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Abstract

We consider the Edge Multiway Cut problem on planar graphs. It is known that this can be solved

in nO(
√
t) time [Klein, Marx, ICALP 2012] and not in no(

√
t) time under the Exponential Time Hypothesis

[Marx, ICALP 2012], where t is the number of terminals. A generalization of this parameter is the number k

of faces of the planar graph that jointly cover all terminals. For the related Steiner Tree problem, an nO(
√
k)

time algorithm was recently shown [Kisfaludi-Bak et al., SODA 2019]. By a completely different approach, we

prove in this paper that Edge Multiway Cut can be solved in nO(
√
k) time as well. Our approach employs

several major concepts on planar graphs, including homotopy and sphere-cut decomposition. We also mix a
global treewidth dynamic program with a Dreyfus-Wagner style dynamic program to locally deal with large
numbers of terminals.

1 Introduction

A graph with weighted edges, and a subset of its vertices called terminals, is given. How would you pairwise
disconnect the terminals by removing a subset of minimum possible weight of the edges of the graph? Widely
known as the (Edge) Multiway Cut problem, this question is a natural generalisation of the popular minimum
(s, t)-cut problem. A variant of the problem was first introduced by T.C. Hu in 1969 [36]. Formally, we can define
the Edge Multiway Cut problem as follows:

Edge Multiway Cut
Input: A graph G, weight function ω : E(G) → Q+, T ⊆ V (G)
Question: What is the minimum possible weight of the cut that pairwise separates the vertices in T?

The study of the complexity of Edge Multiway Cut was pioneered by Dahlhaus et al. in their seminal paper
[21]. The authors showed that Edge Multiway Cut is NP-hard on arbitrary graphs for any fixed t ≥ 3, where
t is the number of terminals. They also showed that the problem is Max-SNP-hard for all fixed t ≥ 3 even when
all weights are unit, while giving an O(tnm log(n2/m))-time approximation algorithm, which given an arbitrary
graph and an arbitrary t finds a solution within a 2− 2/t ratio of the optimum. Following these hardness results,
began a twofold quest: to find approximation algorithms with a better approximation ratio [9, 38] and to find
exact algorithms that were more efficient than any brute-force approach [44, 10, 54, 40, 20, 15, 34, 17]. Starting
with the seminal work of Marx [44], significant research effort was also put in understanding the parameterized
complexity of Edge Multiway Cut for other parameters, such as the size of the solution [54, 10, 15, 34, 20].

Restriction to planar graphs Given the hardness of the problem on arbitrary graphs, even for small
constant values of t, it was but natural to look for specific graph classes where the problem might be more
tractable with respect to the number of terminals t. In fact, Dahlhaus et al. had considered the restriction to
planar graphs, which we call Planar Multiway Cut. When t is arbitrary, the problem still is NP-hard, even
if all the edges of the planar graph are of unit weight. However, they showed that Planar Multiway Cut
could be solved in polynomial time for any fixed t. For t = 3, their algorithm runs in time O(n3 log n) and for
t ≥ 4 in time O((4t)t · n2t−1 log n). In the parameterized complexity parlance, their result implied that Planar
Multiway Cut belongs to the class XP. The obvious next step was to find out if it was also FPT. In 2012,
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however, Marx [45] showed that assuming ETH holds, the problem does not admit any algorithm running in time

f(t) · no(
√
t) and showed that it is W [1]-hard.

In a companion paper, Klein and Marx [40] gave a subexponential algorithm for Planar Multiway Cut

with a run-time of 2O(t) · nO(
√
t). Later, Colin de Verdière [22] showed that this result extends to surfaces of any

fixed genus. He showed this even holds for the more general Edge Multicut problem, where given a set of
terminal pairs, we ask for the smallest set of edges, which when removed, disconnects all the given terminal pairs.

This yielded an algorithm which solves the problem in time (g + t)O(g+t)nO(
√

g2+gt), where g is the genus of the
surface. This bound is almost tight assuming ETH holds, as was recently shown by Cohen-Added et al. [19].

Parameterization by terminal face cover number Due to the intractability of Planar Multiway
Cut when the number of terminals is part of the input, it is worthwhile to look for other parameters that might
generalize t. In particular, we could look at imposing restrictions on the location of terminals in the input plane-
embedded graph. An extensively explored such restriction is when all the terminals are present on a small number
of faces of the planar graph. This restriction on the input graph was studied by Ford and Fulkerson in their classic
paper [30]. The minimum number of faces of the input planar graph that cover all the terminals was termed the
terminal face cover number γ(G) by Krauthgamer et al. [41]. The terminal face cover number is of broad interest
as a parameter and has been studied with respect to several cut and flow problems [41, 42, 13, 47], shortest path
problems [32, 14], finding non-crossing walks [28], and the minimum Steiner tree problem [39]. In particular,

Planar Steiner Tree has an algorithm running in time 2O(γ(G) log γ(G))nO(
√

γ(G)).
The case when γ(G) = 1 is known as an Okamura-Seymour graph. It was shown by Chen and Wu [13]

that when γ(G) = 1 and G is biconnected, the minimum multiway cut in G forms a minimum Steiner tree in
its planar dual1. Consequently, one can find a minimum Steiner tree in the dual graph using the algorithm
by Erickson et al. [29] (see also Bern [6]) for the case when all the terminals lie on the outer face boundary
of the graph. They also gave an approximation algorithm for the case when γ(G) > 1, which runs in time
max{O(n2 log n log γ(G)),O(γ(G)2n1.5log2n+ tn)} and finds a solution within a ratio of 2− 2/t of the optimum
multiway cut. However, for the case when γ(G) > 1, no exact algorithm was known.

1.1 Our contribution In this paper, we resolve the complexity of Planar Multiway Cut parameterized
by the terminal face cover number, hereafter referred to as k. Given an edge-weighted planar graph G = (V,E)
with a fixed embedding, a set of terminals T ⊆ V , and a collection of faces F that cover all the terminals in T ,
the goal is to find a minimum weight cut of G that pairwise separates the terminals in T from each other. Note
that |F| = k. We show the following:

Theorem 1.1. Planar Multiway Cut can be solved in time 2O(k2 log k)nO(
√
k). Unless ETH fails, there can

be no algorithm that solves Planar Multiway Cut and runs in time no(
√
k).

Our main contribution is the algorithm. Since k ≤ t, the lower bound immediately follows from Marx’s
result [45].

We note that our algorithm requires that the set F is known. Fortunately, such a set of size k can be computed
in time 2O(k)nO(1) through the algorithm of Bienstock and Monma [7]. Hence, we can run their algorithm before
our own, and this does not affect the running time of the final algorithm.

We also note that while the running time of our algorithm is reminiscent of the algorithm by Kisfaludi-Bak
et al. [39] for Steiner Tree parameterized by the terminal face cover number, our algorithm is and needs to be
substantially more involved. The intuition of their algorithm is to show that a minimum Steiner tree for a set of
terminals that can be covered by k faces has bounded treewidth. Then they can ‘trace’ this tree by a recursive
algorithm that guesses the vertices of the solution in a separator implied by the tree decomposition. While one
can show that the dual of a minimum multiway cut is a subgraph of the dual of bounded treewidth, tracing a
solution through such a tree decomposition is not straightforward and we need significant assistance from tools
from topology, particulary homotopy, which were not needed for Steiner Tree.

Intuitively, we describe the high-level topology that must be respected by the dual of some optimum solution.
Part of this topology is a planar graph, of which we can find a sphere-cut decomposition of width O(

√
k). We then

1They consider an augmented planar dual, which differs from the standard dual graph in that the outer face is represented by
several vertices, one per interval of the boundary vertices between two consecutive terminals.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2033

D
ow

nl
oa

de
d 

05
/2

5/
22

 to
 1

31
.2

11
.1

05
.2

12
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



apply a dynamic programming routine on this decomposition to find the optimum solution. While this dynamic
programming routine is sufficient to find the high-level structure, the number of terminals is too large for this to
effectively deal with the local structure of the solution. We then merge the popular algorithm by Dreyfus-Wagner
[25] for finding minimum Steiner trees, which runs in polynomial time in cases relevant for us [29, 6], with the
algorithm of Frank-Schrijver [31] to find shortest paths homotopic to a given prescription. We argue that this
prescription can be efficiently guessed. This leads to a neat dynamic program used to find the local structure,
and then finally, an optimum solution.

In this sense, our algorithm has more in common with the approaches of Klein and Marx [40] and Colin de
Verdière [22], which extensively rely on topological arguments, and particularly homotopy. However, significant
effort is needed to generalize from the parameter number of terminals employed in those works to the parameter
number of faces covering terminals. This not only affects the structural results that employ homotopy, but also
makes the final algorithms more involved.

We provide a more detailed overview of our algorithm in Section 2. The full paper then follows.

1.2 Related Work We discuss related work in some more detail, particularly on the parameterized complexity
of Multiway Cut. Until 2006, not much was known with regard to the parameterized complexity of Multiway
Cut. Marx [44] got the ball rolling with his result that Node Multiway Cut, where one must remove a
subset of vertices instead of edges of the input graph, is FPT parameterized by the size of the solution (hereby

denoted by s). His algorithm ran in time O∗(4s
3

). Since then, the run time has been considerably improved
[54, 10, 15, 34, 20], with the current best being O∗(1.84s) for Edge Multiway Cut [10], and O∗(2s) for Node
Multiway Cut [20]. For directed graphs, Chitnis et al. [17] showed that Node Multiway Cut and Edge

Multiway Cut are equivalent and admit an FPT algorithm running in time O∗(22
O(s)

).
For planar graphs, we also mention some other exact algorithms. In particular, Hartvigsen [35] gave an

O(t4tn2t−4 log n) time algorithm, which improved on the original exact algorithm by Dahlhaus et al. [21]. The
simple algorithm by Yeh [55], unfortunately, seems incorrect [16]. The mentioned algorithm of Klein and Marx [40]
is faster than all of them. Benz also considered the generalization to Edge Multicut, first with terminals only
on the outer face [5] and for the general case [4]. Unfortunately, the latter general result seems to have several
flaws [22]. The algorithm by Colin de Verdière [22] for this problem that we already mentioned is also faster and
more general. Finally, for planar graphs and parameter s, Pilipczuk et al. [49] showed that even a polynomial
kernel in s exists for Edge Multiway Cut, leading to an algorithm with running time O∗(2O(

√
s log s)). This

kernel was recently extended to Node Multiway Cut by Jansen et al. [37].
We also discuss further works on approximation algorithms. We already mentioned several constant-factor

approximations for general graphs [21, 9, 38] and planar graphs [13]. Bateni et al. [2] presented a PTAS for
Planar Multiway Cut which combined the technique of brick-decomposition from [8], the clustering technique
from [3], and a technique to find short cycles enclosing prescribed amounts of weight from [48]. The more general
Edge Multicut problem is known to be APX-hard, even in trees. However, Cohen-Addad et al. [18] recently
gave a (1+ ε)-approximation scheme for Edge Multicut on graphs embedded on surfaces, with a fixed number

of terminals. Their approximation scheme runs in time (g + t)O((g+t)3) · (1/ε)O(g+t) · n log n. It also contains
uses of the Dreyfus-Wagner and Frank-Schrijver algorithm in a combination not dissimilar from our own, but in
different circumstances.

Finally, our work leans on a proper specification of the homotopy of the dual of the solution. This approach
was first applied explicitly to Edge Multicut (and by extension to Edge Multiway Cut) by Colin de Verdière
[22] and is also evident in the work of Klein and Marx [40]. The understanding of homotopy and its uses in cut
and flow problems on graphs on surfaces was built through a sequence of works, see e.g. [11, 12, 26, 27, 28].

1.3 Organization A high level description of the paper appears in Section 2. Later sections give most of the
technical results, but proofs for results marked with ♣ are deferred to the full version.

2 Overview

At a high level, our approach is reminiscent of the one by Klein and Marx [40] as well as Colin de Verdière [22]
used for the weaker parameter t, the number of terminals. Therefore, we start by giving a short overview of their
work, before discussing our own algorithm for parameter k.
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2.1 Previous Approaches The starting observation is that cuts in planar graphs correspond to cycles in the
dual of the graph [51]. Hence, it makes sense that almost the entire algorithms and structural descriptions of
Klein and Marx and Colin de Verdière, as well as ours, work with the planar dual. If the number t of terminals is
bounded, this quickly leads to the intuition that the planar dual of a multiway cut should be a planar graph with
t faces, one for each terminal [21]. By dissolving vertices of degree 2 of this planar graph and applying Euler’s
formula, one obtains a planar graph S with O(t) faces, vertices, and edges. One can then guess what S looks like
by exhaustive enumeration and guess the vertices of the dual corresponding to the vertices of S. Then it remains
to expand the edges of the graph back into shortest paths.

