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1  |   INTRODUCTION

Geology, as a science, combines descriptive (qualitative and 
semi-quantitative) and quantitative approaches. As the dis-
cipline evolved, the lexical richness of descriptive tools in-
creased, technological advances have provided geoscientists 
with a wide range of quantitative tools. These advances al-
lows modern geoscientists to generate an incredible richness 

of data, often with high levels of complexity. For example, a 
study may now include textural description, elemental chem-
istry, isotopes and mineralogy from tens or even hundreds of 
samples with both spatial and temporal distribution. To deal 
with these progressively larger data sets, researchers have 
been turning to multivariate analysis methods, and particu-
larly to ordination.

Geoscientists can approach these data in an exploratory 
fashion, a hypothesis testing one or a combination of both 
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Abstract
Ordination is the name given to a group of methods used to analyse multiple vari-
ables without preceding hypotheses. Over the last few decades, the use of these meth-
ods in Earth science in general, and notably in analyses of sedimentary sources, has 
dramatically increased. However, with limited resources oriented towards Earth sci-
entists on the topic, the application of ordination analysis is at times suboptimal and 
misuse by authors can occur. This text was written for researchers with little to no ex-
perience with ordination with the aim of exposing them to the utility and the pitfalls 
of this branch of exploratory statistics. To do so, a detailed review of three ordination 
methods is offered: principal component analysis, non-metric multidimensional scal-
ing and detrended correspondence analysis. A survey of 163 publications in Earth 
science is presented, in which these ordination methods were used together with a 
summary of how, why and on what type of data ordination was used. With common 
mistakes outlined and misuses in those publications identified. Notably, issues were 
found with reproducibility, documentation, data set dimensions and transformations. 
Based on this survey, a recommended workflow is offered for Earth scientists who 
wish to apply ordination. Additionally, this article is accompanied by highly anno-
tated R scripts for novice users to use these methods.
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approaches. However, even when testing hypotheses, re-
searchers usually look for positive evidence (Devezer et al., 
2019). In that sense, geology and its sister disciplines do 
not adhere to the Popper school of testing scientific theories 
through falsifiability (Popper, 1934). Birks (1985) argued 
that geology was/is still in the empirical-descriptive or nar-
rative phase of its development, and would develop onwards 
to an analytical phase governed by the hypothetico-deductive 
approach. While geosciences have indeed developed in this 
direction, it is a field that still has a very strong exploratory 
component. This, in turn, requires a different statistical pro-
cess than that implemented in disciplines driven more by fal-
sifiability (Mulaik, 1985).

Ordination has been used in Earth sciences for many 
years, with the earliest mention of it dating back to the 1940s 
(Griffiths, 1947), but its use has proliferated over the last 
30 years as personal computing and statistical programs be-
came more prevalent. Unfortunately, the most popular and 
widely accessible resources on multivariate statistics are ori-
ented towards statisticians, ecologists or social scientists, and 
not geoscientists. For example, at the time of writing, of the 
118 books on multivariate statistics available in the Springer 
catalogue only two are specified for geoscientists (Brown, 
1998; Wackernagel, 2003), and only one of them discusses 
ordination methods. A similar underrepresentation is also ob-
served in the Elsevier and Blackwell catalogues. This highly 
limits an Earth science student or scientist interested in ap-
plying these methods as the translation of terms and examples 
from these fields into geoscience might often be non-trivial. 
As a result, multivariate statistics in general, and ordination 
in particular, are not only less accessible to Earth scientists, 
they are also further removed from their intuitive toolbox. 
Most ordination techniques have been introduced by plant 
ecologists and many software packages implementing them 
are explicitly designed to handle species abundance or oc-
currence matrices (Hammer & Harper, 2007; Oksanen et al., 
2019), which require different transformation techniques and 
choice of parameters. This results in useful statistical tools 
not being considered by Earth scientists when conducting re-
search and compiling manuscripts. Moreover, as discussed 
later, when these methods are implemented, mistakes and 
misuses probably to occur.

An additional concern regarding the use of statistical tools 
has to do with reproducibility (Nüst & Pebesma, 2020). Over 
the last few years, there has been a growing concern in the sci-
entific community regarding the reproducibility of scientific 
results (Cooper, 2018; Nissen et al., 2016). Implementation 
affects reproducibility as different statistical packages and 
even slightly different workflows can result in different 
outcomes. Proper reporting of the assumptions, what ana-
lytical methods were used and why, and their output is con-
sidered crucial for comparability between studies (Amrhein 
et al., 2019). This raises the need for better reporting and 

documentation of the statistical methods used and deeper un-
derstanding of their underlying algorithm.

There is a need to discuss the implementation of statis-
tical tools so that they are more suitable for sedimentology, 
geochemistry, palaeoenvironmental studies et hoc genus 
omne (Latin: and everything else of this kind). Since, as 
noted, these fields often have a strong exploratory nature, this 
study set out to examine the use of ordination in these fields. 
Presented here is a review of the literature on ordination, with 
three selected popular methods described in detail: principal 
component analysis (PCA), non-metric multidimensional 
scaling (NMDS) and detrended correspondence analysis 
(DCA). The mathematics and equations are not detailed here, 
instead carefully selected references are provided on where to 
find them in an approachable form. In this work, a roadmap 
to sources is presented which the authors find particularly 
useful for geoscientists. This study presents a survey of the 
use of these ordination methods in Earth sciences, focusing 
on work done on rock, water, sediment and fossils. From this 
review, several common mistakes and issues were identified 
with the application of ordination methods and the interpre-
tation of results. This text concludes by suggesting several 
recommended workflows and ways to avoid the identified 
pitfalls.

1.1  |  What is ordination?

Ordination is the name for a family of multivariate analysis 
methods for exploratory data analysis (Gower, 1987). The 
common thread of these techniques is that they all order mul-
tivariate objects in a fashion that places similar objects near 
each other with dissimilar objects further away. The term ex-
ploratory data analysis here refers not so much to dealing with 
unknown settings for the first time but rather an approach to 
analysing data sets by summarising their main characteristics 
and leading to formulation of hypotheses rather than testing 
them (Chatfield, 1995). This approach falls into the broader 
category of machine learning without supervision (Hastie 
et al., 2009). As such, ordination methods were principally 
developed to allow a researcher to examine a data set tabula 
rasa and identify the relationships in it.

In the survey presented here, ordination was used for three 
principal goals: (a) to understand or identify the relationships 
between variables; (b) to differentiate or cluster data points; and 
(c) generate indices. The first two are clear derivatives of the 
exploratory nature of ordination methods. The third is a utili-
sation of the property of most ordination methods—dimension 
reduction. Ordination methods represent a higher number of 
dimensions by a smaller number of dimensions called com-
ponents (Gauch & Whittaker, 1972; Syms, 2008). This can 
allow the representation of multiple variables as a much smaller 
number (one to three) of variables (indices). These indices 
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should then represent the highest proportion of the variabil-
ity that can be shown in this reduced number of dimensions. 
Sedimentological data sets often consist of proxies, for example 
for the redox conditions, for distance from sediment source etc., 
where multiple variables are driven by a common underlying 
process. Despite that, the signal is recorded with different sen-
sitivities and measured with different error terms. In dealing 
with proxy data, reduction of dimensions typically aims to re-
construct this underlying process through a combination of co-
varying proxy variables approximating this process (Abdelhady 
& Fürsich, 2014; Bitušík et al., 2018; Gupta & Thomas, 1999; 
Koutsodendris et al., 2020; see Table S2).

There are multiple ordination methods developed over the 
course of the 20th century, from the classical canonical cor-
relation (Austin, 1968) and polar ordination (Bray & Curtis, 
1957) to more modern methods such as canonical correspon-
dence analysis (ter Braak, 1986) and redundancy analysis (ter 
Braak & Prentice, 1988). This text focuses on and discusses 
three of them: PCA, NMDS and DCA, summarised in Table 1. 
These methods are in common usage across multiple disci-
plines, including Earth sciences, implemented in all major 
statistical packages and described in approachable textbooks. 
It is important to note that each ordination method is a class 
of algorithms in its own right, grouped together based on a 
common approach. This means that the same method might 
produce different outputs between two software packages due 
to differences in the underlying algorithms they use.

1.2  |  Similarity Indices

An underlying aspect of ordination is the measurement of 
how similar or dissimilar data points are from one another. 

The use of similarity indices (also called similarity measures 
or similarity functions) is a means to evaluate this between 
samples. Different ordination methods use as input distance 
matrices, which describe the distances between each point 
and all the other points in the data set. However, similar-
ity indices can also be used on their own. There are a large 
number of similarity indices, Sneath and Sokal (1973) and 
Johnston (1976) listed over 30 different indices and offer an 
extensive review of them. Some indices summarise the val-
ues of all variables into a single index (community structure 
measures sensu Pinkham & Pearson, 1976), whereas others 
pair attributes.

