
1.  Introduction
The Paleocene-Eocene Thermal Maximum (PETM; ∼56 Ma) was a geologically short-lived (∼150–250 kyr; 
e.g., Murphy et al., 2010; Röhl et al., 2007; Zeebe & Lourens, 2019) phase characterized by global warming, 
an enhanced hydrological cycle and biotic turnover (e.g., Carmichael et al., 2017; McInerney & Wing, 2011). 
A key feature of the event is a negative stable carbon isotope (δ 13C) excursion (CIE) recovered in both marine 
(average: −2.8‰; bulk carbonate: −2.7‰; bulk marine organic matter: −4.1‰) and terrestrial records (average: 
−4.7‰; Koch et al., 1992; McInerney & Wing, 2011). In combination with dissolution of seafloor carbonates 
(e.g., Zachos et al., 2005), the CIE indicates the injection of large quantities of  13C-depleted carbon (C) into 
the ocean-atmosphere system (Dickens et al., 1995, 1997). Proposed sources for this carbon include methane 
hydrates (e.g., Dickens et al., 1995; Frieling et al., 2019; Lunt et al., 2011), terrestrial organic carbon (DeConto 
et al., 2012; Kurtz et al., 2003), thermogenic methane (Svensen et al., 2004), and volcanic CO2 (e.g., Bralower 
et al., 1997; Gutjahr et al., 2017) or a combination of sources (e.g., Panchuk et al., 2008; Sluijs et al., 2007). 
Many records show a rapid onset of the CIE followed by a “plateau” phase of stable δ 13C values (e.g., Bowen 
et al., 2001; Thomas et al., 2002) with a duration of up to 170 kyr (Zeebe & Lourens, 2019; Figure 1). The 
plateau, or rather the lack of immediate recovery, implies a long-term additional source of  13C-depleted carbon, 
such as methane from hydrates, thermogenic sources or terrestrial carbon oxidation (Frieling et al., 2016; Lyons 
et  al.,  2019; Zeebe,  2013). The subsequent recovery to approximately background δ 13C values may span up 
to ∼120 kyr (e.g., Farley & Eltgroth, 2003), though many records suggest stable postexcursion values within 
∼100 kyr (Bowen, 2013).

The timescale of recovery (Bowen,  2013; Dickens et  al.,  1997; Zachos et  al.,  2005) as well as sedimentary 
evidence (e.g., Kelly et al., 2005; Ravizza et al., 2001) indicate that intensified weathering of terrestrial silicate 
rocks likely drove CO2 drawdown during the PETM (Zachos et al., 2005). However, the rapid recovery of the CIE 
observed in both marine and terrestrial records (e.g., Abdul-Aziz et al., 2008; Giusberti et al., 2007), suggests that 
organic carbon (Corg) burial played an important role as well, especially within the first 30–40 kyr of the recovery 
(Bowen, 2013; Bowen & Zachos, 2010). Along with terrestrial Corg burial (Bowen & Zachos, 2010), marine Corg 
burial might have been a major sink (e.g., John et al., 2008).
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In the modern ocean, over 90% of all Corg burial in the marine realm takes place at depths shallower than 1,000 m 
(Sarmiento & Gruber, 2006). Climate change during the PETM likely led to increased weathering-driven river 
inputs of phosphorus (P) to coastal zones (e.g., Carmichael et al., 2017; Khozyem et al., 2015; Sluijs et al., 2014), 
stimulating primary productivity. The resulting increase in organic matter remineralization near the seafloor, 
decreased bottom water oxygen concentrations, enhanced recycling of phosphorus from sediments through 
preferential release from organic matter and reduced mineral retention, and increased Corg burial (e.g., Ingall 
et al., 1993; Sluijs et al., 2008b, 2014). Warming, and stronger (salinity) stratification also contributed to a drop 
in seawater oxygen concentrations (e.g., Carmichael et al., 2017; Sluijs et al., 2006; Thomas et al., 2002). Given 
the high sea level across the late Paleocene and early Eocene (e.g., Miller et al., 2020), particularly during the 
PETM (e.g., Sluijs et al., 2008a), even more nutrients were likely trapped along margins due to their larger area 
and hence larger retention capacity (Tsandev & Slomp, 2009). Collectively, if marine Corg sequestration was of 
relevance to carbon drawdown during the PETM, it was most likely concentrated along continental margins.

Some studies suggest a rise in primary or export production (Bains et al., 2000; Ma et al., 2014) and mild deoxy-
genation (e.g., Chun et al., 2010; Pälike et al., 2014) in the open ocean, thus potentially increasing Corg sequestra-
tion. However, most observations point toward increased Corg burial on continental shelves and slopes (Dunkley 
Jones et al., 2018; John et al., 2008), notably in restricted basins such as the Arctic (Sluijs et al., 2008b) and in 
epicontinental seas such as the peri-Tethys (Gavrilov et al., 1997). Sedimentary records from various margins 
point toward eutrophic conditions (e.g., Dickson et al., 2014; Gibbs et al., 2006; Nicolo et al., 2010; Schmitz 
et al., 1997a, 1997b; Soliman et al., 2011). Bottom waters at such locations were at least intermittently low in 
oxygen and in some cases even euxinic ([O2] = 0 and sulfidic), which in combination with elevated clay supply, 
enhanced Corg burial (Sluijs et al., 2014).

The rapid recovery of δ 13C during the CIE through elevated Corg burial in marine sediments was recently assessed 
with two Earth System models. Using cGENIE, Gutjahr et al. (2017) and Dunkley Jones et al. (2018) assumed 
an ad hoc increase in burial to simulate the desired δ 13C response. In an application of LOSCAR, Komar and 
Zeebe (2017) simulated a reduction in deep water O2 and associated increased P recycling and primary produc-
tion as a mechanism for enhanced Corg burial. These studies conclude that the burial of ∼2,000 to 8,000 Pg (Pg) 
of Corg is required to reconstruct the initial, rapid δ 13C recovery, in agreement with Bowen and Zachos (2010). 
However, neither cGENIE nor LOSCAR include a representation of the continental shelves and all Corg burial in 
these models occurs in deep marine sediments. As a result, the models do not capture the primary locale of Corg 
burial for the PETM which may affect both interpretations of the scale and nature of the driving mechanisms, as 
well as the actual magnitude of the Corg burial.