However, these paths are not just any shortest paths. Instead, they must wring themselves between the
terminals in a particular way, such that they perform their job in separating the terminals. This is where
topological arguments come in. Intuitively, the layout of these paths is described using the sequence of crossings
with a Steiner tree on the terminals. The main thrust of the work of Klein and Marx and Colin de Verdière is
to argue that in some optimal solution these crossing sequences are short, in the sense that their length depends
only on t. One can then guess the crossing sequences of each of the paths in the optimum and find a shortest
path following a particular crossing sequence in polynomial time using an algorithm by Frank and Schrijver’s
algorithm [31, Section 5].

The above leads to an f(t)nO(t) time algorithm. To improve to a f(t)nO(
√
t) time algorithm, it suffices to

observe that since S is planar, it has treewidth O(
√
t), as follows from the planar separator theorem [43]. One

can then replace the guessing of the vertices of the dual corresponding to vertices of S by a dynamic program on
the tree decomposition.

2.2 Warm-up: An nO(k)-time Algorithm We design our approach along the same lines, in that we show
that the topology of the dual graph of the minimum multiway cut is constrained and then enumerate all the
possible topologies. For a certain topology, we find the shortest solution respecting the topology. However, since
we must deal with a huge number of terminals, possibly O(n) many of them, this is not straightforward. Indeed,
we need stronger structural properties of the solution to limit the number of diverse topologies.

Structure: Global and Local From a global perspective, however, the structure of an optimal solution
looks very similar. If we think of a terminal face as a single terminal, then as in the previous works, we see that
(some part of) the dual of the solution must separate the different terminal faces. We call this part the skeleton
of the dual of the solution2. The paths between its branching points are called bones. By dissolving dual vertices
of degree 2 in the skeleton, we obtain the shrunken skeleton; its edges are called shrunken bones. The shrunken
skeleton has k faces and O(k) vertices and edges by Euler’s formula. It follows that the shrunken skeleton of the
optimum can be guessed by exhaustive enumeration and has treewidth O(

√
k), a great starting point. This is

discussed in more detail in Section 5.
Now consider the local parts of the solution, namely the part of the dual of the solution inside each of the k

faces of the skeleton. Chen and Wu [13] proved that when there is a single terminal face that is a simple cycle,
then the dual of a minimum multiway cut is a minimum Steiner tree in the dual graph. To be more precise,
this holds in the augmented dual graph. This graph splits the dual vertex of s of the face corresponding to
the simple cycle into r parts, where r is the number of terminals of the face, such that all dual edges of each
maximal subpath of the cycle without terminals belong to the same part of s. The solution is then a minimum
Steiner tree on the augmented dual vertices. We generalize this argument to prove that inside each face of the
skeleton, the solution is a forest of minimum Steiner trees on the augmented terminals, defined with respect to
the terminal face inside the face of the skeleton. We call these nerves. All nerves attach to the boundary of the
face of the skeleton. Crucially, the augmented terminals belonging to each of these nerves form an interval of the
set of augmented terminals. Then, by applying the Dreyfus-Wagner algorithm [25], any nerve can be found in
polynomial time [29, 6], if we know the interval. See Section 5.

Algorithm: Global and Local As a warm-up, we now discuss how to find an algorithm with running time
f(k)nO(k). First, guess the shrunken skeleton of the optimum solution by exhaustive enumeration. Then, for

2Our notion of skeleton should not be confused with the notion of skeleton as defined by Cohen-Addad et al. [18]. In particular,
our notion of a (shrunken) skeleton is very reminiscent of the multicut dual of Colin de Verdière [22], provides a high-level view of

the solution, and has no weight restrictions. The skeleton of [18] instead can be seen as ‘orthogonal’ to the solution; by controlling
its weight, the skeleton can be portalized (as in Arora [1]) and the solution can be approximated by combining Steiner trees of a

particular homotopy between portals. This is different from our use and definition of a skeleton.
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Figure 1: This figure illustrates the broken bones of the minimum multiway cut dual. In the figure, the terminal
faces are drawn as black circles. In red, we depict the partial solution, which we term the broken bones. We fix
these broken bones by splints to get C+

each shrunken bone of this shrunken skeleton, we note that it needs to expand to separate two terminal faces,
say Fα, Fβ ∈ F , and some of the terminals on each of them. For both the terminal faces, we guess the intervals
of augmented terminals Iα and Iβ covered by nerves that attach to the corresponding bone. Since intervals are
between two augmented terminals, there are nO(k) intervals and we can guess the optimal intervals by exhaustive
enumeration in the same time.

We now apply a dynamic program to find the bone. The crux here is to find the paths between the attachment
points of different nerves. While each of those paths individually again has a short crossing sequence, as can be
argued by adapting the approach of Klein and Marx [40] and Colin de Verdière [22], there are too many of
these paths to efficiently guess all these crossing sequences. Instead, we argue that we can group these crossing
sequences while keeping them small, and that we do not need to guess the crossing sequences for all groups.

We start by discussing the grouping. We group consecutive nerves towards the same terminal face. We then
prove that the union of the paths between the nerves in such a group has a bounded crossing sequence (see
Section 6). Then we can guess the optimal crossing sequence by exhaustive enumeration. Assuming we know the
starting and ending nerve of the group, we can then employ a dynamic program to find all nerves in between,
while ensuring that the paths between the attachment points of the nerves follows the guessed crossing sequence.
This will take care of all (augmented) terminals between the intervals.

Next, we argue that we only need few groups. We say that two groups alternate if they are towards different
terminal faces. If there are two alternating groups of nerves on the left part of the bone, and two alternating
groups of nerves on the right part of the bone, then we can observe that these nerves effectively cordon off part
of the plane. Inside this region, we can show that all terminals effectively lie on a cycle. This enables us to use
the ideas of Chen and Wu [13] again to find an optimal solution.

To conclude our algorithm, we note that we need at most four groups. If there are indeed four, then there is
a part between them for which we have a polynomial time algorithm. For the groups themselves, we know the
paths between their attachment points has a crossing sequence of small size, and we can guess the optimal crossing
sequences by exhaustive enumeration. For each group, we use a dynamic program that runs in polynomial time.
By applying Frank and Schrijver’s algorithm [31, Section 5], we can find shortest paths that follow a particular
crossing sequence in polynomial time. See Section 7.3 for details.

The total running time of this algorithm is indeed f(k)nO(k). The latter term originates from the guessing of
the terminals corresponding to the branching points of the skeleton, the guessing of the intervals, and the guessing
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of the nerves at the bookends of the groups. For each shrunken bone, we call this information a broken bone (we
effectively guess its parts) and the solution that fixes it a splint.

2.3 Towards the Final Algorithm We now develop the ideas for the final algorithm. To avoid guessing the
broken bones globally, we aim to apply the fact that the shrunken skeleton has bounded treewidth. Using a tree
decomposition directly is cumbersome and not very intuitive. Instead, we use sphere-cut decomposition.

A sphere-cut decomposition is a branch decompositions, which can be thought of as a set of separators of the
graph organized in a tree-like fashion. The tree structure enables dynamic programming in the usual manner.
The crux is that the vertices of each separator induce a noose in the planar graph. A noose in this sense is a
(closed) curve in the plane that intersects every face of the planar graph at most once and intersects the drawing
only in the vertices of the separator. The tree-structure of the decomposition is organized in such a way that each
separator has two child-separators and the symmetric difference of the corresponding two nooses is the noose of
the parent-separator. A formal definition is in Section 3.1.

We now apply a dynamic program where we just maintain the broken bones for the shrunken bones of the
faces intersected by a noose of the decomposition. In fact, this still is too much information, and instead we
maintain only a relevant part of those broken bones, namely the first nerve that we encounter in either direction
on the shrunken bones of each face that is intersected by the noose. We argue that this yields sufficient information
to know all broken bones and obtain an optimum solution. See Section 8 for details.

It is known that there is a sphere-cut decomposition of a planar multigraph on k vertices where all nooses

(and separators) have O(
√
k) vertices [24, 46, 50]. This will lead to the nO(

√
k) running time. This decomposition

requires that the planar graph is connected, has no bridges, nor has self-loops. Unfortunately, our shrunken
skeleton does not satisfy any of those demands out of the box. The issue of self-loops is quickly handled by not
dissolving all vertices of degree 2 when obtaining a shrunken skeleton from a skeleton, but only those that do not
lead to a self-loop.

Next, we ensure connectivity of the shrunken skeleton. To this end, we consider a connected component of
the shrunken skeleton that is ‘innermost’ in the embedding of the shrunken skeleton. We can guess which of the
terminal faces are enclosed by this connected component. However, for one of those terminal faces, some terminal
might not be enclosed by the connected component. We cannot guess this terminal (as there are n choices), even
though it is necessary to know the terminal to correctly guess the structure of the optimum solution. To circumvent
this issue, we argue that we can pick a single terminal of this face as a representative of this ‘exposed’ terminal.
Thus we completely avoid knowing which terminal is exposed. This enables a 2O(k)nO(1) time subroutine to guess
the components of the dual of an optimum solution and to reduce to the case where such duals are connected.
We then argue that this implies that the shrunken skeleton is connected as well. See Section 4 for details.

Finally, we consider bridges of the shrunken skeleton. It seems hard to avoid them completely. Instead, we
design another dynamic program (see Section 8.1). We use a bridge block tree of the skeleton to guide this dynamic
program. Recall that a bridge block tree is a tree representation of the bridge blocks (bridgeless components) of a
graph and the cut vertices between those bridge blocks, generalizing the more familiar block cut tree. To ensure
this bridge block tree is suitable for the dynamic program, we need a modified version of a bridge block tree that
organizes itself according to the embedding of the shrunken skeleton. To this end, we develop an embedding-aware
bridge block tree (see Section 3.2), which may be of independent interest.

To conclude, our final algorithm is as follows. First, we perform a subroutine to ensure that the dual of any
minimum multiway cut is connected. Then we guess the structure of the dual of such a solution, namely its
shrunken skeleton, how the nerves of each bone are grouped, and what the crossing sequences are of each path
between nerves of the same group and between the groups. We call this a topology3 We guess the optimal
topology by exhaustive enumeration. Consider its shrunken skeleton and define a dynamic program on its
bridge blocks to combine partial solutions for each bridge block. For each bridge block, we show that it has
a sphere-cut decomposition with nooses of bounded size, which enables to find a partial solution using a dynamic
program. The guessing of the topology and the dynamic programs combined lead to an algorithm running in time

2O(k2 log k)nO(
√
k).

3The word topology has many well known meanings, including a branch of mathematics. We use the term here in a cartographic
sense, as an abstract map of the solution. This is in line with previous uses in the literature, e.g. [22].
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3 Preliminaries

Graphs A graph is a pair G = (V,E), such that E ⊆ [V ]2. The elements of V are called the vertices of the
graph and the elements of E its edges. The number of vertices of a graph is its order denoted by |G|. A subgraph
G′ = (V ′, E′) of G, written as G′ ⊆ G, is a graph such that V ′ ⊆ V and E′ ⊆ E. If G′ ⊆ G and G′ ̸= G, then G′

is a proper subgraph of G. G′ is an induced subgraph of G, if for all x, y ∈ V ′, if xy ∈ E then xy ∈ E′.
A path is a non-empty graph P = (V,E) of the form V = {x0, x1, . . . , xk} and E = {x0x1, . . . , xk−1xk},

where all xi are distinct. The number of edges in a path is its length. We use the notation P [xi, xj ] to denote the
subpath of P between vertices xi and xj . For a tree N , we use N [x, y] to denote the unique path in N between
the vertices x and y.

A graph is connected if there is a path between any two vertices in a graph, and disconnected otherwise.
The contraction of an edge e = (u, v) of G is the operation of identifying u and v, while removing any loops

or parallel edges that arise. We use the notation G/e. This extends to sets F ⊆ E(G) of edges, for which we can
use the notation G/F .

Given a subset T ⊆ V (G) (called terminals), a Steiner tree on T is a minimal connected subgraph H of G
such that there is a path in H between any two terminals in T .

Connectivity A cut vertex of a connected graph is a vertex whose removal yields a disconnected graph. A
biconnected graph is a graph without cut vertices. A biconnected component or block of a graph is a maximal
subgraph that is biconnected.

A bridge of a connected graph is an edge whose removal yields a disconnected graph. A bridgeless graph is
a graph that has no bridges. A bridgeless component or bridge block of a graph is a maximal subgraph that is
bridgeless. A bridge block that consists of more than one edge is called a nontrivial bridge block; the other bridge
blocks consist of just a single edge, which is a bridge in the graph. Bridge blocks are incident on each other at
cut vertices of the graph.

Given two disjoint vertex subsets X,Y ⊆ V (G), an (X,Y )-cut is a set of edges whose removal leaves no path
between any vertex of X and any vertex of Y .

Given a subset T ⊆ V (G), a (edge) multiway cut of T is a set of edges whose removal leaves no path between
any pair of distinct vertices in T .

