P, permutation-based P-value after 
Benjamini–Hochberg correction; SD, standard deviation.

In order to predict which ASMs are more clinically-effective and which 

ASMs are less clinically-effective for a syndrome, the best results are 

obtained by using the FAM score for that syndrome. To illustrate this, we 

show that the ASMs that are more effective for CAE are favoured over the 

ASMs that are less effective for CAE, only when drugs are predicted using 

the FAM scores for CAE (AUROC: 0.79), and not when drugs are predicted 

using the FAM scores for all epilepsy, GE, JME, FE or HS (max AUROC: 
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0.49); permutation-based P-value = 1 × 10−5 that the AUROC values for CAE 

and other phenotypes are so contrasting.

For FE, current ASMs are not readily classified into more clinically-

effective and less clinically-effective subsets. The FE FAM score identifies 

and prioritizes ASMs: AUROC (mean ± standard deviation) of 0.85 ± 0.03 

and average percentile of 94; the FAM score’ performance is statistically 

significant (permutation-based P-value = 1 × 10−6), and superior to that of 

its constituent scores.

When considering the ability to distinguish more effective ASMs from 

all drugs and from less effective ASMs, the FAM score outperforms its 

constituent scores (Supplementary Table 2).

The FAM score predicts the observed patterns of relative 
efficacy of individual clinically-effective ASMs

We tested our predictions against the following observed patterns of relative 

efficacy of individual clinically-effective ASMs.

Valproate is the most effective ASM for GE, whereas 
carbamazepine is the most effective ASM for FE

It is recognized that the efficacy of valproate for generalized onset seizures is 

‘unsurpassed’,44 whist for focal onset seizures, ‘no other drug has been shown 

to be more effective’ than carbamazepine.45 In our predictions for GE, valproate 

is ranked highest of all current ASMs. In our predictions for FE, carbamazepine 

is ranked highest of all current ASMs. Valproate and carbamazepine are 

amongst the top two of all drugs in our predictions for GE and FE, respectively; 

permutation-based P-value = 5.6 × 10−6 for both valproate and carbamazepine 

being ranked so highly in our predictions for GE and FE, respectively.

The predicted order of efficacy of ASMs for FE matches that 
seen in the SANAD trials

The SANAD studies are the largest published head-to-head comparison of 

multiple ASMs for FE, and the largest published randomized controlled trial 

of ASMs for FE.46,47
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Five ASMs were compared in the FE arm of SANAD I: carbamazepine, 

gabapentin, lamotrigine, oxcarbazepine and topiramate. These drugs’ 

predicted order of efficacy for FE matches the observed order of efficacy in 

the SANAD I trial. The finding that these drugs are ranked as highly and in 

the correct order is unlikely to occur by chance (P < 1 × 10−6 by permutation).

Carbamazepine and gabapentin are effective ASMs but, in the FE arm of 

the SANAD I trial, carbamazepine was significantly more efficacious than 

gabapentin. Carbamazepine and gabapentin are ranked high in our predictions 

for FE (percentile ranks 100 and 79, respectively), but carbamazepine is 

ranked significantly higher than gabapentin (permutation-based P-value 

= 1 × 10−4 for the ranks of both drugs being as high but as disparate as 

observed).

The ASMs compared in the FE arm of SANAD II were lamotrigine, 

levetiracetam and zonisamide. These drugs’ predicted order of efficacy for 

FE matches the observed order of efficacy in the SANAD II trial. The finding 

that these drugs are ranked as highly and in the correct order is unlikely to 

occur by chance (P < 1 × 10−6 by permutation).

The prioritized order of efficacy of ASMs for GE matches that 
seen in the SANAD I trial

The SANAD studies are the largest published head-to-head comparison of 

multiple ASMs for GE, and the largest published randomized controlled trial 

of ASMs for GE.48,49

The ASMs compared in the GE arm of SANAD I were lamotrigine, topiramate 

and valproate. These drugs’ predicted order of efficacy matches the clinically 

observed order of efficacy in the SANAD I trial. The finding that these drugs 

are ranked as highly and in the correct order is unlikely to occur by chance 

(permutation-based P-value = 1 × 10−5).

Valproate and lamotrigine are effective ASMs but, in the GE arm of 

the SANAD I trial, valproate was significantly more efficacious than 

lamotrigine. Valproate and lamotrigine are ranked high in our predictions 

for GE (percentile ranks 100 and 81, respectively), but valproate is ranked 
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significantly higher than lamotrigine (permutation-based P-value = 3 × 

10−4 for the ranks of both drugs being as high but as disparate as observed).

The ASMs compared in the GE arm of SANAD II were levetiracetam and 

valproate. Valproate and levetiracetam are effective ASMs but, in the GE 

arm of the SANAD II trial, valproate was significantly more efficacious 

than levetiracetam. Valproate and levetiracetam are ranked high in our 

predictions for GE (ranks 1 and 15, respectively), but valproate is ranked 

significantly higher than levetiracetam (permutation-based P-value < 1 × 

10−5 for the ranks of both drugs being as high but as disparate as observed).

Topiramate is more effective than lamotrigine for GE, but 
lamotrigine is more effective than topiramate for FE, in 
concordance with the SANAD I trial

Lamotrigine and topiramate are the only two ASMs included in both the FE 

and GE arms of the SANAD I study. In the GE arm of SANAD I, topiramate 

was more efficacious than lamotrigine, whereas in the FE arm, lamotrigine 

was more efficacious then topiramate. In our predictions for FE, lamotrigine 

is ranked higher than topiramate, while for GE, topiramate is ranked higher 

than lamotrigine. The contrasting ranks of lamotrigine and topiramate for FE 

and GE are unlikely to occur by chance (permutation-based P-value = 1 × 10−4).

For JME, valproate is most effective

Valproate is thought to be the most efficacious broad-spectrum ASM for 

JME50–52 but this is based on anecdotal data and retrospective analyses. 

Amongst our predictions for JME, valproate was amongst the highest 

ranked drugs (percentile rank 98), but not the highest. The highest ranked 

prediction was primidone. In the longest retrospective cohort study of JME 

to date, primidone was most effective, with a 5-year terminal remission 

rate of 73.3, compared to 50% with valproate.53

For CAE, valproate and ethosuximide are most effective

Valproate and ethosuximide are most effective for CAE; both are similarly 

effective for CAE.54 In our predictions for CAE, valproate is ranked highest 
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of all drugs. Ethosuximide is not ranked highly, but higher than average, 

amongst our predictions (median percentile rank 58). The P-value for the 

two drugs being ranked so favourably is 5 = 1 × 10−4. Ethosuximide is ascribed 

a particularly low FM score for CAE, which places it in the 20th percentile of 

predictions for the phenotype. One possible explanation of ethosuximide’s 

low FM score is that its mechanism of action is poorly understood, as it is 

not an extensively studied compound. Indeed, ethosuximide is one of the 

least studied of the current ASMs: there are 343 MEDLINE articles with the 

word ethosuximide in their title, compared to a mean of ~1765 for the other 

current ASMs that are also found in our datasets (as of 2 September 2021; 

single-sample one-tailed t-test t = 3.7 and P-value = 6.9 × 10−4).

The drug predictions are not driven by individual highly 
disease-associated proteins

The relative predicted efficacy of drugs does not change significantly after 

excluding, one at a time, the top 10 most strongly disease-associated proteins 

that contribute to the FAM score for that epilepsy. The predicted ranks of 

drugs for each epilepsy remained significantly stable after excluding, one at 

a time, the top 10 most strongly disease-associated proteins that contribute 

to the FAM score for that epilepsy. For each epilepsy, FAM scores were re-

calculated after excluding, one at a time, the top 10 most strongly disease-

associated proteins (Supplementary Table 3) that contribute to the FAM 

score for that epilepsy. When drug ranks obtained after excluding a protein 

were compared with the original drug ranks, Kendall’s τ ranged from 0.80 

to 0.93, with all corrected P-values <1 × 10−200. In contrast, comparing the 

predicted drug rankings for two unrelated epilepsies—CAE and HS—yields 

a Kendall’s τ of 0.04 (P = 0.10).

Top candidate drugs

Ranked lists of the top drugs predicted to be effective for each phenotype, 

which are most enriched with the drugs that are known to be (more) effective 

for the phenotype, are available for download (see Data availability). For each 

phenotype, the top candidate drugs are significantly (Benjamini–Hochberg 

P-value <0.05) enriched with the ASMs that are (more) effective for the 
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phenotype, except for HS. For HS, there was no significant enrichment of 

(more) effective ASMs, which may be a reflection of the often drug-resistant 

nature of HS, or of the lower power of the HS GWAS, or the relatively smaller 

size of the more effective subset of ASMs for HS, or a combination of these 

factors.

A manually curated selection of top candidate drugs that could potentially 

be repurposed for different forms of common epilepsy is shown in the Table 

2.

Epi Drugs Evidence of 
antiseizure 
efficacy in

Indication Mode of action

CAE Clomipramine Animal models1 
and humans2 

Depression Serotonin–
noradrenaline 
reuptake inhibitor 

CAE Doxepin Animal models3,4 Depression Tricyclic 
antidepressant 

CAE Pentoxifylline Animal models5 Peripheral vascular 
disease 

Haemorheological 
agent, increases 
leukocyte 
deformability 

CAE Phenelzine Animal models6 Depression Monoamine oxidase 
inhibitor 

CAE Sulindac Animal models7 Pain Non-steroidal anti-
inflammatory 

CAE Tolbutamide Animal models8 Diabetes mellitus Sulphonylurea 

CAE Tranylcypromine Animal models9 Depression Monoamine oxidase 
inhibitor 

FE Chlorzoxazone Rat hippocampal 
neurons10 

Muscle spasms Calcium and 
potassium channel 
inhibitor 

FE Hydrochlorothiazide Animal models11, 12 
and human12 

Hypertension ACEII antagonist 

FE Thalidomide Animal models16-18 Multiple myeloma Immunomodulation, 
unspecified 

FE Zaleplon Animal models19 Insomnia GABA-BZ agonist 

FE Zolpidem Animal models20-22 Insomnia GABA-BZ/GABA-A 
agonist 

HS Amiodarone Animal models23 Arrhythmia Potassium channel 
blocker 

HS Clonidine Animal models24-44 Hypertension Alpha-2 adrenoceptor 
agonist 
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Epi Drugs Evidence of 
antiseizure 
efficacy in

Indication Mode of action

HS Methoxamine Animal models45 Hypotension Alpha-1 adrenergic 
receptor agonist 

HS Pergolide Animal models46 Parkinson’s disease D2 agonist 

HS Thioridazine Animal models47 Psychosis D1/D2 antagonist 

HS Tizanidine Animal models40 Muscle spasticity Alpha-2 adrenergic 
receptor antagonist 

JME Aliskiren Animal48, 49 Hypertension Renin inhibitor 

JME Baclofen Animal models39, 

50-76 
Muscle spasticity GABA-B receptor 

agonist 

JME Diazoxide Animal models77, 78 Hypoglycaemia Potassium channel 
agonist, inhibits 
insulin release 

JME Icosapent Animals79, 80 and 
humans81-85 

Hypertriglyceridaemia 20-carbon omega-3 
fatty acid 

JME Iloprost Animal models86, 87 Pulmonary arterial 
hypertension 

Synthetic analogue of 
prostacyclin PGI2 

JME Nicotinamide Animal 
models94-103 

Pellagra Water-soluble form of 
Vitamin B3 

JME Pranlukast Animal models104 
and humans105 

Asthma Cysteinyl leukotriene 
receptor-1 antagonist 

JME Riluzole Animal 
models106-109 

Amyotrophic lateral 
sclerosis 

Glutamate antagonist 

Table 2: Manually curated selection of candidate drugs for the phenotypes shown in 
the table. Candidate drugs for GE, which we tested in an animal model, are listed in 
Table  3. References, for the evidence cited here, can be found in the Supplementary 
material. CAE, childhood absence epilepsy; Epi, epilepsy type or syndrome; HS, focal 
epilepsy with hippocampal sclerosis; JME, juvenile myoclonic epilepsy.

Predicted drugs have a significant dose-dependent effect on 
seizures in an animal model

After excluding drugs that are toxic or otherwise unsuitable, the top five 

predicted drugs for GE were tested in a mouse model with a complex genetic 

seizure disorder that manifests as audiogenic generalized seizures. Each 

of the drugs had a significant dose-dependent effect on tonic and clonic 

convulsions (Table 3). Whilst four of the drugs had a significant dose-

dependent anti-convulsant effect, one of the compounds (betahistine) had 

a significant dose-dependent pro-convulsant effect.
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Drug Latency (s) to convulsions 
(mean±s.e.m)

P

Vehicle (i.p.) 10.9 ± 2.6 – 

Orphenadrine (12.5 mg/kg 
i.p.) 

40.0 ± 5.6 6.10 × 10–5 

Orphenadrine (25 mg/kg i.p.) 53.4 ± 3.7 5.40 × 10–7 

Orphenadrine (50 mg/kg i.p.) 60.0 ± 0.0 4.14 × 10–7 

Dyclonine (5 mg/kg i.p.) 31.5 ± 6.2 1.77 × 10–2 

Dyclonine (10 mg/kg i.p.) 44.7 ± 5.4 2.16 × 10–4 

Dyclonine (20 mg/kg i.p.) 57.7 ± 2.4 4.14 × 10–7 

Trimeprazine (2.5 mg/kg i.p.) 11.0 ± 20.6 6.52 × 10–1 

Trimeprazine (5 mg/kg i.p.) 18.1 ± 4.1 1.77 × 10–2 

Trimeprazine (10 mg/kg i.p.) 44.5 ± 5.3 4.06 × 10–6 

Acamprosate (125 mg/kg i.p.) 8.7 ± 0.4 6.40 × 10–1 

Acamprosate (250 mg/kg i.p.) 9.2 ± 0.2 4.56 × 10–1 

Acamprosate (500 mg/kg i.p.) 14.3 ± 2.5 1.20 × 10–2 

Betahistine (75 mg/kg i.p.) 9.1 ± 0.5 4.53 × 10–1 

Betahistine (150 mg/kg i.p.) 6.9 ± 0.4 2.83 × 10–2 

Betahistine (300 mg/kg i.p.) 5.3 ± 0.3 4.48 × 10–5 

Valproate (180 mg/kg i.p.) 57.7 ± 1.4 4.89 × 10–7 

Table 3: Results from testing compounds in a genetic model of generalised seizures: 
the DBA/2 mouse model of audiogenic seizures. After activation of a bell, latency 
to the occurrence of tonic convulsions and clonic convulsions was measured. P, 
Benjamini–Hochberg-corrected P-value from two-sided Mann–Whitney U test; 
s.e.m, standard error of the mean.

Discussion
We present the relative predicted efficacy of drugs against each of the 

main types and syndromes of common epilepsy. This dataset is a novel 

and valuable resource for selecting the best candidate drug(s) to repurpose 

for any of the main types and syndromes of common epilepsy. Of course, 

our predicted candidate drugs require further animal model and/or human 

clinical trial evidence before being considered for deployment in clinical 

practice.

To generate our predictions, we created a novel method. Our method 

possesses several strengths that are lacking in previously published 
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approaches. Common epilepsies, like other complex diseases, develop 

when many different proteins display abnormal activity due to pathological 

changes in their abundance or function.55 Our method prioritizes drugs 

according to their relative ability to modulate changes in both the abundance 

and the function of disease-proteins. Furthermore, drugs are prioritized on 

the basis of their ability to correct disease-protein abnormalities that are 

found in people with the disease, rather than in animal models, and that are 

not consequential to or compensatory for the disease, as they are driven by 

germline variations. We use genetic variation data specific to each form of 

common epilepsy, to make drug predictions specific to that form of common 

epilepsy. The ASMs that are more clinically-effective for a syndrome and 

the ASMs that are less clinically-effective for a syndrome are predicted more 

effective and less effective, respectively, for that syndrome only, but not for 

any other epilepsy type or syndrome—this suggests that our predictions 

are not systemically biased in favour of a particular set or type of drugs. 

The methodology is based upon a polygenic model of disease and a multi-

targeted approach to treatment, which are desirable for complex diseases. 

We utilize conventional canonical low-throughput single-target functional 

drug activity data, and high-throughput genome-wide transcriptomic drug 

activity data, so that prioritization of drugs is informed by their on-target 

and off-target effects, and by their affinities for individual proteins and 

effects upon genome-wide gene expression. The directionality of drugs’ 

effects on protein activity also helps inform drug prioritization. Rather than 

dichotomous categorization of compounds into drugs that are predicted to 

be effective or ineffective, our method ranks drugs individually according 

to relative predicted efficacy, which aids candidate selection for in vivo 

validation and for development.

Our method produces accurate drug predictions for epilepsy syndromes 

even if their GWAS results include few genome-wide significant loci. 

Even excluding the most strongly disease-associated proteins does not 

significantly change the relative efficacy of drugs predicted by our method 

(as we show in the Results, under subheading ‘The drug predictions are not 

driven by individual highly disease-associated proteins’). This is because 

our method is not reliant on individual highly disease-associated proteins. 
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Instead, our method leverages the gene-set analysis approach, where each 

gene-set is the set of genes affected by each drug. The disease association 

of all the genes in a gene-set, even those below the genome-wide 

significant threshold, is combined; the gene-sets that are more disease-

associated overall are more biologically relevant. The gene-set approach 

is a long-established and widely-used method in all areas of genomic 

analysis,56 including post-GWAS analysis generally57 and GWAS-based drug 

repurposing analysis specifically.27,28 Utilizing the full distribution of all 

genetic associations for gene-set analysis is a validated, established and 

accepted approach, which has been implemented in numerous widely-used 

post-GWAS analysis tools, for example FUMA,58 MAGMA,58 MAGENTA,59 

INRICH60 and DEPICT,61 each of which has been employed in a multitude of 

published GWAS-based studies.

Alongside these strengths, our method has some limitations, discussed 

below.

Our drug prediction method, like all previously published genetics- or 

genomics-based drug prediction methods, predicts the efficacy of drugs for 

a disease. However, the most efficacious drug for a disease in not always 

the most appropriate drug for every individual with the disease. Important 

factors to consider when choosing a drug for an individual include the 

potential of undesirable interactions with other medications and the 

possible side-effects. Our method, like all previously published genetics- 

or genomics-based drug prediction methods, does not predict drugs’ 

interactions with other medications and side-effects. Indeed, the success 

of an ASM is determined as much by its tolerability as by its efficacy.59–62 

As the drugs we have predicted for epilepsies are already being used for 

other diseases, their side-effect profiles are known. This allows researchers 

to select for further development those candidate compounds whose side-

effects are less deleterious or even desirable.

Our method predicts drugs effective for a disease from the proteins 

underlying the disease, after identifying the proteins underlying the disease 

from the common genetic variations associated with the disease. However, 

some proteins become dysfunctional or dysregulated not because of 
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common genetic variations, but because of rare genetic variations, or copy 

number variations, or abnormalities of epigenetic, post-transcriptional 

or post-translational mechanisms, or because of environmental insults. 

Such protein changes do not inform our predictions, which could affect 

their accuracy, commensurate with the contribution of those proteins to 

the causal mechanism underlying an epilepsy and/or to the mechanism 

of action of a drug. We are not aware of any existing drug prediction 

methods which take into account the multiple potential pathogenic factors 

that influence proteins; the development of such methods might lead to 

improved accuracy of drug predictions.

Our analysis uses data from a GWAS that employed imputation to improve 

genomic coverage. The GWAS gene-level data used in this analysis offers 

coverage of genes across the genome, and it is corrected for the lengths and 

single nucleotide polymorphism-densities of genes. However, if a gene is 

not (adequately) covered by the genotyping array and the imputation, but 

the gene is of importance in epilepsy and affected by drug(s), the accuracy of 

our drug predictions could be adversely affected. Hence, improved coverage 

of future epilepsy GWAS analyses could help to improve the accuracy of 

drug predictions.

Our drug predictions are based upon two scores: the FM and AC scores. 

The FM score relies upon knowledge of the proteins changed in function 

by drugs. At present, knowledge of the proteins that are changed in 

function by each drug is incomplete, and it is more incomplete for some 

drugs than for others. The more incomplete the knowledge of the proteins 

changed in function by a drug, the more likely it is that the drug’s FM score 

will be underestimated. By extension, the FM score is more likely to be 

underestimated for drugs that are less studied, as their modes of action are 

less analysed and, hence, knowledge of the proteins changed in function 

by them is less complete. This may explain the relatively low FM sore and, 

hence, FAM score and ranking for ethosuximide. The AC score is free of 

this limitation, as the AC score is based upon profiles of drug-induced 

transcriptomic changes assayed by using the same standardized pipeline for 

each drug. With over 44 000 compounds already analysed on this platform 

(http://lincsportal.ccs.miami.edu/SmallMolecules/catalog; accessed on 1 
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February 2021), transcriptomic profiles are available for the vast majority 

of drugs of interest. However, a small number of interesting drugs (for 

example, brivaracetam and cenobamate) have not been assayed, which 

means that an AC score and, hence, a FAM score cannot be calculated for 

them. The platform and pipeline used for generating drugs’ transcriptomic 

profiles are in the public domain, and have been used by researchers to 

generate profiles for any compounds of interest not already found in the 

database, albeit for industrial-scale projects.62 In addition, there is active 

ongoing development of computational methods for using knowledge of 

drugs’ structures to predict the proteins that they change in function and/or 

abundance,63,64 which is another potential future strategy for predicting the 

relative efficacy of compounds whose molecular effects are still unknown.

It is noted that the FM score does not predict the ‘directionality’ of 

drugs’ effects (that is, beneficial or harmful) on disease-protein function. 

Therefore, drugs predicted by the FM score to affect a phenotype may be 

alleviating or aggravating for the phenotype. This is a recognized limitation 

of methods that use data for the ability of drugs to alter the function of 

genetically-associated disease-proteins in order to predict drugs that 

can affect the disease,16,17,65 as the direction of change in protein activity 

occurring in the disease is unknown. On the other hand, the AC score does 

predict the ‘directionality’ of drugs’ effects (that is, beneficial or harmful) 

on individual disease-proteins and, thereby, the overall ‘directionality’ 

of drugs’ effects (that is, beneficial or harmful) on the disease. The AC 

score takes into account the magnitude and direction of change in proteins’ 

abundance underlying disease, and the magnitude and direction of change 

in proteins’ abundance caused by drugs. Thereby, the AC score proposes to 

predict the drugs with a beneficial effect on disease-protein abundance and 

clinical phenotype. Hence, inclusion of the AC score, with the FM score, 

in our final FAM score, is expected to help mitigate the risk of deleterious 

compounds with high FM scores being included in our candidate drugs. 

Still, it is possible that some aggravating drugs are included in our candidate 

compounds. Hence, experimental validation of candidate drugs is essential 

before clinical use, as with all in silico drug prediction methods. We tested 

five of our candidate compounds in a rodent model: all five compounds 
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had a significant dose-dependent effect on seizures. Interestingly, one of 

the candidate compounds (betahistine) had a significant dose-dependent 

pro-convulsant effect in the animal model. This finding could be explained 

by the possibility that some of our predicted compounds are aggravating, 

as discussed. However, it is also possible that the pro-convulsant effect 

of betahistine in our study is a reflection of species- or model-specific 

behaviour. Indeed, a recent study (published after our animal experiments 

had ended) showed that betahistine has a significant antiepileptogenic and 

anticonvulsant effect on pentylenetetrazole-induced generalized seizures 

in a different mouse strain.66

Whilst acknowledging these limitations and some aberrant predictions, 

we note that our method outperforms alternative methods for predicting 

drugs that have efficacy against common epilepsies in clinical studies 

and experience. Our method also predicts which ASMs are amongst the 

more efficacious in clinical practice, and which ASMs are amongst the less 

efficacious in clinical practice, for each of the main syndromes of common 

epilepsy, and it predicts the distinct order of efficacy of individual ASMs 

in clinical trials of different common epilepsies. This aspect is key to 

the clinical translation of drug predictions for common epilepsies, but is 

missing from previously published studies that have predicted drugs for 

epilepsy.13–17

In this study, we have used the tissue-wide association study method to 

identify the protein abundance changes underlying disease. A closely-

related alternative method is to use Mendelian randomization. In future 

studies, both methods could be compared and/or combined in order to 

determine if this improves the drug predictions. Mendelian randomization 

is discussed at greater length in the Supplementary material.

As our method uses GWAS data, it cannot be applied to monogenic diseases. 

It is conceivable that this method could be adapted to make it applicable 

to monogenic diseases, and we plan to explore this possibility in a future 

study dedicated to this objective.

We have used results from the latest epilepsy GWAS mega-analysis, which 

includes previously published and unpublished epilepsy GWAS analyses, 
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making it the largest epilepsy GWAS to date.11 However, compared to other 

common neurological diseases, even the largest epilepsy GWAS had a modest 

sample size, with 15 212 cases and 29 677 controls, and produced a modest 

number of discoveries, with 16 loci identified. The latest schizophrenia 

GWAS, for example, included 36 989 cases and 113 075 controls, resulting 

in the identification of 108 risk loci.67 It is hoped that expanded cohort 

sizes of future epilepsy GWAS analyses will increase power and improve 

drug predictions. In this analysis, we predicted drugs for the main epilepsy 

syndromes that had risk loci identified in the latest epilepsy GWAS. It is 

hoped that future epilepsy GWAS will be large enough to report results for 

additional epilepsy syndromes, and drugs can be predicted for them using 

the method presented here. Finally, it is likely that our method can be 

applied to the GWAS results of other common complex phenotypes.

Supplementary material
Supplementary material is available at: https://tinyurl.com/4j3srm5j.
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Abstract
Epilepsy is a highly heritable disorder affecting around 70 million people 

worldwide. Approximately one third of people with epilepsy experience 

seizures refractory to current treatments. Much of the heritability is 

attributable to common variants, suggesting that genome-wide association 

studies (GWAS) can yield biological insights and aid pathophysiology-

informed drug discovery. Here, we report a trans-ethnic GWAS including 

29,944 specifically phenotyped cases and 52,538 controls, stratified into 

three broad- and seven subtypes of epilepsy. We further increased the 

sample size using biobank-derived individuals to 51,678 cases and 1,076,527 

controls. We identify 26 genome-wide significant loci. Nineteen of these 

signals are specific to genetic generalised epilepsy (GGE) and three to the 

GGE subtype juvenile myoclonic epilepsy, whilst three are pleiotropic and 

one is female-specific. We implicate 29 likely causal genes underlying these 

26 loci, based on a combination of ten prioritization methods. SNP-based 

heritability analyses show that common variants largely close the gap in 

missing heritability for GGE. Subtype analysis revealed markedly different 

genetic architectures between focal and generalised forms of epilepsy. 

Enrichment analyses implicate synaptic processes in excitatory as well 

as inhibitory neurons in the brain. Genes identified in our study overlap 

with monogenic epilepsy genes and targets of current anti-epileptic drugs. 

Finally, we leverage our GWAS to highlight a list of drugs with predicted 

efficacy when repurposed for epilepsy treatment. 
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Introduction 
The epilepsies are a group of heterogeneous neurological disorders, 

characterized by an enduring predisposition to generate unprovoked 

seizures.1 It is estimated that over 50 million people worldwide have active 

epilepsy, with an annual cumulative incidence of 67.7 per 100,000 persons.2 

Similar to other common neurodevelopmental disorders, the epilepsies 

have substantial genetic risk contributions from both common and rare 

genetic variation. Analysis of the epilepsies benefits from well characterized 

phenotyping which allows clinical sub groups to be distinguished, in contrast 

to other neurodevelopmental disorders where phenotypic subgroups are 

more difficult to define. Differences in the genetic architecture of these 

clinical subgroups of epilepsies are also emerging to complement the 

clinical partitioning.3–5 The rare but severe epileptic encephalopathies are 

usually non-familial and are largely caused by a heterogeneous collection 

of de novo dominant variants, often involving ion channels or synaptic 

machinery.6  Common, as well as rare variation, has been shown to 

contribute to the milder and more common focal and generalized epilepsies, 

both of which have high heritability. This is particular generalized epilepsy, 

which is primarily constituted by genetic generalised epilepsy (GGE).3,4,7,8 

Nevertheless, previous genetic studies of common epilepsies have explained 

only a few percent of this common genetic, or SNP-based, heritability.3–5,8

Epilepsy is typically treated using antiepileptic drugs (AEDs). However, 

despite the availability of over 25 licensed AEDs worldwide, a third of 

people with epilepsy experience ongoing seizures.9 Diet, surgery and 

neuromodulation represent additional treatment options that can be 

effective in small subgroups of patients.10 Accurate classification of patients 

is an important guiding factor in epilepsy treatment.

Here, we report the third epilepsy GWAS meta-analysis, comprising a total 

of 29,944 specifically phenotyped cases recruited from tertiary referral 

centres, and 52,538 controls, approximately doubling the previous sample 

size.3 Results suggest markedly different genetic architectures between focal 

and generalised forms of epilepsy. Combining these results with results from 

less stringently phenotyped biobank-derived epilepsy did not substantially 
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increase signal, despite almost doubling the sample size to 51,678 cases 

and 1,076,527 controls. Our findings shed light on the enigmatic biology of 

generalized epilepsy, the importance of accurate syndromic phenotyping 

and may facilitate drug repurposing for novel therapeutic approaches.

Results
Study overview

We performed a genome-wide meta-analysis by combining the previously 

published effort from our consortium3 with unpublished data from the Epi25 

collaborative8 and four additional cohorts (Supplementary table 1). Our primary 

mixed model meta-analysis constitutes 4.9 million SNPs tested in 29,944 people 

with epilepsy and 52,538 controls, of which 16,447 people had  focal epilepsy and 

7,407 people had GGE. The epilepsy cases were primarily of European descent 

(92%), with a smaller proportion of African (3%) and Asian (5%) ancestry. Cases 

were matched with controls of the same ancestry and GWAS were performed 

separately per ancestry, before performing trans-ethnic meta-analyses. We 

performed meta-analyses for the broad epilepsy phenotypes ‘focal epilepsy’ 

(n=16,447 cases) and ‘GGE’ (n=7,407 cases). We further conducted meta-

analysis of the well-defined GGE subtypes of: a) juvenile myoclonic epilepsy 

(JME), b) childhood absence epilepsy (CAE), c) juvenile absence epilepsy (JAE) 

and d) generalized tonic-clonic seizures only (GTCSA), as well as the focal 

epilepsy subtypes of: a) focal epilepsy with hippocampal sclerosis,b)  focal 

epilepsy due to other lesions, and c) lesion-negative focal epilepsy. We ran a 

variety of downstream analyses to identify potential sex-specific signals and 

obtain biological insights and leads for drug-repurposing.

GWAS for the epilepsies

Our ‘all epilepsy’ meta-analysis revealed four genome-wide significant loci, 

of which two were novel (Figure 1). Similar to our previous GWAS, the 2q24.3 

locus was composed of two independently significant signals.3 Furthermore, 

a novel suggestive signal (rs4932477, p=5.04*10-8) was found at chromosome 

15, containing POLG, which is associated with one of the most severe kinds 

of intractable monogenic epilepsy.11 Using ASSET to determine the extent of 

FE and GGE-related pleiotropy, the 2q24 and 9q21 signals showed pleiotropic 
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effects at a genome-wide significance level, with concordant SNP effect 

directions for both forms of epilepsy (Supplementary table 2). The 2p16.1 

and 10q24.32 loci were primarily driven by GGE. The ‘focal epilepsy’ (FE) 

analysis did not reveal any genome-wide significant signals. 

Analysis of ‘generalized epilepsy’ (GGE) uncovered a total of 25 independent 

genome-wide significant signals across 22 loci, of which 14 loci are novel. 

The strongest signal of association (p=6.58E-21), located at 2p16.1, constitutes 

three independently significant signals. Similarly, the novel locus 12q13.13 

was composed of two independently significant signals. 