In this study, we first expand existing global scale data compilations of changes in primary production, and 
deoxygenation during the PETM (Carmichael et al., 2017; Dickson et al., 2012; Sluijs et al., 2014), based on the 
currently available published information and new data, with a focus on marginal sites. We then present a new 
biogeochemical box model with separate boxes for the open ocean and continental margins, the Arctic Ocean and 
the Eurasian Epicontinental Seas (EES). With the model, we simulate changes in primary production and water 
column redox conditions during the PETM, with a specific focus on the resulting burial of Corg on continental 
margins during the key first 40 kyr of the recovery phase.

2.  Materials and Methods
2.1.  Data Compilation

We generated new Corg records and seafloor oxygenation proxy records (Corg/Ptot, molybdenum, Fe/Al) for the 
PETM at seven sites (Figure S1 in Supporting Information S2), and combined them with published information 
on changes in primary production and redox conditions during the PETM (Table ST1 in Supporting Informa-
tion  S2). The compilation also includes new geochemical records for the deep North Atlantic (International 
Ocean Discovery Program (IODP) Site 1403) and marginal settings in the Pacific, Tethys, Atlantic, Arctic, South-
ern, and Indian Oceans (Lodo Gulch, Forada, Bass River, Lomonosov Ridge IODP Site M004, Ocean Drilling 
Program (ODP) Sites 1172 and 752; see Supporting Information S2 for site descriptions and methodology). For 
the recovery phase, we exclude sites lacking appropriate chronology.

Validation: Appy Sluijs, Caroline P. 
Slomp
Writing – original draft: Nina M. 
Papadomanolaki, Appy Sluijs, Caroline 
P. Slomp



Paleoceanography and Paleoclimatology

PAPADOMANOLAKI ET AL.

10.1029/2021PA004232

3 of 23

To determine the redox conditions in the water column during the PETM, we 
use changes in sediment concentrations of redox-sensitive trace metals (e.g., 
Mo, Fe/Al), changes in benthic foraminiferal assemblages and abundance, 
pyrite contents, sediment lamination, and the presence of biomarkers such 
as isorenieratene and derivatives. Increased values for the molar ratio of Corg 
over total P (Corg/Ptot) indicate increased preservation of Corg and reduced 
retention of P in sediments under low O2 conditions (e.g., Ingall et al., 1993). 
They are therefore used as a proxy for deoxygenation. The continued pres-
ence of benthic foraminifera is used as an indicator of bottom waters that 
were not permanently anoxic (e.g., Bernhard & Gupta, 1999). Laminations 
generally form as mesofauna and macrofauna disappear from sediments 
when bottom water oxygen is low, but not necessarily absent (e.g., Savrda & 
Bottjer, 1991). The presence of Mo and abundant pyrite in sediments gener-
ally indicates sulfidic sediments and anoxic bottom waters (Bertine, 1972; 
Crusius et al., 1996; Roychoudhury et al., 2003). Isorenieratene is a proxy 
for photic zone euxinia, though at shallow sites, photic zone euxinia likely 
extended to the seafloor (Sluijs et  al.,  2014). In this study, we attempt to 
narrow down redox classifications to no evidence for deoxygenation (oxic), 
reducing conditions without the complete absence of O2 (hypoxic) and 
evidence for no free O2 and/or sulfidic conditions (anoxic). Therefore, as an 
example, the presence of Mo at a site is interpreted as evidence for anoxia, 
and we forego the use of Mo concentrations for a further redox classification 
as done, for example, by Scott and Lyons (2012). For trace metals such as Fe/
Al, an increase in values is interpreted as evidence for deoxygenation.

We exclude records that aim to reconstruct primary production using Corg 
records, as these can be influenced by changes in preservation of organic 
matter and sediment supply. We compile all studies that interpret proxy 
records purely as reflections of primary or export production, including those 
of barium concentrations and specific groups of plankton (e.g., foraminifera), 
to assess trophic levels, without a specific distinction between increased or 
high primary production.

2.2.  Model Description

We developed an 11-box biogeochemical model with representations of the coupled marine cycles of Corg, P, and 
O2 to track changes in ocean biogeochemistry during the PETM in response to increased atmospheric CO2 and 
weathering. To this end, we formulated a steady state mass balance model for the late Paleocene and parameter-
ized processes through simple rate laws (e.g., Ruvalcaba Baroni et al., 2014; Van Cappellen & Ingall, 1994). To 
simulate the PETM, we applied transient atmospheric pCO2 perturbations to assess the response to enhanced P 
weathering, higher temperatures, and increased stratification.

Our open ocean box layout is similar to that of the Walker and Kasting (1992) carbon-cycle model with separate 
boxes for the surface waters in the midlatitude and low latitude ocean and Southern Ocean, a thermocline box 
and three boxes for the Atlantic, Indian, and Pacific deep oceans (Figure 2). The Indian Ocean box includes the 
Tethys Ocean and is referred to as Indotethys. The continental margins (shelf and slope), with the exception of 
the Arctic Ocean and EES (which includes the peri-Tethys region), are represented by a single box. We hereafter 
refer to it as the continental margin. The Arctic Ocean and EES are each represented by two boxes, a shallow one 
that includes the shelf and slope area and a deep box. The continental margin, the surface Arctic Ocean, and the 
surface EES will be referred to collectively as the marginal boxes. This model setup allows for an evaluation of 
spatial variability in productivity changes and deoxygenation by modeling them separately for the shallow and 
deep, marginal, and open ocean and also for different ocean basins. Further details are provided in the Supporting 
Information S2.