Topology and Planar Graphs A Jordan arc in the plane is an injective continuous map of [0, 1] to R2. A
Jordan curve in the plane is an injective continuous map of S1 to R2. If one of the points on this curve is special,
we may also call this a closed arc on this point. Consider a set Z of Jordan (possibly closed) arcs in the plane.
Let P (Z) denote the union of the set of points of each arc of Z. Observe that R2 \P (Z) is an open set. A region
of Z is a maximal subset X of R2 \P (Z) that is arc-connected ; that is, there is a Jordan arc in X (meaning all its
points belong to X) between any pair of points in X. If R2 \P (Z) has more than one region, then Z is separating.
Let R be a region of a separating set Z. The boundary ∂X of a region X is the set of all points p ∈ R2 such that
every open disk around p contains both a point of X and of R2 \X. The complement of a region X is the union
of Y ∪ ∂Y for each region of R2 \ (X ∪ ∂X). Note that the complement of a region is not necessarily a region
itself, but possibly a union of regions (and their boundaries), particularly if X has holes.

We say that a region X encloses a set Y if Y ⊆ X ∪ ∂X and strictly encloses Y if Y ⊆ X.
For the definition of planar graphs, we follow Diestel [23]. A graph G = (V,E) is plane if there V corresponds

to a set of points (vertex points) in the plane and E corresponds to a set of arcs in the plane (edge arcs) between
the points corresponding to its endpoints, such that the interior of each edge arc contains no vertex point and
no point of any other edge arcs. We call the vertex points and edge arcs an embedding of G. If G admits an
embedding, we call the graph a planar graph. A face of a plane graph is any region of the set of edge arcs. Exactly
one face is unbounded, also called the outer face, whereas all other faces are bounded.

Two plane graphs are equivalent if they are isomorphic and the circular order of the edges around each vertex
is the same in both embeddings. In particular, this means that boundaries of the faces of the embeddings have
the same edge sets and there is a bijection between the faces of both embeddings.

Let G(V,E, F ) and G∗(V ∗, E∗, F ∗) be two planar graphs. V,E and F (V ∗, E∗ and F ∗) denote the set of
vertices, edges, and faces of G (G∗). G∗ is called a plane dual of G, if there exist bijections
f∗ : V → F ∗ e∗ : E → E∗ v∗ : F → V ∗

v → f∗(v) e → e∗(e) f → v∗(f)
satisfying the following conditions:

(a.) v∗(f) ∈ f, ∀f ∈ F
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(b.) e and e∗ intersect in exactly one point, which lies in the interior of both e and e∗.

(c.) v ∈ f∗(v),∀v ∈ V

We note the following basic properties, which follow from Diestel [23]. We will often use them without
explicitly referring to this proposition.

Proposition 3.1. • If G is connected, then the edges of G bounding each face form a closed walk (also known
as a face walk).

• If G is bridgeless, then for any edge, the faces on both sides are distinct. In particular, the outer face is a
simple cycle.

Let O be a set of points in the plane, called obstacles. Consider two Jordan arcs a, b between the same pair
of points, such that neither arc contains a point of O. Then these arcs are homotopic if there is a continuous
deformation between a and b that does not cross a point of O. In the plane, this means that the region induced
by the union of a and b does not contain any point of O.

3.1 Sphere-cut decompositions A main component of our algorithm is a dynamic program over a planar
graph of bounded treewidth. However, using a normal tree decomposition is rather cumbersome in this case,
and it turns out to be much easier to instead use a sphere-cut decomposition, a branch decomposition especially
suited for planar graphs. We define all necessary notions and state the relevant theorem below.

A branch decomposition of a graph G = (V,E) is a pair (R, η) of a ternary tree R and a bijection η between the
leaves of R and the edges in E. For an edge e of R, we define the middle set mid(e) to be the set of vertices in V
for which an incident edge is mapped by η to a leaf in the one component of R−e and an incident edge is mapped
by η to a leaf in the other component. The width of the branch decomposition is defined as the maximum size of
the middle set of any edge of R. The branchwidth of G is then the minimum width of any branch decomposition
of G.

Let G be a (planar) graph with a fixed embedding on the sphere. Then a noose γ⃗ (with respect to G) is a
closed, directed curve in the sphere that meets the embedding of G only in its vertices and that traverses each face
exactly once. The length of the noose is equal to the number of vertices of G traversed by it. If we enumerate the
vertices of the noose, we implicitly assume that this enumeration follows the order of appearance on the noose,
that is, following its direction. Note that a noose cuts the sphere into two regions, each homeomorphic to an open
disk. The region bounded by and to the right when following the noose with its direction is denoted by enc(γ⃗)
and the other by exc(γ⃗).

A sphere-cut decomposition of a graph G with a fixed embedding on the sphere is a triple (R, η, δ) consisting
of a branch decomposition (R, η) and a mapping δ from an ordered pair of adjacent vertices x, y of R to nooses
(with respect to G) on the sphere, such that

• δ(x, y) is the same noose as δ(y, x) but with the direction reversed. Note that then it holds enc(δ(x, y)) =
exc(δ(y, x));

• δ(x, y) meets the embedding of G exactly in the vertices of the middle set mid(x, y); moreover, enc(x, y)
contains all the embeddings of all edges of the one component of R − xy and exc(x, y) contains the
embeddings of all other edges.

As noted by Dorn et al. [24] and Pilipczuk et al. [50], we may assume that a sphere-cut decomposition is
faithful. That is, for every internal vertex x of R with adjacent vertices y1, y2, y3, we may assume that enc(x, y1)
is equal to the disjoint union of enc(y2, x), enc(y3, x), and (δ(y2, x) ∩ δ(y3, x)) \ δ(x, y1). We also note that
δ(y2, x) ∩ δ(y3, x) ∩ δ(x, y1) consists of two points, each of which may (or may not) coincide with a vertex of G.

As described by Dorn et al. [24], we can root any sphere-cut decomposition (R, η, δ) by subdividing
an arbitrary edge e of R. Let u be the newly created vertex and e′, e′′ be the newly created edges. Set
mid(e′) = mid(e′′) = mid(e). Add a new vertex r, connect it to u, and set mid(ru) = ∅. We then direct
the tree R towards the root r. In the remainder, we assume our sphere-cut decomposition are rooted.

The following result was observed by Dorn et al. [24] and follows from [33, 52] (see also Marx and Pilipczuk [46]
and Pilipczuk et al. [50]).
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Figure 2: The leftmost image is that of a graph with bridge blocks A,B,C and D. The bridges are denoted by
e1, e2 and e3, whereas the cut vertices are u, v1, v2, and v3. The figure in the middle shows a bridge-block tree
corresponding to the graph. The rightmost figure shows the embedding aware bridge block tree.

Theorem 3.1. Every n-vertex connected, bridgeless multigraph without self-loops but with a fixed embedding on
the sphere has a faithful sphere-cut decomposition of width

√
4.5n. Moreover, such a sphere-cut decomposition can

be found in O(n3) time.

3.2 Embedding-Aware Bridge Block Trees An important aspect of our algorithm will be to deal with
bridge blocks of a planar graph, as a sphere-cut decomposition can not. We define the following notion, which
lends itself in a nice way to the dynamic programming algorithm we develop towards the end of the paper.

We can define a bridge block tree of a graph H as follows. Consider the graph F that has a node for every
bridge block, called the BB-nodes of F , and for every cut vertex, called the C-nodes of F . There is an edge between
a BB-node corresponding to a bridge block B and a C-node that corresponds to a cut vertex v if v ∈ V (B). It is
immediate that this graph is a tree if H is connected and a forest otherwise. For simplicity, we call two bridge
blocks neighboring if they share a cut vertex. We can observe that any nontrivial bridge block neighbors only
trivial bridge blocks.

Theorem 3.2. (Tarjan [53]) A bridge block tree of a graph can be computed in linear time.

If H is plane and connected, then we use an extension of this definition. An embedding-aware bridge block
tree (or eabb tree) L = L(H) of H is formed from the bridge block tree F as follows. Root F at a BB-node
ℓ = ℓ(F ) that corresponds to a bridge block that has an edge bordering the outer face of H. We now perform two
operations on the BB-nodes.

First, for any nontrivial bridge block B whose corresponding BB-node b has a C-node parent p in F
corresponding to a cut vertex v, note that all other BB-node children c′ of p correspond to trivial bridge blocks.
For each bounded face f of B, create a new C-node child cf1 of b corresponding to v and f , and for any child

c′ ̸= b of p corresponding to a bridge edge that is contained in f , make the subtree of F rooted at c′ a child of cf1 .

We only add cf1 if there are any such children c′.
Second, for any nontrivial bridge block B whose corresponding BB-node p has a C-node child c in F

corresponding to a cut vertex v, note that all BB-node children c′ of c correspond to trivial bridge blocks.
For each bounded face f of B, create a new C-node child cv,f2 of p corresponding to v and f , and for any child c′

of c corresponding to a bridge edge that is contained in f , make the subtree of F rooted at c′ a child of cv,f2 . We

only add cv,f2 if there are any such children c′.
Perform these two operations on all nontrivial bridge blocks. Observe that the operations essentially apply to

the children of C-nodes corresponding to cut vertices contained in a nontrivial bridge block. As nontrivial bridge
blocks are not neighboring, the sets of cut vertices contained in nontrivial bridge blocks are pairwise disjoint.
Hence, these operations do not interfere with each other and can be performed independently.
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Then, finally, order the children of a C-node p in the tree according to the order in which their edges appear
around the corresponding cut vertex. The resulting tree is L(H).

Lemma 3.1. (♣) An embedding-aware bridge block tree of a plane, connected graph H can be computed in
polynomial time.

We now make several observations about L(H). Let B and B′ be distinct bridge blocks of a plane graph
H. Since H is plane (and ignoring possible intersections of the embedding on the cut vertex), B is enclosed by a
bounded face of B′, or vice versa, or B and B′ are both in each other’s outer face. We now define a strict partial
order ≺P on the bridge blocks of H, where B ≺P B′ if B is embedded in a bounded face of B′.

Lemma 3.2. (♣) Let B and B′ be two bridge blocks of a connected plane graph H. If B ≺P B′, then the node b
corresponding to B is a descendant of the node b′ corresponding to B′ in L(H).

Lemma 3.3. (♣) Let H be a connected plane graph. Let c and c′ be two C-nodes in L(H) corresponding to the
same cut vertex v of H. Then on the path between c and c′ in L(H), all other C-nodes correspond to v.

4 Basic Properties and Connectivity of the Planar Multiway Cut Dual

Let G = (V,E) be a connected simple undirected planar graph on n vertices and m edges with a fixed
embedding. Let T ⊆ V be the set of terminals. The set of faces covering all the terminals in T is denoted
by F = {Fα : 1 ≤ α ≤ k}. We call these the terminal faces of G. The edges of E are weighted. By removing
edges of weight 0 or less and then scaling the weights of the remaining edges, we can obtain an equivalent
instance with weights specified by the function ω : E → [1, . . . ,W ] for some integer W . Note that during this
transformation, possibly, the set of terminal faces changes, but there will still be at most k of them. Moreover,
the graph might become disconnected, but we can solve the instance associated with each connected component
independently. Hence, by abuse of notation, we may assume that our instance is still defined by G, T , k, F , and
ω as defined previously.

In the remainder, we use edge weight ∞ to indicate undeletable edges. Instead of ∞, one could use mW +1,
but using ∞ simplifies later notation. Note that the initial instance has no undeletable edges, and thus has a
finite weight solution. In future transformations and reductions, we shall always maintain the property that a
finite-weight solution exists. By abuse of notation, we still use ω : E → [1, . . . ,W ] ∪ {∞} to denote the weights.

Arbitrarily assign each terminal t ∈ T to a face of F that has t on its boundary. For each face Fα ∈ F ,
let Tα ⊆ T be the set of terminals on the boundary of Fα that are assigned to Fα. Let pα = |Tα|. We may
assume that pα > 0 for each terminal face, or we could reduce the set of terminal faces. Observe that the sets Tα

form a partition of T . Note that F can be partitioned into F1 = {Fα | pα = 1} (called the singular faces) and
F2 = F \ F1 (called the plural faces); possibly, one or both of these sets is empty.

For a terminal face Fα, we order the terminals in Tα as follows. Note that G is connected and thus the
boundary of Fα forms a closed walk. Pick an arbitrary starting vertex on this closed walk. Now traverse the
walk in clockwise direction and add a terminal to the ordering at the first moment it is encountered. Index the
terminals in Tα as αt1, . . . ,

α tpα according to this ordering.
We prove the following transformation is possible, which is reminiscent of Chen and Wu [13, Lemma 8].

Lemma 4.1. (♣) In polynomial time, one can transform the instance into an equivalent instance where G is
bridgeless, the faces of F are vertex disjoint, and all vertices of each face in F are terminals.

