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POSITIVE REINFORCED GENERALIZED TIME-DEPENDENT

PÓLYA URNS VIA STOCHASTIC APPROXIMATION

WIOLETTA M. RUSZEL AND DEBLEENA THACKER

Abstract. Consider a generalized time-dependent Pólya urn process defined
as follows. Let d ∈ N be the number of urns/colors. At each time n, we dis-
tribute σn balls randomly to the d urns, proportionally to f , where f is a valid
reinforcement function. We consider a general class of positive reinforcement
functions R assuming some monotonicity and growth condition. The class R

includes convex functions and the classical case f(x) = xα, α > 1. The nov-
elty of the paper lies in extending stochastic approximation techniques to the
d-dimensional case and proving that eventually the process will fixate at some
random urn and the other urns will not receive any balls any more.

1. Introduction

The classical Pólya urn model with two urns (colors) to which balls are added
randomly was introduced by Eggenberger and Pólya in 1923, [14]. Since then, many
generalizations and extensions of the classical model have been studied, see e.g. [26]
for a survey. One of the fundamental questions is how the composition of the urns
will look like and how it depends on the way balls are added as time goes to infinity.
There are numerous applications in economics, computer science and biology where
the model is better known as balls and bins model, [1, 4, 12, 13, 27, 29] to mention
a few.

A popular generalization is the non-linear Pólya urn model or balls and bin

model with feedback. The probability of a new ball choosing a bin with x existing
balls is proportional to f(x) where f will be referred to as the feedback function,
[13]. A common choice of the feedback function is f(x) = xα, α > 0.

For the original case α = 1 , it was proven in [14] that the proportion of balls in
each bin converges to a beta-distributed random variable. In the positive feedback
regime α > 1, which is also referred to as preferential attachment, the authors in
[13] proved dominance, i.e. almost surely the proportion of each bin converges to a
{0, 1}-random variable. A stronger result which we call fixation or monopoly was
proven by [20]. Fixation refers to the event that eventually one bin receives all but
a finite number of balls. The onset of the time of fixation (speed of convergence
towards the stationary distribution) in the positive feedback regime was studied
in [24]. In fact, the author in [24] studies the onset of fixation for more general
feedback functions satisfying some growth conditions and being perturbations of
the canonical case xα. In particular for that class of feedback function we have
that

∑∞
x=1

1
f(x) < ∞.
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The negative feedback regime is characterized by α < 1, and in this case the
proportion of balls in the urns converges towards the uniform distribution on
{1, 2, . . . , d} where d is the number of bins, [13]. A time-dependent version of
positively reinforced 2-urn models was studied in [25, 30] where at each time n, σn

balls (satisfying some growth condition) were randomly added to either one urn [25]
or independently to both [30]. In both cases there will be dominance. Depending
on some growth conditions of σn, [30] demonstrates there might be no fixation.

Other generalizations include considering d urns or colors, d > 2 and more
general addition rules like addition generating matrices and convex resp. concave
feedback functions, [2, 3, 21, 22]. The replacement matrix H = ((Hij))ij models

the placement of Hij balls to urn j when urn i is chosen. In [22] the authors prove
that if the feedback function is strictly concave and H bi-stochastic, then the urn
composition converges towards the uniform distribution (1/d, · · · , 1/d). The lim-
iting distribution will not be uniform with probability one if f is convex. Finally
they prove in the same paper that for d = 2, f convex and H irreducible, the
limiting proportion converges towards the equilibrium points of the corresponding
mean-field function resulting from the stochastic approximation approach. A con-
cave feedback function, which includes the negative reinforcement regime, tends to
equalize the asymptotic distribution of the proportion of different colors, whereas
a convex f which includes the positive reinforcement regime tends to amplify the
effect of the generating matrix H . In [19], the author proves CLT type results
for the proportion vector of colors around the uniform distribution in the negative
reinforcement setting, when H is double-stochastic and f Lipschitz.

Urn models with infinitely many colors were treated in [5, 6, 18]. In [6] the au-
thors introduce a class of balanced urn schemes with infinitely many colors indexed
by Z

d where the replacement schemes are given by the transition matrices associ-
ated with bounded increment random walks. They show that the urn composition
of the n-th selected ball follows a Gaussian distribution. The authors in [23] gen-
eralized the possibly infinite space or urns to general Polish spaces and study the
asymptotic behaviour of these measure-valued Pólya urn processes. The author in
[18] generalizes results obtained in [6] and [23] and studies measure-valued Pólya
urn processes under stochastic replacement matrices H .

A simplistic model for the reinforcement of neural connections in the brain using
positive reinforced interacting Pólya urns was introduced in [16]. The urns/colors
represent the edges of a graph. Roughly speaking, one first chooses a random sub-
set of colours (independent of the past) from n colours of balls, and then positively
reinforce a colour from this subset. In [16] the stability of equilibria and exam-
ples of different graphs were studied. Interesting follow-up research on percolation
questions on different positively reinforced tree-like graphs and its application for
neuronal connections were studied in [15, 17].

In this article we consider a generalized time-dependent Pólya urn model with d
urns, d ∈ N. More precisely, at each time step, σn many balls are added randomly
to the d urns, f -proportionally to their weight with instantaneous replacement. We
will assume that

(i)

∞
∑

n=1

σn
∑n

j=1 σj

= ∞ and (ii)

∞
∑

n=1

(

σn
∑n

j=1 σj

)2

< ∞.
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Condition (i) ensures that σn ≥ 1 for all n ∈ N hence we keep on adding balls
throughout the whole time-evolution, whereas condition (ii) restricts the growth of
σn. Polynomial growth is allowed but not exponential growth, since it contradicts
(ii). This condition is necessary to ensure that the process, seen as a stochas-
tic approximation (SA) scheme is not subjected to a large noise term which will
hinder the process to converge. Both conditions appear naturally when using SA
techniques from the dynamical systems viewpoint, see e.g. [28] or [11, Section 1].
The class of reinforcement functions R (see Section 2.1.1 for its definition) is very
general and satisfies some natural continuity and monotony conditions. W.l.o.g.
we will evaluate f not on the number of balls in an urn but on the proportions.
Additionally, we assume that

α := inf
x∈(0,1)

xf ′(x)

f(x)
> 1. (1)

Note that if f is convex or of the type f(x) = xα, α > 1 then (1) is necessarily
satisfied but the converse is not necessarily true. A similar condition can be found
in [22, 24], in [22] the authors assume additionally that f is convex and H irre-
ducible. Our case is not covered in [22], since taking H to be the identity matrix
is not irreducible. We will prove in Theorems 1 and 2 that there is dominance
and fixation for this class of general reinforcement functions R and generalized urn
model. Extending ideas from [30] we will prove that infinitely often the process will
move away from non-trivial equilibrium points. Using SA techniques, [7, 9, 10] and
coupling the process to an appropriate ODE we will prove that the only possible
stationary points of the process are the extremal points of the simplex [0, 1]d. In
fact, condition (1) ensures that the Jacobian of the ODE at all non-trivial points
will have positive eigenvalues. This will imply that the dynamical system is not
stable around non-trivial points. The novelty of the paper lies in proving dominance
in this general setting where we consider d urns, d > 2, f not necessarily convex,
and the addition of balls σn is variable. We extend SA techniques to this setting.
To the best of our knowledge, SA techniques in the positive reinforcement regime
were only applied to d = 2 case in the literature, e.g. [22].