Figure 1.  Idealized representation of the carbon isotope excursion (CIE) 
associated with the PETM. The four key phases of the CIE are shown: the 
preevent stable background, the δ 13C decrease across the onset, the stable 
or slightly increasing values of the “plateau” and the increasing δ 13C of 
the recovery. As this δ 13C curve does not represent a specific site, the 
boundaries between the Paleocene and Eocene, and Zones NP9 and NP10, are 
approximate. The duration for the onset (Kirtland Turner, 2018 and references 
therein), plateau (Zeebe & Lourens, 2019 and references therein), and recovery 
(e.g., Bowen, 2013; Murphy et al., 2010; Zeebe et al., 2009) of the The 
Paleocene-Eocene Thermal Maximum (PETM) are also given.
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2.3.  Simulation Setup

The standard simulation which we present here is forced by the atmospheric CO2 curve as modeled by Zeebe 
et al., 2009 (Z09; Table ST2 in Supporting Information S2). As the model setup in this study does not include 
the complete exogenic carbon pool and therefore lacks a representation of greenhouse gas emissions, the values 
of atmospheric CO2 are prescribed for each time step. The increase in pCO2 during the PETM causes an increase 
in Pweath and, subsequently, total riverine P input, which closely follow the shape of the CO2 curve (Figure 3). 
Additionally, the accompanying increase in water temperature leads to a reduction in O2 solubility and we enforce 
an increase in stratification in the Arctic surface and EES surface boxes. The combined changes in P input, O2 
solubility, and stratification cause the variations in primary productivity and deoxygenation associated with the 
PETM. The four key parameters of which the values chosen strongly affect our simulation results for the PETM 
are fOrgP (0.75), fCaP (0.4), np (0.4), and fstrat (S1: 0.1; S2: 1; S3: 0.4; Table ST2 in Supporting Information S2). 
The sensitivity analyses that we conducted before choosing these final values, which produce results that best 
fit the proxy records, are presented in Supporting Information S2. Additionally, we tested the impact of changes 
in these parameters in combination with riverine P inputs associated with three alternative atmospheric pCO2 
curves (F16: Frieling et al., 2016; G17: Gutjahr et al., 2017; K170: which is the Z09 scenario but using the 170 
kyr duration of Zeebe and Lourens  (2019)) for the plateau of the CIE. Despite different emission scenarios, 
the CO2 curves produced by Frieling et al. (2016) and Gutjahr et al. (2017) are broadly similar to that of Zeebe 
et al. (2009). Similarly to Z09, the P input curves for the additional scenarios are similar in shape to the CO2 
curves. The results of these simulations can also be found in Supporting Information S2.

We also performed five experiments using the Z09 scenario (Table ST2 in Supporting Information S2), with 
the aim to assess the sensitivity of Corg burial to of increased P supply, primary productivity, stratification, and 
reduced O2 solubility. In our first experiment (Z09_Weath), we enhanced the sensitivity of P weathering to 
atmospheric CO2, thereby increasing riverine P supply to the ocean. For this run, we increased the value of np 
from 0.4 to 1. In the second experiment (Z09_cOOPP), we kept open ocean (S4 and S5) primary productivity 
constant at the corresponding steady state value. As a result, the relative contribution of marginal (S1–3) produc-
tivity to total organic matter production increased. In this run, excess Corg burial is influenced solely by marginal 
productivity and deoxygenation in marginal and deep boxes. The third experiment tested the combined effect of 

Figure 2.  Setup of model boxes with names (codes) and fluxes determining the exchange between them. Fluxes between the boxes are indicated with solid lines and 
riverine fluxes (R), evaporation (E), and precipitation (P) are indicated by dashed lines. Thermohaline circulation assumes deep water formation in the Southern Ocean 
(Bice & Marotzke, 2001).
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decreased O2 solubility and increased P weathering, without increased stratification (Z09_cStrat). In this experi-
ment, fstrat was set to 1 for all marginal boxes (S1–3), while np was kept at the standard value. For the next experi-
ment (Z09_Weath_Only), we tested the impact of only enhanced P weathering on productivity and, subsequently, 
on Corg burial. To test this, we kept all boxes fully oxic (constant degree of anoxia, or DOA, and [O2] at steady 
state values), thus eliminating the contribution of preservation of Corg and P recycling. Our last experiment tested 
the effect of reduced O2 solubility under higher temperatures (Z09_O2Sol) assuming no increased stratification 
and no increased P weathering by setting fstrat to 1 for all marginal boxes (S1–3) and np to 0.

2.4.  LOSCAR δ 13C Simulations

To test the response of increased Corg burial rates on dissolved inorganic carbon δ 13C, we used the carbon-cycle 
box model LOSCAR (Zeebe et al., 2009). The Corg burial in the original LOSCAR version is constant throughout 
the simulations. For the purpose of this study, we changed this setup to include a time-dependent Corg burial factor 
that emulated the relative changes in Corg burial, as simulated by our Z09 scenario. We tested a Z09 simulation 
with and without Corg burial, as well as two further emission scenarios, one for a larger second pulse of methane 
(see Komar & Zeebe, 2017) and one where the second pulse is caused by Corg oxidation (Lyons et al., 2019). Both 
of these scenarios are combined with Z09 Corg burial rates for the onset, plateau and first 40 kyr of the recovery 
phase. We use the LOSCAR δ 13C fractionation value of −33‰ for Corg burial.

Figure 3.  Overview of the increased riverine P influx that is used, together with rising temperatures and stratification, to 
simulate the The Paleocene-Eocene Thermal Maximum (PETM) in our model. The standard scenario (Z09; solid line) uses a 
lower P weathering sensitivity of np = 0.4 than the Z09_Weath scenario in which np = 1.0.
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3.  Results
3.1.  Geochemical Data

The δ 13C data for our newly generated PETM records show that we capture both the onset and recovery of the 
PETM at five out of seven sites (Figure S1 in Supporting Information S2). At the Lomonosov Ridge, molar Corg/
Ptot values well in excess of the Redfield ratio, and high Mo concentrations indicate severe deoxygenation. The 
high Corg/Ptot values found at Lodo Gulch and the presence of Mo at Bass River and ODP Sites 1172 and 752 
suggest some deoxygenation at these sites too. Average Corg contents are mostly at or below ∼0.5% at all sites 
except for Site 1172 and the Lomonosov Ridge where Corg contents range up to ∼1.3 and 3.4 wt %, respectively. 
For more details on the proxy records for our seven sites, see in Supporting Information S2.