An important point to remember with regard to simi-
larity indices is their underlying assumptions and methods. 
For example, while the input data to the index might be in 
absolutes, the index might treat them as proportions. These 
changes effectively turn an open data set into a closed one 
(Hammer & Harper, 2007, also see below regarding open and 
closed data sets), that is to say defined as part of a sum, which 
has a knock-on effect on the distributions of the variables. 
Many indices implemented in popular packages have been 
explicitly developed to handle biological diversity aspects 
and are derived from common ways of measuring diversity 
(see Jost et al., 2011, for a detailed analysis of the properties 
of common indices). As a result, many of them will not be 
relevant for sedimentological data. An overview of available 
implementations, general or dedicated to specific types of 
data, for R Software is available as Task View (https://cran.r-
proje​ct.org/view=Multi​variate).

Three indices that should be mentioned here, as they are 
relevant to the text, are Jaccard, Bray–Curtis and Gower. The 
Jaccard index (Jost et al., 2011) is one of the oldest indices still 
in use. This method was specifically designed for binary (0 or 

T A B L E  1   Summary description of the properties of PCA, NMDS and DCA

PCA NMDS DCA

Brief description of 
operation

Orthogonal combination of n-
dimensional variables

Lower dimensional optimisation of 
dissimilarity between data points

Consecutive dimensional warping 
of n-dimensional variables

Measurement of 
dimensional optimisation

Variance Stress Correspondence

Variables Quantitative data, linear 
relationships

Quantitative, semi-quantitative, 
qualitative, or mixed

Non-negative, on a 0 to 1 range, 
quantitative or binary data

Assumes symmetrical 
distribution

Yes No No

Requires pre-treatments Sometimes (normalising 
transformation)

Usually no, but this depends on the 
similarity index used

Sometimes (standardisation to [0, 
1] range)

Consistent between runs Yes No Yes

Preserves original 
dimensionality information

Yes No Yes

Relationships between 
variables

Axis are a composite of the 
vectors, vectors can be 
represented by eigenvalues

Axis are a qualitative 
representation of the total effect in 
the data set

Axis are a qualitative representation 
of the total effect but vectors can 
still be represented in this space

https://cran.r-project.org/view=Multivariate
https://cran.r-project.org/view=Multivariate
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1, also called presence/absence or PA) variable sets by using 
the size of the intersection divided by the size of the union of 
the sample sets. Another commonly used index is the Bray–
Curtis dissimilarity index (Bray & Curtis, 1957). This index 
has been specifically named as one of the more robust indices 
for communities (Bloom, 1981). This index is designed for 
compositional data sets which follow a consistent sampling 
protocol (e.g. the same number of points is counted in mul-
tiple thin sections; the same number of foraminifera counted 
in each sample), and is computed based on the ratio of lesser 
values to the sum of the vectors. Nonetheless, data sets need 
to be prepared in consideration of the properties of this index. 
The index approaches 0 when sample sizes are very differ-
ent, regardless of how similar their composition is. In such 
cases, samples need to be standardised to be used with this 
index, for example if the number of counts in a sample can 
be standardised to correspond to the proportions in a sample; 
or if a different index may be more appropriate. For a de-
tailed illustration of the limitations of the Bray–Curtis index 
and possible solutions, see Jost et al. (2011) and Chao et al. 
(2006). Gower's similarity coefficient (Gower, 1971; Podani, 
1999) is a notably important index which will be expanded on 
further in the text as it is one of the more suitable for mixed 
data (van de Velden et al., 2019), that is to say a combina-
tion of compositional and non-compositional variables. This 
index uses a weight function to compute the similarity and 
eliminate objects equal to zero.

1.3  |  Closed and open data sets, 
compositional and non-compositional data

The mathematical meaning of open and closed sets are com-
plex topological terms defining sets of points meeting spe-
cific conditions in a topological space. Here a simpler case 
is used (Reyment & Savazzi, 1999) where the data matrix is 
constrained (or closed) or unconstrained (open). Closed data 
sets are also known as compositional, Egozcue (2009) pro-
vided a handy definition for these as ‘compositional data thus 
quantitatively expresses relative contributions of variables 
under consideration of a certain whole, which carry relative 
information between the components’. This is sometimes de-
fined in simpler terms as ‘compositional data being a posi-
tive value multivariate data that sum up to a constant’. The 
underlying notion is that a change in one value of a given 
variable will permeate changes across the entire variable set. 
This interdependence is very well illustrated in data given in 
percent. If in an assemblage there is a set number of elements 
summed and divided to percent of the total, that total will be 
100%. Then if on subsequent analysis any of the values from 
this assemblage are removed or changed—all other values 
will have to change so that the sum of the fractions will re-
main 100%.

Compositional (closed) and non-compositional (open) 
data sets do not behave in the same way and have different geo-
metrical properties (Aitchison, 1982; Filzmoser et al., 2009; 
Greenacre, 2018). As a result, the distributions of composi-
tional data sets are different from those of non-compositional 
data sets (where the variables do not have interdependence). 
This requires that compositional data sets will be pre-treated 
if one wishes to apply methodologies designed for non-
compositional data sets or that make assumptions about the 
underlying probability distribution (parametric methods), as-
sumed for non-compositional data sets.

2  |   ORDINATION METHODS

2.1  |  Principal component analysis

Principal component analysis is an approach for finding vari-
ables (referred to as components) that account for the maxi-
mum amount of the variance in a multidimensional data set 
(Duneman, 1989; Hotelling, 1933). These components are 
linear combinations of the original variables. By summing the 
total variation of all components and defining the variation 
of each component by that number, one obtains the percent 
of explained variance on that component. The variances of 
each component are often presented in a form called a ‘scree 
plot’. The required input must be metric, that is to say, the 
input cannot be Boolean (true/false or presence/absence) nor 
can it be made of distinct categories (which are often used to 
describe sediments and rocks, e.g. facies and lithology) nor 
can it be ranked (see Section 4.2 for a classification of levels 
of measurement). To refrain from repeating the description 
of mathematical operations behind PCA, interested readers 
can find approachable explanations in the textbooks such as 
Rencher (2003) or Gauch (1982).

In a bare-bones algorithm, based only on variance, units 
are very important for two reasons. First, the size of num-
bers in each variable will affect the calculation of the sum 
of squared distances, emphasising large numbers. For exam-
ple, if all variables are given in the same unit, and there are 
orders of magnitude of difference between variables (e.g. 
micrite in a point count of thin sections from a mudstone), 
the larger numbers will dominate the axis of maximal vari-
ance (referred to as PC1). PCA, by design, is optimised to 
represent the maximum variability and not nuances of small 
sample variance. Second, any unit that is given as a fraction 
of a whole, for example percent weight, mg/kg, ppm, etc. 
may lead to a closed-sum problem, which can compromise 
linear relationships between variables due to a poor repre-
sentation of the dimensional centre and distribution around it 
(Filzmoser et al., 2009; Tolosana-Delgado, 2012).

Principal component analysis relies on the matrix of 
covariance between each pair of variables in the data set. 
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Covariances are, however, not meaningful if variables are 
measured in different units. A more complex situation, but 
one not unimaginable in sedimentology, would be if the vari-
ables are measured in the same units, but are not measured 
on a ratio scale. An example would be frequencies in bins, 
especially if bins are defined differently for two variables, or 
for ratio variables, which are unitless. Sometimes such cases 
may be hard to identify, but as a rule of thumb, the recom-
mendation here is that if variables are not clearly measured in 
the same units, the matrix of covariance should not be used. 
Instead, PCA can be calculated using the matrix of correla-
tions between variables. This is not the default option in most 
packages and needs to be consciously chosen by the user.

Principal component analysis was originally designed 
with data sampled from a multivariate normal distribution 
in mind. This means that, ideally, the variables should have 
a multinormal distribution or be normalised (Legendre & 
Legendre, 2012). Performance of PCA does not require vari-
ables to be normalised (see Section  2.5) or have a normal 
distribution, and deviation from normality might not bias the 
analysis (Ibanez, 1971). However, strong deviations from 
symmetry—which is a property of the normal distribution—
will affect the performance of PCA negatively (Hammer 
& Harper, 2007). In the absence of symmetry in the distri-
butions, the resulting ordination might be very sensitive to 
small changes. A common approach is to apply a monotone 
transformation that reduces the skewness (asymmetry) of the 
distribution. The topic of transformation is discussed fur-
ther along the text (see Section 2.5); for more details, both 
Legendre and Legendre (2012) and Filzmoser et al. (2009) 
offer overviews of available transformation methods, the 
latter being more oriented towards Earth sciences. Principal 
component analysis also suffers from several other sensitiv-
ity issues related to the data distribution (Shi, 1993), some 
of which DCA and NMDS were specifically designed to 
overcome.