1.1. Outline of the paper. The structure of the manuscript is as follows. In
Section 2 we introduce the model and assumptions on the class reinforcement func-
tions f . The results are presented in Section 3 whereas Section 4 is devoted to
their proofs. Finally, in the Appendix A we introduce stochastic approximation
techniques and relevant results.

2. Model and Definitions

2.1. Model. We assume that all random variables are defined on the same proba-
bility space (Ω,F ,P). We consider the following generalization of Pólya urn scheme
where colors are indexed by a non-empty finite set S := {1, 2, . . . , d}, d ∈ N. For
n ∈ N we denote the composition of the urn at time n by Un := {Un,j}j∈S , where
Un,j is the ”weight” of the j−th color at time n.

We start with a non-trivial initial composition U0, a given non-negative rein-
forcement function f and a sequence of positive integers (σn)n≥1. At every discrete

time point (n + 1), σn+1 balls or colors are added f - proportional to their weight,
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with instantaneous replacement. That is, given U0, U1, . . . , Un,
(

X
(n+1)
i

)

1≤i≤σn+1

are i.i.d. random vectors, such that

P

(

X
(n+1)
i = ej | U0, U1, . . . Un

)

=
f(θn,j)

∑d
k=1 f(θn,k)

, (2)

where ej , 1 ≤ j ≤ d is the unit vector corresponding to the canonical basis in

R
d and θn = (θn,k)1≤k≤d

is defined by θn,k =
Un,k∑
d
j=1

Un,j
. In other words, θn,k is

the proportion of balls of color k at time n. The urn composition is then updated
according to the following rule:

Un+1 = Un +

σn+1
∑

i=1

X
(n+1)
i . (3)

In words, at time (n+1) if the j-th color is selected at the i-th trial for 1 ≤ i ≤ σn+1,
then we add a single ball of the same color to the urn.

Let us denote by τn the total number of balls at time n. Observe that

τn = ‖Un‖1 = τ0 +

n+1
∑

j=1

σj =

d
∑

j=1

U0,j +

n−1
∑

j=0

σj ,

where ‖ · ‖1 is the ℓ1(Nd)-norm. Using this notation, θn = Un

τn
and θn ∈ {y ∈

R
d
+ \ {0} :

∑d
i=1 yi = 1}.

Definition 2.1. We call the event D dominance if

D = {∃i ∈ {1, · · · , d} s.t. lim
n→∞

(θn,1, · · · θn,d) = ei} (4)

where ei is the i-th coordinate vector in R
d.

Dominance means that eventually the proportion of different colors in the urn
becomes trivial, except for a single color.

Definition 2.2. We say the urn model (Un)n≥0 fixates if almost surely,

F = {∃N ≥ 1 and i ∈ {1, · · · , d} s.t. for all n ≥ N, Un+1,i = Un,i + σn+1}. (5)

It is important to note here that if the process fixates at some color J out of
{1, · · ·d} (which is random), then all other colors stop growing after the random
time of fixation. It is also clear that if the process fixates, it implies that there is
almost surely dominance. The converse is not always true, (see [30] for examples).

2.1.1. Class of reinforcement functions R. For the purpose of this paper, we will
assume that f : [0, 1] → R+ satisfies

(A) f is a strictly non-decreasing and continuous, such that f(0) = 0 and
f(1) = 1.

(B) f ∈ C1((0, 1)) and the semi-derivatives limx→0+ f ′(x) and limx→1− f ′(x)
exist.

(C)

α := inf
x∈(0,1)

xf ′(x)

f(x)
> 1. (6)
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The assumption (A) that f is non-decreasing, and f(0) = 0 and f(1) = 1 ia a
natural assumption that ensures that ”the higher the proportion of a color, more
likely it is to be chosen”. The assumption (B) is for technical purposes. Let R be
the class of all functions that satisfy (A), (B) and (C).

Examples are:

(i) f(x) = xα, α > 1
(ii) f(x) = x2+ǫe−x+1, ǫ > 0

A classical example of such a function is example (i). From assumption (C), it
may seem that for all f ∈ R, f has to be is convex. However, this is not the case
as we will show in the following counterexample. Let ǫ > 0 and consider example
(ii) Then f satisfies trivially assumptions (A) and (B). For the third assumption
(C), note that

f ′(x) = (2 + ǫ− x)x1+ǫe−x+1

so that infx∈(0,1)
xf ′(x)
f(x) = 1 + ǫ > 1. This function is not convex, indeed

f ′′(x) = (x2 − 2(2 + ǫ)x + (1 + ǫ)(ǫ))xǫe−x+1

and we see easily see that for ǫ small, e.g. ǫ = 0.1, the second derivative is changing
sign for x ∈ (0, 1).

Lemma 2.3. Let f ∈ R. Then

(i) f is Lipschitz on (0, 1).
(ii)

lim
x→0+

f(x)

x
= f ′(0) ≥ 0,

is well-defined.

(iii) The map x 7→ f(x)
x

is increasing for all x ∈ (0, 1).
(iv) For all x ∈ [0, 1] we have that f(x) ≤ xα, where α is defined in (6).

Proof. (i) follows immediately from assumption (B). For (ii), observe that f ′(0)
exists finitely is a part of the assumption (B), and f ′(0) ≥ 0 follows from assump-

tion (A). The statement (iii) follows from the observation that derivative of f(x)
x

is given by

xf ′(x) − f(x)

x2
≥ 0,

from assumption (C). Finally (iv) follows from (C) and

log

(

f(1)

f(x)

)

=

∫ 1

x

d(log f(t)) ≥ α log

(

1

x

)

for x ∈ (0, 1) and α was defined in (6). �

A major disadvantage of the class of functions R is that it does not include
functions that decay exponentially, for example f(x) = 1

a−1 (ax − 1) for a > 0, as

it fails to satisfy (C) (α = 1 instead of α > 1). It is clear that Theorem 1 should
hold even for exponentially decaying functions, since similar result is shown in [20],
where σn ≡ 1. However, we could not apply the general stochastic approximation
techniques for exponentially growing functions and for a general sequence (σn)n≥0.
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2.1.2. Connections to Stochastic Approximation Theory. In this section, we will
connect the proportion vector (θn)n≥0 to a standard form of recursive equations

of the stochastic approximations (SA) method, see e.g. [9–11]. One of the most
general forms of the recursion equation associated with SA is of the form

Yn+1 = Yn + γn+1 [H (Yn, Zn) + rn+1] , Y0 ∈ R
d, n ≥ 0, (7)

where (γn)n≥0 is the sequence of step sizes, (Zn)n≥0 is a sequence of i.i.d. random

vectors and (rn)n≥0 is the sequence of ”error” or remainder terms and H : Rd ×
R

d → R
d is measurable function.