We call an instance transformed if it has the properties as set forth in Lemma 4.1. We note that the
transformation might make G no longer simple, but have parallel edges or self-loops. In the remainder, we
assume that the instance is transformed.

Let G∗ be the dual of G. By definition, G∗ has an embedding in the plane such that each vertex of G∗ is
embedded in the corresponding face and each dual edge crosses the corresponding primal edge exactly once and
no other edges. For practical purposes, any time we consider a set C∗ of dual edges, we also denote by C∗ the
subgraph of the dual induced by the edges in C∗. Then C∗ is again a planar graph with an embedding where
each edge of C∗ is embedded as it is in the embedding of G∗. We denote by C the set of edges in G corresponding
to the dual edges in C∗.

The following was observed by Dahlhaus et al. [21], based on the original observation of Reif [51].
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Proposition 4.1. Let C be a (minimum) multiway cut of (G,T, ω) and let C∗ be the set of corresponding dual
edges. Then each face of C∗ encloses at most (exactly) one terminal.

We will often use this fact without explicitly referring to it.
We now describe the algorithm. Let A be any algorithm for Planar Multiway Cut that always outputs a

feasible solution, but is only guaranteed to find an optimum solution if for all optimum solutions C to the instance
it holds that C∗ is connected. We show in later sections that we can find such an algorithm A with the required
running time bounds. Using it as a black box for now, we can give a recursive algorithm for Planar Multiway
Cut.

Let (G,T, ω) be a transformed instance of Planar Multiway Cut with F the set of terminal faces. Recall
that F can be partitioned into the set F1 of singular faces and the set F2 of plural faces; possibly, one or both of
these sets is empty.

In the first phase of the algorithm, consider two new types of sub-instances. For the first type, if F2 ̸= ∅,
consider each Fβ ∈ F2 and each set T̃ that is the union of the sets {Tα | Fα ∈ F̃} for a subset F̃ of F \ {Fβ},
and solve recursively on the transformed version of the sub-instance (G,T ′′, ω′′) where T ′′ = T̃ ∪ {βt1} and ω′′ is
equal to ω, except it is set to ∞ for all edges of Fβ . Effectively, this uses

βt1 as a representative of the whole set

Tβ . For the second type, consider each set T ′′ that is the union of the sets {Tα | Fα ∈ F̃} for a strict subset F̃ of
F , and solve recursively on the transformed version of the sub-instance (G,T ′′, ω′′) where ω′′ = ω.

Let B be the solution that is recursively found for any such a sub-instance (G,T ′′, ω′′) and let B∗ denote
the set of corresponding dual edges. In the second phase of the algorithm, let T ′ be the set of terminals in the
outer face of B∗. If there is a terminal face Fα for which ∅ ⊂ T ′ ∩ Tα ⊂ Tα, then consider the sub-instance
(G, (T ′ \Tα)∪{αt1}, ω′), where ω′ is obtained from ω′′ by setting the weight of each edge of Fα to ∞. Otherwise,
consider the sub-instance (G,T ′, ω). Let ZB be the solution that is recursively found for such a sub-instance.
Among all such combinations B ∪ ZB that are a feasible solution and A(G,T, ω), return the feasible solution of
minimum weight.

This finishes the description of the algorithm. By turning the above recursive algorithm into a dynamic
programming algorithm, we prove the following result.

Lemma 4.2. (♣) Let A be any algorithm for Planar Multiway Cut that always outputs a feasible solution,
but is only guaranteed to find an optimum solution if for all optimum solutions C to the instance it holds that
C∗ is connected. Let T (n, k) be a monotone function that describes the running time of A on instances with n
vertices and k terminal faces. Then Planar Multiway Cut can be solved in O(2O(k)T (n, k)poly(n)) time.

Our approach for this lemma is inspired by Klein and Marx [40, Lemma 3.1], who also considered biconnected
components but individually. Then in their sub-instances, for a subset X of terminals, they not only need to
pairwise separate the terminals of X, but also need to separate X from T \X. We use the planarity of the solution
to effectively argue that the latter condition is not necessary. Hence, our sub-instances are ‘normal’ instances of
Planar Multiway Cut, without further constraints.

Following Lemma 4.2, we need to develop the required algorithm A. Hence, in the remainder, we assume
that the dual of any optimum solution to our instance of Planar Multiway Cut is connected.

5 Augmented Planar Multiway Cut Dual: Skeleton and Nerves

An important challenge for our algorithm is to find the part of an optimum solution that cuts the many terminal
pairs incident on a single terminal face (of course, in concert with cutting terminal pairs on other faces). In the
case that k = 1, Chen and Wu [13] proposed the notion of an augmented dual in order to reduce to an instance of
Planar Steiner Tree wherein all the terminals lie on a single face. This, in turn, can be solved in polynomial
time [29, 6]. Such a simple reduction does not work in our case, but we do borrow and extend the notion of an
augmented dual.

Definition 5.1. The augmented dual graph G+ of G with respect to F is constructed as follows. Starting
with the planar dual of G, for each face Fα ∈ F , replace the corresponding dual vertex vα by a set of vertices
T+
α = {αt+1 ,α t+2 , . . . ,

α t+pα
} (called the augmented terminals, each being an end point of an edge incident on vα.

For 1 ≤ j ≤ pα, each
αt+j and its incident edge represents the edge (αtj−1,

α tj) on the boundary of Fα. The weight

function on the edges of G+ is denoted by ω+; all the edges in the augmented dual graph have the same weight as
their corresponding edge in G under ω.
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Figure 3 illustrates the structure of C+.

Figure 3: The back lines are edges of the graph G. The red blocks represent terminals. By green dots we show
the augmented vertices, while the black dots represent the vertices for each non-terminal face in the augmented
dual. The green curves correspond to the graph C+.

Observe that there is still a one-to-one correspondence between edges of G and (augmented dual) edges of
G+, as there is between edges of G and (dual) edges of G∗. We also note that an alternative construction of
G+ would be to subdivide each dual edge of G∗ incident on the dual vertex vα corresponding to a terminal face
Fα ∈ F and subsequently removing vα. For practical purposes, any time we consider a set C+ of augmented dual
edges, we also denote by C+ the subgraph of the dual induced by the edges in C+.

Lemma 5.1. (♣) Let C be any minimum multiway cut of (G,T, ω) and C+ the set of corresponding augmented
dual edges. Then C+ is a connected planar graph with k faces, one per terminal face in F .

5.1 Skeleton Considering Lemma 5.1, we note in particular that C+ has k faces. However, each of these k
faces can be highly complex. By ‘zooming out’, we can show that C+ in fact has a very nice global structure with
k faces that are much easier to describe. To this end, we prove the following.

We define the action of dissolving a vertex v of degree 2 with distinct neighbors u and w, as removing v
from the graph and adding an edge from u to w. If we drop the constraint that u,w are distinct, we speak of
strongly dissolving. We explicitly mention that while dissolving a vertex we retain any parallel edges that may
arise. Moreover, no self-loops may arise while dissolving a vertex, while this is possible when stricly dissolving a
vertex.

Definition 5.2. Let C be any minimum multiway cut of (G,T, ω) and C+ the set of corresponding augmented
dual edges. Then the set of augmented dual edges that remain after exhaustively removing all the edges incident
on a vertex of degree 1 of C+ is called the skeleton S+ of C+. The set of augmented dual edges that remain after
dissolving all vertices of degree 2 from S+ is called the shrunken skeleton of C+.

Lemma 5.2. (♣) Let C be any minimum multiway cut of (G,T, ω) and C+ the set of corresponding augmented
dual edges. Then the shrunken skeleton of C+ is a connected planar multi-graph without self-loops but with k
faces, such that each of its faces strictly encloses exactly one terminal face of F .

It is crucial to note that while the skeleton is connected, it is not necessarily bridgeless. This has important
algorithmic consequences discussed later.

Definition 5.3. Let Fα ∈ F and let fα be the corresponding face of the skeleton of C+. We call the set of
augmented dual edges of fα the spine of Fα with respect to C+.

Note that a spine is not necessarily isomorphic to a cycle, but only to a closed walk, because the skeleton is not
necessarily bridgeless.
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Definition 5.4. Let Fα ∈ F . An enclosing cut is a cut that separates Tα from T \ Tα and also separates each
terminal in Tα from every other terminal.

Remark 5.1. Chen and Wu use the term island cut to denote the (Tα, T \ Tα)-cut for each Fα ∈ F . Since they
find a 2-approximate solution instead of an exact one, it suffices to separate the graphs into islands and then find
a multiway cut for each island.

Corollary 5.1. (♣) Let C be any minimum multiway cut of (G,T, ω) and C+ the set of corresponding
augmented dual edges. Consider a face fα of the skeleton of C+ and let Fα ∈ F be the single terminal face
strictly enclosed by it. Then the set of edges of G corresponding to the spine of Fα is a (Tα, T \ Tα)-cut and the
set of edges of G corresponding to the augmented dual edges of C+ enclosed by fα is an enclosing cut.

The following lemma is proved as in Dahlhaus et al. [21, Lemma 2.2] with some modifications.

Lemma 5.3. (♣) Let C be any minimum multiway cut of (G,T, ω) and C+ the set of corresponding augmented
dual edges. Then the shrunken skeleton of C+ has at most 4k vertices and at most 7k edges.

5.2 Single Face Per Corollary 5.1, for each face Fα ∈ F and corresponding face fα of the skeleton, the spine
of Fα is an island cut and the set of augmented dual edges of C+ enclosed by fα is an enclosing cut. We show
that the enclosing cut has a very specific structure.

Definition 5.5. Let Fα ∈ F . An interval of augmented terminals of T+
α is the set {αt+i | i ∈ I}, where

I ⊆ {1, . . . , pα} is any set such that either |I| = pα or for each i ∈ {1, . . . , pα} except exactly one, it holds that
there is a j ∈ I where j = i+1 mod pα. We say that the interval is between i and j (1 ≤ i, j ≤ pα) if i ≤ j and
I = {i, . . . , j}, or i > j and I = {i, . . . , pα, 1, . . . , j}.

It is important to note that we treat intervals as ordered sets of terminals. In particular, the intervals
{αt+1 , . . . ,α t+pα

} and {αt+2 , . . . ,α t+pα
,α t+1 } are distinct.

This definition invites several additional definitions that will prove useful in later parts of the paper. Two
intervals I, I ′ of the same terminal face Fα are consecutive if they are disjoint and there is a third (possibly empty)
interval I ′′, disjoint from I and I ′, such that I ∪ I ′ ∪ I ′′ = T+

α .
Given two consecutive intervals I = {αt+1 , . . . ,α t+a } and I ′ = {αt+a+1, . . . ,

α t+b } of the same terminal face Fα, a
terminal t ∈ Tα is inbetween I and I ′ if t =α ta. Note that there is exactly one terminal inbetween two consecutive
intervals, unless I∪I ′ = T+

α , in which case there are exactly two. A terminal t ∈ Tα is between I = {αt+1 , . . . ,α t+a }
if t ∈ {t1, . . . , ta−1}.

A subinterval of an interval I = {αt+1 , . . . ,α t+a } is any subset {αt+b , . . . ,α t+c } of I such that 1 ≤ b ≤ c ≤ a or
is the empty interval. A prefix of an interval I = {αt+1 , . . . ,α t+a } is any subinterval of I containing αt+1 or is the
empty interval. A suffix of an interval I = {αt+1 , . . . ,α t+a } is any subinterval of I containing αt+a or is the empty
interval.

(Note that we have started the intervals at αt+1 only for simplicity and to avoid modulo-calculus, but the
definitions extend in the obvious manner.)

Enclosing Cut on your Nerves Using the notion of intervals, we can describe the enclosing cut. To this
end, we rely on the following result.

Theorem 5.1. (Chen and Wu [13, Lemma 3]) Let (G,T, ω) be an instance of Edge Multiway Cut where
G is a biconnected plane graph such that all terminals of T lie on the outer face. Then a set of edges is a minimal
multiway cut for this instance if and only if the corresponding augmented dual edges form a minimal Steiner tree
in the augmented dual on the augmented terminals.

In this result, the biconnectivity of G ensures that the augmented dual G+ is connected. For the conclusion of
the above theorem to hold, it suffices that G+ is connected.

Corollary 5.2. Let (G,T, ω) be an instance of Edge Multiway Cut where G is a plane graph such that all
terminals of T lie on the outer face and G+ is connected. Then a set of edges is a minimal multiway cut for
this instance if and only if the corresponding augmented dual edges form a minimal Steiner tree in G+ on the
augmented terminals.
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We can also obtain the following corollary.

Corollary 5.3. Let (G,T, ω) be an instance of Edge Multiway Cut where G is a plane graph such that the
outer face is bounded by a cycle and all terminals of T lie on this cycle. Then a set of edges is a minimal multiway
cut for this instance if and only if the corresponding augmented dual edges form a minimal Steiner tree in the
augmented dual on the augmented terminals.