2.2  |  Non-metric multidimensional scaling

Non-metric multidimensional scaling (here NMDS, some-
times nMDS, NMS or MDS) is an indirect gradient analy-
sis approach which produces an ordination (Kruskal, 1964). 
However, rather than using some metric of distance, NMDS 
substitutes the original distance data with ranks. The use of 
ranks omits some of the issues associated with using ab-
solute distance (e.g. sensitivity to transformation), and as 
a result, is a much more flexible technique that accepts a 
variety of types of data (Field et al., 1982), it is also one 
of the best general predictive ordination methods (Wildi, 
2018). Non-metric multidimensional scaling operates as 
an iterative process: first, it generates a dissimilarity ma-
trix for every pair of samples, for example by using the 

Bray–Curtis dissimilarity index. The NMDS algorithm 
then finds an optimal monotonic transformation of the 
similarities in order to obtain optimally scaled data, and 
tests that versus the similarity matrix. It then rearranges 
the configurations in order to minimise the stress—the dif-
ference between the original ranked distances and those in 
the transformed output. The algorithm repeats these steps 
until the stress is reduced to a pre-defined level. Ideally, the 
stress should be less than 0.05 although stress of 0.05–0.10 
is still good, despite the risk of false inferences. That said, 
a very large number of samples could lead to high stress 
despite reasonable inference (Dexter et al., 2018).

This iterative nature of NMDS makes it computation-
ally heavy (Alotaibi et al., 2011) which could be an issue 
with very large data sets, although more modern algo-
rithms have improved computation time (Taguchi & Oono, 
2005). Additionally, this means that NMDS is expected to 
return the similar but not identical result on different runs 
(Hammer & Harper, 2007). This last property is particularly 
important to note when using NMDS to generate indices. 
Even if data are not changed, different permutations could 
result in slightly different results, which in turn could de-
crease the signal-to-noise ratio. This can be circumvented 
by seeding the random number generator by a fixed number 
(see Section 3.3.2.4).

2.3  |  Detrended correspondence analysis

Detrended correspondence analysis is a derivative of the cor-
respondence analysis (CA) method (Hill, 1979). While CA 
operates very similarly to PCA, it determines the component 
position by maximising the correspondence between vari-
ables and data points rather than the variance. Detrended cor-
respondence analysis adds another layer of operation aimed 
at neutralising the ‘arch effect’ CA suffers from, where the 
points forming a gradient reconstructed along the second axis 
are distributed along an arch relative to the first axis. This 
arch results in misrepresentation of the gradient orthogonal 
to the first gradient, but is a conflation of both gradients. This 
detrending can be done in two methods, either by expressing 
each subsequent axis as a polynomial function of the prior 
axis or by a segmentation method in which segments of each 
axis are centred to have a zero-mean relative to the subse-
quent axis. Following this step, a non-linear rescaling is im-
plemented to shift sample scores along each axis so that the 
average width would become 1. These distortions of the axis, 
especially with the segmentation method, is a core criticism 
of DCA (Wartenberg et al., 1987). Detractors argue that this 
masks, through mathematical manipulations, the data's real 
curvilinear structure and thus hinders the understanding of 
the real data and identification of the causes of the observed 
distribution.
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2.4  |  Clustering and cluster testing

Clustering is a different subset of exploratory techniques 
for identifying groups and subgroups in a multivariate data 
set, in other words—identify which objects in a data set are 
similar to each other and to what level (Romesburg, 2004). 
Ordination methods are capable of detecting groups (clusters) 
if they are present in the data set, but they are not clustering 
methods. Paired with their relationship to the variables, it is 
possible to formulate hypotheses about distribution patterns 
in the data. The clusters might be a priori, defined for exam-
ple by lithology or temporal position and reinforced by the 
ordination. Alternatively, the clusters might be defined a pos-
teriori (learning without supervision) to the ordination based 
on the inferred distribution of samples or variables across the 
main components. In either case, apparent clustering does 
not necessarily mean that the clusters are indeed different 
in a statistically significant manner. This is where statistical 
tests come into play to ensure that the clusters are indeed dis-
similar, given the size of the data set and the variation of the 
variables. As ordination methods are applied to multivariate 
data, so must be the test, and matched to the type of data 
and cluster analysed. One of the most common multivariate 
tests (Warne et al., 2012) is the multivariate analysis of vari-
ance (MANOVA), a multivariate extrapolation of analysis 
of variance (ANOVA). Similar to PCA, MANOVA uses the 
variance of the population, additionally, it assumes a multi-
normal distribution (Olson, 1974). Therefore, it is acceptable 
to use this statistical test when clustering post PCA. Another 
problem with applying MANOVA is its internal assumption 
that the variables are independent, which is inherently prob-
lematic with closed set data (Finch, 2005). Non-parametric 
variations of MANOVA (NPMANOVA) have been devel-
oped to mitigate some of these issues (Puri & Sen, 1971). 
The non-parametric analysis of similarities (ANOSIM) is a 
good fit to test groups inferred specifically from NMDS as 
both use ranking (Buttigieg & Ramette, 2014; Clarke, 1993). 
Essentially, only one assumption is made by ANOSIM, that 
the ranges of ranked dissimilarities within groups are equal, 
or at least very similar.

Thus ANOSIM is an example of a permutation test, 
which overcomes various limitations of parametric meth-
ods (Kowalewski & Novack-Gottshall, 2010; chapter 1.2 
in Legendre & Legendre, 2012). The permutation concept 
allows sampled data to be compared against a distribution 
drawn from random simulations rather than from a theoretical 
distribution, like the Gaussian or the Poisson, and therefore 
to analyse data that does not satisfy the statistical assump-
tions underlying traditional parametric tests (Collingridge, 
2013). It is also recommended to use a permutation test 
when sample sizes are small, or if the degrees of freedom 
are low. Since each data set can draw a distribution using 
permutations, every possible statistical test can be used on 

the alternative distribution, thereby creating a permutation 
test. Therefore, this concept can be used also in multivari-
ate analysis. For example, ANOSIM is a permutation test, as 
is PerMANOVA, the permutation alternative for the above 
mentioned MANOVA. Another statistical test, ADONIS, is 
suitable for mixed data sets as it relies on similarity indices, 
so the choice of a suitable similarity index makes it possible 
to compare variables which otherwise would not be compa-
rable (Anderson, 2001).

2.5  |  Transformations and standardisation

Variables used as input for ordination may need pre-
treatment. The character of the pre-treatment depends on the 
requirements of a particular method. Sections 4.1.1 and 4.1.3, 
as well as Bialik et al. (2021), offer an example where the 
same data set needs different pre-treatment for PCA and for 
DCA. Furthermore, some pre-treatment operations are spe-
cific to particular types of variables, such as in the case of a 
spectrogram (Abudulla et al., 2013) or ecological commu-
nity composition. For the latter, pre-treatment considerations 
are explained in detail by Legendre and Gallagher (2001). 
Owing to the breadth of possibilities, the most important sit-
uations requiring pre-treatment directly are identified when 
explaining aspects of the respective ordination algorithm that 
necessitate it (see Section 2.1 here for PCA requirements). 
Furthermore, some pre-treatments, such as standardisation to 
the same variance (see below), depend on the type of vari-
able (explained in Section 4.2), as variance cannot be mean-
ingfully compared between variables measured on different 
scales. It is recommended to iterate using pre-treatments and 
test their impact on the final output.

Pre-treatment of variables to fulfil the requirements of 
the chosen statistical method can be divided into two groups: 
transformation, which changes the shape of the distribution 
of a variable (e.g. from a log-normal to normal), and stan-
dardisation, which does not change the shape of the distribu-
tion, but changes its position (Figure 1). A common case of 
transformation is the normalising transformation, or normal-
isation (Legendre & Legendre, 2012), which is the adjust-
ment of the variable's distribution to resemble the Gaussian 
(normal) distribution. In cases of positive skewness (long 
right tail) root transformations are useful, whereas in cases of 
negative skewness, log-transformations can be used. In addi-
tion to these general cases, there are many specific ones, for 
example bimodal distributions, where case-by-case choice 
may be necessary. A normal distribution will have skewness 
equal to zero, but for non-normal distributions other mea-
sures of symmetry are available (e.g. QuAsy by Hohmann & 
Jarochowska, 2019). In either case, skewness or a different 
measure of symmetry should be as close to zero as possi-
ble. The exact value depends not only on the departure from 
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symmetry, but also on the type of underlying distribution, 
therefore no rule of thumb can be given and documentation 
of variables becomes even more important.

Further examples of transformations include transforma-
tions aiming to achieve linear relationships between vari-
ables. For example, when the data set contains variables 
with uniform and exponential distributions, those with ex-
ponential distributions can be log-transformed. Ordination 
methods are typically robust with respect to shapes of dis-
tributions, with the notable exception of PCA (see above 
for details). If variables used as input for PCA have sub-
stantially different shapes of distributions, a correlation 
matrix instead of a covariance matrix should be used for 
calculations.