A general practice is to re-write the above equation (7) in the following form

Yn+1 = Yn + γn+1 [E [H (Yn, Zn) |Y0, Z1, . . . , Zn] + ∆Mn+1 + rn+1] , (8)

where ∆Mn+1 = H (Yn, Zn) − E [H (Yn, Zn) |Y0, Z1, . . . , Zn].
The advantage of such a representation is that under suitable conditions on H

and (Zn)n, one can relate the asymptotic properties of Yn to the zeros of the mean

field function, which we will define and discuss in details for our model.
Recall our basic recursive equation (3). We can re-write this equation as follows

θn+1 = θn +
1

τn+1

[

E

[

σn+1
∑

i=1

X
(n+1)
i

∣

∣

∣Fn

]

− σn+1θn + ∆Mn+1

]

, (9)

where Fn is the sigma algebra generated by U0, U1. . . . , Un, and

∆Mn+1 =

σn+1
∑

i=1

X
(n+1)
i − E

[

σn+1
∑

i=1

X
(n+1)
i

∣

∣

∣Fn

]

. (10)

Let us define the function fd : Rd → R
d as follows y 7→ (f(y1), f(y2), . . . , f(yd))

for any vector y = (y1, y2, . . . , yd) ∈ R
d and f ∈ R. It is easy to see that

E

[

σn+1
∑

i=1

X
(n+1)
i

∣

∣

∣Fn

]

= σn+1
fd(θn)

‖fd(θn)‖1
.

An immediate consequence of the construction is the following corollary.

Corollary 2.4. Given Fn, the d-dimensional random vector
∑σn+1

i=1 X
(n+1)
i fol-

lows a Multinomial distribution with parameters
(

σn+1,
fd(θn)

‖fd(θn)‖1

)

, i.e. for x =

(x1, · · · , xd) ∈ N
d such that

∑d
i=1 xi = σn+1,

P

(

σn+1
∑

i=1

X
(n+1)
i = x

)

=
σn+1!

x1! . . . xk!

f(θn,1)x1

‖fd(θn)‖1
· · · f(θn,d)xd

‖fd(θn)‖1
.

Re-writing (9), we have

θn+1 = θn +
1

τn+1

[

σn+1
fd(θn)

‖fd(θn)‖1
− σn+1θn + ∆Mn+1

]

= θn +
σn+1

τn+1

[

h(θn) +
1

σn+1
∆Mn+1

]

, (11)

where we define h : R
d
+ \ {0} → R

d
+ by y 7→

(

fd(y)
‖fd(y)‖1

− y
)

. This function h is

well-defined as f is strictly non-decreasing and f(0) = 0. h will be the mean field



POSITIVE REINFORCED GENERALIZED TIME-DEPENDENT PÓLYA URNS 7

function, and we later see the relations of h to the limit points of the sequence
(θn)n≥0. Comparing (11) with (8), we observe that it is not exactly in the form
of the standard recursive equation as in practice in SA, due to the presence of
the coefficient 1

σn+1
which is multiplied with the martingale difference ∆Mn+1. We

present all necessary results related to SA required for this paper in the Appendix
A.

3. Results

In this section we will present our main results.

Theorem 1. Suppose that (θn)n≥0 is as in (11). Assume the following conditions:

(i) Let (σn)n≥1 be such that
∑

n≥1
σn

τn
= ∞ and

∑

n≥1

(

σn

τn

)2

< ∞,

(ii) f ∈ R,

then we have that

P(D) = 1,

where D was defined in Definition 2.1.

Theorem 2. Under the assumptions of Theorem 1 we have that

P(F ) = 1, (12)

where F was defined in Definition 2.2.

Remark 3.1. Ideally, Theorem 1 should be stated as a corollary of Theorem 2.
However, we state the theorems in reverse order. This is because, we will prove
Theorem 2 using Theorem 1.

4. Proofs

The proof of Theorem 1 will be divided into four parts. The first Lemma 4.1
will identify equilibrium points for the mean-field function h. The equilibrium set

of a function h is the set

E(h) = {y ∈ [0, 1]d : h(y) = 0}.
We call trivial equilibrium points the standard orthonormal basis of Rd, {e1, ..., ed}.
Lemma 4.2 will ensure that the process (θn)n≥0 converges and the possible limit
points are given by the equilibrium points of the mean-field function h. Proposition
4.3 will show that almost surely the process will infinitely often move away by a
small enough distance from the non-trivial equilibrium points. Finally Lemma 4.5
will conclude that the only possible limit points are the trivial equilibrium points.

Lemma 4.1. Let f ∈ R. Then the equilibrium set is equal to

E(h) =

{

y ∈ V : yj =
1

d− |I| for j ∈ Ic and yi = 0 for i ∈ I

}

, (13)

where I = {i ∈ {1, ..., d} : yi = 0}.
Proof. To find the equilibrium points of h, we need to find all solutions y ∈ {y ∈
R

d
+ \ {0} :

∑d
i=1 yi = 1} for the set of self-consistency equations given by

y1 =
f(y1)

‖fd(y)‖1
, · · · , yd =

f(yd)

‖fd(y)‖1
. (14)
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Since y ∈ {y ∈ R
d
+ \ {0} :

∑d
i=1 yi = 1}, it follows immediately that there exists

some i, such that yi > 0, and thus ‖fd(y)‖1 > 0. It is clear that the unit coordinate
vectors ei for 1 ≤ i ≤ d are equilibrium points by assumption (A).

So let us assume that y1, ..., yk 6= 0 for some 2 ≤ k ≤ d. Observe that to prove
(13), it is enough to show y1 = y2 = . . . = yk = 1

k
. The previous set of equations

(14) can be written as

‖fd(y)‖1 =
f(y1)

y1
, · · · , ‖fd(y)‖1 =

f(yk)

yk
, (15)

and f(yi) = 0 for all (k + 1) ≤ i ≤ d by assumption (A). W.l.o.g., we may assume

that y1 > y2. Then by Lemma 2.3 (iii), we know that f(y1)
y1

> f(y2)
y2

, which is a

contradiction to (15). This shows that y1 = y2, and in particular, y1 = y2 = . . . = yk
and also y1 = y2 = . . . = yk = 1

k
, since

∑k
i=1 yi = 1.

�

Note that the statement of Lemma 4.1 is similar to Proposition 2.4 from [22].
They prove the statement under the assumption that f is concave or convex, which
we do not need here. The following lemma is a consequence of Corollary A.6 from
the appendix and Lemma 4.1.

Lemma 4.2. Let (θn)n≥0 be a stochastic process defined by the recursion

θn+1 = θn +
σn+1

τn+1

[

h(θn) +
1

σn+1
∆Mn+1

]

.

Then

θn
a.s.−→ θ∗

as n → ∞, where θ∗ ∈ E(h).

The following proposition is actually a stronger version of Proposition 4.1 of [30],
where we show that for any 1 < k ≤ d, e = 1

k
(e1 + e2 + . . . + ek) is likely to be

unstable. The case d = 2 is covered in Proposition 4.1 of [30], so we extend this to
d ≥ 3.

