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We prove a formula for the polar degree of projective hypersurfaces in terms of 
the Milnor data of the singularities, extending to 1-dimensional singularities the 
Dimca-Papadima result for isolated singularities. We discuss the semi-continuity of 
the polar degree in deformations, and we classify the homaloidal cubic surfaces with 
1-dimensional singular locus. Some open questions are pointed out along the way.
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1. Introduction

For any projective hypersurface V ⊂ Pn, defined by a homogeneous polynomial f : Cn+1 → C of degree 
d, the polar degree is defined as the topological degree of the gradient map, also known as the Gauss map:

grad f : Pn \ Sing(V ) → Pn. (1)

The polar degree depends only on V and not on the defining polynomial f , as conjectured by Dolgachev 
[6] and proved by Dimca and Papadima in [5]. One therefore denotes it by pol(V ).
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The concept of polar degree goes back to 1851 when Hesse studied hypersurfaces with vanishing Hessian 
[9,10], which is equivalent to pol(V ) = 0, and to Gordon and Noether [8] (see also §5.3 for more comments).

The gradient maps (1) of polar degree equal to 1 are examples of Cremona transformations since they 
are birational maps. The corresponding hypersurfaces V were called homaloidal, and Dolgachev [6] found 
the list of all (reduced) projective plane curves which are homaloidal.

In the beginning of the 2000’s, whereas the algebraic approach was dominant before that date, Dimca 
and Papadima [5] gave the following topological interpretation: For any projective hypersurface V , if H is a 
general hyperplane with respect to V , then the reduced homology H̃∗(V \H) of the affine part is concentrated 
in dimension n − 1, and:

pol(V ) = rankHn−1(V \H). (2)

The classification of all homaloidal hypersurfaces with isolated singularities was carried out by Huh [11]
and confirmed a conjecture stated by Dimca and Papadima [5,4] that there are no homaloidal hypersurfaces 
with isolated singularities besides the smooth quadric and the plane curves found by Dolgachev. Huh [11]
proves and uses the bound:

pol(V ) ≥ μ〈n−2〉
p (V ) := μp(V ∩H), (3)

where the Milnor number μp(V ∩H) is > 0 as soon as p ∈ SingV . This holds at any p such that V is not a 
cone of apex p.

More recently, the authors together with Steenbrink classified in [20] the hypersurfaces with isolated 
singularities and polar degree 2, confirming Huh’s conjectural list [11]. The finiteness of the range of (n, d)
in which there may exist hypersurfaces with isolated singularities and polar degree k > 2 has been also 
proved in [20].

Still for isolated singularities, Dimca and Papadima [5] had shown the formula:

pol(V ) = (d− 1)n −
∑

p∈SingV
μp(V ), (4)

which allows to compute the polar degree in terms of the Milnor data of the singular points.

In this paper we consider hypersurfaces with 1-dimensional singular locus. We extend the formula (4)
and compute the polar degree from the Milnor data of the singularities (Theorem 2.1):

pol(V ) = (d− 1)n −
∑

p∈Σis

μp −
r∑

i=1
ciμ

�
i + (−1)n

∑

q∈Q

(χ(Aq) − 1)

by using the study of the hypersurfaces with 1-dimensional singular locus in [23] and in earlier papers, see 
[19]. All the notations are explained in §2. Moreover, we observe in Proposition 2.3 that even in the general 
case of an arbitrary singular locus we may still write a formula of “Dimca-Papadima type”:

pol(V ) = (d− 1)n − (−1)n−1[χ�(V ) − χ�(V ∩H)].

Next, we use the semi-continuity of the polar degree in deformations (Proposition 4.1) in order to com-
pare the polar degree of V with 1-dimensional singularity with its deformation Vt (of Yomdin type) to a 
hypersurface with isolated singularities (Corollary 4.2). Then pol(Vt) may serve as upper bound for the 
polar degree of V . As a consequence, we derive a Lefschetz type inequality for the slicing with a generic 
hyperplane Hgen:
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pol(V ) ≤ (d− 1)pol(V ∩Hgen).