It is important to note that the mentioned cycle might be two parallel arcs or a self-loop.
These results suggest that Steiner trees in the augmented dual are important for a multiway cut. This is

indeed the case, although the situation is substantially more involved when |F| > 1.

Lemma 5.4. Let C be any minimum multiway cut of (G,T, ω) and C+ the set of corresponding augmented dual
edges. Consider a face fα of the skeleton S+ of C+ and let Fα ∈ F be the single terminal face strictly enclosed
by it. Let Y + be the spine of Fα and let X+ be the set of remaining augmented dual edges enclosed by fα. Then
X+ is a forest of minimum Steiner trees with the terminals of each minimum Steiner tree lying in some interval
of T+

α , such that the union of all intervals is T+
α , and each minimum Steiner tree having a single vertex on Y +

that is incident on a single edge of that tree.

Proof. By Corollary 5.1, G \ Y does not contain any path connecting the terminals of Tα to terminals of T \ Tα.
Therefore, the region of G+ bounded by Y + and the boundary of Fα does not contain any terminal of T \ Tα.
The edges in X thus correspond to a multiway cut of Tα in G \ Y . Moreover, this multiway cut is minimal in
G \ Y : any edge that could be removed from X while it remains a multiway cut in G \ Y can also be removed
from C while it remains a multiway cut in G, which would contradict the minimality of C.

Now consider G \ Y . Note that the spine does not contain any augmented terminals, as those have degree 1
in C+ and thus are not part of the skeleton by definition. Hence, Y does not contain any edges of Fα and Fα

persists in G \ Y . Let Q be the component of G \ Y that contains Fα. Since the instance is assumed to be
transformed by Lemma 4.1, Fα is a cycle in Q. Moreover, X is a minimal multiway cut for Tα in Q, as argued
above. Hence, by Corollary 5.3, X+ is a minimal Steiner tree in the augmented dual of Q on the terminal set
T+
α . It is in fact of minimum weight; otherwise, we could replace X+ by a minimum-weight Steiner tree on T+

α

and obtain a minimum multiway cut for G of smaller weight using Corollary 5.3 and the fact that Y forms an
island cut.

Now we consider what X+ looks like in the augmented dual of G. We note that all edges of the augmented
dual of G \ Y also appear in the augmented dual of G. Hence, we can think of X+ as a set of edges in G. Let
X be the corresponding set of edges of G. Deleting the set of edges in Y from G is equivalent to contracting the
edges of Y + in the augmented dual. Let y+ be the vertex formed by contracting all the edges in Y +. Since C+

is connected by Lemma 5.1, it follows that at least one edge of X+ is incident on y+.
Deleting y+ from X+ creates deg(y+) many connected components of X+. We treat each of these connected

components as subsets of edges, which includes a single edge incident on y+. We claim that each of these
components is a minimum Steiner tree in G+ containing some interval of T+

α in its vertex set. Clearly, each of
the components is a Steiner tree on y+ and some subset of T+

α . We first show that the augmented terminals
contained in each component form an interval of T+

α . Due to the planarity of G+, no two tree edges cross each
other. Therefore, if the terminals of any two connected components were to cross each other on T+

α , then they
must intersect in some vertex. However, since each connected component is maximally connected, we reach a
contradiction. Hence, the terminals form an interval.

Due to the minimality of X+ in G+/Y +, with the terminal set T+
α ∪ {y+}, we already know that each of

the components is a minimum Steiner tree on G+/Y + containing its respective interval of T+
α . Suppose that one

of these trees is not a minimum Steiner tree in G+. Then, there must exist in G+ a Steiner tree W+ of lower
weight on the same terminal set, such that it either contains some edges of Y + or crosses Y +. In the latter case,
there is a subpath of this Steiner tree that intersects Y + in at least two vertices, leading to the creation of a cycle
enclosing no terminal of Tα. That would contradict the minimality of X+. In the former scenario, suppose that
we replace the concerned component of X+ with W+. We claim that all the previously enclosed terminals by
the component of X+, remain enclosed after the replacement. If for some terminal t ∈ Tα in the interval, W+

does not contain a subpath enclosing it, then the path between the augmented vertices flanking it contains edges
of Y +. This path in W+ crosses all the paths from t to Tα \ {t}, and the segment of Y + between the points
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Figure 4: The black cycle is the boundary of the face Fα. The terminals of Tα lying on the boundary are drawn
as red boxes. The spine Y + of the minimum enclosing cut dual is drawn in blue dotted lines. The green trees are
the minimum Steiner trees of X+ \ {y+} in G+/Y +. The blue dashed lines represent the minimum Steiner tree
in G+ on the terminal set {s4, s5, s6}, in which the path between s5 and s6 contains the subpath of Y + between
the vertices a and b.

of intersection crosses all the paths from t to terminals in T \ Tα. Therefore, the region bounded by W+ and
Y + that contains t cannot contain any other terminal of Tα, and t remains enclosed. The replacement would,
thus, yield an enclosing cut of Tα, strictly smaller than X+ ∪Y +. This, again, contradicts the minimality of X+.
Figure 4 illustrates the argument.

Finally, suppose that some minimum Steiner tree intersects the spine in more than one vertex. Then X+∪Y +

would contain a cycle that encloses no terminals, which contradicts Proposition 4.1.
Therefore, X+ is a forest of minimum Steiner trees on intervals of T+

α with the terminals of each minimum
Steiner tree lying in some interval of T+

α , such that the union of all intervals is T+
α , and each minimum Steiner

tree having a single vertex on Y + that is incident on a single edge of that tree.

Remark 5.2. For the above lemma and proof, it is important to observe that we can replace X+ by any other
forest of minimum Steiner trees on the same intervals and same vertices on Y +. Indeed, such a forest would form
a minimum Steiner tree in G+/Y +. Then we can replace X+ in the argument of the lemma by the new forest.

This remark inspires the following definition.

Definition 5.6. Each minimum Steiner tree in the forest X+ is called a nerve. Each nerve intersects the spine
in exactly one vertex, which is incident on a single edge of the nerve. The unique vertex of the spine at which a
nerve is rooted is called its attachment point.

A nerve for a plural face Fα ∈ F can be specified by a triple (v, i, j) with 1 ≤ i, j ≤ p such that the nerve is
a minimum Steiner tree in G+ with terminal set being the attachment point v and the interval of augmented
terminals between i and j, and a single edge incident on v.

For a nerve (v, i, j), we may speak of the interval between i and j as simply the interval of the nerve. In this
way, we can extend the definitions of consecutive, between, and in between, originally defined for intervals, to
nerves in the straightforward manner.

Such a Steiner tree might not necessarily exist, but we have argued in Lemma 5.4 that our solution is built
only from such Steiner trees.

We now argue that nerves can be computed in polynomial time.

Lemma 5.5. (♣) Given vertices v and an interval I of a terminal face Fα between i and j, we can compute in
polynomial time a nerve (v, i, j), if it exists.

Now note that nerves are not necessarily unique for a triple (v, i, j). From now on, we associate a unique
minimum Steiner tree with each triple (if it exists), namely the one computed by Lemma 5.5. We call this the
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unique nerve (v, i, j). In the remainder, whenever we talk about a nerve, we mean the unique nerve on the same
interval and attachment point. Following Remark 5.2, we may assume that minimum-weight multiway cuts are
built from a skeleton and (unique) nerves.

Definition 5.7. Let C be any minimum multiway cut of (G,T, ω) and C+ the set of corresponding augmented
dual edges. Then C+ (and by extension, C) is called nerved if the edges of C+ that are not part of the skeleton
each belong to a nerve.

Observe that following Remark 5.2 and the discussion above, we can assume that any minimum-weight multiway
cut is nerved.

6 Bones and Homotopy

We now wish to describe the structure of the paths between the attachment points of nerves and to branching
points of the skeleton. To this end, we start with the following definition.

Definition 6.1. Each edge of the shrunken skeleton is called a shrunken bone and corresponds to a path of the
skeleton, called a bone. Any vertex of the shrunken skeleton is called a branching point.

By Lemma 5.2, each (shrunken) bone is incident on one or two faces of the (shrunken) skeleton, and thus separates
at most two faces of F , called the separated terminal faces of the (shrunken) bone. Note that both sides of a
(shrunken) bone might be incident on the same face, as the shrunken skeleton can contain bridges.

6.1 Orienting Nerves To further discussions in the remainder of the paper, it helps to define an orientation
of the nerves, which specifies where a nerve goes with respect to a bone. Let C be any minimum multiway cut of
(G,T, ω) and C+ the set of corresponding edges in the augmented dual. For any augmented dual vertex x, there
is a small ball centered on x that only contains x and points of its incident augmented dual edges. Let e and e′

be two augmented dual edges incident on x. Then this small ball is split into two parts by the union of e and e′.
An augmented dual edge is west of x with respect to e and e′ if it is contained in the part of the ball clockwise
from e′ to e and east otherwise.

Now consider two augmented dual edges e and e′ of the skeleton of C+ that appear in counterclockwise order
on the boundary of a face fα of the skeleton of C+ (so e appears after e′). Let x be their shared augmented dual
vertex. If the boundary of fα is a walk, then we only consider the first appearance of an augmented dual edge
to define the ordering. We then say that e is north of e′. Let Fα ∈ F be the terminal face corresponding to fα.
We then say that a nerve (x, h, i) for Fα with 1 ≤ h, i ≤ pα extends west of x if it holds that the augmented dual
edge incident on x that belongs to the nerve is west of x. If the augmented dual edge incident on x that belongs
to the nerve is east of x, then the nerve extends east.

By definition, a nerve has only a single incident edge, and thus it either extends east or it extends west.

6.2 Homotopy and the Optimum Solution We now want to describe the structure of bones. While it
might seem that these are just shortest paths between certain branching and attachment points, this does not
account for their role in separating pairs of terminals. In order to specify this role, we need assistance from
homotopy.

To facilitate the discussion of homotopy, we first need some definitions.
First, we need the notion of crossings between two paths P and Q in a planar graph. Then we say that P

crosses Q if, after contracting any common edges of P and Q, there are two edges of P and two edges of Q, all
distinct and incident on the same vertex, such that a clockwise rotation around the vertex will see the two edges
of P and Q alternatingly. We call this particular vertex the associated crossing vertex.

Now we construct a cut graph K for G∗, which is a Steiner tree in G∗ with the set V ∗
F of dual vertices of

the terminal faces in F as terminal set. Here we follow Frank and Schrijver [31, Proposition 1]. First, compute
a shortest path between each pair of dual vertices in V ∗

F . Let P denote the resulting set of paths. By a slight
modification of the weights for the sake of this computation, we can assume all shortest paths in G∗ are unique.
Then we can assume that any pair P,Q of shortest paths in P either crosses at most once, or has a common
endpoint and do not cross. Now build an auxiliary complete graph on V ∗

F with the lengths of the paths in P as
weights and find a minimum spanning tree in this auxiliary graph. The paths in P ′ ⊆ P corresponding to this
spanning tree form the cut graph K.
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As explained by Frank and Schrijver [31, Proposition 1], we may assume the paths in P ′ do not cross. We
call the paths in P ′ the spokes of the cut graph. Note that K has k spokes, each of which can be associated with
a unique identifier. We also orient each spoke in an arbitrary direction. Then any oriented path P that crosses a
spoke Q can be said to cross Q in a particular direction, depending on whether P goes towards the west or east
side of Q.

Definition 6.2. The crossing sequence or homotopy string of a path P in G+ is an ordered sequence of the
spokes of K crossed by it, along with an indication of the orientation of each crossing. Let P and P ′ be two paths
in G+. We say that P is homotopic to P ′ if they have the same endpoints as well as the same crossing sequence
with respect to K.

Note that we perform a slight abuse here by considering crossings of a path in G+ with paths in G∗. However,
we will never consider crossings of paths in G+ that have an endpoint in an augmented dual terminal, alleviating
any possible cause for confusion.

Using this precise definition of homotopy, we now fix a particular solution to the instance. Among all possible
nerved minimum multiway cuts C of (G,T, ω), we assume henceforth that C is one of which the skeleton of C+

has the minimum number of crossings with K. Note that the skeleton contains no augmented dual vertices as
those have degree 1 in G+.

From now on, we fix this solution as ‘the’ optimal solution or ‘the’ optimum. Let C+ be the set of
corresponding augmented dual edges. It is reasonable to assume that such a solution is inclusion wise minimal,
that is, removing any of its edges must make it an infeasible multiway cut.

Our main goal in the next subsections will be to show that (a sufficient part of) the bones of the skeleton of
the optimum solution have short homotopy strings and that replacing such parts by parts with the same homotopy
string leads to another optimum solution.

6.3 Single Face We now consider a subpath of a bone that contains only attachment points of nerves that
extend towards the same direction. In particular, the nerves extend towards the same terminal face. We call such
a subpath a nerve path. We aim to prove the following crucial property of nerve paths, namely that any nerve
path has a homotopy string of bounded length.