Proposition 4.3. Let (σn)n and (τn)n be as in the assumptions of Theorem 1. For
any e = 1

k
(e1 + e2 + . . . + ek), where 1 < k ≤ d, there exists δn > 0, such that

(i)

lim
n→∞

δn = 0, (16)

(ii)
∑

n≥1

δnσn+1

τn+1
< ∞. (17)

(iii) For any such sequence (δn)n≥0

P ((θn,1, θn,2 . . . , θn,d−1, θn,d) ∈ Bc
d(e, δn) i.o.) = 1, (18)

where for a ∈ R
d and r > 0, Bd(a, r) := {x ∈ R

d : ‖x− a‖2 ≤ r}.

Remark 4.4. By symmetry, it is clear from the above Proposition 4.3 that any
e 6= ei, for 1 ≤ i ≤ d is likely to be unstable as an equilibrium point and therefore,
the only possibility is that θn −→ ei almost surely as n → ∞, for some 1 ≤ i ≤ d.
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Proof. (i)+(ii): Recall that by our choice, we have chosen (σn)n and (τn)n, such

that,
∑

n
σn

τn
= ∞ and

∑

n
σ2
n

τ2
n
< ∞, therefore there always exists δn that satisfies

∑

n≥1
δnσn+1

τn+
1
2
σn+1

< ∞, which implies that
∑

n≥1
δnσn+1

τn+1
< ∞ as τn+1 = τn + σn+1.

We can simply choose 0 ≤ δn ≤ σn+1

τn+2σn+1
. It is immediately clear that limn→∞ δn =

0.
(iii): For e = 1

k
(e1 + e2 + . . . + ek), where 1 < k ≤ d, define

Hm(e) := {(θn,1, θn,2 . . . , θn,d−1, θn,d) ∈ Bd(e, δn) for all n ≥ m}.
Since Hm(e) is non-increasing, therefore it is enough to show that

lim
m→∞

P(Hm(e)) = 0

to show (18).
Recall that from (3), we have

θn+1,1 =
τnθn,1 + Bn+1,1

τn+1
,

where given Fn, Bn+1,1 follows Bin(σn+1,Ψ(θn,1)), Ψ is short for

Ψ(xi) :=
f(xi)

‖fd(x)‖1
, (19)

and x = (x1, · · · , xd) ∈ R
d
+, f ∈ R. Re-write the above equation as

θn+1,1 =
τnθn,1 + σn+1Ψ(θn,1) + ǫn

√

σn+1Ψ(θn,1)(1 − Ψ(θn,1))

τn+1
, (20)

where ǫn =
Bn+1,1−σn+1Ψ(θn,1)√
σn+1Ψ(θn,1)(1−Ψ(θn,1))

. Let Ψd : Rd → R
d by y 7→ (Ψ(y1), · · · ,Ψ(yd)).

By Taylor’s theorem, we have for any x ∈ {y ∈ R
d
+ \ {0} :

∑d
i=1 yi = 1}

Ψd(x) − e =

d−1
∑

i=1

∂Ψd(ξx)

∂xi

(xi − ẽi), (21)

where ξx lies on the straight line joining x and e = (ẽ1, ẽ2 . . . , ẽd) ∈ E(h), since
Ψ(θn,1) = ẽ1. Re-writing (20), using the Taylor expansion, we get

θn+1,1 − ẽ1 =
τn

τn+1
(θn,1 − ẽ1) +

σn+1

τn+1

d−1
∑

i=1

∂Ψd(ξθn)

∂xi

(θn,i − ẽi)

+
1

τn+1
ǫn

√

σn+1Ψ(θn,1)(1 − Ψ(θn,1)). (22)

θn+1,1 − ẽ1 = κn(θn) (θn,1 − ẽ1) + Qn(θn) +
1

τn+1
ǫn

√

σn+1Ψ(θn,1)(1 − Ψ(θn,1)),

(23)

where κn(θn) =
(

τn
τn+1

+ σn+1

τn+1

∂Ψd(ξθn )
∂x1

)

, and

Qn(θn) =
σn+1

τn+1

d−1
∑

i=2

∂Ψd(ξθn)

∂xi

(θn,i − ẽi). (24)
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Re-iterating the above equation, we obtain

θn,1 − ẽ1 =

n−1
∏

j=m

κj(θj)



θm,1 − ẽ1 +

n−1
∑

j=m

1
(

∏j
l=m kl(θl)

)Qj(θj)





+

n−1
∏

j=m

κj(θj)

n−1
∑

j=m

1
(

∏j
l=m kl(θl)

) ǫj

√

σj+1Ψ(θj,1)(1 − Ψ(θj,1))

τj+1
,

By continuity of the partial derivatives of Ψd, for x ∈ Bd−1(e, δn) for all n (large

enough), we have ∂Ψd(ξx)
∂xi

= ∂Ψd(e)
∂xi

+ O(δn).

Step I: In this step we analyse the asymptotic behavior of
∏n

j=1 kl(θj). Observe

that at an equilibrium point e = (ẽ1, . . . , ẽd)

∂Ψd(e)

∂x1
=

f ′(ẽ1)

f(ẽ1) + . . . + f(ẽd)
− f(ẽ1) (f ′(ẽ1) − f ′(1 − ẽ1 − ẽ2 − . . .− ẽd−1))

(f(ẽ1) + . . . + f(ẽd))
2 .

Therefore,

∂Ψd(e)

∂x1
=







α(ẽ1), if ẽ1 = ẽd,

α(ẽ1) − f(ẽ1)(f ′(ẽ1)−f ′(0))
(f(ẽ1)+...+f(ẽd))

2 , if ẽd = 0.
(25)

From Assumption (C), (15) and the observation that f ′(0) ≥ 0, we have

∂Ψd(e)

∂x1

{

= α(ẽ1) > 1, if ẽ1 = ẽd,

≥ (1 − ẽ1)α(ẽ1), if ẽd = 0,
(26)

where α(x) := xf ′(x)
f(x) and f ∈ R. Therefore, on Hm we obtain for e = 1

k
(e1 + e2 +

. . . + ek)

κn(θn) =

{

τn
τn+1

+ σn+1

τn+1

(

k−1
k

α(ẽ1) + O(δn)
)

, if 1 < k ≤ (d− 1),
τn

τn+1
+ σn+1

τn+1
(α(ẽ1) + O(δn)) , if k = d.

Writing πm,n−1(k) :=
∏n−1

j=m

(

τj+βkσj+1

τj+1

)

n−1
∏

j=m

κj(θj) = πm,n−1(k)

n−1
∏

j=m

(

1 +
O(δj)σj+1

τj + βkσj+1

)

,

where βk = k−1
k

α(ẽ1), if 1 < k ≤ d− 1, and βk = α(ẽ1) for k = d.

n−1
∏

j=m

(

1 +
O(δj)σj+1

τj + βkσj+1

)

= exp





n−1
∑

j=m

O(δj)σj+1

τj + βkσj+1



 .

Since 1 ≥ (1− 1
k

) ≥ 1
2 and α(ẽ1) > 1, by our choice of δj, in (17),

∑

j
δj

τj+βkσj+1
< ∞.