We highlight the concept of special point of a hypersurface introduced in [24]. These are points p where 
the complex link of (V, p) is non-trivial, they are finitely many, and we will show their contribution to lower 
bounds formulas for the polar degree. We show that, in the 1-dimensional singularity case, one can detect 
them by the Milnor number jump of the transversal singularity type.

We treat cubic surfaces in §5. We compute all polar degrees in a topological way and prove that there 
are 3 homaloidal cubic surfaces with non-isolated singularities.

We discuss homaloidal hypersurfaces with 1-dimensional singularities and transversal type A1, and we 
state and discuss the question of the existence of hypersurfaces with 1-dimensional singularities and polar 
degree equal to zero, in this manner coming back to Hesse’s problem cited in the beginning.

We thank the anonymous referee for carefully reading the manuscript and for giving us interesting 
suggestions and references.

2. Formula for pol(V ) in case of 1-dimensional singularities

Let V ⊂ Pn be a projective hypersurface with singular locus Sing(V ) of dimension ≤ 1 and Sing(V ) =
Σc ∪ Σis, where Σc is a non-degenerate curve with irreducible components Σc

i , i = 1, . . . , r, and Σis is the 
finite set of isolated singularities.

Each curve branch Σc
i of Sing(V ) has a generic transversal type, of transversal Milnor fibre F�

i and 
Milnor number denoted by μ�

i .
Each branch Σc

i contains a finite set Qi of points where the transversal type is not the generic one, and 
which we have called special points (see also §3.2 for a more general definition). We denote by Aq the local 
Milnor fibre of the hypersurface germ (V, q) for q ∈ Q := ∪r

i=1Qi, and by Σ̃c
i the normalisation of Σc

i .
At each point q ∈ Qi there are finitely many locally irreducible branches of the germ (Σc

i , q), we denote 
by γi,q their number and let γi :=

∑
q∈Qi

γi,q. In other words, γi is equal to the number of “punctures” in 
Σ̃c

i \ Q̃i, where Q̃i is the inverse image of Qi by the normalisation map.
This setting has been studied in [23], in particular a formula for χ(V ) has been given in terms of the 

isolated singularities of V , the special nonisolated singularities, the topology of the curve components of 
Sing(V ), and the transversal singularity type of each such curve component.1

Under the above notations, our following formula generalises the Dimca-Papadima formula (4) for isolated 
singularities to the case of a 1-dimensional singular set.

Theorem 2.1. Let V ⊂ Pn be a hypersurface of degree d with a 1-dimensional singular set. Then:

pol(V ) = (d− 1)n −
∑

p∈Σis

μp −
r∑

i=1
ciμ

�
i + (−1)n

∑

q∈Q

(χ(Aq) − 1) (5)

where ci = 2gi + γi + (d + 1) deg Σc
i − 2, where gi is the genus of the normalization Σ̃c

i of Σc
i , and where 

deg Σc
i denotes the degree of Σc

i as a reduced curve.

Proof. The Euler characteristic χ(V ) has been computed in [23] by using a local pencil of hypersurfaces 
Vε := {fε = f + εhd = 0} of degree d = deg f , where hd is a general homogeneous polynomial Let 
A := {f = hd = 0} denote the axis of the pencil.

1 See also Remark 2.2.
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Let VΔ := {(x, ε) ∈ Pn+1×Δ | f+εhd = 0} denote the total space of the pencil, where V0 := V ⊂ Pn×{0}
and Δ is a small enough disk centred at 0 ∈ C such that Vε is nonsingular for all ε ∈ Δ∗. The existence of 
small enough disks Δ is ensured2 by the genericity of hd. Note that VΔ retracts to V .

