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Summary

In the last decades, CO2 emissions from fossil fuel burning and land use change have caused an 
increase in the CO2 concentration of the atmosphere. This human induced rise in atmospheric 
CO2 concentration is extremely likely to be causing climate change, which poses a threat to 
human communities worldwide. The increase in atmospheric CO2 influences the terrestrial 
biosphere. Over the last decade, the terrestrial biosphere acted as a carbon sink, absorbing an 
estimated 29% of the yearly anthropogenic CO2 emissions. The behavior of the terrestrial C 
sink with future CO2 emission is, however, uncertain. Nitrogen (N) is an essential and limiting 
nutrient for vegetation growth. Due to the resulting close links between the carbon (C) and 
N cycles, the N cycle influences the biosphere response to the rise in atmospheric CO2. How 
the N cycle influences the C cycle in terrestrial biosphere is studied with global vegetation 
models. Data on the N cycle are needed for the models. However, data on the N cycle are 
lacking at global scale. Remote sensing methods could provide insights on the spatial pattern 
of canopy N, defined as the foliar N scaled to the whole vegetation canopy, at large scale. In 
this context, this thesis explores the possibility to estimate canopy N concentration across 
scales and vegetation types. This is done under different conditions using vegetation indices 
(VIs) computed from remotely sensed spectral reflectance. In the first study (Exploring the use 
of vegetation indices to sense canopy nitrogen to phosphorous ratio in grasses), the reflectance 
spectra of a grass species, Holcus lanatus L., was measured under controlled conditions 
in a laboratory experiment. Several VIs were subsequently computed and related to the 
grass canopy N concentration using linear regressions. In the second study (Remote sensing 
of canopy nitrogen at regional scale in Mediterranean forests using the spaceborne MERIS 
Terrestrial Chlorophyll Index), canopy N was estimated in a Mediterranean forest ecosystem 
at regional scale in Catalonia, Spain, using the MERIS Terrestrial Chlorophyll Index (MTCI) 
obtained from the MERIS sensor abord ESA-Envisat satellite. In the third study (Mapping 
canopy nitrogen in European forests using remote sensing and environmental variables with the 
random forests method), canopy N was estimated in European forests at continental scale using 
either only satellite-based variables or both VIs and environmental variables as predictors 
with the random forests method algorithm. In the last study (Comparison of simulated foliage 
nitrogen by the O-CN and LPJ-GUESS vegetation models with a canopy nitrogen map based on 
forest sampling), the obtained canopy N map in European forests was compared with foliage N 
simulated by two global vegetation models, O-CN and LPJ-GUESS, in Europe. To conclude, 
the results obtained in this thesis showed that remotely sensed VIs could be related to canopy 
N from different vegetation types, i.e. grasses, Mediterranean forests and European forests, 
across spatial scales. These results could lead to the use of VIs to map canopy N globally 
provided sufficient ground-truth data are available.
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Nederlandse samenvatting

In de afgelopen decennia hebben CO2-emissies ten gevolge van de verbranding van 
fossiele brandstoffen en veranderingen in landgebruik geleid tot een toename van de CO2-
concentratie in de atmosfeer. Deze door de mens veroorzaakte stijging van de atmosferische 
CO2-concentratie is zeer waarschijnlijk de oorzaak van de huidige klimaatverandering. De 
toename van de atmosferische CO2-concentratie is van invloed op de terrestrische biosfeer. 
In het afgelopen decennium werd er in de terrestrische biosfeer koolstof opgeslagen. De netto 
opname van terrestrische ecosystemen bedroeg ongeveer 29% van de jaarlijkse antropogene 
CO2-uitstoot. Het is echter onzeker of de terrestrische biosfeer zich gelijk blijft gedragen 
onder de toekomstige CO2-uitstoot. Stikstof (N) is een essentiële en limiterende voedingsstof 
voor de groei van vegetatie. Daardoor zijn de koolstof (C) cyclus en de N cyclus nauw met 
elkaar verbonden, en beïnvloedt de N-cyclus de reactie van de biosfeer op de stijging van 
atmosferische CO2-concentratie. De relaties en wisselwerkingen tussen de N-cyclus en de 
C-cyclus in de terrestrische biosfeer worden vaak bestudeerd met behulp van mondiale
vegetatiemodellen. Voor deze modellen zijn gegevens nodig over de N-cyclus. Echter,
gegevens over de N-cyclus op mondiale schaal ontbreken. Methoden uit de aardobservatie
kunnen inzicht verschaffen in het grootschalige ruimtelijke patroon van N in het bladerdak,
gedefinieerd als het percentage N in het bladerdak van de vegetatie. In deze context wordt in
dit proefschrift d e m ogelijkheid o nderzocht o m d e r uimtelijke v ariatie i n N -concentratie i n
het bladerdak te bepalen, op verschillende ruimtelijke schaalniveaus en voor verschillende
vegetatietypes. Hierbij wordt gebruik gemaakt van vegetatie-indices (VI’s) die worden
berekend op basis van de spectrale reflectie gemeten door middel van aardobservatie. In de
eerste studie (Exploring the use of vegetation indices to sense canopy nitrogen to 
phosphorous ratio in grasses) werden de reflectiespectra van een grassoort, Holcus 
lanatus L., gemeten onder gecontroleerde omstandigheden in een 
laboratoriumexperiment. Vervolgens werden verschillende VI’s berekend en gerelateerd 
aan de N-concentratie in de bladeren van de grassen met behulp van lineaire 
regressies. In de tweede studie (Remote sensing of canopy nitrogen at regional scale in 
Mediterranean forests using the spaceborne MERIS Terrestrial Chlorophyll Index) werd de 
hoeveelheid stikstof geschat in het bladerdak van een mediterraan bosecosysteem op 
regionale schaal in Catalonië, Spanje, met behulp van de MERIS Terrestrial Chlorophyll 
Index (MTCI), verkregen met de MERIS-sensor aan boord van de ESA-Envisat-satelliet. In 
de derde studie (Mapping canopy nitrogen in European forests using remote sensing and 
environmental variables with the random forests method) werd de hoeveelheid stikstof in 
het bladerdak van Europese bossen op continentale schaal bepaald. Hierbij werd een 
vergelijking gemaakt tussen een methode alleen gebaseerd op gegevens van 
aardobservaties en een methode waarbij ook aanvullende ruimtelijke omgevingsvariabelen 
werden gebruikt. Deze gegevens werden gebruikt als ruimtelijke voorspellers in het 
Random Forests machine learning algorithme, resulterend in een stikstofkaart op Europese 
schaal. In de laatste studie
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(Comparison of simulated foliage nitrogen by the O-CN and LPJ-GUESS vegetation models with 
a canopy nitrogen map based on forest sampling) werd deze Europese stikstofkaart vergeleken 
met bladstikstof die door twee mondiale vegetatiemodellen, O-CN en LPJ-GUESS, in Europa 
werd gesimuleerd. De resultaten van mijn proefschrift laten zien dat vegetatie indices ’ die uit 
aardobservaties verkregen zijn, gerelateerd kunnen worden aan stikstof in het bladerdak van 
verschillende vegetatietypen, zoals graslanden, mediterrane bossen en andere Europese bossen, 
op verschillende ruimtelijke schaalniveaus. Deze resultaten dragen bij aan pogingen om met 
gebruikmaking van vegetatie indices stikstof in het bladerdak wereldwijd in kaart te brengen, 
op voorwaarde dat er voldoende data van metingen op de grond beschikbaar zijn.
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1.1	 Relevance

In the last decades, CO2 emissions from fossil fuel burning and land use change have caused 
an increase in the CO2 concentration of the atmosphere (Friedlingstein et al. 2019). This led 
global CO2 concentrations to reach unprecedented high levels compared to the last 800,000 
years, as inferred from ice core measurements (Ciais et al. 2013). This human induced rise 
in atmospheric CO2 concentration is causing climate change (Bindoff et al. 2013; Cook et al. 
2013; Cook et al. 2016). Compared to the reference period of 1850-1900, the mean global 
temperature of 2006-2015 has increased by about 0.87 ºC (0.75 ºC and 0.99 ºC) (Allen et 
al. 2018). Other consequences include a higher frequency and intensity of extreme events 
such as heat-waves, drought events and heavy precipitation (Jia et al. 2019) as well as land 
degradation (Olsson et al. 2019) and desertification (Burrell et al. 2020; Mirzabaev et al. 2019). 
This has negative impacts on food security and ecosystems, on which human society relies 
for numerous ecosystem services (Mbow et al. 2019). Due its threat to human communities, 
urgent action to combat climate change and its impacts has been identified as one of the 
sustainable development goals of the United Nations (United Nations 2020).

In this context, it is necessary to understand the responses of the biosphere to the increase 
in atmospheric CO2. Nitrogen (N) is essential for vegetation growth. Due to the resulting 
close links between the carbon (C) and N cycles, the N cycle will influence the biosphere 
response to the rise in atmospheric CO2. By improving our understanding of the N cycle, and 
by quantifying spatial patterns in canopy N, we will also enhance our understanding of the 
biosphere response to future changes in the C cycle.

This thesis aims at exploring approaches to remotely sense N concentration in plant foliage. 
This is done at different scales and in different ecosystems. Scientifically, this work examines if 
it is feasible to apply remote sensing methods to map spatial patterns of foliage N at regional to 
continental scales. Results are evaluated against observations of canopy N as well as canopy N 
values estimated by terrestrial vegetation models. By doing so, the research presented here will 
contribute to the improvement of vegetation models, which are essential in understanding the 
consequences of the changes in the C cycle in terrestrial systems, both at present time and in 
the future. Ultimately, this work will also contribute to improve our scientific understanding of 
the N and C cycles.

1.2	 The carbon cycle and the terrestrial biosphere

Atmospheric CO2 has risen globally since pre-industrial times because of anthropogenic 
activities, with fossil fuel emissions being the dominant source of CO2 to the atmosphere 
(Friedlingstein et al. 2019). In 2018, the atmospheric CO2 concentration reached 407 ppm 
(Friedlingstein et al. 2019). This human induced increase in atmospheric CO2 concentration 
is extremely likely to cause climate change (Bindoff et al. 2013; Cook et al. 2013; Cook et al. 
2016), which resulted in a 0.87 ºC (0.75 ºC and 0.99 ºC) rise in mean global temperature in 
2006-2015 compared to the 1850-1900 period (Allen et al. 2018).

Atmospheric CO2 is coupled with the terrestrial biosphere. Over the last decade, an 
estimated 29% of the yearly anthropogenic CO2 emissions was absorbed by the terrestrial 
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biosphere (Friedlingstein et al. 2019) (Figure 1.1). The terrestrial biosphere thus acts as C 
sink, absorbing C that would otherwise remain in the atmosphere, and preventing even higher 
atmospheric CO2 concentrations (Friedlingstein 2015). Forests, representing 80% of biomass 
globally (Bar-On et al. 2018) and storing 50-65% of terrestrial organic C (Reichstein and 
Carvalhais 2019), are an essential C sink estimated to be equal to 2.4 GtC y-1 (Pan et al. 2011). 
The role of forests is thus fundamental in constraining future atmospheric CO2 increase.

Projections of future climate and atmospheric CO2 are created with numerical simulation 
models (Eyring et al. 2016). These projections are, however, uncertain. One of the sources of 
uncertainty in future climate is attributed to the magnitude of the terrestrial C sink (Ahlström 
et al. 2012; Ciais et al. 2013; Lovenduski and Bonan 2017; Schimel et al. 2015; Schurgers et al. 
2018). This uncertainty results from the influence of contrasting factors among which higher 
CO2 concentration, rising global temperature and N deposition (Huntzinger et al. 2017). While 
a rising CO2 concentration is thought to drive photosynthesis and C uptake through the CO2 
fertilization effect (Ciais et al. 2013; Schimel et al. 2015), the influence of warming climate 
on these processes is less clear, with regional differences depending on the type of ecosystem 
(Ahlström et al. 2012; Huntzinger et al. 2017). One important source of the uncertainty in 
future terrestrial C uptake consists in the influence of N availability on vegetation growth (Ciais 
et al. 2013; Wieder et al. 2015). Accounting for N availability influences C sequestration and is 

Figure 1.1. The global carbon cycle for the period 2009-2018, adapted from (Friedlingstein et al. 
2019). The arrows represent fluxes between different carbon (C) pools (GtC.year -1). The large 
arrows represent anthropogenic fluxes, while thin arrows represent the C cycle fluxes without 
anthropogenic influences. The C stock is given for each C pool (GtC).
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thought to decrease the magnitude of the CO2 fertilization effect previously simulated when 
only accounting for rising CO2 concentration (Huntzinger et al. 2017; Wieder et al. 2015).

1.3	 N cycle and canopy N

N is an essential nutrient for plant growth being a major constituent of proteins and nucleic 
acids. The majority of the N found in leaves of C3 plants is associated with proteins of the 
photosynthetic apparatus. N is a constituent of chlorophyll and Rubisco, both of which are 
central to the photosynthetic process (Evans and Seemann 1989). Linear relationships exist 
between total foliar N content and both N content of Rubisco and leaf chlorophyll content 
(Evans 1989). Nitrogen has also been associated with physiological processes. At the leaf 
level, the leaf N concentration (%N) was found to be linked to photosynthetic capacity (Reich 
et al. 1999; Wright et al. 2004) and light use efficiency (Kergoat et al. 2008) across various 
environments and species.

At the site level too, canopy N (%N), defined as the leaf N scaled to the whole vegetation 
canopy (Smith and Martin 2001), was correlated to above-ground net primary productivity 
(NPP) (Reich 2012; Smith et al. 2002; Zhou et al. 2018) as well as canopy photosynthetic 
capacity (Ollinger et al. 2008). In the field, canopy N is measured by sampling multiple fresh 
leaves from all dominant species on the plot and analyzing their N concentration. The whole-
stand canopy N concentration value is obtained by weighting the resulting species-specific leaf 
N values by the proportion of each species on the plot (Smith and Martin 2001).

Nitrogen is a limiting nutrient to plant growth in ecosystems worldwide. Low N 
availability results in physiological stress and reduced growth (Chapin 1987). Early N addition 
experiments showed that N addition to various N limited ecosystems led to an increase in 
primary productivity (LeBauer and Treseder 2008; Vitousek and Howarth 1991). Similarly, 
N fertilizers are also widely used in agriculture to produce higher yield. N fertilizer are 
produced by human fixation of N2 from the atmosphere (Erisman et al. 2008). This process 
has influenced the N cycle to such an extent that the estimated annual amount of N2 converted 
by humans from the atmosphere to reactive forms of N is 120 million tons, which exceeds 
the combined effects from all Earth’s terrestrial processes (Rockström et al. 2009). Currently, 
approximately 50% of the global food production can be attributed to N fertilizers (Erisman 
et al. 2008). Intensive agriculture, among which the cultivation of leguminous crops, industry 
and traffic also contributed to this human induced enhancement of the N cycle (Erisman et 
al. 2011). Reactive forms of N cascade through the natural system and negatively affect the 
environment (Erisman et al. 2008; Galloway et al. 2008; Vitousek et al. 1997). One of the 
consequences of the enhancement of the N cycle is the increase in N deposition. Natural N 
deposition rates, i.e. without the anthropogenic influence, is estimated to be 0.5 kg N ha-1 year-

1 at maximum (Galloway et al. 2008), while in some regions, in particular western Europe, 
current N deposition rates are up to 20 kg N ha-1 year-1 (Lu et al. 2013).

The constraint that N availability places on primary productivity as well as the human 
induced changes in N availability have implications for the C cycle. The link between the N 
and C cycles should thus be accounted for when studying the effects of increased atmospheric 
CO2 on productivity (Erisman et al. 2011). The effect of elevated CO2 concentration on C 
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sequestration in forest stands is studied using free-air CO2 enrichment (FACE) experiments. 
FACE experiments allow to artificially raise the ambient CO2 concentration to projected 
atmospheric CO2 levels during extended periods of time as well as to manipulate N availability. 
The effect of N availability on the potential C sink is illustrated in two examples. In a sweetgum 
(Liquidambar styraciflua) forest stand with 550 ppm CO2, the productivity was initially 
enhanced due to the CO2 fertilization effect, but later declined due to low N availability (Norby 
et al. 2010). Also, in a loblolly pine (Pinus taeda L.) forest stand under elevated CO2, no increase 
in wood C sequestration was observed before nutrient addition (Oren et al. 2001). Similarly, 
it was observed that nutrient-rich forests assimilate C more efficiently than nutrient-poor 
forest sites (Fernández-Martínez et al. 2014). Next to N, other nutrients, such phosphorous 
(P) are also limiting for vegetation growth (Chapin 1987) and P limitations influence primary 
productivity of the terrestrial biosphere (Elser et al. 2007; Vitousek et al. 2010).

At global scale, the general observation is that increased N deposition has enhanced C 
sequestration in forest ecosystems (Churkina et al. 2009; Fleischer et al. 2013; de Vries et al. 
2014; De Vries et al. 2006). These results show that it is necessary to know better where and in 
which ecosystems N is an important factor when modelling C uptake by terrestrial vegetation 
(Fernández-Martínez et al. 2014). Forests, as a major C sink, are especially important 
(Reichstein and Carvalhais 2019). In this context, global vegetation models enable to quantify 
the current and future C pools and fluxes in the terrestrial system.

1.4	 Vegetation models

Global vegetation models (GVMs) simulate the exchange of water, carbon and nutrients 
between vegetation and soil compartments by employing equations representing physiological 
processes (Zaehle and Friend 2010). In global carbon budget calculations, GVMs are used to 
model the terrestrial CO2 sink as well as the emissions from land use, land use change and 
forestry (Friedlingstein et al. 2019). GVMs are also used to model the biosphere response to 
future changes in the C cycle and climate (Wårlind et al. 2014). To account for the constraining 
effect of low N availability on vegetation growth, the N cycle is integrated in vegetation models 
(Smith et al. 2014; Zaehle and Friend 2010; Zaehle and Dalmonech 2011; Zaehle et al. 2014). In 
these models, the foliage N status of the plants is represented by either leaf N (Smith et al. 2014; 
Zaehle and Friend 2010) or canopy N (Ollinger and Smith 2005).

Using GVMs with C-N modules, the influence of N limitation on vegetation C uptake is 
simulated under future climate, CO2 concentration and N deposition (Zaehle 2013; Zaehle et 
al. 2010). Models give somewhat conflicting results regarding projected C budgets. While the 
LPJ-GUESS GVM predicts an increase of the C sink due to N-deposition (Wårlind et al. 2014), 
other models report a decrease of C assimilation up to 50% of the CO2 fertilization effect 
following N limitation (Huntzinger et al. 2017). In another study, accounting for N limitation 
on the C storage lowered the projected future net primary production (NPP) by 19% (Wieder 
et al. 2015).

To untangle these different uncertainties, it is necessary to evaluate the models. Currently, 
coupled C-N vegetation models are evaluated based on their ability to properly simulate the 
C cycle. In order to evaluate model projections related to the N cycle module, data on the N 
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cycle are needed. However, compared to the C cycle, for which data are broadly available, 
observations on the N cycle are lacking at global scale (Zaehle and Dalmonech 2011). In 
this context, remote sensing could provide data on the spatial pattern of canopy N at large 
scale. Earth observation has already been used to evaluate C-cycle related simulations from 
GVMs (Exbrayat et al. 2019) and could similarly be used to evaluate the N-cycle components 
of GVMs. In chapter 5, the foliage N concentration output of two GVMs is compared with a 
canopy N map in European forests obtained in chapter 4. This map was created with a model 
built from data collected at forest plots, remote sensing data and environmental factors.

1.5	 Canopy N remote sensing

Remote sensing of the biochemical concentration of elements in leaves, in particular N, 
evolved from near-infrared spectroscopy (NIRS) studying the relationship between dried and 
ground leaves concentration of N-containing organic compounds, mainly proteins, and their 
reflectance spectra (Curran 1989; Kokaly 2001; Kumar et al. 2006). The observed correlations 
between the biochemical concentration and the spectra were linked to absorption features 
caused by stretching frequencies of the N-H bonds present in the protein studied (Kokaly 2001; 
Kumar et al. 2006). This direct influence of N on the reflectance spectra is, however, not easily 
exploited for remote sensing of foliage N concentration due to multiple absorption features 
overlapping and interfering with each other as well as the strong absorption by water in the 
NIR region of the spectrum (Curran 1989; Kumar et al. 2006).

Leaf and canopy N remote sensing has instead been linked to chlorophyll absorption and 
the red-edge spectral region. The red-edge is a typical characteristic of vegetation spectral 
response located between 680 and 750 nm (Clevers et al. 2002; Curran et al. 1990). It is 
characterized by the sudden increase in reflectance between the low reflectance in the red 
region, due to chlorophyll absorption, and the high scattering observed in the near-infrared 
(NIR) region (Figure 1.2). The red-edge has been shown to be useful for chlorophyll detection 
in various environments (Curran et al. 1990; Dash and Curran 2004; Filella and Penuelas 
1994). Owing to the strong correlation between foliar N and chlorophyll content (Evans 1989; 
Schlemmer et al. 2013, section 1.3), the red-edge has also been used for canopy N remote 
sensing (Clevers and Gitelson 2013; Clevers and Kooistra 2012; Fitzgerald et al. 2010; Li et al. 
2014; Mutanga and Skidmore 2007; Ramoelo et al. 2012).

While initially NIRS studies focused on N content in dried agricultural products (Kumar et 
al. 2006), remote sensing of foliage was later extended to the study of fresh leaves (Curran et al. 
1992). Since then, different applications of canopy N remote sensing have been developed. It is 
extensively used in agricultural studies as a tool to monitor N status from various crops, using 
either ground-based or airborne sensors, and enabling precise N fertilizer applications (Chen 
et al. 2010; Hansen and Schjoerring 2003; Muñoz-Huerta et al. 2013; Nigon et al. 2015; Xue et 
al. 2004; Zhu et al. 2007). From an ecological perspective, canopy N remote sensing has also 
been applied to study forest disturbances (Deel et al. 2012) as well as biological invasion (Asner 
and Vitousek 2005).

Canopy N remote sensing is based on empirical analysis methods. Stepwise multiple 
linear regression and partial least squares regression of remotely sensed information against 
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measurements of canopy N on the ground are frequently used (Berger et al. 2020; Kumar et al. 
2006; Wang et al. 2016). Among other methods, vegetation indices (VIs) are one of the most 
straightforward methods to remotely sense canopy N. VIs are computed from several spectral 
bands most often combined in a ratio or normalized difference (Glenn et al. 2008). VIs do not 
rely on the full reflectance spectrum as it is possible to calculate VIs from a restricted number 
of bands, either broad or narrow, obtained from multispectral sensors (Thenkabail et al. 2002). 
Multiple VIs have been developed and are frequently used in agricultural studies where they 
are most often computed from handheld spectroradiometers measurements (Berger et al. 
2020). Vegetation indices have also been applied in natural environments, e.g. in grasslands, 
and computed from either airborne (Ling et al. 2014; Mirik et al. 2005) or spaceborne 
(Mutanga et al. 2015; Ramoelo et al. 2012; Ullah et al. 2012) sensors at local scale. While less 
common, this method has also shown good results in forest environments using imaging 
spectrometry measurements at local scale and high spatial resolution from airborne (Serrano 
et al. 2002; Wang et al. 2016) or spaceborne sensors (Yu et al. 2017).

Since these results have been obtained in local scale studies, one of the main challenges 
when expanding canopy N remote sensing to larger areas is the laborious ground truth needed. 
Intensive field sampling campaigns are necessary over a large number of plots preferably 
occurring simultaneously with the sensor overflight. In an effort to expand canopy N remote 
sensing to larger areas, several studies combined canopy N sampling measurements from 

Figure 1.2. Vegetation reflectance curve illustrating the red-edge shift between the red and NIR 
spectral regions.
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multiple study sites (Martin et al. 2008; Ollinger et al. 2008; Singh et al. 2015), which increased 
the number of plots available to establish the statistical relationships. Other studies explore the 
possibility to use instruments with lower spatial and spectral resolution to map canopy N over 
larger areas (Lepine et al. 2016; Wallis et al. 2019).

Recently, a few studies explored the possibility to map foliar traits at large scale using 
machine learning methods (Campos-Taberner et al. 2018; Moreno-Martínez et al. 2018). 
These studies exploit already existing databases with foliar traits as well as long time series of 
multispectral sensors such as MODIS. This approach, which does not rely on simultaneous 
overflight of the sensor, enables to cover large areas as more plots are available to identify the 
statistical models. Machine learning methods, such as the random forests algorithm, have 
already been exploited to map canopy N at local scale in different ecosystems with promising 
results (Chemura et al. 2018; Mutowo et al. 2018; Ramoelo et al. 2015). The random forests 
algorithm is based on regressions trees and, compared to traditional linear models, allow to 
model non-linear relationships between numerous predictors and the target variable, with no 
assumption on the predictor’s statistical distribution. This facilitates the inclusion of ancillary 
variables, such as climate, alongside earth observation data to build the model.

1.6	 Research questions and outline of the thesis

Due to the role N plays as essential and limiting nutrient for plant growth (LeBauer and 
Treseder 2008; Vitousek and Howarth 1991), the N cycle influences and interacts with the C 
cycle. Climate change, caused by the increase in atmospheric CO2 concentration (Bindoff et 
al. 2013; Friedlingstein et al. 2019), negatively affects life on earth and poses a threat to human 
communities (Mbow et al. 2019; Mirzabaev et al. 2019; Olsson et al. 2019). It is essential 
to understand how the terrestrial biosphere, which now acts as a C sink, will respond to 
increasing atmospheric CO2 concentration caused by future CO2 emissions (Friedlingstein et 
al. 2019; Lovenduski and Bonan 2017; Schurgers et al. 2018). Due to the link between the C 
and N cycles, the N cycle will influence the response of the terrestrial biosphere (Wieder et 
al. 2015). In order to understand and predict this response with GVMs, data are needed to 
train and evaluate the models. Data on the N cycle is however lacking at global scale. Applying 
remote sensing methods has the potential to bridge this gap in N data availability.

Spatially explicit information of canopy N is lacking over large areas. In this context, several 
scientific issues have not yet been addressed in current studies. Among the different remote 
sensing methods, it is not known whether VIs are suitable to estimate canopy N spatial patterns 
at large scale. Next to remote sensing, environmental variables could also be useful for canopy 
N mapping. Is it possible to integrate multiple data sources, both VIs and environmental 
variables, to examine the spatial pattern of canopy N at large scale? Finally, it is not known yet 
how the canopy N predictions from GVMs compare with canopy N map obtained from remote 
sensing.

In this thesis, the objective was to explore the feasibility of mapping canopy N over large areas 
using remote sensing and its application for ecosystem modelling studies. The thesis will 
address the following research questions which are further detailed below:
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How well can we estimate canopy nitrogen (N) across spatial scales using vegetation indices 
(VIs) from remote sensing and environmental variables?

(i)	 What is the accuracy of canopy N estimated from remotely sensed vegetation indices 
(VIs)? (Chapter 2, 3 and 4)

(ii)	 How will canopy N estimation from remotes sensing be influenced if environmental 
variables are included as predictors? (Chapter 4)

(iii)	 How does canopy N estimated from remote sensing and environmental variables 
compare with foliage N simulated by global vegetation models (GVMs)? (Chapter 5)

To answer these questions, the next three chapters examine remote sensing of canopy N at 
different scales. In chapter 5, the canopy N map in European forests obtained in chapter 4 is 
compared to the output of two vegetation models.