Normalising transformation should not be confused 
with dividing elemental concentration by a reference, such 
as by PAAS (Australian Post-Archean Shale; Piper & Bau, 
2013) for rare Earth elements, ‘conservative’ elements, or 
TOC (total organic carbon). This operation, confusingly, is 
also referred to as ‘normalisation’. The decision whether 
to apply this type of normalisation is a matter of the re-
search question and not a matter of fulfilling the require-
ments of a statistical method. Either original variable or 
variable modified using this type of normalisation may be 
used in ordination analysis, but the incorporation of both 
at once should be avoided, as it will introduce spurious 
correlations. Spurious correlation may be also produced by 
division of one variable by another one (Van der Weijden, 
2002) and the need to perform it, as well as the effect it has 
on the analysis should be considered individually, depend-
ing on the purpose of the analysis.

Standardisation denotes any method of changing the 
absolute position of a variable's distribution without 

changing its shape. This may include translation, that is 
‘shifting’ so that the mean equals zero, or expansion/con-
traction (multiplying/dividing by a factor) so that the range 
of values falls into the [−1,1] range. ‘Standardisation’ is 
sometimes taken to mean only a specific case of general 
standardisation, that is standardising to ‘z-scores’, so that 
the variable's mean equals zero and its variance equals one. 
The choice of standardisation method is dictated primarily 
by the statistical method and not by the type of variable, 
for example PCA based on a correlation matrix typically 
does not require any standardisation, but some similarity 
indices used for NMDS may require standardisation and 
then the choice of standardisation method should follow 
the recommendations for the specific similarity index (see 
Jost et al., 2011; Legendre & Legendre, 2012).

3  |   LITERATURE SURVEY 
OF ORDINATION USE IN 
GEOSCIENCES

3.1  |  Approach and methods

3.1.1  |  Data compilation

In order to evaluate the use of ordination methods, sedi-
mentological, geochemical and general geoscience jour-
nals were searched using keywords “principal component 
analysis”, “PCA”, “non-metric multidimensional scaling”, 
“NMDS”, “detrended correspondence analysis”, “DCA”, 
and “ordination”. Several queries were carried out using the 
Publish or Perish software v7 (Harzing, 2019) for each term 
in selected journals in the field, followed by manual review 

F I G U R E  1   Example of a common transformation from a log-normal distribution with mean equal 0 and standard deviation equal 1 to normal 
distribution. Log-transformation causes the mean and standard deviation of the generated normal distribution to be different from the original 
distribution, therefore two common standardisation operations are shown: shifting (translation) of the distribution so that its mean equals zero and 
expanding it so that its standard deviation equals one. This combination allows the distribution to be used with methods requiring normality, while 
also preserving the original mean and variance. X represents any real-valued random variable
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of individual manuscripts. Google Scholar was elected as 
the primary search venue due to its more inclusive defini-
tions, the fact that it is not restricted by any pay wall and 
is a common resource used by many researchers. This re-
sulted in partial export of the journal titles which had to 
be checked manually in several cases. The initial search 
yielded 5,710 results from 23 journals for all search terms. 
This was then cleaned to remove repetitions, yielding 4,681 
records (tables S1 and S2 in Bialik et al., 2021) Numbers 
of articles published per year in each journal were obtained 
from Scimago Journal and Country Rank (https://www.
scima​gojr.com/). The time range was limited to focus only 
on the period of proliferation of personal computing and 
introduction of widespread communication between com-
puters (‘social computing’, Sharma et al., 2016). From the 
narrower range of years, 117 were selected manually by the 
authors in no particular order (semi-randomly) from the list 
generated by the initial search with supplementary searches 
to explore additional journals from adjacent fields. In this 
manual phase, specific attention was given to newer stud-
ies (published in 2020) to evaluate the current state of use. 
An attempt was made to include no more than one article 
from the same author in order to obtain a wider spectrum of 
methodologies and minimise biases. Additionally, 100 man-
uscripts were selected fully randomly from the initial query 
using a random number generator. Each manuscript was 
manually reviewed to identify the methods used, workflow 
and software, type of data, what for and how the ordina-
tion methods were used, the number of data points, groups 
and variables for which the analysis was carried out and 
how the data were presented and curated (Table S3, Bialik 
et al., 2021). This compilation includes only studies where 
PCA, NMDS or DCA were used, all others were omitted. 
Primarily, this search focused on articles where fossils or 
sediment were analysed or that used methodologies that 
would also be relevant to the analysis thereof. Manuscripts 
included in the final survey were limited to only those im-
plementing the methodology (i.e. not just mentioned, and 
no review papers). Studies where ordination methods were 
part of a data processing workflow (as is sometimes the 
case for X-ray absorption near edge structure (XANES), 
several palaeomagnetic and image processing methods 
among many others) and not the data analysis were not in-
cluded. In total, 163 studies were included in the final sur-
vey with 174 individual analyses listed collected from 43 
different journals in the fields of palaeontology, palaeoen-
vironment, sedimentology and general geology. Metadata 
for all the examined manuscripts included in the database is 
provided in the associated data repository (Table S2, Bialik 
et al., 2021). Out of respect for colleagues in the field, the 
database was anonymised and, in the following, only posi-
tive examples were named. Names and DOIs of the articles 
are listed separately and have been randomised.

3.1.2  |  Data analysis

All analyses have been performed using R Software (R Core 
Team, 2020) and visualised using the packages ggplot2 
(Wickham, 2016) and ggbiplot (Vu, 2011). The R code and 
further analyses and figures are available in a human-readable 
RMarkdown format as S4 in Bialik et al. (2021).

3.2  |  Results—Findings from the survey of 
published ordination analyses

The number of publications utilising ordination shows a con-
sistent increase since the beginning of the 1990s, this pattern 
is visible both in the analysis of the total number of mentions 
and in the random selection sub-sample (Figure 2).

Three main uses for the ordination methods are identified 
in the data set (Figure 3): Clustering and differentiation be-
tween groups (42%), assessing the relationship between vari-
ables (33%) and generating indexes (21%), in a few cases the 
authors set out to do more than one of these in the same study. 
Additionally, a smaller number of analyses set out to use ordi-
nation to identify most significant parameters (n = 5), test the 
relationship between one parameter of interest to the other 
variables (n = 2) and assign to pre-defined groups (n = 1). 
In the sampled studies, ordination was mostly commonly ap-
plied to fossil assemblages (37%) and elemental chemistry 
(31%), with other types of data including grain type (8%), 
physical properties (7%), mineralogy (4%), organic mole-
cules (3%), isotopes (3%) and others (Figure 4). Some 18% of 
the analysis reviewed used more than one type of data. Most 
of the data sets (65%) were compositional and another 17% 
were mixed. This wide swath of data types illustrates the ver-
satility and power of ordination in geosciences, particularly 
for work with sedimentary material.

Of the three methods investigated (PCA, MNDS and 
DCA), the most ubiquitous is PCA, accounting for 84% of 
all results found in the initial search (Table S2, Bialik et al., 
2021). The other two methods each account for around 12% 

F I G U R E  2   Distribution of geoscience articles mentioning 
keywords used in this survey (see Methods for the list of keywords) 
through years (n = 174). The blue dashed line indicates the mean year 
(2011) and the red dotted line the median (2013)
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of the references. In journals oriented towards palaeontol-
ogy and palaeoenvironment NMDS and DCA were encoun-
tered more often (16% and 22% of references, respectively) 
whereas in sedimentological, geochemical and general 
geoscience journals, PCA exhibited the highest proportion 
(>90%, Figure 5). Interestingly, in palaeontology and palaeo-
environment journals, DCA was encountered more often than 
NMDS, whereas in all other groups this method was encoun-
tered in fewer than 1% of all references, and completely ab-
sent from some journals. The average (±standard deviation) 
number of articles per journal noting these ordination meth-
ods was 50 ± 31 for the sedimentological journals (n = 6), 
270 ± 212 for palaeontology and palaeoenvironment (n = 7), 
262 ± 124 for geochemistry (n = 4), and 140 ± 173 for gen-
eral geosciences (n = 6). Use of multiple ordination methods, 
an idea promoted in other disciplines (van Son & Halvorsen, 

F I G U R E  3   Distribution of objectives 
for ordination analyses used in this survey 
(n = 174)
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2014), was rarely observed in this database and searches, 
even when specifically queried. The use of multiple meth-
ods was mainly for analysis of ecological assemblages and 
applied to the same sample set (Abdelhady & Fürsich, 2014; 
Tyler & Kowalewski, 2014; Zuschin et al., 2007), with the 
common pairing being PCA and NMDS. One exception to 
this was Lanci et al. (2001) which used different methods for 
different data sets, although the reasoning was not explained 
in the text. Of 128 uses of PCA, only five noted that they have 
tested for normality.