We have introduced in [23] the vanishing homology of projective hypersurfaces V with dim Sing(V ) = 1, 
defined as:

H�
∗ (V ) := H∗(VΔ, Vε;Z) (6)

and in its study we have established the following Euler characteristic formula for χ(VΔ, Vε) which equals 
χ(V ) − χ(Vε), since VΔ retracts to V :

χ(V ) − χ(Vε) = (−1)n
r∑

i=1
(2gi + γi + νi − 2)μ�

i −
∑

q∈Q

(χ(Aq) − 1) + (−1)n
∑

p∈Σis

μp

where νi := #A ∩ Σc
i is the number of axis points, namely νi = int({hd = 0}, Σc

i ) = d deg Σc
i .

Since Vε is a nonsingular hypersurface in Pn, its Euler characteristic is that of the smooth hypersurface 
of degree d in Pn, namely:

χn,d := n + 1 − 1
d
[1 + (−1)n(d− 1)n+1].

Let now H be a generic hyperplane with respect to the canonical Whitney stratification of V . Since V ∩H
has only isolated singularities, one has the well-known formula:

χ(V ∩H) = χn−1,d + (−1)n−1
∑

a∈Sing(V ∩H)

μa(V ∩H),

where Sing(V ∩ H) = Σc ∩ H. The number #Σc ∩ H of intersection points is then 
∑r

i=1 deg Σc
i , and 

μa(V ∩H), for a ∈ Σc
i , is precisely the transversal Milnor number μ�

i .
To prove our claimed formula for pol(V ) we use the above formulas and the relation (2) of [5] in the 

form:

χ(V \H) = 1 + (−1)n−1pol(V )

where χ(V \H) = χ(V ) − χ(V ∩H) by the additivity of χ. �
Remark 2.2. The vanishing (co)homology (6) has been studied more recently in the general singular setting 
in [14] by using sheaf cohomology. The Euler characteristic version of (6), let us denote it here by χ�(V ) :=
χ(VΔ, Vε; Z) and call it vanishing Euler characteristic, appears to be known for some time under a different 
name: Parusińki and Pragacz [16] had produced a formula for χ�(V ) in terms of Chern classes, later 
generalised by Maxim, Saito and Schürmann [15]. See also the more elementary presentation of their formula 
in Maxim’s book [13, Section 10.4].

The above proof also shows that the polar degree is related to the vanishing Euler characteristic by the 
following formula which represents a generalisation of Dimca-Papadima formula (4) to higher dimensional 
singular locus:

2 See e.g. [22, Prop. 2.2] for a detailed explanation.
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Proposition 2.3. Let V ⊂ Pn be a projective hypersurface with arbitrary singular set, and let H be a generic 
hyperplane. Then:

pol(V ) = (d− 1)n − (−1)n−1[χ�(V ) − χ�(V ∩H)]. �
Formula (5) is useful as soon as the local topological information is available. We show this in some 

examples taken from [23].

[23, Ex 7.1a]: V := {x2z + y2w = 0} ⊂ P 3. Then Sing(V ) is a projective line with transversal type A1
and with two special points of type D∞, the Milnor fibre of which is homotopy equivalent to S2. Applying 
formula (5) we get pol(V ) = 8 − 0 − (0 + 2 + 4 − 2) − 2 = 2.

[23, Ex 7.1b]: V := {x2z + y2w + t3 = 0} ⊂ P 4. Then Sing(V ) = P 1 is also a projective line but here 
with transversal type A2 and with two special points having Milnor fibre S3 ∨ S3. From formula (5) we get 
pol(V ) = 16 − 0 − (0 + 2 + 4 − 2) · 2 − 4 = 4.

3. Special points and lower bounds

If one looks for hypersurfaces with small polar degree, for instance homaloidal, it is useful to have lower 
bounds for the polar degree in terms of the singularities of V or its dual. An example is Huh’s bound (3) for 
isolated singularities, which has been used in [11] and in [20] to determine all hypersurfaces with isolated 
singularities which have polar degree 1 or 2. A more general bound has been found in [24].

3.1. Quantisation of the polar degree, after [24]

Let us fix a Whitney stratification W of V ⊂ Pn. This depends only on the reduced structure of V . We 
consider hyperplanes H which are stratified transversal to all strata of V , except at finitely many points. 
One says that the hyperplane H = {l = 0} is admissible iff its non-transversality locus consists of isolated 
points only, and if the affine polar locus3 Γ(l, f) has dimension ≤ 1.