In chapter 2, we performed an experiment in which we measured the spectral reflectance 
of a grass species (Holcus lanatus L.) with a spectroradiometer. The leaves were sampled 
to measure biochemical concentrations. The obtained spectra were used to compute VIs, 
both already existing and specifically designed for this dataset. The possibility of using VIs 
for canopy N remote sensing was tested by relating the VIs to the grasses canopy N as well 
as canopy P and canopy N:P ratio. The influence of the spectral resolution was evaluated by 
resampling the reflectance spectra to existing satellite spectral resolution. Results showed that 
canopy N:P was modest but significantly related to both existing vegetation indices (r2 = 0.16-
0.48) and optimized indices (r2 = 0.59-0.72). Correlations were similar to what was observed 
for individual canopy N or canopy P.

In chapter 3, we related the MERIS Terrestrial Chlorophyll Index (MTCI) measured 
from the MERIS sensor aboard the Envisat satellite to canopy N concentration and canopy N 
content of Mediterranean forests in Catalonia, Spain. By doing so, we tested if it was possible to 
use a specific red-edge based VI for canopy N remote sensing at regional scale. The influence 
of the spatial resolution on the results was also explored. The relationship between MTCI 
and canopy N concentration was strongest for deciduous broadleaf and mixed plots and the 
relationship between MTCI and canopy N content was strongest for evergreen needleleaf trees.

In chapter 4, we spatially predicted canopy N in European forests using random forests 
models calibrated with canopy N data from the ICP Forest database. The influence of including 
environmental variables within the predictor variables was evaluated and proved valuable. 
Results showed that canopy N could be estimated both within and among forest types using 
the random forests technique and calibration data from ICP Forests with good accuracy.

In chapter 5, we compared the canopy N map obtained from the random forests model 
obtained in chapter 4 to spatial predictions of foliar N from two vegetation model, O-CN 
and LPJ-GUESS. The three models showed reasonable agreement in Europe regarding spatial 
patterns except for the Mediterranean area. When the lower latitude pixels were excluded, the 
three models showed significant linear relationships with each other. This showed that, while 
the physiological processes were represented differently in the two GVMs, the results obtained 
regarding canopy N are comparable and the N cycle representation in the models are coherent.

In chapter 6, we reflected and discussed on the implications of the results obtained in the 
previous chapters in regard of the scientific questions and objectives addressed in this thesis.
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Exploring the use of vegetation indices to sense canopy nitrogen  
to phosphorous ratio in grasses1

Abstract. Reduced availability of plant nutrients such as nitrogen (N) and phosphorous (P) 
has detrimental effects on plant growth. Plant N:P ratio, calculated as the quotient of N and 
P concentrations, is an ecological indicator of relative N and P limitation. Remote sensing 
has already been widely used to detect plant traits in foliage, particularly canopy N and P 
concentrations and could be used to detect canopy N:P faster and at lower cost than traditional 
destructive methods. Despite the potential opportunity of applying remote sensing techniques 
to detect canopy N:P, studies investigating canopy N:P remote detection are scarce. In this 
study, we examined if vegetation indices developed for canopy N or P detection can also be 
used for canopy N:P detection. Using in situ spectrometry, we measured the reflectance of a 
common grass species, Yorkshire fog (Holcus lanatus L.), grown under different nutrient ratios 
and levels. We calculated 60 VIs found in literature and compared them to optimized VIs 
developed specifically for this study. The VIs were calculated using both the original narrow 
band spectra and the spectra resampled to the band properties of six satellite sensors (MSI-
Sentinel 2, OLCI-Sentinel 3, MODIS-Terra/Aqua, OLI-Landsat 8, WorldView 4 and RapidEye) 
to investigate the influence of bandwidths and band positions. The results showed that canopy 
N:P was significantly related to both existing VIs (r2 = 0.16-0.48) and optimized VIs (r2 = 
0.59-0.72) with correlations similar to what was observed for canopy N or canopy P. Existing 
VIs calculated with MSI and OLI sensors bands showed higher correlation with canopy N:P 
compared to the other sensors while the correlation with optimized VIs was not affected by the 
differences in sensors’ bands. This study might lead to future practical applications using in situ 
reflectance measurements to sense canopy N:P in grasslands.

Keywords: Nutrient limitation, Canopy N:P, Holcus lanatus L., Remote sensing, Spectro
radiometer, Satellite sensors

1	 This chapter is based on: Loozen, Y., Karssenberg, D., de Jong, S.M., Wang, S., van Dijk, J., Wassen, M.J., & Rebel, 
K.T. (2019). Exploring the use of vegetation indices to sense canopy nitrogen to phosphorous ratio in grasses. 
International Journal of Applied Earth Observation and Geoinformation, 75, 1-14. https://doi.org/10.1016/j.
jag.2018.08.012
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2.1	 Introduction

Nutrients play an essential role in plant growth and foliage nutrient concentration is linked to 
several physiological and ecosystem processes. Chlorophyll content, photosynthetic capacity, 
leaf life span, light use efficiency and biomass primary productivity have all been related to 
foliar nitrogen (N) concentration at the leaf or canopy level (Bakker et al. 2011; Evans 1989; 
Green et al. 2003; Kergoat et al. 2008; Reich 2012; Reich et al. 1999; Wright et al. 2004). 
Similarly, foliage phosphorus (P) has been correlated to leaf life span and photosynthetic 
capacity (Wright et al. 2004) and influences the photosynthetic rate (Vcmax) (Walker et al. 
2014). Non-optimal levels of foliar N and P will often result in reduced plant growth (LeBauer 
and Treseder 2008; Vitousek and Howarth 1991).

Plant N:P ratio, defined as the quotient of plant N and plant P concentrations and expressed 
in g N/g P (Güsewell 2004), is an ecological indicator of the relative N and P limitation 
(Koerselman and Meuleman 1996; Olde Venterink et al. 2003; Wassen et al. 1995). Several 
studies have identified threshold plant N:P ratio values for N and P limitation in different 
ecosystems (Güsewell et al. 2003; Koerselman and Meuleman 1996; Li et al. 2011; Olde 
Venterink et al. 2003; Tessier and Raynal 2003). Although threshold values defined by different 
authors may vary, in general it is safe to conclude that plant N:P ratio values lower than 10 
tend to indicate N limitation, while values higher than 20 are an indication of P deficiency 
(Güsewell 2004). However, this ratio should be understood as a continuous gradient including 
a range of values (c. 10 to c. 20) in which co-limitation may occur where both N and P are 
in low supply (Güsewell 2004). At vegetation level, the N:P ratio is an informative variable 
that not only indicates potential limitation of N and P but which is also related to species 
composition, species richness, productivity and functional trait composition (Fujita et al. 2014; 
Roeling et al. 2018; Wassen et al. 2005).

Foliar N and P concentration can be measured in the laboratory, but this is labor 
intensive and expensive, especially for large sample sizes. An alternative approach consists 
of using remote sensing to estimate plant traits, among which foliage nutrient concentration 
(Homolová et al. 2013). Foliage N concentration influences the reflectance spectra through 
specific absorption features attributed to N-bonds and protein absorption. These absorption 
features are located at 1020 nm, 1510 nm, 1940 nm, 2060 nm, 2180 nm, 2300 nm and 2350 
nm (Kumar et al. 2006). However, due to the overlapping absorption features of multiple 
compounds as well as the strong absorption by water in the shortwave-infrared region (SWIR, 
1400-3000 nm), the interpretation of the reflectance spectra is difficult (Kumar et al. 2006). For 
this reason, foliage N detection by remote sensing is mainly linked to chlorophyll absorption 
and often includes regions of the spectrum associated with chlorophyll detection, i.e. the 
red-edge and near-infrared (NIR) regions (Schlemmer et al. 2013). Field spectrometry has 
been extensively applied to estimate canopy N in a variety of crops using so called spectral 
vegetation indices (VIs), which consist of a combination of spectral reflectance bands 
(Hansen and Schjoerring 2003; Li et al. 2014; Schlemmer et al. 2013; Tian et al. 2011). Other 
ecosystems have been investigated for canopy N estimation using VIs computed from airborne 
or spaceborne sensors at different spatial resolutions, including temperate forests (HySpex 
airborne sensor at 3 m, Wang et al. (2016b)), tropical forests (RapidEye satellite sensor at 5m, 
Cho et al. (2013)), Mediterranean forests (MERIS satellite sensor at 1 km, Loozen et al. (2018)), 
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as well as chaparral vegetation (AVIRIS airborne sensor at 18 m, Serrano et al. (2002)) and 
savannah (RapidEye satellite sensor at 5m, Ramoelo et al. (2012)).

Similar to canopy N, canopy P has been estimated using spectral indices, though to a lesser 
extent. Several studies have aimed to develop VIs for canopy P estimation in agricultural lands 
(Kawamura et al. 2011; Mahajan et al. 2014; Pimstein et al. 2011) and in a Carex dominated 
grassland (Wang et al. 2016a), all using field spectrometry.

VIs calculated from spectrometry measurements have already been extensively studied 
for canopy N detection (Pacheco-Labrador et al. 2014) and high accuracy results have been 
obtained (Tian et al. 2011). Different categories of VIs exist, the most common ones being 
the simple ratio (SR), the normalized difference (ND) and the simple difference (SD) (Tian 
et al. 2011; Wang et al. 2016a). A VI can be classified as either narrowband or broadband 
(Thenkabail et al. 2002). Narrowband VIs are computed from narrow reflectance bands 
measured through imaging spectrometry, which includes in situ reflectance measurement 
using a spectroradiometer as well as reflectance measured by specific airborne or spaceborne 
sensors (Tian et al. 2011; Wang et al. 2015). Broadband VIs are traditionally obtained from 
multispectral satellite sensors although they can also be computed from resampled narrow 
reflectance bands obtained from other sources (Clevers and Gitelson 2013). A common 
approach to develop VIs is by selecting the optimal indices from all pair-wise combinations of 
wavelengths in the visible, NIR and shortwave-infrared (SWIR) regions (400-2500 nm), i.e. a 
band combination analysis (Hansen and Schjoerring 2003; Tian et al. 2011).

Canopy N:P is relevant to ecological studies as it is a nutrient limitation indicator. It 
is thus somewhat surprising that remote sensing of canopy N:P using VIs has rarely been 
investigated. One study investigated canopy N:P detection in savanna grasslands using field 
spectrometry coupled with partial least squares regression with significant results (r2 = 0.69-
0.85, (Ramoelo et al. 2013)). Canopy N:P detection was also investigated in a boreal forest 
using vegetation indices calculated from airborne (Compact Airborne Spectrographic Imager, 
CASI) and spaceborne (Hyperion EO-1) imaging spectrometry (Gökkaya et al. 2015). The 
results showed that the VIs could be related to canopy N:P with r2 ranging from 0.34 to 0.70. In 
this context, there is a need to examine in more detail how spectral properties, either from in 
situ measurement or satellite sensors, influence the performance of VIs regarding canopy N:P 
detection.

In this study, we aim at identifying if existing VIs that have been used for the estimation of 
canopy N or canopy P can also be used to remotely sense canopy N:P. To do so, we will evaluate 
three sub questions. How do VIs perform for canopy N:P estimation compared to canopy N 
and canopy P estimation? How do existing VIs perform compared to optimized VIs developed 
using the data collected in this study? How is the correlation between canopy N:P and the VIs 
influenced by different sensors’ bandwidths and band positions?

To create a dataset representing a large range of canopy N:P values, we chose to execute 
the study under controlled conditions. We have grown a common temperate grassland species, 
Holcus lanatus L. using six nutrient treatments that reflect N limited, P limited, and N and P 
co-limited conditions, under high and low nutrient availability, respectively. Existing VIs found 
in the literature were computed using the original narrow band reflectance spectra measured 
by in situ spectrometry as well as the resampled spectra corresponding to six different satellites 
sensors (MSI aboard Sentinel 2, OLCI aboard Sentinel 3, MODIS aboard Terra-Aqua, OLI 
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aboard Landsat 8, WorldView 4 and RapidEye). We compared the existing VIs to optimized 
VIs, obtained using a band combination analysis carried out on both the original narrow band 
spectra and the resampled broadband spectra.

2.2	 Material and methods

2.2.1	 Culture of the plants
Holcus lanatus L. (Yorkshire fog) is a perennial common grass species, generally found 
on nutrient-rich soils throughout Europe. Seeds were collected from the Middenduin 
nature reserve (52 ˚24΄N 4 ˚35΄E) located in the western Netherlands and cultivated under 
controlled conditions in a greenhouse of Utrecht University. Seeds were sown on moist 
quartz sand and were transplanted after 22 days into pots containing a mixture of quartz 
sand (Carlo Bernasconi, Zürich, CH, 0.1-0.7 mm) and sand collected close to the area where 
seed were harvested under a ratio of 11:1. This was done to introduce soil fauna, bacteria 
and fungi for a complete soil community. Each pot was planted with four seedlings. Plants 
were grown further under nutrient treatments that lasted from July 2015 until June 2016 
in the greenhouse with 400 Wm-2 light from 9:00 am to 4:00 pm and a temperature regime 
that mimicked the temperate conditions of the Netherlands. Six nutrient treatments were 
applied with three N:P ratios, each in high and low nutrient supply levels. The nutrient ratios 
were N:P = 5 (N-limitation), N:P = 15 (balanced supply) and N:P = 45 (P-limitation). Each 
nutrient treatment had 8 replicates (n = 48). The nutrient treatments were applied following 
Güsewell (2005). N was supplied as KNO3 and Ca(NO3)2, P was provided as KH2PO4. KNO3 
and KH2PO4 supplied part of the potassium, the rest was added as KCl. All the other essential 
macro- and micro-nutrients were provided in non-limiting supply using a standard Hoagland 
solution.

2.2.2	 Reflectance measurements
The canopy reflectance of the grasses was measured inside the greenhouse under controlled 
conditions when plants were fully grown on February 19th 2016 using a FieldSpec Pro Fr 
spectroradiometer (Analytical Spectral Device, Boulder, GO, USA). This device measures 
reflectance between 350 and 2500 nm with a resampled spectral resolution of 1 nm. We 
performed the spectral measurements with several lamps positioned above the plants on each 
side of the spectroradiometer to ensure constant light conditions. The spectroradiometer was 
held by a tripod at nadir position approximately 20 cm above the canopy. The field of view 
was 8°, ensuring a ground field of view of approximately 12 cm2. Each measurement of the 
spectroradiometer was the average of 50 successive scans. We measured each pot four 
times, after turning the pot by 90 degrees between each measurement to reduce geometrical 
effects. We averaged these four measurements to produce one canopy measurement per pot. 
The spectroradiometer was internally calibrated using a Spectralon white reference panel 
(Labsphere, North Sutton, NH, USA).
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2.2.3	 Leaf chemical measurements
Two leaves were sampled from each pot (n = 48) on February 25th 2016, collected in paper 
bags and dried in an oven at 60°C for 48h. The leaf samples were then ground using mixer mill 
(MM400, Retsch). The N concentration (g N 100 g-1 dry matter, %N) was measured using an 
elemental CN analyzer (Fisons NA 1500 NCS). The P concentration (g P 100 g-1 dry matter, 
%P) was measured using the total reflection X-ray fluorescence spectroscopy method (TXRF, 
S2 Picofox, Bruker, Germany). N:P ratios were calculated as the ratio between the weight based 
concentrations of N and P.

2.2.4	 Spectral bands considered: original and resampled to satellite bands
Prior to analysis, the spectral range was reduced from 350-2500 nm to 400-2450 nm because 
the signal to noise ratio was too low for the minimum and maximum spectral ranges. This 
spectral range matches with the spectral coverage of earth observation sensors. We considered 
two sets of spectral bands: the original narrow band reflectance spectra and the spectra 
resampled to the properties of satellite sensor bands. We included the spectra resampled to 
satellite sensor bands to assess the possibility of detecting canopy N:P with VIs derived from 
actual satellite measurements. We included six different satellite sensors (MSI-Sentinel-2, 
OLCI-Sentinel-3, MODIS-Terra/Aqua, OLI-Landsat 8, WorldView 4, and RapidEye). We 
chose these sensors because they present a variety of band properties, from 5 to 21 bands and 
from 2.5 nm to 350 nm spectral resolution (Table 2.1, Figure 2.1). They are all operational 
and have a long measurement record in the case of MODIS and Landsat. We obtained the 
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Figure 2.1 Spectral band position and bandwidth of the six satellite sensors included in the 
analysis (MSI, OLCI, MODIS, WorldView 4; RapidEye) projected on a Yorkshire fog (Holcus 
lanatus) reflectance spectrum measured using a spectroradiometer.
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resampled spectra by using the spectral response function corresponding to each sensor band. 
The spectral response functions were downloaded from the website of the sensor producer. 
For the MODIS sensor, the measured spectral response function could not be found and was 
approximated using a standard normal distribution (µ = 0, σ = 1).

Table 2.1 Properties of the six satellite sensors included in this study.

Satellite Sensor Number of bands Bandwidth (nm) Spatial resolution (m)

Sentinel 2 MSI 13 15-180 10-20-60
Sentinel 3 OLCI 21 2.5-40 300-1200
Terra-Aqua MODIS 20 10-50 250-500-1000
Landsat 8 OLI 9 20-200 30
WorldView 4 WorldView 4 5 35-350 0.31-1.24
RapidEye RapidEye 5 40-70 5

2.2.5	 Data analysis
2.2.5.1	 Descriptive statistics and vegetation indices
Descriptive statistics and boxplots of canopy N:P, N and P, hereafter designated as canopy 
traits, were produced and the Pearson correlation coefficients between each of these canopy 
traits were calculated.

2.2.5.2	Existing VIs
We evaluated existing VIs, which we selected through a literature search. We found 60 VIs to 
evaluate (Table A. 2.1), including VIs that were either developed for N or P detection or, when 
developed for another purpose, for instance VIs correlated with chlorophyll, photosynthesis or 
the presence of vegetation (see the ‘developed for’ column of the Table A. 2.1 for a detailed list), 
have been used for N or P detection.

Based on their equations, we categorized the VIs as either two bands simple ratio (SR,band
band

1
2 ), 

 two bands normalized difference (ND,band
band

1
1

–band
+band

2
2
) or three bands VI (TB). When they did not 

belong to any of the aforementioned categories, they were labelled other VI (OVI, see Table A. 
2.1 for equations associated with TB or OVI).

We calculated linear models between canopy N:P, canopy N or canopy P and both the VIs 
and the natural log transformed VIs calculated using the original narrow band spectra.

The ten narrow band VIs that obtained the best correlation (r2) with canopy N:P were also 
calculated using the spectra resampled to the six satellite sensor bands mentioned in section 
2.4. The indices were computed using the sensor bands closest to the VI nominal wavelengths. 
Several VIs could not be computed because the sensors’ band locations were too distant (> 100 
nm) from the VI nominal wavelength.

2.2.5.3	 Optimized VIs
From the spectral signature we took from our experimental data, we calculated optimal VIs 
using combinations of all available wavelengths, i.e. a band combination analysis. Following 
Tian et al. (2011), every combination of two, l1 and l2, or three wavelengths, l1, l2 and l3, was 
used to compute two bands or three bands VIs. The two bands VIs were categorized as simple 
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ratio (SR)λλ
1
2
, simple difference (SD) l1–l2 and normalized difference (ND)[ ]–λ
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λ
1
1 λ3
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+  and TB3 –λ
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λ2
+

+ 2*
λ3

λ3
– 2* . In order to decrease 

computation time, the three bands VIs were computed using only 1 out of 10 narrow bands 
(Pacheco-Labrador et al. 2014). Subsequently, linear regressions between each of the obtained 
VIs and canopy N:P, canopy N and canopy P were calculated. Specific wavelength regions 
of high correlation between the canopy traits and the three categories of two bands VI were 
identified using heatmaps. The optimized VIs were obtained by selecting the band combination 
with the highest r2, for both the narrow band spectra and the spectra resampled to satellite 
sensor bands.

2.2.5.4	Regression models
All regression models were assessed using the determination coefficient (r2) and the cross-
validated Relative Root Mean Squared Error (RRMSEcv) values, obtained using the leave-one-
out cross-validation method (Clevers and Gitelson 2013) and calculated following Equation 2.1 
(Yao et al. 2010):

n

i=1

1
n (Pi – Oi )∑RRMSEcv = × 1

Ōi 

× , (Equation 2.1)

where i = 1, 2, ..., n is a measurement, with n the total number of measurements, Pi 
represents the predicted value, Oi, the observed value, and Ōi the mean of all observed 
values. The significance level was at a p-value < 0.01. All the statistical analyses were 
performed in the R environment (R Development Core Team 2014).

Figure 2.2. Boxplot of canopy N:P (-), canopy N (%N) and canopy P (%P) in Holcus lanatus L. 
grasses (n = 48).
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2.3	 Results

2.3.1	 Descriptive statistics of canopy N:P, canopy N and canopy P
The results of the descriptive statistics showed that the range of canopy N:P values (6.1-75.0, 
Figure 2.2) corresponds to the range usually observed in natural environments (Roeling et al. 
2018). As expected, canopy N:P was correlated with both canopy N and canopy P (Table 2.2)

Table 2.2. Pearson correlation matrix between canopy N, canopy P and canopy N:P. The values 
in the lower part of the table correspond to the correlation coefficients while the upper part of the 
table corresponds to the p-values.

canopy N canopy P canopy N:P

canopy N / p-value = 0.000 p-value = 0.000
canopy P r = -0.66 / p-value = 0.000
canopy N:P r = 0.92 r = -0.81 /

2.3.2	 Original narrow band spectra
2.3.2.1	 Existing vegetation indices
Among the 60 existing VIs tested, 31 VIs showed significant relationships with at least one 
canopy trait, while 29 VIs showed no significant relationship with any of the canopy traits 
(Table A. 2.1). The VI showing the highest correlation with canopy N:P (r2 = 0.48), was the 
TB (R498, R413, R442, Figure 2.3) VI developed for N detection (Tian et al. 2011). The results 
obtained for canopy N and canopy P were similar, with the highest r2 equal to 0.44 for canopy 
N with ND (R1220, R710) VI. For canopy P, the highest correlation (r2 = 0.52) was obtained with 
TB (R498, R413, R442), hence the same VI as for canopy N:P. The two VIs showing the highest 
correlation with canopy N:P, TB (R498, R413, R442) and TB (R434, R496, R401) were both based 

r2 = 0.48,  p−value = 5.5e−08
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Figure 2.3. Scatterplot and regression line between canopy N:P and the TB (R498, R413, R442) 
vegetation index, i.e. the existing vegetation index with the highest correlation with canopy N:P 
(r2 = 0.48, n = 48). The vegetation index was calculated using the original narrow band spectra.
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on three wavelengths located in the blue region of the spectrum. Other VIs that showed a 
significant relationship with canopy N:P were based on the NIR and red-edge regions of the 
spectrum.

2.3.2.2	Optimized vegetation indices
We used heatmaps to investigate the wavelength regions of high correlation between the two 
bands VIs, obtained from the band combination analysis, and the three canopy traits (Figure 
2.4). A first region of high correlation with canopy N:P (r2 between 0.4 and 0.7) was located 
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Figure 2.4 Heatmaps showing the coefficient of determination (r2) between the canopy trait and 
each combination of two bands (λ1 and λ2, nm) between 400-2450 nm for canopy N:P, canopy 
N and canopy P and each VI category investigated. SR, Simple Ratio; SD, Simple Difference, ND, 
Normalized Difference.
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Figure 2.5 Scatterplot and regression line between canopy N:P and the TB3 (R541, R421, R531) 
vegetation index, i.e. the optimized vegetation index with the highest correlation with canopy N:P 
(r2 = 0.72, n = 48). The vegetation index was calculated using the original narrow band spectra.

Figure 2.6 Mean r2 value of the relationship between canopy N:P and the vegetation indices (VIs) 
for the seven sensors included in this analysis and for both the existing and optimized VIs. The 
vertical lines represent the minimum and maximum r2 obtained for each group. No existing VI 
was calculated for the WorldView 4 and RapidEye sensors because their band positions are too 
distant (> 100 nm) from the nominal VIs’ wavelengths.
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in the blue region for (400-500 nm) and in the green-red region for (500-700 nm). A second 
region (r2 between 0.4 and 0.6) was located in the green-red region for (500-700 nm) and 
in the SWIR region for (1400-2450 nm). The regions of high correlation with canopy N:P 
were similar across the VIs categories investigated, i.e. SR, SD and ND, and also had high 
correlations for canopy N and canopy P.

The optimized VI TB3 (R541, R421, R531, Figure 2.5), located in the blue and green region of 
the spectrum showed the highest correlation with canopy N:P and had a higher r2 (r2 = 0.72, 
Table A. 2.2) than the best performing optimized VIs for canopy N (r2 = 0.69; TB3, R431, R2431, 
R561) and for canopy P (r2 = 0.67; TB1, R531, R541, R421).

Regarding the influence of the VI category on the result, the optimized VIs from the SD 
category, which were composed of a combination of bands from the red-edge and SWIR 
regions, showed lower correlations (r2 = 0.53-0.59) than all the other VI categories (r2 = 0.64-
0.72), mostly composed of a combination of blue and green bands. This result holds for all 
canopy traits (canopy N:P, N and P).

Compared to the results obtained for the existing VIs, the optimized VIs performed better 
regarding r2 values (Figure 2.6) for canopy N:P. The best optimized VI explained 24 percent 
more of the variation in canopy N:P values compared to the best performing existing VI.
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ND (R1220, R710)
ND (R735, R1285)

OVI (R670, R700, R740, R780)
SR (R990,  R720)

TB (R434, R496, R401)
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OLCI OLIMSI MODIS

Figure 2.7 Comparison between the r2 obtained for the relationships between canopy N:P and the 
existing VIs calculated using either the original narrow band spectra or the spectra resample to 
satellite sensors’ band properties (MSI, OLCI, MODIS, OLI). No existing VI was calculated for the 
RapidEye and WorldView 4 sensors because their band positions are too distant (> 100 nm) from 
the nominal VIs’ wavelengths.
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2.3.3	 Spectra resampled to satellite sensors’ bands
2.3.3.1	 Existing vegetation indices
The TB (R434, R496, R401) VI calculated for the MSI sensor aboard Sentinel 2 showed the 
highest correlation with canopy N:P (r2 = 0.63), canopy N (r2 = 0.58) and canopy P (r2 = 0.62) 
compared to the other existing VIs tested (Table A. 2.3). Regarding the influence of the sensor 
band properties on the result, the existing VIs calculated using the MSI and OLI sensors band 
showed in general higher correlation with canopy N:P than the same VIs calculated based on 
OLCI or MODIS sensors (Figure 2.7). For the existing VIs TB (R498, R413, R442), TB (R434, R496, 
R401) and TB (R705, R717, R491) calculated based on MSI sensor bands, the TB (R498, R413, R442) 
and TB (R434, R496, R401) VIs calculated based on OLI sensor bands as well as for the TB (R705, 
R717, R491) VI calculated based on OLCI sensor properties, the obtained r2 were higher than for 
the same VIs calculated with the original narrow band spectra. Similar results were observed 
for canopy N and canopy P. On the contrary, all the existing VIs calculated with the spectra 
resampled to MODIS bands showed lower r2 with canopy N:P compared to their narrow band 
spectra counterpart and three existing VIs showed a non-significant relationship with canopy 
N:P.