3.2.1  |  Documentation of the analyses

Only 84% of all analyses provided complete information on 
the dimensions of the data set. Among those, 24 analyses used 
data sets where the number of variables was larger than the 
number of observations (Figure  6). Among the 20 analyses 
using NMDS, nine reported the similarity index used, with 
Bray–Curtis being the most common. Lack of information 
about software used for analysis was the most common case 
(38%, Figure  7), followed by PAST (14%) and R Software 
(10%). Among analyses which did report the software used, 
none of the 42 performed using major coding-based packages 
(i.e. R, Matlab, SAS or SPSS), made the code available.

3.2.2  |  Data handling

The majority (53%) of surveyed studies did not provide the 
data used for analysis at all (Figure 8). The second most com-
mon approach (35%) was providing the data set directly in 
the article text or in the supplement, but in formats such as 
PDF or DOC, which are not readily imported into statistical 

software. The ‘golden standard’ of placing a curated data set 
in an open access repository was followed only by six (3%) of 
the analyses (Figure 9). Throughout the entire time series, in 
each year, no data or data that are not readily processed (score 
1) constituted more than a half of surveyed analyses. Only in 
the last two years (2019 and 2020) did the average score rise 
above 1. Except for sedimentological journals (49%, n = 41), 
in all other categories articles with no data (score = 0) formed 
the majority (Figure  10). Articles with data in repositories 
were noted only in journals in general geosciences and in pal-
aeontology and palaeoenvironment, but no significant differ-
ences could be detected in the data handling between journal 
types (p = 0.64, n = 174, Fisher's exact test).

3.3  |  Discussion

3.3.1  |  Trends and patterns in the surveyed 
published ordination analyses

The use of ordination in the subdisciplines of Earth sciences 
investigated here is very diverse. Despite reviewing only 
three types of ordination types, a fair variety of input, appli-
cation, methodology and objective was still noted.

There is a wide distribution of types of data. Most of 
the data types encountered are compositional, but non-
compositional and mixed data types are not uncommon. It 
is expected that as more research will use a multiproxy ap-
proach, the fraction of the mixed data will further increase. 
This illustrates the need for diverse methodologies given the 
different nature of the type of data used and transparency 
about the method application, as different data types require 
different approaches.

Principal component analysis is not only the most com-
monly used method, it is also the one longest in use with the 
earliest reference from the late 1960s (Briggs, 1965; Read 
& Dean, 1968) whereas other methods were not encountered 
earlier than the late 1980s (Table S2, Bialik et al., 2021). 
While all three methods (or their precursors) were already 
discussed in the 1960s (Whittaker & Gauch, 1978), NMDS 
and DCA are more computationally demanding, which was 
a significant consideration at the time, leading to favouring 
PCA early on. This early adaptation probably had a signifi-
cant role in cementing the popularity of PCA.

The higher numbers of papers referencing ordination 
methods over time could be the result of the increase in total 
number of publications, owing to increased access to publi-
cation and the addition of new journals (Bornmann & Mutz, 
2015; Steen et al., 2013). However, individually examined 
examples in the subset of journals analysed do not seem to 
support this interpretation, as the increase is also observed 
at the single journal level, without a corresponding increase 
in publication rate. For example, the number of articles 

F I G U R E  6   Distribution of the ratio of the number of variables to 
the number of observations in analysed data sets (n = 146). The blue 
line indicates the threshold value of 1
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published per year by Palaeogeography, Palaeoclimatology, 
Palaeoecology increased 300% over the past 20 years (from 
444 in 1999 to 1,334 in 2019), whereas the total number of 
papers found in this survey referencing PCA had increased 
by an order of magnitude (from three in 2000 to 34 in 2020, 
Table 2). The Journal of Sedimentary Research has seen a 
decline in publication volume over the comparable period of 
around 40% but still exhibited an increase in mentions for 
PCA from between 0 and 1 per year in the late 1990s and 
early 2000s to 0–5 in the late 2010s. These trends indicate an 
overall increase of awareness and use of ordination methods. 
Looking at the distribution of mentions per journal (Table S2, 
Bialik et al., 2021) in each field, and considering that the time 
span covered for all of these journals was rather similar (ca 
38 years), even with the very large standard deviations it is 
clear there is still a lower inclination to use these methods in 
sedimentary research compared to other Earth science fields.

3.3.2  |  Common mistakes and issues

Basic metadata
The most common problem encountered in this review was 
poor documentation of the workflow used by the authors. Out 
of the 174 analyses evaluated (Table S2, Bialik et al., 2021), 
66 do not include information on the software used. The most 
commonly used statistical programs were PAST (Hammer 
et al., 2001), R (R Core Team, 2020), SPSS (IBM Corp., 2017) 
and CANOCO (ter Braak, 1989; ter Braak & Smilauer, 2012), 
in that order (Figure 6). Matlab (Matlab, 2020) and Statistica 
(TIBCO Software, 2018) were also reported along in-house, 
niche or non-statistical specific programs (e.g. ArcGIS). The 
preference for PAST and R Software, both freely available, 
as well as non-statistical software, such as Matlab (which 
many institutions acquire via bulk license), suggests that ac-
cessibility plays an important role in determining software 
usage. The majority of authors provided no information on 
data pre-treatment (if at all), how the analysis was carried 
out, or if the process was iterative or not, 16 did not even re-
port the number of data points. This withholding of informa-
tion made the evaluation of the validity of the ordination or 
its replicability impossible. Moreover, of the reviewed manu-
scripts that used code-based environments (such as Matlab or 
R), none included their code in the supplement or provided 
it through a repository. This later part will change in the fu-
ture as journals are adopting new transparency standards. 
Journals like Palaeoceanography and Palaeoclimatology ad-
here to the FAIR (Findability, Accessibility, Interoperability 
and Reusability; sensu Wilkinson et al., 2016) principles with 
regard to data and require all data presented in the article to 
be available via a data repository. Other journals, like PeerJ, 
now also require the code to be included in the supplement 
or external repository. Another minor reporting problem en-
countered was a mismatch between the reported use of ordi-
nation and their actual use. For example, the authors might 

F I G U R E  7   Distribution of software packages reported by authors in the survey (n = 174)
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F I G U R E  8   Data handling score distribution (n = 174). 0—no 
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write in the methods that they used the ordination method to 
group the results, but actually used it to examine the relation-
ships between variables.

In some cases, where the data set was provided, it was 
not annotated or clearly marked, for example variables 
have mysterious names, the supplement is a folder of loose 
spreadsheets with cryptic names, etc. The use of data ar-
chives with established metadata structures is suggested, 
for example PANGAEA. Although data publication in 
PANGAEA is relatively new and none of the studies in this 
survey used it, it has several advantages over repositories 
that are not curated such as Dryad: data curation assures 
that information is automatically exchanged with other da-
tabases, for example any biodiversity records are automati-
cally transferred to Global Biodiversity Facility (GBIF) and 
the Ocean Biogeographic Information System (OBIS). This 
applies to many inventories, increasing the chances that the 
data set will be found and re-used. This is further facilitated 
by automatic registration of PANGAEA data sets in major 

scholarly databases and search engines, such as ORCID and 
Google Search.

Only a handful of the data sets in surveyed analyses were 
fully compliant with the FAIR data principles (Wilkinson 
et al., 2016), that is it was possible to find them through a 
database search, identify the data structure and reuse them 
based on the metadata and the license. These positive exam-
ples included Watkinson and Hall (2019) and four others. The 
use of a repository addresses several issues. It offers an exter-
nal quality control on the arrangement of the data, it makes 
it discoverable and available to the rest of the scientific com-
munity, and it does not lock it behind a paywall. The need for 
quality control is illustrated by the fact that in some studies 
the data set does not match what is stated about the analysis. 
For example, the analysis has been produced on a cleaned 
data set with dead cells, such as values below detection limit, 
removed, but only the raw, not cleaned data set is provided. 
Data sets provided in the PDF format directly in the article 
(Bialik et al., 2012; Jarochowska, 2012) or in the supplement 
are not strictly machine-readable, as exporting into an edit-
able format typically introduces mistakes and requires exten-
sive cleaning of formatting.

Dimensions
Another issue encountered with the misuse of ordination was 
the number of variables being larger than the number of data 
points. This was encountered in 25 analyses, in addition to 
another 26 in which either the number of data points or vari-
ables was unknown. Since there are only n−1 degrees of free-
dom for n variables, the total number of variables should not 
exceed n−1 (Legendre & Legendre, 2012). Analysis of the 
impact of the ratio between the number of variables to the 
number of samples found the optimal ratio should be at least 
two, with some going up to six (Cattell, 1978; Kline, 1979). 
Most studies found the ratio of three samples per variable is 
optimal (Björklund, 2019; Shaukat et al., 2016), but 41% of 

F I G U R E  9   Distribution of data handling scores across types of journals (n = 174). For legend, see Figure 8

0

5

10

15

20

25

19
90

19
94

19
95

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Year of publication

co
un

t

Data handling score

No data

Data in text or supplement (non-readable)

Data in a spreadsheet (readable)

Data in a spreadsheet, no dead cells

Data in a repository

F I G U R E  1 0   Frequency of data handling scores across journal 
disciplines (n = 174). For legend, see Figure 8

0

20

40

60

Palaeontology
and

palaeoenvironment

Sedimentology General
Geosciences

Geochemistry

Type of journal

co
un

t

Data handling score

No data

Data in text or supplement (non-readable)

Data in a spreadsheet (readable)

Data in a spreadsheet, no dead cells

Data in a repository



      |  553BIALIK et al.

the studies analysed here that used PCA had lower ratios. It 
is not uncommon that, in multiproxy studies, multiple analy-
ses are carried out on the samples and, at times, this leads to 
the analyses producing a greater number of variables than 
there are samples available. This is especially true for studies 
where the number of samples is limited or applications where 
the pre-treatment is especially long and complex, such as or-
ganic geochemistry. Analyses with more variables than sam-
ples could have been avoided in some studies. For example, 
in studies where the number of variables was increased by the 
authors including the measurements and ratios between said 
measurements as separate variables.