If H has an isolated non-transversality at p ∈ V then the linear function l : Cn → C defining H near p
has a stratified isolated singularity at p. Consequently, its local Milnor-Lê fibre Bε ∩ V ∩ {l = s}, for some 
s close enough to l(p), has the homotopy type of a bouquet of spheres of dimension n − 2, cf Lê’s results 
[12]. We denote by αp(V, H) its Milnor-Lê number. In case H = Hgen is a general hyperplane through 
p, then αp(V, Hgen) is the Milnor number of the complex link of V at p, denoted by αp(V ), and we have 
αp(V, H) ≥ αp(V ).

Let us denote by α(V, H) the sum 
∑

p αp(V, H) for all points p of the non-transversality locus of the 
admissible hyperplane H. We have shown in [24]:

Theorem 3.1. [24, Theorem 5.4] If H is an admissible hyperplane, then there is the following decomposition 
of the polar degree:

pol(V ) = α(V,H) + β(V,H)

where β(V, H) counts the vanishing cycles of the restriction f| : {l = 1} → C which are vanishing out-
side V . �

Let us consider now the special case of hypersurfaces V with 1-dimensional singular locus. In this case, 
the numbers αp(V, H) can be described by sectional Milnor numbers, as follows:

3 Γ(l, f) is the closure in Cn+1 of the set Sing(l, f) \ Singf .
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(i) For isolated singular points p ∈ V we have αp(V, H) = μp(V ∩H) by definition.
(ii) For points p on the 1-dimensional singular set, we have the formula proved in [21]:

αp(V,H) = μ(V ∩H, p) −
∑

j

μ(V ∩Hs, pj), (7)

where Hs := {l = s}, where fp = 0 is a reduced local equation for V , and where the points pj are the 
singular points of the restriction fp|Hs

in Bε ∩ V ∩Hs.
The number αp(V, H) was called the Milnor number jump at p for the family of functions fp|Hs

. Even 
if H0 may not be the most generic at p, for s 
= 0 the hyperplane Hs is a locally generic slice of any 
branch Σc

i , and so the above equality reads:

αp(V,H) = μ(V ∩H, p) −
∑

i

multpΣc
i · μ�

i , (8)

where μ�
i is the generic transversal Milnor number and does not depend on the choice of the point of 

the irreducible component Σc
i . Here the sum is taken over all local branches at p.

3.2. The special points of V

For any singular projective hypersurface V , we say after [24] that p ∈ V is a special point of V if 
αp(V ) > 0. It has been shown that the set Vspec of special points is finite.

In case dim Sing(V ) = 1, the set of special points of V consists of the isolated singularities of V together 
with the set Q of points p where the generic transversal Milnor number is jumping (see §2), which is 
equivalent to the inequality αp(V, H) > 0. Indeed, it is well-known that αp(V, H) = 0 implies that Sing(V )
is smooth at p and that V ∩Hs is a μ-constant local family of hypersurfaces. This is equivalent to A’Campo’s 
“non-splitting principle” [1].

It is known (see [24, Remark 4.3]) that the set of admissible hyperplanes for f containing a fixed point 
p ∈ SingV is a Zariski-open subset of the set of all hyperplanes through p. The following useful lower bound 
then holds in general, as a consequence of Theorem 3.1:

Corollary 3.2. [24, Corollary 6.6] Let V ⊂ Pn be a projective hypersurface which is not a cone of apex p. 
Then:

pol(V ) ≥ αp(V ). (9)

In particular, if V is not a cone, then:

pol(V ) ≥ max
q∈Vspec

αq(V ). � (10)

We shall apply this lower bound result in case of homaloidal hypersurfaces, see §5.2.

4. Semi-continuity of pol(V ) under deformations

The following result is general, it holds for any singular locus and whatever pol(V ) might be, including 
the case pol(V ) = 0. This could be folklore, but we didn’t find a precise reference.