Functional annotation of the 2,355 genome-wide significant SNPs across the 

22 loci revealed that most variants were intergenic or intronic (Supplementary 

data 1). 26/2355 (1.1%) SNPs were exonic, of which 12 were located in protein-

coding genes and nine were missense variants. Sixty one percent of SNPs were 

located in open chromatin regions, as indicated by a minimum chromatin state 

of 1-7.12 Further annotation by Combined Annotation-Dependent Depletion 

(CADD) scores predicted 110 associating SNPs to be deleterious (CADD score 

>12.37).13 LDAK heritability analyses showed significant enrichment of signal 

in super-enhancers (Supplementary table 3), suggesting that GGE variants 

regulate expression of genes that define cell identity.14 

To assess potential syndrome-specific loci, we performed GWAS on seven 

well-defined focal and GGE subtypes (Supplementary figure 1A-G). We found 

three genome-wide significant loci associated with JME, of which one was 

novel (8q23.1), and the other two (4p12 and 16p11.2) reported in our previous 

GWAS.3 All three signals appear specific to JME; they were not even nominally 

associated with any other GGE subtype and did not reach genome-wide 

significance in the combined GGE analysis. Our analysis of CAE consolidated 

an established genome-wide significant signal at 2p16.1, which was also 

observed in the GGE and all epilepsy GWAS. We did not find any genome-wide 

significant loci for JAE, GTCS, ‘non-lesional focal epilepsy’, ‘focal epilepsy 

with hippocampal sclerosis’, or’ focal epilepsy due to other lesions’. 

Genomic inflation factors were comparable to our previous GWAS and all 

linkage-disequilibrium score regression (LDSR) intercepts were lower 

than our previous GWAS (Supplementary table 4),3 suggesting that the 
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signals are primarily driven by polygenicity, rather than by confounding or 

population stratification.15

Figure 1. Manhattan plot of trans-ethnic all, focal epilepsy and genetic generalised 
epilepsy (GGE) genome-wide meta-analyses. The red line shows the genome-wide 
significance threshold (5x10-8). Chromosome and position is displayed on the x axis 
and -log10 P-value on the y axis. Novel genome-wide significant loci are highlighted 
in red and replicated loci are labeled in orange. Annotated genes are those implicated 
by our gene prioritization analyses.

Locus annotation, TWAS and gene prioritisation

Using FUMA16 (see Methods), the ‘all epilepsy’ meta-analysis was mapped to 

43 genes and the GGE analysis to 278 genes (Supplementary data 2). Thirty 

nine of the 43 ‘all epilepsy’ genes overlapped with GGE, resulting in a total of 

282 uniquely mapped genes. These 282 genes were enriched for monogenic 
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epilepsy genes (hypergeometric test, 18/837 genes overlapped; odds ratio 

[OR]=1.51, P=0.041), and targets of anti-epileptic drugs (hypergeometric 

test, 9/191 genes overlap; OR=3.39, P=5.4e-4). 

We calculated a gene-based association score based on the aggregate of all 

SNPs inside each gene using MAGMA (see Methods).17 This analysis yielded 

39 significant genic associations, six with ‘all epilepsy’, and 37 with GGE 

(four overlapped with the ‘all epilepsy’ analysis), after correction for 16,371 

tested genes (p<0.05/16,371 genes; Supplementary data 3). Thirteen of 

these 39 genes mapped to regions outside of the genome-wide significant 

loci from the single SNP analyses.

Next, we performed a transcriptome-wide association study (TWAS) to 

assess whether epilepsy was associated with differential gene expression in 

the brain (see Methods).18,19 These analyses revealed that expression of 13 and 

16 genes, significantly implicated with ‘all epilepsy’ and GGE respectively 

(Supplementary data 4). 19 of these genes mapped outside of the 26 loci 

identified through the GWAS.  Using Summary-data-based Mendelian 

Randomization (SMR)20, we determined a potentially causal relationship 

between brain expression of RMI1 and ‘all epilepsy’, and between RMI1, 

CDK5RAP3, TVP23B and GGE (Supplementary data 5). 

Of note, expression of RMI1 was associated with GGE in both TWAS 

(p=4.01E-10) and SMR (p=5.21E-08), as well as with ‘all epilepsy’ (TWAS 

p=1.32E-06; SMR p=2.29E-06). RMI1 has a crucial role in genomic stability21 

and has not been previously associated with epilepsy nor any other 

Mendelian trait (OMIM #610404). 

We used a combination of ten different criteria to identify the most likely 

implicated gene within each of the 26 associated loci from the meta-analysis 

(see Methods). This resulted in a shortlist of 29 genes (Figure 2), of which ten are 

monogenic epilepsy genes, seven are known targets of currently licensed anti-

epileptic drugs and 17 are associated with epilepsy for the first time. Interrogation 

of the Drug Gene interaction database (DGIdb) showed that 13 of the 29 genes 

are targeted by a total of 214 currently licensed drugs (Supplementary data 6).

The strongest association signal for GGE was found at 2p16.1, consistent with 

our previous results  where we implicated the gene VRK2 or FANCL.22 Our gene 
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prioritization analysis now points to the transcription factor BCL11A as the 

culprit gene, located 2.5MB upstream of the lead SNPs at this locus. Two of 

three lead SNPs are located in enhancer regions (as assessed by chromatin 

states in brain tissue) which are linked to the BCL11A promoter via 3D chromatin 

interactions (Supplementary figure 2). Rare variants in BCL11A were recently 

associated with intellectual disability and epileptic encephalopathy23. However, 

interrogation of the MetaBrain eQTL database did not reveal a significant 

association between our lead SNPs with BCL11A expression. 

Phenotype Locus Novel/replication Lead SNP (A1:A2) Freq1 Z-score P-value Gene Total
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All epilepsy

2p16.1 Replication rs13032423 (A:G) 0.53 -7.04 1.85E-12 BCL11A 5
2q24.3 Replication rs59237858 (T:C) 0.23 -6.89 5.75E-12 SCN1A 8

9q21.13 Novel rs4744696 (A:G) 0.82 -5.74 9.69E-09 RORB 4
10q24.32 Novel rs3740422 (C:G) 0.33 6.04 1.52E-09 KCNIP2 3

GGE

1q43 Novel rs876793 (T:C) 0.67 -5.95 2.64E-09
RYR2 4
CHRM3 4

2p16.1 Replication rs11688767 (A:T) 0.53 9.38 6.58E-21 BCL11A 5
2q12.1 Novel rs62151809 (T:C) 0.43 6.77 1.28E-11 POU3F3 3
2q24.3 Replication rs11890028 (T:G) 0.72 5.63 1.73E-08 SCN1A 8
2q32.2 Replication rs6721964 (A:G) 0.66 -6.18 6.54E-10 GLS 4
3p22.3 Novel rs9861238 (A:G) 0.41 -6.42 1.33E-10 STAC 2

3p21.31 Novel rs739431 (A:G) 0.84 6.23 4.82E-10 CACNA2D2 6
4p15.1 Replication rs1463849 (A:G) 0.59 -6.59 4.38E-11 PCDH7 3
5q22.3 Replication rs4596374 (T:C) 0.55 -6.98 2.91E-12 KCNN2 6
5q31.2 Novel rs2905552 (C:G) 0.48 -6.33 2.49E-10 SPOCK1 5

6q22.33 Replication rs13219424 (T:C) 0.29 -5.49 3.87E-08 PTPRK 3
7p14.1 Novel rs37276 (T:G) 0.26 -5.69 1.29E-08 SUGCT 2

9q21.32 Novel rs2780103 (T:C) 0.26 -6.93 4.34E-12 RMI1 5
10q24.32 Novel rs11191156 (A:G) 0.67 -7.55 4.41E-14 KCNIP2 4
12q13.13 Novel rs114131287 (A:T) 0.02 5.83 5.46E-09 SCN8A 6
16p13.3 Novel rs62014006 (T:G) 0.05 5.88 4.22E-09 RBFOX1 5
17p13.1 Novel rs2585398 (A:C) 0.53 -6.37 1.84E-10 ARHGEF15 6

17q21.32 Replication rs16955463 (T:G) 0.25 -5.97 2.30E-09 CDK5RAP3 4
19p13.3 Novel rs75483641 (T:C) 0.14 -6.22 4.85E-10 AP3D1 5
21q21.1 Novel rs1487946 (A:G) 0.59 5.47 4.41E-08 TMPRSS15 1
21q22.1 Replication rs7277479 (A:G) 0.36 -6.82 8.94E-12 GRIK1 4

22q13.32 Novel rs469999 (A:G) 0.31 -6.32 2.65E-10 FAM19A5 2
CAE 2p16.1 Replication rs12185644 (A:C) 0.70 -7.12 1.04E-12 BCL11A 5

JME

4p12 Replication rs17537141 (T:C) 0.851 -5.47 4.62E-08 GABRA2 6

8q23.1 Novel rs3019359 (T:C) 0.414 -5.55 2.89E-08
RSPO2 3
TMEM74 3

16p11.2 Replication rs1046276 (T:C) 0.353 6.19 6.05E-10
STX1B 5

CACNA1I 5

Figure 2. Genome-wide significant loci and prioritized genes. Genome-wide 
significant loci are annotated with details from the lead-SNP and prioritized genes. 
Genes were scored based on 10 criteria/methods, after which the gene with the highest 
score in the locus was selected as the prioritized gene. Total: number of satisfied 
criteria for gene prioritization. Missense: the locus contains a missense variant in 
the gene. TWAS: significant transcriptome-wide association with the gene. SMR: 
significant summary-based mendelian randomisation association with the gene. 
MAGMA: significant genome-wide gene based association. PoPS: gene prioritized 
by polygenic priority score. Brain exp: the gene is preferentially expressed in brain 
tissue. brain-coX: the gene is prioritized as co-expressed with established epilepsy 
genes. KO mouse: knockout of the gene causes a neurological phenotype in mouse 
models. Monogenic: the gene is a known monogenic epilepsy gene. 
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The HLA and common epilepsies

We imputed HLA alleles and amino acid residues using COOKHLA and ran 

association across all epilepsy, focal, and GGE phenotypes (see Methods). 

No SNP, amino acid residue, or HLA allele reached the level of genome-wide 

significance. The most significant signal was with GGE, in which an aspartame 

amino acid residue in exon 2 position 31432494 had a p-value of 3.8e-07.

SNP-based heritability

We calculated SNP-based heritability using LDAK, to determine the proportion 

of epilepsy risk attributable to common genetic variants. We observed liability 

scale SNP-based heritabilities of 17.7% (95%CI 15.5 - 19.9%) for all epilepsy, 

16.0% (95%CI 14.0 - 18.0%) for focal epilepsy and 39.6% (34.3 - 44.6%) for 

generalized epilepsy. Heritabilities for GGE subtypes were notably higher for 

all individual GGE subtypes: ranging from 49.6% (14.0% - 85.3%) for GTCSA 

to 90.0% (63.3 - 116.6%) for JAE (Supplementary table 5). 

Employing a univariate causal mixture model24 (see Methods) we estimated 

that 2,849 causal SNPs (standard error: 199) underlie 90% of the SNP-

based heritability of GGE. Power analysis demonstrated that the current 

genome-wide significant SNPs only explain 1.5% of the phenotypic variance, 

whereas a sample size of around 2.5 million subjects would be necessary 

to identify the causal SNP that explain 90% of generalized-epilepsy SNP-

based heritability (Supplementary figure 4). 

To further explore the heritability of the different epilepsy phenotypes, we 

used LDSC to perform genetic correlation analyses.25 We found evidence for 

strong genetic correlation between all four GGE syndromes (Supplementary 

figure 3). We also observed a significant genetic correlation between 

the focal non-lesional and JME syndromes, which has been reported 

previously.3 Here, with larger sample sizes, CAE also showed a significant 

genetic correlation with the focal non-lesional cohort.

Tissue and cell-type enrichment

To further illuminate the biological aetiology of epilepsy, we used MAGMA 

and data from the gene-tissue expression consortium (GTEx) to assess 
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whether our GWAS-associated genes were enriched for expression in specific 

tissues and cell types (see Methods). We identified significant enrichment 

of associated genes expressed in brain and pituitary tissue (Supplementary 

figure 5). This is the first time the pituitary gland has been implicated in 

GGE, and might reflect a hormonal component to seizure susceptibility. 

Further sub-analyses showed that our results were enriched for genes 

expressed in almost all brain regions, including subcortical structures such 

as the hypothalamus, hippocampus and amygdala (Supplementary figure 

6). We did not find enrichment for genes expressed at specific developmental 

stages in the brain (Supplementary figure 7). 

Cell-type specificity analyses using various single-cell RNA-sequencing 

reference datasets (see Methods) revealed enrichment in excitatory as 

well as inhibitory neurons, but not in other brain cells like astrocytes, 

oligodendrocytes or microglia (Supplementary figure 8). Similarly, stratified 

LD-score regression using single-cell expression data (see Methods) did 

not reveal a difference between excitatory and inhibitory neurons (p=0.18).

Gene-set analyses

MAGMA gene-set analyses showed significant associations between 

GGE and biological processes involving various functions in the synapse 

(Supplementary data 7). To further refine the synaptic signal, we performed 

a gene-set analysis using lists of expert curated gene-sets involving 18 

different synaptic functions.26 These analyses showed that GGE was 

associated with intracellular signal transduction (n=139 genes, p=9.6e-5) 

and excitability in the synapse (n= 54 genes, p=0.0074). None of the 

other 16 synaptic functions showed any association (Supplementary data 

7). Genes involved with excitability include the N-type calcium channel 

gene CACNA2D2, implicated at the novel GGE locus 3p21.31. N-type calcium 

channel blockers such as levetiracetam and lamotrigine are amongst the 

most widely used and effective anti-epileptic drugs for GGE as well as focal 

epilepsy.27–29  Together, these results suggest that the genes associated 

with GGE are expressed in excitatory as well as inhibitory neurons in 

various brain regions, where they affect excitability and intracellular signal 

transduction in the synapse.
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Sex-specific analyses

There are known sex-related patterns in the epidemiology of epilepsy. 

Although females have a marginally lower incidence of epilepsy than 

males, GGE is known to occur more frequently in females.30 In order to 

test whether this sex divergence has a genetic basis, we performed sex-

specific GWAS for all, GGE and focal epilepsy (Supplementary figures 9-11).  

Analyses revealed one female-specific genome-wide significant signal at 

10q24.32 (lead SNP:rs72845653), containing KCNIP2,  implicated in our 

main GGE meta-analysis (lead SNP: rs11191156). However, the lead SNPs 

of these two signals are not in LD (r2=0.05). Interestingly, the direction of 

effect of this signal is opposite in females and males. This sex difference 

is further corroborated by significant sex-heterogeneity (p=1.54e-8) and 

gender-differentiation (p=5.6e-9).31 Sex-related differences in transcription 

levels in human heart have previously been reported for KCNIP2.32 We did 

not find any sex-divergent signals for ‘all’ or focal epilepsy. 

LDSC was used to assess the genetic correlation between male-only and 

female-only GWAS. The male and female GWAS of all epilepsy, focal and 

GGE were strongly genetically correlated (all Rg>0.9) and none of these 

correlations were significantly different from 1 (all p>0.05). These results 

suggest that, with the exception of the female-specific 10q24.32 signal, the 

overall genetic basis of common epilepsy appears largely similar between 

males and females. 

Genetic overlap between epilepsy and other phenotypes

In order to explore the genetic overlap of epilepsy with other diseases, we 

first cross-referenced the 26 genome wide epilepsy loci with other traits 

with significant associations (p<5x10^-8) for the same SNP, or SNPs in 

strong linkage disequilibrium with our lead SNPs (as detailed in Figure 

2). This analysis revealed eighteen likely pleiotropic loci, with previous 

associations reported across a variety of traits, the most common being 

cognition, sleep, psychiatric, coronary and blood cell traits (Supplementary 

figure 12). The remaining eight loci appear to be specific to epilepsy (3p22.3, 

4p12, 5q31.2, 7p14.1, 8q23.1, 9q21.13, 21q21.1, 21q22.1).
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We then performed genetic correlation analyses between selected traits and  

all, GGE and focal epilepsy using LDSC33.  The 17 selected traits had either 

or a combination of epilepsy as a common comorbidity or pleiotropic loci 

shared with epilepsy. Significant correlations, after correcting for multiple 

testing, were found with febrile seizures, stroke, ADHD, type 2 diabetes and 

intelligence, amongst others (Figure 3)

Figure 3. Genetic correlations of epilepsy with other phenotypes. The genetic 
correlation coefficient was calculated with LDSC and is denoted by color scale from 
-1 (red) to +1 (blue). * P < 0.05, ** P < 0.001 (Bonferroni corrected).

Genetic correlation analyses assess the aggregate of shared genetic variants 

associated with two phenotypes. However, genetic correlations can become 

close to zero when there is consistent mixed directionality of SNP effects 

between two phenotypes.34 Traits such as ASD were not significantly 

correlated, despite monogenic pleiotropy with epilepsy genes supporting an 

overlap. To explore whether inverse directionality could explain the lack of 

genetic correlation between ASD and epilepsy we applied the MiXeR tool to 

generalized epilepsy, intelligence and autism spectrum disorder (ASD), to 

quantify polygenic overlap irrespective of genetic correlation (see Methods). 

Results showed that >99% of causal SNPs underlying generalized epilepsy 

are shared with intelligence, of which 58% have a discordant direction of 

effect (Supplementary figure 13). Furthermore, despite a lack of genetic 

correlation with ASD (Rg=-0.12, p=0.06, all epilepsy; Rg=-0.17, p=0.06 

focal epilepsy; Rg=-0.09, p=0.09, GGE), we found that 95% of causal SNPs 

underlying generalized epilepsy are shared with ASD, but 59% have a 

discordant direction of effect. This is in line with the finding that epilepsy 

and ASD often co-occurs,35 and monogenic forms of epilepsy and ASD can 
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have a shared genetic cause.36 The discordant direction of effect is in line 

with evidence of monogenic causes of ASD and epilepsy due to pathogenic 

variants in SCN2A. Functional studies have shown that ASD without seizures 

can be caused by loss-of-function variants in SCN2A 37, whereas epilepsy can 

be caused by gain-of-function variants in SCN2A.38,39 Indeed, ASD variants 

in SCN2A seem protective against neuronal hyperexcitability.39 

Leveraging GWAS for drug repurposing

In order to test the potential of our meta analysis to inform drug 

repurposing, we utilized a method that predicts the relative efficacy of a 

drug for epilepsy, based upon that drugs’ predicted ability to modulate 

epilepsy-related changes in the function and abundance of proteins, as 

inferred from the GWAS summary statistics (see Methods).40 We validated 

the drug predictions by determining if they are concordant with findings 

from clinical experience and trials. In our predictions for all epilepsy, 

current anti-seizure drugs were ranked higher than expected by chance 

(p < 1×10-6), and higher than drugs used to treat any other human disease. 

For GGE, broad-spectrum antiseizure drugs were predicted to be more 

effective than narrow-spectrum antiseizure drugs (p < 1×10-6), consistent 

with clinical experience.41 Furthermore, the predicted order of efficacy for 

GGE of individual antiseizure drugs’ matched their observed order in the 

largest head-to-head randomized controlled clinical trials for generalized 

epilepsy, 29,42 an observation is unlikely to occur by chance (p < 1×10-6).

Using this approach, we highlight the top 20 drugs that are licensed for 

conditions other than epilepsy, but are predicted to be efficacious for generalised 

epilepsy, and additionally have published evidence of anti-seizure efficacy 

from multiple published studies and multiple animal models (Supplementary 

table 6). The fill list of all predictions can be found in Supplementary data 8. 

Biobank results

We performed GWAS using data from several large-scale population 

biobanks (total cases n=21,734, total controls n=1,023,989, phenotyped 

using ICD codes, see Methods). Although the biobank-specific GWAS did 

not identify any genome-wide significant loci for GGE or ‘all epilepsy’, 
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one significant locus at 2q22.1 emerged for focal epilepsy (Supplementary 

figure 14).

Meta-analysing the biobank summary statistics with those from the 

primary epilepsy GWAS identified seven significant loci for the ‘all epilepsy’ 

phenotype. Six of these signals were previously identified in the primary 

‘all epilepsy’ (n=4) or the ‘GGE’ GWAS (n=2). One locus (2q12.1) was novel. 

The combined biobank meta-analysis for GGE identified five novel loci, but 

four loci from our primary GWAS fell below significance (Supplementary 

figure 15). The combined focal epilepsy meta-analysis showed no 

significant associations. LDSC between the biobank-only and the primary 

GWAS results showed genetic correlations ranging between 0.31 and 0.74 

(Supplementary table 7). 

Discussion
In this study, we leveraged a substantial increase in sample size to 

uncover 26 common epilepsy risk loci, of which 16 have not been reported 

previously. Using a combination of ten post GWAS analysis methods, we 

were able to pinpoint 29 genes that most likely underlie these signals of 

association. These signals showed enrichment throughout the brain and 

indicate an important role for synapse biology in excitatory as well as 

inhibitory neurons. Drug prioritization from the genetic data highlighted 

licensed AEDs, ranked the AEDs broadly in line with clinical experience 

and pointed to drugs for potential repurposing. These findings further our 

understanding of the pathophysiology of common epilepsies and provide 

new leads for therapeutics. 

The 26 associated loci included some notable novel epilepsy genes. These 

include the calcium channel gene CACNA2D2, an established epileptic 

encephalopathy gene43 and directly targeted by ten currently licenced 

drugs, including two anti-epileptic drugs (gabapentin and pregabalin) as 

well as the Parkinson’s disease drug safinamide and the nonsteroidal anti-

inflammatory drug celecoxib. Both safinamide and celecoxib have evidence 

of anti-seizure activity.44,45 SCN8A, which encodes a voltage-gated sodium 

channel, is an established epileptic encephalopathy gene and is associated 
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with common epilepsies for the first time here. SCN8A is targeted by drugs 

including safinamide and quinidine. RYR2 encodes a ryanodine receptor, 

is an established cardiac disorder gene, has recently been implicated in 

epilepsy 46,47 and is targeted by caffeine as well simvastatin, atorvastatin and 

carvedilol. The acetylcholine receptor gene CHRM3 has not been previously 

associated with epilepsy and is targeted by drugs including solifenacin, 

used to treat urinary incontinence. 

We found that GGE in particular has a relatively strong contribution from 

common genetic variation. When analyzing individual GGE syndromes, we 

found that up to 90% of liability is attributable to common variants, which 

is higher than any of 778 other traits studied in a large GWAS atlas.48 For 

the collective GGE phenotype, heritability estimates decrease to 40%, which 

is still higher than 773/778 other traits.48 This decrease could be explained 

by increased heterogeneity, from combining syndromes with pleiotropic as 

well as syndrome-specific risk loci. Although statistical power drastically 

decreased when assessing specific GGE syndromes,  three loci appeared 

specific to JME. These findings highlight the unique genetic architecture 

of the subtypes of common epilepsies, which are characterized by a high 

degree of both shared, and syndrome-specific, genetic risk.

In contrast to GGE, for focal epilepsies we found only a minor contribution 

of common variants, with no variant reaching genome-wide significance. 

It would seem that focal epilepsies, as a group, are far more heterogeneous 

than GGE. Our attempt to mitigate this heterogeneity by performing subtype 

analysis, contrasted with the results from GGE, suggesting different genetic 

architectures, consistent with the experience from studies of rare genetic 

variation and PRS.4,5

This work highlights the challenges of working with epilepsy cohorts 

ascertained through large biobanking initiatives. Accurate classification of 

epilepsy requires a combination of imaging, electrophysiology and clinical 

features. These details were not available from the biobanks we worked with. 

Rather, phenotypes were generally limited to ICD codes, which are prone 

to misclassification.49 Population biobanks are also probably ascertaining 

for milder epilepsies that are responsive to treatment, contrasting with the 
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enrichment for refractory epilepsies at tertiary referral centres. Moreover, a 

large proportion of people with epilepsy have a less-heritable etiology, such 

as epilepsy due to stroke and tumors and head trauma, and based on available 

phenotype, such cases could not be identified and excluded from the biobanks 

studied here. As a result, the inclusion of the biobank data appeared to 

introduce more heterogeneity. This contrasts with genetic mapping of other 

polygenic diseases like type 2 diabetes and migraine, which are relatively 

easy and reliable to diagnose, resulting in a great increase in GWAS loci when 

including data from the same biobanks as included in our study.83,84

We found enrichment of GGE variants in brain-expressed genes, involving 

excitatory and inhibitory neurons, but not any other brain cell. This contrasts 

with other neurological diseases. For example, microglia are primarily 

involved in Alzheimer’s disease50 and multiple sclerosis,51 whereas migraine 

does not appear to have brain cell specificity.52 We further refine this signal 

by showing an involvement of synapse biology, primarily intracellular 

signal transduction and synapse excitability. These findings suggest an 

important role of synaptic processes in excitatory and inhibitory neurons 

throughout the brain, which could be a potential therapeutic target. Indeed 

synaptic vesicle transport is a known target of the AEDs levetiracetam and 

brivaracetam.85 

We confirmed that the identified genes in our GWAS overlapped with 

monogenic epilepsy genes and known targets of current anti-epileptic 

drugs.3 We extend this observation by providing a list of other drugs that 

directly target the genes prioritized in our GWAS. Moreover, using a systems-

based approach40 we highlight drugs that are predicted to be efficacious 

when repurposed for epilepsy, based on their ability to perturb function 

and abundance in gene expression. Insights from GWAS of epilepsy has 

the potential to accelerate clinical trials, via the identification of promising 

drug repurposing candidates for clinical trials.53 We anticipate that follow-

up studies of the highlighted drugs in this study could show clinical efficacy 

in epilepsy treatment. 

In summary, these new data reveal markedly different genetic architectures 

between the milder and more common focal and generalized epilepsies, 
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provide novel biological insights to disease aetiology and highlight drugs 

with predicted efficacy when repurposed for epilepsy treatment.

Methods
Ethics statement

Local institutional review boards approved study protocols at each 

contributing site. All study participants provided written, informed consent 

for use of their data in genetic studies of epilepsy. For minors, written 

informed consent was obtained from their parents or legal guardian. 

Sample and phenotype descriptions

This meta-analysis combines previously published datasets with novel 

genotyped cohorts. Descriptions of the 24 cohorts included in our previous 

analysis can be found in the Supplementary table 6 of that publication.3 

Here we included 5 novel cohorts (see Supplementary table 8), comprising 

14,732 epilepsy cases and 22,861 controls, resulting in a total sample size of 

27,559 cases and 42,436 controls. Classification of epilepsy was performed 

as described previously.3 In brief, we assigned people with epilepsy into 

focal epilepsy, genetic generalised epilepsy (GGE) or unclassified epilepsy. 

‘All epilepsy’ was the combination of GGE, focal and unclassified epilepsy. 

Where possible, we used EEG, MRI and clinical history to further refine 

the subphenotypes: juvenile myoclonic epilepsy (JME), childhood absence 

epilepsy (CAE), juvenile absence epilepsy (JAE), generalised tonic-clonic 

seizures alone (GTCS), non-lesional focal epilepsy, focal epilepsy with 

hippocampal sclerosis (HS)  and focal epilepsy with lesion other than HS. 

Genotyping, quality control and imputation

Subjects were genotyped on single nucleotide polymorphism (SNP) arrays, 

see Supplementary table 7 for an overview of genotyping in novel cohorts. 

Quality control (QC) was performed separately for each cohort. Prior to 

imputation, data from the Janssen, Austrian, Swiss, Norwegian, and BPCCC 

cohorts were cross-referenced to the HRC panel to ensure SNPs matched 
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in terms of strand, position, and ref/alt allele assignment. Additionally, 

SNPs were removed if they were absent in the HRC panel, if they had a 

>20% allele frequency difference with the HRC panel, or if any AT/GC 

SNPs had MAFs>40%, using tools available from https://www.well.ox.ac.

uk/~wrayner/tools/ . Data were then imputed using the the Wellcome 

Sanger Institutes’ imputation server (https://imputation.sanger.ac.uk/), 

using EAGLE v2.4.1 (Loh et al., 2016) for phasing, and the Positional Burrows 

Wheeler Transform algorithm (Rubinacci et al., 2020) for imputation. The 

Haplotype Reference Consortium (HRC) reference panel r1.1, was used as a 

reference for imputation (Haplotype Reference Consortium, 2016). Post-

imputation, SNPs with an INFO score of <0.9 were removed. The high-

INFO SNPs were then converted back to PLINK format and once-again QC’d 

for genotype coverage (>0.98), minor allele frequencies (>5%) and Hardy-

Weinberg Equilibrium violations (p>10e-5), following previously described 

methodologies3.

QC for the Epi25 cohort was performed using a similar in-house pipeline. 

Samples were split by ethnicity based on principal component analysis. 

Pre-imputation QC included filtering of SNPs with call rate (<98%), 

differential missing rate, duplicated and monomorphic SNPS, SNPs with 

batch association (p<1e-4), violation of Hardy-Weinberg Equilibrium 

(p<1e-10). Sample filtering included removal of outliers (>4SD from mean) 

of heterozygous/homozygous ratio, removal of one of each pair of related 

samples (proportion identity-by-descent >0.2) and removal of samples 

with ambiguous or non-matching genetically imputed sex. Furthermore, 

duplicates between the Epi25 cohort and the previously published genome-

wide mega-analysis were identified based on genotype, after which these 

subjects were removed from the Epi25 cohort. Genotypes were imputed on 

the Michigan imputation server, using the Haplotype Reference Consortium 

v1.1 (n=32470) reference panel for subjects of European and Asian ancestry, 

and the 1000 Genomes Phase 3 v5 (n=2504) reference panel for subjects 

of African ancestry. Default imputation parameters and pre-imputation 

checks were used. Imputed dosages were used for subsequent analyses, 

filtering on imputation INFO>0.3 and minor-allele frequency >0.01. 



Epilepsy GWAS 2022

145   

6

Genome-wide association analyses

GWAS of the Janssen Pharmaceuticals, Swiss GenEpa, Norwegian GenEpa 

and Austrian GenEpa cohorts was performed as described previously.3 

GWAS of the Epi25 cohort was performed with a generalized mixed model 

using SAIGE v0.38.54 SAIGE was performed in two steps: (1) fitting the 

null logistic mixed model to estimate the variance component and other 

model parameters; (2) testing for the association between each genetic 

variant and phenotypes by applying SPA to the score test statistics. For 

step 1, SNPs were filtered on call rate >0.98 and MAF >5%, and SNPs were 

pruned to obtain approximate independent markers (window size of 100kb 

and R2>0.3), while including sex and the top 10 principal components as 

covariates. Next, we performed fixed-effects meta-analyses with METAL,55 

for each of the main phenotypes (all, GGE, and focal epilepsy), as well as 

the subphenotypes, weighted by effective samples sizes (Neff = 4/(1/Ncases + 1/

Ncontrols) to account for case-control imbalance. We performed trans-ethnic 

and European-only meta-analyses for the main phenotypes, and restricted 

the subphenotype analyses to Europeans only, due to limited sample size in 

other ethnicities. We included all SNPs (~4.9 million) that were present in 

at least the previous mega-analysis and the Epi25 dataset, which together 

account for 88% of the total sample size. We calculated genomic inflation 

factors (λ), mean χ2 and LD score regression intercepts to assess potential 

inflation of the test statistic. Since λ is known to scale with sample size, we 

also calculated λ1000, which is  λ corrected for an equivalent sample size 

of 1000 cases and 1000 controls.56  We limited these analyses to subjects 

of European ancestry, since these LD-structure depends on ethnicity and 

Europeans constituted 92% of cases.

Biobank GWAS

We had access to summary statistics of epilepsy GWAS from four population 

biobanks; UK Biobank (Sudlow et al., 2015), Biobank Japan (Nagai et al., 2017), 

Finngen release R6 (Finland; https://finngen.gitbook.io/), and DECODE 

genetics (Iceland; (Gudbjartsson et al., 2015)). The biobank Japan, Finngen 

and DECODE genetic cases were assigned into either ‘focal’ or ‘generalised’ 

epilepsy, whereas the UK Biobank samples were not subdivided based on 
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seizure localisation, as the relevant clinical details were unavailable to 

facilitate an accurate sub division. 

Control data were population matched samples with no 
history of epilepsy.

GWAS fixed-effects meta-analysis were conducted using METAL (Willer 

et al., 2010). To account for case-control imbalance the effective sample 

size for each cohort was calculated as  Neff = 4/(1/Ncases + 1/Ncontrols). GWAS 

Manhattan plots and QQ plots were generated using the qqman R package 

(Turner, 2014). Genome-wide significant loci were mapped onto genes 

using the FUMA web platform (Watanabe et al., 2017).

We performed three meta-analyses. As a primary analysis, we meta-

analysed all non-biobank samples, then we meta-analysed only biobank 

samples and finally performed a combined meta-analysis of biobank and 

non-biobank samples.