Lemma 6.1. Any nerve path crosses any path of K O(k) times.

Proof. We modify the proof of [22, Lemma 5.2] to prove the claim above. Let K be the graph defined above. We
treat the dual vertices of the terminal faces as boundary components. Since Pb is a path in the augmented dual
G+, Pb does not pass through any terminal of K, in particular, through the end points of γ.

For sake of simplicity of notation, we assume that the nerve path is the full path Pb. Let the nerves attaching
to the ends of Pb be denoted N1 and N2.

We push all the crossings of Pb with γ together to a single point p/p. Then the subpaths of Pb between
consecutive crossings of Pb with γ form cycles through p/p, which we call loops. The corresponding system of
loops is P ∗

b = Pb/p. Then, P ∗
b is a set of pairwise disjoint loops L intersecting at p/p. The contracted point is

referred to as the base point of the loops. A face of L is called a monogon if it is homemorphic to an open disc
(contains no terminal face in its interior) and has only one copy of the base point on its boundary. Likewise, a
bigon is an open disc with two copies of p/p on its boundary. In the bone Pb, a bigon occurs as a strip bounded
by two pieces of the path γ and two pieces of Pb. To show that the number of crossings of Pb with γ is O(k), we
need to show that the degree of p/p is O(k) in P ∗

b .
We claim that no loop in L can be incident on two bigons. That is, in Pb, two strips, each of which is bounded

by two pieces of the path γ and two pieces of the path Pb, cannot be glued to each other. We assume the contrary.
First, we observe that if a nerve attached to an end point of Pb that originated outside a bigon were to enter it,
we could replace it by an arc of γ. Consequently, we would get a multiway cut dual of length smaller than that
of C+, leading us to a contradiction. This, in turn, would exclude configurations where any end point of Pb is
enclosed by an arc of it on one side and γ on the other.

Claim 6.1. Any nerve attached to an end point of Pb that originates outside one of the two bigons that an arc
of Pb is incident on, never enters that bigon.
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Figure 5: In the top row, there are configurations of Pb wherein a nerve attached to its end point enters one of
the two bigons it is incident on. In the bottom row, we show the shortcut path. The two bigons are shaded in
different colors. The path Pb is depicted as a black curve, while γ is shown as blue line. The thick red curve
depicts the shortcut path.

Proof. Consider the leftmost configuration in Figure 5. Let p = {a, b, c, d, e, f} be the set of points at which Pb

crosses the path γ. By definition, no bigon must contain in its interior any terminal face vertex of G∗. In order to
reach the nerve face Fβ , a nerve that enters a bigon must also leave it. Without loss of generality, let this nerve
be N1. Due to planarity of the multiway cut dual, N1 must not cross any arc of Pb. Hence, it may enter and exit
any bigon only by crossing the two arcs of γ on its boundary. Let the first crossing of the nerve with γ be x lying
between a and b, and the last one be denoted by y, which lies between e and f . As γ is a shortest path in G∗

between any two vertices, γ[x, y] is at most the length of N1[x, y]. Also note that due to planarity, all the nerves
attached to the arc Pb[b, e], must leave the bigon by crossing γ[e, y]. Since, there are no terminals in the bigon,
N1[x, y], Pb[b, e], γ[b, x] and γ[e, y] bound a disc free from obstacles. We can, therefore, replace N1[x, y] by γ[e, y]
in C+ to get a multiway cut of cost no greater than that of C+. This is a contradiction to the minimality of C+.
We can argue analogously for the other configurations giving rise to this phenomenon. Some of them are shown
in Figure 5. The other cases are either symmetric, or trivial to shortcut and for the purpose of brevity have not
been explicitly shown here.

We refer the reader to [22, Figure 2] for an exhaustive list of configurations of any path crossing an edge of
the cut graph K, which lead to the occurrence of a loop incident on two bigons in L. As a result of the preceding
claim, several of those do not occur in our setting. Hence, we exclude those cases where it is clear that either of
the two nerves attached to the end points of Pb must traverse a bigon, in order to reach the nerve face.

Corollary 6.1. Figure 6 shows all the possible configurations of Pb that form a loop incident on two bigons in
L.

Using arguments similar to those in the proof of Claim 6.1, we can show that whenever a loop of L is incident
on two bigons, it is possible to replace Pb by a shorter path. This requires extensive case analysis and we refer the
reader to the full version of the paper for the same. We claim that the shortcut path encloses all the terminals
that were enclosed by Pb but not C+ \ Pb. Therefore, the resultant solution is a valid multiway cut.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2049

D
ow

nl
oa

de
d 

05
/2

5/
22

 to
 1

31
.2

11
.1

05
.2

12
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



(a) (b) (c) (d)

(e) (f)

Figure 6: The figure shows all the possible configurations of Pb, when a loop of L is incident on two bigons. One
of the bigons is shaded orange and the other turquoise. The black curve is Pb and the blue line is the path γ of
K.

Claim 6.2. (♣) Replacing the arcs of the path Pb along with the nerves attached to them, by the corresponding
arcs of γ, yields a valid multiway cut.

Next, we deal with the monogons. Some monogons may have nerves attached to them that extend towards
the nerve face without ever crossing γ. These are the monogons that we cannot replace by the arc of γ bounding
them on one side. However, we argue that only O(k) of these monogons actually exist in C+.

Without loss of generality, assume that Fβ lies to the west of γ. Consider the system of loops. Let good loops
be those that are present to the east (or west) of γ, possibly have nerves attached to them extending to the west
(or east) of γ, and border a monogon or enclose a bigon that it borders. We can remove the good loops from C+

without contradicting its feasibility by shortcutting (see Figure 7). Loops that contain any terminal face (the end
point of a path of K) in their interior are called obstacle loops. Now consider loops that form monogons. Bad
monogons are those that are present on the west (or east) of γ and contain nerves attached to them that extend
towards the west (or east) of γ. Figure 7 shows two bad monogons flanking a good loop. There does not seem an
easy way to shortcut them, so we must retain them in the solution. We claim that between two obstacle loops,
there can be at most four bad monogons.

Now, we deal with the remaining bigons. Whenever we encounter a face of L that is a bigon, we remove one
of the two loops incident on it, and iterate until no bigons remain. Therefore, in the proof of [11, Lemma 2.1],
which essentially counts the number of obstacle loops, we can multiply the total number of crossings by 10 to get
the total number of crossings of Pb with K. The number of obstacle loops remaining in L is |L′| ≤ 6b + 2g − 3,
where g is the genus of the surface on which C+ is embedded and b is the number of boundary components of
the surface. We treat the obstacles we place on the dual vertices of the terminal faces as boundary components.
Since there are k terminal faces, and therefore k “obstacles”, there are k boundary components in all. Therefore
b = k and g = 0. This proves that the number of loops, and thus the degree of p/p is O(k).

6.4 Two faces Let u, v be two endpoints of a shrunken bone b of the shrunken skeleton of C+. Then b separates
two terminal faces Fα, Fβ ∈ F (possibly Fα = Fβ if b is a bridge of the shrunken skeleton). We denote by Pb
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Fβ

Fβ

1 2 ba

Figure 7: The blue line is the path γ and the arrow indicates its orientation. The black curve shows Pb. The dark
green curves are the nerves attached to Pb. The first and third monogons are bad, and the middle loop is good.
The figure at the bottom shows the shortcut of the good loop as a thick red curve.

the path corresponding to b in the skeleton of C+. While the previous section builds sufficient understanding to
build the path between consecutive nerves that extend west towards the same terminal face, this does not help
if two consecutive attachment points have nerves towards different terminal faces, or towards the same terminal
face but one extends east and one extends west. To this end, we need more elaborate methods.

Definition 6.3. Let x and y be consecutive attachment points on Pb (possibly x = y) such that x is the attachment
point for a nerve that extends west towards Fα and y is the attachment point for a nerve that extends east towards
Fβ. Then we call these nerves an alternating pair of nerves.

Let Nu denote the pair of alternating nerves closest to u along with the path between their attachment points.
Let Nv be the corresponding pair closer to v. Contracting the edges in Nu and Nv to form the vertices u∗ and v∗

respectively, is equivalent to deleting the corresponding edges in G. This forms an isolated, connected region in
the plane with pieces of the boundary of Fα and Fβ bounding it on two sides. We denote this region by B.

Lemma 6.2. (♣) The augmented minimum multiway cut dual C+ restricted to B comprises a minimum Steiner
tree containing the vertices u∗, v∗, and the augmented terminals corresponding to terminals on the pieces of the
boundary of Fα and Fβ bounding B.

We now consider the structure of the bone for the parts that are not in the region B, or what they look like
when there are no two alternating pairs of nerves. In the previous section, we already discussed what happens to
nerve paths. Hence, we only need to consider paths between attachment points of alternating nerves and between
an attachment point of a nerve and a branching point. The following result is immediate from [22, Lemma 5.2]
with the substitution g = 0 and t = k.

Lemma 6.3. Each path on a bone of C+ between the attachment points of a pair of alternating nerves on a bone,
as well as the one from a branch point to its closest attachment point, crosses any path of K O(k) times.

Finally, we argue that replacing certain subpaths of a bone by a homotopically equivalent path still yields an
optimal solution. The proof of this lemma is reminiscent of the proof of [22, Lemma 7.2].

Lemma 6.4. (♣) Let b be any shrunken bone of the shrunken skeleton of C+ and let Pb be the path that forms the
corresponding bone. Let x and y be two augmented dual vertices on Pb such that Pb[x, y] contains no attachment
points nor branching points, except possibly x or y. Then there exists a minimum multiway cut dual which contains
a shortest path in the plane homotopic to P [x, y].
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7 Towards a nO(k)-time Algorithm

With the structure of the optimum solution in place, we are now ready to develop the algorithm. Our guiding
light will be the topology of the optimum solution, which consists of its skeleton and a compact description of its
bones and is defined more formally below. As we do not know any optimum solution, we enumerate all possible
topologies and argue that we find a feasible, minimum-weight solution for the topology that corresponds to an
optimum solution. The algorithm to do this consists of two parts. First, we show that each bridgeless component
of the skeleton in the topology can be treated separately. Second, for each bridgeless component of the skeleton, we
build a sphere-cut decomposition and perform dynamic programming on the decomposition that finds a solution
according to the topology.

7.1 Topology We first define a topology and then show that all topologies can be efficiently enumerated.

Definition 7.1. A topology consists of a triple (S, s, h):

• a connected plane multigraph S (possibly containing parallel edges but no self-loops) with k faces. This is
the (shrunken) skeleton of the topology. We direct the edges of the skeleton in an arbitrary fashion to obtain
a directed skeleton;

• for each face of S, a unique corresponding face in F ;

• for each shrunken bone b, separating faces fα, fβ of the skeleton (possibly α = β), a structural description,
describing:

– a (possibly empty) ordered multisubset s(b) of {α, α, β, β} such that s(b)[i] and s(b)[i+1] are not equal
for any 1 ≤ i < |s(b)|, except possibly for i = 2 when |s(b)| = 4;

– for any 1 ≤ i ≤ 2|s(b)|+ 1, h(b)[i] is a homotopy string of length O(k). When |s(b)| = 4, then h(b)[5]
is unspecified.

If α = β, then we use α or β to denote east and west respectively in s(b).
The intuition behind the definition of a topology is as follows. The directed skeleton guides the overall

structure of the solution that will be found by our algorithm. Ideally, it is equivalent to the shrunken skeleton
of an optimum solution. By Lemma 5.2, it has k faces and is connected. Moreover, each face of the shrunken
skeleton corresponds to a unique face in F . The direction of the skeleton will prove useful in later definitions and
algorithms.

The multiset s(b) describes the direction of maximal sets of consecutive nerves along the bone that have the
same direction. By this intuition, it makes sense to force the directions to be alternating, as in the definition. We
also note that we do not need to specify more than four such sets, because when we have four sets, we obtain two
alternating pairs of nerves and can apply Lemma 6.2 to the region between them.

For each set of consecutive nerves as described by s(b), we use h(b) to denote the homotopy of the (up to
four) subpaths of the bone to which the nerves attach. We also use h(b) to describe the homotopy of the (up to
five) subpaths of the bone between these sets of nerves. Following Lemma 6.1, each of those homotopy strings
has length O(k). When |s(b)| = 4, we do not (need to) specify the homotopy of the middle subpaths of the bone,
as we handle this part as in Lemma 6.2.