Proposition 4.1. The polar degree is lower semi-continuous in deformations of fixed degree d. More precisely, 
if fs is a deformation of f0 := f of constant degree, then pol(Vs) ≥ pol(V ) for s ∈ C close enough to 0, 
where Vs := {fs = 0}.
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Proof. Let b ∈ Pn be a regular value for grad f : Pn \ SingV → Pn and let (grad f)−1(b) = {a1, · · · , ak}, 
k ≥ 0. There exist disjoint compact neighbourhoods Ui of ai and U ′ of b such that grad f : (Ui, ai) → (U ′, b)
is a diffeomorphism. Next take s so close to 0 such that grad fs|Ui are still diffeomorphisms, and that 
grad fs(Ui) still contains b in its interior. Let W = ∩k

i=1 grad fs(Ui) and Zi = (grad fs)−1(W ) ∩ Ui. The 
restriction grad fs : �i Zi → W is a diffeomorphism on each component Zi, and has topological degree 
pol(V ). Moreover b is still a regular value for this restriction, but perhaps not anymore for the full map 
grad fs : Pn \ SingVs → Pn. Arbitrarily close to b there exist points b′ which are regular values for grad fs. 
Then the number of counter-images #(grad fs)−1(b′) is pol(Vs) and (grad fs)−1(b′) contains at least one 
point in each Zi. This shows the inequality pol(Vs) ≥ pol(V ). �
4.1. Yomdin type families and polar degree

Let V = {f = 0} have at most 1-dimensional singularities, and let us consider the particular deformation4

fs = f + sld of degree d, where H = {l = 0} is a hyperplane such that H ∩V has isolated singularities only. 
By direct computation, one can show that for generic s 
= 0 (actually except of a finite number of values of 
s ∈ C), the singular locus of Vs = {fs = 0} is the set H ∩ SingV , and therefore SingVs consists of isolated 
singular points. We may then show:

Theorem 4.2. If V has at most 1-dimensional singularities, and if Hgen is a generic hyperplane, then:

pol(V ) ≤ pol(Vs) = (d− 1)pol(V ∩Hgen) (11)

and

∑

i

d̃iμ
�
i ≤ (d− 1)n−1, (12)

where d̃i := int(Σc
i , Hgen) denotes the global intersection number.

Proof. By [25], one has the following formula for the local “Yomdin series” gN = g+ slN of a function germ 
g : (Cn, 0) → (C, 0) with 1-dimensional singular locus Σ = ∪jΣj , where l is a general linear form, see also 
[19]:

μ(gN ) = bn−1(g) − bn−2(g) + N
∑

j

djμ
�
j (13)

where μ(gN ) is the Milnor number of gN , where bn−1(g) and bn−2(g) are the respective Betti numbers of 
the local Milnor fibre of g, and where μ�

j is the transversal Milnor number of the local branch Σj. The sum 
is taken over the branches Σj of Σ, and dj = int0(Σj , {l = 0}) is the intersection multiplicity of {l = 0} and 
Σj with reduced structure.

This formula was proved initially for “high enough N” depending on the polar ratios of the discriminant 
of the map (l, g). It was shown in [18] that actually it holds for N greater or equal to the highest polar 
ratio. Moreover, from the proof of this formula in [18, pag 187], one deduces the following statement:

Lemma 4.3. If the polar locus Γ(l, g) is empty, then formula (13) holds for any N ≥ 2. �
4 Known as the Yomdin series in the local context.
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Let us remark that if Γ(l, g) = ∅ then bn−1(g) = 0 and bn−2(g) = μ(g|l=0). Thus formula (13) becomes:

μ(gN ) = −μ(g|l=0) + N
∑

j

djμ
�
j (14)

We will apply Lemma 4.3 and formula (14) at some point p ∈ Hgen ∩Σc
i , for the following data: g := fp, 

where fp = 0 is a local equation of V at p, N = d and gd := fs = f + sld as defined above.
We remark that the genericity of Hgen with respect to SingV implies that the local polar locus Γp(l, f)

is empty, and therefore Lemma 4.3 holds indeed for our data at p. Moreover, since Hgen is generic, Σc
i is 

smooth at p ∈ Hgen∩Σc
i , thus in formula (14) we have a single term in the sum, a single multiplicity di = 1, 

a single transversal Milnor number μ�
i , and bn−2(fp) = μ�

i . Therefore formula (14) reduces to:

μp(Vs) = (d− 1)μ�
i . (15)

Taking the sum over all points p ∈ SingVs, we get:
∑

p∈Hgen∩SingV
μp(Vs) = (d− 1)

∑

i

d̃iμ
�
i .