Pleiotropy analysis

For a dedicated pleiotropy detection analysis, we used the ASSET method.86 

ASSET is a meta-analysis-based pleiotropy detection approach that identifies 

common or shared genetic effects between two or more related but distinct 

traits. It identifies variants that are associated with a subset of traits (or even 

all traits) as well as their direction of effect, thereby extending the classical 

meta-analysis by considering subsets of phenotypes. ASSET estimates the 

evidence for pleiotropy by Zmeta−max which denotes the maximum effect of a 

SNP from all the associated subsets of trait(s). Corresponding P-values are 

obtained through the discrete local maxima (DLM) method. We used ASSET 

with a genome-wide significance level of α=5×10-8.

We applied ASSET to the subset of European samples, comprising 6952 

(3244+3708) GGE cases and 14,939 (5344+9095) FE cases from the EPI25 

and our Consortium as well as 42,434 partially overlapping controls from 

both consortia. To this end, we used effect sizes, standard errors and the 

effective sample sizes estimated from the main meta-analysis. Note that 

ASSET accounts for sample overlap in the analysis. 
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HLA association

HLA types and amino acid residues were imputed using the COOKHLA 

software,58 with the 1000 genomes phase 3 used as a reference panel.59 

Samples were grouped by genetic ancestry for imputation.

Following imputation, association analysis was conducted using the 

HLA Analysis Toolkit (HATK) (Choi et al., 2021).60 Three phenotypes were 

analysed: ‘all epilepsy’, ‘focal epilepsy’, and ‘GGE’. Samples from the ILAE 

and Epi25 datasets were analysed separately, and the association results 

were meta-analysed across datasets using PLINK.61

Functional annotation

We annotated all genome-wide significant SNPs and tagged SNPs within the 

loci. ANNOVAR was used to annotate the location and function of each SNP,62 

the CADD score was used as a measure of predicted deleteriousness,63  and 

chromatin states were annotated using epigenetic data from the ENCODE and 

NIH Roadmap Epigenomics Mapping Consortium.12,64 We used FUMA to define 

independently significant SNPs within loci; i.e. SNPs that were genome-wide 

significant but not in LD (R2<0.2 in Europeans) with the lead SNP in the locus.

Gene mapping

We used FUMA16 to map genome-wide significant loci to specific genes, 

using the same parameters as published previously.3 We defined genome-

wide significant loci as the region encompassing all SNPs with P<1e-4 that 

were in LD (R2>0.2) with the lead SNP (i.e. the SNP with the strongest 

association within the region). We used a combination of positional mapping 

(within 250kb from locus), eQTL mapping (SNPs with FDR corrected eQTL 

P<0.05 in blood or brain tissue) and 3D Chromatin Interaction Mapping 

(FDR p <1e-6 in brain tissue). 

Genome-wide gene based association study and gene-set 
analyses

MAGMA v1.6 was used to perform a genome-wide gene based association 

study (GWGAS) and gene-set analyses.17 GWGAS was performed using 
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default settings of MAGMA, as implemented in FUMA, which calculates an 

association P-value based on all the associations of all SNPs within each 

gene in the GWAS. Based on these GWGAS results, we performed competitive 

gene-set analyses with default MAGMA settings, using 15483 default gene 

sets and GO-terms from MsigDB. In addition, we specifically assessed 18 

curated gene-sets involving different synaptic functions.26 

Transcriptome wide association study

Transcriptome wide association studies (TWAS) were performed with 

FUSION v3, with default settings.18 We imputed gene expression based on 

our European-only GWAS (since the method relies on LD reference data) 

eQTL data from the PsychENCODE consortium, which includes dorsolateral 

prefrontal cortex tissue from 1695 human subjects.19

Summary-data-based Mendelian Randomization

We used Summary-data-based Mendelian Randomization (SMR) v1.03 

as an additional method to assess the association between epilepsy and 

expression of specific genes.20 SMR tests whether the effect size of a SNP 

on epilepsy is mediated by expression of specific genes. We performed SMR 

analyses with default settings, using the MetaBrain expression data as a 

reference; a new eQTL dataset including 2970 human brain samples.65 

Sex-specific analyses

We performed sex-specific and sex-divergence GWAS to assess potential 

signals that are specific to males or females. First, we performed the same 

GWAS as described above for all epilepsy (13889 female cases and 19676 

female controls; 12259 male cases and 18645 male controls) and GGE (3946 

female cases and 19676 female controls; 2603 male cases and 18645 male 

controls) seperately for subjects of either sex, after which we performed 

fixed-effects meta-analyses with METAL to merge the different cohorts. 

Next, we performed meta-analyses between the male and female GWAS 

with GWAMA66 to assess heterogeneity of effect sizes between sexes and to 

calculate  gender-differentiated associations.31



Epilepsy GWAS 2022

149   

6

Gene prioritization

We used a combination of 10 different methods to find the most likely 

biological candidate gene within each genome-wide significant locus. For 

each gene in each locus we assessed the following criteria:

• Missense: we assessed whether the SNPs tagged in the genome-wide 

significant locus contained an exonic missense variant in the gene, as 

annotated by ANNOVAR.

• TWAS: we assessed whether imputed gene expression was significantly 

associated with the epilepsy phenotype, based on the FUSION TWAS 

as described above, Bonferroni corrected for each mapped gene with 

expression information.

• SMR: we assessed whether the gene had a significant SMR association with 

the epilepsy phenotype, based on the SMR analyses as described above, 

Bonferroni corrected for each mapped gene with expression information.

• MAGMA: we assessed whether the gene was significantly associated 

with the epilepsy phenotype through a GWGAS analysis, Bonferroni 

corrected for each mapped gene.

• PoPS: we calculated the Polygenic Priority Score (PoPS)67; a novel method 

that combines GWAS summary statistics with biological pathways, gene 

expression, and protein-protein interaction data, to pinpoint the most 

likely causal genes. We scored the gene with the highest PoPS score 

within each locus. 

• Brain expression: we calculated mean expression of all brain and non-

brain tissues based on data from the Genetype-Tissue Expression 

(GTEx) project v868 and assessed if the average brain tissue expression 

was higher than the average expression in non-brain tissues.  

• brain-coX: we assessed whether genes were prioritized as co-expressed 

with established epilepsy genes in more than a third of brain tissue 

resources utilized, using the tool brain-coX (Supplementary figure 16).69

• Target of AED: we assessed whether the gene is a known target of an 

anti-epileptic drug, as assessed in the drug-gene interaction database 

(www.DGidb.com; accessed on 26-11-2021) and a list of drug targets 

from a recent publication.70
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• Knockout mouse: we assessed whether a knockout of the gene in a mouse 

model results in a nervous system (phenotype ID: MP:0003631) or a 

neurological/behaviour phenotype (MP:0005386) in the Mouse Genome 

Informatics database (http://www.informatics.jax.org; accessed on 26-

11-2021). 

• Monogenic epilepsy gene: we evaluated whether the gene is listed as a 

monogenic epilepsy gene, in a curated list maintained by the Epilepsy 

Research Centre at the University of Melbourne. 

Similar to previous studies,3,71 we scored all genes based on the number of 

criteria being met (range 0-10; all criteria had an equal weight). The gene 

with the highest score was chosen as the most likely implicated gene. We 

implicated two genes if both had an identical score. 

Long distance expression regulation of BCL11A

Most eQTL databases like PsychENCODE and MetaBrain restrict eQTL 

analyses to 1MB distance between genes and SNPs. To specifically assess the 

hypothesis of long-distance regulation of BCL11A by the lead SNPs in the 

2p16.1 epilepsy locus, we manually interrogated the MetaBrain database65 

without distance restraints. Next, we calculated the association between the 

3 lead SNPs in the locus (rs11688767, rs77876353, rs13416557) with BCL11A 

expression.

Heritability analyses

We performed LDAK analyses to calculate SNP-based heritability, using 

default settings with pre-calculated LD weights from 2000 European 

(white British) reference samples under the BLD-LDAK SumHer model, 

as recommended for human traits.72 We performed these analyses for the 

main epilepsy phenotypes and subphenotypes, based on our European-only 

GWAS. SNP based heritabilities were converted to liability scale heritability 

estimates, using the formula: h2L=h2o*K2(1−K)2/p(1−p)*Z2, where K is the 

disease prevalence, p is the proportion of cases in the sample, and Z is the 

standard normal density at the liability threshold. As recently suggested 

to decrease downward bias, we performed these calculations based on the 
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effective sample sizes (see calculation above), after which p=0.5 can be 

assumed.73 We used the same population prevalences as our previous study.3

We used a causal mixture model (MiXeR) to estimate the total amount of 

causally associated variants (i.e. variants with nonzero additive genetic effect) 

underlying epilepsy risk.34 MiXeR utilizes a likelihood-based framework to 

estimate the amount of causal SNPs underlying a trait, without the need to 

pinpoint which specific SNPs are involved. Furthermore, MiXeR allows for 

power calculations to assess the required sample size to explain a certain 

proportion SNP-based heritability by genome-wide significant SNPs. 

Enrichment analyses

We used MAGMA, as implemented in FUMA, to perform tissue and cell-type 

enrichment. First, we assessed whether our GGE GWAS was enriched for 

specific tissues from the GTEx database. Similarly, we assessed enrichment 

of genes expressed in the brain at 11 general developmental stages, using 

data from the BrainSpan consortium. Next, we assessed whether GGE was 

associated with specific cell types, by cross-referencing two single-cell RNA 

sequencing databases of human developmental and adult brain samples. 

The PsychENCODE database contains RNA sequencing data from 4249 

human brain cells from developmental stages and 27412 human adult brain 

cells.74 The Zhong dataset (GSE104276) contains RNA sequencing data from 

2309 human brain cells at different stages in development.75 We performed 

FDR correction across datasets to assess which cell types were significantly 

associated with GGE. As sensitivity analysis, we performed stratified LDSC 

with default settings using the cell-specific gene expression weights from 

the PsychENCODE consortium to compare GABAergic with glutamatergic 

neuron enrichment.76 

Genetic overlap with other diseases

Using the FUMA web application, we searched the GWAS Catalog for 

previously reported associations with P < 5 * 10-8 for SNPs at all 26 genome-

wide significant loci.
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Genetic correlations between all, focal epilepsy and GGE and other traits 

were computed with LDSC, using default settings. Traits highlighted by the 

GWAS catalog analysis and/or those with established epilepsy comorbidity 

were prioritised and pursued provided recent summary statistics were 

available for public download (Supplementary table 9).

We used a recently described bivariate causal mixture model to quantify 

polygenic overlap between GGE with intelligence and autism spectrum 

disorder (ASD). Publicly available summary statistics from intelligence 

(n=269867) and ASD GWAS (n=46350) were downloaded,77,78 after which 

bivariate MiXeR was run with default settings.

Drug-repurposing analyses

We hypothesised that the results of this GWAS can be used to predict drugs 

that have antiseizure efficacy. We utilised a recently developed method 

that uses the GWAS for a disease to predict the relative efficacy of drugs 

for the disease.40 This method predicts the relative efficacy of drugs for 

a disease based upon drugs’ inferred ability to modulate changes in the 

function and abundance of proteins caused by common genetic variations 

associated with the disease. We applied this method to the all epilepsy and 

GGE GWAS results, using (1) imputed gene expression data from the FUSION 

analyses, as described above, and (2) gene-based p-values from GWGAS 

analyses with MAGMA (see above), with default settings. We validated the 

drug predictions by determining if they are concordant with findings from 

clinical experience and trials. We determined if our predictions correctly 

identify (area under receiver operating characteristic curve) and prioritize 

(median rank) known clinically-effective antiseizure drugs, as previously 

described.40 We determined the statistical significance of drug identification 

and prioritization results by comparing the results to those from a null 

distribution generated by performing 106 random permutations of the scores 

assigned to drugs. Finally, we produced a list of the top 20 drugs predicted 

for generalized epilepsy, which are currently licensed for conditions other 

than epilepsy, but have published evidence of antiseizure efficacy from 

multiple studies and in multiple animal models.
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Biobank GWAS

We obtained summary statistics of epilepsy GWAS from four population 

biobanks; UK Bioban,79 Biobank Japan,80 Finngen release R6,81 and DECODE 

genetics82 (Iceland). The biobank Japan, Finngen and DECODE genetic cases 

were assigned into either ‘focal’ or ‘generalised’ epilepsy, whereas the 

UK Biobank samples were not subdivided based on seizure localisation, as 

the relevant clinical details were unavailable to facilitate an accurate sub 

division (see Supplementary table 10 for sample sizes per biobank). Control 

data were population matched samples with no history of epilepsy.

Fixed-effects meta-analysis were conducted using METAL55, weighted by 

effective sample size  (Neff = 4/(1/Ncases + 1/Ncontrols) to account for case-control 

imbalance. 

We first performed meta-analyses on biobank-only samples, after which 

we used METAL to perform a meta-analyses to combine our main GWAS 

with the biobanks. 
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Summary 
Focal and generalized epilepsies are associated with robust differences in 

MRI measures of subcortical structures, grey matter and white matter. 

However, it is unknown whether such structural brain differences reflect 

the cause or consequence of epilepsy or its treatment. Analyses of common 

genetic variants underlying both epilepsy and variability in structural brain 

measures can give further insights, since such inherited variants are not 

influenced by disease or treatment. Here, we performed genetic correlation 

analyses using data from the largest genome-wide association study 

(GWAS) on epilepsy (n=27,559 cases and 42,436 controls) and GWAS on 

MRI measures of white (n=33,292) or grey matter (n=51,665). We did not 

detect any significant genetic correlation between any type of epilepsy and 

any of 280 measures of grey matter, white matter or subcortical structures. 

These results suggest that there is a distinct genetic basis underlying risk of 

epilepsy and structural brain measures. This would imply that the genetic 

basis of normal structural brain variation is unrelated to that of common 

epilepsy. Structural changes in epilepsy could rather be the consequence of 

epilepsy, its comorbidities or its treatment, offering a cumulative record of 

disease.
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Main text 
Introduction

Large-scale collaborative efforts by the ENIGMA-Epilepsy working 

group have found widespread structural brain differences in people 

with generalized as well as focal epilepsy, when compared to healthy 

controls. These differences often extend considerably beyond any localised 

epileptogenic focus in the brain.1,2 Such structural brain differences are 

thought to underlie various traits like cognitive decline and vulnerability to 

psychiatric diseases,3 that are frequently comorbid in people with epilepsy. 

The ENIGMA-Epilepsy studies are based on cross-sectional comparisons 

of MRI scans between people with epilepsy and healthy controls, which do 

not allow for inference of causation. Therefore, it is unknown whether such 

structural brain differences constitute the cause of epilepsy, the result of 

epileptic seizures or epiphenomena such as effects of anti-epileptic drugs 

or environmental factors, or some combination of such factors. 

Some of these limitations can be overcome by assessing common genetic 

factors associated with structural brain measurements and genetic factors 

associated with epilepsy in independent cohorts. Common inherited genetic 

variants are not determined by disease, treatment or environmental factors. 

Susceptibility to epilepsy and variation in structural brain measures are both 

strongly heritable and largely explained by common genetic variation.3–5 

Recent large-scale efforts have combined genetic and MRI data from tens 

of thousands of people, to map which genetic variants are associated with 

structural measures of the brain.3,5 Combining this data with a large-scale 

GWAS from the epilepsies represents a unique opportunity to disentangle 

whether the genetic basis of epilepsy and structural brain variation are 

shared or distinct.

To do so, we performed genetic correlation analyses to assess whether 

genetic determinants of structural brain measures are associated with 

epilepsy and its main subtypes, focal and generalized epilepsy. 
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Methods
Study population

The current study is based on summary statistics from the International 

League Against Epilepsy Consortium on Complex Epilepsies epilepsy 

GWAS and structural MRI GWAS from the ENIGMA consortium and the UK 

Biobank. The epilepsy GWAS constitutes an unpublished meta-analysis 

combining previously published data4 (n=14,534 people with epilepsy and 

24,218 subjects without epilepsy) with unpublished GWAS data from the 

Epi25 collaborative6 (n=13,025 people with epilepsy and 18,218 controls). 

In total, 27,559 people with epilepsy and 42,436 controls were included 

in the epilepsy meta-analysis. Furthermore, sub-analyses were conducted 

on focal (n=14,939 cases) and generalized epilepsy (n=6,952 cases). All 

included subjects were of European ancestry.

We used publicly available summary statistics from the ENIGMA consortium 

GWAS of 70 measures of grey matter, calculated from genetic data and brain 

MRI scans in 51,665 individuals of primarily (94%) European ancestry.3 

These 70 measures consisted of  cortical thickness and surface area of 34 

brain regions as well as the total surface area and average thickness of the 

whole cortex. The ENIGMA GWAS constitutes a meta-analysis involving 60 

different cohorts, including various population-based cohorts like the UK 

Biobank as well as case-control cohorts, including a cohort of 178 subjects 

with epilepsy. Analyses were corrected for disease status for case-control 

cohorts. 

White matter microstructure GWAS data was obtained from a study which 

combined genetic data with 110 measures of diffusion-weighted brain 

MRI scans from the UK Biobank in 34,024 subjects of European (British) 

ancestry.5 These 110 measures consist of five diffusion tensor imaging (DTI) 

parameters (fractional anisotropy, mean diffusivity, axial diffusivity, radial 

diffusivity and mode of anisotropy) computed for 21 white matter tracts 

plus a whole brain average. Total brain volume data was obtained from a 

GWAS which included 47,316 subjects of European ancestry.7 Furthermore, 

GWAS data using MRI scans of 19,629 subjects of European ancestry was 

used to assess genetic contribution to  100 brain volumetric phenotypes, 
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including various subcortical, cortical and white matter volumes. These 

subjects were primarily derived from the UK Biobank, plus a couple of 

smaller population-based cohorts.

Genetic correlation analyses

Genetic correlation analyses between epilepsy and MRI measures of grey 

and white matter were computed using bivariate linkage disequilibrium 

score regression (LDSC).8 We were not able to exclude any potential sample 

overlap. However, genetic correlations computed by LDSC are not biased 

by sample overlap.8 We used default settings of LDSC, with precomputed 

linkage disequilibrium regression weights from European subjects of the 

1000 Genomes project. We computed all genetic correlations analyses 

separately for all epilepsy combined and its main subtypes focal and 

generalized epilepsy. 

Power calculations

We used the GCTA-GREML power calculator9 to estimate the power to detect 

significant genetic correlations of 0.05 and 0.10 or higher (at a type 1 error 

rate (α) of 0.05) between all epilepsy, focal epilepsy, generalized epilepsy 

and each main MRI phenotype of the whole brain. SNP based heritability for 

each phenotype was calculated using LDSC8 and converted to liability scale.4 

For these calculations, we assumed a population prevalence of 0.005 for all 

epilepsy, 0.003 for focal epilepsy and 0.002 for generalized epilepsy.4 

Results
We did not find any even nominally significant genetic correlation (all 

p>0.05) between all epilepsy, focal or generalized epilepsy with average 

surface area, cortical thickness, brain volume, fractional anisotropy, mean 

diffusivity, axial diffusivity, radial diffusivity or mode of anisotropy of the 

whole brain (Figure 1). Power calculations showed that we had statistical 

power ranging between 25% and 100% to detect genetic correlations 

higher than 0.05 between any of the epilepsy subtypes and any of the MRI 

phenotypes (Supplementary table 1). The power to detect genetic correlations 
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higher than 0.10 ranged between 73% and 100%. For generalized epilepsy 

(the epilepsy subtype with the highest SNP-based heritability), we had 

>95% power to detect any genetic correlation higher than 0.05 and 100% 

power to detect any genetic correlation higher than 0.10.

Next, we assessed the correlation between genetics of epilepsy subtypes 

with cortical thickness and surface area in 34 cortical brain regions, 

region brain volumes in 100 brain areas as well as five DTI measures in 21 

white matter tracts (Supplementary table 2). These analyses yielded only 

21 nominally significant genetic correlations amongst 819 tests (lowest 

p=0.002);  none of these were significant when correcting for multiple 

testing (all p>0.05/819). 

Figure 1: No genetic correlation between epilepsy and structural measures of brain 
volume, grey matter or white matter of the whole brain. Genetic correlations were 
computed using LDSC and the genetic correlation coefficients (±standard error) are 
plotted on the X-axis .

Discussion
Here, we utilized the largest available GWASs to assess the genetic 

correlation between epilepsy and structural brain measures. We did not find 

any genetic overlap between epilepsy and any measure of grey or white 

matter of the brain. These results suggest that the genetic basis of epilepsy 

is distinct from the genetic basis of normal structural brain variation. 

Previous studies that compared MRI scans between controls and people with 

focal and generalized epilepsy showed widespread, as well as regional and 

syndrome-specific, structural brain differences in white and grey matter 

of the brain.1,2 It is known that the vulnerability for epilepsy, in particular 

generalized epilepsy, as well as the variance in grey and white matter MRI 
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measures, is substantially explained by common genetic variants.3–5 The 

absence of genetic overlap between epilepsy and MRI measures suggests 

that the genetic variation underlying structural brain differences between 

people does not meaningfully influence risk of epilepsy. Conversely, 

the findings also suggest that common genetic variants underlying 

susceptibility to epilepsy do not affect grey or white matter structural 

variation. Importantly, the lack of formal correlation may suggest that 

measured structural brain differences found in people with epilepsy are 

unrelated to the underlying genetic cause of the disease, and represent 

a separate source of information about epilepsy at group and individual 

levels. If so, structural brain differences are more likely a consequence of 

epilepsy or its treatment than being its cause. For example, seizure activity 

could cause progressive brain atrophy.10 Although frequent seizures are 

associated with more pronounced atrophy,11 such atrophy is also found in 

patients who have become seizure-free.10 A recent study found that cortical 

thinning in epilepsy is mediated by microglial activation.12 Furthermore, 

transient depletion of activated microglia did not affect seizures, but did 

prevent cortical thinning, suggesting that these processes are distinct and 

potentially modifiable. Alternatively, treatment of epilepsy by anti-epileptic 

drugs could also affect grey and white matter volume. For example, valproic 

acid, but not other anti-epileptic drugs, has been associated with smaller 

grey and white matter volumes.13 

Our study should be considered in light of some limitations. In this study, we 

only assessed common genetic variants (defined as a minor allele frequency 

>1%) in common types of epilepsy. We cannot rule out the possibility that 

rare genetic variants or copy number variants contribute to both epilepsy 

risk and variation in brain measures, including during development. Indeed, 

it is well known that some rare variants causing developmental epileptic 

encephalopathies (DEE), and other epilepsies, are associated with gross 

structural brain abnormalities, whilst some genes implicated in DEE have 

roles during brain development.14 Similarly, focal epileptogenic lesions can be 

caused by rare genetic variants.15 Since we only assessed genetics, we cannot 

rule out the influence of environmental or epigenetic factors that influence 

both epilepsy and brain structure. Although we used the currently largest 

available GWAS of epilepsy and MRI measures, their sample sizes are still 
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relatively modest compared to GWAS of more readily available phenotypes 

such BMI or height. Our study is large enough to exclude a large genetic 

correlation. However, we cannot exclude the possibility of a small genetic 

overlap between epilepsy and structural brain measures were a larger GWAS 

to be tested. Our analyses are based on epilepsy GWAS split into three broad 

categories. We did not have access to sufficiently powered GWAS of more 

resolved epilepsy subtypes; therefore, we are unable to rule out whether 

there are genetic correlations between specific epilepsy subtypes (like mesial 

temporal lobe epilepsy) and structural brain measures. The brain MRI GWAS 

that we used for our analyses were primarily based on population-based 

cohorts including <1% people with epilepsy. Therefore, we cannot exclude 

the possibility that there are epilepsy-specific genetic variants that influence 

both structural MRI measures as well as epilepsy risk. 

Altogether, our results suggest that common epilepsies and structural brain 

variation have a distinct genetic basis. These results could aid in understanding 

the pathophysiology of epilepsy and associated structural brain changes. If 

structural brain changes in common epilepsy are indeed the consequence of 

epilepsy rather than the cause, it would suggest that it is modifiable or even 

preventable. Potentially, preventing structural brain changes in epilepsy could 

reduce risk of comorbid psychiatric disorders or cognitive decline.

Acknowledgements
We would like to thank the Ming Fund for providing funding for R.S. We are 

grateful to the people with epilepsy and volunteers who participated in this 

research. We thank the following clinicians and research scientists for their 

contribution through sample collection (cases and controls), data analysis, 

and project support: Geka Ackerhans, Muna Alwaidh, R. E. Appleton, Willem 

Frans Arts, Guiliano Avanzini, Paul Boon, Sarah Borror, Kees Braun, Oebele 

Brouwer, Hans Carpay, Karen Carter, Peter Cleland, Oliver C. Cockerell, Paul 

Cooper, Celia Cramp, Emily de los Reyes, Chris French, Catharine Freyer, 

William Gallentine, Michel Georges, Peter Goulding, Micheline Gravel, Rhian 

Gwilliam, Lori Hamiwka, Steven J. Howell, Adrian Hughes, Aatif Husain, 

Monica Islam, Floor Jansen, Mary Karn, Mark Kellett, Ditte B. Kjelgaard, Karl 

Martin Klein, Donna Kring, Annie W. C. Kung, Mark Lawden, Jo Ellen Lee, 



Epilepsy and structural MRI

173   

7

Benjamin Legros, Leanne Lehwald, Edouard Louis, Colin H. T. Lui, Zelko 

Matkovic, Jennifer McKinney, Brendan McLean, Mohamad Mikati, Bethanie 

Morgan-Followell, Wim Van Paesschen, Anup Patel, Manuela Pendziwiat, 

Marcus Reuber, Richard Roberts, Guy Rouleau, Cathy Schumer, B. Sharack, 

Kevin Shianna, N. C. Sin, Saurabh Sinha, Laurel Slaughter, Sally Steward, 

Deborah Terry, Chang-Yong Tsao, T. H. Tsoi, Patrick Tugendhaft, Jaime-

Dawn Twanow, Jorge Vidaurre, Sarah Weckhuysen, Pedro Weisleder, Kathleen 

White, Virginia Wong, Raju Yerra, Jacqueline Yinger, and all contributing 

clinicians from the Department of Clinical and Experimental Epilepsy 

at the National Hospital for Neurology and Neurosurgery and University 

College London Institute of Neurology. This work was in part supported by 

a Translational Research Scholars award from the Health Research Board 

of Ireland (Christopher D. Whelan) and by research grants from Science 

Foundation Ireland (16/RC/3948 and 13/CDA/2223), and cofunded under 

the European Regional Development Fund and by FutureNeuro industry 

partners. Further funding sources include Wellcome Trust (grant 084730); 

Epilepsy Society, UK, National Institute for Health Research (NIHR; 08-08-

SCC); GIHE, National Institutes of Health (NIH) R01-NS-49306-01 (Russell 

J. Buono); NIH R01-NS-053998 (Daniel H. Lowenstein); GSCFE, NIH R01-

NS-064154-01 (Russell J. Buono, Hakon Hakonarson); NIH UL1TR001070, 

Development Fund from the Children’s Hospital of Philadelphia (Hakon 

Hakonarson); National Health and Medical Research Council program grant 

1091593 (Samuel F. Berkovic, Ingrid E. Scheffer, Karen L. Oliver, Katja 

E. Boysen); Royal Melbourne Hospital Foundation Lottery Grant (Slavé 

Petrovski); Royal Melbourne Hospital Neuroscience Foundation (Terence J. 

O’Brien); European Union’s Seventh Framework Programme (FP7/2007-2013) 

under grant agreements 279062 (EpiPGX) and 602102, Department of Health 

NIHR Biomedical Research Centres funding scheme, European Community 

(EC; FP6 project EPICURE: LSHM-CT2006-037315); German Research 

Foundation (DFG; SA434/4-1/4-26-1 (Thomas Sander), WE4896/3-1); 

EuroEPINOMICS Consortium (European Science Foundation/DFG: SA434/5-1, 

NU50/8-1, LE1030/11-1, HE5415/3-1 [Thomas Sander, Peter Nürnberg, Holger 

Lerche, Ingo Helbig], RO 3396/2- 1); German Federal Ministry of Education 

and Research, National Genome Research Network (NGFNplus/EMINet: 

01GS08120, and 01GS08123 [Thomas Sander, Holger Lerche]; IntenC, TUR 09/



Chapter 7

174

I10 [Thomas Sander]); Netherlands National Epilepsy Fund (grant 04-08); 

EC (FP7 project EpiPGX 279062); and Research Grants Council of the Hong 

Kong Special Administrative Region, China project numbers HKU7623/08 M 

(Stacey S. Cherny, Patrick Kwan, Larry Baum, Pak C. Sham), HKU7747/ 07 M 

(Stacey S. Cherny., Pak C. Sham), and CUHK4466/06 M (Patrick Kwan, Larry 

Baum). Collection of Belgian cases was supported by the Fonds National de 

la Recherche Scientifique, Fondation Erasme, Université Libre de Bruxelles. 

GlaxoSmithKline funded the recruitment and data collection for the GenEpA 

Consortium samples. We acknowledge the support of Nationwide Children’s 

Hospital in Columbus, Ohio, USA. The Wellcome Trust (WT066056) and 

the NIHR Biomedical Research Centres Scheme (P31753) supported UK 

contributions. Further support was received through the Intramural Research 

Program of the Eunice Kennedy Shriver National Institute of Child Health and 

Human Development (contract N01HD33348). The project was also supported 

by the popgen 2.0 network through a grant from the German Ministry for 

Education and Research (01EY1103). Parts of the analysis of this work were 

performed on resources of the High Performance Center of the University 

of Luxembourg and Elixir-Luxembourg. The KORA study was initiated and 

financed by the Helmholtz Zentrum München–German Research Center for 

Environmental Health, which is funded by the German Federal Ministry of 

Education and Research and by the State of Bavaria. Furthermore, KORA 

research was supported within the Munich Center of Health Sciences, Ludwig 

Maximilian University, as part of LMUinnovativ. The ILAE facilitated the 

Consortium on Complex Epilepsies through the Commission on Genetics and 

by financial support; however, the opinions expressed in the article do not 

necessarily represent the policy or position of the ILAE.

Disclosure of Conflicts of Interest
None of the authors has any conflict of interest to disclose.

Supporting information
Supporting information can be found at: https://tinyurl.com/4j3srm5j 



Epilepsy and structural MRI

175   

7

References 
1. Hatton SN, Huynh KH, Bonilha L, Abela E, Alhusaini S, Altmann A, et al. White 

matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-
Epilepsy study. Brain. 2020; 143(8):2454–73.

2. Whelan CD, Altmann A, Botía JA, Jahanshad N, Hibar DP, Absil J, et al. Structural 
brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA 
study. Brain. 2018; 141(2):391–408.

3. Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, et al. 
The genetic architecture of the human cerebral cortex. Science [Internet]. 2020; 
367(6484). Available from: http://dx.doi.org/10.1126/science.aay6690

4. International League Against Epilepsy Consortium on Complex Epilepsies. 
Genome-wide mega-analysis identifies 16 loci and highlights diverse biological 
mechanisms in the common epilepsies. Nat Commun. 2018; 9(1):5269.

5. Zhao B, Li T, Yang Y, Wang X, Luo T, Shan Y, et al. Common genetic variation 
influencing human white matter microstructure. Science [Internet]. 2021; 
372(6548). Available from: http://dx.doi.org/10.1126/science.abf3736

6. Motelow JE, Povysil G, Dhindsa RS, Stanley KE, Allen AS, Feng Y-CA, et al. Sub-
genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study 
of 29,165 individuals. Am J Hum Genet. 2021; 108(6):965–82.

7. Jansen PR, Nagel M, Watanabe K, Wei Y, Savage JE, de Leeuw CA, et al. Genome-
wide meta-analysis of brain volume identifies genomic loci and genes shared 
with intelligence. Nat Commun. 2020; 11(1):5606.

8. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, et al. An atlas of 
genetic correlations across human diseases and traits. Nat Genet. 2015; 47(11):1236–41.

9. Visscher PM, Hemani G, Vinkhuyzen AAE, Chen G-B, Lee SH, Wray NR, et al. 
Statistical power to detect genetic (co)variance of complex traits using SNP data 
in unrelated samples. PLoS Genet. 2014; 10(4):e1004269.

10. Galovic M, van Dooren VQH, Postma TS, Vos SB, Caciagli L, Borzì G, et al. Progressive 
Cortical Thinning in Patients With Focal Epilepsy. JAMA Neurol. 2019; 76(10):1230–9.

11. Coan AC, Campos BM, Yasuda CL, Kubota BY, Bergo FP, Guerreiro CA, et al. Frequent 
seizures are associated with a network of gray matter atrophy in temporal lobe 
epilepsy with or without hippocampal sclerosis. PLoS One. 2014; 9(1):e85843.