2.3.3.1	 Optimized vegetation indices
Canopy N:P could be related to the optimized VIs calculated from the resampled spectra with 
r2 values ranging from 0.48 to 0.72 (Table A. 2.2). Similar results were obtained for canopy N 
and canopy P. The SR, ND and TB categories of optimized VIs mostly performed better with 
canopy N:P (r2 between 0.55-0.72) compared to the SD category of VI (r2 between 0.48-0.59). 
Among the bands selected for the SR, ND and TB categories of optimized VIs, the blue and 
green regions of the spectrum were dominant, similar to what was observed for narrow bands 
optimized VIs.

The difference in satellite sensors band properties did not greatly affect the results as the r2 
values were in the same range for all sensors per VI category. The satellite sensors WorldView 
4 and RapidEye, both with five bands and bandwidths between 35-140 nm, showed r2 between 
0.55 and 0.67 with canopy N:P for the SR, ND and TB categories of VI. This is comparable to 
the results obtained for satellites sensors with a higher number of bands and narrower bands, 
e.g. MSI and MODIS, for which the obtained r2 values were between 0.67 and 0.72 for the same
VI categories.

When comparing the performance of existing and optimized VIs for canopy N:P detection 
(Figure 2.6), optimized VIs generally performed better than existing VIs for all satellite sensors 
tested. However, the existing VIs calculated for the MSI and OLI sensors showed r2 values in an 
overlapping range with their optimized counterparts.

2.4	 Discussion

2.4.1	 Original narrow band spectra
2.4.1.1	 Existing vegetation indices
Existing VIs performed similarly for canopy N:P detection as they did for canopy N and 
canopy P regarding obtained r2 values. More specifically, the two best performing VIs for 
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canopy N:P in this study, TB (R498, R413, R442) and TB (R434, R496, R401), both based on the 
blue region of the spectrum, proved to be interesting candidates for canopy N:P detection. In 
previous studies, these VIs were highly correlated to canopy N in rice crops (r2 = 0.81 and r2 = 
0.84, respectively (Tian et al. (2011)), but showed a weak correlation with canopy N in Holm 
oak leaves (Pacheco-Labrador et al. 2014).

Among the 60 VIs tested, almost 50% (n = 29) failed to show a significant relationship with 
canopy N:P, canopy N or canopy P while previous studies found a significant relationship. 
This unreliability in prediction accuracy for previously validated VIs was already observed 
by Pacheco-Labrador et al. (2014), who found that the majority of the published vegetation 
indices tested could not be correlated to canopy N in Holm oak leaves. This might be explained 
by differences in growth conditions and species investigated as well as by the influence of  
the range in canopy N or canopy P values. This highlights the influence of the dataset on the 
prediction accuracy.

2.4.1.2 Optimized vegetation indices
The optimized VIs developed specifically fo r th is st udy pe rformed be tter fo r ca nopy N:P 
detection compared to the existing VIs tested, for both r2 and RRMSEcv values.

The SR, ND and TB categories of optimized VIs were based on a combination of 
wavelengths from the blue and green regions of the spectrum. The blue region is linked 
to pigment absorption, which peaks at 430 nm for chlorophyll a (chlor-a) and 460 nm for 
chlorophyll b (chlor-b) (Kumar et al. 2006). The SD, ND and TB3 optimized VIs for canopy 
N:P included wavelengths located at 427 nm and 421 nm, hence close to one of the absorption 
peaks of chlor-a. Other indices located in the blue and green regions of the spectrum have 
been related to chlor-a and chlor-b concentration in Vitis vinifera leaves (the BGI2 index, SR, 
R450, R550; Zarco-Tejada et al. (2005)) or to canopy N in rice (ND, R573, R444; Tian et al. (2011)). 
The combination of wavelengths from the blue and green regions might thus be linked with 
chlorophyll and has also been explored for canopy N detection (Tian et al. 2011). Our 
results showed that this wavelength combination is correlated with canopy N:P, canopy N 
and canopy P.

The optimized SD VI for canopy N:P combined wavelengths located in the red-edge (718 
nm) and in the SWIR regions (1577 nm). The SWIR region is characterized by several N and 
protein absorption features. The absorption features located at 1500 nm and 1510 nm might 
explain the second wavelength (1577 nm) being selected, because the absorption features are 
known to be broadened due to scattering (Kumar et al. 2006). However, the SWIR region of 
the spectra is influenced by the absorption features of many compounds that interfere with 
each other (Kumar et al. 2006) which render the signal difficult to interpret. In particular, the 
strong absorption due to water molecules greatly influences the reflectance. This might be the 
reason why the proportion of variance explained by the SD category of optimized VIs (r2 = 
0.53-0.59) was lower than for the SR, ND and TB categories of optimized VIs (r2 = 0.64-0.72).

2.4.2 Spectra resampled to satellite sensors’ bands
2.4.2.1 Existing vegetation indices
The correlation between canopy N:P and the existing VIs was influenced by the sensors’ band 
properties because different sensors showed different correlation with canopy N:P for the same 
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VIs. Two VIs (TB R498, R413, R442 and TB R434, R496, R401) calculated from MSI and OLI sensors 
showed higher correlation (r2 = 0.55-0.63) than when calculated from the OLCI and MODIS 
sensors (r2 = 0.36-0.40) or even narrow band sensors (r2 = 0.44-0.48) (Figure 2.7). The bands 
from MSI and OLI sensors used for the VIs calculation were broader than their counterparts 
from the OLCI and MODIS sensors and hence from the original narrow band spectra. The 
bandwidth of the sensors thus influenced the correlation obtained for some of the existing VIs.

2.4.2.2	Optimized vegetation indices
The correlation between canopy N:P and the optimized VIs was not greatly influenced 
by the sensors’ band properties and the correlation was stable across the different satellite 
sensors tested. Although this is in contradiction to what was observed for existing VIs, this 
might indicate that broad band sensors, such as RapidEye and WorldView 4, could be useful 
for canopy N:P detection. However, our results consistently showed that the blue region was 
important for canopy N:P detection. Although VIs based on the blue region of the spectrum 
do not represent a difficulty for in situ studies, including the blue region for VIs calculated 
from satellite sensors might lead to an interpretation problem due to atmosphere Rayleigh 
scattering.

2.4.3	 Future perspectives
This analysis investigated the possibility of detecting canopy N:P using VIs compared to 
canopy N and canopy P detection as well as the influence of the sensors band properties on 
the relationships. The results obtained in this analysis might have concrete in-situ application 
perspectives in the field of ecology given the importance of the canopy N:P for biodiversity 
studies (Fujita et al. 2014; Roeling et al. 2018; Wassen et al. 2005). Spectral VIs might be a 
useful method to detect canopy N:P in grasslands in a non-destructive and time efficient 
manner that would, for example, allow to monitor the seasonal evolution of canopy N:P or 
trends in changing N:P ratios in response to eutrophication or other global change factors 
(Wassen et al. 2013). However, as with remote sensing of canopy N or canopy P, remote sensing 
of canopy N:P is not a direct measurement of canopy N:P values. Especially, the correlation 
between canopy N:P and both canopy N and canopy P (Table 2.2) renders it difficult to 
distinguish between the separate influences on the reflectance signal. Moreover, similar 
studies investigating canopy N:P detection should be done on more plant species and plant 
communities in order to validate the results obtained in this study. Further studies should 
also investigate the influence of the spatial resolution of the satellite sensors on canopy N:P 
detection as this needs to be studied before actual satellite sensors measurements can be 
exploited to sense canopy N:P in natural environment.

2.5	 Conclusion

Canopy N remote detection has already been extensively studied using both spectroradiometer 
and satellite measurements. On the contrary, canopy N:P, despite being an important indicator 
of nutrient limitation, has seldom been studied with remote sensing techniques. In this study, 
we investigated the possibility of detecting canopy N:P in the common grass species Holcus 
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lanatus using VIs developed for canopy N and canopy P detection. The results showed that 
using VIs for canopy N:P detection was as effective as when applied for canopy N or canopy 
P detection. This held for both existing and optimized VIs as well as for narrow band and 
broader band VIs calculated from the spectra resampled to the spectral properties of six 
different satellite sensors. The influence of different satellite sensors’ band properties was 
unclear as it differed between existing and optimized VIs. Existing VIs calculated with MSI and 
OLI sensors bands showed higher correlation with canopy N:P compared to the other sensors 
tested. In contrast, the correlation with optimized VIs was not affected by the differences in 
sensors’ bands. Satellite sensors with a limited number of broad bands, such as WorldView 4 
and RapidEye, yielded similar results as sensors with multiple and narrower bands, like MSI 
or Sentinel 3. In the future, these results might lead to practical applications using handheld 
spectrometers for in situ canopy N:P detection in grasslands. The observed consistent 
importance of the blue region of the spectrum for canopy N:P detection might render canopy 
N:P detection with actual satellite sensors complicated due to the interference with the 
Rayleigh scattering.
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Table A. 2.2. Optimized vegetation indices for each canopy trait and each VI category (SR, 
SD, ND, TB1, TB2 and TB3). Bands composing the VI (λ1, λ2 and λ3, nm), coefficient of 
determination (r2) and the Relative Root Mean Squared error of cross-validation (RRMSEcv) are 
showed. The results are showed for the original narrow band spectra and the spectra resampled to 
satellite sensors bands (MSI, aboard Sentinel 2, OLCI, aboard Sentinel 3, MODIS aboard Terra-
Aqua, and OLI, aboard Landsat 8). SD = Simple difference; SR = Simple Ratio; ND = Normalized 
Difference, TB = Three Bands indices, PAN = Panchromatic band.

sensor canopy trait VI category λ1 (nm) λ2 (nm) λ3 (nm) r2 p-value RRMSEcv

narrow band 
sensor

Canopy N:P SR 427 524 \ 0.71 0.000 0.38
Canopy N:P SD 718 1577 \ 0.59 0.000 0.45
Canopy N:P ND 427 524 \ 0.70 0.000 0.39
Canopy N:P TB1 491 661 531 0.71 0.000 0.37
Canopy N:P TB2 531 411 541 0.70 0.000 0.38
Canopy N:P TB3 541 421 531 0.72 0.000 0.37
Canopy N SR 428 529 \ 0.67 0.000 0.20
Canopy N SD 717 1833 \ 0.58 0.000 0.23
Canopy N ND 428 529 \ 0.66 0.000 0.21
Canopy N TB1 531 541 411 0.67 0.000 0.20
Canopy N TB2 531 411 551 0.67 0.000 0.20
Canopy N TB3 431 2431 561 0.69 0.000 0.20
Canopy P SR 422 524 \ 0.66 0.000 0.36
Canopy P SD 717 1553 \ 0.53 0.000 0.42
Canopy P ND 422 524 \ 0.66 0.000 0.35
Canopy P TB1 531 541 421 0.67 0.000 0.35
Canopy P TB2 421 531 541 0.66 0.000 0.35
Canopy P TB3 721 521 451 0.64 0.000 0.36

MSI Canopy N:P SR 443 560 \ 0.67 0.000 0.40
Canopy N:P SD 2190 705 \ 0.53 0.000 0.48
Canopy N:P ND 443 560 \ 0.67 0.000 0.40
Canopy N:P TB1 443 560 490 0.67 0.000 0.40
Canopy N:P TB2 560 443 490 0.66 0.000 0.41
Canopy N:P TB3 560 560 443 0.68 0.000 0.39
Canopy N SR 443 560 \ 0.64 0.000 0.21
Canopy N SD 2190 705 \ 0.55 0.000 0.24
Canopy N ND 443 560 \ 0.63 0.000 0.22
Canopy N TB1 443 560 490 0.63 0.000 0.21
Canopy N TB2 705 490 2190 0.65 0.000 0.21
Canopy N TB3 2190 705 490 0.66 0.000 0.21
Canopy P SR 443 560 \ 0.63 0.000 0.37
Canopy P SD 443 490 \ 0.48 0.000 0.44
Canopy P ND 443 560 \ 0.63 0.000 0.37
Canopy P TB1 443 560 490 0.64 0.000 0.36
Canopy P TB2 443 560 490 0.62 0.000 0.37
Canopy P TB3 705 560 443 0.62 0.000 0.37

OLCI Canopy N:P SR 412.5 560 \ 0.67 0.000 0.40
Canopy N:P SD 490 510 \ 0.50 0.000 0.50
Canopy N:P ND 412.5 560 \ 0.67 0.000 0.40
Canopy N:P TB1 490 665 560 0.68 0.000 0.39
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sensor canopy trait VI category λ1 (nm) λ2 (nm) λ3 (nm) r2 p-value RRMSEcv

Canopy N:P TB2 560 442.5 400 0.67 0.000 0.40
Canopy N:P TB3 400 560 442.5 0.69 0.000 0.39
Canopy N SR 412.5 560 \ 0.64 0.000 0.21
Canopy N SD 490 510 \ 0.49 0.000 0.25
Canopy N ND 412.5 560 \ 0.64 0.000 0.21
Canopy N TB1 490 620 560 0.64 0.000 0.21
Canopy N TB2 560 442.5 400 0.64 0.000 0.21
Canopy N TB3 400 560 442.5 0.66 0.000 0.21
Canopy P SR 490 510 \ 0.63 0.000 0.37
Canopy P SD 490 510 \ 0.49 0.000 0.44
Canopy P ND 490 510 \ 0.63 0.000 0.37
Canopy P TB1 442.5 560 510 0.64 0.000 0.37
Canopy P TB2 510 490 412.5 0.64 0.000 0.36
Canopy P TB3 708.75 510 442.5 0.63 0.000 0.37

MODIS Canopy N:P SR 421.5 531 \ 0.69 0.000 0.39
Canopy N:P SD 2130 555 \ 0.50 0.000 0.50
Canopy N:P ND 421.5 531 \ 0.68 0.000 0.39
Canopy N:P TB1 488 667 531 0.72 0.000 0.37
Canopy N:P TB2 531 412.5 421.5 0.70 0.000 0.38
Canopy N:P TB3 421.5 555 531 0.71 0.000 0.38
Canopy N SR 421.5 531 \ 0.66 0.000 0.21
Canopy N SD 2130 555 \ 0.54 0.000 0.24
Canopy N ND 421.5 531 \ 0.65 0.000 0.21
Canopy N TB1 488 645 531 0.66 0.000 0.21
Canopy N TB2 531 421.5 555 0.67 0.000 0.21
Canopy N TB3 421.5 555 531 0.67 0.000 0.20
Canopy P SR 421.5 531 \ 0.63 0.000 0.37
Canopy P SD 443 531 \ 0.48 0.000 0.44
Canopy P ND 421.5 531 \ 0.64 0.000 0.36
Canopy P TB1 531 551 421.5 0.64 0.000 0.36
Canopy P TB2 421.5 531 555 0.65 0.000 0.36
Canopy P TB3 551 469 443 0.63 0.000 0.37

OLI Canopy N:P SR 443 562 \ 0.68 0.000 0.40
Canopy N:P SD 443 590 \ 0.48 0.000 0.50
Canopy N:P ND 482 590 \ 0.67 0.000 0.40
Canopy N:P TB1 443 590 562 0.68 0.000 0.39
Canopy N:P TB2 590 482 443 0.67 0.000 0.40
Canopy N:P TB3 562 562 443 0.69 0.000 0.39
Canopy N SR 443 562 \ 0.64 0.000 0.21
Canopy N SD 2200 562 \ 0.51 0.000 0.25
Canopy N ND 443 562 \ 0.63 0.000 0.22
Canopy N TB1 482 590 562 0.64 0.000 0.21
Canopy N TB2 562 482 2200 0.64 0.000 0.21
Canopy N TB3 2200 562 482 0.66 0.000 0.21
Canopy P SR 443 562 \ 0.63 0.000 0.37
Canopy P SD 443 562 \ 0.46 0.000 0.45
Canopy P ND 443 562 \ 0.64 0.000 0.37
Canopy P TB1 443 562 482 0.64 0.000 0.37
Canopy P TB2 562 443 482 0.63 0.000 0.37
Canopy P TB3 562 562 443 0.62 0.000 0.38
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sensor canopy trait VI category λ1 (nm) λ2 (nm) λ3 (nm) r2 p-value RRMSEcv

WorldView 4 Canopy N:P SR 480 545 \ 0.63 0.000 0.42
Canopy N:P SD 480 545 \ 0.48 0.000 0.51
Canopy N:P ND 480 545 \ 0.63 0.000 0.42
Canopy N:P TB1 480 672 545 0.67 0.000 0.40
Canopy N:P TB2 545 480 PAN 0.55 0.000 0.47
Canopy N:P TB3 480 480 545 0.64 0.000 0.42
Canopy N SR 480 545 \ 0.61 0.000 0.22
Canopy N SD 480 545 \ 0.48 0.000 0.26
Canopy N ND 480 545 \ 0.60 0.000 0.22
Canopy N TB1 545 545 480 0.60 0.000 0.22
Canopy N TB2 545 480 PAN 0.56 0.000 0.23
Canopy N TB3 PAN 545 480 0.64 0.000 0.21
Canopy P SR 545 480 \ 0.60 0.000 0.38
Canopy P SD 480 545 \ 0.46 0.000 0.45
Canopy P ND 480 545 \ 0.59 0.000 0.38
Canopy P TB1 480 480 545 0.60 0.000 0.38
Canopy P TB2 480 545 PAN 0.54 0.000 0.41
Canopy P TB3 PAN 545 480 0.60 0.000 0.38

RapidEye Canopy N:P SR 475 555 \ 0.64 0.000 0.42
Canopy N:P SD 475 555 \ 0.48 0.000 0.51
Canopy N:P ND 475 555 \ 0.65 0.000 0.42
Canopy N:P TB1 475 658 555 0.67 0.000 0.40
Canopy N:P TB2 555 475 710 0.59 0.000 0.45
Canopy N:P TB3 710 555 475 0.66 0.000 0.41
Canopy N SR 475 555 \ 0.61 0.000 0.22
Canopy N SD 475 555 \ 0.47 0.000 0.26
Canopy N ND 475 555 \ 0.61 0.000 0.22
Canopy N TB1 555 555 475 0.61 0.000 0.22
Canopy N TB2 555 475 710 0.60 0.000 0.22
Canopy N TB3 710 555 475 0.65 0.000 0.21
Canopy P SR 555 475 \ 0.61 0.000 0.38
Canopy P SD 475 555 \ 0.46 0.000 0.45
Canopy P ND 475 555 \ 0.60 0.000 0.38
Canopy P TB1 475 475 555 0.60 0.000 0.38
Canopy P TB2 555 475 710 0.57 0.000 0.40
Canopy P TB3 710 555 475 0.61 0.000 0.38
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Remote sensing of canopy nitrogen at regional scale in Mediterranean forests using the 
spaceborne MERIS Terrestrial Chlorophyll Index2

Abstract. Canopy nitrogen (N) concentration and content are linked to several vegetation 
processes. Therefore, canopy N concentration is a state variable in global vegetation models 
with coupled carbon (C) and N cycles. While there are ample C data available to constrain 
the models, widespread N data are lacking. Remotely sensed vegetation indices have been 
used to detect canopy N concentration and canopy N content at the local scale in grasslands 
and forests. Vegetation indices could be a valuable tool to detect canopy N concentration and 
canopy N content at larger scale. In this paper we conducted a regional case-study analysis to 
investigate the relationship between the Medium Resolution Imaging Spectrometer (MERIS) 
Terrestrial Chlorophyll Index (MTCI) time series from European Space Agency (ESA) 
Envisat satellite at 1 km spatial resolution and both canopy N concentration (%N) and canopy 
N content (N g m-2 of ground area) from a Mediterranean forest inventory in the region of 
Catalonia, in the northeast of Spain. The relationships between the datasets were studied 
after resampling both datasets to lower spatial resolutions (20 km, 15 km, 10 km and 5 km) 
and at the original spatial resolution of 1 km. The results at higher spatial resolution (1 km) 
yielded significant log-linear relationships between MTCI and both canopy N concentration 
and content: r2 = 0.32 and r2 = 0.17, respectively. We also investigated these relationships per 
plant functional type. While the relationship between MTCI and canopy N concentration 
was strongest for deciduous broadleaf and mixed plots (r2 = 0.24 and r2 = 0.44, respectively), 
the relationship between MTCI and canopy N content was strongest for evergreen needleleaf 
trees (r2 = 0.19). At the species level, canopy N concentration was strongly related to MTCI for 
European beech plots (r2 = 0.69). These results present a new perspective on the application of 
MTCI time series for canopy N detection.

Keywords: vegetation index, MERIS, foliar nitrogen concentration, foliar nitrogen content, 
plant functional types, Mediterranean forest, remote sensing

2	 This chapter is based on: Loozen, Y., Rebel, K.T., Karssenberg, D., Wassen, M.J., Sardans, J., Peñuelas, J., & de Jong, 
S.M. (2018). Remote sensing of canopy nitrogen at regional scale in Mediterranean forests using the spaceborne 
MERIS Terrestrial Chlorophyll Index. Biogeosciences, 15, 2723-2742. https://doi.org/10.5194/bg-15-2723-2018
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3.1	 Introduction

Canopy nitrogen (N) concentration is an essential state variable in regional (Ollinger 
and Smith, 2005) and global vegetation models including both the carbon (C) and the 
N cycles (such as Zaehle and Friend 2010;Smith 2014). This variable has been linked to 
several vegetation traits and processes at the leaf and canopy levels. At the leaf level, leaf N 
concentration, which represents the leaf N status expressed as a percentage of leaf dry matter 
(%N, N g 100g1 DM), has been related to photosynthetic capacity (Evans 1989;Reich et al. 1995; 
Reich et al. 1997; Reich et al. 1999; Wright et al. 2004), specific leaf area, leaf life span (Reich et 
al. 1999; Wright et al. 2004) and light use efficiency (Kergoat et al. 2008). Leaf N concentration 
expressed on a leaf area basis, also called leaf N content (N g m-2), has also been linked with 
chlorophyll content, RuBisCO content (Evans 1989) and photosynthetic capacity (Evans 
1989; Reich et al. 1995). At stand scale, canopy N concentration, which represents the leaf N 
concentration averaged over the stand canopy, has also been found to correlate with above-
ground net primary productivity (NPP) (Reich 2012), while canopy N content has been linked 
with the canopy light use efficiency (Green et al. 2003).

Given their links to many vegetation processes, leaf and canopy N variables could be used 
to constrain N cycle modules in global vegetation models. At the global scale, ample data are 
available to constrain models for the C cycle; however, data to constrain the N cycle are limited. 
Currently, canopy N data are not widely available and canopy N sampling campaigns are time 
consuming and thus expensive tasks. Moreover, upscaling from local sampling campaign 
measurements represents an additional limitation. From this perspective, local, regional or 
even global remotely sensed canopy N estimates will be a valuable addition, enabling us to 
collect information in a less time-intensive and expensive manner than traditional on-field 
sampling campaigns. Such near-global canopy N estimates will be beneficial as input in global 
vegetation models or to calibrate and validate these models.

Remote detection of foliage N status has been extensively studied at the leaf scale (Hansen 
and Schjoerring 2003; Ferwerda et al. 2005; Li et al. 2014) and few studies have investigated 
the processes underlying the relationships between vegetation indices and foliar N (Pacheco-
Labrador et al. 2014). Detection of foliage N status with vegetation indices is attributed to 
the strong link between foliar N and chlorophyll content (Schlemmer et al. 2013) and is 
often based on the near-infrared (NIR) and red-edge regions of the spectrum, hence similar 
to the ones used for chlorophyll detection (Filella and Penuelas 1994; Dash and Curran 
2004; Clevers and Gitelson 2013). At canopy level, however, spectral reflectance is a complex 
function of vegetation cover, plant activity, water content, illumination angle, viewing angle 
and atmospheric composition (Kumar et al. 2006) and it is not straightforward to disentangle 
the influence of nitrogen from other contributions in the spectra. It is thus not clear how the 
relationships observed at the leaf level translate at the canopy level. The mechanisms possibly 
modifying the remote sensing of foliage N status at the canopy scale are still not clearly 
understood (Ollinger 2011). High correlation between canopy N and both NIR reflectance 
and albedo has been reported in boreal forests (Ollinger et al. 2008). However, the mechanism 
behind these findings is still controversial. Knyazikhin et al. (2013) argued that the observed 
correlation solely resulted from canopy structural differences between broad and needleleaf 
forests and was thus spurious. Other authors, although agreeing that canopy structure was 
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a confounding factor to account for, stated that the NIR-canopy N relationship was not 
necessarily spurious and stemmed from an association between canopy N and structural traits 
(Ollinger et al. 2013; Townsend et al. 2013). Canopy traits are interrelated (Wright et al. 2004) 
and have been known to covary due to evolutionary convergence, as stated by Ollinger (2011).

Different remote sensing techniques have been applied to detect canopy N in terrestrial 
vegetation. Imaging spectrometry has proven efficient in improving N sensing capabilities 
at the local scale. Imaging spectrometry images are acquired from either airborne or 
spaceborne sensors and are analysed with different methods, including partial least squares 
regression (PLS), continuum removal, spectral unmixing or vegetation indices (Smith et al. 
2003; Ollinger et al. 2008; Huber et al. 2008; Martin et al. 2008; Schlerf et al. 2010; Wang et 
al. 2016). Among other techniques, ratios or normalised differences of reflectance bands in 
the red and NIR regions of the spectrum, the so-called vegetation indices (VIs) (Glenn et al. 
2008), are one of the most straightforward methods for canopy N detection. Combined with 
in situ hyperspectral devices, vegetation indices have been extensively used for leaf or canopy 
N detection in agricultural systems (Peñuelas et al. 1994; Filella et al. 1995; Hansen and 
Schjoerring 2003; Tian et al. 2011; Schlemmer et al. 2013; Li et al. 2014). Vegetation indices 
have also been applied to airborne or spaceborne acquired imagery in natural environments 
(Ramoelo et al. 2012; Wang et al. 2016).

A particular vegetation index, the Medium Resolution Imaging Spectrometer (MERIS) 
Terrestrial Chlorophyll Index (MTCI) has been proposed for detecting canopy N (Clevers and 
Gitelson 2013). MTCI was originally computed from three reflectance bands from MERIS 
aboard the European Space Agency (ESA) Envisat satellite at a spatial resolution of 1 km. 
However, it can also be obtained from other sensors’ reflectance data and a similar product 
will be available from the ESA Sentinel-2 satellite mission (Drusch et al. 2012). It was first 
developed to estimate chlorophyll content (Dash and Curran 2004, 2007). Regarding canopy 
N detection, most studies were carried out in agricultural crops using MTCI values computed 
from in situ hyperspectral reflectance data (Tian et al. 2011; Clevers and Gitelson 2013; Li et 
al. 2014). A few were directed towards sensing N concentration in natural environments using 
airborne data, e.g. in temperate forests (Wang et al. 2016), or spaceborne data, for example in 
grasslands (Ramoelo et al. 2012; Ullah et al. 2012) or subtropical forests (Cho et al. 2013).