Hence, for all m large enough

n−1
∏

j=m

(

1 +
O(δj)σj+1

τj + βkσj+1

)

= (1 + o(1)).

Therefore, for all m large enough and on Hm, we have

n−1
∏

j=m

κj(θj) = πm,n−1(k)(1 + o(1)). (27)



POSITIVE REINFORCED GENERALIZED TIME-DEPENDENT PÓLYA URNS 11

Step II: In this step we analyse the sum over Qj(θj), where Qj was defined in (24).

From our Assumption (B), for 2 ≤ i ≤ k, we have ∂Ψd(ξx)
∂xi

= ∂Ψd(e)
∂xi

+ O(δn) is
bounded for all n ≥ m.

On Hm,

Qj(θj) = O(δj)
σj+1

τj+1
. (28)

Recall that in Step I we proved that
∏l

j=m κj(θj) = πm,l(k)(1 + o(1)), where

πm,l(k) =
∏l

j=m

(

τj+βkσj+1

τj+1

)

.

Case i: When k = d,

πm,l(k) = exp





l
∑

j=m+1

log

(

1 + (α(ẽ1) − 1)
σj+1

τj+1

)



 −→ ∞,

as l → ∞ since α(ẽ1) > 1 and
∑

j
σj

τj
= ∞. Therefore,

n−1
∑

j=m

1
(

∏j
l=m kl(θl)

)Qj(θj) = (1+o(1))

n−1
∑

j=m

exp



−
l
∑

j=m+1

(α(ẽ1) − 1)
σj+1

τj+1





σj+1

τj+1
O(δj) < ∞,

by our choice of δj .

Case ii: When 1 < k ≤ d−1. πm,l(k) = exp
(

∑l
j=m+1 log

(

1 + (k−1
k

α(ẽ1) − 1)
σj+1

τj+1

))

=

exp
(

∑l
j=m+1(k−1

k
α(ẽ1) − 1)

σj+1

τj+1

)

+ o(1) by the assumptions of Theorem 1.

If α(ẽ1) ≥ k
k−1 , then it follows similar to Case i, that

n−1
∑

j=m

1
(

∏j
l=m kl(θl)

)Qj(θj)

= (1 + o(1))

n−1
∑

j=m

exp



−
l
∑

j=m+1

(

k − 1

k
α(ẽ1) − 1

)

σj+1

τj+1





σj+1

τj+1
O(δj) < ∞.

If α(ẽ1) < k
k−1 , then because of our choice of δj for all m,n (large enough)





n−1
∏

j=m

κj(θj)





n−1
∑

j=m

1
(

∏j
l=m kl(θl)

)Qj(θj)

=

n−1
∑

j=m





n−1
∏

l=j+1

κl(θl)



Qj(θj)

= (1 + o(1))

n−1
∑

j=m

exp





n−1
∑

l=j+1

(

k − 1

k
α(ẽ1) − 1

)

σl+1

τl+1



O(δj)
σj+1

τj+1
< ǫ,

(29)

since k−1
k

α(ẽ1) < 1,
∑

j
σj+1

τj+1
= ∞ and

∑

j δj
σj+1

τj+1
< ∞.

Step 3: In this step we will explore the last part of the summand in
∑n−1

j=m
1

(
∏j

l=m
kl(θl))

ǫj

√
σj+1Ψ(θj,1)(1−Ψ(θj,1))

τj+1
. The argument is similar to that of

Proposition 4.1 in [30], so we present only those details that are crucial and slightly
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different from those in [30]. From Step 1, and Ψ(θj,1) = 1
k

+ O(δj), we get for
appropriate constants ck

1
(

∏j
l=m kl(θl)

) ǫj

√

σj+1Ψ(θj,1)(1 − Ψ(θj,1))

τj+1
= (ck + o(1))ǫj

√
σj+1

πm,jτj+1
.

We know that if X ∼ Bin(n, p), then

E

[

exp

(

it X−np√
np(1−p)

)]

=
(

1 − t2

2n + O
(

t3

n
3
2

))n

= exp
(

− t2

2 + O
(

t3√
n

))

, when

|t| < δ for some δ > 0. Therefore,

E [exp (itǫj) | Fj−1] = exp

(

− t2

2
+ O

(

t3
√
σj+1

))

,

since given Fj−1, ǫj ∼ Bin(σj ,Ψ(θj−1,1)). And hence, we have by tower-property

E



exp



it
n−1
∑

j=m

ǫj





∣

∣

∣

∣

Fm−1



 = exp





n−1
∑

j=m

−t2

2
+ O

(

t3
√
σj+1

)



 .

Hence, we can write

E



exp





it

µm,n

n−1
∑

j=m

ǫj





∣

∣

∣

∣

Fm−1



 = exp



− t2

2
+ O

(

t3

µ3
m,n

) n−1
∑

j=m

σj+1

π3
m,jτ

3
j+1



 , (30)

where µm,n :=
∑n−1

j=m
σj+1

π2
m,jτ

2
j+1

.

For e = 1
d
(e1 + e2 + . . . + ed), it follows that 1

µ3
m,n

∑n−1
j=m

σj+1

π3
m,jτ

3
j+1

−→ 0 as
m,n → ∞.

When e = 1
k

(e1 + e2 + . . . + ek) for 1 < k ≤ d − 1, and supn σn = ∞, exactly

same argument as in [30] gives us 1
µ3
m,n

∑n−1
j=m

σj+1

π3
m,jτ

3
j+1

−→ 0 as m,n → ∞.

For e = 1
k

(e1 + e2 + . . . + ek) for 1 < k ≤ d − 1, and supn σn < ∞, we observe

that if α(ẽ1) > k
k−1 then similar argument as in [30] works.

Therefore, the only case we need to discuss in details is for e = 1
k

(e1+e2+. . .+ek)

for 1 < k ≤ d− 1, and supn σn < ∞, and α ≤ k
k−1 .

It is easy to see that

n−1
∏

j=m

κj(θj) = exp



−
n−1
∑

j=m+1

(

k − 1

k
α− 1 + O(δj)

)

σj+1

τj+1



 −→ 0, as m,n → ∞, (31)

since limn→∞ δn = 0, and
∑

j
σj

τj
= ∞.

E



exp





it

Γm,n−1

n−1
∑

j=m





n−1
∏

l=j+1

kl(θl)



 ǫj

√
σj+1

τj+1





∣

∣

∣

∣

Fm−1





= exp






− t2

2
+ O(1)

t3

Γ3
m,n−1

n−1
∑

j=m





n
∏

l=j+1

κl(θl)





3

σj+1

τ3j+1






, (32)
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where Γm,n−1 :=

[

∑n−1
j=m

(

∏n−1
l=j+1 κl(θl)

)2
σj+1

τ2
j+1

]
1
2

.