Principal component analysis
In this review, most of the issues found were with the use 
and application of PCA. As stated above, normality, or at 
least symmetry of the distribution, is not needed for NMDS 
or DCA, but it is important when using PCA. Yet very few 
studies (n = 5) clearly reported having tested for normality 
of individual variables (Allafta & Opp, 2020; Klubi et al., 
2018) or multivariate normality of the data set (Abdulla 
et al., 2013). The issue is further complicated when closed 
sum (compositional) data are involved. Here it was ob-
served that most sedimentological and palaeoenvironmental 
studies sampled had compositional or a mixture of compo-
sitional and non-compositional data. These data sets have 
variables that are not independent of each other, as they are 
part of a sum of a constant (Aitchison, 1982). Examples of 
this (Table 2) would be percent, which describe a very large 
fraction of all sedimentological, geochemical and palaeoe-
cological data sets. True central moments of compositional 
data are not straightforward Euclidean geometrical products, 
such as mean and standard deviations (Filzmoser et al., 2009; 
Tolosana-Delgado, 2012). These issues can be addressed 
using transformations (Auer et al., 2019; Caron et al., 2020; 
Dunkley Jones et al., 2008), but these were rarely imple-
mented. Furthermore, in some data sets the distribution of 
variables could not be made multinormal even if these trans-
formations would be applied, such as mixtures of closed and 
open data sets. A non-parametric approach would have been 
preferable in those cases, rather than those making assump-
tions about the distribution of variables (here referred to as 
quasi-parametric). However, parametric or quasi-parametric 
methods are those which are usually implemented. It should 

be noted that not all geochemical or sedimentological data 
sets are necessarily closed. Raw X-ray fluorescence meas-
urements, for example, reported in counts per second, are not 
part of a sum of a constant and could be considered as not 
compositional.

Non-metric multidimensional scaling
With NMDS, the most common issue was the absence of re-
porting on the distance matrix and the methods used to gen-
erate it. This is of particular importance with respect to the 
data type analysed as different distance indexes will define 
the stress value. However, some distance methods, such as 
Gower, will be more informative with mixed data sets (van 
de Velden et al., 2019). Another issue was the use of the 
NMDS axes as indices. This is not wrong per se, information 
about the separation between the data points is present in the 
NMDS output. Unlike PCA, where the axes represent scaled 
linear combinations of the variables, NMDS axes in default 
implementations are more qualitative and not measured on a 
ratio scale. However, some implementations allow scaling of 
NMDS axes as ‘half-change’, for example the function post-
MDS in the vegan package (Oksanen et al., 2019) centres and 
scales the axes so that one unit means halving the similarity 
(Jarochowska et al., 2017). To substantiate interpretation of 
axes, their scores can be tested for correlation with variables 
(Tyler & Kowalewski, 2014). Moreover, the choice of an im-
plementation can significantly impact the replicability of the 
axial direction. The metaMDS implementation in the vegan 
package for R Software, testing multiple starting configura-
tions, which can be made reproducible by initiating the ran-
dom number generator by a fixed seed (Oksanen et al., 2019) 
can mitigate these issues, but information about these steps is 
often not specified in methods.

Hypothesis testing
In many cases, the output of the ordination is not substan-
tiated or tested, notably when relationships between vari-
ables are concerned, but also when clustering. While some 
studies did combine ordination with other Euclidean and 
non-Euclidean clustering methods, and then performed a 
statistical test to validate that the resulting groups are sig-
nificantly different (Gosling et al., 2019; More et al., 2018), 
others did not. Furthermore, some circular reasoning was 
encountered with a priori groups preassigned to the data 

T A B L E  2   Examples of compositional and non-compositional data types

Compositional Non-compositional

Concentrations (%, ‰, ppm, M, m, etc.) Instrumental raw counts

Fraction of area Absolute area units (e.g. m2)

No. of counts when total sum is constant Morphometric measurements (length, angle, diameter, No. of warts, etc.)

Relative abundances
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and then treating the ordination clusters as validation. This 
last is fundamentally erroneous as ordination is a data ex-
ploration tool set and not a tool to validate dissimilarity. 
An intermediate state is present with a priori groups where 
the researchers seek to understand the relationship of the 
groups they predetermined to the n-dimensional variable 
space. For the research question in this situation, it does not 
matter if the groups are dissimilar, just how they relate to 
each other with respect to the variables. But the a priori as-
signment can result in groups having no relationship to the 
clustering observed in the ordination—which undermines 
this application.

Graphical presentation
A persistent issue in many publications reviewed was the 
presentation of the ordination. One common issue was not 
presenting the ordination outputs, but rather only a partial 
presentation of the resulting outcome. These cases often 
do not show any graphical presentation of the ordination 
output and auxiliary information such as the scree plot in 
PCA is not shown. This was very common in papers where 
ordination was used to generate indices, in these it was 
common for elements of the ordination not to be shown 
and only the index value to be presented. In other cases, 
only the loading was reported in a table or variables were 
shown in the ordination space without the data points. This 
sort of presentation limits the possibility to evaluate how 
the variables interact with the data set. The opposite issue 
was also encountered, where ordination presented with just 
data points but without the variables/biplot (for PCA and 
DCA). Presentation of ancillary information, such as the 
scree plot for PCA or Shepard plot for NMDS was rarely 
encountered in the main text or supplement. More often, 
the authors would only report the total variance (for PCA) 
for an axis, whereas these plots can inform the reader of 
the level of importance of each component, including the 
ones not shown.

Another issue observed with graphical presentation, en-
countered less but still present, drawing of ‘blobs’ around 
groups arbitrarily, according to authors’ own preferences. 
This does not offer a reproducible and objective evalua-
tion of separation. A better option would have been to 
draw convex hulls (Arreguín-Rodríguez & Alegret, 2016; 
Tomašových, 2004) if the groups are known. When they 
are not known, clustering/machine learning without super-
vision for unknown groups (Bertolini et al., 2020; Höltke 
et al., 2016) would be a preferred way of identifying the 
groups.

We also encourage considering common colour blindness 
in data presentation. An example of how to maintain a consis-
tent colour scheme legible to most colour-blind readers using 
RColorBrewer (Neuwirth, 2014) is offered in the proposed 
workflow illustrated in S5 (Bialik et al., 2021).

4  |   PROPOSED WORKFLOW

4.1  |  Performance of ordination methods in 
a sedimentological—case study

To illustrate a workflow fitting a typical sedimentological 
analysis, a data set from Bialik et al. (2018) was used, avail-
able as S4 in Bialik et al. (2021). This data set included geo-
chemical and sedimentological information from a section 
carried out on an Albian carbonate sequence. A summary of 
analyses is presented below, but codes and full results of each 
step are provided in Bialik et al. (2021). The initial data set 
consisted of 90 observations and 17 variables. Of these, eight 
were compositional (concentrations given in ppm or percent, 
both of elements and mineralogies), another three were ratios 
of compositional variables, five were independent ratios con-
sidered non-compositional (isotopic data) and two were clas-
sifications (lithology and texture). Additionally, the isotopic 
data also included error values. This data set was selected 
for its complexity to illustrate a sort of worst-case scenario. 
The test set is composed of a mixture of open and closed 
sets and the variables are not normally distributed. Types of 
variables and approaches to handling them are discussed in 
Section 4.2. The analysis was carried out in R Software (R 
Core Team, 2020), using routines which are also available in 
other popular softwares such as Matlab or PAST.

Variables and observations with empty cells were iden-
tified using the package pheatmap (Kolde, 2019). As de-
fault implementations of ordination analyses cannot handle 
empty cells, the decision was made to exclude two vari-
ables with the highest number of empty cells: δ25Mg (‰ 
DSM3) and inorganic carbon (IC, %wt). This left a 61 × 12 
matrix, which was used for further analysis. Two variables 
were defined on a categorical scale (lithological descrip-
tion and packing according to Embry & Klovan, 1971). 
They were excluded from ordination and used as descrip-
tors of samples.