3.2.  Data Compilation

Most sites in in our compilation (Figure  4a) experienced some degree of deoxygenation during the PETM. 
Hypoxic conditions on the seafloor at open ocean sites are concentrated mainly in the areas of the Equatorial 
Pacific and Atlantic, Walvis Ridge in the Southern Atlantic and the Southern Ocean. Most sites on the continental 
shelf and slope experienced hypoxia at some stage during the PETM, with only a few (<5) exceptions. Intermit-
tent to permanent anoxia developed at sites in the Arctic Ocean, the North Sea, the Peri-Tethys, the New Jersey 
shelf, and the North African shelf. However, sites on the New Jersey and North African shelves provide evidence 
for hypoxia rather than anoxia. Lower photic zone euxinia was identified at a total of four sites.

Signs of eutrophication are found in all basins and at all water depth intervals, during different stages of the 
PETM. About 13 sites experienced high productivity throughout the entire PETM (Table ST1 in Supporting 
Information S2). Clusters of high productivity occur around the Walvis Ridge, on the New Jersey Shelf, and the 
North African Shelf. Most sites with evidence for increased productivity also experienced deoxygenation, with 
a few exceptions. A much smaller number of records capture the recovery phase of the PETM (Figure 4b). At 
some sites, notably in the deep ocean and the (peri)Tethyan realms, proxies indicate oxic conditions during the 
recovery, but a large number of sites in various ocean basins, notably on the North African Shelf, the New Jersey 
Shelf, and in the Arctic remained hypoxic or anoxic.

Overall, there is abundant evidence for eutrophication and deoxygenation in marginal and restricted environ-
ments, also during the recovery phase of the PETM. This contributed to high sediment Corg contents in these 
environments (Figure 5). Records containing Corg > 0.5 wt %, and especially Corg > 2 wt %, are found mainly in 
marginal environments during the PETM (Figure 5).

3.3.  Modeling Results

We present results for the Z09 simulations here (Figure 6). Those for the F16, G17, and K170 simulations are very 
similar and can be found in Supporting Information S2.

3.3.1.  Z09 Simulation

Dissolved PO4 concentrations in all basins and primary production rates in the surface boxes increase by a factor 
of ∼1.6 during the first 80–100 kyr of the event, before decreasing (Figures 6a and 6b). Phosphate concentra-
tions become highest in the deep boxes of the restricted basins (D1, D5; ∼3 μmol kg −1), somewhat lower in the 
thermocline (>2 μmol kg −1) and remain low in the Southern Ocean (<1 μmol kg −1; Figure 6a). Total primary 
productivity increases from ∼46 to ∼75 Pg C yr −1. This increase results in excess production of ∼4 × 10 6 Pg C, 
with 79% produced in S4 and 11% in S2.

Deoxygenation occurs in all surface (Figure 6c) and deep (Figure 6d) boxes. The DOA is highest in box S1 
(0.94), compared to S2 (0.38) and S3 (0.74). The DOA for S2 begins to decrease at about 100 kyr. For S1 and 
S3, the recovery begins around 60 kyr into the event. Oxygen concentrations in the deep Arctic Ocean (D1) and 
EES (D5) decrease to zero within the first ∼10 and ∼20 kyr of the PETM simulation, respectively. Both boxes 
remain fully anoxic until ca. 30 kyr before the end of the event. The thermocline becomes nearly hypoxic (min. 
84 μmol kg −1). Oxygen concentrations in the deep open ocean boxes decrease but remain >60 μmol kg −1. Oxygen 
concentrations for the thermocline and deep open ocean (IM, D2–4) begin their recovery from ∼100 kyr onward.
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Figure 4.
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The burial of Ptot decreases at the onset of the PETM and remains below the late Paleocene level for the first 
∼60 kyr of the event, followed by a rise (Figure 6e). Variations in total Porg burial are minor compared to the rise 
in Pauth and decrease in PFe burial. Interestingly, while Porg burial increases in the deep ocean boxes D2, D3 and 
D4, and the shallow box S2, it decreases in D1, S1, and S3 (Figure 6f). The burial of Pauth shows little change 
in D1, D5, and S1 but increases in all the other boxes (Figure 6g). Burial of PFe decreases in all boxes, but most 
prominently in S2 and S3 (Figure 6h).

The rate of Corg accumulation increases in all boxes (Figure 6i). In the marginal boxes, the rate increases from an 
average of 2.9 to 4.3 g C m −2 yr −1. In the deep boxes, the largest change occurs in the restricted basins, where rates 
more than double from 0.29 to 0.65 g C m −2 yr −1 in D1 and from 0.07 to 0.15 g C m −2 yr −1 in D5.

Burial Corg/Ptot values during the PETM generally exceed the Redfield ratio of 106 in all boxes, except for the deep 
open ocean (D2–4; Figure 7a). Maximum values (260 mol/mol) are reached in the Arctic and Eurasian Epiconti-
nental Seaway and the maximum relative increase (2.4) occurs in the Arctic. The lowest maximum value (83 mol/
mol) and the lowest relative change (1.27) occur in the deep open ocean.

Figure 4.  Global overview of sites of proxy records on changes in primary productivity (PP) and bottom water redox conditions for the PETM. Records for all phases 
of the PETM (a) and records for the recovery as identified from the δ 13C excursion (b) are indicated separately. The lightest colors indicate oxic conditions or sites 
where no data on deoxygenation is available. Intermediate shades are used for hypoxic sites while the darkest shades indicate proxy evidence for anoxic or euxinic 
conditions (see text for criteria). Gray colors are used for sites without data on PP changes and red colors indicate proxy evidence for high or increased PP. Sites for 
which there is no proxy evidence for deoxygenation or increased productivity are left white. Sites with records that use barite to reconstruct PP are indicated by stars 
(*) and sites where proxy records offer contradicting results by question marks (?). Symbol shapes represent the depth domain: shelf (circle), slope (polygon), and 
deep (square). For the full reference list and site names (here indicated by numbers) see Table ST1 in Supporting Information S2. Separate maps on deoxygenation and 
productivity changes can be found in Figure S2 in Supporting Information S2. Map after Markwick (2007), modified by Sluijs et al. (2014).