Since supn σn < ∞, j ≤ τj ≤ Cj for suitable constant C > 0. From (31), we get

n−1
∑

j=m





n−1
∏

l=j+1

κl(θl)





2

σj+1

τ2j+1

= O(1)
n−1
∑

j=m

1

j2
= O(1)

(

1

m
− 1

n

)

(33)

By similar arguments,

n−1
∑

j=m





n−1
∏

l=j+1

κl(θl)





3

σj+1

τ3j+1

= O(1)

n−1
∑

j=m

1

j3
= O(1)

(

1

m2
− 1

n2

)

(34)

Therefore, as m → ∞,

1

Γ3
m,n−1

n−1
∑

j=m





n
∏

l=j+1

κl(θl)





3

σj+1

τ3j+1

= O(1)
1√
m

−→ 0. (35)

For this case, choose the subsequence nm = 2m and choose δn = O(1) 1

n
1
2
+δ

, for

some δ > 0. Finally from all previous observations,

P(Hm(e)) ≤ P (Γm,nm
N ∈ [−δnm

, δnm
]) −→ 0 as m → ∞, (36)

since
δnm

Γm,nm
= O(1) 1

mδ −→ 0 as m → ∞. �

Proposition 4.5. Let (θn)n≥0 be the process defined recursively in (11). Then

θn
a.s.−→ e∗,

as n → ∞ where e∗ ∈ {e1, ..., ed} are the trivial equilibrium points.

The proof of this proposition is similar to parts of Theorem 1.2. from [30] adapted
appropriately for the class of reinforcement functions R, the main difference is in
the final argument leading upto the conclusion. We present all details for the sake
of completeness.

Proof. For each n ∈ N and i ∈ {1, ..., d} we have that

θn+1,i =
τnθn,i + Bn+1,i

τn+1
(37)

where Bn,i ∼ Bin (σn,Ψ(θn,i)) given Fn, where Ψ was defined in (19). We can
express the system of equations for i ∈ {1, ..., d} by

θn+1,i = θn,i +
σn+1

τn+1

(

(Ψ(θn,i) − θn,i) +
1

σn+1
(Bn+1 − σn+1Ψ(θn,i))

)

= θn,i +
Bn+1,i − σn+1Ψ(θn,i)

τn+1
− σn+1

τn+1
(θn,i − Ψ(θn,i)).

(38)

For every η ≥ 0, we have by the above recursive relations that

θn+η,i = θη,i + Mn,i(η) −Rn,i(η) (39)

where

Mn,i(η) =

n+η
∑

j=η+1

Bj,i − σjΨ(θj−1,i)

τj
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for i = 1, ..., d and

Rn,i(η) =

η+n
∑

j=η+1

σj

τj
(θj−1,i − Ψ(θj−1,i)).

Then the vector Mn(η) = (Mn,1(η), ...,Mn,d(η)) is a martingale w.r.t. (Fn+η)n,
since E [Bn+1,i | Fn] = σn+1Ψ(θn,i). Note that up to now, we did not use the
specific definition of η, which we will define later. For simplicity of notation, we
write Mn,i instead of Mn,i(η). Let us show that the martingale is bounded in

 L2(Rd). Note that we can write

Mn,i = Mn−1,i +
Bn+η,i − σn+ηΨ(θn+η−1,i)

τn+η

and further estimate

E(〈Mn,Mn〉|Fη) =

d
∑

i=1

E((Mn,i)
2|Fη)

=

d
∑

i=1

E((Mn−1,i)
2|Fη) + E

(

(

Bn+η,i − σn+ηΨ(θn+η−1,i)

τn+η

)2 ∣
∣

∣

∣

Fη

)

+ 2

d
∑

i=1

E

([

Bn+η,i − σn+ηΨ(θn+η−1,i)

τn+η

]

Mn−1

∣

∣

∣

∣

Fη

)

=

d
∑

i=1

E((Mn−1,i)
2|Fη) +

1

τ2n+η

E

(

σn+ηΨ(θn+η−1,i)(1 − Ψ(θn+η−1,i))

∣

∣

∣

∣

Fη

)

(40)

Since σn+ηΨ(θn+η−1,i)(1 − Ψ(θn+η−1,i) ≤ σn+η and by recursivity we can esti-
mate

E(〈Mn,Mn〉|Fη) ≤ d

η+n
∑

j=η+1

σj

τ2j
.

η+n
∑

j=η+1

σj

τ2j
=

η+n
∑

j=η+1

∫ τj

τj−1

1

τ2j
dx ≤

∞
∑

j=η+1

∫ τj

τj−1

1

x2
dx =

∫ ∞

τη

1

x2
dx =

1

τη
, (41)

so that Mn is bounded in L2(Rd):

E(E(〈Mn,Mn〉|Fη)) = E(〈Mn,Mn〉) ≤
d

τη
(42)

which implies that Mn converges almost surely and in  L2(Rd) to some M∞ ∈
 L2(Rd).

Observe that there exists a sequence (δn)n≥0 (see Lemma 5.1 from [30]), such

that, it satisfies (i) and (ii) from Proposition 4.3, and

lim
n→∞

1

δ2nτn
= 0.

For any ǫ > 0, choose N1 > 0, such that, for all n ≥ N1

P

(

Mn,1(N1) ≥ δN1

2

)

≤ 4d

δ2N1
τN1

≤ ǫ. (43)
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By Proposition 4.3, for δn as in (43) W.l.o.g., we may assume that P(N2 < ∞) >
0, where N2 := inf

{

n : θn,1 < 1
k
− δn

}

. Choose η = max{N1, N2}. Henceforth, we
will work with Mn,1(η) and Rn,1(η) for this choice of η. As before, we write Mn,1

and Rn,1 for notational simplicity.
Lemma 4.2 yields that θn → θ∗ as n → ∞, hence together with Mn → M∞ a.s.,

we deduce that Rn has to converge as well. It remains to show that θ∗ 6= e where
e = 1

k
(e1 + ... + ek) and 2 ≤ k ≤ d. Assume that θ∗ = e. Recall that Ψ(θ∗i ) = 1

k

for 1 ≤ i ≤ k, and Ψ(θ∗i ) = 0 for all other i. Since Ψ (·) is continuous, and E(h)
consists of isolated points, either Ψ (x) < x for all x ∈ ( 1

k+1 ,
1
k

) and x < Ψ (x) for

all x ∈ ( 1
k
, 1
k−1 ) or Ψ (x) > x for all x ∈ ( 1

k+1 ,
1
k

) and x > Ψ (x) for all x ∈ ( 1
k
, 1
k−1 ).

W.l.o.g., we may assume that Ψ (x) < x for all x ∈ ( 1
k+1 ,

1
k

).

On the event Eη :=
{

θη,1 < 1
k
− δη

}

∩
{

Mn,1(η) ≤ δη
2

}

, we have θη,1−Ψ(θη,1) > 0

and from (43) P(Eη) > 0 . Now let show by induction that on Eη, θn,1 < 1
k
− δη

2
for n ≥ η. The base step of the induction for n = η is obvious. Let us assume

that θn−1,1 < 1
k
− δη

2 , which implies that Rn,1 > 0 and θj,1 − Ψ(θj,1) > 0 for
η ≤ j ≤ n− 1. Therefore,

θn,1 < θη,1 + Mn,1 ≤ 1

k
− δη +

δη
2

=
1

k
− δη

2
.