Recall that C is the optimal solution and C+ its set of corresponding augmented dual edges. We call a
topology (S, s, h) optimal if the shrunken skeleton S+ of C+ is equivalent to (the underlying graph of) S, each
face of F is assigned to the same face in S+ and S, and for each bone b of the shrunken skeleton, directed in an
arbitrary fashion:

• there are |s(b)| maximal sets of nerves, where nerves in the i-th set are towards Fs(b)[i], and their attachment
points are consecutive and uninterrupted on b; the nerves preceding a nerve from the i-th set belong to the
i-th set or the i− 1-th set, or if |s(b)| = 4, can be arbitrary nerves to Fα or Fβ , until a nerve of the i− 1-th
set is hit;

• the part of the bone between the nerves at the ends of the i-th set of nerves has homotopy string h(b)[i];
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• the part of the bone between the i-th and i + 1-th sets of nerves, for 0 ≤ i ≤ |s(b)| where we pretend the
0-th nerve is the one end of the bone and the |s(b)|+1-th nerve is the other end of the bone, has homotopy
string h(b)[2i+ 1]. When |s(b)| = 4, we do not have to satisfy this for i = 2.

Note that since we fixed C, there is a unique optimal topology, which effectively describes C. We may thus speak
of ‘the’ optimal topology.

Our goal is to enumerate all topologies. Then for each topology, we aim to find a solution that corresponds
to this topology. By considering all topologies, we ensure that we consider the optimal topology at some point.
Then we argue that we find a multiway cut of minimum weight. Before proceeding with that algorithm, we bound
the number of topologies and show how to enumerate them. We require the following auxiliary lemma.

Lemma 7.1. (♣) There are 2O(k log k) connected plane multigraphs with k faces and without self-loops. Moreover,
they can be enumerated in the same time.

Lemma 7.2. (♣) There are 2O(k2 log k) different topologies. Moreover, they can be enumerated in the same time.

7.2 Broken Bones and Splints We now become more formal about our interpretation of topologies. Let
(S, s, h) be a topology. We define the following notion, which states how we interpret s and h for a shrunken bone
b.

Definition 7.2. Let (S, s, h) be a topology. Let b be a shrunken bone (edge) of the shrunken skeleton S, separating
the faces fα and fβ, and directed from u to v. Let s(b) = {γ1, . . . , γ|s(b)|}, where each γj ∈ {α, β}. Let Fα and Fβ

be the terminal faces enclosed by the faces fα and fβ, respectively. A broken bone is a tuple that consists of intervals
Iα and Iβ of augmented terminals lying on Fα and Fβ respectively, augmented dual vertices x+

1 , . . . , x
+
|s(b)|+1 and

y+0 , . . . , y
+
|s(b)| that are not augmented dual terminals, and nerves N1, . . . , N2|s(b)| towards Fα and Fβ, where:

• for each 1 ≤ j ≤ |s(b)|, nerves N2j−1 and N2j extend towards γi and have root x+
j and y+j respectively.

These nerves might be the same, but are non-empty.

• the interval of a nerve among N1, . . . , N2|s(b)| towards Fα (resp. Fβ) is a subinterval of Iα (resp. Iβ).
Moreover, these subintervals appear in the order indicated by their indices on Iα and Iβ (but do not
necessarily cover Iα and Iβ completely);

• if Iα contains at least two augmented terminals, then a prefix of Iα is the interval of a nerve among
N1, . . . , N2|s(b)|. The same holds for a suffix of Iα (possibly, this is the same nerve). The same holds
with respect to Iβ if it contains at least two augmented terminals.

A splint fixing a given broken bone is a subset D+ of the edges of the augmented dual graph G+ with the
following properties:

• for each terminal t between Iα (or between Iβ), there is a unique bounded face of D∗ that encloses t, where
D∗ is the set of dual edges corresponding to the edges of D+.

• there is a path Pb in D+ between y+0 and x+
|s(b)|+1. These two augmented dual vertices are called the ends

of the splint.

• x+
1 , . . . , x

+
|s(b)|+1 and y+0 , . . . , y

+
|s(b)| are in D+ and appear in the order y+0 , x

+
1 , y

+
1 , x

+
2 , y

+
2 , . . . , x

+
|s(b)|+1 on

Pb.

• for each 0 ≤ j ≤ |s(b)| (except j = 2 when |s(b)| = 4), the (possibly empty) subpath of Pb from y+j to x+
j+1

consists only of vertices that have degree 2 in D+ and has homotopy string equal to h(b)[2j + 1].

• for each 1 ≤ j ≤ |s(b)|, the only vertices on the subpath of Pb between x+
j and y+j that have degree more

than 2 in D+ are the attachment points of nerves towards Fγj
; these nerves include N2j−1 and N2j. The

subpath has homotopy string equal to h(b)[2j].

• if |s(b)| = 4, then for the vertices on the subpath of Pb between y+2 and x+
3 , the only vertices that have degree

more than 2 in D+ are the attachment points of nerves towards Fα or Fβ.
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Figure 8: In this example, s(b) = {α, β, β, α}. The blue lines depict the “guessed” nerves attached to the broken
bone. In green, we depict the splint that is used to fix the broken bone. The arrows point to the first and last
terminals of the intervals Iα and Iβ .

• the intervals of all the aforementioned nerves jointly partition Iα and Iβ with the exception that for each
1 ≤ j ≤ |s(b)|, the nerves N2j−1 and N2j are not necessarily distinct (but are distinct from all other nerves).

We refer to Figure 8 for an illustration of a splint and its broken bone.
Note that in the definition of a broken bone, it is not strictly necessary to specify x+

1 , . . . , x
+
|s(b)| and

y+1 , . . . , y
+
|s(b)|, as their definition is implied by N1, . . . , N2|s(b)|. Similarly, we do not actually need all the nerves

we have specified when |s(b)| = 4. We still write this to streamline and simplify the definition (which admittedly
is already quite complex).

We now define the notion of an optimal broken bone. We refer back to the definition of an optimal topology
to recall the |s(b)| maximal sets of nerves defined there. For the optimal solution C, the optimal topology, and a
shrunken bone b, we call a broken bone x+

1 , . . . , x
+
|s(b)|+1, y

+
0 , . . . , y

+
|s(b)|, N1, . . . , N2|s(b)|, Iα, Iβ optimal if for the

bone of C+ corresponding to b, its ends are y+0 and x+
|s(b)|+1 in the direction of the directed skeleton, the i-th set

of nerves has the nerves N2i−1 and N2i at the ends of the set (where N2i−1 and N2i are possibly equal), and the
intervals Iα and Iβ correspond to the union of the intervals of all nerves that have their attachment point on the
bone.

The latter may lead to a nerve that attaches to a branching point and its corresponding interval to be assigned
to two broken bones (for the two bones that meet at the branching point and whose shrunken bones bound the
same face of the skeleton). In that case, we break ties arbitrarily, but in such a way that all nerves that attach
to this branching point are assigned to the same bone and no terminal face is enclosed by the union of any two
nerves assigned to the same bone in this way. This ensures that each augmented terminal is in some interval of
some optimal broken bone and moreover, no terminal face and its broken bones ‘interrupt’ the sequence of nerves
of the bone.

Finally, we call a splint optimal if it fixes an optimal broken bone and all its nerves are the nerves of C+ that
were defined to belong to the bone. Again, an optimal broken bone and splint are unique with respect to C, so
we may speak of ‘the’ optimal broken bone and splint of a bone.

For a given topology and a particular shrunken bone of the topology, our goal is to enumerate all broken
bones for this shrunken bone and find a minimum-weight splint for it. By enumerating all broken bones, we
ensure that we consider the optimal broken bone. Then the minimum-weight splint that we find will have the
same weight and structure of the optimal splint. We discuss that algorithm in a moment, but first argue that we
can enumerate all possible broken bones efficiently.

Proposition 7.1. (♣) There are O(n24) distinct broken bones fixed by a splint.
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7.3 Splinting Algorithm We now describe an algorithm that, given a topology (S, s, h) and a broken bone
x+
1 , . . . , x

+
|s(b)|+1, y

+
0 , . . . , y

+
|s(b)|, N1, . . . , N2|s(b)|, Iα, Iβ for a bone b of S, finds a splint of minimum weight.

For any 0 ≤ i ≤ |s(b)| (except i = 2 when |s(b)| = 4), to find the path from y+i to x+
i+1, we invoke the

algorithm by Frank and Schrijver [31, Section 5] to find the shortest path with the homotopy string h(b)[2i+ 1].
These paths do not contain any attachments points of nerves.

The following algorithm computes the weight of the part of a minimum weight splint between the vertices x+
i

and y+i of the augmented dual, for all 1 ≤ i ≤ |s(b)|. Note that this is a nerve path. For simplicity, we consider
only i = 1, as the other cases are similar. Without loss of generality, s(b)[1] = α. We find the part of the splint
starting at x+

1 , with its corresponding nerve N1, and ending at y+1 , with its corresponding nerve N2. Also, we
assume that N1 spans the interval {αt+ℓ , . . . ,α t+ℓ′} and N2 spans the interval {αt+j , . . . ,α t+j′}. Then the interval
covered by all nerves attaching to this nerve path is I1 = {αtℓ, . . . ,α tj′}.

We compute this part of the splint as follows. By c[x+, a, a′], we denote the weight of the unique nerve on
x+ ∈ V (G+) and the interval {αt+a , . . . ,α t+a′}, which can be computed by Lemma 5.5. By c′[x+, a, a′, e] we denote
the weight of a partial splint passing through the vertex x+ ∈ V (G+), that encloses every terminal between
the augmented terminals {αt+ℓ , . . . ,α t+a′}, contains the unique nerve (x+, a, a′), and the partial nerve path of the
homotopy given by the prefix of h(b)[2] of length e.

The dynamic programming algorithm is given in Algorithm 1 below. We use dh(b)[2](e′,e](x
+, x′+) to denote

the length of a shortest path between x+ and x′+ with homotopy string equal to the substring of h(b)[2] between
indices e′ and e (not including the symbol on index e′). In other words, this substring is equal to the prefix of
length e minus the prefix of length e′. This shortest path length can again be computed by the algorithm by
Frank and Schrijver [31, Section 5].

We also use min∗ to denote that the minimum is only allowed over certain combinations. In particular, in
Line 7, the nerve (x+, a, a′) being considered in combination with nerve (x′+, z, a− 1) and the path between x′+

and x+ of homotopy string h(b)[2](e′, e] must define a region that only encloses αta−1 (the terminal inbetween the
two nerves). Moreover, the nerve (x+, a, a′) itself must create a region for every terminal in {αta, . . . ,α ta′−1}. A
similar constraint holds in Line 8.

Algorithm 1 Nerve Path Algorithm

c′[x+
1 , ℓ, ℓ

′, 0] = c[x+
1 , ℓ, ℓ

′]
c′[x+, a, a′, e] = ∞ for all x+ ̸= x+

1 , e ̸= 0, a ̸= ℓ, or a′ ̸= ℓ′

for ℓ′ < a′ < j′ do
for ℓ′ < a ≤ a′ do

for x+ ∈ V (G+) do
for 0 ≤ e ≤ |h(b)[2]| do

c′[x+, a, a′, e] =
∗

min
ℓ≤z<a

x′+∈V (G+)
0≤e′≤e

{
c′[x′+, z, a− 1, e′] + c[x+, a, a′] + dh(b)[2](e′,e](x

′+, x+)
}

return
∗

min
ℓ≤z<j

x+∈V (G+)
0≤e≤|h(b)[2]|

c′[x+, z, j − 1, e] + dh(b)[2](e,|h(b)[2]|](x
+, y+1 ) + c[y+1 , j, j

′]

The same algorithm is used to compute all the other parts of the splints, too. Note that even though the
algorithm only computes an optimal value, it can be easily modified to return the optimal solution (nerves and
nerve path).

Finally, if |s(b)| = 4, then we know from Lemma 6.2 that embedded in the region bounded by the nerves
attached to y+1 and x+

2 , and y+3 and x+
4 , along with the paths between them, as well as the segments of Fα and

Fβ bounding the region on either side is a minimum Steiner tree with its terminals on the boundary of the region.
Using the algorithm of Erickson et al. [29] (see also Bern [6]), we find the minimum Steiner tree. This finishes
the description of the splinting algorithm.
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Lemma 7.3. (♣) Given a topology (S, s, h), a bone b of S, and the optimal broken bone for b, we can fix the
broken bone by a minimum-weight splint found through the splinting algorithm. Moreover, the splinting algorithm
runs in time nO(1).

Using the algorithm, we can compute a splint for each broken bone of each topology. Since the homotopy
of each nerve path and each path between branching points and the starts/ends of nerve paths are maintained,
it follows that we can replace each bone and attached nerves of the optimum solution by the minimum-weight
splint computed by the algorithm for the corresponding optimal broken bone. In particular, the homotopy strings
ensure that the number of crossings of the bones with the cut graph K stays minimum.

Definition 7.3. We call an optimum solution splinted if it has the property that each of its bones and attached
nerves are splints.

Remark 7.1. From now on, we assume that the optimum solution is splinted.