In this context, there are several knowledge gaps that we would like to address in this paper. 
First, although 1 km spatial resolution spaceborne MTCI time series are available from the 
ESA, MTCI has mainly been employed to detect canopy N in agricultural applications with in 
situ devices and rarely in a broader range of natural ecosystems and scales using spaceborne 
data. Due to its almost global coverage, MTCI time series could be applied to estimate canopy 
N over a larger spatial extent Moreover, Mediterranean forests have specific functional 
characteristic due to their great forest ecosystems diversity, influenced by contrasting climatic 
and topographic conditions, and their high tree species richness (Vilà-Cabrera et al. 2018). 
However, to our knowledge, limited research has been conducted to sense canopy N in 
Mediterranean ecosystems (Serrano et al. 2002) and even more so in Mediterranean forests. 
The relationship between MTCI and both N concentration (N[%], %N) and canopy N content 
(N[area], g m-2) has been studied separately (Clevers and Gitelson 2013; Wang et al. 2016), but 
very few analyses (Mirik et al. 2005; Ullah et al. 2012) have compared the ability to detect 
canopy N concentration and canopy N content simultaneously, especially in forest ecosystems.
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The objective of our study is thus to investigate the relationship between the spaceborne 
MTCI remote sensing product and canopy N in Mediterranean forests at the regional scale. 
More specifically, the relationships between MTCI and both canopy N concentration and 
canopy N content are investigated and compared. We then also examine these relationships per 
plant functional type (PFT) and at the species level.

Remote sensing of canopy N is often limited to local-scale studies due to the spatial 
restrictions associated with N data acquisition in the field and treatment of high spatial 
resolution remote sensing imagery with limited spatial coverage (Lepine et al. 2016). Our case 
study exploits the broadly and readily available MTCI time series at 1 km spatial resolution 
from the ESA Envisat mission and combines it with canopy N data, both concentration and 
content, from 846 forest plots measured between 1988 and 2001 by the Catalonian National 
Forest Inventory (Gracia et al. 2004). First, we develop a methodology to overcome the time 
discrepancy between our two sets of data. Next, both datasets are resampled to the same lower 
spatial resolutions, i.e. 5 km, 10 k, 15 km and 20 km, in order to overcome the initial spatial 
discrepancy between MTCI spatial resolution (1 km) and the size of the forest plots (6 m). 
Subsequently, we analyse the relationship between MTCI and both canopy N concentration 
and canopy N content variables, both at the resampled and initial spatial resolutions. The 
relationships at the initial spatial resolution are then stratified according to the PFT of the 
plots. The results are presented and discussed. Finally, we address the implications for future 
research and draw a conclusion.

3.2	 Material and methods

3.2.1	 Study area
Our study area corresponds to the region of Catalonia (Figure 3.1) which is located in 
northeastern Spain and has a spatial extent of 32,114 km2 (Sardans et al. 2011). While the 
region is characterised by a Mediterranean climate, the presence of the Pyrenees to the 
northwest and the Mediterranean Sea to the east creates contrasting climate conditions with 
an altitudinal gradient from north to south and a continental gradient from west to east. 
Following this pattern, the mean annual temperature varies from 1 °C in the north to 17 °C 
in the south (Sardans et al. 2011). While mean annual precipitation (MAP) is 1400 mm in 
the Pyrenees, in the south, the MAP is lower than 350 mm (Sardans et al. 2011), leading to 
seasonal drought (Lana and Burgueño, 1998) and fires (González and Pukkala 2007), which 
impact the vegetation (Liu et al. 2015).

Figure 3.1 (next page) Map showing the forest plots (n = 846) location in the region of Catalonia, 
northeastern Spain. Two zoom windows are included showing the density of the plots, one with 
high density and one with low density, relative to the MTCI 1 km pixel grid. DBF is deciduous 
broadleaf forest, EBF is evergreen broadleaf forest, ENF is evergreen needleleaf forest, mixed is 
mixed forest.



68 Canopy nitrogen: a remote sensing and modelling approach

DBF

EBF

ENF

mixed

0 50 km

PFT

92
51

500 km0



Chapter 3: Remote sensing of canopy nitrogen at regional scale in Mediterranean forests 69

3.2.2	 Data collection
3.2.2.1	Canopy N data
The canopy N data used in this research were collected by the Ecological and Forestry 
Applications Research Centre (CREAF), Universitat Autònoma de Barcelona. The data 
included 2300 closed canopy forest plots sampled between 1988 and 2001 by the Catalonian 
National Forest Inventory (Gracia et al. 2004).

The forest plots (Figure 3.1) had a minimum diameter of 6 m, which varied depending on 
the tree density in order to include between 15 and 25 trees with a diameter at breast height 
(DBH) of at least 5 cm. The DBH was recorded for all the trees present on the plot with a 
DBH of minimum 5 cm. The plots were investigated for canopy N concentration (N[%], %N) 
defined as grams of N per 100 g of leaf dry matter. The leaf samples were collected from the 
upper central part of the crown using extensible loppers. All foliar cohorts present in the 
canopy were included in the leaf sample. Each leaf sample was constituted by the leaves of at 
least three different t rees of the dominant tree species in the canopy. The species dominance 
was determined by the tallest individual. The proportion of 96% of the plots included in this 
analysis was monospecific (Sardans et al. 2011). A total of 4% of the plots (n = 30) had two 
codominant species. For these plots, two leaf samples were collected, one for each of the 
codominant species found on the plots.

The l eaf samples w ere d ried a nd then g round using a B raun Mikro-Dismembrator U 
(B. Braun Biotech International, Melsungen, Germany). They w ere a nalysed f or foliar N  
concentration using the combustion technique coupled to gas chromatography using a Thermo 
Electron gas chromatograph (model NA 2100, CE Instruments, Thermo Electron, Milan, 
Italy) (Gracia et al. 2004). To scale from leaf to canopy level, we used the leaf N concentration 
averaged over three individuals as the plot level value (Schlerf et al. 2010). We did not weight 
the average by species abundance (Smith and Martin 2001) as only 4% of the plots had two 
different species.

Along with the canopy N[%] data, we used foliar biomass data (grams of dry matter per 
square metre of ground area, g m-2) acquired during the same forest inventory (n = 2286). The 
foliar biomass data were obtained for each plot from allometric equations relating the diameter 
at breast height to the leaves dry weight. The allometric equations were species specific 
(Sardans et al. (2015), Table A. 3.1). The foliar biomass data were used to calculate canopy 
N content (N[area], grams of N per square metre of ground, g m-2) for each plot following 
Equation 3.1:

canopy N[area] =
canopy N[%] * fbiom

100
,	 (Equation 3.1)

where canopy N[area]  is the canopy N content (g m-2), canopy N[%] is the canopy N 
concentration (%N) and fbiom is the foliar biomass (g m-2).

For the plots with two codominant species, the concentration measurements were done 
separately. The obtained foliar N concentration and biomass values were then averaged to 
obtain a single canopy N[%] and canopy[area] value for each plot with two codominant species. 
Among these 30 plots with codominant species, 16 plots had codominant species from 
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different PFTs. Their PFT is thus labelled as mixed while the plots with several codominant 
species from the same PFT are labelled according to their PFTs.

Catalonian forests include both deciduous and evergreen broadleaf as well as evergreen 
needleleaf tree species. These three PFTs are referred to as deciduous broadleaf forest (DBF), 
evergreen broadleaf forest (EBF) and evergreen needleleaf forest (ENF), respectively. The 
main tree species are Pinus halepensis Mill., Pinus sylvestris L., Quercus ilex L., Pinus uncinata 
Ramond ex DC., Pinus nigra J.F. Arnold, Quercus suber L., Quercus cerrioides Willk. & Costa., 
Quercus petraea Liebl. and Fagus sylvatica L. These species accounted for 92% of the sampled 
forest plots. The 15 tree species included in this analysis are listed in Table 3.1. Plots with a 
rare dominant tree species, i.e. species that were detected in only a single plot, were excluded 
from the analysis. This applied to plots with these dominant species: Abies alba Mill., Fraxinus 
augustifolia Vahl, Fraxinus excelsior L., Pinus radiata D. Don, Populus nigra L., Populus tremula 
L. and Quercus robur L.

3.2.2.2	MTCI product
MTCI was first developed to estimate chlorophyll content in canopies. MTCI is sensitive to 
high chlorophyll content, while presenting low sensitivity to soil brightness (Curran and Dash 
2005). Its calculation, presented in Equation 3.2, is based on three reflectance bands, located 
around the red-edge point (REP) (Dash and Curran 2004):

MTCI =
Rband10 – Rband9

Rband9 – Rband8

=
R753.75 – R708.75

R708.75 – R681.75

,	 (Equation 3.2)

where Rband8, Rband9 and Rband10 represent the eighth, ninth, and tenth bands of MERIS, 
respectively. Following MERIS standard bands settings, the centres of the bands were located at 
681.25 nm, 708.75 nm and 753.75 nm on the electromagnetic spectrum.

While the ESA Envisat satellite mission producing MERIS data came to an end in 2012, 
MERIS products and MTCI in particular are still relevant because the new ESA Sentinel-2 
and Sentinel-3 satellite missions have improved band settings compared to those of MERIS. 
MTCI can be calculated from Sentinel-2 reflectance data with increased spatial resolution to 
20 m (Drusch et al. 2012). The Sentinel-3 mission also releases a level-2 chlorophyll product, 
the Ocean and Land Colour Instrument (OLCI) Terrestrial Chlorophyll Index (OTCI), 
the calculation of which is directly based on MTCI. OTCI continues the time series already 
available for MTCI (Dash and Vuolo 2010; Vuolo et al. 2012). In this study, we put emphasis on 
Envisat-MERIS as our field data are closer to the MERIS acquisition period.

MTCI level-3 imagery was obtained from the Natural Environment Research Council 
(NERC) Earth Observation Data Centre (NEODC, 2015) for the region of Catalonia between 
2002 and 2012. The original data were provided by the European Space Agency and then 
processed by Airbus Defence and Space. The original MERIS reflectance images, following 
Envisat specifications, have a revisit time of 3 days and a spatial resolution of 300 m. Compared 
to the original reflectance images, the MTCI-processed imagery has been corrected for 
atmospheric influences and cloud cover (Curran and Dash 2005), and is available as an 
either weekly or monthly averaged product almost globally (Curran et al. 2007). The spatial 
resolution of the processed data is approximately 1 km. As there is no temporally averaged 
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product available at full resolution, we chose to carry out this analysis with the MTCI monthly 
averaged processed imagery. This was done to decrease the uncertainty resulting from the use 
of single daily reflectance values. One MTCI monthly averaged imagery product covering the 
entire study area was obtained for every month between June 2002 and March 2012, except for 
October 2003, when no valid product was available.

3.2.3	 Data handling
3.2.3.1	 Methodology to link canopy N data to MTCI values
There is a discrepancy between the timing of the ground truth sampling and the satellite image 
acquisition period. While the plot sampling campaigns were carried out between 1988 and 
2001, the Envisat satellite mission was launched in 2002 and ended in 2012. To overcome the 
discrepancy, MTCI images were averaged by month over the 10 years of the satellite mission 
period. This process yielded 12 MTCI averaged images, one for each month. The averaged 
MTCI images were then linked to the forest plots based on the forest plot coordinates and 
sampling month, as the exact sampling date was known for each plot. The period between 1 
June and 31 of October was determined to be the growing season after a pre-analysis, where we 
studied yearly temporal variation of MTCI in several locations and forest types in Catalonia. 
This extended period was chosen to encompass the different vegetation phenology types 
corresponding to the contrasted climate conditions in this region. The forest plots sampled 
outside of the growing season were excluded from the analysis. The interannual variation 
of canopy N[%] data was analysed for each month included in the analysis to ensure that the 
ground data could be related to MTCI data (Figure A. 3.1). The GlobCover 2009 land cover 
map was used to exclude forest plots for which the dominant vegetation type of the MTCI 
pixel did not correspond to natural vegetation. The GlobCover map was created by ESA 
using MERIS reflectance data from 2009 (Bontemps et al. 2011). The GlobCover map was 
downloaded from the ESA data user elements website (ESA, 2010). This map comprises 22 
land cover classes and has a spatial resolution of 300 m. Using this map, we excluded forest 
plots that had undergone a land cover change since the sampling period and did not have a 
natural vegetation cover any more at the time of remote sensing image acquisition. To do so, 
the land cover map was first resampled to a spatial resolution of 1 km to be in accordance with 
MTCI spatial resolution. The resampling was done using the majority option, which ensured 
that the resampled land cover type was the most occurring land cover type in the MTCI pixel. 
Resampling the land cover map was done to exclude the plots located on heterogeneous MTCI 
pixels, i.e. pixels where the natural vegetation was not the dominant land cover type. Then, the 
plots located on land area classified as either rain-fed cropland, mosaic between croplands and 
natural vegetation, sparse vegetation or artificial surfaces were excluded from the analysis.

3.2.3.2	Relationship between MTCI and canopy N data at lower spatial resolution
In a first step, the relationships between MTCI and canopy N data values were investigated 
after resampling both datasets to the same lower spatial resolution. The resampled spatial 
resolutions were 5 km, 10 km, 15 km and 20 km. This was done because of the initial difference 
in support size between MTCI spatial resolution and the forest plots size (i.e. 1 km and 6 m, 
respectively). This enabled us to investigate the relationships between MTCI and canopy N data 
when the spatial discrepancy was accounted for. The statistical basis of this approach is that we 
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bring both datasets (forest plots and MTCI values) to the same support size or representative 
area (Bierkens et al. 2000). By averaging out forest plot values within this support size, we 
calculate the mean of the canopy N value at that support size. By resampling the MTCI values 
to that same support size, the obtained result consisted of a mean of the MTCI value at that 
support size. We then regressed the expected canopy N values (at the new support size) against 
the expected MTCI values (at the new support size).

The monthly averaged MTCI images obtained previously (section 3.2.3.1) were resampled 
successively to 5 km, 10 km, 15 km, and 20 km. Beforehand, the GlobCover 2009 land cover 
map was used to exclude from the resampling computation the MTCI pixels located on land 
surface without natural vegetation cover. As for the forest plots, MTCI pixels whose land cover 
class corresponded to rain-fed cropland, mosaic between croplands and natural vegetation, 
sparse vegetation or artificial surfaces were excluded from the upscaling analysis. Forest plot 
data were then averaged per month over the newly obtained pixel. The relationship between 
the resampled MTCI values and canopy N data was analysed using log-linear regression.

3.2.3.3	 Relationship between MTCI and canopy N data at original spatial resolution (1 km)
In a second step, the relationships between MTCI and canopy N data, both canopy N[%] 
and canopy N[area], were examined at the original spatial resolution of 1 km. This allowed 
us to investigate the influence of PFTs and species on the relationships as this information 
was lost in the resampling process. The relationships between MTCI and canopy N at 1 km 
spatial resolution were analysed with log-linear regression for the whole dataset, for each PFT 
separately as well as for individual species.

3.2.3.4	Statistical analysis
After applying the selection criteria as explained in the section 3.2.3.1, i.e. plots measured 
between June 1st and October 31st, exclusion of plots with infrequent species and selection 
based on GlobCover 2009, 846 forest plots were available for analysis, including 841 plots 
with foliar biomass and canopy N content information. Descriptive statistics of canopy N[%], 
foliar biomass and canopy N[area] were produced for each of the tree species and PFTs included 
in the analysis. The log-linear regressions between MTCI and canopy N were performed 
for both resampled and non-resampled datasets. Preliminary analysis showed that using 
a natural logarithm transformation (log) of the canopy N variables was necessary to fulfil 
linear regression model assumptions, namely normality and homogeneity of variance of the 
residuals. The minimum number of data points needed to carry out the regression analysis was 
fixed at 10. All the coefficients of determination (r2) presented are the adjusted r2 to account 
for the differences in sample sizes. We calculated the relative root mean squared error of 
cross-validation (RRMSEcv, %) using the leave-one-out cross-validation method (Clevers and 
Gitelson, 2013). Its calculation is presented in Equation 3.3 (Yao et al. 2010):

n

i=1

1
n (Pi – Oi )∑RRMSEcv = × 100

Ōi 

× , (Equation 3.3)

where Pi represents the predicted value, Oi the observed value, Ōi the mean of all observed 
value and n the total number of measurements. Resampling both datasets as well as linking the 
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plots to the MTCI pixels was done with the PCRaster software (Karssenberg et al. 2010). The 
statistical analyses were performed in the R environment (R Development Core Team 2014) 
and the ggplot2 package was used for the graphics (Wickham 2009).

3.3	 Results

3.3.1	 Descriptive statistics
Descriptive statistical analysis of canopy N[%], canopy N[area] and foliar biomass were performed 
for each tree species included in the dataset (Table 3.1). The four most abundant species (Pinus 
halepensis, Pinus sylvestris, Quercus ilex and Pinus uncinata) dominated 667 plots, i.e. almost 
80% of the plots. The cumulated abundance percentages of ENF, EBF and DBF species were 
equal to 66 %, 22 % and 9 %, respectively. From these data, it is clear that the forests plots were 
mainly dominated by ENF species. On average, Pinus uncinata plots had the highest biomass 
values, while Quercus suber plots showed the lowest mean value for this variable. Descriptive 
statistics were also analyzed by PFT. The mean canopy N[%] was lowest for ENF species (0.97 
%N) and highest for DBF trees (2.17 %N) (Figure 3.2a). Canopy N[%] value ranges were equal 
to 1.91 %N, 2.06 %N, 1.68 %N and 1.42 %N for DBF, EBF, ENF and mixed plots, respectively. 
The canopy N[area] statistics were analysed by PFT as well (Figure 3.2b) and the averaged canopy 
N[area] values ranged from 1.82 g m-2 to 4.61 g m-2. A Pearson correlation matrix (Figure 3.3) 
was computed between the variables for the whole dataset. The correlation between each pair 
of variables was significant and the correlation between canopy N[area] and foliar biomass was 
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Figure 3.2. Box plots of (a) canopy 
nitrogen (N) concentration (canopy 
N[%], %N) for deciduous broadleaf 
forest plots (DBF, n = 80), evergreen 
broadleaf forest plots (EBF, n = 186), 
evergreen needleleaf forest plots 
(ENF, n = 564) and mixed forest plots 
(mixed, n = 16); (b) canopy N content 
(canopy N[area], g m-2) for deciduous 
broadleaf forest plots (DBF, n = 80), 
evergreen broadleaf forest plots (EBF,  
n = 186), evergreen needleleaf forest 
plots (ENF, n = 563) and mixed forest 
plots (mixed, n = 12).
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strongest (r = 0.88). This result was expected as the foliar biomass was included in the N[area] 
calculation. This matrix also shows distribution histograms of the three variables. As canopy 
N[%] and canopy N[area] distributions are positively skewed, a logarithmic transformation was 
applied to these variables to fulfil linear model assumptions. Correlation matrices for each of 
the DBF, EBF and ENF plots are presented in the Appendix (Figure A.3.2-4).

3.3.2	 Relationship between MTCI and canopy N data at lower spatial resolution
The relationships between MTCI and both canopy N[%] and canopy N[area] were studied after 
resampling both datasets to the same lower spatial resolution. This was done to investigate the 
relationship between MTCI and canopy N data when the initial spatial discrepancy between 
the two datasets was accounted for. The results showed that the log-linear relationships 
between MTCI and either canopy N[%] or canopy N[area] were all highly significant (p<0.000). 
Moreover, the relationship between MTCI and canopy N[%] was always stronger than the 

0

20

40

60

20

40

60

20

40

60

80

0

500

1000

1500

0

5

10

15

1 2 3 0 500 1000 1500 0 5 10 15

C
an

o
p

y 
N

[%
] (

%
N

)
Fo

lia
r 

b
io

m
as

s 
(g

 m
−

2 )
C

an
o

p
y 

N
[a

re
a]
 (

g
 m

−
2 )

Canopy N[%] (%N) Foliar biomass (g m−2) Canopy N[area] (g m−2)

92
51

r = -0.115
p-value = 0.001
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Figure 3.3. The upper right part of this figure shows the Pearson correlation matrix between 
canopy N[%] (%N), canopy N[area] (g m-2) and foliar biomass (g m-2) variables for the whole 
dataset, n = 841. The diagonal presents the histograms of the variables on the x axis, while the y 
axis represents the number of counts. The lower left part of this figure represents the scatterplots 
between the variables. PFT is plant functional type, DBF is deciduous broadleaf forest, EBF is 
evergreen broadleaf forest, ENF is evergreen needleleaf forest, mixed is mixed forest.
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relationship for MTCI and canopy N[area] for each resampling factor. The r2 values of the 
relationship between MTCI and canopy N[%] were equal to 0.33, 0.37, 0.34 and 0.42 for 5 
km, 10 km, 15 km and 20 km resampled spatial resolution, respectively. The r2 values of the 
relationship between MTCI and canopy N[area] were equal to 0.20, 0.20, 0.19 and 0.17 at 5 km, 
10 km, 15 km and 20 km spatial resolution. The relationship between MTCI and canopy N[%] at 
20 km spatial resolution is shown in Figure 3.4. Table 3.2 shows the number of plots per pixel 
for different pixel sizes (km). As expected, the number of plots per pixel increased with the 
pixel size, with a mean of 4.1 plots at 20 km spatial resolution. The descriptive statistics of the 
number of different PFTs, species and sampling years per pixel spatial resolution are provided 
in the Appendix (Table A. 3.2-4).
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r2 = 0.42,  p−value = 9.4e-26

Figure 3.4. Scatterplot between the MTCI (-) and canopy nitrogen concentration (canopy N[%], 
%N) after resampling the datasets to 20 km spatial resolution (n = 204).

Table 3.2. Descriptive statistics of the number of plots per pixel, for different spatial resolutions 
(km, pixel length): min is minimum, max is maximum, mean is average, sd is standard deviation.

Spatial resolution (km) Number of plots per pixel

min max mean sd

5 1 6 1.44 0.77
10 1 11 2.19 1.53
15 1 15 3.11 2.59
20 1 22 4.09 3.74



Chapter 3: Remote sensing of canopy nitrogen at regional scale in Mediterranean forests 77

3.3.3	 Relationship between MTCI and canopy N data at original spatial resolution 
(1 km)

3.3.3.1	 Relationship between MTCI and canopy N concentration
The relationships between MTCI and canopy N data were studied at the original spatial 
resolution (1 km). The results showed that the log-linear regression between MTCI and canopy 
N[%] for the whole dataset (n = 846) was highly significant (p<0.000) and had an r2 value of 
0.32 and an RRMSEcv value of 18.7 % (Table 3.3, Figure 3.5a). The relationship between MTCI 
and canopy N[%] was also investigated for each PFT individually (Figure 3.5b-e). For DBF 
plots, the relationship between MTCI and canopy N[%] had an r2 value of 0.24 (n = 80) and was 
significant. However, although statistically significant, the r2 value of the relationship between 
MTCI and canopy N[%] for EBF and ENF plots were lower and equal to 0.02 (n = 186) and 0.10 
(n = 564), respectively.

The relationship between MTCI and canopy N[%] was also significant for one individual 
species, Fagus sylvatica. The proportion of explained variance for this species was equal to 
0.69 (n = 15). This result, although obtained on a restricted number of plots, showed that the 
significant relationships between MTCI and canopy N[%] not only existed when all DBF plots 
were included but also held for one individual DBF species.
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Figure 3.5 Scatterplot and log-linear regression line between the MTCI (-) and canopy nitrogen 
(N) concentration (canopy N[%], %N) for (a) the whole dataset (n = 846); (b) deciduous broadleaf
forest plots (DBF, n = 80); (c) evergreen broadleaf forest plots (EBF, n = 186); (d) evergreen
needleleaf forest plots (ENF, n = 564); (e) mixed forest plots (n = 16). PFT is plant functional
type. The grey shading represents the prediction intervals (95 %). Canopy N[%] variable was log 
transformed to fulfil linear model assumptions.
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3.3.3.2	 Relationship between MTCI and canopy N content
Significant relationships between MTCI and canopy N[area] were found for the whole dataset 
as for EBF and ENF plots (Table 3.4). The scatterplots between MTCI and canopy N[area] 
are presented in Figure 3.6. The proportion of explained variance was higher for ENF plots 
compared to the other PFTs and compared to the overall relationship across all plots. The 

Table 3.3 Observed log-linear regression equations between the MTCI (-) and canopy nitrogen 
concentration (CN[%], %N) for different subgroups. Number of plots (n), determination coefficient 
(r2), p value and relative root mean squared error of cross-validation (RRMEcv) are shown. PFT 
is plant functional type, DBF is deciduous broadleaf forest, EBF is evergreen broadleaf forest, ENF 
is evergreen needleleaf forest, mixed is mixed forest.

Group n Log-linear regression 95% confidence 
interval 

intercept

95% confidence 
interval

slope

r2 p value RRMSEcv

overall 846 MTCI = 2.18 + 0.79 log(CN[%]) [2.15, 2.20] [0.71, 0.87] 0.32 < 0.000 17.0
DBF 80 MTCI = 2.07 + 0.95 log(CN[%]) [1.78, 2.36] [0.59, 1.32] 0.24 < 0.000 12.7
EBF 186 MTCI = 2.39 + 0.29 log(CN[%]) [2.31, 2.48] [0.04, 0.54] 0.02 0.021 12.4
ENF 564 MTCI = 2.13 + 0.61 log(CN[%]) [2.10, 2.17] [0.46, 0.76] 0.10 < 0.000 19.2
mixed 16 MTCI = 2.05 + 1.35 log(CN[%]) [1.63, 2.46] [0.53, 2.17] 0.44 0.003 12.4
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Figure 3.6 Scatterplot and log-linear regression line between the MTCI (-) and canopy N content 
(canopy N[area], g m-2) for (a) the whole dataset (n = 841); (b) deciduous broadleaf forest plots 
(DBF, n = 80); (c) evergreen broadleaf forest plots (EBF, n = 186); (d) evergreen needleleaf forest 
plots (ENF, n = 563); (e) mixed forest plots (n = 12). PFT is plant functional type. The grey 
shading represents the prediction intervals (95 %). Canopy N[area] variable was log transformed 
to fulfil linear models assumptions.
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relationship between MTCI and canopy N[area] was also investigated for 10 individual species 
and one of them showed significant relationships: Quercus ilex (r2 = 0.10, p-value < 0.000, n = 
160).

3.4	 Discussion

3.4.1	 Relationship between MTCI and canopy N data at lower spatial resolution
This pre-analysis was undertaken to study the MTCI-canopy N relationships when taking the 
discrepancy between MTCI original spatial resolution (1 km) and the size of the forest plots 
(diameter of 6 m) into account. By resampling both datasets to a lower spatial resolution, 
i.e. 5 km, 10 km, 15 km and 20 km, the obtained values were less impacted by small-scale
variations because they were obtained by averaging several values over a larger area. The results
showed that the relationship between MTCI and canopy N data was significant and consistent
across the resampled spatial resolutions investigated: 5 km, 10 km, 15 km and 20 km. This,
however, does not give any indication about the uncertainties resulting from the initial spatial
discrepancy between both datasets and about the influence of such uncertainties on the MTCI-
canopy N relationship.

3.4.2	 Relationship between MTCI and canopy N data at original spatial resolution 
(1 km)

3.4.2.1	Canopy N concentration
The overall relationship between MTCI and canopy N[%] at 1 km spatial resolution for all 
the forest plots (n = 846) was significant and the r2 value was equal to 0.32 (Table 3.3, Figure 
3.5). This result showed that canopy N[%] could be related to MTCI in Mediterranean forests. 
The performance of the MTCI vegetation index to detect canopy N[%] in Mediterranean 
vegetation was similar to the results obtained from previous studies using spaceborne MTCI 
at higher spatial resolution. For example, by using MTCI computed from the spaceborne 
RapidEye sensor at 5 m spatial resolution, it was possible to detect canopy N[%] in a grassland 

Table 3.4 Observed log-linear regressions equations between the MTCI (-) and canopy nitrogen 
content (CN[area], g m-2) for different subgroups. Number of plots (n), determination coefficient 
(r2), p value and relative root mean squared error of cross-validation (RRMEcv) are shown. PFT 
is plant functional type, DBF is deciduous broadleaf forest, EBF is evergreen broadleaf forest, ENF 
is evergreen needleleaf forest, mixed is mixed forest.