Therefore, on Eη, we have θn,1 −Ψ(θn,1) > 0 for all n ≥ η and 0 < limn→∞ Rn,1 <
∞. But this is a contradiction, since on Eη

lim
n→∞

Rn,1 = lim
n→∞

(θη,1 + Mn,1 − θn,1) ≤ −δη
2
. (44)

�

Our proof for Theorem 2 is simpler than the proof of Proposition 7.1 from [30].

This is due to the assumption
∑

n

(

σn

τn

)2

< ∞.

Proof of Theorem 2. From Theorem 1, we know that

P(D) = 1.

By symmetry, W.l.o.g. we may assume θn,1 −→ 0 as n → ∞. To prove (12),
it is enough to show that conditioned on the event θn,1 −→ 0 as n → ∞, if
supn≥1 Un,1 = ∞, then we get a contradiction.

Let us assume that supn≥1 Un,1 = ∞. Since Un,1 is non-decreasing, it follows
Un,1 −→ ∞, as n → ∞.

W.l.o.g. we may assume that for some m,n(large enough), Ui+1,1 − Ui,1 > 0 for
n ≤ i ≤ m. For some C > 0 by assumption (C),

m
∑

i=n

Ui+1,1 − Ui,1

Uα
i

≥
∫ Um,1

Un,1

1

xα
dx ∼ C

Uα−1
n,1

. (45)

Recall that we know from the (3)

Un+1,1 = Un,1 + Bn+1,1,

where Bn+1,1 follows Bin(σn+1,Ψ(θn,1)).
Let us re-write the above equation as

Un+1,1 = Un,1 + σn+1Ψ(θn,1) + ǫn

√

σn+1Ψ(θn,1)(1 − Ψ(θn,1)), (46)
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where ǫn =
Bn+1,1−σn+1Ψ(θn,1)√
σn+1Ψ(θn,1)(1−Ψ(θn,1))

.

Since x1 + x2 + . . . + xd = 1, and f is non-decreasing, we have
∑d

i=1 f(xi) ≥
f( 1

d
) =: C−1

d , which implies that

Ψ(x) ≤ Cdf(x). (47)

By the estimate from Lemma 2.3 (iv) applied to (46), we get

Un+1,1 ≤ Un,1 + Cdσn+1θ
α
n,1 + ǫn

√

σn+1Ψ(θn,1)(1 − Ψ(θn,1))

Un+1,1 − Un,1

Uα
n,1

≤ Cd

σn+1

ταn
+

1

Uα
n,1

ǫn

√

σn+1Ψ(θn,1)(1 − Ψ(θn,1)). (48)

Thus,

∞
∑

i=n

Ui+1,1 − Ui,1

Uα
i,1

≤ Cd

∑

i≥n

σi+1

ταi
+
∑

i≥n

1

Uα
i,1

ǫi

√

σi+1Ψ(θi,1)(1 − Ψ(θi,1)). (49)

Combining this with (45), we get

C

Uα−1
n,1

≤ Cd

∑

i≥n

σi+1

ταi
+
∑

i≥n

1

Uα
i,1

ǫi

√

σi+1Ψ(θi,1)(1 − Ψ(θi,1)). (50)

We obtain using arguments similar to (41), for some suitable constant C′ > 0,

∑

i≥n

σi+1

ταi
≤ C′

∫ ∞

τn

1

xα
dx = C′ 1

τα−1
n

.

Using the above bound in (50), we obtain where C,C′ > 0 are suitable constants
that may change accordingly

C

Uα−1
n,1

≤ C′ 1

τα−1
n

+
∑

i≥n

1

Uα
i,1

ǫi

√

σi+1Ψ(θi,1)(1 − Ψ(θi,1))

C ≤ C′θα−1
n,1 + Uα−1

n,1

∑

i≥n

1

Uα
i,1

ǫi

√

σi+1Ψ(θi,1)(1 − Ψ(θi,1)). (51)

Let us denote by

Tn := Uα−1
n,1

∑

i≥n

1

Uα
i,1

ǫi

√

σi+1Ψ(θi,1)(1 − Ψ(θi,1)). (52)

Using (47) and f(x) ≤ xα, we get for some C′ > 0

Tn ≤ C′Uα−1
n,1

∑

i≥n

1

U
α
2

i,1

ǫi

√

σi+1
1

ταi
(1 − Ψ(θi,1)).
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Since Un,1 is non-decreasing in n, we have
Un,1

Ui,1
≤ 1. Therefore, from the above

equation, we get

Tn ≤ C′ 1

Un,1

∑

i≥n

ǫi

√

σi+1

Uα
n,1

ταi
(1 − Ψ(θi,1))

= C′ 1
√

Un,1

∑

i≥n

ǫi

√

σi+1

τi

(

Un,1

τi

)α−1

(1 − Ψ(θi,1))

≤ C′ 1
√

Un,1

∑

i≥n

ǫi

√

σi+1

τi

(

τn
τi

)α−1

, (53)

where we have used (1 − Ψ(θi,1)) ≤ 1, and Un,1 ≤ τn.
It is easy to see that

σn+1

τn
=

σn+1

τn+1

1 − σn+1

τn+1

. (54)

Observe that by our assumption
∑

n≥1
σ2
n

τ2
n

< ∞, we have limn→∞
σn

τn
= 0 and

hence, from (54) we have σn+1

τn
−→ 0, as n → ∞.

Therefore, for all n(large enough), we obtain

τi
τn

=

i−1
∏

j=n

τj+1

τj

=

i−1
∏

j=n

(

1 +
σj+1

τj

)

= (1 + o(1))
i−n

, for all i ≥ n. (55)

Therefore, using the above inequality and α > 1,

∑

i≥n

(

τn
τi

)α−1

=
∑

i≥1

(

1

(1 + o(1))
i

)α−1

< ∞. (56)

Similar to (42), it can be easily shown

(

Nn =
∑n

i=1 ǫi

√

σi+1

τi

(

τn
τi

)α−1
)

n≥1

is a

 L2(R) bounded martingale, and we have for some C > 0

sup
n≥1

E
[

N2
n

]

≤ C

∞
∑

i=1

(

τn
τi

)α−1

< ∞, (57)

where we have used (55) and σn+1

τn
−→ 0, as n → ∞.

Since Nn is an L2(R) bounded, Nn converges almost surely and in L2(R). This

implies that

(

∑

i≥n ǫi

√

σi+1

τi

(

τn
τi

)α−1
)2

< ∞, almost surely.