12. Altmann A, Ryten M, Di Nunzio M, Ravizza T, Tolomeo D, Reynolds RH, et al. 
A systems-level analysis highlights microglial activation as a modifying factor 
in common epilepsies. Neuropathol Appl Neurobiol [Internet]. 2021; . Available 
from: http://dx.doi.org/10.1111/nan.12758

13. Tondelli M, Vaudano AE, Sisodiya SM, Meletti S. Valproate Use Is Associated With 
Posterior Cortical Thinning and Ventricular Enlargement in Epilepsy Patients. 
Front Neurol. 2020; 11:622.

14. Smith RS, Walsh CA. Ion Channel Functions in Early Brain Development. Trends 
Neurosci. 2020; 43(2):103–14.

15. Weckhuysen S, Marsan E, Lambrecq V, Marchal C, Morin-Brureau M, An-
Gourfinkel I, et al. Involvement of GATOR complex genes in familial focal 
epilepsies and focal cortical dysplasia. Epilepsia. 2016; 57(6):994–1003.





8CHAPTER 8

POLYGENIC BURDEN IN FOCAL AND 
GENERALIZED EPILEPSIES 

Costin Leu, Remi Stevelink, Alexander W Smith, Slavina B Goleva, 
Masahiro Kanai, Lisa Ferguson, Ciaran Campbell, Yoichiro Kamatani, 
Yukinori Okada, Sanjay M Sisodiya, Gianpiero L Cavalleri, Bobby P C 
Koeleman, Holger Lerche, Lara Jehi, Lea K Davis, Imad M Najm, Aarno 
Palotie, Mark J Daly, Robyn M Busch, Epi25 Consortium, Dennis Lal

Brain. 2019; Nov 1;142(11):3473-3481.



Chapter 8

178

Abstract
Rare genetic variants can cause epilepsy, and genetic testing has been 

widely adopted for severe, paediatric-onset epilepsies. The phenotypic 

consequences of common genetic risk burden for epilepsies and their 

potential future clinical applications have not yet been determined. Using 

polygenic risk scores (PRS) from a European-ancestry genome-wide 

association study in generalized and focal epilepsy, we quantified common 

genetic burden in patients with generalized epilepsy (GE-PRS) or focal 

epilepsy (FE-PRS) from two independent non-Finnish European cohorts 

(Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both 

compared to 20 435 controls). One Finnish-ancestry population isolate 

(Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-

ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 

49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) 

were used for additional replications. Across 8386 patients with epilepsy 

and 622 212 population controls, we found and replicated significantly 

higher GE-PRS in patients with generalized epilepsy of European-ancestry 

compared to patients with focal epilepsy (Epi25: P = 1.64×10−15; Cleveland: 

P = 2.85×10−4; Finnish-ancestry Epi25: P = 1.80×10−4) or population controls 

(Epi25: P = 2.35×10−70; Cleveland: P = 1.43×10−7; Finnish-ancestry Epi25: P 

= 3.11×10−4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 

7.99×10−4). FE-PRS were significantly higher in patients with focal epilepsy 

compared to controls in the non-Finnish, non-biobank cohorts (Epi25: 

P = 5.74×10−19; Cleveland: P = 1.69×10−6). European ancestry-derived PRS 

did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry 

individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold 

enrichment of patients with generalized epilepsy compared to controls in 

the top 0.5% highest GE-PRS of the two non-Finnish European cohorts 

(Epi25: P = 2.60×10−15; Cleveland: P = 1.39×10−2). We conclude that common 

variant risk associated with epilepsy is significantly enriched in multiple 

cohorts of patients with epilepsy compared to controls—in particular for 

generalized epilepsy. As sample sizes and PRS accuracy continue to increase 

with further common variant discovery, PRS could complement established 

clinical biomarkers and augment genetic testing for patient classification, 

comorbidity research, and potentially targeted treatment.
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Introduction
Epilepsy is a common chronic neurological disorder, affecting approximately 

1% of individuals (Ngugi et al., 2010). Lifetime prevalence is 8–10% for a 

seizure and 3–4% for epilepsy (Hesdorffer et al., 2011). The median incidence 

of epilepsy is 50 per 100 000 person-years (Ngugi et al., 2011). Individuals 

at high risk for recurrent seizures (epilepsy) benefit from early antiseizure 

drug treatment, compared to no treatment or delayed treatment (Kim et al., 

2006). Predicting whether an individual will develop epilepsy after the first 

epileptic seizure is difficult (MacDonald et al., 2000; Bell et al., 2016), with 

recurrence risk varying from 27% to 71% (Hopkins et al., 1988; Berg and 

Shinnar, 1991; Kwan and Sander, 2004).

Epileptic seizures either have a generalized (involving both cerebral 

hemispheres) or a focal (originating from one cerebral hemisphere) onset 

(Scheffer et al., 2017). Generalized epilepsies account on average for 54%, 

focal epilepsies for 40%, and unclassifiable epilepsies for 7% of incident 

epilepsies in population-based studies of all ages (Banerjee et al., 2009). 

Distinguishing between the two types of epilepsy can be difficult: focal 

epilepsy can present with bilateral tonic-clonic seizures (secondary-

generalization), patients with generalized epilepsy can have focal 

features on EEG (Japaridze et al., 2016), and some individuals have a mix 

of focal and generalized epilepsy (Scheffer et al., 2017). Since commonly 

used antiseizure drugs for focal epilepsy can be ineffective or exacerbate 

generalized epilepsies, differentiating between focal and generalized 

epilepsy is important (Japaridze et al., 2016). Hence, there is a clinical need 

for biomarkers that can help to distinguish individuals at high versus low 

risk to develop either focal or generalized epilepsy.

Genetic factors can explain a substantial portion of cases of epilepsy, 

particularly severe epilepsy (EpiPM Consortium et al., 2015). For rare and 

early onset childhood epilepsies, >100 epilepsy-related genes have been 

discovered in recent years (Heyne et al., 2019). The identified genetic 

variants are rare and of large effect, ranging from large deletions that 

confer on average ~7-fold risk for epilepsy (Pérez-Palma et al., 2017) to 

single, causative de novo variants in >33 genes (Heyne et al., 2018). These 
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variants are diagnostically relevant and can influence patient management. 

For example, treatment with sodium channel blockers can exacerbate 

seizures in patients with Dravet syndrome or other early-onset epileptic 

syndromes caused by SCN1A mutations, whereas these drugs are beneficial 

in patients with gain-of-function variants in SCN2A (Guerrini et al., 1998; 

Löscher, 2009; Wolff et al., 2017). While rare variation of large effect has 

a clear impact in clinical practice for rare epilepsy syndromes (McTague 

et al., 2016), patients affected by common types of epilepsy rarely carry 

such variants and routine genetic testing is therefore not established for 

the common epilepsies.

Genome-wide association studies (GWAS) for common forms of epilepsy 

have identified common genetic risk variants for generalized epilepsy, 

focal epilepsy, and febrile seizures (Kasperavičiūtė et al., 2013; Feenstra et 

al., 2014; International League Against Epilepsy Consortium on Complex 

Epilepsies, 2014, 2018). Common genetic risk variants associated with a 

disease are usually of small effect size (1.33 median odds ratio) (Hindorff et 

al., 2009) and cannot individually quantify risk or to inform prognosis and 

treatment. However, polygenic risk scores (PRSs) that combine the effect 

sizes of thousands of variants into a single score can stratify affected and 

healthy individuals. For five common disorders, a recent study showed a 

3- to 5-fold increased risk for patients with a high disease-specific PRS, 

similar to the range of risk conferred by rare monogenic variants, such as 

LDLR missense variants for coronary artery disease or rare BRCA variants 

in breast cancer (Khera et al., 2018). Based on these results, the authors 

proposed that PRS-based prediction may be reliable enough to consider 

their utility in clinical practice.

Genome-wide PRS based on thousands of common variants associated with 

epilepsy may help distinguish healthy individuals from those who develop 

epilepsy (Speed et al., 2014). However, no studies have directly investigated 

whether PRSs derived from well-phenotyped cohorts stratify patients in 

clinical practice or population-based cohort studies. Here, we calculate 

PRSs for the two main subtypes of epilepsy (generalized and focal) from 

the largest GWAS in epilepsy to date (International League Against Epilepsy 

Consortium on Complex Epilepsies, 2018) and (i) quantify the burden of 
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PRSs derived from GWAS studies of well-phenotyped cohorts in patients 

with generalized or focal epilepsy; (ii) explore if PRS can differentiate 

patients with generalized from those with focal epilepsy; and (iii) explore if 

patients with generalized or focal epilepsy are enriched particularly in the 

upper extreme of the PRS burden distribution compared to controls. Our 

overall study design is presented in Fig. 1. Across two independent research 

cohorts, one clinically ascertained cohort, and three biobanks (repositories 

with clinical data and DNA samples available for research); data from 630 

598 individuals were available for the PRS analyses.

Figure 1: Study design. (1) PRSs for the two main classes of epilepsy (generalized and 
focal) were derived from the largest GWAS in epilepsy to date (International League 
Against Epilepsy Consortium on Complex Epilepsies, 2018). (2) PRS were calculated in 
patients with generalized or focal epilepsy and in population controls and (3) tested 
in their ability to identify significant differences of common variant burden among 
groups. (4) The UK and Vanderbilt biobanks were available to test the behaviour of 
the PRSs in individuals ascertained by ICD-10 codes for epilepsy, while the Biobank 
Japan was available to test the performance in a non-European population. SNP = 
single nucleotide polymorphism.
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Patients and methods
Study cohorts

Patients of European ancestry with generalized epilepsy or focal epilepsy were 

recruited through the Epi25 project (http://epi-25.org/), an international 

multicentre epilepsy genetics research consortium [exploration cohorts for 

generalized (GE) and focal (FE) epilepsy: GE-Epi25-EUR and FE-Epi25-

EUR, respectively] and from a single clinical centre, the Cleveland Clinic 

Epilepsy Center (replication cohorts for generalized and focal epilepsy: GE-

Cleveland-EUR and FE-Cleveland-EUR, respectively). A Finnish-ancestry 

population isolate was recruited from the Epi25 project (GE-Epi25-FIN and 

FE-Epi25-FIN, respectively). Ancestry-matched population controls were 

recruited from several in-house projects, the Partners HealthCare Biobank 

(Karlson et al., 2016), and the FINRISK study (Borodulin et al., 2017). Three 

large-scale biobank repositories [UKB: UK Biobank (Sudlow et al., 2015); 

BioVU: Vanderbilt University biorepository (Roden et al., 2008); and BBJ: 

BioBank Japan (Nagai et al., 2017)] were used for additional explorations. 

All cohorts, totalling 630 598 individuals, are detailed in Table 1 and the 

Supplementary material.

Cohort name Ascertainment 
type

Ethnicity Generalized 
epilepsy (GE)

Focal 
epilepsy (FE)

Controls

Epi25-EUR Research EUR 2256 3449 20 435 

Cleveland-EUR Clinic EUR 85 535 20 435 

Epi25-FIN Research FIN 112 337 1559 

UKB Biobank EUR 246 213 383 197 

BioVU Biobank EUR 293 536 48 665 

BBJ Biobank JPN 219 105 168 356 

Table 1: Study cohorts after quality control. Generalized and focal epilepsy were 
diagnosed in the Epi25-EUR, Cleveland-EUR, Epi25-FIN, and BBJ cohorts according 
to clinical criteria (clinical interview, neurological examination, EEG, imaging data). 
For the UK and BioVU biobanks, ICD-10 G40.3 codes were used to identify people with 
generalized epilepsy, and G40.0 to G40.2 codes to identify people with focal epilepsy. 
BBJ = BioBank Japan; BioVU = Vanderbilt University biorepository; Cleveland-EUR = 
European-ancestry Cleveland Clinic Epilepsy Center cohort; Epi25-EUR = European-
ancestry Epi25 cohort; Epi25-FIN = Finnish-ancestry Epi25 cohort; UKB = UK 
Biobank.
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Polygenic risk scoring in the study cohorts

Single-nucleotide polymorphism (SNP) weights for PRS were derived from 

summary statistics of the ILAE Consortium on Complex Epilepsies GWAS 

for generalized and focal epilepsy (International League Against Epilepsy 

Consortium on Complex Epilepsies, 2018). SNP weights for negative control 

PRS were derived from the UKB GWAS for type 2 diabetes for all cohorts 

excluding the UKB, and from the DIAGRAM-type 2 diabetes GWAS (Scott 

et al., 2017) for the UKB. PRS for each individual were generated using 

the allelic scoring function, as implemented in PLINK v1.9 (Chang et al., 

2015). Individual PRSs were calculated as the sum of weighted effect alleles 

divided by the number of SNPs in the analysis. We generated the PRSs at the 

P-value threshold 0.5, found to be the best predicting threshold in a random 

split (80% training, 20% validation) of our exploration cohort (Epi25-EUR, 

Supplementary material 4.8, Supplementary Tables 4 and 5). We excluded 

individuals if their data were included in the GWAS studies used for PRS 

development. Details of the method to detect overlapping individuals across 

cohorts and the SNP quality control applied are given in the Supplementary 

material.

Statistical analysis

We used logistic regression adjusted for sex and for the first four principal 

components of ancestry to determine the ability of PRS to stratify cases 

from controls. The proportion of phenotypic variance explained by PRS 

was calculated using Nagelkerke’s pseudo-R2, by comparing the full model 

of the logistic regression (PRS plus all covariates: sex and the first four 

principal components of ancestry) to the null model (covariates only). 

Following the example of Khera et al. (2018) we assessed the enrichment 

of the two epilepsy phenotypes (generalized epilepsy or focal epilepsy) in 

progressively more extreme tails of the PRS distribution (top 20%, 5%, 

0.5%) against the remainder of the distribution in a logistic regression 

model predicting disease status, adjusted for sex and the first four principal 

components of ancestry. The threshold for statistical significance after 

Bonferroni correction was set to α = 1.67 × 10−2 (three tests per cohort). 
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Fixed-effect meta-analysis, with adjustment for the effective sample size, 

was performed using METAL (Willer et al., 2010).

Data availability

The data that support the findings of this study are available from the Epi25 

Consortium, upon reasonable request. The biobank data are available from 

the UKB, BioVU, and BBJ upon successful project application.

Results
Higher PRS burden in patients with epilepsy compared to 
controls

To determine if common variants associated with epilepsy are enriched 

in independent cohorts of patients with generalized epilepsy or focal 

epilepsy compared to population controls, we conducted a PRS analysis 

in two independent epilepsy cohorts of European ancestry. We found 

that in the GE-Epi25-EUR cohort, genome-wide polygenic risk scores for 

generalized epilepsy (GE-PRS) were significantly higher in patients with 

generalized epilepsy (n = 2256 cases) than in population controls (n = 20 

435 controls; P = 2.35 × 10−70; Fig. 2 and Supplementary Table 1). GE-PRS 

explained 2.8% of the total phenotypic variance (composed of genetic, 

environmental, and genetic-environmental interaction variances) among 

the case and control group of the GE-Epi25-EUR cohort (Supplementary 

Table 1). This observation was replicated in the clinical GE-Cleveland-EUR 

cohort (P = 1.43×10−7; n = 85 cases; 2.6% phenotypic variance explained). 

In the FE-Epi25-EUR cohort, the genome-wide polygenic risk for focal 

epilepsy (FE-PRS) was significantly higher in patients with focal epilepsy 

(n = 3449 cases) than in population controls (P = 5.74×10−19), with 0.6% of 

the phenotypic variance explained. This observation was replicated in the 

clinical FE-Cleveland-EUR cohort (n = 535; P = 1.69×10−6; 0.5% phenotypic 

variance explained). As expected, PRSs for type 2 diabetes (negative control) 

were not significantly higher in patients with generalized epilepsy or focal 

epilepsy than in population controls (Fig. 2 and Supplementary Table 1).
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Figure 2: Genome-wide polygenic risk for generalized epilepsy or focal epilepsy in 
the exploration and replication cohorts. Shown are the means of the standardized 
GE-, FE-, and type 2 diabetes-PRS with 95% confidence intervals for the European-
ancestry population controls (highlighted in blue; n = 20 435), the European-ancestry 
generalized epilepsy and focal epilepsy Epi25 exploration cohorts (highlighted in 
green; GE-Epi25-EUR, n = 2256; FE-Epi25-EUR, n = 3449), and the European-
ancestry generalized epilepsy and focal epilepsy Cleveland Clinic replication cohorts 
(highlighted in red; GE-Cleveland-EUR, n = 85; FE-Cleveland-EUR, n = 535). The 
P-values for the differences between cases and population controls are given as 
numbers. The threshold for statistical significance after Bonferroni correction was 
set to α = 1.67 × 10−2 (three tests per cohort).

To test the utility of PRSs across different populations, we investigated 

the power of the PRS derived from the European population in the isolated 

Finnish population. The GE-PRS was significantly higher in patients with 

generalized epilepsy (n = 112 cases) than in the population controls (n = 

1559 controls; P = 3.11×10−4; Supplementary Fig. 2 and Supplementary Table 

2). However, the PRSs explained less phenotypic variance than generalized 

epilepsy cohorts of European ancestry (2% phenotypic variance explained). 

The FE-PRS were not significantly different between Finnish patients with 

focal epilepsy (n = 337 cases) and controls (P = 0.55).

Higher PRS burden in generalized compared to focal epilepsy

To determine if common variants associated with generalized epilepsy are 

enriched in patients with generalized epilepsy compared to patients with 

focal epilepsy, we regressed the GE-PRS against the diagnosis of generalized 

epilepsy or focal epilepsy. In the Epi25-EUR cohort, GE-PRSs were 

significantly higher in patients with generalized epilepsy than in those with 

focal epilepsy (P = 1.64×10−15), explaining 1.7% of the phenotypic variance 

(Supplementary Table 1). This observation was replicated in the Cleveland-
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EUR cohort (P = 2.85×10−4, 3.9% phenotypic variance explained) and the 

Epi25-FIN cohort (P = 1.80×10−4, 4.6% phenotypic variance explained, 

Supplementary Table 2). Overall, the PRS had the most predictive power in 

the corresponding epilepsy phenotype group: GE-status was best predicted 

by GE-PRS (P = 2.35×10−70, 2.8% phenotypic variance explained in Epi25-

EUR) over FE-PRS (P = 1.71×10−15, 0.6% phenotypic variance explained) and 

FE-status was best predicted by FE-PRS (P = 5.74×10−19, 0.6% phenotypic 

variance explained in Epi25-EUR) over GE-PRS (P = 8.21×10−18, 0.5% 

phenotypic variance explained, Supplementary Table 1).

Enrichment of patients with epilepsy in the highest PRS 
burden percentile

To explore if the GE- and FE-PRS enrichment in patients with epilepsy is 

due to a few patients with a very high burden or due to many with a slightly 

elevated burden, we characterized the epilepsy PRS distribution in the 

European-ancestry cohorts. Patients with epilepsy and population control 

subjects were ranked according to their PRSs and tested for enrichment 

of patients with generalized epilepsy or focal epilepsy in the extreme tails 

of the PRS distribution. Strikingly, in the combined GE-Epi25-EUR and 

control cohorts, we observed a significant 4.63-fold enrichment of patients 

with generalized epilepsy in the group with the highest GE-PRS (top 0.5%, 

P = 2.60×10−15; involving 2.39% of the GE-Epi25-EUR cohort; Table 2). This 

observation was replicated in the clinical GE-Cleveland-EUR cohort (4.47-

fold enrichment; P = 1.39×10−2; 3.53% of the GE-Cleveland-EUR cohort). 

In the FE-Epi25-EUR cohort, we observed a significant 2-fold enrichment 

of patients with focal epilepsy in the group with the highest FE-PRS (top 

0.5%, P = 5.57×10−4; 1.16% of the FE-Epi25-EUR cohort; Table 2). This 

observation was not replicated in the smaller clinical FE-Cleveland-EUR 

cohort (P = 0.22). All patients with top 0.5% highest PRS were found in the 

top decile of the GE- and FE-PRS distributions of the Epi25-EUR cohort 

(Supplementary Figs 3 and 4). Measures of the diagnostic accuracy of the 

PRS are given in Supplementary Table 8.
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Epilepsy PRSs have limited value in biobank-derived cohorts 
based on ICD-10 codes

To evaluate whether common epilepsy variants identified in well-

phenotyped patients are enriched in patient cohorts ascertained from 

patient registries and biobanks, we extended our GE- and FE-PRS analyses 

to include three biobank-derived cohorts. In the UKB and BioVU biobanks, 

diagnosis was ascertained by ICD-10 codes for epilepsy and by a standardized 

questionnaire for the attending physicians in the BBJ biobank. Fixed-effect 

meta-analysis of the two European biobanks (UKB and BioVU), adjusted 

for the effective sample size (Willer et al., 2010), revealed significantly 

higher GE-PRS in individuals coded as having generalized epilepsy than in 

population controls (P = 7.99×10−4, 539 patients with generalized epilepsy 

against 431 862 population controls). However, the PRS explained only 

very little of the phenotypic variance in each biobank (UKB: 0.12% variance 

explained; BioVU: 0.19%). In the BBJ, the GE-PRS were not significantly 

different between Japanese-ancestry patients with generalized epilepsy and 

controls (P = 0.33, 219 patients with generalized epilepsy against 168 356 

controls). The FE-PRS were not significantly different between individuals 

coded as having focal epilepsy and controls in any of the three studied 

biobanks (UKB: P = 0.44; BioVU: P = 0.23; BBJ: P = 0.29). The PRSs for type 

2 diabetes (negative control) were not significantly different in patients 

with generalized epilepsy or focal epilepsy than in population controls. The 

results in the three biobanks are detailed in Supplementary Table 3.

Discussion
We identified a significantly higher genetic burden for epilepsy, as quantified 

by PRS, in independent cohorts of patients with epilepsy as compared to 

population controls. While modest effect sizes preclude risk prediction 

based on single common genetic variants, PRSs that combine thousands 

of variants show predictive ability across a range of complex traits and 

diseases, including neuropsychiatric disorders (Khera et al., 2018). In the 

setting of a collaborative epilepsy genetics community, we demonstrate 

that available datasets have reached an adequate size to address the role of 

common genetic variants, each with small effect sizes, in large populations 
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of patients with epilepsy. In line with previous studies showing significant 

differences between the genetic architectures of generalized epilepsy and 

focal epilepsy (Speed et al., 2014; International League Against Epilepsy 

Consortium on Complex Epilepsies, 2018), we also show that patients 

with generalized epilepsy have a significantly higher burden of common 

risk variants associated with generalized epilepsy than patients with focal 

epilepsy. The PRSs perform similarly in a multicentre research cohort and 

in an unselected—although much smaller—cohort ascertained through 

routine clinical practice in one single hospital. In contrast, significant, but 

small differences of PRS burden in large-scale biobanks provide evidence 

that ICD-10 epilepsy codes are not the best substitutes for precise clinical 

classifications by experts, despite our efforts to identify patients with 

generalized or focal epilepsy using stringent ICD code filtering. In line with 

recent evidence, we observe that PRSs derived from a European cohort have 

lower power when applied to populations of different genetic architecture, 

as observed in the cohorts of Finnish and Japanese ancestry (Martin et al., 

2017).

By evaluating the PRS distribution, we identify patients with an effect size 

of polygenic variants at group level that is comparable to those in other 

studies with rare variants of large effect. Among the group of patients with 

high GE-PRS (top 0.5% of cases and controls with the highest scores), we 

observe an enrichment of patients with generalized epilepsy similar to 

that seen among carriers of established genetic risk factors, such as copy 

number variations and de novo variants: the largest copy number variation 

burden study in epilepsy to date showed a 7.45-fold enrichment of patients 

with generalized epilepsy (2.78% of all patients with generalized epilepsy) 

among all hotspot copy number variations carriers (cases/controls) (Pérez-

Palma et al., 2017). The largest de novo variant study in neurodevelopmental 

disorders with epilepsy showed a 4.6-fold excess of de novo variants in 

known genes associated with developmental and epileptic encephalopathies 

in neurodevelopmental disorders with epilepsy when compared to those 

without epilepsy (Heyne et al., 2018). In this study, we identify a 4.63-fold 

enrichment of patients with generalized epilepsy in the top 0.5% highest 

GE-PRS in the Epi25 exploration cohort (2.39% of patients with generalized 
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epilepsy) and a 4.47-fold enrichment of patients with generalized epilepsy 

in the top 0.5% highest GE-PRS in the clinical replication cohort (3.53% of 

patients with generalized epilepsy).

PRSs could have clinical implications for epilepsies because of their 

predictive power. Treatment with antiepileptic drugs after the first seizure 

has been debated, and the decision to start pharmacological treatment is 

usually based on relative risks, benefits, and lifestyle factors. After the first 

seizure, ~50% of individuals go on to have a second seizure within 3–5 

years, with most recurrences occurring within the first year (Kho et al., 

2006; Wiebe et al., 2008). Several factors can increase the risk of seizure 

recurrence, including abnormal results on neurological examination, 

brain imaging, or EEG, a family history of epilepsy, or a personal history 

of remote symptomatic seizures (Wiebe et al., 2008). Patients at high risk 

for recurrence have been shown to benefit from immediate antiepileptic 

drug treatment after a first seizure compared to no treatment or delayed 

treatment (Kim et al., 2006). For an individual with new-onset epilepsy, it 

is also critical to differentiate between a focal versus generalized epilepsy 

to inform the selection of the first-line antiseizure drug (Perucca et al., 

1998; Goldenberg, 2010). Differential diagnosis is especially challenging for 

focal epilepsy patients with secondary generalization or for those not found 

to have a relevant lesion on magnetic resonance imaging scans. A PRS 

indicating that a person is carrying an excessive amount of common risk 

variants for epilepsy or for generalized versus focal epilepsy could provide 

useful information for clinicians in deciding when to begin, and what type 

of treatment should be provided.

Future research should determine if and how well PRS can improve 

existing prediction models when combined with other factors, including 

established genetic risk factors of individually larger effect. Although our 

study represents the first of its kind in epilepsy, it needs to be replicated in 

a prospective setting. The predictive power of the PRS is determined by the 

genetic homogeneity of the GWAS from which the PRS is generated and that 

of the cohort to which it is applied. For epilepsy, a strong Eurocentric bias 

in the only available large scale GWAS is impeding PRS prediction in non-

European individuals. Possible approaches to improve the predictive power 
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in the non-European population, such as including the target population 

in the training data (Márquez-Luna et al., 2017), have been explored, but 

to realize the full potential of the PRS, greater population diversity must 

be prioritized in future GWAS studies (Martin et al., 2019). It is possible 

that PRSs for focal epilepsies currently lack power because this group is 

genetically and phenotypically more heterogeneous than the group of 

generalized epilepsy (Speed et al., 2014; International League Against Epilepsy 

Consortium on Complex Epilepsies, 2018). The clinical value of the PRS 

will also be limited by the low prevalence rates of epilepsy, leading to high 

negative predictive values, but low positive predictive values. To facilitate 

the implementation of PRS into clinical practice, additional research with 

larger, better-differentiated cohorts from different populations with well-

characterized epilepsy phenotypes will be needed.

In summary, common polygenic variant burden for epilepsy can be measured 

and is differently distributed among patients with epilepsy and controls as 

well as between the two main epilepsy phenotypes (i.e. generalized and 

focal). PRS for epilepsies can provide physicians with an estimate of an 

individual’s overall genetic risk for epilepsy that could aid in early diagnosis 

and targeted treatment in the future. In addition, a combination of rare and 

common variants that may predispose an individual to develop epilepsy 

provides a chance for more informative prediction tools that may lead to 

a paradigm shift from current practice in rare disorder genetics (presence 

or absence of a Mendelian, high-risk variant) to a liability threshold model 

that assumes for each individual a continuous liability composed of rare and 

common genetic risk variants.
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Abstract
Aims

In recent years, many different DNA mutations underlying the development 

of refractory epilepsy have been discovered. However, genetic diagnostics 

are still not routinely performed during presurgical evaluation and reports 

on epilepsy surgery outcome for patients with genetic refractory epilepsy 

are limited. We aimed to create an overview of the literature on seizure 

outcome following epilepsy surgery in patients with different genetic 

causes of refractory epilepsy. 

Methods

We systematically searched PubMed and Embase prior to January 2017 and 

included studies describing treatment outcome following epilepsy surgery 

in patients with genetic causes of epilepsy. We excluded studies in which 

patients were described with epilepsy due to Tuberous Sclerosis Complex or 

Sturge-Weber syndrome (since this extensive body of research has recently 

been described elsewhere) and articles in which surgery was aimed to be 

palliative. 

Results

We identified 24 eligible articles, comprising a total of 82 patients who 

had undergone surgery for (mainly childhood-onset) refractory epilepsy 

due to 15 different underlying genetic causes. The success rate of surgery 

varied widely across these different genetic causes. Surgery was almost 

never effective in patients with epilepsy due to mutations in genes involved 

in channel function and synaptic transmission, whereas surgery was 

significantly more successful regarding seizure control in patients with 

epilepsy due to mutations in the mTOR pathway. Patients with a lesion 

on MRI tended to have higher seizure freedom rates than those who were 

MRI-negative. 

Conclusion

Although the evidence is still scarce, this systematic review suggests that 

studying genetic variations in patients with refractory epilepsy could help 

guide the selection of surgical candidates.
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Introduction
It is estimated that around 60% of epilepsy patients have focal epilepsy, 

of whom nearly half are medically refractory (West et al., 2015). Epilepsy 

surgery is the only treatment that may be curative in patients with medically 

refractory epilepsy. However, epilepsy surgery is strongly under-utilised 

and currently less than half of refractory epilepsy patients are referred for 

evaluation of epilepsy surgery candidacy (de Flon et al., 2010; Uijl et al., 2012).

The relatively low proportion of potential surgical candidates who actually 

undergo surgery is largely due to a lack of factual information regarding 

epilepsy surgery and uncertainty around treatment outcome (Dewar and 

Pieters, 2015). Although there are several prognostic factors for surgical 

success (West et al., 2015), it is often unclear for which patients surgery is 

indicated or contraindicated. Currently, on average, only 65% of patients 

achieve seizure freedom after surgery (West et al., 2015).

Over recent years, it has increasingly been acknowledged that many patients 

with either generalized or focal types of epilepsy have an underlying genetic 

cause (Helbig et al., 2008; Hildebrand et al., 2013). These include single gene 

mutations that are related to channelopathies and disorders of synaptic 

transmission (Helbig et al., 2008), or the mammalian target of rapamycin 

(mTOR) pathway, involved in various processes such as neuronal growth, 

migration, and proliferation (Baldassari et al., 2016). In addition, there 

are several microdeletions and other chromosomal abnormalities that are 

known to be associated with epilepsy. This heterogeneity in molecular 

genetic aetiology points to differences in the underlying pathophysiology 

and is reflected by phenotypic differences between patients. It is possible 

that these different causes are also associated with differences in response 

to epilepsy surgery.

It is commonly accepted that epilepsy patients with a genetically determined 

focal structural lesion(s), such as tuberous sclerosis, may be candidates for 

surgery (Zhang et al., 2013). However, many patients with genetic causes 

of epilepsy do not have detectable epileptogenic lesions on MRI, so called 

“MRI-negative” patients. In general, the absence of a visible brain lesion 

on MRI significantly decreases the chance of surgical success (Téllez-
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Zenteno et al., 2010; Bast, 2013). MRI-negative patients with focal epilepsy 

can still be considered surgical candidates (Bast et al., 2016) as there 

may be an undetected underlying focal epileptogenic brain lesion, such 

as mild malformations of cortical development (mMCD) or focal cortical 

dysplasia (FCD) (So and Lee, 2014). Greater MR field strength, improved 

MRI sequences, and new post-processing techniques have increased the 

detection rate of such mMCDs and FCDs (So and Lee, 2014). Even in truly 

MRI-negative patients with refractory focal epilepsy and a consistent 

electrophysiological focus, epilepsy surgery is increasingly considered due to 

advances in multimodal functional neuroimaging and invasive monitoring 

techniques, such as stereo-electroencephalography (S-EEG). Pathology 

often subsequently reveals an underlying mMCD or FCD (So and Lee, 2014). 

However, surgery has been successful in some (18-47%) patients without 

demonstrated pathological abnormalities (Téllez-Zenteno et al., 2010). A 

still unknown proportion of MRI-negative patients with focal refractory 

epilepsy who are evaluated for epilepsy surgery may have a genetic epilepsy 

syndrome. Identification of such genetic causes could have prognostic value 

for surgical outcome in these patients.