4.1.1  |  Principal component analysis

To fulfill the assumptions of PCA, tests for multivariate nor-
mality were conducted using the MVN package (Korkmaz 
et al., 2014), including Mardia's, Henze-Zirkler and Royston's 
tests. The normality of individual variables was additionally 
tested using the Shapiro–Wilk test. Variables with extreme 
positive skewness were transformed as follows: Calcite (%) 
and Ni/Co using cubic root transformation; Sr (ppm), Zr 
(ppm) and Mn (ppm)—using square root transformation. 
Transformation was chosen iteratively by measuring the re-
sulting skewness, as skewness, or deviance from symmetry, 
is the parameter of the distribution that is the most confound-
ing for PCA (Legendre & Legendre, 2012). The PCA was 
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performed using the princomp function of R Software and 
the correlation matrix, because the variables in the data set 
were mixed (i.e. measured in different units). For compari-
son, output from analysis carried out on untransformed vari-
ables has been added in the supporting information. It is not 
possible to give a rule of thumb on how the ordination will 
change prior and post-transformation, but typically a lower 
proportion of the entire data set will be represented by PC1 
and PC2, as all principal components are linear combinations 
of the variables.

4.1.2  |  Non-metric multidimensional scaling

As NMDS does not require normally or symmetrically dis-
tributed variables, the original, un-transformed data set 
as input for the metaMDS function in the vegan package 
(Oksanen et al., 2019) was used. This implementation differs 
from the original NMDS algorithm in that it tries to find a 
stable solution using several random starts and standardises 
the scaling in the result. The random number generator was 
seeded at a fixed number to assure that the same results are 
obtained every time, otherwise each new run of the NMDS 
would result in a different ordination or flipping of the axes.

4.1.3  |  Detrended correspondence analysis

Detrended correspondence analysis was performed on the 
data set after normalising transformation (see PCA above). 
Additionally, the variables were standardised to the same 
range [0, 1], but without standardising their variance. The 
decorana function of the vegan package (Oksanen et al., 
2019) was used.

4.1.4  |  Results of the case study

For the initial data set, multivariate normality, as well as 
normality of individual variables, was rejected at α = 0.05. 
Transformations of the most skewed variables did not im-
prove the multivariate distribution and the transformed data 
set still failed a test for multinormality, but univariate nor-
mality could not be rejected for the transformed Zr content 
(test statistic 0.9839, p  =  0.6044 compared to 0.9048 and 
p = 0.0002 prior to transformation, n = 61). The transfor-
mations reduced the skewness of the univariate distributions, 
but the non-linear relationships between variables (table S5 
in Bialik et al., 2021) is a warning that PCA may not be suit-
able for this data set.

A PCA ordination plot is shown in Figure  11A. The 
same plot with observations labelled by the Embry and 
Klovan (1971) classification, as well as the scree plot and 

a visualisation of loadings, is available in S6 (Bialik et al., 
2021). PC1 explained only 31.7% of the total variance, its 
highest loadings were 87Sr/86Sr Initial Value (0.36) and %cal-
cite (loading 0.34) and lowest—Ce/Ce* (−0.42) and Zr con-
tent (−0.40). These pairs of variables defined therefore the 
largest proportion of variance in the data set, with limestone 
samples grouping at high values of PC1 and low values of 
PC1 corresponding to a mixture of dolomite, marly dolomite 
and dolomitic marl samples. PC2 explained 19.1% of the 
total variance and was most influenced by Sr content (load-
ing 0.41) and MgCO3 content in dolomite (loading −0.51).

The NMDS yielded an ordination with a stress value of 
0.154 (Figure 11B). Squared correlation between fitted val-
ues and ordination distances exhibit R2 = 0.905, indicating 
a good representation of the distances between samples. 
Typically, only observations are plotted in NMDS and DCA 
as these methods were designed to ordinate community ma-
trices, but it is possible to obtain variable scores (table S5 in 
Bialik et al., 2021). The NMDS axis 1 corresponds to a gra-
dient between limestone samples (high values of δ13C) and 
marly dolostone samples (high δ18O values), with dolomite 
and marly limestone occupying intermediate positions along 
the gradient. High values of NMDS axis 2 corresponded to 
high Ni/Co and V/Cr content, represented by some dolomite 
samples. Low values of the NMDS axis 2 corresponded to 
high Mn content.

The DCA (Figure  11C) resolved a similar gradient as 
NMDS, with limestone and marly dolostone defining the axis 
of the largest variance. Note that the gradient is flipped be-
tween Figure 11B and C, as the sign of the ordination axis has 
no meaning. In this analysis, DCA and NMDS cross-validate 
each other. It is an illustration of a case where PCA would 
not perform as well as NMDS or DCA, as initially identified 
by the non-linear relationships between variables and by the 
high skewness of individual variables.

4.2  |  Consideration in compiling a 
multivariate data set—Types of variables and 
how they are coded

Most introductory textbooks on multivariate data analysis 
implicitly assume variables are continuous, defined on a 
ratio scale and have no missing records or bounds. The best-
known parametric methods are also designed for such vari-
ables. But in geosciences, deviations from these assumptions 
are plentiful.

Variables can be defined on four scales, sometimes called 
levels of measurement: nominal, ordinal, interval and ratio 
variables. Nominal variables are categories which have no 
particular order. They are common in sedimentology and in-
clude for example rock types which do not represent any par-
ticular gradient (e.g. sedimentary, igneous and metamorphic 
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rocks). That is not to say there are no categories of rocks that 
have a natural order such as carbonate mudstone, wacke-
stone and packstone according to the proportion of skeletal 

components. Such variables are defined on an ordinal scale, 
but it is not possible to measure the distance between them, 
for example it is not possible to say that packstone always 

F I G U R E  1 1   Comparison of ordination results applied to the case study data set from Bialik et al. (2018), with observations grouped by 
lithology (61 observations, 12 variables). (A) Principal component analysis with ellipses marking 68% confidence interval based on a multivariate t 
distribution. (B) Non-Metric Multidimensional Scaling with convex hulls. (C) Detrended correspondence analysis with convex hulls

(A)

(B)

(C)
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has twice as many components as wackestone. A mean or 
median calculated from a variable assigning samples to var-
ious categories in Dunham (1962) classification would be 
meaningless.

Interval variables are ones whose values are measured 
along a scale, that is values are equidistant. Their values can 
be added and subtracted and means and medians calculated 
from them are meaningful. But they do not have a true zero. 
The best-known example is temperature measured in °C, but 
in sedimentology perhaps the most common case are isotope 
ratios such as δ13C. If the variable can take negative values, it 
does not have a ‘true’ zero. This is important, for example for 
PCA, which cannot handle negative values, because a vari-
able defined on an interval scale can be standardised (here 
by moving, i.e. translating, the distribution to positive val-
ues without changing its shape) to meet PCA requirements. 
Finally, values which can be added, subtracted and have a 
‘true’ zero are called ratio variables and include concentra-
tions of elements or grain sizes.

Recognising the scale at which a variable is measured is 
important to ‘code’ it properly, that is indicate the order and 
distance of categories in categorical variables. Coding refers 
here to assigning numerical values to categories so that they 
can be processed by an ordination method. For example, there 
are at least three different ways of coding grain size recorded 
in the categories on the Wentworth (1922) scale: using phi 
(log2 of the diameter) would make them almost equidistant 
(nearly interval), whereas assigning its middle value in met-
ric units to each category would produce a variable measured 
on an ordinal scale. This would produce different distances 
between samples in NMDS, depending also on the similarity 
index used. How the weights are assigned to variables may 
determine the conclusions of a study (Peng, 2015).

Some software packages allow the type of variable to be 
defined, which determines how it is processed by the ordina-
tion method. For example, categorical variables in R Software 
are stored as factors. These factors can be ordered, which cor-
responds to ordinal variables, or not ordered, which corre-
sponds to nominal variables. A common issue is that the type 
of variable is not recognised correctly, for example because 
of a typographical error, and it can affect how the variable is 
handled by ordination. It is recommended that types of vari-
ables are defined explicitly, especially when types are mixed 
within the data set (see workflow in Section 4.1). This allows 
problems caused by visual spreadsheets to be avoided, which 
otherwise may introduce errors by attempting to identify the 
types of variables automatically (Ziemann et al., 2016). This 
automatic recognition is also a great hindrance to reproduc-
ibility, since the same variable may be recognised as a differ-
ent type depending on the version and language settings of a 
particular computer.