Therefore, since we assumed that Un,1 −→ ∞ as n → ∞, we get

Tn ≤ 1
√

Un,1

∑

i≥n

ǫi

√

σi+1

τi

(

τn
τi

)α−1

−→ 0, as n → ∞. (58)
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From (51), we get on the event {θn,1 −→ 0},

C ≤ C′θα−1
n,1 + Tn −→ 0, as n → ∞,

which is a contradiction since C > 0. �

Appendix A. Stochastic Approximation

In this section we will introduce relevant quantities and results for the stochastic
approximation techniques which are relevant for our model. We will use notation
from [7, 10]. Define the following recursive scheme on a filtered probability space
(Ω,F , (Fn)n≥0,P) with values in a compact set Γ ⊂ R

d:

θn+1 = θn +
σn+1

τn+1

[

h(θn) +
1

σn+1
∆Mn+1

]

, (59)

where (σn

τn
)n≥0 is a positive sequence of numbers, h : Γ → R

d is a continuous

function, (∆Mn)n≥0 a (Fn)n≥0-martingale increment, defined in (10). The mean-
field function h was defined as

h(y) =
fd(y)

‖fd(y)‖1
− y (60)

for y ∈ Γ.
The main idea of stochastic approximation techniques is to show that the recur-

sive system defined in (59) behaves like an ODE perturbed by a small noise term.
Then the recursive system is shown to converge towards the equilibrium points of
the deterministic flow induced by the driving term h.

Call L({wn}n≥1) the limit set of the sequence {wn}n≥1 is the set of points x ∈ R
d

such that there exists s subsequence (nk)k≥1 such that limk→∞ nk = ∞ for which
limk→∞ wnk

= x.
Consider furthermore the ODE

ẏ = h(y) (61)

and associated to h look at (Φ(t, x))t≥0,x∈Γ the Γ-valued flow of the system. The
family {Φt}t∈R+

, where Φt(x) = Φ(t, x), satisfies the group property. Φ0 =Id and
for all (t, s) ∈ R

2

Φt+s = Φt ◦ Φs.

For every x ∈ Γ, (Φ(t, x))t≥0 is the unique solution to the ODE (61)

d

dt
Φt(x) = h(Φt(x)). (62)

It exists since h is locally Lipschitz which follows from continuity of the function
f . Denote by E(Φ) = {p ∈ Γ : Φt(p) = p for all t > 0} the equilibrium set for the
flow Φ.

Definition A.1. A compact subset A ⊂ Γ is called internally chain recurrent if and
only if for each x ∈ A is chain recurrent for the flow Φ restricted to A. The point
x is called chain recurrent in A if and only of for all δ > 0, and T > 0, there exist
k ∈ N and points y0, ..., yk−1 ∈ A and t1, ..., tk−1 such that for all i = 0, ..., k − 1
and yk = x

ti ≥ T ; d(y0, x) < δ; d(Φti(yi), yi+1) < δ
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where d(·, ·) denotes the Euclidean distance in R
d. The set of all chain recurrent

points of the flow Φ will be denoted by CR(Φ).

The omega limit set of Φ is defined by L(Φ) =
⋃

x∈Γ ω(x), where

ω(x) =

{

p ∈ Γ : ∃(tk)k such that tk → ∞ and p = lim
k→∞

Φtk(x)

}

.

One has that

E(Φ) ⊂ L(Φ) ⊂ CR(Φ), (63)

see page 21 of [10].
We will need the notion of a strict Lyapunov function for the flow Φ, see also

Section 3 of [7].

Definition A.2. A strict Lyapunov function for the flow Φ (or h) on Γ is a continuous
map V : R

d → R such that t 7→ V (Φt(x)) is constant for x ∈ Γ and strictly
decreasing for all x ∈ R

d \Γ for all t > 0. If such a V exists we call h a gradient-like
vector field.

Lemma A.3. Let the flow Φ be defined in (62) and h in (60) and F : [0, 1]d → R

by

F (y) =
d
∑

i=1

∫ yi

0

f(zi)

zi
dzi.

Then V = −F is a strict Lyapunov function for Φ on E(Φ).

Proof. For i = 1, ..., d, write the ODE (61) as

ẏi(t) =
yi(t)

‖fd(y(t))‖1





f(yi(t))

yi(t)
−

d
∑

j=1

yj(t)
f(yj(t))

yj(t)





=
yi(t)

‖fd(y(t))‖1





∂

∂yi
F (y(t)) −

d
∑

j=1

yj(t)
∂

∂yj
F (y(t))





(64)

where F : Rd → R and F (y) =
∑d

i=1 Fi(yi). We have that F (0) = 0 and

∂

∂yi
F (y) =

f(yi)

yi
.

For each coordinate i = 1, · · · , d we can write,

Fi(yi) =

∫ yi

0

∂

∂z
Fi(z)dz =

∫ yi

0

f(z)

z
dz

where z ∈ R. The function −F is strictly Lyapunov for Φ since

d

dt
F (y(t)) =

d
∑

i=1

ẏi(t)
∂

∂yi
F (y(t))

=
1

‖fd(y)‖1







d
∑

i=1

yi(t)

(

∂

∂yi
F (y(t))

)2

−
(

d
∑

i=1

yi(t)
∂

∂yi
F (y(t))

)2






> 0
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where the last step follows from Jensen’s inequality. Finally note that it is constant
on the equilibrium set E(h) = E(Φ):

d
∑

i=1

yi(t)

(

∂

∂yi
F (y(t))

)2

−
(

d
∑

i=1

yi(t)
∂

∂yi
F (y(t))

)2

=
d
∑

i=1

f2(yi(t))

yi(t)
−
(

d
∑

i=1

f(yi(t))

)2

=
d
∑

i=1

‖fd(y(t))‖1f(yi(t)) − ‖fd(y(t))‖21 = 0,

where in the before last equality we used (15). �

Proposition A.4. Let Φ be the flow on Γ, where Γ is compact. Furthermore, let
Λ ⊂ Γ be compact invariant set and V : Γ → R a Lyapunov function for Φ on Λ
with finite V (Λ), then

CR(Φ) ⊂ Λ.

The last proposition is same as Proposition 1.2 from [7]. Choosing V = −F and
Λ = E(Φ) in the last proposition together with (63) implies that

E(Φ) = L(Φ) = CR(Φ).

The following theorem is equivalent to Theorem 6 from [19], based on Theorem
5.7 from [10].

Theorem A.5. Let {θn}n≥1 be a solution to (59) and assume that

(i)
∑∞

n=1

(

σn

τn

)2

< ∞.

(ii) h is a local Lipschitz function.

(iii) supn≥1 E(‖∆Mn‖22|Fn) < ∞ a.s.

Then almost surely L({θn}n≥1) is a connected set, internally chain-recurrent for

the flow Φ induced by h, L({θn}n≥1) ⊂ CR(Φ).

Proof. The first assumption is trivially satisfied, the second follows from the fact
that f is locally Lipschitz since it is C1((0, 1)) and the third follows trivially from
writing the martingale difference as in (10). �

The next corollary is analogous to Corollary 3.3. from [7], the proof is adapted.

Corollary A.6. Let {θn}n≥1 be defined in (59). Then θn → θ∗ a.s. as n → ∞
where θ∗ ∈ E(h).

Proof. Let Φ be the flow induced by h defined in (60) and let Γ = L({θn}n≥1) the
set of all almost sure limiting points of {θn}n≥1. By Theorem A.5 is a connected
set, internally chain-recurrent for the flow Φ induced by h. By Lemma A.3 we know
that there exists a Lyapunov function for the flow on Γ and by Proposition A.4 the
set L({θn}n≥1) consists of equilibria, E(Φ) = E(h). Since they are isolated (Lemma
4.1), L({θn}n≥1) is an equilibrium. �
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