Group n Log-linear regression 95% confidence 
interval

intercept

95% confidence 
interval

slope

r2 p value RRMSEcv

Overall 841 MTCI = 2.08 + 0.20 log(CN[area]) [2.04, 2.12] [0.17, 0.23] 0.17 <0.000 18.7
DBF 80 MTCI = 2.72 + 0.06 log(CN[area]) [2.58, 2.87] [-0.04, 0.15] 0.003 0.263 14.7
EBF 186 MTCI = 2.39 + 0.07 log(CN[area]) [2.32, 2.46] [0.02, 0.12] 0.04 0.005 12.4
ENF 563 MTCI = 1.94 + 0.20 log(CN[area]) [1.91, 1.99] [0.17, 0.24] 0.19 <0.000 18.2
mixed 12 MTCI = 2.43 + 0.34 log(CN[area]) [2.05, 2.82] [-0.26, 0.95] 0.05 0.236 12.8
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savannah and subtropical forest with similar coefficients of determination, r2 = 0.35 and r2 = 
0.52, respectively (Ramoelo et al. 2012; Cho et al. 2013). However, while there is a consensus 
regarding MTCI ability for in situ leaf or canopy N[%] detection in a variety of crops using 
handheld spectrometers (Tian et al. 2011; Li et al. 2014), there is no general agreement about 
MTCI ability for canopy N[%] detection across vegetation and sensor types at larger scales. For 
example, MTCI computed from airborne data at 3 m spatial resolution could not be related 
to canopy N[%] from a mixed temperate forest (Wang et al. 2016). In this context, our finding 
brings new insight into MTCI N[%] sensing capabilities at a much coarser spatial resolution (1 
km) compared to what has been done before. In these comparisons, it should be taken into 
account that most previous studies were based on a short sampling campaign while our study 
incorporates canopy N data from a forest inventory that was carried out during the entire 
growing season and, therefore, includes differences in phenology.

Investigating the influence of the PFTS on the overall relationship highlighted the difference 
between DBF, EBF and ENF types of vegetation regarding canopy N[%] detection by spaceborne 
MTCI. The relationships between MTCI and canopy N[%] were significant for all the PFT taken 
separately (pvalue<0.05). However, a higher proportion of variance was explained for DBF 
and mixed plots (r2 = 0.24 and r2 = 0.44 for DBF and mixed plots, respectively) compared to 
the other plant functional types (r2 = 0.10 and r2 = 0.02 for ENF and EBF trees, respectively) 
and the relationship between MTCI and canopy N[%] was especially weaker for EBF plots. This 
indicates that the relationship observed for all the forest plots was mainly driven by DBF and 
mixed plots. This result is different from what was observed by Ollinger et al. (2008) in boreal 
forests, where canopy N[%] was related to NIR reflectance for both broadleaf and needleleaf 
plots taken separately. Moreover, the results obtained for ENF tree species are surprising as 
previous studies investigating the relationship between foliar N[%] and in situ measured spectra 
reported higher r2 values, r2 = 0.59 and r2 = 0.81 in spruce and pine forest, respectively (Stein 
et al. 2014; Schlerf et al. 2010). The differences in scale and methodology might explain the 
divergent results compared to previous findings. Indeed, in our study, the analysis is carried 
out at a much coarser spatial resolution using spaceborne data compared to the fine spatial 
scale obtained with in situ devices. Moreover, most of these studies were carried out in 
temperate forests and studies investigating canopy N[%] detection in Mediterranean regions are 
scarce. When investigating the relationship between canopy N[%] and MTCI at the species level, 
we also found that it was significant for Fagus sylvatica plots (r2 = 0.69).

In the literature, the relationship between MTCI and canopy N[%] is often not stratified 
by PFT or species (Sullivan et al. 2013; Wang et al. 2016). In this study, we showed that 
investigating this relationship for each PFT taken separately yielded additional insight. 
Indeed, to our knowledge the difference in explained variance between DBF and other PFTs 
in the MTCI and canopy N[%] relationship has not been observed before. Moreover, the results 
observed for Fagus sylvatica plots (n = 15) were consistent with the stronger relationship 
observed for DBF plots.

3.4.2.2	Canopy N content
The relationship between MTCI and canopy N[area], which was obtained by combining canopy 
N concentration values with biomass data, was significant across all plots (n = 841) (Table 3.4, 
Figure 3.6). Although the r2 value was lower for the relationship between MTCI and canopy 
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N[area] (r2 = 0.17) than for the relationship between MTCI and canopy N[%] (r2 = 0.32), it is 
interesting to note that canopy N[area] can be related to spaceborne MTCI as remotely sensed 
detection of canopy N[area] is rarely investigated in forest environments (Mirik et al. 2005). In 
comparison, previous studies conducted in grasslands reported higher prediction accuracy, e.g. 
by using spaceborne MTCI at 300 m spatial resolution or a simple ratio-type vegetation index 
computed from airborne imagery at 1 m spatial resolution; canopy N[area] was detected with r2 
values equal to 0.29 and 0.66, respectively (Mirik et al. 2005; Ullah et al. 2012).

The relationship between MTCI and canopy N[area] was only significant for ENF and EBF 
plots (Figure 3.6b-e), with a higher proportion of explained variance for ENF plots (r2 = 0.19). 
However, when this relationship was investigated at the species scale, significant results were 
found for Quercus ilex (EBF) plots. This is accordance with a previous study examining the 
remote sensing of canopy N[area] in Quercus ilex trees by MTCI computed from in situ spectra 
(r2 = 0.43) (Pacheco-Labrador et al. 2014).

3.4.2.3	Comparing results obtained for canopy N concentration and canopy N content
This analysis highlighted the difference between canopy N expressed as a percentage of leaf 
dry matter (canopy N[%]) and on an area basis (canopy N[area]) regarding the log-linear 
relationship with MTCI for the different PFTs. Canopy N[%] of DBF and mixed plots showed 
higher correlation with MTCI compared to EBF and ENF plots, while the relationship 
between canopy N[area] of ENF plots with MTCI was stronger than for any other PFTs. These 
differences between the log-linear relationship between MTCI and either canopy N[%] and 
canopy N[area] can be related to previous findings showing that canopy N[area] but not canopy 
N[%] could be detected by MTCI in grassland (Ullah et al. 2012) and by a simple ratio index 
in heterogeneous rangelands (Mirik et al. 2005) at various spatial scales (300 m and 1 m, 
respectively). In the literature, canopy N[%] is more often used to detect N state of foliage in 
forest, while canopy N[area] is regularly employed in grasslands but also in crops (Clevers and 
Gitelson 2013; Schlemmer et al. 2013). Our results showed that, for ENF plots, when biomass 
was accounted for, as in canopy N[area], the relationship between MTCI and canopy N[area] was 
stronger compared to canopy N[%]. This suggests that biomass had an influence on and was a 
confounder of the MTCI-canopy N log-linear relationship.

3.4.3	 Possible confounding factors of the MTCI canopy N relationship
The relationships between MTCI and both canopy N[%] and canopy N[area] were influenced by 
the PFT of the plots. The relationship between MTCI and canopy N[%] was stronger for DBF 
and mixed plots compared to EBF and ENF plots while the opposite was true for the MTCI-
canopy N[area] relationship. In the ongoing discussion about the mechanisms underlying the 
remote sensing of canopy N, some authors argued that the difference in structural properties 
between different PFTs was a confounding factor of the observed relationship between 
canopy N and remote sensing data, rendering it spurious (Knyazikhin et al. 2013). Other 
authors suggested that the role of canopy structure as confounding factor can be explained 
by an indirect association between canopy N and canopy structure resulting from convergent 
adaptive processes (Ollinger et al. 2013; Townsend et al. 2013). In this context, our analysis 
showed that the PFTs of the plots and the biomass had an influence on the MTCI canopy N 
relationship in a specific type of ecosystem, namely Mediterranean forests. Other confounding 
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factors associated with N availability that might affect the observed relationship possibly 
include biomass, biomass allocation, leaf area index (LAI), water availability and soil type. 
The data from the forest inventory used in this analysis, i.e. the Catalonian National Forest 
Inventory, were extensively studied, showing that water availability was the most limiting 
factor in this region. Water availability was positively correlated with both the N[area] and N[%] 
in leaves, as well as with foliar and total above-ground biomass through MAP (Sardans et al. 
2011; Sardans and Peñuelas 2013). The MAP also influenced the PFT distribution as DBF plots 
were located in wetter areas than EBF plots, which were found in wetter sites than ENF plots. 
Regarding the influence of PFTs on the foliar biomass, DBF plots had on average 45% less foliar 
biomass than EBF or ENF plots (Sardans and Peñuelas 2013).

3.4.4	 Perspectives for future applications
The methodology applied in this paper is different from the usual methodology implemented 
to detect canopy N concentration in forests. Remote sensing of N in forest canopies by 
hyperspectral sensors is often coupled with intensive forest sampling measurements. This 
method has been effective for detecting canopy N concentration locally in a vast range of 
environments (Serrano et al. 2002; Smith et al. 2002; Townsend et al. 2003; Ollinger et al. 
2008; Wang et al. 2016). Applying this technique at larger scales has already been explored. 
For example, Martin et al. (2008) compiled 137 field plot data from previous studies in various 
forest types and investigated the possibility to find a common detection algorithm. However, 
due to the different treatments required as well as the limited swath width associated with 
the high spatial resolution (from 3 m to 30 m for HysPex airborne and Hyperion spaceborne 
sensors, respectively, Wang et al. 2016; Smith et al. 2003), applying imaging spectrometry at a 
broader scale, although feasible, might reveal to be time consuming. Depending on the sensors 
as well as on the extent of the study area, this might involve correcting the acquired images for 
atmospheric influences and cloud cover as well as combining several images into a larger-scale 
image. A recent study in northern temperate forests explored the effect of spatial resolution on 
canopy N[%] estimation. The results showed that, although the prediction accuracy was reduced 
compared to what was achieved using PLS regression at higher spatial resolution, it was still 
possible to estimate canopy N[%] with r2 between 0.34 and 0.81 using various vegetation indices 
computed from Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data 
at 500 m spatial resolution (Lepine et al. 2016). In this context, the methodology applied in 
this article could be a valuable alternative to explore remote sensing of canopy N at larger 
scale. Using published data from an extensive field plot inventory, we were able to relate both 
canopy N[%] and canopy N[area] to MTCI at 1 km spatial resolution. Although the relationships 
found were modest, our study contributes to the ongoing discussion about how to remotely 
sense canopy N over larger areas. As MTCI time series (1 km) are readily and almost globally 
available, it could eventually be possible to assess our approach at a broader scale in different 
types of biomes. The results obtained for DBF species and Fagus sylvatica in particular 
suggest that this method may be efficient for estimating canopy N in temperate forests. If 
the strength of the relationship between MTCI and canopy N can further be improved, this 
could lead to canopy N monitoring possibilities at regional scale. In this context, the new 
OLCI sensor, aboard the Sentinel-3 satellite, and the MultiSpectral Instrument (MSI), aboard 
Sentinel-2 satellite, might be promising due to their higher spatial resolution (from 10 to 60 
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m for Sentinel-2). They have bands well positioned to compute the MTCI vegetation index. 
Although the OTCI, i.e. the successor of the MTCI for the OLCI sensor, is already included 
in the OLCI level-2b reflectance image, no level 3 product (mosaicked over larger areas and 
temporally averaged, hence similar to the MTCI time series used in this analysis) is available 
yet. In addition to more detailed remote sensing data, supplementary ground-based canopy N 
observations could better constrain the regression models as well. Obtaining reliable ground-
based canopy N data over larger areas and for diverse and globally distributed vegetation 
types would also be necessary to calibrate and validate global vegetation models, as the model 
performance will depend on the ground data availability and distribution. Remotely sensed 
canopy N estimates would also improve the calibration of such models. In a recent study, the 
global vegetation model Lund-Postdam-Jena General Ecosystem Simulator (LPJ-GUESS) was 
able to simulate the differences in foliar N between different PFTs but not within one PFT 
(Fleischer et al. 2015). In this context, improving remotely sensed canopy N estimates for 
homogeneous vegetation types would be a beneficial development for such models.

3.5	 Conclusion

In this study, we investigated the relationship between spaceborne MTCI from Envisat and 
both canopy N[%] and canopy N[area] at regional scale in Mediterranean forests. We found 
significant results across all plots both when the original data were resampled to 5 km, 10 km, 
15 km and 20 km and for the original spatial resolution of 1 km. The relationship between 
MTCI and canopy N data was also significant for some individual PFTs and species. The r2 
values were 0.32 and 0.17 for the overall relationships between MTCI and either canopy N[%] or 
canopy N[area], respectively. We highlighted the differences between PFTs and both canopy N[%] 
and canopy N[area]: the relationship between MTCI and canopy N[%] was stronger for DBF and 
mixed plots, while canopy N[area] was more linked to MTCI for ENF plots. Such differences in 
relationships between MTCI and either canopy N[%] or canopy N[area] were already observed in 
a grasslands ecosystem. Our results showed that MTCI could be related to canopy N for some 
individual PFTs, indicating an influence of the PFTs on the MTCI-canopy N relationship. The 
methodology developed in this study could be investigated at larger scales in different types 
of ecosystems. While this could already be undertaken using the Envisat MTCI 10-year time 
series as it is almost globally available, ESA’s new Sentinel-2 satellite that was launched on 23 
June 2015 yields reflectance data at improved spatial and temporal resolution than Envisat-
MERIS. Canopy N estimates collected through larger-scales applications could be exploited in 
vegetation modelling studies including both the C and N cycles.

3.6	 Data availability

The canopy data used in this study can be obtained from the TRY Plant Trait Database (https://
www.try-db.org/TryWeb/Home.php, dataset 91) or by directly contacting the authors.
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3.8	 Appendix

This Appendix presents the interannual variation of canopy N[%] (Figure A. 3.1), the correlation 
matrices for DBF (Figure A. 3.2), EBF (Figure A. 3.3) and ENF plots (Figure A. 3.4) as well as 
the tables representing the allometric relationships between foliar biomass and DBH (Table A. 
3.1), the number of PFTs (Table A. 3.2), the number of species (Table A. 3.3) and the number 
of sampling years (Table A. 3.4) per resampled pixel, by pixel spatial resolution.
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Figure A. 3.1. Interannual variation of canopy N[%] (%N) for each month included in the analysis. 
The numbers 6-10 (right side of the figure, row numbers) refer to the months of June, July, 
August, September and October, respectively. DBF is deciduous broadleaf forest, EBF is evergreen 
broadleaf forest, ENF is evergreen needleleaf forest, mixed is mixed forest. Each point represents 
an observation at a forest plot. Note that the forest plots were not sampled multiple times; hence, 
the interannual variation encompasses both temporal variation and spatial variation.
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Figure A. 3.2. The upper right part of this figure shows the Pearson correlation matrix between 
canopy N[%] (%N), canopy N[area] (g m-2) and foliar biomass (g m-2) variables for deciduous 
broadleaf forest plots (DBF), n = 80. The diagonal presents the histogram of the variable on the x 
axis, while the y axis represents the number of counts. The lower left part of this figure represents 
the scatterplots between the variables.
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Figure A. 3.3. The upper right part of this figure shows the Pearson correlation matrix between 
canopy N[%] (%N), canopy N[area] (g m-2) and foliar biomass (g m-2) variables for evergreen 
broadleaf forest (EBF) plots, n = 186. The diagonal presents the histogram of the variable on the x 
axis, while the y axis represents the number of counts. The lower left part of this figure represents 
the scatterplots between the variables.
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Figure A. 3.4. The upper right part of this figure shows the Pearson correlation matrix between 
canopy N[%] (%N), canopy N[area] (g m-2) and foliar biomass (g m-2) variables for evergreen 
needleleaf forest (ENF) plots, n = 563. The diagonal presents the histogram of the variable on the x 
axis, while the y axis represents the number of counts. The lower left part of this figure represents 
the scatterplots between the variables.
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Table A. 3.1. Allometric relationships between foliar biomass and DBH for the different species 
included in this analysis. DBH is diameter at breast height (cm). Adapted from (Sardans and 
Peñuelas, 2015).

Species Foliar biomass = a · DBHb

a b n r²

Castanea sativa 0.032 1.669 86 0.49
Fagus sylvatica 0.026 1.546 285 0.66
Pinus halepensis 0.037 1.656 2420 0.65
Pinus nigra 0.022 1.870 1641 0.65
Pinus pinaster 0.034 1.848 169 0.67
Pinus pinea 0.014 2.029 335 0.72
Pinus sylvestris 0.036 1.651 2755 0.66
Pinus uncinata 0.087 1.410 770 0.62
Quercus canariensis 0.120 1.322 36 0.57
Quercus faginea 0.197 0.943 170 0.40
Quercus humilis 0.047 1.462 595 0.59
Quercus cerrioides 0.023 1.805 138 0.73
Quercus ilex 0.063 1.576 2151 0.60
Quercus petraea 0.014 1.888 121 0.73
Quercus suber 0.026 1.446 314 0.55

Table A. 3.2. Descriptive statistics of the number of plant functional types (PFTs) per pixel, by 
pixel spatial resolution (km): min is minimum, max is maximum, mean is average, sd is standard 
deviation.

Spatial resolution (km) Number of PFTs per pixel

min max mean sd

5 1 3 1.08 0.29
10 1 4 1.22 0.48
15 1 4 1.34 0.61
20 1 4 1.45 0.69

Table A. 3.3. Descriptive statistics of the number of species per pixel, by pixel spatial resolution 
(km): min is minimum, max is maximum, mean is average, sd is standard deviation.

Spatial resolution (km) Number of species per pixel

min max mean sd

5 1 4 1.14 0.41
10 1 4 1.38 0.67
15 1 4 1.58 0.85
20 1 6 1.79 1.07
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Table A. 3.4. Descriptive statistics of the number of sampling years per pixel, by pixel spatial 
resolution (km): min is minimum, max is maximum, mean is average, sd is standard deviation.

Spatial resolution (km) Number of sampling years per pixel

min max mean sd

5 1 2 1.02 0.15
10 1 3 1.07 0.26
15 1 3 1.10 0.33
20 1 3 1.14 0.40
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Mapping canopy nitrogen in European forests using remote sensing and environmental 
variables with the random forests method3

Abstract. Canopy nitrogen (N) influences carbon (C) uptake by vegetation through its 
important role in photosynthetic enzymes. Global Vegetation Models (GVMs) predict C 
assimilation, but are limited by a lack spatial canopy N input. Mapping canopy N has been 
done in various ecosystems using remote sensing (RS) products, but has rarely considered 
environmental variables as additional predictors. Our research objective was to estimate spatial 
patterns of canopy N in European forests and to investigate the degree to which including 
environmental variables among the predictors would improve the models compared to using 
remotely sensed products alone. The environmental variables included were climate, soil 
properties, altitude, N deposition and land cover, while the remote sensing products were 
vegetation indices and NIR reflectance from MODIS and MERIS sensors, the MOD13Q1 and 
MTCI products, respectively. The results showed that canopy N could be estimated both within 
and among forest types using the random forests technique and calibration data from ICP 
Forests with good accuracy (r2 = 0.62, RRMSE = 0.18). The predicted spatial pattern shows 
higher canopy N in mid-western Europe and relatively lower values in both southern and 
northern Europe. For all subgroups tested (All plots, Evergreen Needleleaf Forest (ENF) plots 
and Deciduous Broadleaf Forest (DBF) plots), including environmental variables improved the 
predictions. Including environmental variables was especially important for the DBF plots, as 
the prediction model based on remotely sensed data products predicted canopy N with the 
lowest accuracy.

Keywords: Canopy nitrogen, foliar nitrogen, plant traits, ICP Forests, remote sensing, MODIS, 
MERIS, environmental predictors, random forests, vegetation indices

3	 This chapter is based on: Loozen, Y., Rebel, K.T., de Jong, S.M., Lu, M., Ollinger, S.V., Wassen, M.J., & 
Karssenberg, D. (2020). Mapping canopy nitrogen in European forests using remote sensing and environmental 
variables with the random forests method. Remote Sensing of Environment, 247, 111933. https://doi.org/10.1016/j.
rse.2020.111933
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4.1	 Introduction

In recent years, mapping canopy nitrogen (N), defined here as the N concentration in plant 
foliage (g N/100 g dry matter, %N), has been studied at different scales and in a variety of 
natural environments (Martin et al. 2008; Ollinger et al. 2008; Ramoelo et al. 2012; Wang 
et al. 2016). This interest in canopy N can be attributed to the role N plays in physiological 
and ecosystem processes. N is an essential nutrient for plant growth (Chapin 1987). Leaf N 
concentration is linked to several leaf traits associated with plant photosynthesis (Hikosaka 
2004), i.e. photosynthetic capacity (Evans 1989), light use efficiency (Kergoat et al. 2008), 
specific leaf area and leaf life span (Reich et al. 1999), as shown in the leaf economic spectrum 
(Wright et al. 2005; Wright et al. 2004) as well as whole-ecosystem net primary productivity 
(Reich 2012).

Global vegetation models (GVMs) are designed to simulate ecosystem functioning 
and carbon (C) assimilation by terrestrial ecosystems. Several GVMs explicitly include a 
representation of the N cycle, which allows them to analyze the influence of the N cycle on 
the terrestrial C sink (Xu-Ri and Prentice 2008). Spatially explicit data about the N cycle are 
needed to validate these models. Canopy N mapping through remote sensing could be useful 
for this purpose.

Mapping canopy N using remote sensing evolved from benchtop studies aiming to identify 
specific wavelengths related to leaf N concentration using spectroradiometers (Kumar et al. 
2006). The red-edge and near infra-red (NIR) have since then been identified as key spectral 
regions for canopy N estimation (Clevers and Gitelson 2013; Li et al. 2014; Ollinger et al. 
2008). The role of the red-edge region, located between 680 and 750 nm (Horler et al. 1983), 
for canopy N estimation is based on the link between foliar N and chlorophyll through the 
observed correlation between the red-edge region and leaf chlorophyll content (Clevers and 
Gitelson 2013; Homolová et al. 2013; Horler et al. 1983; Kokaly et al. 2009; Schlemmer et al. 
2013). The NIR spectral region was also identified to correlate with canopy N (Ollinger et al. 
2008; Wang et al. 2016). This was observed in temperate and boreal North American forests 
where canopy N was correlated to both the NIR spectral region as well as NIR-based vegetation 
indices, including NDVI and EVI (Lepine et al. 2016; Ollinger et al. 2008). Similar relationships 
were also observed in a mixed European temperate forest (Wang et al. 2016). Although the 
exact mechanism behind the relationship between canopy N and the NIR reflectance is still 
unclear, it likely stems from associations between canopy N and the structural properties 
influencing the NIR scattering.

Among the existing techniques employed for canopy N mapping, creating and using 
vegetation indices (VIs) is a method that relies on a combination of several spectral regions or 
bands. Initially developed for crops and local scale applications (Chen et al. 2010; Clevers and 
Gitelson 2013; Hansen and Schjoerring 2003; Li et al. 2014; Mutanga et al. 2004; Schlemmer et 
al. 2013; Serrano et al. 2002; Tian et al. 2011), red-edge and, to a lesser extent, NIR-based VIs 
have been used for canopy N estimation at larger scales in various ecosystems. Several studies 
focused on grasslands and forest at local scale (Ling et al. 2014; Mirik et al. 2005; Wang et al. 
2016) while other studies focused on regional areas such as savannah (Ramoelo et al. 2012) 
and Mediterranean forests (Loozen et al. 2018).
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More recently, environmental variables were used together with remote sensing products 
to predict canopy N. This approach was suggested by McNeil et al. (2012) who observed 
an influence of N deposition on the spatial variability of leaf N concentration. Including 
environmental variables to predict canopy N is thus based on the fact that foliage biochemical 
concentration is influenced by several environmental factors. In particular, canopy N has 
been documented to be influenced by climate in Mediterranean forests (Sardans et al. 2011), 
in Europe (Sardans et al. 2015) and at the global scale (Reich and Oleksyn 2004). Similarly, 
N deposition affects canopy N (McNeil et al. 2007, 2012; Sardans et al. 2016b; Sardans et al. 
2015) as does plant functional type (PFT) (Han et al. 2011; Sardans et al. 2016a; Sardans et al. 
2015). Soil properties, i.e. soil pH and nutrients, were also found to correlate with canopy N 
(Han et al. 2011). This approach, i.e. including environmental variables to predict canopy N 
using remote sensing, was implemented in a study mapping canopy N in savannah grass using 
red-edge VIs as well as several environmental variables: soil, climate, geology and altitude 
(Ramoelo et al. 2012). In a recent study, Moreno-Martínez et al. (2018) used the random 
forests algorithm to map canopy N at global scale for several PFTs. As predictor variables, they 
used bands and VI products from the MODIS sensor as well as environmental variables, i.e. 
bioclimatic variables, surface temperature and elevation.

The random forests algorithm used by Moreno-Martínez et al. (2018), is a machine learning 
technique based on regression trees which allows to model nonlinear relationships using 
several types of explanatory variables. It was found to be among the best techniques to predict 
foliar traits (Moreno-Martínez et al. 2018). Random forests have mainly been implemented in 
grasslands, at local (Adjorlolo et al. 2014; Mutanga et al. 2015) and regional scales (Ramoelo et 
al. 2015), but also in a coffee plantation (Chemura et al. 2018) and in the miombo woodlands 
(Mutowo et al. 2018). These studies included either all reflectance bands available or several 
VIs as predictor variables for canopy N.

In this context, although several studies attempted to develop a methodology to map 
canopy N over large spatial extents (Lepine et al. 2016; Martin et al. 2008; Moreno-Martínez et 
al. 2018), no study so far investigated the feasibility of mapping the spatial patterns of canopy 
N in European forests. In this study, our research objective was (i) to predict canopy N and its 
spatial pattern over European forests and (ii) to test whether including environmental variables 
as predictors improves canopy N predictions compared to approaches that rely on remotely 
sensed data alone. To do so, we mapped canopy N in European forests using the canopy N data 
from the ICP network as calibration data. We related canopy N plot data to the NDVI, EVI and 
NIR obtained from the MODIS MOD13Q1 product and the MTCI from the MERIS sensor, 
and environmental variables. The environmental variables included were elevation, climate, 
soil properties, N deposition and land-cover. We used the random forests machine learning 
technique to relate canopy N to the predictor variables. To evaluate the influence of including 
environmental variables on the results, we evaluated nine different random forests model 
settings: models using all predictor variables (All pred), using only remote sensing variables 
(RS only), and using only environmental variables (Env only). Each model was parameterized 
on three subgroups: all available plots (All plots), only Evergreen Needleleaf Forest (ENF) plots 
and only Deciduous Broadleaf Forest (DBF) plots. Including these three subgroups provided 
insights about the feasibility of mapping canopy N at European scale on all available plots, ENF 
plots and DBF plots. The results of the models were evaluated on each subgroup separately.
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4.2	 Material and methods

4.2.1	 Canopy N data
4.2.1.1	 ICP Forests
Canopy N data used in this analysis were obtained from the ICP Forests program (International 
Co-operative Program on Assessment and Monitoring of Air Pollution Effects on Forests, 
www.icp-forests.net). ICP Forests is a European biomonitoring network of forest conditions. 
The intensive monitoring program (level II network) includes more than 800 permanent forest 
plots sampled regularly across European countries. The forest plots are in homogeneous forest 
sites selected such that the diversity in European forests is represented. The forest plots have 
a minimum size of 0.25 ha, which corresponds to 56 m diameter for a circular plot (Ferreti et 
al. 2017). The foliar chemistry survey, including canopy N measurements, has been repeated 
every two years. The plots were sampled following a standard and consistent sampling design. 
Minimum five trees of each species belonging to the dominant class were selected. The 
sampling was repeated on the same sampled trees over the years. The leaves or needles were 
collected from the upper third part of the crown. If several species composed the dominant 
forest class, the foliar chemistry analysis was done separately for each species. Deciduous 
species plots were sampled during the second half of the growing season, before the onset of 
autumn, while evergreen plots were sampled during winter months, in the dormancy period. 
Quality control of the foliar concentration measurement was ensured by means of regular 
interlaboratory comparisons (Rautio et al. 2016).