Genetic diagnostics are still not routinely performed in patients with 

refractory epilepsy, mostly due to the high costs and low throughput of 

traditional DNA sequencing techniques (Hildebrand et al., 2013). The 

possibility to comprehensively test all epilepsy patients for genetic causes 

has been enhanced in recent years, with the advent of next-generation 

sequencing techniques (Hildebrand et al., 2013).

To date, reports of epilepsy surgery for patients with genetic causes of 

epilepsy are sporadic. Some recent studies have shown that epilepsy surgery 

may be effective in patients with mutations in specific genes (Lee et al., 2012; 

Jansen et al., 2015), but this has never been shown in patients with other 

gene mutations (Barba et al., 2014; Skjei et al., 2015). Such findings suggest 

that routine genetic diagnostics for causative mutations of epilepsy prior 

to surgery could be of importance to determine surgical candidacy. This 

systematic review provides an overview of the reported outcomes of epilepsy 

surgery in patients with an established genetic cause of epilepsy. Future 

aims include the use of genetic diagnostics in the presurgical assessment 
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of patients with refractory epilepsy in order to assist the clinician in the 

often complex dilemma of whether to proceed to surgery or rather stop 

the time-consuming, costly, and often invasive, presurgical trajectory in 

patients with a proven genetic epilepsy syndrome.

Methods
Search strategy and study selection

Our search strategy and study selection are summarised in figure 1. A 

literature search in PubMed and Embase was performed by one author (RS) 

in order to identify articles in which epilepsy, genetics, and surgery were 

described together, using various synonyms (supplementary tables S1 and S2). 

The search was initially performed in June 2016 and updated in November 

2016. The search yielded a total of 1,345 articles.

We included all studies reporting on epilepsy surgery and seizure outcome 

and collected details only on patients who either had a definite clinical 

diagnosis of a genetic syndrome with co-morbid epilepsy, or who had a 

mutation or other genetic abnormality detected that was highly likely to 

be the cause of their epilepsy. All patients with genetic causes of epilepsy 

who were described in the reports were included, regardless whether the 

causative mutation was somatic/mosaic or germline, although we describe 

the results for these subgroups separately. We excluded articles on patients 

with epilepsy due to tuberous sclerosis complex or Sturge Weber syndrome 

from this systematic review, since this extensive body of research has 

recently been described elsewhere (Bourgeois et al., 2007; Zhang et al., 

2013). Furthermore, we excluded articles in which epilepsy surgery was 

described for patients with genetic mutations that were associated with, 

but not considered monogenic causes of, their epilepsy; for example, BRAF 

mutations in glioneuronal tumours, reported as potential prognostic factors 

for surgery outcome (Prabowo et al., 2014). Moreover, we excluded surgical 

cases when the intention of surgery was stated to be palliative, rather than 

curative.

All search results were reviewed based on title and abstract. The full-

text was reviewed in potentially eligible articles. Moreover, references of 
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the included articles were reviewed, as well as other articles in which the 

eligible articles are cited, using the “cited by” functions in PubMed and 

Embase. The article search and selection were checked by a second author 

(MS).

Figure 1: Flowchart of search strategy and study selection.

Data processing

A standardised data extraction form was created, containing nine variables: 

affected gene, causative genetic variants, number of patients, histology of 

resected tissue, MRI findings, surgery type, mean follow-up time in years, 

post-surgical seizure outcome, and whether the surgery was successful. We 

divided the included articles into three main categories of genetic causes of 

epilepsy:
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 - Pathogenic variants of genes related to ion channel function and 

synaptic transmission.

 - Pathogenic variants of mTOR pathway genes.

 - Other genetic causes of epilepsy.

Extraction of raw data from the included articles was performed by RS and 

checked by MS.

Whenever possible, we classified histological descriptions of resected or 

isolated tissue according to the standardised classification system of focal 

cortical dysplasia (FCD) defined by the ILAE.

Where possible, we categorised descriptions of MRI findings as FCD, 

hippocampal sclerosis (HS) or hemimegalencephaly. Patients were defined 

as MRI-negative based on either no abnormalities or only non-specific 

abnormalities, not judged to be the cause of epilepsy, on MRI. All patients 

without detectable causative lesions on MRI were used for subgroup analysis.

Successful surgery was defined as Engel Class I (“free of disabling seizures”), 

the equivalent ILAE Class 1, or a description of seizure outcome equivalent 

to these classifications, based on the last reported follow-up visit.

Results
Search results

The literature search yielded a total of 20 eligible articles and a further 

four publications were identified through a cross-reference check of the 

citations of the included articles, as well as all publications in which the 

eligible articles are cited.

The 24 included studies described a total of 82 patients, with 15 different 

genetic causes of (mainly childhood-onset) epilepsy, who underwent 

surgery. The success rate of surgery varied widely amongst these different 

genetic causes (table 1).

Genes related to channel function and synaptic transmission

The literature search yielded five articles that described a total of 14 surgery 

cases with epilepsy due to pathogenic variants in genes related to ion channel 
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function and synaptic transmission (table 2). These epileptogenic mutations 

were found in the voltage-gated sodium channels SCN1A and SCN1B (Helbig et 

al., 2008), the gene CNTNAP2 which is involved in AMPA-receptor trafficking 

and excitatory neuronal network activity (Anderson et al., 2012; Varea et al., 

2015), and STXBP1, which is involved in the release of neurotransmitters 

(Weckhuysen et al., 2013).

Epilepsy surgery did not lead to complete seizure freedom in any of the 

eight patients with SCN1A mutations who underwent epilepsy surgery, 

even though six of them had focal seizure semiology which co-localized 

with MRI-visible lesions (Barba et al., 2014; Skjei et al., 2015). Outcome 

data concerning specific seizure types that were primarily targeted by the 

surgical procedure (e.g. temporal lobe seizures in patients with HS) were 

not provided in the publications included. Seven of the patients with SCN1A 

mutation had a clinical phenotype consistent with Dravet syndrome and the 

other had a clinical phenotype most consistent with genetic epilepsy with 

febrile seizures plus (GEFS+). Two patients had no MRI-visible lesion.

Two patients underwent surgery for epilepsy due to mutations in SCN1B and 

both patients became seizure-free after temporal lobectomy (Scheffer et al., 

2007); one had underlying HS, whereas no brain abnormality, on MRI or 

histopathological examination of resected tissue, was detected in the other 

patient.

All three patients with epilepsy due to a homozygous mutation in CNTNAP2 

had a recurrence of seizures after surgery (Strauss et al., 2006).

One patient with epilepsy due to a STBXP1 mutation underwent surgery since 

she had prominent focal findings on EEG, despite having no abnormalities 

on MRI. Epilepsy surgery did not lead to cessation of seizures although her 

seizure frequency had decreased (Weckhuysen et al., 2013). Pathology of the 

resected tissue revealed FCD.

Overall, surgery was successful regarding the control of seizures for only 

two of 14 patients (14%) with pathogenic variants in genes related to 

channelopathies and disorders of synaptic transmission.
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Genetic cause MRI-
positiveseizure-
free/total

MRI-
negativeseizure-
free/total

Total 
groupseizure-
free/total

Pathogenic 
variants of 
genes related 
to ion channel 
function 
and synaptic 
transmission

SCN1A FCD: 0/2HS: 
0/2Encephalomalacia: 
0/1Subcortical area of 
abnormal signal: 0/1

0/2 0/8

SCN1B HS: 1/1 1/1 2/2

CNTNAP2 HS: 0/2 0/1 0/3

STXBP1 - 0/1 0/1

Overall 1/9 1/5 2/14 (14%)

Pathogenic 
variants 
of mTOR 
pathway 
genes

DEPDC5 FCD: 3/6 2/3 5/9

PTEN HME: 1/1 - 1/1

NPRL2 - 0/1 0/1

NPRL3 FCD: 1/1 - 1/1

Overall 5/8 2/4 7/12 (58%)

Other genetic 
causes of 
epilepsy

Microdeletions HS: 9/10 0/2 9/12

Neurofibromatosis 
type 1

FCD: 2/2HS: 
4/6Polymicrogyria: 
0/1Tumour: 5/11

1/1 12/21

Fragile-X 
syndrome

HS: 2/2 - 2/2

Mitochondrial 
mutations

HS: 1/3 - 1/3

Overall 23/35 1/3 24/38 (63%)

Total 29/52 (56%) 4/12 (33%) 33/64(52%)

Table 1A: Success rates of epilepsy surgery for patients with different genetic causes 
(germline mutations) of epilepsy. FCD: focal cortical dysplasia; HS: hippocampal 
sclerosis. HME: hemimegalencephaly.

Genetic cause MRI-
positiveseizure-
free/total

MRI-
negativeseizure-
free/total

Total 
groupseizure-
free/total

Pathogenic 
variants of 
mTOR pathway 
genes

PIK3CA HME: 5/5FCD: 1/1 - 6/6

AKT3 HME: 1/3FCD: 1/1 - 2/4

mTOR HME: 1/1FCD: 6/7 - 7/8

Total 15/18 (83%) - 15/18 (83%)

Table 1B: Success rates of epilepsy surgery for patients with different genetic causes 
(somatic mutations) of epilepsy. FCD: focal cortical dysplasia; HME: hemimegalencephaly.
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mTOR pathway genes

The search yielded 10 articles that described a total of 30 patients who 

underwent surgery for epilepsy in relation to mutations in the following 

mTOR pathway genes: DEPDC5, PTEN, PIK3CA, AKT3, NPRL2, NPRL3, and 

mTOR itself (table 3). In 12 patients, germline mutations were found in 

DEPDC5, PTEN, NPRL2 or NPRL3 genes, whereas in 18 patients (somatic or 

mosaic) mutations were detected in resected tissue, involving the genes 

PIK3CA, AKT3, and mTOR.

Epilepsy surgery controlled seizures completely in seven of 12 patients 

with mutations in DEPDC5, PTEN, NPRL2 or NPRL3, of whom eight had a 

lesion on MRI (Baulac et al., 2015; Carvill et al., 2015; Jansen et al., 2015; 

Scerri et al., 2015; Weckhuysen et al., 2016). Three more patients had a 

significant improvement in seizure frequency, whereas two patients had 

no improvement.

Fifteen of 18 patients with somatic or mosaic mutations in PIK3CA, AKT3 or 

mTOR, who were all reported to have lesions on MRI, became seizure-free 

after epilepsy surgery (Lee et al., 2012; Poduri et al., 2012; Conti et al., 2015; 

Jansen et al., 2015; Leventer et al., 2015; Nakashima and Saitsu, 2015). One 

patient reported some improvement, in another monthly seizures persisted, 

and the last patient did not become seizure-free, however, outcome was not 

further specified.

After examination of histology in relation to MRI findings, 19 of the 

30 patients (somatic/mosaic or germline combined) had focal cortical 

dysplasia (FCD) due to mTOR pathway pathogenic variants as a structural 

substrate of epilepsy, whereas 10 other patients had hemimegalencephaly 

as the structural cause of their epilepsy. One patient had normal MRI and 

histology. Epilepsy surgery successfully controlled seizures in eight of the 

10 patients with hemimegalencephaly (80%) and in 14 of the 19 patients 

with FCD (74%). Epilepsy surgery was not successful for the patient with 

normal MRI and histology.

Overall, epilepsy surgery completely controlled seizures in seven of 12 

patients (58%) with epilepsy due to germline mutations in the mTOR 
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pathway. The success rate was 71% (22 of 30 patients) for germline and 

somatic mutations combined.

Epilepsy due to other genetic causes

Eleven articles described a total of 38 patients (all but three were positive 

for MRI lesions) who had epilepsy in relation to the following other genetic 

causes: microdeletions, neurofibromatosis type 1, fragile-X syndrome, and 

mitochondrial mutations (table 4).

Twelve patients who underwent epilepsy surgery have been reported with 

microdeletions, four of which were identified in 16p13.11 (Catarino et al., 

2011; Liu et al., 2012). Nine of 12 patients (75%) became seizure-free after 

surgery, one patient became seizure-free for seven years after surgery, and 

the other two patients experienced no improvement.

Twenty-one patients with neurofibromatosis type 1, caused by mutations 

in NF1 or microdeletions in 17q11.2 encompassing this gene, underwent 

epilepsy surgery (Barba et al., 2013; Jang et al., 2013; Ostendorf et al., 2013). 

These patients had a variety of neurofibromatosis-related epileptogenic 

lesions, such as HS or low-grade tumours. Epilepsy surgery successfully 

controlled seizures in 12 of 21 patients (57%) with neurofibromatosis type 1.

Two patients with epilepsy due to Fragile-X syndrome, both with HS, 

became seizure-free after epilepsy surgery (Wouters et al., 2006; Kenmuir 

et al., 2015).

Three patients with epilepsy and mitochondrial mutations, who all had HS 

(detected on MRI), underwent epilepsy surgery; only one became seizure-

free (Niehusmann et al., 2011; Azakli et al., 2013).

MRI-negative patients with genetic epilepsy

A subgroup analysis of all MRI-negative patients with genetic causes of 

epilepsy yielded a total of 12 patients with mutations (all detected in blood, 

and not in tissue) in SCN1A, SCN1B, CNTNAP2, STXBP1, DEPDC5, and NPRL2, 

and microdeletions in 16p13.11, or neurofibromatosis type 1 (table 1 and table 

5).
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Five MRI-negative patients had epilepsy due to mutations in genes related 

to channelopathies and disorders of synaptic transmission (Strauss et 

al., 2006; Scheffer et al., 2007; Weckhuysen et al., 2013; Skjei et al., 2015). 

According to the reports, surgery was considered in these patients based 

on focal seizure semiology in combination with consistent EEG source 

localization and results from functional imaging (Scheffer et al., 2007; Skjei 

et al., 2015), EEG (Weckhuysen et al., 2013) or S-EEG results (Strauss et al., 

2006). Surgery did not successfully control seizures in any of these patients, 

except in one with a mutation in SCN1B.

Surgery was performed in four MRI-negative patients who had epilepsy due 

to mutations in the mTOR pathway genes, DEPDC5 or NPRL2, and showed 

focal abnormalities on EEG, S-EEG or PET (Baulac et al., 2015; Carvill et al., 

2015; Weckhuysen et al., 2016). Two MRI-negative patients with DEPDC5 

mutations showed FCD on pathological examination and became seizure-

free after surgery, whereas surgery did not successfully control seizures in 

one patient with a pathology-negative DEPDC5 mutation and another with 

a mutation in NPRL2 and FCD on pathological examination.

Epilepsy surgery did not successfully control seizures in either of the two 

MRI-negative patients with epilepsy due to a microdeletion in 16p13.11. 

These patients underwent surgery for clinically presumed HS, although 

neither had HS on pathological examination (Catarino et al., 2011; Liu et al., 

2012). One MRI-negative patient with epilepsy due to neurofibromatosis 

type 1, with focal abnormalities in the temporal region on EEG and 

pathology revealing HS in resected tissue, underwent epilepsy surgery and 

subsequently became seizure-free (Barba et al., 2013).

After histological examination, five of the 12 MRI-negative patients were 

shown to have features of FCD (type Ia, IIa, or not further specified), one 

patient had HS, and another had a small epileptogenic hamartoma. Five of 

the 12 MRI-negative patients (42%) had no abnormalities on histological 

examination.

Overall, a seizure freedom rate of 33% (4 of 12 patients) was reported in 

the MRI-negative group; two with a mutation in a mTOR pathway gene, 

one with a SCN1B mutation, and one with an NF1 mutation. Histological 
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examination showed a lesion in three of these patients but no abnormality in 

the patient with the SCN1B mutation. One of the five MRI-negative patients 

without pathological abnormalities became seizure-free after epilepsy 

surgery, whereas three of seven MRI-negative patients with pathological 

abnormalities became seizure-free.

Statistical analyses

Surgery was more successful for patients with mTOR pathway mutations, 

compared to patients with mutations in genes involved in channelopathies 

and disorders of synaptic transmission (only patients with germline 

mutations: 58% versus 14%; Chi-square=5.54; df=1; p=0.019; germline 

and somatic mutations combined: 73% versus 14%; Chi-square=13.42; 

df=1; p<0.001; only patients with MRI-visible lesions: 77% versus 11%; 

Chi-square= 12.07; df=1; p<0.001). The difference in surgery success rate 

between patients with MRI-visible lesions and MRI-negative patients was 

at trend level (63% versus 33%, Chi-square=3.679; df=1; p=0.055).
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Discussion
In this systematic review, we provide an overview of the reported seizure 

outcomes of patients with different genetic causes of refractory epilepsy 

who have undergone epilepsy surgery. Not unexpectedly, there was a 

large difference in success rate of epilepsy surgery between patients 

with mutations in genes related to channelopathies and disorders of 

synaptic transmission and those with mutations in the mTOR pathway, 

even when somatic mutations were excluded for analysis. This difference 

remains significant when only MRI-positive cases are compared. mTOR 

pathway genetic variants are thought to increase seizure susceptibility 

due to abnormal neuronal migration and growth, which leads to (micro)

structural epileptogenic malformations of cortical development, such as 

hemimegalencephaly and FCD (Jansen et al., 2015). Such malformations are 

thought to arise from a combination of a germline mTOR pathway mutation 

and a somatic second-hit mutation in the same gene or in a different gene 

of the mTOR pathway (Poduri et al., 2013; Baulac et al., 2015). This typically 

results in focal malformations, since the second hit usually only affects 

part of the brain. It is reasonable to assume that resection of such localised 

epileptogenic malformations could be a curative treatment for seizures, as 

reflected by the relatively high surgical success rate of patients with mTOR 

pathway mutations. It has been estimated that 11% of all focal epilepsies 

are due to germline mutations in the mTOR genes DEPDC5, NPRL2 and 

NPRL3 (Weckhuysen et al., 2016). Considering the associated high success 

rate of epilepsy surgery, it could be of benefit to routinely screen for such 

mutations in presurgical evaluation; particularly in MRI-negative, but 

presumed lesional cases. Finding mTOR pathway mutations would increase 

the chance of identifying an underlying cryptic malformation of cortical 

development, and thereby suggest surgical candidacy. The high success 

rate (83%) of surgery in patients with somatic/mosaic mTOR pathway gene 

mutations is inherent to the fact that these patients already had established 

epileptogenic lesions (FCD and hemimegalencephaly); two factors associated 

with good surgical outcome. Screening for somatic/mosaic mutations in 

presurgical evaluation is more difficult than for germline mutations. 

However, investigation of mosaic mutations may be considered in samples 

of blood, a buccal swab, or sputum using ultra-deep sequencing (Qin et al., 

2010).
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Epilepsy surgery was almost never successful in patients with epilepsy due 

to mutations in genes involved in channelopathies and disorders of synaptic 

transmission. Germline mutations in these genes involved in ion channel 

function and synaptic transmission are likely to cause widespread aberrant 

neuronal activity (Helbig et al., 2008), which is rarely confined to a specific 

part of the brain. It is unlikely that a local resection would be curative to 

prevent all seizure types. Surgery did not lead to seizure freedom for any 

reported patient with mutations in SCN1A, CNTNAP2 or STXBP1 in this series, 

despite focal semiology for (at least some of their) seizures, and the fact 

that most of the patients had coincident structural (possibly) epileptogenic 

lesions. It is likely that these lesions were either not directly related to the 

genetic cause of epilepsy or that the lesions accounted for only some of 

the seizures. Possibly, surgery in these patients was not aimed at curing 

all seizure types, but only targeted seizures originating from a specific 

structural lesion. However, such a goal was not specified in any of the 

included articles, nor was the selective outcome for these specific “targeted” 

seizures. The disappointing overall seizure outcomes of surgery in patients 

with mutations in this group of genes suggest a relative contraindication 

for epilepsy surgery, particularly in MRI-negative patients.

Surgery successfully controlled seizures in both patients with mutations 

in SCN1B, one of whom was MRI-negative. In mice, one of the two splice 

variants of Scn1b is known to encode a secreted cell adhesion molecule 

involved in neuronal pathfinding during embryonic development, and 

epileptogenic mutations in Scn1b result in a functional knockout of this 

splice variant (Patino et al., 2011). Moreover, Scn1b knockout mice exhibit 

defective neuronal proliferation and migration in the hippocampus, which 

precedes hyperexcitability (Brackenbury et al., 2013). These findings suggest 

that SCN1B mutations may be associated with structural epileptogenic 

abnormalities, and focal resection may thus lead to favourable surgery 

outcome, rather than directly influencing neuronal excitability, as is the 

case for SCN1A mutations (Helbig et al., 2008).

We found large differences in success rate of surgery for epilepsy due to 

other genetic causes. Epilepsy surgery effectively controlled seizures in 

most described patients with epilepsy-associated microdeletions. Most of 
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these patients, however, had HS as an underlying structural epileptogenic 

substrate, which is generally associated with a favourable surgical outcome. 

Epilepsy surgery was effective in more than half of the neurofibromatosis 

type 1 patients. Similar to the situation in patients with pathogenic 

variants in mTOR pathway genes, NF1 is thought to affect only those parts 

of the brain with a second-hit mutation (Poduri et al., 2013), which could 

explain why resection of these affected parts can be curative. Epilepsy 

surgery for patients with Fragile-X syndrome or mitochondrial mutations 

could effectively control seizures, although only a few patients have been 

described.

Based on a subgroup analysis, we examined whether epilepsy surgery could 

be effective for MRI-negative patients with genetic epilepsy. Interestingly, 

MRI-negative patients had a wide range of different genetic causes (table 

1), but surgical success rate tended to be higher in cases with MRI showing 

visible lesions (66%) than in MRI-negative cases (33%), which is in line with 

previous studies (Téllez-Zenteno et al., 2010). Interestingly, two patients 

were reported after successful epilepsy surgery for genetic refractory 

epilepsy, but histological examination of the resected tissue did not reveal 

any abnormalities. However, we cannot exclude the possibility that subtle 

abnormalities may have gone undetected due to sampling errors, or that 

the resection may have removed crucial parts of the epileptogenic non-

lesional network. The outcome of these patients suggests that the absence 

of a detectable lesion on MRI in patients with genetic abnormalities should 

not in itself be an absolute contraindication for epilepsy surgery.

It remains unclear whether structural lesions are truly absent in MRI-

negative patients, or whether their apparent absence is simply based on 

limitations such as the detection sensitivity threshold of MRI performed 

or the experience of the radiologist (So and Lee, 2014). In accordance with 

previous studies (Téllez-Zenteno et al., 2010; So and Lee, 2014), we found 

that most MRI-negative patients who underwent surgery in this review 

had histological abnormalities suggestive of MCD in the resected tissue. 

New MRI methods, higher-field scanning, and post-processing techniques 

have already shown that it is possible to detect epileptogenic lesions which 

were not previously visible on conventional MRI scans, improving the 
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identification of surgical target areas and subsequently yielding higher 

success rates in patients with genetic refractory epilepsy.

There are a number of limitations to this systematic review. The low 

number of surgical cases for most genetic causes hampers firm conclusions. 

Furthermore, there is significant heterogeneity between reported patient 

characteristics and surgical procedures. The follow-up duration largely 

varies between studies and is sometimes not reported. Another source 

of heterogeneity stems from different mutations within the same gene 

among patients, which could potentially affect surgical outcome. Moreover, 

differences of expertise in genetic analysis or surgery, accessibility to 

genetic testing, and indications for epilepsy surgery could relate to lower 

reporting and different success rates of surgery. Although not explicitly 

stated in most studies, we assumed that reported mutations were detected 

in blood, unless specified otherwise. The extent of mosaicism and the effect 

on the occurrence of a lesion and surgical outcome remains unclear. In 

addition, publication bias, recall bias, and selection bias due to the scarce 

number of patients described in the literature cannot be excluded; it is 

possible that unsuccessful surgery is less likely to be reported.

Surgical candidacy, particularly for MRI-negative patients, is still not easily 

determined. Some patients are declined surgery because of a presumed 

non-structural, genetic aetiology. Finding a germline or mosaic mTOR gene 

mutation could justify continuation of the presurgical diagnostic process. 

Others, however, are offered resective surgery or invasive monitoring 

(sEEG) (because of presumed focal structural MRI-negative aetiology), 

although their epilepsy may have been primarily caused by a genetic 

and more diffuse aetiology, such as mutations in genes involved in ion 

channel or neurotransmitter function. Genetic testing is not yet routinely 

included in most surgical evaluation programmes. Nevertheless, finding 

specific gene mutations could prove valuable for the process of selecting 

surgical candidates and counselling patients on expected outcome. Larger 

and prospective studies are needed to further elucidate the importance 

of detecting genetic mutations in patients who are considered possible 

candidates for epilepsy surgery.
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Supplementary data
Summary didactic slides and supplementary tables are available at: https://

tinyurl.com/4j3srm5j.
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Abstract
Background and purpose

Juvenile myoclonic epilepsy (JME) is a common epilepsy syndrome for 

which treatment response is generally assumed to be good. We aimed to 

determine the prevalence and prognostic risk factors for refractoriness of 

JME.

Methods

We systematically searched PubMed and EMBASE and included 43 eligible 

studies, reporting seizure outcome after antiepileptic drug (AED) treatment 

in JME cohorts. We defined refractory JME as persistence of any seizure 

despite AED treatment and performed a random-effects meta-analysis to 

assess the prevalence of refractory JME and of seizure recurrence after AED 

withdrawal in individuals with well-controlled seizures. Studies reporting 

potential prognostic risk factors in relation to seizure outcome were included 

for subsequent meta-analysis of risk factors for refractoriness.

Results

Overall, 35% (95% confidence interval, 29–41%) of individuals (n = 3311) 

were refractory. There was marked heterogeneity between studies. Seizures 

recurred in 78% (95% confidence interval, 52–94%) of individuals who 

attempted to withdraw from treatment after a period of seizure freedom (n 

= 246). Seizure outcome by publication year suggested that prognosis did 

not improve over time. Meta-analysis suggested six variables as prognostic 

factors for refractoriness, i.e. having three seizure types, absence seizures, 

psychiatric comorbidities, earlier age at seizure onset, history of childhood 

absence epilepsy and praxis-induced seizures.

Conclusion

One-third of people with JME were refractory, which is a higher prevalence 

than expected. Risk factors were identified and can be used to guide 

treatment and counselling of people with JME.
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Introduction
Juvenile myoclonic epilepsy (JME) is the most common form of genetic 

generalized epilepsy, affecting 5–10% of all people with epilepsy, with a 

prevalence of 0.1–0.2/100 0001. JME typically manifests during adolescence 

and is characterized by arrhythmic myoclonic seizures, particularly occurring 

on awakening, and electroencephalography that shows generalized spike 

and polyspike waves2. Although not required for diagnosis, people with 

JME often also experience generalized tonic-clonic seizures and, less often, 

absence seizures2. According to its definition ‘response to appropriate drugs 

is good’2. This could lead to optimistic counselling by physicians. Seizures, 

however, continue despite adequate treatment with antiepileptic drugs 

(AEDs) in a proportion of patients and this impacts on quality of life3,4. Once 

an individual becomes seizure-free on AEDs, it is usually recommended to 

continue life-long therapy, given the high risk of relapse following drug 

withdrawal5, 6. Some studies have suggested that a subset of individuals 

remains seizure-free after drug withdrawal7, 8. It is important to establish 

how often individuals are refractory and how frequently AEDs can be safely 

withdrawn to allow reliable prognostic counselling.

Several studies have explored risk factors for refractory JME but individual 

studies are limited by relatively small sample sizes and there are 

inconsistencies between studies. Prediction of refractoriness is of value 

for individualized management, e.g. by considering higher drug doses, 

polytherapy, experimental AEDs or non-pharmacological treatment options 

earlier in those at risk9-12.

We aimed to provide a systematic overview of refractory JME and its 

prognostic risk factors. By meta-analysing available studies, we estimated 

the proportion of refractory JME and, at the other end of the spectrum, 

the proportion of individuals remaining seizure-free after drug withdrawal. 

Lastly, we assessed which clinical variables may predict refractory JME.
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Methods
Search strategy and study selection

Procedures were consistent with PRISMA guidelines13. A literature search in 

PubMed and EMBASE identified articles describing treatment outcome in 

people with JME (see Tables S1 and S2 for search terms). We did not adopt 

a registered pre-specified protocol.

We included all retrospective and prospective studies reporting seizure 

outcome after AED treatment in observational cohorts of individuals with 

a diagnosis of JME, regardless of the diagnostic criteria used by the study 

(see Table S3 for an overview), which may vary14. We excluded articles that 

specifically recruited refractory individuals or those in remission. Drug-

trial reports were not included as they could be biased towards individuals 

with a refractory condition. We contacted authors of articles describing 

multiple generalized epilepsy syndromes to provide stratified data of 

individuals with JME, if not available in the publication. We only included 

articles describing seizure freedom from all seizure types and excluded 

those with ambiguous definitions (e.g. ‘good outcome’) without specifying 

seizure freedom. When the same cohort was included in multiple reports, 

we included the most recent report, except in cases where an older article 

provided data on potential risk factors of refractory JME. Articles in English, 

Dutch and German were included.

Definitions of seizure freedom and refractory JME varied between articles, 

primarily regarding the length of the seizure-free follow-up period. Only 

two articles used the definition of drug-resistant epilepsy proposed by 

the International League Against Epilepsy in 201015. We defined refractory 

JME as persistence of any seizure (i.e. myoclonic, absence or generalized 

tonic-clonic seizures) despite AED treatment, regardless of the length of 

the seizure-free follow-up period. We assessed 1-year seizure freedom 

when multiple time points were described within the same study. Where 

possible, individual cases of ‘pseudo-refractory’ individuals (i.e. those who 

had seizures due to non-compliance, inadequate treatment or other factors 

not related to therapy) were excluded.
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Studies reporting potential prognostic risk factors stratified by seizure 

outcome were included for subsequent meta-analysis of risk factors for 

refractoriness.

All search results were reviewed based on title and abstract, and the full text 

was reviewed in potentially eligible articles. Reference lists were checked 

for additional eligible articles.

Data extraction

Study selection and data extraction were performed by R.S. A standardized 

data extraction form was created that contained the number of individuals 

who were seizure-free and those who were refractory, seizure outcome 

after drug withdrawal, mean follow-up duration, country, prospective or 

retrospective design, type of AED used and definition of seizure freedom.

Data of prognostic risk factors from articles reporting clinical variables 

stratified by seizure outcome were also extracted. To reduce publication 

bias, raw data of potential risk factors were extracted from all articles, 

regardless of whether the variable was tested for association with seizure 

outcome. We analysed only potential risk factors that were reported in at 

least two articles, regardless of whether they were significantly associated 

with outcome.

Statistical analyses

A random-effects meta-analysis was performed using the R package 

Metafor (v2.0-0) to assess the prevalence of refractoriness. The I2 statistic 

was assessed as a measure to quantify heterogeneity, where values between 

50% and 75% are considered to represent moderate heterogeneity and 

those >75% represent high heterogeneity16. We used a random-effects 

model to account for heterogeneity between studies17. Secondary analyses 

stratified by definition of refractory JME and by study design (prospective 

or retrospective) were performed to assess whether this increased 

homogeneity. Differences by publication year and differences between 1-, 

2- and 5-year seizure freedom were assessed with a mixed-effects meta-
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regression, using Metafor. A random-effects meta-analysis was performed 

using Metafor to assess the prevalence of individuals who remained seizure-

free after AED withdrawal.

Random-effects meta-analyses of potential risk factors were performed 

using Review Manager (v5.3) for all potential risk factors reported in at 

least two articles. We assessed the odds ratio as outcome measure for 

dichotomous variables and the mean difference for continuous variables.

Quality and bias assessment

The Newcastle–Ottawa quality assessment scale for cohort studies was used 

to assess the methodological quality of all studies included in the meta-

analysis of risk factors18. This scale is used to assess three major components, 

i.e. cohort selection, comparability and assessment of outcome, and ranges 

from 0 to 9, where studies are considered to have a high quality when 

scoring ≥5 and a low quality when scoring <5.

Funnel plots were generated as a measure to assess potential publication 

bias and were visually inspected for asymmetry19. Considering the small 

number of studies included per risk factor, we did not perform statistical 

tests for asymmetry of the funnel plot, as it is only recommended when 

including >10 studies per analysis19.

Results
The literature search was last performed on 1 March 2018 and yielded 1362 

articles (see Fig. 1 for flowchart). After removing duplicates and applying 

inclusion and exclusion criteria, 43 articles were included, describing 

treatment outcomes for a total of 3311 subjects (Table S4).
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Figure 1: Flowchart of search strategy and study selection. AED, antiepileptic drug; 
JME, juvenile myoclonic epilepsy.