Figure 5.  Compilation of maximum sediment Corg contents for the PETM. Colors represent maximum values for each site: less than 0.5 wt % (white), more than 
0.5 wt % (gray), and more than 2 wt % (black). Shapes indicate the depth domain: shelf (circle), slope (polygon), and deep (square). For the full reference list and site 
names (here indicated by numbers) see Table ST1 in Supporting Information S2. Map after Markwick (2007), modified by Sluijs et al. (2014).
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3.3.2.  Excess Corg Burial

Most excess burial of Corg for the standard scenario (Z09) occurs in the marginal boxes (Figure 8a), which account 
for more than 70% of total burial. Over the entire PETM, excess burial amounts to ∼13,300 Pg C (Figure 8b). 
During the first 40 kyr of the recovery, excess burial is 3,300 Pg C. For the sensitivity tests, we show results 
for simulations with a P weathering sensitivity of either np = 0.4 (as in the standard run) and, only where it is 
explicitly stated, np = 1.0 (as in Z09_Weath; Figure 8c). An increase in weathering sensitivity from 0.4 to 1.0 
generally increases the amount of excess Corg burial. When this increase is applied to the standard scenario 
(Z09_Weath), it results in total excess burial of ∼21,100 Pg C, while for the first 40 kyr of the recovery excess 

Figure 6.  Key results for PETM simulation Z09: phosphate concentrations in μmol kg −1 (a), relative change in primary 
productivity (b), degree of anoxia for the marginal boxes (c), oxygen concentrations in μM for the deep boxes (d), total 
phosphate burial rates for the different pools in Tmol yr −1 (e), organic P (Porg) burial rates in Tmol yr −1 (f), authigenic P (Pauth) 
burial rates in Tmol yr −1 (g), iron-bound P (PFe) burial rates in Tmol yr −1 (h), and organic carbon (Corg) burial rates in g C 
m −2 yr −1 (i). Red colors are used for surface boxes, black for the thermocline and blue colors for the deep boxes. The color 
association is also shown in boxes at the bottom of this figure.
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burial increases to 5,000 Pg C. Generally, excess burial is at least 1.4 times higher for a weathering sensitivity that 
is 2.5 times higher. When open ocean productivity is kept constant (Z09_cOOPP), excess Corg burial shifts toward 
the restricted basins. Due to a decreased retention of phosphorus in the open ocean, more of it becomes available 
for production in the restricted basins instead. Total excess Corg burial is ∼16,000 Pg C for the entire PETM and 
∼4,000 Pg C for the early recovery.

The effect of changes in stratification on excess Corg burial is large and is required to reproduce the spatial extent 
and severity of deoxygenation in the Arctic and EES. Without increased stratification in S1 and S3 (Z09_cStrat), 
total excess Corg burial over the entire PETM is ∼7,500 Pg C and ∼1,700 Pg C of this is buried during the 40 

Figure 7.  Simulated and measured molar (mol/mol) values of Corg/Ptot for marginal and deep ocean regions based on our 
model scenario Z09 (a) and data from this study and Dickson et al. (2014) (b). In the data set, total P (Ptot) is equal to reactive 
P (Preac) plus detrital P. The latter phase is not included in the total P in our model. Values are shown for the late Paleocene 
(pink) and the PETM (blue). The dashed line indicates the Redfield value (106). The relative change in median values is 
indicated. The inset for panel (a) shows the values for the Arctic and EES surface boxes, which in (a) are combined with the 
values for the respective deep boxes. Horizontal lines within the boxplots indicate median values.
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Figure 8.
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kyr interval. The CO2-driven increase in Pweath and associated riverine input of P is the only factor controlling 
biogeochemical changes in the ocean in the model run with oxic conditions and without increased stratification 
(Z09_Weath_Only). Total primary productivity increases to ∼53 Pg C yr −1 and excess Corg burial amounts to 
∼2,250 Pg C (entire event) and ∼500 Pg C (first 40 kyr of recovery). The effect of reduced O2 solubility on Corg 
burial, due to warming only (Z09_O2Sol), is similar to that of increased Pweath only (Z09_Weath_Only). Excess 
Corg burial by the end of the PETM is ∼2,100 Pg C and roughly ∼480 Pg C are buried during the 40 kyr early 
recovery interval.

The sensitivity tests show that increased weathering of P is a key driver of biogeochemical change during the 
PETM. However, the redox-driven recycling of P amplifies this effect, resulting in the patterns of increased 
productivity and deoxygenation that we observe in the data. The degree of redox sensitivity for P burial, as well 
as the degree of deoxygenation in key areas of burial further affect the amount of Corg burial (Figures 8d–8g and 
Figure S4 in Supporting Information S1).

3.4.  LOSCAR δ 13C Simulations

The inclusion in LOSCAR of Corg burial rates simulated in this study, results in a preferential removal of  13C-de-
pleted carbon and thus an earlier and more rapid recovery of the CIE (red line in Figure 9). The shape of the CIE 
broadly matches observations (Figure 1). However, by the end of the PETM, δ 13C values have increased by 2‰ 
above the preevent value, which is in stark contrast with observations and thus implies the need for the addition 
of several thousand Pg of  13C-depleted C during the plateau and recovery phases to match the shape of the CIE. 
Truncating Corg burial rates after the first 40 kyr of the recovery (blue, pink lines), leads to a better match with the 
target. An addition of ∼1,000 Pg C with a δ 13C value of −55‰ (blue line), or 2,400 Pg C of −25‰ (pink line), 
results in a plateau phase similar to the scenario without Corg burial.

4.  Discussion
4.1.  Primary Production

Our data compilation shows that primary production increased in both open ocean and marginal marine areas 
during the PETM (Figure 4). Roughly 70% of all studied sediment records reveal increased production based on 
at least one proxy. Some work has suggested that barite records (partly) record export rather than primary produc-
tion (Ma et al., 2014)—though it seems unlikely that export production increased without a pronounced increase 
in primary production, particularly in a warmer water column (e.g., Laws et al., 2000)—or a global increase in the 
Ba inventory (Dickens et al., 2003; Frieling et al., 2019). Even when barite records are excluded, 60% of all sites 
still show an increase in primary production. Importantly, almost two thirds of all high or increased productivity 
sites are located on the continental margin and in the restricted basins of the EES and Arctic Ocean, where almost 
all sites show an increase during the PETM. This is especially true for areas such as the North African shelf (sites 
19–26) and the New Jersey shelf (sites 2–4), where increased productivity marks all sites but one (23).