4.2.1.2	Canopy N data analysis
Annual plot canopy N measurements data were obtained from the ICP Forests website for the 
period 1990-2014. Missing and duplicate entries as well as rare tree species, i.e. species that 
were sampled in less than six plot measurements, were excluded from the analysis. Canopy N 
outlier values, defined as those that were outside of the species-specific 5-95% percentile, were 
also removed from the dataset. 5207 annual plot measurements were left for analysis. Canopy 
N annual plot measurements were averaged by plot over all the sampling years to produce 
long-term averages of plot canopy N. This represented 818 plots, for which we obtained a 
long-term average canopy N value. Long-term averages canopy N will be called canopy N in 
the rest of the article. Plots were labelled according to their PFT. Plots with trees belonging 
to different PFTs were labelled as mixed PFT. Descriptive statistics of the canopy N data were 
performed.

4.2.2	 Environmental variables
We chose to include as predictor variables the following environmental variables for their 
known influences on the N cycle and ecosystem properties in general.

4.2.2.1	Bioclimatic variables
Climate was found to be related to canopy N (Reich and Oleksyn 2004; Sardans et al. 2015; 
Sardans et al. 2011). Bioclimatic variables from the WorldClim2 dataset (Fick and Hijmans 
2017) were used. The bioclimatic variables were computed from monthly temperature and 
precipitation over the period 1972-2000. The bioclimatic variables consist in annual mean, 
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seasonality, minimum or maximum values. The complete list of bioclimatic variables (19) 
included in the analysis is presented in Table 4.1. The initial spatial resolution was 1 km.

4.2.2.2 Altitude
We have decided to include elevation as a predictor variable because of both the correlation 
found between canopy N and temperature at global scale (Reich and Oleksyn 2004) and the 
relationship between altitude and temperature. The digital elevation model over Europe 
(EU-DEM) was used for altitude data (European Environment Agency 2013). The EU-DEM is 
a digital surface model based on both SRTM and ASTER GDEM as source data. The EU-DEM 
was produced using Copernicus data. The EU-DEM was obtained from the European 
Environmental agency website for the extent of Europe. The original spatial resolution was 30 
m.

4.2.2.3 Soil properties
We chose to include soil properties as predictor variables because soil is an important 
component of the ecosystem that influences vegetation. More specifically, canopy N has been 
shown to be correlated to soil pH and soil mineral content (Han et al. 2011). Soil property 
maps were obtained from Soilgrids250m Global Soil Information (Hengl et al. 2017). The 
Soilgrids250m soil properties maps were predicted from a large collection of soil profile 
samples and globally available remote sensing products using machine learning prediction 
techniques. The list of Soilgrids250m variables included in this analysis (e.g. soil pH, soil cation 
exchange capacity, CEC, soil sand, clay and silt content, soil depth) is presented in Table 4.1. 
The original spatial resolution was 250 m.

4.2.2.4 N deposition
Canopy N has been found to be correlated with N deposition in various ecosystems including 
in Pinus sylvestris forests and mixed European forests (McNeil et al. 2007, 2012; Sardans 
et al. 2016b; Sardans et al. 2015). N deposition was included as predictor variable. The N 
deposition maps used in this analysis were aggregated from three atmospheric chemistry 
models (GISS-E2-R, CCSM-CAM3.5 and GFDL-AM3, Lamarque et al. (2013a)) within the 
Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, Lamarque et 
al. (2013b)). The maps were obtained from the Inter-Sectoral Impact Model Intercomparison 
Project (ISIMIP) website (ISIMIP 2019). We used reduced (NHx), oxidized (NOy) and total 
N deposition maps for the year 2006. The total N deposition was calculated as the sum of 
oxidized and reduced N depositions. The initial spatial resolution was 0.5 x 0.5 decimal degrees 
or approximately 50 km.

4.2.2.5 Land cover
We included the land cover as predictor variable in this analysis because the plant functional 
type has been shown to be related to leaf N (Kattge et al. 2011; Sardans et al. 2016a; Sardans 
et al. 2015). We used the land cover (LC) map from the ESA climate change initiative (CCI) 
over the epoch 2008-2012 (v.1.6.1, Defourny et al. (2016)). Following the UN land cover 
classification system, the land cover includes 22 land cover classes, which are compatible with 
the classification used in GVMs. We chose the ESA CCI LC from the epoch 2008-2012 because 
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it is the period with the highest number of annual plot canopy N measurements. The LC spatial 
resolution was 300 m.

4.2.3 Remote sensing variables
4.2.3.1 MOD13Q1 product
MODIS data included in this analysis were NDVI (Normalized Difference Vegetation Index) 
and EVI (Enhanced Vegetation Index) VIs as well as NIR reflectance from the MOD13Q1 
product (Didan 2015). We chose to include these remote sensing products because the 
relationship between canopy N and NIR, either as a stand-alone reflectance product or 
included in the calculation of the NDVI and EVI, is well documented (Chemura et al. 2018; 
Mutowo et al. 2018; Ollinger et al. 2008). The MOD13Q1 product is available globally for every 
16 days period at 250 m spatial resolution. One MODIS image for each 16 days period between 
the 1st January 2002 and the 31st December 2014 was obtained for each product considered 
(NIR, NDVI and EVI) as well as for the pixel reliability quality layer (QA). The MODIS images 
were downloaded from the AppEEARS website (AppEEARS Team 2019) for the extent of 
Europe.

4.2.3.2 MTCI product
The MTCI (MERIS T e rrestrial Chlorophyll Index) was originally developed to monitor 
chlorophyll content in vegetation (Dash and Curran 2004). It has been related to canopy N in 
various types of ecosystem and for various spatial extents, from local to regional studies (Cho 
et al. 2013; Loozen et al. 2018; Ramoelo et al. 2012; Tian et al. 2011). MTCI is a red-edge 
based VI that is computed using three MERIS sensor’s reflectance bands located near the 
red-edge region (Equation 4.1).

MTCI =
Rband10 – Rband9

Rband9 – Rband8

=
R753.75 – R708.75

R708.75 – R681.75

,	 (Equation 4.1)

The MTCI level 3 product is available almost globally as a monthly average at 1 km spatial 
resolution. The original reflectance data were provided by the European Space agency and 
were processed by Airbus Defense and space. The MTCI imagery is distributed by the Natural 
Environment Research Council (NERC) Earth Observation Data Centre (NEODC 2015). One 
MTCI image was downloaded for the extent of Europe for each month between June 2002 and 
December 2011, except for October 2003, as no valid product was available.

4.2.4	 Data preprocessing
Both MODIS and MTCI imagery were averaged by month to produce 12 long-term monthly 
averaged images for each remote sensing product considered. Before averaging, pixel-based 
quality information from the QA layers were applied on MODIS images. All pixels for which 
the quality value was not labelled as ‘good’ were excluded from the computation of the long-
term average. While there is no quality layer available for MTCI imagery, MTCI values lower 
than 1 are not valid. We ensured that no pixel with invalid values were included in the long-
term MTCI monthly averages. However, by doing so, virtually no MTCI pixel were excluded 
from the calculation. The obtained long-term monthly averages of the MODIS products 
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in January, February and December as well as the MTCI product in January and December 
contained a high number of pixels with missing values. These long-term monthly averages 
were excluded from the analysis.

Among the 22 LC classes initially present in the CCI LC variable, some were rarely 
represented in our study area. We grouped together similar LC classes and obtained 15 LC 
classes. Each of the obtained LC class was converted to a binary layer, in which the pixel values 
corresponded to the presence or absence of the specified LC class. All of the binary layers 
obtained were used as variables in the analysis.

All the predictor variables layers, including MODIS and MTCI long-term monthly 
averages, were resampled to a common grid and spatial resolution of 300 m using the bilinear 
interpolation of the resample function of the raster package in the R environment (Hijmans 
2018; R Core Team 2019).

4.2.5	 Random forests
Random forests is a machine learning method that is built on the classification and regression 
trees (CART) with the ensemble method. It was developed by Breiman (2001) and has been 
applied to map canopy N using VIs and other remote sensing products at different scales and 
in different ecosystems (Chemura et al. 2018; Moreno-Martínez et al. 2018; Mutowo et al. 2018; 
Ramoelo et al. 2015).

Random forests avoids overfitting by randomly sampling the predictor space. It is can 
model non-linear relationships without being constrained by the assumptions of the variable 
distributions and dependency. In a recent study, random forests was also found to give better 
leaf trait predictions compared to regularized linear regression, neural networks and kernel 
methods (Moreno-Martínez et al. 2018).

Random forests works by training many regression trees and reporting the mean response 
over all the trees. We implemented the random forests analysis in the R environment (R Core 
Team 2019) using the randomForest package (Liaw and Wiener 2002). The random forests 
algorithm is governed by three parameters, the number of trees (ntree), the number of sampled 
variables (mtry) and the minimum number of terminal seeds (nodesize). The random forests 
algorithm and the settings of the models are as follows:
• The regression tree is grown by iteratively splitting the bootstrap sample into two groups

using the best predictor from a randomly selected subsample of all the available predictors.
The mtry was set to one third of the total number of predictor variables.

• To build each regression tree, a bootstrap sample including two third of the training data
is randomly selected. The remaining third of the training data (called the out-of-bag data
(OOB)) is used to evaluate this specific tree.

• The tree is grown until the nodesize is reached. We set the node size to 5.
• This process repeated for ntree number of times. The ntree parameter was set to 2500 trees.

The random forests algorithm provides the mean squared errors and r-squared values assessed 
using the OOB samples, MSEOOB and r2

OOB, respectively.

We implemented the random forests model to predict canopy N in European forests. We 
fitted the random forests model to long-term average plot canopy N (section 4.2.1.2) using 
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the predictor variables. We tested nine different models. A first type of model included all 
the predictor variables (All pred), a second type of model included only the remote sensing 
variables (RS only) and a third type of model included only the environmental variables (Env 
only). Each type of model was tested separately on three subgroups: All plots, only ENF plots 
and only DBF plots. We included these three subgroups in this study because each group 
provides different insight about canopy N spatial patterns and the feasibility of mapping 
canopy N at European scale. We did not develop a separate model for either EBF or mixed 
plots because of the restricted number of plots for these two PFTs (29 and 11, respectively).

The subsequent workflow was applied for all the models tested in this analysis:
• A first random forests model was fitted to the canopy N data. The predictor variables

included in the model were selected using a recursive backward elimination (Brungard et
al. 2015; Mutanga et al. 2015). The model was first fitted with all the predictors. The least
important predictor was removed from the model. This process was repeated until only one
predictor variable was left. The model selected was the one with lowest MSEOOB value. r2

OOB,
and RRMSEOOB are reported.

• We used 10-fold cross-validation (C-Val) as independent validation to assess the accuracy
of the selected model. Theand are reported. The C-Val is calculated using the R caret
package (Kuhn 2018).

The coefficient of determination (r2) is calculated as

1 – MSE
Var(CN)

,	 (Equation 4.2)

where MSE is the mean squared error, Var is the variance and CN, the canopy nitrogen (%N). 
The Relative Root Mean Squared Error (RRMSE) is calculated as

n

i=1

1
n (Pi – Oi )∑× 1

Ōi 

× , (Equation 4.3)

where i = 1,2, ... , n are distinct values, n is the total number of values, Pi is the predicted value, 
Oi is the observed value and Ōi is the mean of all observed values.

The importance of the predictor variables is assessed by randomly permuting each 
predictor variable and calculating the subsequent decrease in OOB accuracy. The importance 
measure is expressed as the mean decrease in MSEOOB (Liaw and Wiener 2002).

4.2.6	 Mapping canopy N
The best model for each subgroup (All plots, DBF and ENF), assessed using r2

CV and RMSECV, 
is used as predictive model to map canopy N in European forests.

4.3	 Results

4.3.1	 Descriptive analysis of canopy N plot data
Table 4.2 gives the canopy N plot data descriptive statistics. Among the 818 forest plots 
included in the analysis, the majority belongs to the ENF forest type (63 %), while the second 
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most occurring PFT, i.e. DBF, is present in 32 % of the plots. Forest plots where several PFTs 
were sampled represent only 1% of the total. As expected, ENF plots have on average lower 
canopy N compared to DBF plots (1.4 and 2.4 %N, respectively). The locations of the canopy 
N plot data are presented in Figure 4.1. Higher canopy N values are observed in Midwestern 
Europe while lower canopy N values occur in the southern and northern part of the study 
region (Spain and south of Sweden, respectively, Figure 4.1a). Regarding the PFTs, DBF and 
ENF occur in the whole study area, while EBF and mixed plots are only found in certain 
regions, i.e. in Southern Europe and in central Western Europe, respectively. The observed 
difference in canopy N values between ENF and DBF plots is reflected in the respective PFTs 
maps (Figure 4.1 – b and c).

Table 4.2. Descriptive statistics of long-term average canopy nitrogen concentration (%N) plot 
data calculated over all forest plots (All plots) and grouped by plant functional type (PFT): 
Deciduous Broadleaf Forest (DBF), Evergreen Broadleaf Forest (EBF), Evergreen Needleleaf 
Forest (ENF) and mixed forest plots (mixed), with minimum (min), maximum (max), mean, and 
standard deviation (sd) values.

PFT Number of plots (%) Canopy N (%N)

min max mean sd

All plots 818 (100 %) 0.6 3.0 1.8 0.5
DBF 265 (32 %) 1.5 3.0 2.4 0.2
EBF 29 (4 %) 1.2 1.6 1.4 0.1
ENF 513 (63 %) 0.6 2.2 1.4 0.2
mixed 11 (1 %) 1.4 2.4 1.7 0.3
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Figure 4.1. Map of the forest plot locations for a) All plots, b) Evergreen Needleleaf Forest (ENF) 
plots and c) Deciduous Broadleaf Forest (DBF) plots. The color scale gives the long-term canopy 
nitrogen (%N).
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4.3.2	 Results of the random forests analysis
Table 4.3 shows results from the random forests analysis. Among the nine models tested, the 
model including all predictor variables and all plots performed best, with a r2 of 0.62 for the 
validation. The models including all predictors showed higher r2 and lower RRMSE, both for 
OOB and validation, compared to models including either remote sensing or environmental 
variables. This was the case for all groups considered (All plots, ENF and DBF). When 
considering models for either all plots or ENF plots, the type of model (All pred, RS only or 
Env only) did not have a strong effect on the models fit. For the DBF subgroup, on the contrary, 
the RS only type of model showed lower r2 compared to the other two (r2 = 0.09 and r2 = 0.39, 
for RS only and both All pred and Env only, respectively). The RS only model was thus not 
able to predict canopy N for the DBF subgroup. If we compare the r2 for different subgroups 
included in the analysis, the models with all plots performed always better (r2

C-Val 0.54-0.62) 
always performed better than those of the ENF (r2

C-Val 0.47-0.49) or the DBF (r2
C-Val 0.09-

0.39) subgroups. However, the opposite is observed when comparing the RRMSE for three 
subgroups. The RRMSE for the DBF subgroup (RRMSE 0.08-0.09) is lower than the RRMSE of 
the ENF (RRMSE 0.11-0.12) or all plots (RRMSE 0.18-0.20) subgroups.

Scatterplots of predicted vs observed values for canopy N for the All plots, ENF plots and 
DBF plots are presented in Figure 4.2. Regression lines were fitted between the predicted vs 
observed values for each group of predictor variables studied. Chow tests (Chow 1960) were 
done to assess whether the sets of coefficients between different linear regressions were equal. 
The tests showed that the differences between each group-wise pairs of regression lines were 
not significant.

Table 4.3. Results of the random forests analysis for the models including all predictor variables 
(All pred), only remote sensing variables (RS only) and only environmental variables (Env only), 
and for each plant functional type (PFT) group: all plots (All plots), Evergreen Needleleaf Forest 
(ENF) and Deciduous Broadleaf Forest (DBF). The initial number of predictors represent the 
number of predictor variables available to build the model before variables selection, the selected 
number of predictors represents the number of variables selected to build the model. r2, Relative 
Root Mean Squared error (RRMSE) are presented for both out-of-bag data (OOB) and cross-
validation (C-Val).

PFT Number
of plots

Model Initial 
number of 
predictors

Selected 
number of 
predictors

Calibration (OOB) Validation (C-Val)

r2 RRMSE r2 RRMSE

All plots 818 All pred 86 17 0.63 0.18 0.62 0.18
RS only 37 16 0.61 0.18 0.60 0.18

Env only 49 15 0.55 0.19 0.54 0.20
ENF 513 All pred 86 22 0.50 0.11 0.49 0.11

RS only 37 9 0.45 0.12 0.44 0.12
Env only 49 8 0.48 0.11 0.47 0.11

DBF 265 All pred 86 17 0.40 0.08 0.39 0.08
RS only 37 17 0.12 0.09 0.09 0.09

Env only 49 10 0.39 0.08 0.39 0.08
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4.3.3	 Variable importance
The 10 most important variables for predicting canopy N are presented in Table 4.4 for all 
models considered. For the All pred model, when all plots were included, nine out of the 10 
most important variables for predicting canopy N were remote sensing variables, with the two 
most important ones being EVI long-term average in May and June. These two variables are 
also the most important for canopy N prediction in the All plots RS only model. More generally, 
the important variables for the All pred model showed large agreement with the RS only model. 
In the Env only model, the two most important variables were the binary variables for presence 
or absence of broadleaf deciduous forest and needleleaf evergreen forest. These variables were 
obtained by modifying the CCI land cover map.

For the PFTs specific models, both ENF and DBF All pred models showed large similarities 
with their Env only model counterpart. For the ENF All pred model no RS variable was among 
the 10 most important predictor variables. When comparing ENF and DBF All pred models, 
soil properties and climate variables are important predictors of canopy N. For ENF plots, the 
soil sand content and the annual mean temperature were more important while for DBF plots, 
the oxidized nitrogen deposition as well as the mean temperature of the warmest quarter were 
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Figure 4.2. Scatterplots between observed and predicted canopy N values (%N) based on OOB 
prediction for a) All plots, b) ENF plots and c) DBF plots. The color scale refers to the predictor 
variables tested: all predictor variables (All pred), only remote sensing variables (RS only) and 
only environmental variables (Env only).
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important predictors of canopy N. For both DBF and ENF plots, the granulometry of the soil 
influenced the prediction of canopy N.

4.3.4	 Canopy N map for European forests
The best predicted canopy N maps for each group considered, i.e. All plots, ENF plots and 
DBF plots, are presented in Figure 4.3. The range of canopy N values of the predicted map 
corresponded to the range observed from forest samplings for each subgroup. The broad-
scale spatial patterns show similarities between the three maps considered: in the southern 
and northern regions of Europe, i.e. the Mediterranean region and the south of Sweden, the 
predicted canopy N was lower than in the midwestern region of Europe. Local-scale patterns 
are also present. For example, in Netherlands and in the northwest of Germany, the predicted 
canopy N is relatively higher than average for both the ENF and DBF maps. However, this is 
not observed when all plots are considered. The All plots model also predicts relatively higher 
values of canopy N, approximately between 2.4 and 2.6 %N, in Eastern Europe and Slovakia, 
in particular. The observed fine-scale pattern corresponds to the location of the Carpathian 
Mountains. This pattern is also present, although less clearly, in the ENF map, but not in the 
DBF map.
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Figure 4.3. Predicted canopy nitrogen maps (%N) calibrated using a) All plots, b) Evergreen 
Needleleaf Forests (ENF) and c) Deciduous Broadleaf Forest (DBF).
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4.4	 Discussion

4.4.1	 Canopy N spatial pattern
The aim of this study was to estimate spatial patterns in canopy N over European forests, which 
we were able to do with an r2 for the validation of 0.62 for the All plots subgroup. The broad-
scale spatial pattern (Figure 4.3) of the predicted canopy N maps showed similarities between 
the three subgroups considered: lower canopy N concentration in the south and in the north 
of Europe, higher values in mid-western Europe. This pattern was also similar to that observed 
in the forest plot data (Figure 4.1a), which is expected as this data was used to train the model. 
This indicates that the developed model was able to represent the broad-scale canopy N 
pattern present in the data. More specifically, however, the three predicted maps show finer 
scale variations. Both the DBF and the ENF predicted maps show relatively high values in the 
Netherlands and in the northwestern part of Germany. The forest plot data (Figure 4.1a) also 
included several forest plots with relatively high long-term canopy N in this region. This trend, 
however, is not present in the predicted canopy N map for all plots. Another dissimilarity 
was noticeable in mid-southern part of France with higher canopy N values in both the All 
Plots and DBF predicted maps. This region corresponds to the location of the Massif Central 
mountain area and the canopy N values of forest plots located there were not higher than 
average.

4.4.2	 Comparison with published studies
As mapping canopy N in forests has seldom been done at the European scale, there is not a 
large body of literature to compare our results with. A recent study published a forest leaf N 
map at global scale (Moreno-Martínez et al. 2018). When visually comparing this map with the 
results of the present study for the All plots model, the global scale map also presents relatively 
lower concentration in the south of Sweden, while showing relatively higher values in the 
center of Europe. However, the range of values is different between the two maps: while most 
values are between 1.4 and 2 %N in the published study, in our analysis the range of values is 
larger, between 1.2 and 2.4 %N. The accuracy for predicting canopy N (r2 = 0.62 for the best 
model) was similar for both studies. The published study used the published data from the 
TRY database (Kattge et al. 2011) for calibration. Although the data in the TRY database are 
numerous, the data were sampled for various research purposes and the sampling methods do 
not follow a standard guideline. The ICP Forests data, on the contrary, were sampled following 
a consistent process, which ensures of the good quality of the dataset.

4.4.3	 The role of environmental variables
The second aim of this study was to test whether including environmental variables as 
predictors improves canopy N predictions compared to approaches that rely on remotely 
sensed data alone. The results showed that including environmental variables as predictors 
improved the explanatory power of the models for all groups considered as the models for All 
pred always show higher r2 and lower RRMSE compared to the Env only and RS only models 
(Table 4.3). In a previous study in savannah grass, including environmental variables in a 
stepwise multilinear regression also improved canopy N prediction compared to using VIs 
only (Ramoelo et al. 2012). It is interesting to note that the RS only model performed better 
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than the Env only model for the all plots subgroup, while it was the opposite for both the ENF 
and DBF subgroups. This shows that, in our study, RS variables were useful to distinguish 
between different PFTS in the All pred All plots model. Moreover, the influence of including 
environmental variables can also be seen in the most important variables selected for the 
All pred models. For both the ENF and DBF All pred models, the most important variables 
are environmental variables, RS variables being among the least important predictors (Table 
4.4). For the DBF subgroup, the RS only model showed the lowest observed accuracy of all 
models tested (r2 = 0.09). The remote sensing variables were not able to predict canopy N and 
including environmental variables was essential to predict canopy N for DBF plots, in our 
dataset. Including environmental variables to predict canopy N was thus more beneficial for 
separate PFTs, and even more so for the DBF subgroup.

4.4.4	 Variables importance
Regarding the difference in RS products selected, it is interesting to note that, although the 
NIR spectral region was shown to be important for canopy N prediction in previous studies 
(Moreno-Martínez et al. 2018; Mutowo et al. 2018; Ollinger et al. 2008), it was seldom selected 
as predictor variable in the models tested. It was among the most important variables for the 
DBF Env only model, which showed the lowest r2 of all the models tested. On the contrary, 
although being tested in few studies for canopy N prediction (Lepine et al. 2016; Ramoelo et 
al. 2012; Wang et al. 2012), EVI was the most important variable for the All pred and all plots 
models. A remote sensing product derived from EVI, the maximum EVI, was also found to be 
the most important variable in a study mapping leaf N at global scale (Moreno-Martínez et al. 
2018). In a recent study in the Miombo woodlands, the results showed that NIR VIs, among 
which NDVI and EVI, are complementary to the NIR spectral region for canopy N mapping 
(Mutowo et al. 2018). However, in our study, NDVI was not selected as most important 
variable for any of the developed models. The MTCI index, based on the relationship between 
canopy N and chlorophyll (Dash and Curran 2004) was only selected as the most important 
variable for the ENF RS only model. The stronger relationship between canopy N and the NIR 
region compared to the MTCI, a red-edge based index, was previously observed as well. In a 
mixed temperate forest, Wang et al. (2016) showed that the relationship between canopy N and 
MTCI was weak. What is also surprising is that the RS products selected as important variables 
are from different months than the forest plots sampling months. For DBF plots, the two most 
important RS variables for the DBF RS only model were from the months September and 
October while the DBF plots were mainly sampled in July and August. For the ENF plots, it is 
not so clear as the RS products from winter months, during which the ENF plots are sampled, 
were excluded from the analysis.

Among the environmental predictors tested, oxidized N deposition was the most important 
variable for the DBF plots for both the All pred and the Env only model (Table 4.4). For the ENF 
subgroup, although previous studies showed that canopy N was correlated to N deposition in 
needleleaf forests (Fleischer et al. 2013; Sardans et al. 2016b), N deposition was only selected 
among the least important predictors for the All pred model and it was not selected at all for 
the Env only model. This might be related to an observed stronger response of deciduous 
species to N deposition compared to coniferous species (Crowley et al. 2012). The annual mean 
temperature was among the most important variables for predicting canopy N for the ENF 
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subgroup for both the All pred and the Env only models. Mean annual temperature was also 
among the selected predictor variables for the All pred and all plots model. This is consistent 
with previous findings showing an influence of mean annual temperature on leaf N (Reich and 
Oleksyn 2004; Sardans et al. 2015).

For the Env only models including all plots, the land cover binary variables indicating the 
presence of broadleaf deciduous forest and the presence of needleleaf evergreen forest were 
the most important variables. This is not surprising, as forest type is well known to influence 
foliage N (Sardans et al. 2016a; Sardans et al. 2015; Sardans et al. 2011). In our study too, the 
DBF and ENF plots also show different mean canopy N concentration, with 1,4 %N and 2,4 
%N for ENF and BDF plots, respectively (Table 4.2).

4.4.5	 Source of errors
When we look critically at the results obtained, it is interesting to note that the r2 values from 
the 10 fold cross-validation (r2

CV) are close to the r2
OOB values. This shows that the developed 

models were robust for validation. The r2 obtained for the ENF and DBF models are lower than 
the value obtained for the All pred models. This could be related to the smaller number of plots 
used to calibrate the ENF and DBF models, n = 513 and n = 265, respectively, compared to the 
All pred model, n = 818. The limited range of canopy N values for the ENF and DBF models, 
might also explain the observed decrease in model fit.

4.4.6	 Future perspectives
In this study, we showed that combining vegetation indices with environmental variables 
can contribute to canopy N mapping over large spatial extents. Although, as showed by the 
comparison and differences with a recent published study (section 4.2), this still needs to be 
further developed, this study contributes to the discussion about the feasibility of canopy 
N mapping over large spatial extents. The resulting canopy N map could provide spatial 
indicators of canopy N in European forests.