Prevalence of refractory juvenile myoclonic epilepsy

Meta-analysis showed that 35% [95% confidence interval (CI), 29–41%] of 

individuals with JME were refractory to treatment (Fig. 2). The proportion 

of refractory subjects varied between 7% and 75%, and heterogeneity 

between studies was high (I2 = 91%). As the definition of seizure freedom 

varied between studies, we also performed analyses stratified by definition, 

which made little difference to the estimate of refractory JME or the 

amount of heterogeneity (Fig. 3). A meta-regression analysis showed no 

significant difference between 1-, 2- and 5-year seizure freedom (P = 0.41). 

The proportion of refractory patients was comparable between prospective 

(36%; 95% CI, 18–56%) and retrospective (35%; 95% CI, 29–42%) studies.
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Figure 2: Meta-analysis of the prevalence of refractory juvenile myoclonic epilepsy 
(JME). The proportion of subjects who were refractory is displayed on the x-axis. 
A total of 43 studies describing seizure outcome in 3311 individuals with JME were 
included. CI, confidence interval; RE, random-effects. References denoted as ‘e’ are 
available in the Supporting Information.
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Figure 3: Meta-analyses of the prevalence of refractory juvenile myoclonic epilepsy 
stratified by definition of seizure freedom. ILAE, International League Against 
Epilepsy; N, number of studies; I2, heterogeneity.

We next assessed whether the proportion of seizure-free individuals has 

changed over time (Fig. 4). A meta-regression analysis showed no significant 

association between publication year and percentage of refractoriness 

(mixed-effects meta-regression: P = 0.61).

Figure 4: Meta-regression of refractory juvenile myoclonic epilepsy by publication 
year. The proportion of refractory subjects per study is plotted by publication year. 
Each study is represented by a circle whose size is proportional to the sample size. 
A meta-regression trend line with 95% confidence interval (dotted lines) is plotted 
as a solid line.

Seizure recurrence after antiepileptic drug withdrawal

A total of 11 articles described a subset of 246 subjects who attempted AED 

withdrawal. Some studies had specific criteria for subjects to withdraw 

(e.g. at least 3-year seizure freedom), but most did not. Meta-analysis 
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showed that seizures recurred in 78% (95% CI, 58–94%) of subjects after 

withdrawal (Fig. 5), although estimates varied widely and heterogeneity 

was high (I2 = 84%).

Figure 5: Meta-analysis of seizure recurrence after antiepileptic drug (AED) 
withdrawal. The proportion of well-controlled subjects who experienced recurrence 
of seizures after AED withdrawal is displayed on the x-axis. A total of 11 studies 
describing 246 subjects were included. CI, confidence interval; RE, random-effects. 
References denoted as ‘e’ are available in the Supporting Information.

Risk factors for refractory juvenile myoclonic epilepsy

A total of 21 studies reported seizure outcome in relation to potential risk 

factors for refractory JME. Univariate meta-analyses were performed for 10 

risk factors (Table 1; see Figs S1–S10 for forest plots). Having three seizure 

types, absence seizures, psychiatric comorbidities, a history of childhood 

absence epilepsy (CAE) progressing to JME, praxis-induced seizures 

(seizures and epileptiform electroencephalographic discharges precipitated 
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by complex, cognition-guided tasks, such as playing chess, writing or 

drawing) and early age at epilepsy onset were each significant risk factors 

for refractory JME. Heterogeneity between studies was mild to moderate. 

Scores on the Newcastle–Ottawa quality assessment scale (Table S5) ranged 

between 2 and 7 (mean 4.1) [13 studies were assessed as low (score ≤4) 

and 8 as high (score ≥5) quality]. Funnel plots, inspected as a measure of 

publication bias, did not show asymmetry (Figs S1–S10).

Risk factor Number 
of 
studies

Number 
of 
subjects

Test statistic  
(95% CI)

P-value Heterogeneity  
(I2)

Three seizure types 
(myoclonic+GTCS+absences)

11 864 OR: 2.97  
(1.87, 4.71)

<0.00001 19%

Absence seizures 13 961 OR: 2.81  
(1.77, 4.45)

<0.0001 42%

Psychiatric comorbidities 8 802 OR: 3.78  
(2.46, 5.81)

<0.00001 9%

Female gender 10 855 OR: 1.19  
(0.85, 1.66)

0.32 0%

Epileptiform asymmetries  
on EEG

7 622 OR: 1.66  
(0.71, 3.92)

0.24 54%

Photoparoxysmal response 5 395 OR: 0.89  
(0.49, 1.62)

0.70 0%

Family history of epilepsy 9 782 OR: 1.03  
(0.72, 1.49)

0.86 0%

History of childhood absence 
epilepsy progressing to JME

4 353 OR: 4.55  
(1.38, 15.01)

0.01 56%

Praxis induced seizures 2 110 OR: 3.73  
(1.44, 9.68)

0.007 0%

Early age at epilepsy onset 8 517 MD: -1.60 
(-2.81,  -0.40)

0.009 47%

Table 1: Risk factors for refractory JME, assessed with random-effects meta-
analysis. CI, confidence interval; EEG, electroencephalography; GTCS, generalized 
tonic-clonic seizures; MD, mean difference; OR, odds ratio. Significant associations, 
defined as a meta-analysis P-value <0.05, are highlighted in bold.

Discussion
One-third of the described subjects with JME were refractory (Fig. 2). The 

estimates of refractoriness were comparable when assessing 1-, 2- and 

5-year seizure freedom (Fig. 3), suggesting that people who are seizure-

free for at least 1 year are likely to remain so. This is consistent with studies 
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that reported 1- and 2-year or 1- and 5-year seizure freedom in the same 

subjects, which showed minor differences between outcomes at different 

follow-up intervals20, 21.

We found no evidence for a decrease in the proportion of refractory JME 

over the last decades. Valproate, marketed as an AED since 1967, is still 

considered the most effective drug for people with JME9, 22, 23. Thus, there is 

still much room for improvement.

In contrast to the International League Against Epilepsy definition (1989) of 

JME, describing the treatment response to ‘appropriate drugs’ as ‘good’, our 

results suggest that the proportion of refractoriness is not much different 

from the overall proportion of refractoriness in people with epilepsy, which 

is estimated between 16% and 37%24-26. Physicians should be careful when 

counselling people with JME that their prognosis is particularly good. It is 

possible, however, that we overestimated refractoriness in JME. Individuals 

in the included studies were mainly treated at tertiary centres and are likely 

to have more severe or difficult-to-treat epilepsy than those at secondary 

centres. Conversely, it has been shown that seizure control improves after 

referral to tertiary care27. It is also possible that some were misdiagnosed, as 

other conditions may mimic JME28. There is also the possibility of selection 

bias and selective loss to follow-up of people with a more benign course, 

who might be less inclined to return to the clinic or agree to inclusion in a 

study. Our estimate, however, could be an underestimation of refractoriness 

of myoclonic seizures, which are difficult to objectify and can be under-

reported. Another limitation is that study selection and data extraction were 

performed by a single author. Statistical heterogeneity between studies 

was substantial, but definition of seizure freedom, publication year or 

retrospective versus prospective study design did not seem to play a major 

role in heterogeneity. Other potential causes of heterogeneity could not be 

assessed, such as ethnic origins, different treatment regimens and different 

diagnostic criteria. Determining seizure freedom is subjective and a recent 

study established that inter-observer variability (using the same criteria 

and the same individual records) was relatively high, with kappa values 

ranging between 0.56 and 0.77 . It is likely that intra-observer variability 

would be even higher when the same individual records are not used. Thus, 
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intra-observer variability is likely to have played a role in heterogeneity 

between studies.

About one-fifth of subjects are reported to remain seizure-free after treatment 

withdrawal (Fig. 5), which is substantially less than the overall estimate of 

two-thirds for all types of epilepsy30, 31. Estimates between studies, however, 

varied widely. A potential cause of heterogeneity is age at withdrawal and 

therefore duration of seizure freedom, as these variables are predictors of 

seizure recurrence in the general epilepsy population30 and JME has been 

shown to subside with age32. Age at AED withdrawal was rarely reported, 

but the three studies reporting a good prognosis mostly included people over 

40 years of age7, 21, 33, whereas the two studies reporting that all subjects had 

seizure recurrence included mainly people in their twenties22, 34. It is possible 

that the actual proportion of seizure freedom after AED withdrawal is higher 

for older subjects. Insufficient information about individuals who attempted 

AED withdrawal was available to allow identification of potential prognostic 

factors. Future studies are needed to evaluate which subjects are most likely 

to remain seizure-free after treatment withdrawal.

Our meta-analyses revealed six significant risk factors for refractoriness, 

but did not provide evidence for the other four clinical variables to be 

significantly associated (Table 1). It is likely that these variables are inter-

related. For example, a history of CAE relates to having absence seizures 

and to an earlier age at epilepsy onset6, and most people with JME who have 

absence seizures had three seizure types35.

Cause and effect cannot be established due to the cross-sectional nature 

of the studies. We cannot rule out that psychiatric comorbidities are due 

to AED side-effects or to having prolonged refractory seizures, rather than 

being the cause. It is also possible that people with psychiatric comorbidities 

are less adherent to treatment rather than being non-responsive to AEDs.

It remains uncertain whether the risk factors for refractory JME represent a 

lack of response to treatment or a higher disease burden. People with early 

disease onset, multiple seizure types and psychiatric comorbidities may 

have more severe brain disease, which makes it more difficult to control all 

seizure types. Conversely, someone with only occasional seizures can be well 
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controlled even when the medication is only mildly effective. It has also been 

suggested that people with CAE progressing into JME represent a distinct 

clinical entity, with a different inheritance pattern and seizure outcome6. 

They rarely become completely free of all seizures. Most described individuals, 

however, do become free of myoclonic seizures and generalized tonic-clonic 

seizures, with only absences persisting. This suggests the possibility that 

different seizure types respond differently to treatment. A genetic study 

comparing drug-responsive individuals with those who are refractory could 

unravel a distinct genetic basis of treatment response, higher genetic overlap 

with CAE or higher polygenic burden of JME-associated risk alleles.

Further studies using individual data are required to assess which variables 

are independent predictors of refractory JME to allow for an individualized 

prediction of seizure outcome to be used to guide treatment.
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Summary
Background

A third of people with juvenile myoclonic epilepsy (JME) are drug-resistant. 

Three-quarters have a seizure relapse when attempting to withdraw anti-

seizure medication (ASM) after achieving seizure-freedom. It is currently 

impossible to predict who is likely to become drug-resistant and safely 

withdraw treatment. We aimed to identify predictors of drug resistance 

and seizure recurrence to allow for individualised prediction of treatment 

outcomes in people with JME. 

Methods

We performed an individual participant data (IPD) meta-analysis based on 

a systematic search in EMBASE and PubMed – last updated on 11 March 2021 

– including prospective and retrospective observational studies reporting 

on treatment outcomes of people diagnosed with JME and available seizure 

outcome data after a minimum one-year follow-up. We invited authors 

to share standardised IPD to identify predictors of drug resistance using 

multivariable logistic regression. We excluded pseudo-resistant subjects. 

A subset who attempted to withdraw ASM was included in a multivariable 

proportional hazards analysis on seizure recurrence after ASM withdrawal. 

The study was registered at the Open Science Framework (OSF; https://osf.

io/b9zjc/). 

Findings

Our search yielded 1641 articles; 53 were eligible, of which the authors 

of 24 studies agreed to collaborate by sharing IPD. Using data from 2518 

people with JME, we found nine independent predictors of drug resistance: 

three seizure types, psychiatric comorbidities, catamenial epilepsy, 

epileptiform focality, ethnicity, history of CAE, family history of epilepsy, 

status epilepticus, and febrile seizures. Internal-external cross-validation 

of our multivariable model showed an area under the receiver operating 

characteristic curve of 0·70 (95%CI 0·68-0·72). Recurrence of seizures after 

ASM withdrawal (n=368) was predicted by an earlier age at the start of 

withdrawal, shorter seizure-free interval and more currently used ASMs, 

resulting in an average internal-external cross-validation concordance-

statistic of 0·70 (95%CI 0·68-0·73).
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Interpretation

We were able to predict and validate clinically relevant personalised 

treatment outcomes for people with JME. Individualised predictions are 

accessible as nomograms and web-based tools. 

Funding

MING fonds

Research in context
Evidence before this study

Juvenile myoclonic epilepsy (JME) is a common generalised epilepsy 

syndrome. According to the 1989 definition of JME, ‘response to appropriate 

anti-seizure medication (ASM) is good’, and this is a recurring assumption. 

In a recent systematic review and meta-analysis, we reported that a 

third of people with JME are drug-resistant. We also found that three-

quarters of individuals attempting to withdraw treatment after becoming 

seizure-free experienced a recurrence of seizures, far more than most 

other epilepsy types. We last updated our systematic literature search in 

PubMed and Embase on 11 March 2021 to identify observational cohorts 

describing treatment outcomes of people with JME. Previous studies 

identified potential predictors of drug-resistant JME but used univariable or 

underpowered multivariable analyses. Thus, it is unknown which variables 

have independent predictive power for drug resistance. There are no known 

predictors for seizure recurrence after ASM withdrawal in JME. Several 

predictors of seizure recurrence have previously been identified in broader 

epilepsy populations, but it is unclear if these can be generalised to JME. 

Added value of this study

This individual participant data (IPD) meta-analysis used 41 variables from 

2518 people to find predictors of drug resistance and seizure recurrence 

in JME. We identified nine independent predictors of drug-resistant JME, 

seven previously reported, and two novel: ethnicity and family history of 

epilepsy. We found three predictors of seizure recurrence after treatment 

withdrawal. Only one of the previously identified risk factors of post-
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withdrawal relapse in broader epilepsy populations was also predictive in 

JME. The strongest predictor for post-withdrawal seizure recurrence in JME 

– earlier age at the start of withdrawal – had an inverse direction of effect 

compared to other epilepsy types. We created prediction models, visualised 

with nomograms and a web-based calculation tool, which showed good 

predictive performance at the individual participant level. We performed 

internal-external cross-validation of the drug resistance and post-

withdrawal seizure recurrence prediction models, which showed robust 

external predictive performance. 

Implications of all the available evidence

We created and validated prediction models, available as nomograms and 

web-based tools, to improve and personalise JME treatment. For example, 

early referral to an epilepsy clinic should be considered for people at risk 

of drug resistance. The risk-benefit ratio of valproate should be carefully 

assessed at childbearing age due to its superiority in seizure control and 

teratogenicity risk. Individualised prediction of a low seizure relapse risk 

could guide specific individuals towards a relatively safe ASM withdrawal 

attempt. In contrast, others – with a high-risk profile – should remain on 

therapy.
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Introduction
Juvenile myoclonic epilepsy (JME) is the most common idiopathic and 

presumed genetic generalised epilepsy syndrome, affecting 5-10% of all 

people with epilepsy.1 Response to anti-seizure medication (ASM) is often 

assumed to be good,2,3 but we recently reported that a third of all people 

with JME are drug-resistant.4 People with JME are widely believed to require 

lifelong treatment.5,6 After a period of seizure freedom, however, around a 

quarter of those who withdraw treatment may remain seizure-free.4

Predicting which individual is likely to become drug-resistant those who could 

safely withdraw ASM treatment after a certain period of sustained seizure-

freedom, has clinical benefits. Drug withdrawal improves the quality of life 

by avoiding the adverse effects of potentially unnecessary treatment.7,8 We 

previously identified 43 reports providing treatment outcomes in cohorts of 

people with JME.4 We found six prognostic risk factors for drug resistance. Some 

of these risk factors are collinear, and it is unknown which have independent 

predictive value. Recent published multivariable prediction models of drug 

resistance had intrinsic limitations due to relatively small and heterogeneous 

cohorts, including different types of generalised epilepsy.9,10 There are currently 

no known risk factors for seizure relapse after ASM withdrawal in JME, other 

than those previously identified in the broader epilepsy population.11 

We aimed to identify independent predictors of drug resistance and post-

withdrawal relapse risk based on individual participant data (IPD) from 

previously published study cohorts. We developed and validated predictive 

tools to calculate these risks.

Methods
Search strategy and selection criteria

We performed a meta-analysis of individual participant data according to a 

pre-registered protocol (https://osf.io/b9zjc/). The methods and reporting are 

consistent with the PRISMA-IPD12 and TRIPOD statements.13 We systematically 

searched PubMed and EMBASE for articles published in English, Dutch, 

German, Spanish or French describing treatment outcomes in observational 

cohorts of people with JME, with no date restrictions. The literature search 
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was last updated by RS on 11 March 2021, using the same search terms and 

study-level inclusion and exclusion criteria as in a previously published 

meta-analysis:4 we included retrospective and prospective studies reporting 

on treatment outcomes of people with a diagnosis of JME. As individuals 

were diagnosed before the proposed consensus criteria,5 our diagnoses were 

primarily made according to descriptive criteria. JME is a distinctive syndrome 

characterised by juvenile-onset myoclonic seizures and generalised tonic-

clonic seizures (GTCS), usually occurring after wakening and evoked by sleep 

deprivation, alcohol consumption, and especially a combination of irregular 

spike and wave discharges in the EEG.2 We excluded articles exclusively 

reporting on people with drug-resistant JME or in remission. We excluded 

drug trials as these could be biased towards people with drug-resistant JME. 

We used three individual-level inclusion criteria: (1) clinical diagnosis of JME, 

regardless of the diagnostic criteria used by the study,5 (2) at least one year of 

follow-up, and (3) available information regarding seizure outcome, with ASM 

use. People with pseudo-resistant epilepsy were excluded, i.e. seizures due 

to non-compliance, inadequate treatment or inadequate lifestyle regulation.14 

People who had attempted to withdraw ASM after a period of seizure freedom 

were included in an analysis to assess predictors of seizure relapse after ASM 

withdrawal. We found one additional article by cross-referencing. 

We invited the corresponding authors of all potentially eligible studies to 

collaborate by sharing IPD. If we received no reply, we sent two reminders 

4-6 weeks apart, and when possible, we contacted additional authors of the 

same study. We searched ResearchGate, the International League Against 

Epilepsy (ILAE) website, other publications by the same authors and 

performed a manual internet search for alternative contact details. 

Authors who agreed to collaborate were asked to provide treatment outcome 

data and potential predictors by filling in a standardised data entry sheet 

containing 41 variables (supplementary table 1). Alternatively, collaborators 

could send a datasheet in their format, after which the coordinating 

investigator standardised the data. Some collaborators could update their 

data with additional variables or subjects not included in their original 

publication. All datasets were manually reviewed, and potential discrepancies 

were resolved by discussion with the contributing author. We did not include 

aggregate study data without IPD.
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As in our previous meta-analysis, we used the Newcastle-Ottawa quality 

assessment scale for cohort studies to assess the methodological quality 

of all the included studies.15 The scale ranges between 1-8, where higher 

scores represent a higher quality and less risk of bias.

Our study was a meta-analysis of de-identified individual data and did 

not require ethical approval or specific informed consent. Local research 

ethics committees or other entities overseeing personal data had approved 

the original studies. Where applicable under local regulations, data sharing 

agreements were signed before receiving individual data.

Outcome and predictor variables

We used a combination of outcome measures to define drug resistance and 

seizure recurrence after ASM withdrawal. For the primary analysis, we used 

the definition of drug-resistant epilepsy formulated by the ILAE, taking 

each seizure type into account.16 This was defined as the failure of two 

or more adequate trials of well-tolerated and appropriately chosen drug 

schedules. We assessed whether people had not had seizures of any type in 

the last one, two or five years of follow-up as sensitivity analyses. Similarly, 

we specifically ascertained whether individuals were free of GTCS in the 

last one, two or five years of follow-up, as these are the most debilitating 

seizure type and are less likely to be underreported.

We assessed seizure recurrence in a subset of people who attempted to 

withdraw treatment after a period of seizure freedom. Seizure recurrence 

was evaluated at two and five years after initiation of ASM withdrawal. Our 

primary analysis comprised recurrence of any seizure after start of ASM 

withdrawal. We also specifically assessed GTCS recurrence.

We selected candidate predictors of drug resistance and seizure recurrence 

based on our previous meta-analysis on refractory JME,4 our previous 

publication on seizure recurrence in general cohorts of people with epilepsy11, 

and potential predictors identified by included studies. We focused on 

readily available predictors in a routine clinical setting, excluding variables 

such as advanced EEG processing data or functional MRI biomarkers. 

Supplementary table 1 provides an overview of all outcome measures, 

predictors, and definitions.
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Data analysis

The supplementary methods provide a detailed overview of all analyses 

and statistical methods. In brief, the proportion of drug-resistant JME was 

assessed with random-effects meta-analysis and a meta-regression of drug 

resistance by publication year. Multiple imputations were used to deal with 

missing data.17 Mixed-effects logistic regression analyses were performed 

to evaluate potential risk factors for drug resistance. First, all predictors 

with p<0·2 were taken forward to a multivariable model. The model was 

reduced by backward selection of the least contributing variables, based 

on the minimisation of the Akaike information criterion. Internal-external 

cross-validation was performed by leaving one cohort out of the training 

dataset and validating the model on each holdout cohort. The area under the 

receiver operating curve (AUC) was computed by merging the predictions 

of each cross-validation iteration.18 As sensitivity analyses, we assessed the 

ability to predict freedom of any seizure and freedom of GTCS in the last 

one, two and five years of follow-up, based on the same predictors. 

Cox proportional hazards analyses were performed to assess the time to 

seizure recurrence after start of ASM withdrawal. Univariable predictors at 

p<0·2 were used for multivariable analyses, after which backward selection 

was performed to remove the least contributing predictors. We performed an 

internal-external validation by splitting the 18 cohorts with data on post-

withdrawal seizure recurrence into three datasets of 6 cohorts, balanced on 

sample size. We trained the prediction model on 12/18 cohorts and assessed 

the external predictive value of this model on the left-out 6 cohorts, 

quantified with the concordance-statistic (C-statistic).19 Such non-random 

internal-external validations qualify as external validations of the model.20,21 

AUC and C-statistic values range between 0 and 1, where a value of 0.5 

represents no better prediction than chance, and 1 represents perfect 

predictive performance. A value <0.7 is generally considered poor, ≥0.7 is 

deemed acceptable, and ≥0.8 is considered excellent.22 

All statistical analyses were performed in RStudio Version 1.3.1093, using the 

packages: MICE, metafor, glmer, rms, coxme, rsample, purrr, survminer, 

tidyverse, ggplot, and survAUC.
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Nomogram and web-based risk assessment tool

To aid use in clinical practice, we converted our multivariable models to 

nomograms and web-based tools. The nomograms are visual representations 

of the mixed-effects logistic regression analysis on drug resistance and the 

Cox proportional hazards model on seizure recurrence within 2 and 5 years. 

They come with instructions to manually estimate clinical outcomes for an 

individual. Similarly, we translated the models into web-based tools where 

a user can fill in predictors to obtain the associated probability of a clinical 

outcome for an individual.

Role of funder

The study’s funder had no role in the study design, data collection, data 

analysis, data interpretation, drafting of the report or the decision to submit. 

Figure 1: Flowchart of search strategy and study selection. 
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Results
We screened 1334 articles and identified 53 eligible studies (figure 1). 

The authors of 24 of these studies were able and willing to provide IPD. 

Four were prospective, 19 were retrospective, and one study had a mixed 

retrospective and prospective design (see supplementary table 2 for study 

characteristics).23–43 Eligible articles of which IPD was not included were 

similar in design and proportion of drug resistance, although some were 

markedly older and smaller (supplementary table 3). Meta-regression 

incorporating non-included articles, did not show changes in drug 

resistance by publication year (p=0.44; supplementary figure 1). Based on 

the Newcastle Ottowa assessment scale, the original publications’ quality 

scores ranged between three to seven (mean 4·4; supplementary table 4).

In total, 2518 individuals from 18 countries and various ethnicities were included 

in the predictive analyses of drug resistance. Missing data before imputation 

ranged between 0% and 38% per variable (median 10·0%, IQR 0-19·4%). 

Among variables included in the drug resistance analysis, three variables had 

missing data between 25% and 40%; eight variables were missing between 

10% and 25%, five variables between 1% and 10%, and data was complete 

for seven variables (supplementary figure 2). Among variables included in the 

seizure recurrence analysis, two variables were missing between 25 and 45%, 

nine variables between 10% and 25%, ten variables between 1% and 10%, and 

data were complete for ten variables (supplementary figure 3). 

Follow-up duration ranged from one to 73 years (median 8·0, IQR 4·0-16·0). 

Information on current ASM treatment was available for 2365 people, of which 

805 (34%) were on multiple ASMs, and 1560 (66%) were on monotherapy 

(supplementary table 5). Among those on monotherapy, valproate was 

most often used (n=826, 54%), followed by levetiracetam (n=352, 23%) 

and lamotrigine (n=154, 10%). Amongst 2216 people with known past ASM 

treatment, 661 (30%) were still taking the first prescribed medication, 

727 (33%) had used one, and 828 (37%) used two or more previous ASMs 

(supplementary table 6). A subset of 368 people with JME (15% of the total 

cohort) had attempted to withdraw from ASM treatment at any time during 

follow-up (median follow-up after the start of withdrawal: 4·0 years, IQR 

1·5-9·0). Of these, 112 (30%) were not using any ASM at the last follow-up.



Prediction models for juvenile myoclonic epilepsy

251   

11

Meta-analysis showed that 29% (95%CI 23-36%) of people with JME were 

drug-resistant (supplementary figure 4), with significant heterogeneity 

between studies (I2=88%, p<0·0001). Amongst 388 drug-resistant people 

with data on the most extended period of seizure freedom, 250 (64%) had 

never been seizure-free for more than 12 months, and 58 (15%) were never 

free of seizures for more than one month at any point. 

Univariable mixed-effects logistic regression analysis identified 18 

predictors of drug resistance at p<0·2 (table 1; distributions of drug 

resistance and seizure recurrence concerning potential predictors are in 

supplementary table 7), some of which were correlated (see supplementary 

table 8). After backward selection in multivariable analyses, we identified 

nine variables with independent predictive values for drug-resistant JME 

(figure 2, supplemental Table 9): psychiatric comorbidities, three seizure 

types, focal epileptiform activity on EEG, catamenial epilepsy, status 

epilepticus, history of febrile seizures, family history of epilepsy, history 

of CAE progressing to JME, and ethnicity. Associations were similar when 

restricted to 1163 cases with complete data (supplementary table 10).

We performed internal-external cross-validation to assess the external 

predictive value of the multivariable model, which showed an AUC of 0·70 

(95%CI 0·67-0·72). The AUC varied between 0·56 and 0·84 per left-out 

cohort (median 0·70, IQR 0·66-0·76), with smaller cohorts on both ends 

of the distribution (supplementary table 11). A plot of predicted against 

observed probabilities showed excellent calibration (figure 2B). 

As further sensitivity analyses, we assessed how well we could predict 

freedom of any seizure and freedom of GTCS in the last one, two and five 

years of follow-up. We used the same predictors (see supplementary table 

12 for a correlation matrix of outcome measures), without considering the 

pre-treatment seizure interval and the number and appropriateness of each 

drug trial as in the drug resistance analyses. The AUC for freedom of any 

seizure was 0·67 (95%CI 0·65-0·69) for the last year, 0·63 (0·61-0·66) for 

two years, and 0·59 (0·56-0·61) for five years. The AUC of the prediction 

model for freedom of GTCS, was 0·64 (0·61-0·67) for the last year, 0·62 

(0·59-0·64) for two years and 0·63 (0·60-0·66) for five years. 
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Figure 2: (A) Nomogram for prediction of drug-resistant JME. For example, a 
Caucasian (18 points) girl with a history of febrile seizures (9), who never had a 
status epilepticus, who has a psychiatric comorbidity (12.5), no family history of 
epilepsy (0), three seizure types (19.5), catamenial epilepsy (13), focal epileptiform 
activity on EEG (17), no history of childhood absence epilepsy (CAE; 0), has a total 89 
points, corresponding to a 90% risk of drug resistance. (B) Calibration plot comparing 
observed and predicted probabilities, which should ideally follow the diagonal line.

We performed survival analyses to assess the recurrence of seizures in people 

who attempted to withdraw their ASM treatment (n=368). These subjects 

were older and included more people of Asian ethnicity compared to people 

who did not try to withdraw treatment but did not differ in other predictors 

of drug resistance (supplementary table 13). Five years after initiation of 

ASM withdrawal, 73% (95%CI 67-78%) had experienced seizure relapses 

(figure 3). Slightly fewer (69%, 95%CI 62-74%) had a seizure recurrence 

when assessing only GTCS. Amongst 116 people restarting treatment after a 

seizure recurrence and followed at least two years after recurrence, 90 (78%) 

regained freedom of any seizure for at least 12 months at the last follow-up.

Univariable analyses showed ten predictors of seizure recurrence at p<0·2 

(table 1). Subsequent multivariable analyses and backwards selection showed 

three variables with independent predictive value (supplementary table 14, 

figure 4): age at withdrawal, the seizure-free interval before withdrawal and 

number of ASM used at the start of reduction. Restricting analyses to 282 

complete cases did not affect these associations (supplementary table 15). 
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Internal-external cross-validations by creating three splits of our data (6 

cohorts per split) showed similar external predictive performance for all three 

data splits (split 1: n=119, C-statistic=0·68; split 2: n=121, C-statistic=0·74; 

split 3: n=128, C-statistic=0·70), with an average C-statistic of 0·70 (95%CI 

0·68-0·73). Plotting observed against predicted probabilities showed 

good calibration (figure 4B). As an example, only 44% (95%CI 33-53%) 

of people older than 30 years at withdrawal had a recurrence of seizures 

within two years, compared to 68% (95%CI 61-73%) of those less than 

30 years old (supplementary figure 5). Assessment of recurrence of GTCS 

after ASM withdrawal revealed one additional risk factor: people who had 

more than ten GTCS before remission of seizures (supplementary table 16), 

but the external predictive value for recurrence of GTCS was poor (split 

1: n=94, C-statistic=0·64; split 2: n=94, C-statistic=0·56; split 3: n=93, 

C-statistic=0·61), with an average C-statistic of 0·61 (95%CI 0·58-0·63).

Figure 3: Survival curve for seizure-freedom after initiation of ASM withdrawal. 
Freedom of any seizure after withdrawal (blue) and freedom of generalised tonic-
clonic seizures (GTCS; red) after withdrawal are displayed, with the 95% confidence 
interval in shaded colours. The X-axis represents the years after start of withdrawal. 
The number of subjects at risk is displayed below risk for each time point. 
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Figure 4: (A) Nomogram for predicting recurrence of any seizure after ASM 
withdrawal in people with JME. For example, someone with JME who is 44 years 
old at initiating withdrawal (6 points), who has been seizure-free for the last four 
years (6 points) and is currently using 1 ASM (0 points) has a total score of 12, which 
corresponds to a 37% chance of recurrence in 2 years and a 48% chance of recurrence 
at five years. (B) Calibration plot comparing observed and predicted probabilities, 
which should ideally follow the diagonal line. 

Discussion
We collected IPD from a large group of people, enabling the creation of 

prediction models for individual assessment of drug resistance (n=2518) 

and seizure recurrence risk after withdrawal of ASM treatment (n=368) 

in JME. We validated the prediction models and found good calibration. 

Three-quarters of people who attempted to withdraw ASMs experienced a 

seizure recurrence within five years, for which we found three predictors. 

A third of people with JME were drug-resistant, for which we found nine 

independent predictors.

We confirmed multiple previously found risk factors of drug resistance.4,10,44 

Some of these predictors were correlated, and we included all possible 

predictors in a sufficiently powered single model. We based our multivariable 

prediction model on routinely available variables for the model to be 
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freely used in clinical practice. Prediction of a relatively high risk of drug 

resistance could have implications for counselling and treatment guidance. 

For example, a Caucasian woman with catamenial epilepsy, three seizure 

types and psychiatric comorbidities has a high risk of drug resistance. Early 

referral to a specialised epilepsy clinic should then be considered. Valproate 

may be regarded as an option at childbearing age, but only after careful 

consideration of the superior efficacy versus teratogenicity.45 

We identified two predictors not previously associated with drug-resistant 

JME: family history of epilepsy as a risk factor, and Asian ethnicity was 

protective compared to Caucasians. The most likely explanation for this 

association is that both predictors are proxies of the presumed population-

specific genetic basis of JME.46 Alternatively, there might be differences in 

under-reporting seizures relating to cultural and ethnic differences, social 

stigma, or driving licence regulations.47,48 

We found three predictors of seizure recurrence after ASM withdrawal. 