Our simulations indicate an equal relative increase of primary productivity in all surface boxes. The absolute 
increase in maximum rates of primary production per unit of surface area is highest in marginal boxes (S1–3), but 
most production takes place in the low and mid latitudes of the open ocean (S4; Table ST3 in Supporting Informa-
tion S2). These environments cover the largest surface area of the ocean and proxy records for high or increased 
primary production are found in the North and the South Atlantic, as well as the tropical Pacific.

4.2.  Deoxygenation

Deoxygenation is recorded by proxies at 90% of the sites compiled for this study (Figure 4). Sulfur isotope ratios 
have been interpreted to suggest that large parts of the ocean became sulfidic during the PETM (Yao et al., 2018) 

Figure 8.  Barplot for excess Corg burial associated with the PETM for the standard simulation Z09 (a, b) and the sensitivity analyses (c) in units of Pg C and as a 
relative fraction when compared to Z09. The response of Corg burial for the first 40 kyr of the recovery to different degrees of stratification in S1 and S3, as well as 
varying redox sensitivity for P burial is shown in (d–g). The codes for the boxes contributing to the excess Corg burial are as described in Figure 2. Blue colors are 
used for excess burial across the entire PETM while red indicates excess burial during the first 40 kyr of the recovery. Light colors in (b, c) are used for the lower P 
weathering sensitivity (np = 0.4) while darker shades correspond to the higher sensitivity (np = 1.0). See the Methods section for an explanation on the calculation of 
excess burial. Scenario codes are given in brackets and explained in Table ST2 in Supporting Information S2.
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with an expansion of the OMZ to 10–20% of the ocean volume (modern: 1%). While there is local evidence for 
hypoxia at intermediate depths in the open ocean (Figure 4) there are no signs of euxinic, or even anoxic condi-
tions on such a scale. (Intermittent) euxinic conditions are almost entirely restricted to specific sections of the 
continental shelf: the Arctic, the eastern EES and peri-Tethys region, the North Sea, the North African Shelf, and 
the Gulf of Mexico.

The results of our simulations are in general agreement with the data, as all boxes show signs of deoxygena-
tion. The deep boxes of the open ocean also exhibit a decrease in [O2] but remain oxic (>60 μM) during the 
PETM. Intermediate waters (box IM) also remain oxic. As our model provides average changes for all basins, this 
result is not inconsistent with the observed hypoxic areas ([O2] < 60 μM) as others remained oxic (e.g., Pälike 

Figure 9.  Bulk carbon isotope response to four PETM forcing scenarios. The forcing scenarios (a) include methane (CH4; 
δ 13C = −55‰) and Corg (δ 13C = −25‰) emissions, and Corg burial. White bar: an initial pulse of 3,000 Pg C of CH4 
emission (Zeebe et al., 2009), used in all scenarios. Black bar: a “leak” of 1,480 Pg C of CH4 (Zeebe et al., 2009). Pink bar: 
an additional “leak” of 2,020 Pg C of methane. Blue bar: an additional “leak” of 1,020 Pg C of CH4 and 2,400 Pg C of Corg. 
Purple bar: reduced burial, excess Corg burial of 6,000 Pg C, over the onset, plateau and first 40 kyr of the recovery. Red bar: 
excess Corg burial of 7,300 Pg C, together with the purple bar it accounts for the burial of 13,300 Pg C over the entire PETM. 
The bulk δ 13C responses (b) correspond to combinations of these scenarios. Black line: Control scenario with a forcing 
of 3,000 Pg C plus 1,480 Pg C of CH4. Red line: Control scenario with the inclusion of the complete Corg burial scenario 
simulated in this study. Pink line: Control scenario plus 2,020 Pg C of CH4 and reduced burial. Blue line: Control scenario 
plus 1,020 Pg C of CH4 and 2,400 Pg C of Corg, with reduced burial. 0 kyr: Onset.
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et al., 2014). The deep Arctic and EES become fully anoxic and the DOA rises for all surface boxes, consistent 
with observations. At present, there is no data available for the deep Arctic basin, however our model does not 
allow for an oxic, or even hypoxic, deep Arctic when the surface box experiences a large increase in DOA. As 
surface deoxygenation for the Arctic is supported by work on multiple sites (Figure 4; see Table ST1 in Support-
ing Information S2 for all references), it is likely that the deep Arctic experienced similar conditions.

The changes in the hydrological cycle that are associated with the PETM likely resulted in increased river runoff 
to the marine realm which, in combination with higher temperatures, would have caused water column stratifica-
tion (e.g., Sluijs et al., 2006). In our model, stratification plays a large role in increasing the DOA of surface boxes 
(Table ST3 in Supporting Information S2). Marginal environments where evidence suggests that salinity varied, 
are mainly located in the Arctic (Harding et al., 2011; Pagani et al., 2006; Sluijs et al., 2008b) and on the New 
Jersey Shelf (Kopp et al., 2009; Sluijs & Brinkhuis, 2009). But evidence of intense hydrological change on land 
(e.g., Bowen et al., 2004; Chen et al., 2018; Foreman et al., 2012; Schmitz & Pujalte, 2007) and an increase in the 
supply of terrestrial siliciclastic and organic material to the margins has been found in numerous locations (see 
overview in Sluijs et al. (2014)), likely accompanied by large-scale (seasonal) salinity stratification along margins. 
Very strong stratification is required in our simulations to create severe anoxia in the Arctic, so as to correspond 
to the conditions that were dominant at Lomonosov Ridge (Dickson et al., 2012; Sluijs et al., 2006, 2008a, 2008b; 
Stein et al., 2006) and Spitsbergen (Cui et al., 2011; Harding et al., 2011). A somewhat lower DOA for the EES, 
again mostly due to stratification, encompasses the larger range of redox conditions deduced from proxies for this 
region (Figure 4), though anoxia occurred (intermittently) at nearly half of all sites there. Without stratification, 
our model does not capture such conditions for the EES. Despite the fact that we did not enforce stratification on 
the continental margin (box S2), stratification elsewhere also results in a somewhat higher DOA for S2.