In this analysis, we worked with MODIS and MERIS remote sensing data to ensure that 
the period during which the remote sensing data were acquired was overlapping with the 
sampling period of the forest plots. Although more recent satellite sensors such as Sentinel 2, 
Sentinel 3 or RapidEye have either higher spatial or spectral resolutions that would probably 
improve the accuracy of the obtained canopy N map, the time series were too short to allow for 
a long enough overlapping period with canopy N sampling data. As the ICP Forest monitoring 
network is an ongoing project, a future perspective of this study would be to compare the 
results with a similar analysis, including more recent satellite sensors once the satellites’ data 
time series are long enough.

We focused on canopy N in European forests. While this is a common land use type 
across Europe (42 % of total land area), it would be valuable to further develop this analysis 
by including other natural PFTs (like grasses) and non-natural land use types like agricultural 
land. However, the ICP Forests database we used for this analysis was very valuable, and these 
high-quality long-term data are not yet available for all land use types. The number of sites, but 
also the consistency in the way the forest plots are sampled and the %N are measured in ICP 
Forests is unique. We would like to emphasize that this would be an important necessary step 
to extrapolate to other land use types.



118 Canopy nitrogen: a remote sensing and modelling approach

Finally, an envisioned result of this project is to improve GVMs by providing large-
scale information about canopy N and its spatial pattern. In the future, we therefore foresee 
to compare our results with canopy N modelled with GVMs. However, canopy N values are 
not static over time, and in our study we averaged the canopy plot data as well as the RS data 
over a long time period. This gave us more data to work with, as for each year much less data 
was available. However, if we want to optimize GVMs using the predicted maps, including 
temporal variations, e.g. yearly or bi-yearly data, would make the predicted maps more 
compatible with GVMs output. Another future development of the present study is thus to 
include temporal changes in canopy N values.

4.5	 Conclusion

In this study, our objective was to characterize spatial patterns of canopy N in forests across 
Europe. We showed that we could map canopy N using the random forests technique 
and calibration data from ICP Forests with good accuracy (r2 = 0.62, RRMSE = 0.18, for 
validation). Among the RS products tested (EVI, MTCI, NIR and NDVI), EVI was the most 
important predictor for canopy N prediction when all plots were included, while MTCI 
the most important predictor for the ENF RS only model. We also investigated whether 
including environmental variables as predictors would improve the prediction models. For 
all subgroups tested (All plots, ENF plots and DBF plots), including environmental variables 
improved the predictions. Moreover, in our dataset, including environmental variables was 
especially essential for the DBF plots, as the prediction model based on remotely sensed data 
products only was not able to predict canopy N with sufficient accuracy. Finally, including 
environmental variables together with RS products to predict canopy N showed promising 
results and could be tested in other regions and with different land use types. A future outcome 
of this analysis is to compare the predicted canopy N map to GVMs outputs.
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Comparison of simulated foliage nitrogen by the O-CN and LPJ-GUESS vegetation models 
with a canopy nitrogen map based on forest sampling

Abstract. Terrestrial carbon (C) storage is simulated using global vegetation models (GVMs). 
Nitrogen (N) availability influences C assimilation by the terrestrial biosphere. To account for 
this link between the N and C cycles, GVMs include an N cycle module to simulate the effect 
of N availability on terrestrial C storage. Compared to data on the C cycle that are globally 
available, data on the N cycle are however lacking at the global scale. In order to calibrate 
and validate the N cycle modules of GVMs, there is a need to evaluate the models against N 
observations. Recently, earth observation data combined with ancillary datasets enabled 
mapping of foliage N over large areas. The availability of this data facilitates the comparison 
of the spatial pattern of canopy N simulated by the GVMs. In this study, we compared the 
spatial patterns of canopy N from two GVMs, O-CN and LPJ-GUESS, with a canopy N map, 
calibrated using forest plot foliar N data in Europe using a random forests model, and with each 
other. The results showed that the magnitude and spatial patterns of canopy N values predicted 
by both GVMs was comparable to those from the random forests model. In the northern 
region of Europe, the three models predicted similar spatial patterns. The canopy N values 
predicted by the models showed significant linear relationships in norther Europe. In the south 
of Europe, in the Mediterranean region, however, the vegetation models predicted contrasting 
spatial patterns with the random forests map and with each other. The results showed that for 
the northern region of Europe, while the physiological processes are represented differently 
in the two GVMs, the results obtained regarding canopy N are comparable and the N cycle 
representation in the models are coherent with observations. No clear reason for the different 
behavior for the Mediterranean part surfaced so far. Future research is needed to understand 
the cause of the divergent spatial patterns observed in the southern region of Europe.
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5.1	 Introduction

The atmospheric CO2 concentration has risen globally since pre-industrial time due to 
anthropogenic CO2 emissions most probably causing climate change (Bindoff et al. 2013; 
Friedlingstein et al. 2019). During 2009-2018, approximately 29% of the CO2 emitted annually, 
from fossil fuel emissions and land use change, was estimated to be stored in terrestrial 
vegetation, which reduced the increase in CO2 concentration in the atmosphere (Friedlingstein 
et al. 2019). Forests and their soils are important carbon (C) sinks, accounting for up to 65 
% of terrestrial organic C (Reichstein and Carvalhais 2019). The fate and magnitude of 
the terrestrial C sink is however uncertain with future global change (Ahlström et al. 2012; 
Ahlström et al. 2017; Huntzinger et al. 2017; Lovenduski and Bonan 2017; Meyerholt et al. 
2016; Schurgers et al. 2018).

Global vegetation models (GVMs) are used to estimate terrestrial C storage, at present 
times and under future conditions (Friedlingstein et al. 2019). GVMs simulate vegetation 
growth and mortality as well as the associated C, water and energy fluxes between the soil, 
the atmosphere and the vegetation. Using GVMs, it is possible to simulate vegetation C uptake 
under rising global temperature and atmospheric CO2 concentration (Ahlström et al. 2012; 
Ahlström et al. 2017). The influence of nutrient availability on the C cycle is also studied 
(Wieder et al. 2015).

Nitrogen (N) is an essential nutrient for vegetation growth (Chapin 1987). N availability 
poses a constrain on C sequestration by terrestrial ecosystems (Fernández-Martínez et 
al. 2014; LeBauer and Treseder 2008; Vitousek and Howarth 1991). To account for this link 
between the C and N cycle, N cycle modules are included in GVMs (Smith et al. 2014; Zaehle 
and Dalmonech 2011; Zaehle and Friend 2010; Zaehle et al. 2014). By including the N cycle, 
GVMs enable to project the combined influence of atmospheric warming, N deposition and 
increasing atmospheric CO2 on terrestrial C storage (Wårlind et al. 2014; Zaehle 2013; Zaehle 
et al. 2010). These drivers have contrasting effects on the predicted C storage. While a higher 
CO2 concentration increases terrestrial C assimilation through the CO2 fertilization effect, 
including the influence of N availability mostly reduces the fertilization effect previously 
observed in GVMs that do not incorporate the link between C and N cycles (Huntzinger et 
al. 2017; Wieder et al. 2015). However, uncertainties remain regarding the magnitude and 
direction of the influence of the N cycle on the C assimilation under future change. One GVM 
in particular, LPJ-GUESS, even predicts an increase in C storage by 2100 when taking the N 
cycle into account (Wårlind et al. 2014).

GVMs with N cycle modules are process-based, i.e. vegetation growth and mortality are 
simulated based on known physiological processes. Observed physiological relationships 
between foliar N concentration and photosynthesis (Reich et al. 1999; Wright et al. 2004) 
are incorporated in the models. Leaf N is an important variable in the models as both gross 
photosynthesis and respiration are often functions of leaf N (Smith et al. 2014; Zaehle 
and Friend 2010; Zaehle et al. 2014). Leaf N concentration is important for other biomass 
compartments as well, as N allocation to these compartments are prescribed relative to leaf 
N (Smith et al. 2014; Zaehle and Friend 2010). More generally, the vegetation N status also 
influences the simulated whole plant growth as well as C allocation between leaves and roots 
(Zaehle et al. 2014). Given that leaf N has a central role in the simulated C assimilation by 
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vegetation, it is necessary to evaluate if the models accurately predict foliage N. Evaluation of 
the predicted leaf N has already been done for specific models. For example, the O-CN and 
LPJ-GUESS models were able to simulate realistic leaf N values at specific sites (Fleischer et al. 
2015; Zaehle and Friend 2010). However, although leaf N is an essential variable within these 
models, no evaluation of the spatial pattern of the predicted foliage N has been done at large 
scale due to the lack of a suitable large scale and high-quality dataset (Zaehle and Dalmonech 
2011).

In this context, data available through earth observation represents an opportunity for the 
evaluation of GVMs. Remote sensing has already proven useful to study vegetation dynamics 
and the C cycle (Exbrayat et al. 2019). Remote sensing techniques have also been developed 
to detect canopy N at various scales (Loozen et al. 2019; Loozen et al. 2020; Loozen et al. 
2018). Initially used to sense leaf N at small scale in crops using spectroradiometers (Hansen 
and Schjoerring 2003; Xue et al. 2004), remote sensing of canopy N has expanded to various 
vegetation types, among which forests (Huber et al. 2008; Majeke et al. 2008; McNeil et al. 
2007; Schlerf et al. 2010). Different analytical techniques applied to spaceborne imagery have 
been developed to map canopy N at regional scales (Loozen et al. 2018; Lepine et al. 2016; 
Ramoelo et al. 2012). Recently, the combination of both data from satellite sensors and 
environmental variables with machine learning techniques has enabled mapping canopy N at 
large scales (Loozen et al. 2020; Moreno-Martínez et al. 2018).

Here, we evaluate the magnitude and spatial patterns of the long-term average foliage N 
modelled by two GVMs that include an N cycle module. To do so, we compare foliage N maps 
predicted by the two GVMs with a canopy N map of Europeans forest created with extensive 
forest sampling data, remote sensing and environmental variables (Loozen et al. 2020). The 
vegetation models we compare are the land surface model O-CN (Zaehle and Friend 2010) 
and the dynamic vegetation model LPJ-GUESS (Smith et al. 2014). We chose to include these 
vegetation models because they are widely-used and differ in the C and N cycling process 
representation. The canopy N map is based on a random forests model, which included both 
remote sensing and environmental variables as predictors. The random forests model was 
based on canopy N data from sampled forest plots in Europe. Our objective is to evaluate the 
two GVMs and the random forests model with regards to a) the magnitude of the differences 
in the modelled canopy N and b) the differences in the spatial patterns of modelled canopy N.

5.2	 Material and methods

5.2.1	 Global vegetation models
5.2.1.1	 O-CN
O-CN is a land surface model based on the ORCHIDEE model (Zaehle and Friend 2010).
It includes energy, water and carbon fluxes as well as an N cycle module. The base unit
in the O-CN model is an average representative individual of a plant functional type (PFT)
on a grid cell. The average individual is represented by different biomass compartments
between which fluxes of C, N, water and energy occur. The C and N fluxes between the
different compartments are calculated on a half-hourly timestep while vegetation growth and
population dynamics are simulated daily. The vertical distribution of leaf N within the canopy
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is represented by dividing the canopy in distinct layers for which the photosynthetic processes 
are calculated separately. The photosynthesis processes, i.e. the maximum carboxylation and 
electron transport, are proportional to the fraction of leaf N associated with the photosynthetic 
apparatus in each layer (Zaehle and Friend 2010). Autotrophic respiration is dependent on 
tissue N concentration and temperature. Plant growth is a balance of the labile C pool, gross 
photosynthesis and autotrophic respiration and is limited by the availability of N in the labile 
N pool. Plant N uptake is proportional to the plant N status, fine root mass, the availability of 
soil mineral N and soil temperature. Further explanation of the O-CN model can be found 
in Zaehle and Friend (2010) and references therein. The O-CN model was run for the period 
1980-2017. The simulation for the O-CN model included historical changes in climate, 
atmospheric CO2 concentration, land-use and N deposition. The climate forcing included 
temperature, precipitation and incoming radiation from the merged monthly CRU (Harris 
et al. 2014) and 6-hourly JRA-55 dataset (Kobayashi et al. 2015), updated to 2017 following 
the methodology in (Viovy 2018). The model was also forced with global atmospheric CO2 
concentration (Dlugokencky and Tans 2018) and historical N deposition (Hegglin et al. 2016). 
Historical land-use changes were obtained from an update of the harmonized land-use dataset 
(Hurtt et al. 2011). The spatial resolution of the O-CN map was 1 degree.

5.2.1.2	 LPJ-GUESS
LPJ-GUESS, which stands for Lund-Potsdam-Jena General Ecosystem Simulator, is a process-
based dynamic vegetation model, which simulates competition for resources between different 
vegetation patches on a grid cell (Smith et al. 2014). The patches are characterized by different 
succession stages. Physiological processes, including photosynthesis, respiration, stomatal 
conductance and phenology, are calculated daily while C allocation to each plant biomass 
compartment (leaves, fine roots and sapwood) from newly increased net primary production 
(NPP) is simulated yearly. Plants are assumed to take up N from the soil mineral N pool, which 
is supplied by N atmospheric deposition, biological N fixation and N mineralization. Plants 
gross photosynthesis depends on leaf N and leaf N demand is thus calculated to maximize 
net photosynthesis given the plant current conditions. Autotrophic respiration in fine roots 
and sapwood compartments depends on N content in these living tissue compartments. NPP 
is calculated yearly as gross photosynthesis minus autotrophic respiration. Annual NPP is 
allocated to plant’s compartments growth after deduction of 10 % for reproductive costs. Leaf 
N demand drives total N demand as N demand for each biomass compartment is calculated 
to maintain a relative difference with leaf N concentration. If N availability cannot meet N 
demand, N uptake is equal to N availability and the labile N storage pool is used to fill the 
deficit. If this is still insufficient to meet N demand, the carboxylation capacity is reduced 
to the level that can be sustained given the current leaf N (Smith et al. 2014). More detailed 
information about the initial LPJ-GUESS model and the N cycle module in particular can 
be found in Ahlström et al. (2012) and Smith et al. (2014), respectively. LPJ-GUESS was run 
for the period 1900 to 2015 with an initial 500-year spin-up to get vegetation and soils into 
equilibrium. LPJ-GUESS was forced with monthly CRUNCEP climate (Viovy 2018), historical 
land-use change (Hurtt et al. 2011) and N deposition (Lamarque et al. 2013). The spatial 
resolution of the map was 0.5 decimal degree.
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5.2.2	 Random forests map
We compared the foliage N output of the two GVMs to a canopy N (%N) map in European 
forests based on remote sensing and environmental variables. The canopy N map was 
calibrated using 818 forest plots from the intensive monitoring program (level II) of the ICP 
Forests database (International Co-operative Program on Assessment and Monitoring of Air 
Pollution Effects on Forests, www.icp-forests.net). The plots were spread across European 
forests and were selected to represent European forests’ diversity. The plots were sampled every 
two years between 1990-2014. The model was trained using all forest plots, i.e. deciduous 
broadleaf forest (DBF), evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF) 
and mixed plots. The canopy N map was modelled using the random forests machine 
learning algorithm using both remote sensing and environmental predictor variables. The 
environmental variables included were bioclimatic variables – WorldClim2 (Fick and Hijmans 
2017), soil properties – Soilgrids250m Global Soil Information (Hengl et al. 2017), altitude 
(European Environment Agency 2013), N deposition (Lamarque et al. 2013) and land cover 
(Defourny et al. 2016). The remote sensing variables were vegetation indices and NIR from 
MODIS and MERIS sensors, the MOD13Q1 NDVI, EVI and NIR MODIS products (Didan 
2015) as well as the MERIS-MTCI (Dash and Curran 2004). The spatial resolution of the 
modelled map was 300 m. More information about the methods can be found in Loozen et al. 
(2020). The canopy N map will hereafter be referred to as the random forests model.

5.2.3	 Data preprocessing
The vegetation model simulations yielded for the O-CN model PFT-specific monthly foliage 
N (%N) values over the period 1980-2017 and for the LPJ-GUESS model PFT-specific yearly 
foliage C:N values over the period 1980-2015. The data pretreatment process was intended to 
make the output of the GVMs comparable with each other and comparable with the random 
forests model canopy N map. In this process, the obtained vegetation model values, i.e. 
monthly and yearly averages, were temporally aggregated in order to obtain one final foliage 
N (%N) for each vegetation model. This was done because the random forests model map was 
calibrated using long-term canopy N values.

The first step of the temporal aggregation was different between the two models. For the 
O-CN model, we computed yearly averages from the monthly simulated values for all forest
PFTs separately at each of the grid cells. For the LPJ-GUESS yearly simulation results, we
converted the C:N values into canopy N assuming a ratio of 0.48 gC/gDM, which is equal to
the value used in the O-CN model:

×canopy N =
0.48

canopy C:N
100 ,	 (Equation 5.1)

Alongside the foliage N and C:N values, the output of the GVMs included fractional PFT 
cover (FPC) information. In O-CN, the FPC is fixed over the years, while in LPJ-GUESS 
model, the FPC varies yearly. For both models and for each year, we computed a weighted 
canopy N mean using the FPC as weight for the PFTs. In the temporal aggregation of the 
vegetation model outputs, we restricted the analysis to forest PFTs in order to make the results 
comparable with the random forests model, which was calibrated using canopy N data from 
forest plots exclusively. More specifically, for the O-CN model, the PFTs included in the 
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aggregation were boreal broadleaved summergreen (BBS), boreal needleleaved evergreen 
(BNE), boreal needleleaved summergreen (BNS), temperate broadleaved evergreen (TeBE), 
temperate broadleaved summergreen (TeBS) and temperate needleleaved evergreen (TeNE), 
respectively. For the LPJ-GUESS model, the PFTs were: boreal needleleaved evergreen (BNE), 
boreal shade-intolerant needleleaved evergreen (BINE), boreal needleleaved summergreen 
(BNS), temperate broadleaved evergreen (TeBE), temperate shade-intolerant broadleaved 
summergreen (IBS), temperate broadleaved evergreen (TeBE), respectively. Using the obtained 
yearly PFT weighted canopy N maps, we calculated the long-term average over the period 
1980-2015 for both vegetation models.

The three canopy N maps, i.e. O-CN, LPJ-GUESS and the random forests model maps, 
were then resampled to the spatial resolution of the O-CN grid, i.e. 1 degree, using the bilinear 
interpolation method. The data pre-processing was done in the R environment, using the raster 
package (Hijmans 2018; R Core Team 2019).

5.3	 Results

5.3.1	 Spatial patterns in canopy N
The obtained canopy N maps for European forests are shown in Figure 5.1. The three maps 
show different but overlapping ranges of values. The canopy N from the random forests model 
shows a canopy N range between 1.2 and 2.2 %N, while the maps obtained from either the 
LPJ-GUESS simulation or the O-CN simulation show a slightly larger range of values, 0.8-2.7 
%N and 1.0-2.5 %N, respectively.

More importantly, the obtained canopy N maps show contrasting spatial patterns. The 
canopy N map from the O-CN simulation shows relatively lower canopy N values in the central 
and northern part of Europe, with canopy N ranging from 1.0 %N to 1.8 %N. In Spain and the 
south of Italy, the canopy N values are higher, between 1.8 %N and 2.4 %N. Opposite to the 
canopy N map from the O-CN model, the map obtained from the LPJ-GUESS model presents 
relatively higher canopy N values in mid-western Europe while producing lower values in both 
the south and north of Europe. In central Europe, the canopy N values are between 2.0-2.8 
%N, while in the north of Europe, the range of values is between 0.8 and 1.6 %N. Around the 
Mediterranean region, the canopy N map from LPJ-GUESS shows notably very little spatial 
variation, with values between 1.6 %N and 1.7 %N. Similar to the LPJ-GUESS canopy N map, 
the canopy N map obtained from the random forests model shows higher canopy N values, i.e. 
between 1.8 and 2.2 %N, in mid-western and eastern Europe, while showing lower values, i.e. 
between 1.2 and 1.6 %N, around the Mediterranean region and in the south of Sweden.

The contrast between the three canopy N maps becomes more clear in the difference-maps 
presented in Figure 5.2. Figure 5.2a shows that the values from the canopy N map produced 
by the random forests model are in general higher (0.3-0.5 %N) than the canopy N map from 
the O-CN simulation, with the exception of the Iberic Peninsula, where the values from the 
O-CN model are up to 1 %N higher than the random forests model. On the contrary in Figure
5.2b, the random forests map shows lower values than the LPJ-GUESS map in most of central
Europe (between 0-0.8 %N lower) while showing higher values in France, Italy and the south
of Sweden (0-0.2 %N higher). The random forests model also predicts notably higher values of
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Figure 5.1. Canopy nitrogen (%N) maps in European forests calculated from a) the O-CN model, 
b) the LPJ-GUESS model and c) the random forests model.
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Figure 5.2. Canopy nitrogen (%N) difference maps in European forests calculated from a) the 
random forests model – the O-CN model, b) the random forests model – the LPJ-GUESS model 
and c) the O-CN model – the LPJ-GUESS model.
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Figure 5.3. Scatterplots of a) canopy 
nitrogen (%N) from random forests 
model vs canopy N from O-CN 
model, b) canopy N from random 
forests model vs canopy N from 
LPJ- GUESS model, c) canopy N 
from O-CN model vs canopy N from 
LPJ- GUESS model. Points in the 
scatterplots represent pixels in the 
canopy N maps.
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Figure 5.4. Scatterplots of a) canopy 
nitrogen (%N) from random forests 
model vs canopy N from O-CN 
model, b) canopy N from random 
forests model vs canopy N from 
LPJ- GUESS model, c) canopy N 
from O-CN model vs canopy N from 
LPJ- GUESS model. Points in the 
scatterplots represent pixels in the 
canopy N maps with latitude > 43 ºN.
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canopy N in the Alps (0.5-1 %N), compared to the LPJ-GUESS model. The difference between 
the canopy N predicted by the two vegetation models (Figure 5.2c) shows that the LPJ-GUESS 
model predicts higher values in northeastern Europe while the O-CN model predicts higher 
canopy N values in Spain and Italy.

5.3.2	 Relationships between modelled canopy N values
Figure 5.3 presents the pixel-based scatterplot comparisons of the obtained canopy N maps. 
The comparison between the canopy N map from the random forests model and the canopy 
N map from the O-CN simulation (Figure 5.3a) shows a reasonable agreement between both 
maps, except for the southernmost pixels. For the pixels located in the southern region of 
Europe, the O-CN map shows higher values (1.5-2.5 %N) than the random forests model map 
(1.25-1.4 %N). Most of the other pixels are located below the identity line and show a linear 
trend between the values from both maps. A linear regression between the two datasets for 
pixels with latitude higher than 43 degrees north gives a r2 equal to 0.41 (p < 0.000, Figure 
5.4a). The 43 degree latitude limit was chosen by visually inspecting the O-CN canopy N map 
(Figure 5.1a). The region that is subsequently excluded corresponds to the Mediterranean area. 
Regarding the comparison between the subsequent maps produced by LPJ-GUESS and the 
random forests model, a dense cluster of points around the 1.6 %N value is clearly visible in 
the scatterplot (Figure 5.3b). These points are related to the region with little spatial variation 
around the Mediterranean region observed in section 5.3.1. As was done for Figure 5.4a now 
for Figure 5.4b, the southernmost pixels are excluded (< 43 ºN) from the scatterplot between 
LPJ-GUESS and the random forests model. By excluding the Mediterranean region, again a 
clear linear relation between the two datasets emerged (r2 = 0.24, p < 0.000). The scatterplot 
between the two vegetation models (Figure 5.3c) shows that canopy N values from the LPJ-
GUESS simulation are in general higher than their O-CN counterparts with an exception 
for pixels located in southern Europe. When excluding southernmost pixels (< 43 ºN), the 
scatterplot also shows a linear trend (Figure 5.4c, r2 = 0.28, p < 0.000).

5.4	 Discussion

5.4.1	 Canopy N spatial pattern
The canopy N maps obtained from the two vegetation models, i.e. O-CN and LPJ-GUESS, 
showed similarities and differences compared to the random forests model map. The canopy 
N map obtained from the O-CN model showed similarities with the random forests map as 
both maps had largely overlapping canopy N value ranges, i.e. between 1.2 and 2.2 %N for the 
random forests map and between 1.0-2.5 %N for the O-CN map, respectively. Regarding the 
spatial patterns, there was in general a good agreement between the O-CN and random forests 
canopy N map in the northern part of Europe. The difference map (Figure 5.2a) showed that 
the canopy N values in the random forests map were higher than the O-CN map by a range 
between 0.1-0.6 %N. In the south of Europe, however, and in the Iberic peninsula especially, 
the differences between the two models were larger and in opposite directions. The O-CN 
model predicted lower values, on average between 0.5-1.2 %N lower values than the random 
forests model in the southern region (Figure 5.2a). In the northern region of Europe, the 
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results predicted by the O-CN and random forests models were in relatively good agreement. 
This is demonstrated by Figure 5.4a, which showed a significant linear relationship (r2 = 0.41) 
between the canopy N values predicted by both models, once the southernmost pixels (< 43 
ºN) were excluded from the relationship.

The predicted map of the LPJ-GUESS model was also compared to the canopy N map 
produced by the random forests model. The range of canopy N values predicted by the LPJ-
GUESS model was again overlapping but was also larger than the range of values produced 
by the random forests model; between 1.2-2.2 %N and 0.8-2.7 %N, respectively. The canopy 
N maps predicted by the two models showed similar spatial patterns, relatively higher canopy 
N values in the northern region of Europe while, in the south of Europe, the models predicted 
lower values in their respective ranges. The pixel-wise difference between the canopy N values 
predicted by two models varied between 0.5-0.5 %N in most of the region studied (Figure 
5.4b). The main difference between the canopy values predicted by the random forests model 
and the LPJ-GUESS model was the lack of spatial variation observed in the south of Europe in 
the predicted LPJ-GUESS canopy N map in contrast to the random forests map. In the south of 
Europe, the canopy N values predicted by the random forests model showed spatial variation, 
between 1.4 and 1.8 %N, whereas the LPJ-GUESS model predicted values centered around 
1.6 %N for the whole region. This is best illustrated in Figure 5.3b where a cluster of points is 
present around the 1.6 %N value. The lack of spatial variation is surprising as the rest of the 
study area showed apparent spatial variation and as the canopy N map from LPJ-GUESS is 
the one with the largest canopy N range of values compared to the two other maps. When the 
southernmost pixels were excluded, the relationship between the canopy N values predicted by 
the two models turned significant (r2 = 0.24).

When compared with each other, the canopy N values predicted by the two GVMs 
showed overlapping ranges, between values, 0.8-2.7 %N for O-CN and 1.0-2.5 %N for LPJ-
GUESS. While, in the northern region of Europe, LPJ-GUESS predicted on average higher 
canopy N values than O-CN, in the southern region of Europe, it was the opposite and O-CN 
predicted higher values than LPJ-GUESS (Figure 5.3c and Figure 5.4c). When excluding the 
southernmost pixels (< 43 ºN), the relationship between the predicted canopy N values showed 
a significant linear relationship (r2 = 0.28, p < 0.000). The linear trends observed in Figure 
5.4 highlight that the canopy N values predicted by the three models are in agreement and 
that there is a coherence in the canopy N representations in the GVMs studied and with the 
random forests maps. The representation of the N cycle, while being different across the two 
GVMs, predicted consistent canopy N values and spatial patterns in the north of Europe.