There are several predictors of seizure recurrence in the broader epilepsy 

population,11 but it is unknown whether this could be generalised to specific 

syndromes such as JME. We found that only one out of eight previously 

identified risk factors for seizure recurrence was predictive in JME. 

Interestingly, the strongest predictor in JME, age at ASM withdrawal, has 

an opposite direction of effect than in the broader epilepsy population:11 

older age at withdrawal reduces the risk of seizure recurrence in JME. 

In contrast, it increases seizure recurrence risk in a large population of 

other epilepsy forms.11 These findings underscore the benefit of assessing 

a specific epilepsy syndrome instead of pooling heterogeneous epilepsy 

subtypes. We found that two-thirds of people with JME had a recurrence of 

seizures within five years, much higher than for other types of epilepsy.11 

This recurrence risk aligns with the common perception that people with 

JME require lifelong treatment. A subset of people, particularly older people 

using one ASM with prolonged seizure freedom, may have a good chance 

of remaining seizure-free. This is in line with the finding that myoclonic 

seizures often cease in the fourth decade.25

Our results showed a higher AUC for drug resistance prediction than seizure 

freedom prediction in the last one, two, and five years. The higher AUC 
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suggests that the formal definition of drug resistance as defined by the 

ILAE,16 which considers the pre-treatment seizure interval and the number 

and appropriateness of each drug trial, is a more robust outcome measure 

than seizure freedom alone. We did not achieve excellent predictive 

accuracy, despite the large sample size and the checking of various 

independent predictors. One explanation could be that drug response may 

change over time, whereas the predictors remain stable throughout life.49 

Indeed, repeated remissions and relapses are common in epilepsy (although 

not explicitly assessed in JME-only cohorts),50 and some people resistant 

to the first two ASM regimens become seizure-free upon a third or later 

regimen.51,52 Conversely, two-thirds of people with drug resistance had 

a prior episode of remission longer than one year.53 The ILAE definition 

of drug resistance outperforms previous definitions but there remains a 

substantial inter- and intra-observer variability.54 

We found a higher AUC for predicting seizure freedom and recurrence of 

seizures after ASM withdrawal when assessing any seizure type compared 

to the analyses confined to GTCS. Analyses on GTCS may lack statistical 

power. Alternatively, freedom of GTCS might be inherently more challenging 

to predict since GTCS often occur less frequently than myoclonic or absence 

seizures. For example, assessing GTCS freedom in the last year of follow-

up might be an unreliable measure for someone only having GTCS every 

other year. Hence, we would advocate using the ILAE definition of drug 

resistance, which considers all seizure types and pre-treatment seizure 

intervals.

Our study has limitations. The included cohorts were primarily obtained 

from tertiary care centres, potentially limiting the generalisability of our 

prediction model to primary and secondary care. Potential selection bias 

and selective loss to follow-up of drug-responsive people could further 

reduce the representativeness of our dataset. We provided a standardised 

data entry sheet, but significant intra- and inter-observer variability likely 

remain. We found considerable heterogeneity between cohorts. Potential 

sources of heterogeneity include differences in demography, study 

ascertainment, country-specific healthcare organisation and accessibility. 

In particular, differences in ethnicity between studies could explain part of 
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the heterogeneity in the proportion of drug resistance, and age differences 

might explain heterogeneity in seizure recurrence rate after withdrawal. We 

mitigated the influence of between-study heterogeneity by using random-

effect statistical models, although heterogeneity might have still limited the 

predictive performance of our models. As most studies were several years 

old, collecting all potential predictors for each subject was impossible. We 

mitigated this by performing multiple imputations of missing data, reducing 

bias and increasing precision.55 We included only readily available clinical 

predictors. It is possible that the predictive performance could be improved 

if other variables such as genetic diagnostic investigations, advanced EEG 

analysis, and functional MRI measures were included. Only six ethnic 

Asians were included in studies outside of Asia, and no Caucasians were 

included in Asian studies. Therefore, we were unable to perform stratified 

analyses on ethnicity by location. Lastly, the small proportion of subjects 

that attempted to withdraw treatment limited our analyses on predictors 

of seizure recurrence. We were unable to find an individually large enough 

cohort to perform external validation. However, our internal-external cross-

validations performed by creating three splits of the 18 cohorts showed 

robust external predictive performance of our models,20,21 suggesting that 

the predictors are similar across different populations. . It is essential to 

consider these limitations in the context of the evidence before this study. 

Knowledge on JME prognosis and risk factors of drug resistance is currently 

based on single-centre cohort studies without validation, ASM withdrawal 

is rarely attempted, and there are currently no known predictors to guide a 

safe attempt. Despite some unavoidable limitations, a meta-analysis of IPD 

represents the best available evidence at this moment.56 

In conclusion, we assessed whether we could predict the likelihood that 

an individual with JME will become drug-resistant or has a seizure 

recurrence after ASM withdrawal. After validating these predictions, we 

created nomograms and developed publicly accessible web-based tools to 

help estimate individualised risks (http://epilepsypredictiontools.info/). 

We expect that the models will aid in improving and personalising the 

treatment and counselling of people with JME. 
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Genetic basis of common epilepsies
Although heritability studies have long shown that epilepsy has a genetic 

basis, pinpointing the underlying variants and genes has long remained 

elusive. In our GWAS (chapters 2 and 6), we were able to leverage massive 

sample sizes through-large scale international collaborations, in order to 

elucidate the genetic basis of common epilepsies. We found that 39% of GGE 

risk can be explained by common variants (SNP-based heritability), which 

increases to up to 64% when assessing the subsyndrome JME, thereby 

largely closing the gap of missing heritability, which is estimated at 65-

76%.1–3 The remaining part of GGE liability could be due to a combination of 

random chance,4 environmental factors,5,6 and genetic variants with a larger 

effect, such as rare variants7,8 and copy-number variants.9 We observed that 

roughly two-thirds of the genetics variants underlying the different GGE 

syndromes were shared, which is reflected by the high number of genome-

wide significant loci when combining the syndromes into an overall GGE 

GWAS. On the other hand, part of the heritability of GGE syndromes is 

distinct, and we identified three loci that seem specific to JME. These findings 

might explain why members of two-thirds of GGE families have the same 

syndrome, while a third of families have a mix of different GGE syndromes 

amongst family members.10 We estimated that around three thousand 

common variants underlie GGE risk (chapter 6). With our current sample 

size, we were able to pinpoint 26 risk loci with high confidence, suggesting 

that we’re only just seeing the tip of the iceberg. We estimated a required 

sample size of around 1 million to find the common variants that explain 

80% of SNP-based heritability at the stringent genome-wide significance 

level. As a proof-of-principle, a recent GWAS of standing height including 

5.4 million people was able to pinpoint 12 thousand common variants that 

explain almost all SNP-based heritability underlying phenotypic variation 

in human height.11 Reassuringly, they found that estimates of SNP-based 

heritability and biological pathways from much smaller GWAS were almost 

identical to the much larger GWAS. Although pinpointing specific variants 

and genes steadily increased with sample size, these findings validate the 

biological insights from smaller studies like our epilepsy GWAS.
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Birth of a common variant
To understand how common variants could lead to epilepsy, it is important 

to understand how and why common risk variants come to exist at all. 

Common variants underlie most phenotypic variation between people, 

ranging from personality12 and anthropomorphic traits11,13 to risk of almost 

any disease.14 Such phenotypic diversity is essential for any species to 

accommodate survival in a diverse and ever-changing environment. 

Although rare, every cell division in the body has a chance of producing 

a DNA mutation. Considering the quadrillions of cell divisions that occur 

over a lifetime, any individual is likely to accumulate some mutations. 

Although generally assumed to occur at random, it was only recently 

found that deleterious mutations occur less frequently then potentially 

beneficial mutations, probably due to epigenomic features, which might 

be an essential driving force of evolution.15 Most variants thus arising will 

fade away. Only if variants are neutral, give a survival advantage, or if they 

piggyback an advantageous variant, can positive selection and genetic drift 

cause a small fraction of variants to become common over hundreds of 

generations.16,17 However, if a genetic variant causes disease, how can it ever 

become common and why does it not fade away over time due to natural 

selection? To me, the most likely explanation is that disease variants also 

come with advantages for an individual or the population. 

This is best exemplified by the archetypal psychiatric disorder schizophrenia. 

One might think that it is unlikely for schizophrenia risk variants to become 

common, since schizophrenia is associated with severely decreased life 

expectancy and repreduction.18 However, family members without manifest 

schizophrenia, who carry part of the genetic burden, can have benefits 

over people without such variants. For example, they can have enhanced 

creativity, imagination, associative thinking and mental flexibility,19,20 

resulting in increased mating success.21 Such variation in personality 

and cognitive traits might be advantageous to a wide variety in human 

populations, ranging from hunter-gatherer tribes to complex contemporary 

societies. This might explain why there are hundreds or even thousands of 

schizophrenia risk variants that are common in various ethnicities,22 and 

why the disease remains prevalent over time.18  
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Although less understood, it is likely that common variants underlying epilepsy 

would similarly come with advantages. For example, unaffected siblings of 

people with JME – who thus have an intermediate polygenic burden – have 

increased brain network synchrony and functional connectivity measured on 

functional MRI, compared to controls without an affected family member.23,24 

Perhaps in moderation, such increases in connectivity and synchrony could 

have advantages for certain brain functions.

Altogether, I would advocate that the adage in toxicology “the dose makes 

the poison” is also applicable to common disease risk variants (Figure 1). 

It seems likely to me that a moderate burden of epilepsy risk variants can 

have advantages, whereas only an overly high burden would lead to such 

hypersynchrony and excitability in the brain to result in seizures. The 

frequency of such variants would then be determined by a balance of positive 

and negative selection in a population. This would explain why epilepsy and 

its risk variants remains common throughout the world, without fading 

away due to natural selection.  

Epilepsy

Hypersynchronicity in the brain;
Increased epilepsy risk

Decreased brain synchronicity 

“Normal” brain synchronicity 
and excitability

Polygenic burden of epilepsy risk variants

D
en

si
ty

Figure 1: A hypothesis on the relationship between polygenic burden of epilepsy risk 
variants, brain synchronicity and epilepsy liability. This simplified graph illustrates 
my hypothesis that a low polygenic burden of epilepsy risk variants could result 
in decreased brain excitability, which might give a disadvantage for certain brain 
functions. An increased burden of risk variants could lead to hypersynchronicity 
in the brain, reflected by an enduring predisposition for seizures and a diagnosis 
of epilepsy. I expect the existence of a grey area where people with a moderately 
increased polygenic burden might have a moderate increased risk of epilepsy, or 
perhaps only experience a few sporadic provoked seizures throughout life. 
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Common versus rare risk variants
It is usually thought that common variants underlie common diseases, and 

rare variants cause rare diseases.25,26 Indeed, we found that the majority of 

GGE risk is attributable to common variants. Other studies found that rare 

forms of epilepsy are often caused by rare genetic variants. This can again 

be understood in evolutionary terms. Pathogenic rare variants are usually by 

themselves sufficient to cause a disease. Natural selection would therefore 

put strong negative pressure on such variants, preventing them from 

becoming common. This explains why the most severe forms of epilepsy, 

developmental and epileptic encephalopathies, are generally due to the rarest 

of variants: de novo mutations. Such mutations are so pathogenic that people 

having them are rarely healthy enough to reproduce, causing the mutation 

to fade away within one generation. Thus, they can only continue to exist 

due to spontaneous mutations in embryos or germ-line cells of unaffected 

parents.27 Since such pathogenic variants are rare and bound by the size of 

‘susceptible’ coding sequence of the disease gene and the mutation frequency, 

their associated phenotypes are generally also rare. 

In addition to the major contribution of common variants, a large-scale 

exome sequencing study recently found that rare variants also contribute 

to various common diseases.28 This is also true for GGE, which has a minor 

but non-negligible contribution from ultra-rare variants.7,29 Copy-number 

variants, i.e. deletions or insertions of chunks of the genome, constitute an 

intermediate between common and rare variants: they are uncommon and 

can largely increase epilepsy risk, but they can also occur in healthy people. 

In a large-scale study, we found that ~3% of people with GGE carry such 

copy-number variants.9 

Conversely, a surprising discovery was made in 2018 by showing that 

common variants also contribute to rare diseases.30 A large cohort of 

children with severe neurodevelopmental disorders, assumed to be 

monogenic, underwent exome and common variant genotyping. They 

found a small but significant contribution of common variants, even in 

people who carried a rare pathogenic protein-coding variant. Similarly, a 

yet unpublished study from the Epi25 consortium showed that people with 



Chapter 12

274

epileptic encephalopathies have an increased polygenic burden of common 

variants, identified from our GWAS. It remains unclear whether such 

common variants influence disease severity or whether they are essential 

to develop epilepsy in the first place. Pathogenic epilepsy-causing variants 

are generally not found in healthy controls, but perhaps people with such 

pathogenic variants would get a different neurodevelopmental phenotype 

without seizures if they have a low common variant burden.

Altogether, common variants are primarily involved in common epilepsy 

risk and rare variants mostly underlie rare epilepsies. However, the overall 

emerging picture seems more complex with rare variant contributions 

to common epilepsies, common low risk variant contributions to rare 

epilepsies, and most likely everything in between. Thus, it seems likely 

that all genetic epilepsies are to some extent polygenic. 

Genetics of focal epilepsies
Although they are collectively common, we did not find a strong contribution 

of common variants for focal epilepsies. One explanation could be that focal 

epilepsies as a group are more heterogeneous than GGE. Some forms are 

more heritable than others, for example, focal epilepsy due to hippocampal 

sclerosis had a much higher SNP-based heritability than non-lesional focal 

epilepsy (chapter 6). Focal epilepsy could also be caused by a myriad of 

non-heritable causes like brain trauma, infections, stroke or tumours.31 

Furthermore, focal epilepsy by definition involves only a part of the brain. 

This makes it less likely that germline variants present in every brain cell 

would underlie focal epilepsy risk.

There are exceptions to this rule. Although present throughout the brain, 

some rare pathogenic variants have a predilection for certain brain areas. 

In fact, the first epilepsy gene to be discovered (CHRNA4) causes focal 

epilepsy.32 Germline genetic variants in the mTOR pathway can cause 

focal lesions, even though they are present in each cell, which can in some 

cases be explained by a second-hit mechanism.33,34 For example: a single 

pathogenic variant in the mTOR pathway gene DEPDC5 may not be sufficient 

to cause a focal epileptogenic lesion; however, if someone has a germline 
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DEPDC5 pathogenic variant in every cell, all it takes is just one cell to get a 

second somatic mutation in an mTOR pathway gene.33,35 During embryonic 

development, there are billions of cell divisions, and in a fraction of these 

random mutations occur. It is likely that by chance, some of these would 

be in mTOR pathway genes. Since epilepsy caused by such variants involves 

only part of the brain, surgical resection can be very effective (chapter 9). 

Leveraging genetics for drug discovery and 
repurposing
Our increasing understanding of the genetic basis of epilepsy has led to 

biological insights that might aid drug discovery and repurposing. There is 

a great need for new drugs, considering that a third of people with epilepsy 

is resistant to current drugs.36 Moreover, current drugs mostly provide 

symptomatic treatment of seizures and there is an urgent need for disease 

modifying drugs that influence or even prevent epileptogenesis.37 Drug 

discovery is difficult, costly and time-consuming,38 and most current anti-

seizure medications were discovered serendipitously.39,40 Drug repurposing 

based on biological insights from genetics have the potential to greatly 

speed up this process.41 Drugs can be discovered by targeting single genes 

with high biological relevance or by assessing the aggregate effect of a large 

number of common genetic variations that each only explain a small part 

of epilepsy risk. 

Treatment of tuberous sclerosis complex with vigabatrin and everolimus is 

a successful example of targeting a single epilepsy gene and its pathway. 

Tuberous sclerosis complex is caused by mutations in the mTOR pathway 

genes TSC1 or TSC2, leading to overactivation of mTOR signalling. Everolimus 

is an mTOR inhibitor with proven efficacy in the treatment of epilepsy in 

tuberous sclerosis complex.42 The ASM vigabatrin, which partly acts by 

mTOR inhibition,43 can even delay seizures and prevent drug-resistant 

epilepsy when administered prior to development of clinical seizures, 

making it the first disease modifying drug for epilepsy in humans.44 

In our GWAS, we found that many of the discovered epilepsy risk genes are 

targets of currently used ASMs, suggesting that targeting genes identified 
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in GWAS might be a viable approach for drug discovery. It has been 

estimated that selecting novel drugs based on genetic evidence can double 

their success rate in clinical development.45 In chapter 3 we investigated 

one such lead: the vitamin-B6 metabolism gene PNPO. However, our 

study suggested that GGE risk variants do not influence plasma levels of 

vitamin-B6 or its metabolites. Although we cannot rule out the possibility 

that PNPO influences brain-specific vitamin-B6 metabolism, our results 

do not support a role of dietary supplementation of vitamin-B6 in the 

treatment of GGE. Furthermore, our later GWAS (chapter 6), which utilized 

larger brain gene expression databases, suggested that a different gene in 

the locus (CDK5RAP3) might be involved instead of PNPO. Our larger GWAS 

did identify a number of novel epilepsy genes that are targeted by other 

drugs, which might be worthwhile to pursue for the treatment of epilepsy. 

For example, the novel GGE genes CACNA2D2 and SCN8A are targeted by a 

number of currently used ASMs, but also by the Parkinson’s drug safinamide, 

which has evidence of anti-seizure activity in animal models.46 It should, 

however, be noted that since risk variants identified by GWAS individually 

only explain a minor contribution to epilepsy risk, it might be possible that 

targeting one such gene would not be sufficient to treat epilepsy. Moreover, 

due to the complex polygenic nature of common epilepsies, every patient 

would have a different combination of risk variants, making it unlikely that 

one drug would be effective for everyone. 

Using an orthogonal approach, we assessed whether we could find candidate 

drugs by assessing their aggregate effect on all genes discovered by our GWAS 

(chapter 5); a method that appreciates the polygenicity of epilepsy and the 

polypharmacology of most drugs.47 We intersected gene-based associations 

and imputed gene expressions from our GWAS with large databases that 

systematically assessed drug targets and their effects on gene expression. 

This approach produced a ranking of drugs based on their ability to target 

epilepsy genes and reverse abnormalities in gene expression. This ranking 

largely reproduced relative clinical efficacy of current ASMs, thereby 

validating the approach. Five highly ranked drugs not currently used for 

epilepsy were tested in animal models of epilepsy, of which four showed 

dose-dependent anti-seizure effects. Future studies could test the efficacy 

of these promising drug repurposing candidates in human trials. 
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Although drug repurposing based on genetics is an exciting and promising 

field, a word of caution about its potential is appropriate. Many of the 

current ASMs, although found serendipitously, already target the genes that 

were later found to be involved in epilepsy. Over the last decades many new 

ASMs have become available, some inspired by biological insights, but the 

proportion of drug-resistant people with epilepsy has not yet declined.36 

Although novel genetics-inspired drug targets could yield improvements, 

it seems unlikely that a miracle drug to cure all drug resistance will be 

found. Advances in epilepsy prediction might yield improvements within 

the available arsenal of epilepsy treatment and diagnosis.

Common variants for epilepsy prediction
Although each of the common variants identified in GWAS are individually 

rare, they can be combined in polygenic risk scores (PRS) that can have a 

strong predictive value. We found that people with a high polygenic burden 

of GGE risk variants have a strongly increased chance of having epilepsy 

compared to people with a low burden (chapter 8). However, it remains 

to be elucidated whether PRS have additive predictive value above routine 

clinical variables. In recent years, polygenic risk scores have often been 

hyped48 and even commercialised49 to predict a wide range of diseases and 

traits, but substantial improvement over routine clinical predictors has 

not yet been demonstrated.50,51 Ever increasing GWAS sample sizes and 

improved statistical methods do provide hope for PRS to improve clinical 

diagnosis in the future.52,53 Moreover, the combination of PRS with clinical 

variables might yield a synergistic improvement in epilepsy prediction. 

The hallmark of current epilepsy diagnostics is EEG measurements to 

detect paroxysmal epileptiform abnormalities and confirm the suggested 

epileptic origin of paroxysmal events. In chapter 4 we found that common 

epilepsy risk variants are associated with background EEG oscillations 

in specific frequency bands, which are known to be highly heritable.54 

Although not yet used in clinical diagnosis, such background oscillations 

can easily be calculated from routinely performed EEG recordings. Further 

studies assessing background oscillations in people with uncertainty about 

the diagnosis epilepsy – for instance after a first possible seizure – could 

assess whether these oscillations can be used as a diagnostic biomarker. 



Chapter 12

278

Epilepsy is associated with widespread changes in grey and white matter, 

as measured on MRI, which has been considered to be a biomarker of 

epilepsy.55,56 However, it is unknown whether these brain changes are cause 

or consequence of epilepsy. Since both epilepsy and variation in grey and 

white matter are strongly influenced by common genetic variation, this gives 

a unique possibility to leverage genetics to assess whether their causes are 

shared. In chapter 7 we found that the genetic basis of common epilepsies 

and structural MRI measures is distinct, suggesting that the structural 

brain changes observed in people with epilepsy might be the consequence 

of epilepsy (or treatment), rather than its cause. For example, both seizure 

activity and the commonly used ASM valproate have been associated with 

grey and white matter atrophy.57–60

Precision therapy through clinical prediction
Epilepsy treatment could largely benefit from personalized prediction of 

treatment outcomes. In chapter 10 we describe that a third of people with JME 

is drug-resistant and three-quarters have a seizure relapse after medication 

withdrawal. We build upon this in chapter 11 by showing that these treatment 

outcomes can be predicted based on a number of variables that are readily 

available in the clinic. Prediction of drug resistance can be used for patient 

counselling and to triage early referral to specialized clinics. Worldwide most 

people with JME are treated by primary or secondary care physicians61 and 

seizure control generally improves after referral to epilepsy specialists.62

The question whether to continue medication usually arises in people 

who are seizure free while using ASM. Withdrawing medication has the 

potential to avoid adverse effects of unnecessary medication, but comes 

at the risk of seizure recurrence and limited driving license eligibility. A 

recent large-scale study found several predictors of seizure recurrence in 

a broad epilepsy population.63 However, we found that these predictions 

were not generalizable to JME. Indeed, the strongest predictor – age at 

withdrawal – had an inverse direction of effect. These findings underline 

the benefits of creating prediction models based on people with the same 

type of epilepsy. Such prediction models have the potential to improve and 

personalize treatment for people with epilepsy. 
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There can be challenges when using prediction tools to counsel individual 

patients. Our prediction tools give an estimate of the risk of treatment 

outcomes, but it’s impossible to base a decision solely on such a 

percentage.64 There are various patient-specific factors that need to be 

taken into account. For example, when considering to withdraw ASM, it 

is important to note the consequences of a potential seizure recurrence on 

driving license eligibility, self-confidence and the individuals occupation. 

Moreover, it is impossible to define a universal threshold for an acceptable 

risk to consider ASM withdrawal. A 60% chance of seizure recurrence 

might seem risky to one person, whereas someone else might consider a 

40% chance of remaining seizure free without any medication worth a try. 

Clinicians should also be careful about the framing of the assessed risk to 

patients, and whether to present people with a specific risk percentage. A 

study using an early prediction model found that presenting people with 

a personalized risk percentage actually made the majority of people opt 

to continue treatment, including people who were planning to withdraw 

treatment beforehand.65 This was at least partly explained by the finding 

that most patients underestimated the risk of withdrawal beforehand. 

Framing a consultation around the risk of recurrence or emphasizing the 

chance of seizure freedom and its benefits could further influence the 

willingness to withdraw treatment.65,66 Still, much remains uncertain about 

optimal counselling strategies and the real-world influence of prediction 

models on decision making. For such reasons, we decided not to include 

an arbitrary low/high risk threshold or specific recommendations based on 

our predictions, but we provided risk percentages that should be carefully 

evaluated by medical professionals in light of the individual’s circumstances 

and preferences.  

Concluding remarks and future directions
In this thesis, we described a wide range of research projects, which I hope 

will aid to pave the road towards precision therapy for genetic epilepsies. 

Future studies might benefit from combining multiple research modalities 

and data sources. For example, combining rare and common variant 

analyses within the same cohort could establish their relative contribution. 
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Integration of genetics with multiple ‘omics’ resources can yield further 

biological insights and aid to prioritize drug repurposing candidates.41 A 

bottleneck in many genetics studies is detailed phenotyping; often only a 

binary classification of disease is available for large cohorts. Combining 

detailed phenotyping of large cohorts with genomics could yield a bounty of 

results and insights. Moreover, it would facilitate assessment of the relative 

contribution of genetics and clinical factors to diagnose epilepsy and predict 

clinical outcomes. Integrating a multitude of data sources in multivariable 

prediction models could eventually enable precision therapy for the many 

people with genetic epilepsy. 

Perhaps the ultimate form of precision treatment of genetic epilepsies 

would be the repair of causative pathogenic variants. It might be unfeasible 

to correct all common variants underlying polygenic GGE, but gene repair 

can theoretically enable curative treatment of any monogenic disease. In 

2012 the CRISPR-Cas9 system, adapted from the bacterial adaptive immune 

system,67 was harnessed as a toolbox for genome engineering.68 It has since 

caused a revolution in the field of gene editing, recognised by a Nobel Prize 

in 2020. CRISPR-Cas9 is a versatile system that can be easily targeted 

towards any location in the genome, where it can cut and replace a stretch 

of DNA. Further biotechnological advances have resulted in the derived 

technologies prime editing69 and base editing,70 which can effectively repair 

almost any DNA alteration while causing minimal off-target mutations. 

This field is rapidly moving forward. A single injection of prime or base 

editing constructs delivered in a viral vector can already repair a sufficient 

amount of cells to cure monogenic diseases in mice and primates.71,72 

The first-in-human CRISPR-Cas9 clinical trial for a neurological disease 

showed promising efficacy and safety73 and several more clinical trials are 

underway.74 In a pilot project we were recently able to correct the causative 

mutation of POLG-related epilepsy – arguably one of the most severe and 

fatal forms of genetic epilepsy75 – in patient-derived cells. Although several 

technological and ethical hurdles remain, I believe it is only a matter of 

time before gene repair becomes a feasible option for curative treatment of 

genetic epilepsies. 
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Nederlandse samenvatting
Wereldwijd hebben zo’n 50 tot 70 miljoen de diagnose epilepsie, wat het een 

van de meest voorkomende neurologische ziekten maakt. Het komt voor op 

alle leeftijden, in elk land ter wereld en elke etniciteit. Het is al lang bekend 

dat epilepsie sterk overerfelijk is, waardoor we weten dat de oorzaak van veel 

vormen van epilepsie in het DNA is te vinden. Sinds de jaren ’90 zijn er steeds 

meer zogenoemde epilepsiegenen ontdekt. Puntmutaties in deze genen leiden 

meestal tot ernstige en zeldzame vormen van epilepsie. Met DNA-onderzoek 

kan inmiddels voor een deel van de mensen met epilepsie een genetische 

diagnose worden gesteld, wat belangrijke behandelconsequenties kan hebben. 

Van veelvoorkomende vormen van epilepsie weten we dat deze ook overerfelijk 

kunnen zijn, maar vooralsnog bleek het moeilijk om hier specifieke genen voor 

te vinden. Met name de groep van genetisch gegeneraliseerde epilepsie (GGE), 

waarvan juveniele myoclonus epilepsie (JME) de meest voorkomende vorm is, 

komt vaak in families voor. GGE wordt niet door een mutatie in één specifiek gen 

veroorzaakt, maar vele genen dragen bij aan het risico op deze vorm epilepsie. 

Om de kleine bijdragen van individuele genetische varianten te detecteren is 

het noodzakelijk om het DNA van zeer grote groepen mensen met epilepsie 

te bestuderen. Door de genetische oorzaak van epilepsie te ontrafelen hopen 

we de ziekte uiteindelijk beter te kunnen begrijpen en behandelen. De huidige 

behandeling van epilepsie bestaat vooral uit medicijnen, maar een derde van 

alle patiënten blijft aanvallen houden ondanks adequaat gebruik van dergelijke 

anti-epileptica. Voor een deel van de mensen met focale epilepsie, epilepsie 

welke ontstaat vanuit een specifieke plek in de hersenen, is chirurgie een optie 

om epilepsie te genezen, maar voor de meeste vormen - zoals ook JME - is dit 

geen optie. We hopen dat de behandeling kan worden verbeterd door nieuwe 

behandelingen te ontwikkelen die specifieker aangrijpen op de oorzaak van de 

epilepsie. Binnen de huidige behandelopties is er tevens ruimte tot verbetering 

door beter te voorspellen wie er goed op bepaalde behandelingen reageert, en 

wie veilig onnodige medicatie kan afbouwen na langdurige aanvalsvrijheid. 

In dit proefschrift beschrijven we de weg naar preciezere therapie voor 

genetische vormen van epilepsie. In hoofdstuk 2 beschrijven we een 

genoom-wijde associatie studie (GWAS) waarmee we de genetische basis van 

veelvoorkomende vormen van epilepsie proberen te ontrafelen. Door een grote 

internationale samenwerking hadden we de beschikking over DNA van ruim 

15 duizend mensen met epilepsie. Met deze data ontdekten we dat GGE voor 
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een groot deel wordt veroorzaakt door veelvoorkomende genetische varianten. 

Tevens konden we 16 specifieke locaties in het DNA aanwijzen die betrokken 

zijn bij het risico op epilepsie. Door deze GWAS-resultaten te combineren met 

meerdere databases en geavanceerde bioinformatische methoden toe te passen 

konden we uiteindelijk 21 genen aanwijzen die het meest waarschijnlijk 

verantwoordelijk zijn. Een hiervan was het gen PNPO, wat codeert voor het 

eiwit dat vitamine-B6 omzet tot zijn actieve vorm. In de studie beschreven 

in hoofdstuk 3 onderzochten we of de genetische varianten verantwoordelijk 

voor GGE ook leiden tot een veranderde concentratie van de actieve vorm van 

vitamine-B6 in het bloed, wat een interessant en makkelijk therapeutisch 

doelwit zou kunnen zijn. Uit dit project bleek echter dat de GGE risico varianten 

geen invloed hebben op de hoeveelheid actief vitamine-B6 in bloed, waardoor 

we geen theoretische onderbouwing hebben kunnen vinden om te denken dat 

vitamine-B6 suppletie zou helpen voor de behandeling van GGE. 

In hoofdstuk 4 ontdekten we dat er een grote genetische overlap bestaat 

tussen GGE en achtergrondsignalen op het EEG. Deze overlap suggereert dat 

dezelfde genetische varianten leiden tot veranderde achtergrondsignalen 

op EEG in specifieke frequentiebanden en een verhoogd risico op GGE. 

Mogelijk kan dit de diagnostiek van epilepsie verbeteren, door specifieke 

achtergrondsignaalveranderingen in het EEG te bepalen bij mensen bij wie 

de diagnose niet met zekerheid gesteld kan worden. 

In hoofdstuk 5 onderzochten we of genetische bevindingen van GWAS kunnen 

helpen bij het ontdekken van bestaande, maar niet eerder voor epilepsie 

gebruikte, medicijnen om aanvallen te onderdrukken. We combineerden 

de epilepsie GWAS met grote databases waarin de aangrijpingspunten van 

medicijnen en hun effect op genexpressie verzameld zijn, om te onderzoeken 

welke medicijnen de processen die bij epilepsie verstoord zijn kunnen herstellen. 

Op deze manier konden we een ranglijst maken van middelen die het meest 

waarschijnlijk zouden helpen bij de behandeling van epilepsie. Geruststellend 

kwamen de huidige effectieve anti-epileptica hier sterk naar boven, maar we 

vonden ook veel nieuwe medicijnen die nog niet worden gebruikt voor epilepsie. 

Dit zijn middelen die al op de markt zijn voor behandeling van andere ziekten 

en die potentie hebben om mensen met epilepsie beter te kunnen behandelen.

In hoofdstuk 6 beschrijven we een nieuwe GWAS met een bijna verdubbeld 

aantal proefpersonen: bijna 30 duizend mensen met epilepsie en 52 duizend 
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controles. Hiermee hadden we de mogelijkheid om nog meer risicovarianten 

voor epilepsie te ontdekken. Met nieuwere methoden en databases konden 

we 26 risicogebieden in het DNA verbinden aan specifieke genen die 

waarschijnlijk (mede) verantwoordelijk zijn voor het risico op epilepsie. We 

berekenden dat ongeveer 3000 genetische varianten samen het risico op 

GGE verklaren, en dat deze samen verantwoordelijk zijn voor de helft van 

het risico op GGE in de populatie. We hebben deze data gebruikt om nog 

preciezer te kunnen berekenen welke medicijnen de meeste potentie hebben 

om te helpen bij de behandeling van GGE.