4.3.  Phosphorus Recycling

Phosphorus is considered the main limiting nutrient in the ocean on long timescales (Tyrrell, 1999). Records of 
Corg/Ptot indicate that P recycling relative to Corg increased from the late Paleocene into the PETM (Figure 7b). 
Typical values of Corg/Ptot were lower than those in modern anoxic to euxinic basins, however, where they gener-
ally far exceed the Redfield ratio, reaching values of up to 400 mol/mol (Algeo & Ingall, 2007). Values in excess 
of the Redfield ratio (generally < 300 mol/mol) occur at Guru Fatima, Kheu River (Dickson et al., 2014), and 
the Arctic and Lodo Gulch (Figure S1 in Supporting Information S2). This confirms that throughout the PETM, 
complete anoxia was only experienced locally, while most locations experienced at most a switch to hypoxia.

Overall, the absolute range of Corg/Ptot simulated by our model corresponds well to the range of the data (Figure 7), 
when taking into account that we do not model detrital P (Supporting Information S2). In contrast, the relative 
increase in the modeled median Corg/Ptot value is much lower than the increase in the data. This is especially true 
for the EES where the relative change in median data values is more than a factor 18, versus a modeled increase of 
1.6–2.5 times the late Paleocene median Corg/Ptot value (Figure 7b; Dickson et al., 2014). Here, we must add that 
in addition to deoxygenation and P recycling, an increase in the input of detrital P would lower sedimentary Corg/
Ptot, while increased terrestrial organic matter fluxes would have the opposite effect (Ruttenberg & Goni, 1997; 
Burdige, 2005). An increase in the contribution of terrestrial organic material is found at some sites during the 
PETM (e.g., Arreguín-Rodríguez et al., 2014; Crouch et al., 2003). Furthermore, the locally intensified hydro-
logical cycle (Carmichael et al., 2017) would have led to an increased influx of both detrital P and terrestrial 
organic matter, with uncertain effects on marine Corg/Ptot. The extremely large change for the EES in particular, 
combined with an increased abundance of terrestrial biomarkers and highly weathered lithogenic material (Dick-
son et al., 2014), suggests that PETM values were affected by an increase in terrestrial material. We therefore 
infer that the strength of P recycling within our model falls within a reasonable range for the PETM.

The ability of biota to utilize the excess availability of P during the PETM may have depended on the cycling 
of other nutrients such as N and Fe as well. Nitrogen isotope (δ 15N) records suggest an increased availability 
of ammonium in the photic zone and potentially a P-driven increase in N2 fixation during the PETM (Junium 
et al., 2018; Knies et al., 2008). The cycling of Fe in the past ocean is even harder to trace, however local transi-
tions to a (seasonally) drier climate (Carmichael et al., 2017) likely resulted in enhanced wind-driven Fe depo-
sition in nearby marine environments. Additionally, deoxygenation may have led to elevated fluxes of bioavail-
able Fe from continental shelf sediments to ocean waters (Homoky et al., 2012; Lenstra et al., 2019; Raiswell 
et al., 2018).
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4.4.  Organic Carbon Burial

In our standard scenario, which satisfactorily reproduces the trends and patterns of primary productivity, deox-
ygenation, and P recycling seen in data, the combination of these processes results in a total burial of 45,300 
Pg C (Table ST3 in Supporting Information S1) and excess burial of ∼13,000 Pg C across the entire PETM 
(Figure 8b). The fraction of produced Corg that is buried increases from 1% (late Paleocene) to 3% (Table ST3 in 
Supporting Information S2). An increase in riverine P input from ∼0.15 Tmol P yr −1 (Z09) to ∼0.17 Tmol P yr −1 
(Z09_Weath), leads to a rise in excess Corg burial of 7,800 Pg C across the entire PETM. Our results emphasize 
the importance of redox-driven P recycling for the burial of Corg. When P burial is decoupled from [O2] and DOA 
(Z09_Weath_Only), increased terrestrial nutrient input and subsequently higher primary productivity, fuel excess 
Corg burial that is ∼16% of the Z09 value (Figures 8b and 8c). The simulated values for Corg burial also depend 
on the chosen values for model parameters on stratification and redox sensitivity of P burial (Figures 8d–8g; 
Supporting Information S2). Changes in these parameter values, however, shift the trends and patterns of, for 
example, deoxygenation (Figures S4b and S4c in Supporting Information S2), reducing the correspondence with 
proxy data.

More than 70% of all excess burial in our model occurs in the three marginal boxes (S1–3; Figure 8a). Despite 
its large area and consequently large production, burial in the Pacific Ocean makes up only 10% of excess Corg 
burial. In fact, when open ocean production is kept constant (Z09_cOOPP), the resulting increase in nutrients in 
the marginal boxes leads to increased total global production and excess Corg burial. Such a change in the trophic 
resource continuum was postulated by Gibbs et al. (2006) to explain the different productivity trends between 
Wilson Lake on the New Jersey Shelf and ODP Site 1209 in the Pacific Ocean. In contrast to previous suggestions 
(e.g., Bains et al., 2000), our study further supports the notion that deep ocean organic carbon burial played a very 
minor role in the recovery of the PETM.

Our simulated total Corg burial for the Z09 scenario is at least 1.7 times higher than the burial estimated from 
our data compilation (Supporting Information S2). The amount of total excess Corg burial in our Z09 simula-
tion (13,300 Pg C) is higher than that determined from marginal marine sediment records and previous model 
simulations (4,000–6,000 Pg C; John et al., 2008; Komar & Zeebe, 2017). By contrast, excess Corg burial in the 
Arctic (700 Pg C in surface; 870 Pg C in total) is very similar to the value (770 Pg C) of Sluijs et al. (2008b). 
We must note here that the sediment cores cover just a minor fraction of the full extent of the margins and their 
mass accumulation rate values may not be representative for other localities. Additionally, if we calculate the 
mass accumulation rates for our model, the maximum change in rate between the late Paleocene and the PETM 
are similar between our model and the data: 1.51 g m −2 yr −1 (Sluijs et al., 2008b) and 1.49 g m −2 yr −1 for the 
Arctic (Figure 6i), and 1.1 g m −2 (John et al., 2008) and 1.4 g m −2 for the continental margin (Figure 6i). As it 
is this difference that determines excess burial, and our rates fall well within the modern ranges (e.g., Alperin 
et al., 2002; de Madron et al., 1999), we are confident that our Corg burial results are realistic for the PETM. 
Collectively, we conclude that our simulated Corg burial, caused by changes in productivity and deoxygenation 
that are in good agreement with field data, is realistic for the PETM.