For the sake of intuition, we note that we have now gathered sufficient ideas to prove a 2O(k2 log k)nO(k) time
algorithm for Planar Multiway Cut. In particular, we can enumerate all topologies in 2O(k2 log k) time and
then enumerate all broken bones for any shrunken bone in nO(k) time total. For the combination of the optimal
topology and the optimal broken bones for each shrunken bone, the splinting algorithm then delivers an optimal
solution for each shrunken bone, which can be combined to form an optimal solution to the whole (modulo some

details). In the next section, we argue how to reduce the nO(k) factor down to nO(
√
k).

8 Algorithm using Sphere-Cut Decomposition

We are now ready to discuss how we go from a topology to a multiway cut. If the topology is optimal, we argue
that we find a minimum-weight multiway cut that has the same structure as the optimal multiway cut C. Our aim
is to employ Theorem 3.1 on the shrunken skeleton to get a small branch decomposition and then apply a dynamic
program. However, as already noted a few times, the shrunken skeleton might have bridges and Theorem 3.1
cannot be applied directly, but only on the bridge blocks of the shrunken skeleton. Therefore, we first develop a
dynamic program that combines solutions of the bridge blocks of the shrunken skeleton, effectively reducing the
problem.

8.1 Reduction to Bridge Blocks When we want to combine solutions of different bridge blocks, it is natural
to use the bridge block tree in a dynamic program. However, if we do this naively, we immediately run into the
issue that in order to compute a solution for a non-trivial bridge block, we need to know the solutions for all
bridge blocks contained in its bounded faces. This can be resolved by enforcing an ordering on the computation
of the bridge blocks that depends on the embedding. To that end, we proposed the embedding-aware bridge block
(eabb) tree in Section 3.2. We now show how to use it.

Let (S, s, h) be a topology. Let L = L(S) be the eabb tree for S and let B denote the set of bridge blocks
of S. For a BB-node l of L, let B(l) denote the bridge block corresponding to l. Extending this notation, for a
subtree L′ of L, we use B(L′) to denote the set of all bridge blocks corresponding to BB-nodes in L′. For a node
l of L, we use Ll to denote the subtree of L rooted at l. In particular Lℓ(L) = L, where we recall that ℓ(L) is the
root of L.

We need the following notion, which formalizes the idea of an ‘innermost’ component of a plane graph.

Definition 8.1. Let H be any plane graph. Let J be the union of a subset of the biconnected components of H
such that there is a single face f of H − J that encloses J and there is a single face f ′ of J that encloses H − J .
We call J an internal set, f its enclosing region, and f ′ its exclosing region. The intersection of the enclosing
region and exclosing region is called the middle region.

Lemma 8.1. (♣) For any node l of L, B(Ll) is an internal set of S.

We now perform a bottom-up dynamic programming with respect to L. The crux here is to understand the
relation that a child l has with its parent. This is formed by two parts. The first, more easy part is the cut vertex
shared by neighboring bridge blocks. The second, more complicated part is the terminal face Fl in the middle
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region induced by the internal set B(Ll). The terminals in Tl are covered jointly by B(Ll), the blocks induced by
siblings of l in L, and by the block induced by l’s parent. Using a similar argument as in the proof of Lemma 5.4,
we can see that each of these is responsible for a single interval of Tl. To help in the computations, we additionally
consider the first nerves that cover the prefix and suffix of this interval. We now expand on this intuition of the
dynamic program and define the table more formally.

Let l be a node of L. Define w = w(l) as follows: if l is a C-node, then let w be the corresponding cut vertex;
if l is a BB-node and l has a parent in L, then this parent is a C-node and we let w be its corresponding cut
vertex; otherwise, let w be any vertex of B(l). Let Fl ∈ F denote the unique terminal face in the middle region
of B(Ll).

Definition 8.2. Given a vertex w+ of the augmented dual, an interval Il of Fl, and two (possibly empty) nerves
N1

l , N
2
l towards Fl, a stretcher is a set D+ of augmented dual edges such that:

(i) the interval of N1
l is a prefix of Il and the interval of N2

l is a suffix of Il. N1
l and N2

l are either both empty
or both non-empty and cannot be empty if Il has more than one terminal.

(ii) there is a (possibly empty) set of nerves towards Fl whose augmented terminal sets are intervals that jointly
partition Il. N1

l and N2
l are among those nerves;

(iii) for any terminal t ∈ Tl between Il, there is a bounded face of D∗ that encloses only t and no other terminals.
Here D∗ is the set of dual edges corresponding to the augmented dual edges in D+;

(iv) for any terminal t ∈ Tα of a bounded face fα in the subgraph of S induced by the bridge blocks of Ll, there
is a bounded face of D∗ that encloses only t and no other terminals;

(v) D+ contains a splint for each bone in B(Ll) and N1
l and N2

l are included in these splints;

(vi) w+ is the vertex of D+ that is an end of all splints for the bones in B(Ll) that are incident on w.

We call w+, Il, N
1
l , and N2

l a binder of the stretcher and a binder for l. We say a binder is valid if it adheres
to (i).

Proposition 8.1. (♣) For each node l of L, there are nO(1) binders. These can be enumerated in the same time.

Consider any vertex l of the embedding-aware block-cut tree L of S. Let Il be the union of intervals of the
nerves in C+ towards Fl that attach to a block in B(Ll) and let N1

l and N2
l be the nerves whose intervals are

a prefix and suffix of Il respectively. Following Remark 7.1, C+ is a union of splints for each of the shrunken
bones of S. Let w+ be the vertex of C+ that is an end of all splints for the bones in B(Ll) that are incident on
w = w(l). Then we call w+, Il, N

1
l , and N2

l an optimal binder. Note that for each optimal binder, a stretcher
does exist, which we call an optimal stretcher. We may speak of ‘the’ optimal binder and stretcher, because the
minimum-weight solution and topology are uniquely defined.

Then for each binder Il, N
1
l , N

2
l , w

+, define Al[Il, N
1
l , N

2
l , w

+] as a minimum-weight stretcher for this binder.
If no such stretcher exists, then we define Al[Il, N

1
l , N

2
l , w

+] to be the set of all augmented dual edges. We argue
that the table A can be computed in a dynamic programming fashion.

We first consider how to compute a table entry for Il and w+ if l is a BB-node.

Lemma 8.2. For any BB-node l of L and the optimal binder B for l, we can compute a minimum-weight stretcher
when given minimum-weight stretchers for all optimal binders of all children of l. Moreover, it can be computed

in nO(
√

|B(l)|) time.

Proof. We only provide an intuitive sketch of the proof and defer the technical details to the full version.
Note that the BB-node is either a single edge or a connected, bridgeless graph without self-loops. Hence, it

has a sphere-cut decomposition by Theorem 3.1. Assuming that the table A has been computed for all children
of l in L (which are C-nodes), we compute the table entry for l. By Lemma 8.1, B(Ll) is an internal set. Let Fl

be the terminal face in the middle region of B(Ll). Consider a binder Il, N
1
l , N

2
l , w

+ for l. We assume that the
binder is valid. We now wish to compute a stretcher for this binder by a dynamic program over the sphere-cut
decomposition.
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Figure 9: The noose γ⃗ is drawn in blue. It intersects the skeleton only in its vertices. The skeleton here is drawn
in green. The outermost nerves N1 and N2 of each face of the skeleton are shown in purple. These form a part of
the partial binder. The outermost nerves that are unique to the partial binders for the child edges of the current
edge (x, y) in the sphere-cut decomposition tree R are drawn in turquoise.

Now let (R, η, δ) be a sphere-cut decomposition of B(l); refer back to Section 3.1 for the definitions. For every
pair x, y of adjacent vertices of R such that y is the parent of x, consider the noose γ⃗ = δ(x, y). Let Fγ⃗ ⊆ F be
the set of terminal faces for which the corresponding face of S is intersected by γ⃗ and let Fenc(γ⃗) ⊆ F be the set
of terminal faces for which the corresponding face of S is enclosed by enc(γ⃗). We include in Fenc(γ⃗) the bridge
blocks of any associated children of any bone enclosed by enc(γ⃗). Note that Fenc(γ⃗) is possibly empty, but Fγ⃗

never is.
To develop the dynamic programming algorithm over the sphere-cut decomposition, we first need a notion

of what the partial solution is that we compute during the algorithm. To this end, we need the notion of a
partial binder and a partial stretcher. The intuition is that a partial binder is a dynamic programming state for
the intersection of a noose γ⃗ with the hypothetical solution prescribed by the topology. For each vertex of the
topology intersected by γ⃗, the state stores a corresponding vertex of the augmented dual. For each terminal face
Fα in Fγ⃗ , we only see part of the hypothetical solution, which is described by an interval of Tα and the (possibly
empty) first and last nerves that (possibly together with other nerves) cover the interval. Then a corresponding
partial stretcher is the entry stored in the dynamic programming table for the partial binder, which essentially
stores a solution for all terminal faces in Fenc(γ⃗) and a partial solution for all terminals between the mentioned
interval.

The dynamic program itself follows along familiar lines, even though it is very technical. See Figure 9 for
the idea of how to join partial binders and partial stretchers. We highlight two important special situations that
occur.

First, consider the situation when Fl, the face in the middle region of the internal set B(Ll), is in Fγ⃗ . Recall
that the binder specifies an interval of Tl (and certain nerves) that must be covered by the stretcher that we are
computing. Hence, in this case, the partial solution needs to satisfy these demands as well (or at least, partially).

Second, we need to incorporate the solutions for the children of l in L. Since we effectively consider B(l) as
a collection of (shrunken) bones, we need to associate a bone to each child to ensure this. We make this more
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formal. For each C-node of L that is child l′ of l, corresponding to a cut vertex c, consider the middle region fl′

of B(Ll′) and let b, b′ be the bones on the boundary of this middle region that are incident on c. Since l′ is a
child of l, it follows from the definition of an eabb tree that b and b′ are well defined and distinct. Moreover, they
both belong to B(l). Pick one of b, b′ in a consistent manner (say b) and associate l′ with this bone. We call l′ an
associated child of the bone b, the cut vertex c, and the middle region fl′ . In the base case of the algorithm, when
we consider a single shrunken bone b, we will then use the table A for these associated children to determine their
nerves towards fl′ .

We now describe how to compute a table entry for Il and w+ if l is a C-node. Let l1, . . . , lq denote the children
of l in L. Note that the children of l are all BB-nodes. We assume that the bridge blocks appear in this order
around w in S. Then we compute Al[Il, N

1
l , N

2
l , w

+] as the minimum-weight union of Alj [Ilj , N
1
lj
, N2

lj
, w+] over

all families Il1 , . . . , Ilq of (possibly empty) intervals of Fl that form a partition of Il and appear in this order on
Il and over all nerves N1

lj
, N2

lj
whose interval is a prefix respectively suffix of Ilj . During this computation, we

discard any union that does not form a stretcher. If all unions are discarded in this way, we set Al[Il, N
1
l , N

2
l , w

+]
equal to the set of all augmented dual edges.

Lemma 8.3. (♣) For any C-node l of L and the optimal binder B for l, we can compute a minimum-weight
stretcher when given minimum-weight stretchers for all optimal binders of all children of l. Moreover, the table
A will store a stretcher of minimum weight for the optimal binder. Finally, it can be computed in O(qnO(1)) time

9 Proof of Theorem 1.1

The following theorem implies the algorithmic part of Theorem 1.1. As already mentioned, the lower bound
immediately follows from Marx’s result [45].

Theorem 9.1. Consider an instance (G,T, ω) of Planar Multiway Cut. We can compute a minimum-weight

multiway cut of (G,T ) in 2O(k2 log k)nO(
√
k) time, where k is the number of faces needed to cover all terminals.

Proof. First, in time 2O(k)nO(1) through the algorithm of Bienstock and Monma [7], we compute a set of faces of
size k that covers all the terminals. This is the set F . We then transform the instance through the transformations
of Section 4, and particularly Lemma 4.1. We then apply the algorithm of Lemma 4.2 to reduce to the case when
the dual of any optimum solution is connected.

Now, by Lemma 7.2, we can enumerate all topologies in 2O(k2 log k) time. For each topology (S, s, h), build an
embedding-aware bridge block tree L = L(S) in linear time by Lemma 3.1. Now we perform the dynamic program
of Lemma 8.3 and 8.2 on L(S). Since the nodes corresponding to the same cut vertex of H effectively form a
subtree of L through Lemma 3.3, the binders contain the same cut vertex w and w+ throughout. Then it follows
that by induction on the depth of l in L that a minimum-weight stretcher is computed for each optimal binder.
Finally, for the root node of L, we consider the minimum-weight stretcher that is found among all binders. One
of those will be the optimal binder, and thus we find a stretcher of weight at most the optimal stretcher for the
optimal binder. Recalling that a topology has O(k) vertices, it follows from Lemma 8.3 and 8.2 that the running

time is nO(
√
k).
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Algorithms and Data Structures, pages 275–286, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
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