However, the higher values in the south of Spain of O-CN and the lack of spatial variation 
around the Mediterranean region in LPJ-GUESS, which are the most important differences 
in the spatial pattern when compared with the random forests map and when compared with 
each other, are a reason for concern. In the southern region, the O-CN model predicted higher 
canopy N relative to its range, while the LPJ-GUESS and random forests model predicted the 
opposite, i.e. higher canopy N values, relative to their respective range of values. Therefore, 
we compared the results obtained in this study to an external dataset (Sardans et al. 2016) 
including mean PFT values in central Spain, i.e. one of the regions where the difference in 
spatial pattern was particularly evident. In Sardans et al. (2016), the authors grouped foliar N 
concentration data from several datasets (4294 Spanish forest plots), which partly overlapped 
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with the plots used in Loozen et al. 2020, as they included the ICP-Forests plots located in 
Spain (48 plots). They analyzed the mean foliar N values by PFT. In central Spain, at a 
latitude lower than 43 ºN, the most occurring PFTs were Mediterranean gymnosperms and 
Mediterranean evergreen angiosperms, for which the mean foliar N concentration was 1.05 
%N and 1.43 %N, respectively. Compared to the results obtained in our study, this range of 
values is closer to the spatial mean obtained for the random forests model (1.3 %N) than the 
mean obtained by the LPJ-GUESS or O-CN model, which were equal to 1.6 %N and 2.01 %N, 
respectively. This comparison, while being based on a single external dataset and a restricted 
area, is an indication that the ranges of values observed in the random forests model have a 
sound basis and that the values simulated by the GVMs, for the O-CN model in particular, are 
overestimated in central Spain.

In both GVMs studied, leaf N concentration determines the rate of photosynthesis as well 
as C allocation. While the spatial pattern in canopy N values across the three models presents 
large similarities in the northern part of Europe, the differences observed in the southern 
region may influence the estimated C assimilation by forest ecosystems.

When comparing the differences in the canopy N maps, it is important to take into account 
that the vegetation models make different assumptions about the process representation, the 
parameters and the inputs used. Hence, although the model results were simulated using 
comparable datasets, the models’ output does not only depict differences in the processes 
represented by the models but also differences in input used to run the models.

Moreover, while we compared the output of the GVMs to the random forests map, this 
reference dataset is not free from inaccuracies. The r2 and RRMSE of the random forests map 
were equal to 0.62 and 0.18, respectively (Loozen et al. 2020). The sources of error are linked 
to the data quality of the input dataset used to tune the model. While the ICP-Forests dataset 
used to build the random forests model follows strict guidelines regarding plot configuration, 
sampling and chemical analysis methods to ensure high data quality, errors can always be 
present. Furthermore, the model was build using 818 forest plots. While the plots were 
located throughout Europe, some areas suffer from poor spatial representativity in the dataset. 
In eastern Europe, in particular, very few plots were available. This is also the case for Great 
Britain (18 plots) and the south of Norway (4 plots). In Spain, however, the number of plots 
was higher (48 plots). Also, the spatial predictor variables used in the random forests model are 
prone to uncertainties which will have propagated to the model output.

5.4.2	 Outlook on future research
In this study, we showed that two vegetation models showed differences in the spatial patterns 
and range of values of canopy N when compared to a canopy N map that was created by using 
intensive forest samplings and spatially continuous predictor variables, including VIs measured 
by earth observation. To our knowledge, a broad-scale comparison of the spatial pattern of 
canopy N predicted by GVMs has not been done before. One of the follow-ups of this study 
would be to analyze the potential causes for the dissimilarities observed, particularly in the 
southern region of Europe. This could be done by using new data sources and performing 
additional tests such as a sensitivity analysis to identify the modelled processes in the GVMs 
most likely to influence the canopy N values in this area. Moreover, it would be interesting 
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to analyze the extent of the influence of the similarities and differences of canopy N spatial 
pattern on the predicted C assimilation by the two GVMs.

This work focused on forests only. However, although forests represent a major C sink, 
other PFTs, such as grasslands, are important for C assimilation (Gourlez de la Motte et al. 
2016). For this reason, it would be interesting to study the influence of including more various 
PFTs, and not only forests, on the results in a future comparative study. To do so, broad-scale 
data of foliage N would need to be available for multiple ecosystems and PFTs.

5.5	 Conclusion

In this study, we compared canopy N maps from two GVMs, i.e. O-CN and LPJ-GUESS, with 
the canopy N maps predicted by a random forests model relying on canopy N forest sampling 
in European forest plots (ICP-Forest), VIs from earth observation, and spatially continuous 
environmental predictors. The results showed that the maps predicted overlapping ranges of 
canopy N values. While in the Mediterranean region, the models predicted divergent spatial 
patterns and range of values, there was in general a reasonable linear agreement between the 
canopy N maps of the three models studied regarding the spatial patterns in the northern 
part of Europe. This showed that, in the northern region of Europe, while the physiological 
processes in the two GVMs are described differently, the predicted canopy N values are 
consistent among each other and with the random forests model. A future perspective of this 
study would be to analyze further the causes, at the level of the processes represented in the 
GVMS, of the differences observed. This would be particularly useful in the southern region of 
Europe.
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6.1	 Context

Nitrogen (N) is an essential and limiting nutrient for plant growth (LeBauer and Treseder 
2008; Vitousek and Howarth 1991). N cycle and N availability influences the C cycle and C 
assimilation by the terrestrial biosphere (Ciais et al. 2013; Fernández-Martínez et al. 2014; 
Wieder et al. 2015). In order to quantify this influence, data on the N cycle is needed. In this 
context, this thesis addressed the scientific problem of the gap in spatially explicit information 
on canopy N at large scale.

The studies presented in this thesis explored the estimation of canopy N with remotely 
sensed VIs, as well as environmental variables, across vegetation types and spatial scales. 
Canopy N estimated with VIs and environmental variables were also compared with canopy N 
simulated by global vegetation models (GVMs). The research questions addressed in this thesis 
and presented in the introduction chapter were:
How well can we estimate canopy nitrogen (N) across spatial scales using vegetation indices 
(VIs) from remote sensing and environmental variables?

(i) What is the accuracy of canopy N estimated from remotely sensed vegetation indices
(VIs)? (Chapter 2, 3 and 4)

(ii) How will canopy N estimation from remote sensing be influenced if environmental
variables are included as predictors? (Chapter 4)

(iii) How does canopy N estimated from remote sensing and environmental
variables compare with foliage nitrogen simulated by global vegetation models
(GVMs)?  (Chapter 5)

The following sections address each sub-question separately. Future perspectives are then also 
discussed.

6.2	 Remotely sensed vegetation indices for canopy N estimation

(i) What is the accuracy of canopy N estimated from remotely sensed Vegetation
Indices (VIs)?

Remotely sensed vegetation indices (VIs) have been used to estimate canopy N (%N) in 
a variety of plant species and ecosystems. This can be attributed to their ease of use as they 
are calculated as a ratio of reflectance bands. As such, they can be computed from a range 
of different sensors, with either narrow or broadband detection. The sensor can either be 
handheld or onboard a plane or satellite.

In this thesis, we explored and assessed the accuracy of VIs for canopy N estimation in 
different conditions, spanning a range of scales and vegetation types, from a controlled 
laboratory experiment, to regional and continental studies with increasing levels of 
heterogeneity regarding the vegetation studied. Chapter 2 describes a laboratory experiment 
during which the reflectance spectra of a grass species, Holcus lanatus, was measured under 
controlled conditions. Using the measured reflectance, 60 existing VIs were obtained, as well as 
VIs specifically developed for this experiment. The reflectance spectra were also resampled to 
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the band settings of six satellite’s sensors to assess the accuracy of canopy N estimation when 
VIs were calculated with broader band settings. Canopy N and VIs were related using linear or 
log-transformed regressions.

In chapter 3, we estimated canopy N and canopy N content (g m-2) in a Mediterranean 
forest ecosystem at regional scale using a red-edge based VI, the MERIS Terrestrial Chlorophyll 
Index (MTCI). The MTCI was obtained from the MERIS sensor aboard ESA-Envisat satellite. 
The study was set in Catalonia and exploited canopy N from 841 forest plots measured by 
CREAF during 1988-2001.

In chapter 4, we estimated canopy N in European forests at continental scale using either 
only satellite-based variables or both VIs and environmental variables as predictors. While in 
chapter 2 and 3, canopy N was estimated using linear regression, in chapter 4, canopy N was 
estimated using the random forests algorithm.

In estimating canopy N with VIs, it is important to assess how accurate the estimation is. To 
do this, across the three chapters, coefficients of determination (r2) were presented to evaluate 
the results. Below, these measures are discussed and compared across the three studies. The 
obtained r2 are summarized in Table 6.1. Although the tabulated values are informative, care 
should be taken comparing r2 values between the studies in the different chapters as the spatial 
and temporal resolutions are different as well as the spatial extent of the data over which the 
coefficients are calculated. This will be further discussed below.

The results of chapter 2 showed that among the 60 existing VIs tested to estimate canopy 
N, 32 VIs showed a significant relationship with canopy N, with r2 between 0.16-0.44. The VIs 
optimized for the experiment showed higher r2, between 0.58-0.69, for the narrow band sensor. 
When resampling the reflectance spectra to the band settings of the satellite sensors, the r2 of 
the linear regressions between canopy N and the VIs ranged between 0.21-0.58 for the existing 
VIs, and between 0.47-0.67 for the optimized VIs. These results showed that the optimized 
VIs showed in general higher r2 than existing VIs. The range of r2 values obtained were in 
agreement with the results observed in other studies (Pacheco-Labrador et al. 2014; Tian 
et al. 2011). Among the existing VIs tested, several VIs based on the red-edge region of the 
reflectance spectrum showed significant relationship with canopy N. The r2 of the relationships 
between the red-edge VIs and canopy N ranged between 0.26-0.33. In particular, the MTCI 
was related to canopy N with a r2 equal to 0.31.

In chapter 3, the relationship between MTCI at 1 km spatial resolution and canopy N across 
PFTs showed an r2 of 0.32, while the r2 of the relationship with canopy N content was lower, 
equal to 0.17. These results are similar or higher than published studies estimating canopy 
N with MTCI in grasslands and temperate forests (Ramoelo et al. 2012; Wang et al. 2016). 
The observed r2 is also similar to the r2 obtained in chapter 2 for canopy N estimation with 
MTCI. Although the scale of measurement is different, this indicates consistency in the 
results presented. Chapter 3 also highlighted the difference between PFTs regarding canopy N 
estimation with MTCI. The relationship between MTCI and canopy N was stronger for DBF 
plots (r2 = 0.24) than for ENF plots (r2 = 0.10), while the contrary was true for the relationship 
between MTCI and canopy N content (r2 = 0.19 for ENF; insignificant for DBF).

In chapter 4, canopy N estimated across PFTs with remotely sensed variables showed an 
r2 equal to 0.60. This result was comparable to those observed in experiments using similar 
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machine learning methods to estimate canopy N across large areas (Moreno-Martínez et al. 
2018). The results within PFTs showed differences with what was observed in chapter 3. The 
r2 observed for ENF plots was equal to 0.44, which was higher than the r2 observed for DBF 
plots (r2 = 0.09). In chapter 3, the opposite was observed as the relationship between MTCI and 
canopy N for DBF plots was stronger than its counterpart for ENF plots.

The results showed that the accuracy, in terms of r2, of canopy N estimation across the 
three studies was in a large range, between r2 = 0.09-0.69. As noted above, when comparing 
the accuracy of the relationships across the three studies, we should however keep in mind that 
they are not completely comparable as the results were obtained under different conditions, 
sensors, scales and settings. While, in chapter 2, the reflectance measurements were taken 
simultaneously with the foliar samples, the larger spatial areas covered in chapter 3 and 4 
implied that all the forest plots could not be sampled at once and simultaneously with one 
satellite sensor overflight. In these studies, both the canopy N and VIs values were averaged 
temporally, which represents a major difference in methodology compared to chapter 2. The 
difference in scale also appeared to influence the relationships observed. Chapter 2 used 
VIs and canopy N values representative for a support size of 12 cm2, while in chapter 3 and 
4, values referred to pixels of 1 km2 and 0.09 km2, respectively. These datasets refer to spatial 
variations in the canopy at different scales. Both these differences in methodology and spatial 
representativity affect the accuracy of the relationships observed. The type of model also 
influences the accuracy. For example, in chapter 4, the r2 observed for all the PFTs is higher 
than in chapter 3. However, in chapter 4, the model is based on more explanatory variables, 
which are expected to contain more information than a single explanatory variable.

One of the remaining uncertainties related to canopy N remote sensing involves the 
precise mechanism explaining the observed relationships. This has led to controversy over 
the cause behind the observed relationships. In forest environments, in particular, the study 
by Ollinger et al. (2008) investigating the remote detection of canopy N in boreal forests, was 
criticized in several subsequent publications (Knyazikhin et al. 2013a; Knyazikhin et al. 2013b; 

Table 6.1. Summary of the coefficients of determination (r2) obtained in the different studies 
presented. PFT = plant functional type, DBF = deciduous broadleaf forest, ENF = evergreen 
needleleaf forest, VI = Vegetation index, MTCI = MERIS Terrestrial Chlorophyll Index, EVI = 
Enhanced Vegetation Index, NDVI = Normalized Difference Vegetation Index.

Chapter Scale Vegetation type VI tested r2

Chapter 2 Laboratory experiment Grass Existing VIs – narrow band sensor 0.16-0.44
Laboratory experiment Grass Optimized VIs – narrow band sensor 0.58-0.69
Laboratory experiment Grass Existing VIs – resampled spectra 0.21-0.58
Laboratory experiment Grass Optimized VIs – resampled spectra 0.47-0.67

Chapter 3 Regional All PFTs MTCI 0.32
Regional DBF MTCI 0.24
Regional ENF MTCI 0.10

Chapter 4 Continental All PFTs MTCI, EVI, NDVI 0.60
Continental DBF MTCI, EVI, NDVI 0.09
Continental ENF MTCI, EVI, NDVI 0.44
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Knyazikhin et al. 2013c; Townsend et al. 2013). The critiques were based on the ground that 
the observed relationships between canopy N and NIR albedo were solely the consequences of 
canopy structural effects resulting from the presence of a combination of several PFTs in the 
forests studied. The results presented in this thesis provide new and valuable information in 
this scientific debate. The database with canopy N data from forest plots used in chapter 3 and 
chapter 4 mainly included monospecific plots. This made it possible to study the relationships 
between canopy N and VIs for single PFTs and even single species, for a restricted number of 
plots in chapter 3. The result showed that significant relationships between canopy N and VIs 
could be defined for single PFTs. This was the case for DBF and ENF plots in Mediterranean 
forests in chapter 3 as well as for ENF plots in European forests in chapter 4. While these 
results do not provide further information about the actual mechanisms behind canopy N 
remote sensing, the existence of significant relationships between VIs and canopy N for PFTs 
taken separately contradicts, in these specific conditions, the idea suggested before that only 
structural effects are driving canopy N estimation with remote sensing in forest environments. 
Uncertainties remain, however, about the reason why the observed accuracy for one PFT 
differs, and sometimes greatly in the case of DBF plots, between chapter 3 and chapter 4.

Similarly, in chapter 2, the results showed that there was a difference in accuracy between 
the optimized and existing VIs for canopy N estimation. Moreover, 28 out of the 60 existing 
VIs tested did not show a significant relationship with canopy N, while being included in 
the analysis because these VIs were successful at estimating canopy N in previous studies. 
This can also be observed in other studies at local scale comparing existing and previously 
well performing VIs. Among the multiple VIs tested for canopy N estimation, several show 
poor accuracy when tested in different conditions than the ones they were developed for 
(Pacheco-Labrador et al. 2014; Tian et al. 2011). The changes in conditions include difference 
in plant species, spatial resolution, sensor or reflectance band settings. This inconsistency in 
the accuracy of VIs across studies may be a sign that the models developed are dependent 
on specific conditions. This raises questions regarding the generalization of the relationships 
observed. Understanding the causes of the variation in accuracy is essential for future real-
world applications of canopy N estimation with VIs.

6.3	 Including environmental variables as predictors

(ii) How will canopy N estimation from remote sensing be influenced if environmental
variables are included as predictors?

In chapter 4, we estimated canopy N at continental scale in European forests using either only 
remote sensing or both remote sensing and environmental variables as predictors. Including 
environmental variables alongside remote sensing variables to estimate canopy N has already 
been done in previous studies, especially in Savannah ecosystems (McNeil et al. 2012; Ramoelo 
et al. 2011; Ramoelo et al. 2012; Ramoelo et al. 2013).

Integrating environmental variables as predictors in the predictive models is motivated 
by the heterogeneity of the ecosystems studied (Ramoelo et al. 2011). This method is thus 
suited for estimating canopy N across a large spatial area, such as European forests which 
encompass a wide variety of climate, ecosystems and edaphic conditions. Recently, predictive 
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models based on both remote sensing and climate variables successfully estimated canopy 
N at global scale (Moreno-Martínez et al. 2018). Global data-driven studies have shown that 
foliar N concentration covary with climate factors including temperature (Reich and Oleksyn 
2004). In forest environments, other environmental variables have been shown to be correlated 
with foliar N, among which soil properties and N deposition (Sardans et al. 2016b; Sardans 
et al. 2015). In chapter 4, the environmental variables included were climate, land cover, N 
deposition, altitude and soil properties.

In chapter 4, we analyzed the influence on the accuracy of canopy N estimation by adding 
environmental variables. In the model estimating canopy N for all PFTs combined, the r2 of 
the random forests model was not strongly influenced by including environmental variables 
in the models (r2 = 0.62) compared with the models with remote sensing variables only (r2 
= 0.60). The influence was stronger on the accuracy of the predictive models for PFTs taken 
separately, which was especially the case for DBF plots. For ENF forest plots, the r2 increased 
from 0.44 to 0.45 when including environmental variables. For DBF, the influence of including 
environmental variables in the predictive model was strongest. While the r2 was equal to 0.09 
with remote sensing only predictors, it increased to 0.39 with the inclusion of environmental 
variables. These results showed that including environmental variables was more beneficial for 
the DBF model compared to the ENF or all plots models. In any case, including environmental 
variables had a positive influence on the accuracy of the models. Similar results were also 
found in studies evaluating the influence of adding environmental variables on the predictive 
models. For example, in a study on Savannah grasses at regional scale, including altitude in the 
predictors increased the accuracy of the predictive model compared to a model based on a red-
edge VI only (Ramoelo et al. 2012).

An outcome highlighted in chapter 4 is thus that the inclusion of environmental variables 
as predictors in the random forests model improved the accuracy of canopy N prediction. 
Following this, would it be possible to map canopy N at large scale using environmental 
variables only? In the literature, mapping foliar traits using exclusively environmental 
variables as predictors has already been done at global scale (Butler et al. 2017). Remote 
sensing variables are nevertheless relevant for canopy N mapping. While environmental 
variables data can be spatially interpolated from local measurements, e.g. climate data (Fick 
and Hijmans 2017) and soil data (Hengl et al. 2017), spectral reflectance from satellite sensors 
are directly measured at every point on a continuous grid, which provides information about 
the vegetation at a finer scale, depending on the spatial resolution of the satellite. Moreover, 
compared to environmental data obtained from one-time or infrequent measurements, 
spectral reflectance from satellite sensors are measured on a regular basis. Environmental 
variables and remote sensing variables should thus not be opposed as these two sources of 
information are complementary.

The research presented in this thesis is grounded in the broader scientific ambition to 
estimate canopy N from remote sensing. This ambition revolves around the fact that data on 
the N cycle is lacking at large scale. In this context, the results presented in chapter 4 contribute 
to solving this scientific problem as they showed that it was possible to map canopy N at 
continental scale with relatively high accuracy (r2 = 0.62). This result may be leading the path 
towards mapping canopy N at global scale.
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The methods used in chapter 4 could be applied to map canopy N at global scale. To do 
so, while data availability is of foremost importance, the quality of the datasets used is equally 
important and will influence the models developed. The results of chapter 4 showed that among 
the environmental variables included in the models, the ones with the most influence on the 
random forests models were bioclimatic, soil and N deposition variables. Improving the quality 
of these predictor variables has thus the highest potential of having a positive influence on the 
quality of the models developed. One of the aspects of the quality of the variables that could 
be improved is the spatial resolution. For the N deposition variable especially, for which the 
spatial resolution of the product used in chapter 4 was equal to 50 km, it would be interesting 
to test the influence of using a product with a higher spatial resolution, if available. As the N 
deposition variables were among the most influential for the models of DBF vegetation, using 
an N deposition map with a higher spatial resolution is recommended and may improve the 
accuracy of these models, which showed the lowest accuracy compared to the other PFTs.

6.4	 Remote sensing canopy N estimates for global vegetation models

(iii)	 How does canopy N estimated from remote sensing and environmental variables 
compare with foliage nitrogen simulated by global vegetation models?

For calibrating and evaluating GVMs, data are needed but, although ample data on the C cycle 
are available for model evaluation, data relative to the N cycle are lacking at global scale. Thus 
far, limited evaluation of the N modules of GVMs has been done, mainly by validation against 
their ability to reproduce observed trends in the C cycle (Zaehle and Dalmonech 2011) but 
so far no attempts were carried out to evaluate and compare how different GVMs perform in 
predicting canopy N spatial patterns.

In this context, data from remote sensing have been identified as a promising source to 
provide information about essential environmental variables (Giuliani et al. 2020) and data 
from earth observation holds the potential to provide spatially explicit information on the N 
cycle at large scale (Lepine et al. 2016; Moreno-Martínez et al. 2018; Ollinger et al. 2008). Earth 
observation data have already been used to improve GVM predictions related to the C cycle 
(Exbrayat et al. 2019; Scholze et al. 2017). For example, remote sensing based estimation of 
gross and NPP have been compared to model simulations (Exbrayat et al. 2019).

For the O-CN model, the predicted foliage N values have also already been evaluated 
against site-scale data in the temperate region (12 sites). The results showed that there was 
an agreement between the simulated and observed foliage N values for both broadleaved and 
needleleaved PFTs (Zaehle and Friend 2010). The LPJ-GUESS model was also evaluated against 
site-scale data (28 sites). Although the model was able to capture the difference between the 
PFTs, the difference in foliage N within PFTs was not well simulated by the model (Fleischer et 
al. 2015). For both of these GVMs, simulated canopy N was compared with the spatial pattern 
of N estimated from remote sensing.

Chapter 5 presented this comparison between a canopy N map based on remote sensing 
and environmental variables and canopy N simulated by O-CN and LPJ-GUESS. The canopy N 
maps were compared based on the predicted range of canopy N values as well as the predicted 
spatial pattern at European scale. The results highlighted the large similarities observed 
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regarding spatial pattern and overlapping range of values in the northern region of Europe. 
In the Mediterranean region, contrasting spatial patterns were found across the three models 
compared. We also compared the range of values obtained in central Spain to an external 
dataset (Sardans et al. 2016a). The comparison showed that the range of values observed in the 
canopy N map based on remote sensing and environmental variables were closer to the average 
values from the external dataset than the values obtained from either the LPJ-GUESS or O-CN 
model. While this observed difference in the three canopy N maps is a source of concern, the 
cause behind this discrepancy is still unknown. Further research into the modelled processes 
and input data used is needed to untangle the reasons behind this divergence in the canopy N 
values in southern Europe.

Including the N cycle is a recent addition in GVMs and there are still uncertainties in 
the way N cycle related physiological processes should be represented in the vegetation 
models (Davies-Barnard et al. 2020). The study presented in chapter 5 evaluated the canopy 
N predicted by two GVMs. Following this, and provided the quality of the product is good 
enough, the availability of remote sensing based data, such as canopy N maps, provide the 
opportunity to improve the model representation of the processes that influence the simulated 
canopy N values.

6.5	 Future perspectives

The studies presented in this thesis addressed the estimation of canopy N at multiple scales, 
from a laboratory experiment in chapter 2, to regional and continental estimation of canopy N 
in chapters 3 and 4. One of the research future perspectives of this work would be to attempt 
and test the estimation of canopy N at global scale using VIs. In order to enable this, data 
availability, for both canopy N and remote sensing, is essential.

With regards to canopy N data, it is essential that good quality data from all over the globe 
is available to identify and tune the models. While current datasets on canopy N include data 
from forests plots well spread over western Europe and North America, regions in the southern 
hemisphere, i.e. central Africa and south America, suffer from poor data representativity. 
Ecosystems and vegetation types specific to these regions, e.g. tropical forests, are not well 
represented in the datasets. It is thus necessary to ensure that data used to calibrate models 
used to estimate canopy N data include data representing a diversity of ecosystems and 
conditions to ensure the results are not biased towards some specific ecosystems.

Remote sensing data, on the other hand, are available globally. Recent advances in sensor 
technical specification enable coverage of the entire earth regularly at high spatial resolution. 
For example, the MSI sensor aboard the Sentinel 2 satellite from the European Space Agency 
Copernicus satellite constellation was launched in 2015 and offers coverage over main 
land surfaces every 5 days and for 14 spectral bands (Drusch et al. 2012). Among those, 
3 reflectance bands are designed for vegetation detection as they are placed in the red-edge 
region of the spectrum, which is important for canopy N estimation with VIs. Next, several 
spaceborne spectrometers are becoming available in the near future providing data with high 
spatio-temporal and spectral resolutions. Compared to the spatial resolution of MODIS and 
MERIS sensors (250 m and 1 km, respectively), which products were used in chapters 3 and 
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4, Sentinel 2 offers a much higher spatial resolution of 10-60 m. The higher spatial resolution, 
combined with the red-edge spectral bands, provide the opportunity to estimate canopy N at 
finer scale and possibly with higher accuracy.

In addition, since remote sensing data are becoming available over regular time steps, they 
offer the potential to monitor change in canopy over the growing season. GVMs also represent 
foliage N dynamically over time and show interseasonal variation (Zaehle and Friend 2010). 
A future perspective would thus be to estimate seasonal canopy N and compare or integrate 
this temporal variation to the GVM predictions. However, to achieve this at a scale relevant 
for broad scale vegetation modelling, canopy N data from forest plots would need to be 
available several times a year and at multiple locations. This would represent a considerable 
improvement but also would require higher budgets than regular current practice. For 
example, in the ICP-Forests dataset, the forest plots are sampled once every two years only 
(Rautio et al. 2016).

Another future development in canopy N estimation would be to include different 
vegetation types. While chapter 2 tested the possibility to estimate canopy N in grasses, most 
of the studies presented in this thesis focused on forests. Given that grasslands cover between 
30 and 40 % of the terrestrial biosphere and are important C sinks (Gourlez de la Motte et 
al. 2016; Hossain and Li 2021; Sha et al. 2020), including grasses in a future work estimating 
canopy N at large scale, provided data are available, would be an interesting development.

Finally, the study presented in chapter 2 laid the ground for the remote sensing based 
estimation of canopy P and canopy N:P. The results showed that estimation of canopy P 
and canopy N:P is possible. However, while more research is needed to investigate further 
if estimating canopy P and canopy N:P with remote sensing is feasible at larger scale and in 
different ecosystems, this was not the main focus of this thesis. The observation made about N 
data availability, or lack thereof, is even more valid when it comes to P. Since P, along with N, 
is an essential nutrient that limits primary productivity (Elser et al. 2007; Vitousek et al. 2010), 
global estimates of canopy P would be welcome.
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