In hoofdstuk 7 gebruikten we de GWAS resultaten uit hoofdstuk 6 om te 

onderzoeken of dezelfde genetische varianten verantwoordelijk zijn voor 

zowel epilepsie als voor structurele veranderingen in de hersenen. Uit eerdere 

studies was gebleken dat de dikte van de hersenschors en de structuur 

van witte stof bij mensen met epilepsie anders is dan bij mensen zonder 

epilepsie, maar het was niet bekend of dit de oorzaak of juist het gevolg was 

van epilepsie. In dit hoofdstuk laten we zien dat er geen genetische overlap 

kan worden aangetoond, wat suggereert dat structurele veranderingen in 

de hersenen waarschijnlijker het gevolg zijn van herhaalde epileptische 

aanvallen of van de behandeling met anti-epileptica.

In hoofdstuk 8 onderzochten we hoe bruikbaar de genetische varianten 

uit de GWAS in hoofdstuk 2 zijn om de diagnose epilepsie te stellen. We 

gebruiken zogenaamde polygene risicoscores om per persoon een score te 

berekenen op basis van alle varianten die geassocieerd zijn met epilepsie. 

Hiermee vonden we duidelijke verschillen tussen mensen met en zonder 

epilepsie. Dit was met name duidelijk voor GGE, maar er waren ook – 

hoewel minder uigesproken – verschillen tussen controles en mensen met 

focale epilepsie. Mensen met een hogere polygene risicoscore hadden een 

sterk verhoogd risico op epilepsie, maar de score lijkt nog niet sterk genoeg 

om voor een individu de diagnose te kunnen stellen. 

In hoofdstuk 9 beschrijven we een systematische literatuurstudie, waarin 

we de uitkomsten van epilepsiechirurgie voor verschillende genetische 

oorzaken van epilepsie bestudeerden. We vonden dat epilepsiechirurgie 

bij een deel van de genetische oorzaken effectief is om aanvallen volledig 

te bestrijden, terwijl het voor andere genetische oorzaken vrijwel nooit 

helpt. Deze inzichten kunnen helpen bij de selectie van kandidaten voor 
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epilepsiechirurgie, met name indien hun MRI scan geen afwijkingen toont. 

We hopen dat hierdoor enerzijds meer mensen in aanmerking kunnen 

komen voor een effectieve ingreep, en we anderzijds bij personen die op 

basis van genetische bevindingen een lage kans op chirurgisch succes 

hebben, invasieve diagnostiek en onnodige operaties kunnen vermijden.

Vaak wordt gedacht dat JME, net als andere vormen van GGE, goed behandelbaar 

is. In hoofdstuk 10 beschrijven we echter, op basis van een systematische 

literatuurstudie, dat een derde van alle mensen met JME aanvallen blijft 

houden ondanks medicatie. Van de mensen die aanvalsvrij zijn en proberen 

medicatie af te bouwen kreeg driekwart weer aanvallen, hetgeen veel meer 

is dan voor de meeste andere vormen van epilepsie. We bouwden hier in 

hoofdstuk 11 op voort door individuele patiëntendata te verzamelen van 24 

cohorten, waarmee we predictiemodellen maakten voor behandeluitkomsten 

van JME. Met gegevens van 2518 mensen met JME konden we 9 risicofactoren 

vinden voor refractaire epilepsie, wat resulteerde in een statistisch model dat 

bruikbaar is voor individuele voorspellingen in de alledaagse praktijk. Met een 

tweede model konden we voorspellen wat het risico is van een terugkeer van 

aanvallen na het afbouwen van medicatie. We hebben deze voorspellingen 

beschikbaar gemaakt op een website, waarmee gemakkelijk voor individuele 

patiënten het risico op moeilijk behandelbare JME en het risico op terugval van 

aanvallen kan worden berekend. We hopen dat mensen met JME hierdoor een 

meer gepersonaliseerde behandeling en begeleiding krijgen. 

Ten slotte plaats ik de resultaten van dit proefschrift in breder perspectief in 

de algemene discussie (hoofdstuk 12). Samengevat presenteren we een breed 

scala aan onderzoeken, die hopelijk kunnen helpen om preciezere therapie 

van epilepsie te realiseren. We komen steeds verder met het ontrafelen van 

de genetische basis van epilepsie. De verkregen inzichten kunnen helpen om 

nieuwe medicatie te ontdekken die aangrijpt op de oorzaak van epilepsie. 

We hopen dat deze inzichten in de toekomst leiden tot betere diagnostiek en 

behandeling. Onze predictiemodellen van behandeluitkomsten op basis van 

klinische risicofactoren kunnen nu al worden toegepast om behandelingen 

verder toe te spitsen op het individu. Toekomstig onderzoek kan het 

mogelijk maken om genetische bevindingen te combineren met klinische 

voorspellers, om uiteindelijk een zo persoonlijk mogelijke behandeling te 

kunnen bieden voor iedereen met epilepsie. 
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Abstract
English

Epilepsy is characterized by recurrent seizures and affects 50-70 million 

people worldwide, of which a third do not become seizure free with 

currently available drugs. Most current drugs are found serendipitously 

and despite great advances in the number of treatment options, individual 

treatment of people with epilepsy is currently largely trial-and-error. Many 

forms of epilepsy are highly heritable, in particular generalized epilepsies, 

suggesting that genetics could aid understanding of the pathophysiology, 

which might enable precision therapy aimed at the underlying cause of 

epilepsy. Here we describe a broad range of research techniques aimed to 

improve and personalize treatment of genetic epilepsies.  Using large-

scale genome-wide association studies, we discovered a large number of 

epilepsy risk variants that collectively explain much of epilepsy liability. 

We employed a range of methods to pinpoint the most likely implicated 

genes and biological processes, which we used to find drugs that target this 

genetic basis of epilepsy. We further assessed whether genetics could aid 

diagnosis or predict treatment outcomes for people with epilepsy. Finally, 

we created prediction models based on clinical variables that could be used 

to personalize treatment and counselling of people with juvenile myoclonic 

epilepsy, the most common form of genetic epilepsy. We hope that these 

findings aid to pave the road towards precision therapy of genetic epilepsies.
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Nederlands

Wereldwijd zijn er 50-70 miljoen mensen met epilepsie, waarvan een 

derde niet aanvalsvrij wordt met huidige medicatie. De meeste epilepsie 

medicijnen zijn bij toeval ontdekt en ondanks een grote toename in 

behandelopties blijft een groot deel van de behandeling ‘trial-and-error.’ 

Veel vormen van epilepsie, met name gegeneraliseerde vormen, zijn sterk 

overerfelijk, wat suggereert dat genetica kan helpen om de oorzaak te 

ontrafelen en om behandelingen te ontwikkelen welke op deze genetische 

basis aangrijpen. In dit proefschrift beschrijven we een breed scala aan 

onderzoek met als doel om de behandeling van epilepsie te verbeteren 

en personaliseren. Met genoom-wijde associatie studies hebben we veel 

nieuwe genetische varianten gevonden die samen het risico op epilepsie 

grotendeels verklaren.  Met verdere analyses konden we de specifieke genen 

en processen welke betrokken zijn bij de genetische oorzaak van epilepsie 

ontrafelen, wat we hebben gebruikt om medicijnen te zoeken welke hierop 

aangrijpen. Vervolgens hebben we onderzocht of genetica kan helpen in het 

diagnosticeren van epilepsie of het voorspellen van behandeluitkomsten. 

Tenslotte hebben we een voorspelmodel gemaakt voor behandeluitkomsten 

van de meest voorkomende genetische vorm van epilepsie, juvenile 

myoclonus epilepsie, wat gebruikt kan worden om voorlichting en 

behandeling te individualiseren. We hopen dat dit onderzoek helpt om de 

weg vrij te maken om uiteindelijk precisie-behandeling te kunnen bieden 

voor mensen met genetische vormen van epilepsie. 



Appendix

294

Acknowledgements (Dankwoord)
Dat er maar één naam op de cover van dit proefschrift mag staan doet geen recht 

aan de vele mensen die een cruciale bijdrage hebben geleverd. Dit proefschrift 

zou niet mogelijk zijn geweest zonder de hulp van mijn begeleiders, collega’s, 

vrienden, familie en patiënten. Ik realiseer me dat er te veel mensen zijn om 

allemaal te benoemen, al wil ik hier toch een poging wagen.

Dr. Koeleman, beste Bobby, wat een genot om jou als co-promotor te hebben 

gehad tijdens mijn PhD. Ik kwam er al snel achter dat het een uitdaging is 

om specifieke meetings met je te plannen, maar gelukkig was dat ook totaal 

niet nodig. Ik kon altijd bij je binnenlopen of je bellen om te overleggen. 

We hebben een mooie synergie waarbij we urenlang kunnen discussiëren, 

en pas aan het einde realiseren dat we nog niet zijn begonnen met het 

onderwerp waar ik voor kwam. Ondanks, of wellicht dankzij, deze wat 

chaotische werkstijl hebben we samen enorm veel mooie en interessante 

projecten afgerond. Bovendien wist je me waar nodig af te remmen en 

tot zinnen te komen. Ik vind je enthousiasme en onuitputtelijke bron van 

ideeën inspirerend en bewonderenswaardig.

Professor Braun, beste Kees, bedankt voor al je enthousiasme en vertrouwen. 

Ik zie je als een groot voorbeeld en bewonder hoe je in zowel kliniek als 

onderzoek uitblinkt, een grote groep van collega’s aanstuurt en altijd de 

juiste balans weet te vinden tussen daadkracht en gezelligheid. Je hebt me 

veel vrijheid gegeven, maar ook essentiële sturing, waardoor ik het idee heb 

het maximale uit mijn promotietraject te hebben gehaald. Ook heb ik er vol 

vertrouwen in dat ik onder jouw hoede het beste uit mezelf kan halen om 

me te ontwikkelen tot kinderneuroloog.

Dr. Jansen, beste Floor, toen ik in 2016 bij je aanklopte om te praten over 

een onderzoeksstage voor geneeskunde had ik nooit verwacht dat dit 

zou uitgroeien tot het huidige promotieonderzoek. Ik was al snel onder 

de indruk van je kritische en analytische blik, waarbij je vaak binnen no 

time met oplossingen kwam om analyses en papers te verbeteren. Bedankt 

voor al je steun en wijsheid gedurende de jaren. Ik weet zeker dat je het 

fantastisch zal doen als medisch hoofd van de kinderneurologie, en ik hoop 

nog lang samen te blijven werken als collega’s.



Dankwoord | Acknowledgements

295   

A

Bedankt aan het MING fonds voor jullie enorm genereuze donatie, waardoor 

niet alleen het onderzoek in dit proefschrift, maar ook het onderzoek van 

meerdere collega’s mogelijk is gemaakt. Dankzij jullie cruciale bijdrage 

wordt precisie-behandeling van epilepsie langzaam maar zeker realiteit. 

Het onderzoek in dit proefschrift zou niet mogelijk zijn geweest zonder de 

onmisbare bijdrage van duizenden mensen met en zonder epilepsie, die de 

tijd en moeite hebben genomen om aan wetenschappelijk onderzoek mee 

te doen. Het meeste onderzoek zal niet snel genoeg verlopen om hier direct 

zelf baat bij te hebben, maar zonder jullie hulp zou het onmogelijk zijn om 

de behandeling van epilepsie verder te verbeteren. 

De leden van de beoordelingscommissie, professor Jan Veldink, professor 

Maeike Zijlmans, dr. Eva Brilstra, professor Edward Nieuwenhuis en professor 

Barbara Franke, hartelijk dank voor uw belangstelling in mijn proefschrift en 

de bereidheid om zitting te nemen in de beoordelingscommissie. 

The work in this thesis would not have been possible without the invaluable 

collaborations with a great number of colleagues. There are too many 

people to name everyone individually, but some colleagues I would like to 

thank in specific. Professor Berkovic, dear Sam, I have deep respect for the 

way you brought epilepsy genetics researchers worldwide together in the 

ILAE Consortium on Complex Epilepsies and the Epi25 collaborative. You 

have created the largest epilepsy research collaboration, which stands out 

in its inclusivity and openness, and which you chair with great leadership 

while creating an atmosphere of equality amongst all members. Professor 

Cavalleri, dear JP, thank you for your great work and guidance, which was 

pivotal to have the latest epilepsy GWAS come to fruition. You chaired the 

analysis committee with great care and eye for detail, and you made everyone 

feel comfortable to say whatever they thought. Dr McCormack, dear Mark, I 

was very lucky to start my PhD with you as an experienced post-doc by my 

side. It was great to work on the GWAS together and to be able to share and 

discuss every result within minutes. It was perfect to end this with great 

nights out in Bangkok. Dr Lal and Dr Leu, dear Dennis and Costin, thanks for 

the great collaborations on the epilepsy PRS projects, as well as good times 

with drinks in Bangkok. Dr Mirza, dear Nasir, thanks for all your work on 

translating the GWAS to meaningful drug repurposing candidates. Professor 



Appendix

296

Sander, dear Ley, I would like to thank you for sharing your wisdom and 

expertise, that has greatly improved our manuscripts and has helped me 

to navigate the complex landscape of epilepsy research. Professor Ingrid 

Scheffer, Dr Karen Oliver, Dr Ciaran Campbell, Dr Siwei Chen, Dr Roland 

Krause, Professor Melanie Bahlo, Professor Doug Speed, and all other 

members of the ILAE GWAS consortium, you have made it clear that research 

is teamwork. It was an honour to collaborate with such skilled, smart and 

warm people. I truly appreciate the welcoming and egalitarian atmosphere 

within the consortium, where competitiveness is absent and great things are 

achieved by working together as a team in harmony.  Dr Otte, beste Wim, 

het statistische orakel van de epilepsie onderzoekers. Bedankt voor al je hulp 

met het JME predictiemodel. Zonder jouw begeleiding en expertise was dit 

project nooit gelukt. Ook heb je een prachtige website gemaakt, waarmee 

alle predictiemodellen makkelijk door internationale collega’s te gebruiken 

zijn. Dr Jurjen Luyxk, beste Jurjen, bedankt voor de fijne samenwerking met 

het EEG project. Dankzij jouw hulp hebben we hier in snel tempo een mooie 

paper van gemaakt. I would like to thank all collaborators and co-authors 

of the papers included in this thesis. There are too many people who have 

contributed to thank everyone individually, but I think this clearly shows 

that research is impossible alone, and only by collaborating can we ever make 

progress to improve treatment and realise precision therapy for epilepsy.  

Even though I eventually ended up in a different field of research, I 

would like to thank my previous research supervisors for teaching me 

the fundamentals of science, which has helped me throughout my career. 

Professor Johansen-Berg, dear Heidi, thank you for your great supervision 

and mentoring for my MSc research project on sleep and white matter. 

Although it has taken a while, I am glad to see that our persistence to get 

it published finally seems to be paid off. You show great leadership and the 

ability to connect people; the Wellcome Centre for Integrative Neuroimaing 

is lucky to have you as director. Dr. Becker, dear Esther, thank you for 

your guidance on my first MSc project on CNTNAP2. I truly appreciate your 

patience and guidance throughout the project, and your supervision taught 

me the fundamentals of basic and laboratory research. Professor Vinkers, 

beste Christaan, toen je me met mijn bachelor stage begeleidde was jij 

mijn eerste voorbeeld van een arts-onderzoeker. Ook toen ik tijdens mijn 



Dankwoord | Acknowledgements

297   

A

geneeskunde opleiding bij je aanklopte stond de deur meteen weer open en 

hebben we samen twee mooie projecten afgerond. Ik ben onder de indruk 

hoe je geneeskunde, farmacie en rechten hebt weten te combineren, en na je 

opleiding in sneltreinvaart zowel psychiater als hoogleraar bent geworden.  

De vele collega’s met wie ik in Utrecht heb samengewerkt hebben ervoor 

gezorgd dat ik niet alleen veel geleerd heb, maar ook enorm genoten en veel 

gelachen. 

Wout, bedankt voor de vele koffiepauzes en je hulp met het prime editen. 

Ook kijk ik met veel plezier terug op de Muay Thai wedstijden in Bangkok. 

Joep, ontzettend leuk dat je ons team sinds het laatste jaar hebt versterkt. 

Ik hoop je Zuid-Amerikaanse muziek pubquiz snel nog eens in het echt te 

doen. Martijn, de groep heeft enorm geluk om jou als onderdeel van het 

lab te hebben. Dankzij je harde werken en oog voor details zal de groep het 

ver schoppen. Anja, bedankt voor al je hulp met het maken van de epilepsie 

genetica databases. Zonder jouw hulp zou veel van het onderzoek in deze 

paper niet mogelijk zijn geweest. Ruben, de Koeleman groep heeft aan jou 

een stabiele basis en constante factor, en het wordt gewaardeerd dat je 

altijd paraat staat om collega’s te helpen. Flip, jouw hulp om op gang te 

komen met mijn onderzoek en me wegwijs te maken in de (bio)informatica 

was onmisbaar. Bedankt voor al je hulp!

Victoria, super leuk om jou als achterbuur en mede onderzoeker te hebben 

in de groep. Ook bedankt voor het opnieuw leven inblazen van de Epilepsy 

Research meetings. Lotte, bedankt voor alle gezelligheid; jammer dat je nu 

naar Amsterdam bent gegaan, maar ik heb er vol vertrouwen in dat je daar een 

uitstekende neuroloog zal worden! Herm, bedankt voor al je hulp met het JME 

predictiemodel. Dankzij al jouw hulp met R en statistiek hoefde ik niet opnieuw 

het wiel uit te vinden. Je bent de bijnaam ‘prediction Herm’ meer dan waardig! 

Bart, na jou zal de Fledermaus in Wenen nooit meer hetzelfde zijn. Bedankt 

voor al je enthousiasme, en ik hoop later als kinderneuroloog nog lang collega’s 

met je blijven. Maurits, ondanks dat je meestal casually late bent is zonder 

jou en je föhn geen enkel congres, Babinski of assistentenweekend compleet. 

Hanna, enorm leuk om jou zowel als AIOS-buddy en collega onderzoeker te 

hebben. Bedankt voor al je gezelligheid, hulp en wijsheid! Carmen, wat cool 

dat we tegelijk in opleiding zijn gekomen en nu samen onderzoek doen! Ik heb 



Appendix

298

er vol vertrouwen in dat team Steve nog mooie dingen gaat bereiken. Manja, 

ik waardeer enorm hoe je je inzet om de groep te verbinden. Je bent al snel 

een cruciale schakel in de groep worden. Trude, enorm leuk om jou tijdens 

mijn stage op Panda tegen te komen en nu samen te werken in het onderzoek 

aan het FSC cohort. Crista, super gezellig om jou niet alleen als AIOS maar nu 

ook als collega onderzoeker te hebben. Je enthousiasme tijdens o.a. borrels en 

Babinski’s zal de groep zeker verder brengen. 

Rozemarijn, Edith, Glen, Iris, Helen, Karen en Sanne, bedankt voor alle 

gezelligheid en koffiepauzes in het stratenum tijdens het eerste jaar van 

mijn onderzoek. De koffiebel blijft een van mijn beste verjaardagcadeaus. 

Ook de fright night in Walibi met jullie was fantastisch.

Colleagues from the Center for Molecular Medicine (CMM), I would like 

to thank you all for the many lunch and coffee breaks and loads of fun at 

research retreats! 

Dr. Fuchs, beste Sabine, ik waardeer het enorm dat je Gautam en mij de 

vrijheid gaf om aan het POLG project te werken en ik voelde me meteen 

thuis in je onderzoeksgroep. Waanzinnig om te zien dat je groep zo snel 

uitbreidt. Ik denk dat je onderzoek de behandeling van metabole ziekten 

radicaal zal veranderen. Ondanks dat er nog een lange weg te gaan is, heb 

ik er vol vertrouwen in dat we in de toekomst ook POLG kunnen behandelen 

met prime editing. Imre en Indi, bedankt al jullie hulp en geduld om me 

de basis van prime editing en labwerk te leren. Ik ben onder de indruk hoe 

jullie het prime editing in Utrecht hebben opgezet en zo snel internationaal 

toonaangevend onderzoek hebben verricht. Eline, zonder jouw hulp was het 

POLG project niks geworden. Ondanks dat je geen enkele labervaring had, 

werd je hier al snel beter in dan ikzelf. Irena, bedankt voor je hulp met de 

POLG organoids, en voor de borrels en feestjes. 

Bedankt aan alle collega assistenten neurologie. Ik ben enorm blij om 

onderdeel te zijn van deze mooie groep. Ik vind het met iedereen enorm 

leuk om samen te werken, maar bovenal is het ook altijd gezellig. Dankzij 

jullie is er altijd een fijne sfeer en ik kijk nu al uit naar de rest van de 

assistentenborrels, weekenden en Babinski vakanties! Bij de volgende 

Babinski zal mijn pols het hopelijk meer dan 1 piste overleven.  



Dankwoord | Acknowledgements

299   

A

Graag wil ik mijn opleiders vanuit de neurologie professor Geert Jan Biessels 

en professor Tatjana Seute bedanken voor alle hulp en steun tijdens mijn 

traject. Beste Geert Jan en Tatjana, jullie hebben een fijne en stimulerende 

leeromgeving gecreëerd, waardoor ik het idee heb het beste uit mezelf te 

kunnen halen. Dank ook aan alle neurologen en kinderneurologen met wie 

ik de laatste jaren heb samengewerkt in het UMCU, WKZ, Tergooi en St. 

Antoniusziekenhuis, ik heb van ieder van jullie veel geleerd.   

Tot slot wil ik mijn vrienden en familie bedanken.

Rein, toen we samen dagenlang op een kameel door de Sahara in Marokko 

trokken en oneindig lange discussies hadden, hadden we het idee samen 

de wereld aan te kunnen en alles te kunnen ontdekken en begrijpen. We 

konden over alles goed praten, en hadden onder andere een gedeelde passie 

voor filosofische onderwerpen, neurologie en neurowetenschap. We hadden 

al snel het plan bedacht om samen neuroloog en neurowetenschapper 

te worden. Ik ben er trots op dat ik dit plan namens ons heb kunnen 

voortzetten, maar het is een enorm gemis om jou hierbij niet aan mijn zijde 

te hebben. Ik ben je voor altijd dankbaar voor alle mooie herinneringen.

Mijn brudahs Lennart en Ran, wat een geluk dat ik jullie al als kleine Remi 

ben tegengekomen. Al meer dan 20 jaar lachen we ons samen kapot, hebben 

we de beste gespreken, beleven we de mooiste avonturen en de vetste feesten. 

Laten we voor altijd de traditie voortzetten om elkaar voor elke verjaardag een 

vakantie of een vette activiteit cadeau te geven (al lopen we er al wel een paar 

achter). Ik weet zeker dat we voor de rest van ons leven enorm veel plezier 

zullen beleven en op elkaar kunnen bouwen. Ik heb enorm mazzel om via jullie 

nu ook vrienden te zijn met Jas en Suus. Len, wat was het waanzinnig om met 

jou op ons 18e een jaar naar alle hoeken van de wereld te maken, wat we al 

hadden bedacht toen we 11 jaar oud waren. Ik ben er trots op dat je inmiddels je 

eigen bedrijf hebt. Je ontwerp op de cover van dit proefschrift bewijst overigens 

dat het afmaken van een opleiding nergens voor nodig is. Ran, wat is het toch 

genieten om met jou te feesten, raven, bergen te beklimmen, op de bank uit te 

brakken met pannenkoeken en om heerlijk niks te doen. Ik weet zeker dat er 

nog eindeloze momenten zijn waarop we ons samen gaan vermaken. 



Appendix

300

Rense en Anton, wat fantastisch dat we na een jaar roeien met ons team 

‘Blauwe tandenborstel’ nog steeds zulke goede vrienden zijn gebleven. 

We kunnen ons altijd samen kapot lachen, hebben veel mooie avonturen 

beleefd samen en ik heb er vol vertrouwen in dat er nog velen zullen volgen. 

Rense, waarschijnlijk ben je de meest productieve rapper en dichter, ik 

vind het waanzinnig dat je zelfs over een standaard avond met unit pasta 

nog een rap weet te schrijven. Anton, de beste kok van unit-pasta’s, wat 

hebben we samen een top vakanties beleefd! Jammer dat je niet bij mijn 

PhD verdediging kan zijn, maar een fietsvakantie naar het Midden-Oosten 

lijkt me een acceptabel excuus. Het is ook een enorm plezier dat ik via jullie 

ook vrienden ben met Anouk, Marjan, Marleen en Aldo en ik hoop dat we 

nog vele jaren met de beesten gaan eten en drinken. 

Huize Frits; Bob, Carmen, Koen, Biz, Rik, Maud, Roos, Luc, Len, Timo, 

Ellen, Claudia, Fadia, Boris, Wouter, Peter, Joppe, en alle aanhang. De vele 

jaren dat ik met jullie heb samengewoond waren fantastisch. Elke dag was 

het feest en gekte, maar ik kon ook altijd terecht bij jullie voor serieuze 

gesprekken. Jullie voelen nog steeds als familie en ik geniet ervan dat we 

elkaar nog vrijwel wekelijks zien. Ik heb er vol vertrouwen in dat we dit 

gaan doorzetten tot we later samen in bejaardenhuize Frits terechtkomen.

Jordi, ik had nooit verwacht dat we nog steeds vrienden zouden blijven, 

toen we je in 2009 op een dronken avond in Beijing tegenkwamen. Sinds de 

eerste keer dat we bij jou en Benthe nieuwjaar vierden in Roemenië was het 

al meteen duidelijk dat dit een traditie zou worden. Sindsdien zijn we met 

steeds meer, en ik hoop dat we deze traditie met o.a. Ran, Len, Juul, Bob, 

Gautam, Simone, Max, Anton en Jas nog vele jaren in stand houden!  

Gautam en Bob, met jullie aan mijn zijde als paranimfen weet ik zeker dat 

mijn verdediging en feest een groot plezier worden. Bob, mijn allerbeste 

achter-achter-achter-achterneef, ik geniet van alle avonden met speciaalbier 

of whiskey, waarin we tot diep in de nacht al filosoferend proberen de wereld 

te verbeteren. Ik vind het waanzinnig hoe je onder het motto “20% vision, 0% 

fear” bergen beklimt, bergen af skiet of in een Duster rijdt; alle vakanties met 

jou zijn een groot feest. Ik zal mijn best doen om bij volgende hike vakanties 

routes te zoeken met minder afgronden. Gautam, ontzettend vet om met 

jou samen onderzoek te doen, maar ook de mooiste avonturen te beleven in 



Dankwoord | Acknowledgements

301   

A

o.a. Borneo, Georgië en Kirgizië. Je hebt een aanstekelijk enthousiasme om 

te chillen, lachen en koffiepauzes te houden, maar vreemd genoeg zijn we 

ondanks dat samen ook nog eens enorm productief. Laten we de traditie in 

stand houden om beursaanvragen vooral te schrijven in het buitenland met 

speciaalbier. Op deze manier moet het toch wel een keer lukken om geld te 

krijgen voor ons POLG project!   

Graag wil ook al mijn lieve neven, nichten, ooms en tantes van de familie 

Stevelink en familie Rijk bedanken. Ik voel me al mijn hele leven bij 

jullie thuis en bij elk feestje kan ik op jullie gezelligheid rekenen. Ook 

heb ik mazzel met Roland, Trudi, Mathijs en de rest van alle Pouwen 

als schoonfamilie, bij jullie is het altijd gezelligheid en lachen. Ook is het 

volume bij familiefeesten onovertroffen.

Anja en Arnold, lieve pap en mam, zonder jullie was ik er nooit geweest, 

laat staan dit proefschrift. Jullie hebben me de fijnste en meest liefdevolle 

opvoeding gegeven die ik me kan voorstellen. Dankzij jullie heb ik een 

zorgeloze jeugd gehad en heb ik mezelf kunnen ontwikkelen. Jullie hebben 

me altijd weten te stimuleren en motiveren om de juiste keuzes te maken, 

waardoor ik geniet van mijn leven. Bedankt voor alles! Elwin, wat een 

mazzel om jou als grote broer te hebben! In veel aspecten lijken we enorm op 

elkaar, inclusief motoriek en dansmoves, maar we kunnen elkaar ook goed 

aanvullen. Bedankt voor al het lachen, goede gesprekken en een fantastische 

gezamenlijke afstudeerborrel inclusief spectaculaire grachtenrace en optreden 

van Def Rhymz. Lisa, bij jou als grote zus kan ik mijn hele leven al terecht 

voor steun en gezelligheid. Toen we een jaar of 4 en 10 oud waren hadden we 

samen ons eerste boek geschreven over tante Sjaan Banaan. Ik vind het een 

eer om jou jaren later in dit boek te kunnen bedanken! Zonder jou waren ook 

mijn lievelingsnichtje Jaël en mijn lievelingsneefje Isaiah er niet geweest, 

met wie het altijd pret is. We gaan snel nog eens samen naar Monkey Town! 

Lieve Juul, wat een geluk dat ik jou heb ontmoet. Alles wat ik met jou 

samen doe is leuk, variërend van verre reizen maken, wielrennen, feesten, 

lachen en speciaalbier drinken tot heerlijk niks doen op de bank met onze 

kat Chouffe. We lijken in veel dingen op elkaar, maar weten elkaar ook 

perfect aan te vullen. Zonder al jouw steun en liefde was dit proefschrift er 

niet geweest. Het is fantastisch om met jou de afsluiting van allebei onze 



Appendix

302

PhD’s te kunnen vieren door drie maanden op reis te gaan naar de mooiste, 

hoogste en bijzonderste plekken van de wereld.  Ik houd van je, en ik kijk 

uit naar alle mooie jaren die nog samen zullen komen! 



List of publications

303   

A

List of publications
Included in this manuscript
International League Against Epilepsy Consortium on Complex Epilepsies. (2018). 

Genome-wide mega-analysis identifies 16 loci and highlights diverse biological 
mechanisms in the common epilepsies. Nature Communications, 9(1), 5269.

Leu C, Stevelink R, Smith AW, Goleva SB, Kanai M, Ferguson L, Campbell C, Kamatani 
Y, Okada Y, Sisodiya SM, Cavalleri GL, Koeleman BPC, Lerche H, Jehi L, Davis LK, 
Najm IM, Palotie A, Daly MJ, Busch RM, Epi25 Consortium & Lal D. (2019). Polygenic 
burden in focal and generalized epilepsies. Brain, 142(11), 3473–3481.

Mirza N, Stevelink R, Taweel B, Koeleman BPC, Marson AG & International League 
Against Epilepsy Consortium on Complex Epilepsies. (2021). Using common genetic 
variants to find drugs for common epilepsies. Brain Communications, 3(4), fcab287.

Stevelink R, Koeleman BPC, Sander JW, Jansen FE & Braun KPJ. (2019). Refractory juvenile 
myoclonic epilepsy: a meta-analysis of prevalence and risk factors. European Journal 
of Neurology; 26(6), 856–864.

Stevelink R, Luykx JJ, Lin BD, Leu C, Lal D, Smith AW, Schijven D, Carpay JA, Rademaker 
K, Rodrigues Baldez RA, Devinsky O, Braun KPJ, Jansen FE, Smit DJA, Koeleman BPC, 
International League Against Epilepsy Consortium on Complex Epilepsies & Epi25 
Collaborative. (2021). Shared genetic basis between genetic generalized epilepsy and 
background electroencephalographic oscillations. Epilepsia, 62(7), 1518–1527.

Stevelink R, Pangilinan F, Jansen FE, Braun KPJ, International League Against Epilepsy 
Consortium on Complex Epilepsies, Molloy AM, Brody LC & Koeleman BPC. (2019). 
Assessing the genetic association between vitamin B6 metabolism and genetic 
generalized epilepsy. Molecular Genetics and Metabolism Reports, 21, 100518.

Stevelink R, Sanders MW, Tuinman MP, Brilstra EH, Koeleman BPC, Jansen FE, & 
Braun KPJ. (2018). Epilepsy surgery for patients with genetic refractory epilepsy: a 
systematic review. Epileptic Disorders; 20(2), 99–115.

International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide 
meta-analysis of over of 29,000 people with epilepsy reveals 26 loci and subtype-
specific genetic architecture. Under review. 

Stevelink R, Al-Toma D, Jansen FE, Lamberink HJ, Asadi-Pooya AA, Farazdaghi M, Cação 
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