4.5.  Can Corg Burial Explain the Shape of the CIE?

The burial of Corg, and the δ 13C signature that is used, determines the reconstruction of the CIE and the estimation 
of carbon emissions. Zeebe et al. (2009) proposed a methane addition scenario of 4,480 Pg C, which Komar and 
Zeebe (2017) adjust to 5,500 Pg C following the inclusion of Corg sequestration (δ 13Corg: −33‰, as in this study). 
For their work on Corg burial and its effect on δ 13C, Gutjahr et al. (2017) used a δ 13Corg value of −30.5‰, result-
ing in an, mostly volcanic, emission scenario of 10,000 Pg of Corg, whereas Dunkley Jones et al. (2018) used a 
δ 13Corg −22‰. In this study, the burial of 13,300 Pg C, in excess of the late Paleocene, combined with the Zeebe 
et al. (2009) methane emission scenario, captures the general CIE shape and the rapid recovery but not the stable 
CIE plateau (Figure 9).

Previous work (Bowen & Zachos, 2010; Dunkley Jones et al., 2018; Gutjahr et al., 2017; Komar & Zeebe, 2017) 
has highlighted that the burial of Corg (at least 2,000 Pg C but up to 8,000 Pg) is required to explain the relatively 
fast recovery within the first 30–40 kyr of the CIE. Our main PETM simulation, that now includes the correct 
locus for marine Corg burial, shows that changes in productivity, deoxygenation and P recycling, as evident in 
proxy data, could have supported such an amount of excess burial (3,300 Pg C; total burial 9,600 Pg C; Table ST3 
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in Supporting Information S2) within 40 kyr, buried mainly on the continental margin and the EES. The range of 
values for our sensitivity analyses is ∼500–6,000 Pg C, most of which is caused by redox feedbacks on Corg and 
P burial (Figure 8).

The total increase of δ 13C during the recovery interval results in an overshoot relative to pre-PETM values. This 
occurs largely in the second half of the recovery, a time interval for which there are few constraints on the extent 
and degree of productivity and deoxygenation (see Table ST1 in Supporting Information S2). When Corg burial 
rates up to and covering the first 40 kyr of the recovery are used, this δ 13C overshoot is not simulated (Figures 1 
and 9). This truncation of Corg burial rates also results in lower total Corg burial (22,100 Pg C), which is close to 
our maximum burial estimates from the data ( in Supporting Information S2), and lower total excess Corg burial 
(∼6,000 Pg C), similar to the 5,000 Pg C suggested by Komar and Zeebe (2017). We therefore propose that the 
higher burial estimate of 13,300 Pg C is an overestimation caused by a lack of appropriate data. Importantly, the 
excess Corg burial during the key 40 kyr phase reproduces the more rapid recovery of δ 13C of ∼2‰ as noted by 
Bowen and Zachos (2010). Using methane (δ 13C: −55‰) or methane in combination with Corg (δ 13C: −25‰) as 
sources of C emissions, and taking into account a total excess burial of 6,000 Pg, our simulations require 5,790 
or 7,030 Pg C to reproduce the CIE, respectively. A mass of at least 10,000 Pg C in volcanic emissions (δ 13C: 
−11‰) is needed to reproduce the CIE in combination with increased Corg burial (Gutjahr et al., 2017).

5.  Conclusions
We compiled new and published proxy data for eutrophication and deoxygenation during the PETM and 
combined the results with biogeochemical modeling to simulate the effect on phosphorus and carbon burial over 
the event. We find that signs of increased primary productivity and spreading low oxygen conditions are largely 
concentrated in marginal and restricted sections of the ocean following the onset of the PETM and its recovery 
(final ∼120 kyr). Our modeling results demonstrate that this spread of productive, low oxygen waters on the 
continental margin, the Arctic Ocean and Eurasian Epicontinental Seas could be caused by increased CO2-driven 
riverine input of phosphate and water column stratification, further enhanced by phosphorus recycling linked to 
deoxygenation. Data and simulations show that deep sea organic carbon burial was quantitatively unimportant 
during the PETM. Our best estimate for excess Corg burial across the PETM is 6,000 Pg C. Finally, our model 
suggests that eutrophication and deoxygenation within the first 40 kyr of the recovery phase could have led to 
excess sequestration of 3,300 Pg of Corg, which corroborates previous studies in showing that Corg burial of this 
order of magnitude is required to explain a rapid increase in global exogenic δ 13C at the beginning of the recov-
ery phase. Further substantiation of this burial mass would require additional Corg records, especially from the 
Southern Hemisphere and the Arctic, and detailed age models for marginal sites to allow insight into changes in 
accumulation rates during the recovery phase of the PETM.

Data Availability Statement
All new data are available online at PANGAEA (Major element composition: https://doi.org/10.1594/
PANGAEA.929261, https://doi.org/10.1594/PANGAEA.929308, https://doi.org/10.1594/PANGAEA.929255, 
https://doi.org/10.1594/PANGAEA.929263, https://doi.org/10.1594/PANGAEA.929303, https://doi.org/10.1594/
PANGAEA.929305, https://doi.org/10.1594/PANGAEA.929259; organic carbon and carbonate: https://
doi.org/10.1594/PANGAEA.929262, https://doi.org/10.1594/PANGAEA.929258, https://doi.org/10.1594/
PANGAEA.929264, https://doi.org/10.1594/PANGAEA.929304, https://doi.org/10.1594/PANGAEA.929307, 
https://doi.org/10.1594/PANGAEA.929260). Our code is available on GitHub (https://github.com/papado-
manolakiNM/NMP_UU_CO2P) through ZENODO (https://doi.org/10.5281/zenodo.5256597).
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