Inserting this in the Dimca-Papadima formula (4) for Vs, we get:

pol(Vs) = (d− 1)n − (d− 1)
∑

i d̃iμ
�
i

= (d− 1)
[
(d− 1)n−1 −

∑
p μp(V ∩Hgen)

]
= (d− 1)pol(V ∩Hgen).

(16)

By applying now the semi-continuity result Proposition 4.1, we obtain (11).
From (16) we also get pol(V ∩ Hgen) = (d − 1)n−1 −

∑
i d̃iμ

�
i ≥ 0, hence our claimed inequality (12)

follows too. �
5. Classification results, and questions

5.1. Cubic surfaces

We list here the polar degrees of all reduced cubic surfaces, based on the classification done by Bruce 
and Wall [2] with a singularity theory approach. In case of isolated singularities, we give the number of 
singularities and their types. By using the Dimca-Papadima formula (4) one gets:

pol(V ) = 8: the smooth cubic.
pol(V ) = 7 : A1.
pol(V ) = 6 : 2A1 or A2.
pol(V ) = 5 : 3A1 or A1A2 or A3.
pol(V ) = 4 : 4A1 or A22A1 or A3A1 or 2A2 or A4 or D4.
pol(V ) = 3 : A32A1 or A12A2 or A4A1 or A5 or D5.
pol(V ) = 2 : 3A2 or A5A1 or E6.
pol(V ) = 1: no homaloidal surfaces.
pol(V ) = 0 : Ẽ6, which is a cone.

Next, the Bruce-Wall classification [2] of irreducible cubics with nonisolated singularities contains:

(CN) cone over a nodal curve,
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(CC) cone over a cuspidal curve

both with pol(V ) = 0 because they are cones, and two other cases, for which we use our formula (5) to 
compute pol(V ):

(E1) x2
0x2 + x2

1x3 ; pol(V ) = 2
(E2) x2

0x2 + x0x1x3 + x3
1 ; pol(V ) = 1,

where the singular set is a projective line with two special points of type D∞ in the first case, and a single 
special point of type J2,∞ in the second case.5

The irreducible surface (E2) with the J2,∞ point is also mentioned in [3, Section 3.2] as Y (1, 2), related 
to a rational scroll surface and in [3, Example 4.7] as a sub-Hankel surface.

Among the reducible cubics there are only the following three cases with non-zero polar degree:

(QP) The union of a smooth quadratic with a general hyperplane: pol(V ) = 2.
(QT) The union of a smooth quadratic with a tangent hyperplane: pol(V ) = 1.
(CP) The union of a quadratic cone and a general hyperplane: pol(V ) = 1.

For these computations one can use the union formula (17) for the union of two hypersurfaces V =
V1 ∪ V2 ⊂ Pn:

pol(V1 ∪ V2) = pol(V1) + pol(V2) + (−1)n[χ(V1 ∩ V2 \H) − 1], (17)

where H is a generic hyperplane with respect to V . This is a consequence of (2) and of the inclusion-exclusion 
principle for the Euler-characteristic. It was observed in several papers, e.g. [7, Cor. 4.3].

All the other reducible cubics are cones and thus have pol(V ) = 0. In particular, there are only three 
homaloidal cubic surfaces, all with nonisolated singularities.

5.2. Homaloidal singularities with transversal type A1

A necessary condition for V to be homaloidal is that αq(V ) = 1 for any special point p ∈ V , cf Corol-
lary 3.2. This restriction tells for instance that all isolated singularities of V must be of type Ak, as observed 
in [11] in case of isolated singularities only, but the argument holds at any isolated singular point, cf Corol-
lary 3.2, whatever the other singularities of V might be.