A related problem is correct coding of zeros and missing 
values. The ordination analyses described here, in their basic 

implementations, cannot handle missing values. There are 
tools allowing imputation of missing values. Some of them 
are specifically designed to assist the ordination algorithm 
(Filzmoser et al., 2018; Stacklies et al., 2007; Zhu et al., 
2019), some may be specifically designed to impute missing 
data of a given format. For example, software packages for 
acquiring a diffraction signal will typically include imputa-
tion of single missing data points, and such specialised algo-
rithms are likely to perform better than software for general 
use with any type of data. Compositional data in particular, 
due to their properties, lend themselves to missing value im-
putation (Hron et al., 2010; Palarea-Albaladejo & Martín-
Fernández, 2015). A very common error is to code missing 
values as zeros. Zeros are not ‘visible’ in descriptive statistics 
such as the mean and standard deviation and therefore it often 
goes undetected that they do contribute to the distribution of 
a variable. A none-too-rare example would be geochemical 
analysis where concentrations are below the detection limit. 
Should these be coded as zeros, their distribution will artifi-
cially deviate from the normal distribution, which they might 
otherwise follow. If the software allows this, missing cells 
and zeros should be clearly distinguished. Some environ-
ments, such as R Software, can handle not applicable/avail-
able (N/A) statements.

Values below the detection limit are a common example of 
censored data, where a part of the distribution is not known. 
The sole coding of them (often not numeric e.g. ‘<0.01’, 
‘LOD’) is a common cause of errors in how the variable type 
is recognised. More importantly, it may be decisive for the 
outcome of the analysis whether these values are coded as a 
very small value, zeros or as absent. If very low values of a 
particular variable are an important characteristic of a set of 
samples, this information would be lost by replacing these 
values with empty cells. Furthermore, it would violate the 
assumptions of algorithms imputing missing values, as they 
assume that empty cells are randomly distributed. As values 
outside of detection limits are most common in composi-
tional data, such cases are best treated with dedicated pack-
ages which allow them to be handled with less information 
loss (Filzmoser et al., 2018; Templ et al., 2016 and others 
cited below). There is no one set of operations to deal with 
missing cells, as the analysis environment and the nature of 
the data set may dictate different solutions. If possible, elim-
inating the rows with the missing cells will be the preferred 
solution.

4.3  |  Workflow recommendation

A researcher interested in using ordination can use the fol-
lowing workflow (Figure 12). The first stage of analysis of 
data should be identifying what kind of variables it contains 
(compositional, independent or mixed; nominal, ordinal, 
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interval and ratio variables), as that will dictate many of 
the following steps. Selection of variables might be neces-
sary as ideally the number of samples should be three times 
the number of variables (Shaukat et al., 2016), and under 
no circumstances equal or larger than the number of sam-
ples (Legendre & Legendre, 2012 and Section 3.3.2.2 here). 
Data sets which do not fulfil this criterion are sometimes 
referred to as ‘wide’ and dedicated variations of PCA are 
available for them to allow exploratory analysis without a 
priori trimming the variables (Croux et al., 2013; Todorov 
& Filzmoser, 2013). If the data set contains nominal vari-
ables (e.g. facies names, most common minerals), they can 
either be ranked into an ordinal element or broken down 
to individual columns and turned into Boolean (presence–
absence) variables. If the former is employed, this will im-
pact the data structure down-the-line and must be accounted 
for. Following that, the variables should be examined in-
dividually to identify the shape of distributions (either 
graphically or by calculating the skewness) and if any trans-
formation might be needed. The variables can be plotted as 
histograms, but in most Earth science data sets, a spatial/
temporal component exists. Plotting the variables along 
these axes can give a first estimation of type of variability 
and inform later interpretation of clusters. If the variables 
appear to have normal distributions, they should be tested 
for multinormality. If they are clearly not normally distrib-
uted, examine the shape of the distribution for pre-treatment 
in the following stages.

Next, generation of a correlation matrix is recommended. 
This can be done in any statistical software. Given the non-
linear nature of some sedimentological and geochemical data 
sets, and because many of them are closed sets, a use of a 
ranked series correlation coefficient such as Spearman's or 
Kendall's coefficients rather than Pearson's for initial recon-
naissance (Tolosana-Delgado, 2012) is recommended. Any 
pair of variables with a high correlation coefficient should 
be plotted to evaluate the correlation, p-values are not a re-
liable indicator with very large (1,000s or more data points) 
databases.

With an initial expectation of the outcome established, it 
is then possible to select the ordination method and pre-treat 
of the data. Principal component analysis relies on detect-
ing linear relationships between variables, since principal 
components are linear combinations of variables (Minchin, 
1987). In contrast, NMDS and DCA perform better when 
relationships between variables are not linear (such as 
redox-sensitive trace metals, which typically show logistic 
responses). As this is not always known a priori, it is recom-
mended that the results of two or more ordination methods are 
compared (Patzkowsky & Holland, 2012, see also Abdelhady 
& Fürsich, 2014; Tyler & Kowalewski, 2014). If the variables 
are measured on a ratio, interval or ordinal scale, are non-
compositional and symmetrically (e.g. normally) distributed, 

they can be used for PCA as is. Nevertheless, other ordination 
methods should also be used in addition. If not all variables 
are symmetrically distributed, further processing is needed. 
Compositional or mixed variables should be transformed, for 
example, using a root arcsin or an isometric log-ratio trans-
formation (Filzmoser et al., 2009). After transformation, 
check the outcome and distribution shape of the data by plot-
ting the histograms or testing for normality. If the result is 
suboptimal, attempt to use a different type of transformation. 
With the data optimised, PCA could be performed. After per-
forming PCA, examine the scree plot to see how much of 
the explained variance is accounted for in each component to 
select the ones for evaluation.

If the distribution of variables cannot be adjusted suffi-
ciently, or the eigenvalues are very low, a method that does not 
require symmetrically distributed variables, such as NMDS 
or DCA, should be employed. Simulations by Minchin 
(1987) and Patzkowsky and Holland (2012) provided an 
empirical evaluation of the utility of different ordination 

F I G U R E  1 2   Schematic workflow for the use of ordination in 
sedimentological, sedimentary geochemistry or palaeoenvironmental 
research
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methods for different types of data sets. Patzkowsky and 
Holland (2012), for example, found that NMDS performed 
better than DCA when two gradients (NMDS or DCA axes 
1 and 2, respectively) represented similar amounts of vari-
ation, whereas DCA performed better when one dominant 
gradient was present. Empirical evaluations can be found in 
Bush and Brame (2010) and Tyler and Kowalewski (2014), 
but clearly more are needed, especially for sedimentological 
data sets. When generating the distance matrix for NMDS, 
see Section 1.2 for a discussion of the choice of similarity 
index. As a rule of thumb, if the data type is mixed, use 
Gower (van de Velden et al., 2019), if the data are Boolean, 
use Jaccard, but consider how zeros and missing values are 
coded, as they may influence the results (see Section  4.2 
here).

With the ordination performed, its results should be eval-
uated against the initial expectations from the survey of the 
data. If they are different, first check if the output makes 
sense with the data and if the initial expectations were wrong. 
Also consider if ordination output makes sense from a geo-
logical perspective. In either case, it might be prudent to redo 
the analysis using a different transformation or with some of 
the variables excluded to evaluate if the results replicate. If 
the desired output is clustering, perform the appropriate sta-
tistical test to make sure the difference between the resulting 
groups is significant (see Section 2.4).

With the ordination generated, it is important to report the 
detail of the workflow in the publication. It is strongly recom-
mended to include the graphical representation of the ordina-
tion, loading tables (for PCA and DCA), scree plot (PCA), 
etc. in the supplement if not the main text of the manuscript. 
As advocates for open science, the call is made here upon au-
thors, when possible, to include the original data, preferably 
in a data repository.

5  |   CONCLUDING REMARKS

Exploratory statistics and ordination in particular are of 
growing interest within the Earth science community. 
These methods offer an opportunity to analyse large multi-
variate data sets, particularly with increased digitization of 
archival data and increasing data set sizes in modern stud-
ies. The proliferation of freeware software and databases 
in Earth sciences and rising interdisciplinarity in research 
creates an environment in which Earth scientists can ben-
efit from these tools. Students in these fields, in turn, could 
benefit from increased training in multivariate statistics. 
Here, a review is presented of what ordination is, how it 
could be used and what are some potential pitfalls in its 
application.

This work presents a survey of a large swath of stud-
ies using ordination in a sedimentology related context. A 

diverse range of uses and applications was found. Although 
most of the surveyed analyses used PCA, NMDS and DCA 
are probably more suitable for most geological data sets. The 
observations here indicate many small mistakes that could 
be avoided. Data reporting and access could benefit from 
new tools and policies which would enhance reproducibility. 
Based on the finding from this review and survey a workflow 
(Figure 11) is proposed for researchers new to ordination that 
are interested in unlocking the potential in their sedimento-
logical, sedimentary geochemistry or palaeoenvironmental 
data.

For those who seek to deepen their understanding of the 
topics covered here, there are many excellent reference books 
(Filzmoser et al., 2018; Greenacre, 2018; Hammer & Harper, 
2007; Patzkowsky & Holland, 2012; Reimann et al., 2008; 
Rencher, 2003; Zar, 2010). All of these are useful intro-
ductory books written with geoscientists in mind as well as 
discussing the use of accessible statistical software, notably 
PAST (Hammer et al., 2001) and R Software (R Core Team, 
2020).
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