For instance, a hypersurface V with 1-dimensional singular locus can be viewed (by slicing) as a 1-
parameter family of hypersurfaces with isolated singularities. Therefore, a natural classification question is: 
what are the 1-parameter families of hypersurfaces with isolated singularities with Milnor jumps equal to 1?

It is known that in certain generic transversal types (e.g. Ẽ6, Ẽ7, or Ẽ8) this jump does not exist. Let us 
look now to the case of the transversal type A1, more precisely the subclass of “smooth singular locus and 
generic transversal type A1”.

Proposition 5.1. Let V ⊂ Pn be a hypersurface with singular locus Sing(V ) = Σc � Σis such that Σc is a 
smooth projective line with transversal type A1, and Σis is a finite set of isolated points.

Then αp(V ) = 1 if and only if the hypersurface germ (V, p) is a Jk,∞ singularity, i.e. has local equation: 
y2(y − xk) + z2

1 + · · · + z2
n−2 = 0.

5 For the type notation, see [17].
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In particular, if V is homaloidal, then all its special points on Σc must be of type Jk,∞, and all its isolated 
singular points of type Ak.

Proof. The generic transversal type is A1 by hypothesis, with transversal Milnor number μ� = 1. Then 
by (7) the condition αp(V, H) = 1 is equivalent to μ(V ∩ H, p) = 2, which means that the hypersurface 
germ (V ∩ H, p) is an A2-singularity. One may then apply the local classification of line singularities [17]
and obtain, firstly that the local function defining (V, p) is R-equivalent to y2g(x, y) + z2

1 + · · ·+ z2
n−2, with 

g(0, 0) = 0, and secondly that y2g(x, y) is R-equivalent to y2(y−xk) for some k. This shows our first claim.
To show our second claim, we apply Corollary 3.2 as in the first paragraph of this subsection, together 

with the result that we have just proved. �
5.3. On projective cones and other hypersurfaces with polar degree zero

Let V ⊂ Pn be defined by f(x0, x1, · · · , xn) = g(x1, · · · , xn) = 0. This is one of the possible definitions of a 
projective cone V over the hypersurface V ′ ⊂ Pn−1 given by g(x1, · · · , xn) = 0. The point q = [1 : 0 : · · · : 0]
is called the apex of the cone. From the definition (1) it follows that pol(V ) = 0.

Let V ′ have isolated singularities only, with Milnor numbers μ1, · · · , μr. Then Sing(V ) = ∪r
iΣc

i , where 
each Σc

i is a projective line with transversal type μi, and such that all these lines intersect only at the 
apex q.

Let us compute pol(V ) with formula (5). First observe that gi = 0, γi = 1 and deg Σc
i = 1. There 

are no isolated critical points. The only special point is the apex q, where a local affine equation is given 
by g = 0. As computed in [19], one has χ(Aq) = (−1)n((d − 1)n − d 

∑
i μ

�
i ). We therefore get pol(V ) =

(d − 1)n − d 
∑

i μ
�
i − (d − 1)n + d 

∑
i μ

�
i = 0, which is indeed what was expected since V is a cone.

What can be said about other hypersurfaces with polar degree zero? Historically, Hesse claimed that 
hypersurfaces with vanishing Hessian are always projective cones. In 1875 Gordan and Noether [8] gave 
several examples with polar degree zero but not cones. All known examples seem to have a singular locus of 
dimension at least 2. It follows from the lower bound results [24] that the polar degree zero can not occur 
if V contains isolated singularities. The following question is open:

Do there exist hypersurfaces with 1-dimensional critical set and polar degree 0?

We have the following partial result, by [24, Corollary 6.9]: Let V ⊂ Pn be a hypersurface which is not 
a cone and such that pol(V ) = 0. Then V has no special point. In particular V has no isolated singularity 
(besides its non-isolated singularities).
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