
1.  Introduction
Geophysical monitoring infrastructures passively observe the effects of natural phenomena that continu-
ously take place and evolve in the atmosphere, oceans, and the solid earth. At our disposal is a set of unique 
and complementary instruments and sensing techniques that each provide a piece of key insight toward 
understanding these processes. The different strengths and sensitivities of each different geophysical sensor 
and measurement contributes its part in a larger observational network. Because of this wide variety of sen-
sors and data types, it is beneficial to find one universal data quality assessment technique that is effective 
for all instruments leveraged in a geophysical operational network.

The Royal Netherlands Meteorological Institute (KNMI) operates different types of geophysical instru-
ments that are deployed in the Netherlands Seismic-Acoustic Network (NSAN), both in the continental 
Netherlands (KNMI,  1993) and Caribbean Netherlands (KNMI,  2006). The observational network (Fig-
ure 1) comprises over 700 instruments including geophones, accelerometers, broadband seismometers, in-
frasonic arrays, and four Global Navigation Satellite System (GNSS) receivers. The monitoring capability of 
the network is promptly expanded when new observations are required, or new sensing techniques become 
more affordable and accessible.

Most geophysical monitoring infrastructures are designed for the assessment of hazards that include, for ex-
ample, natural and induced earthquakes (Camelbeeck & van Eck, 1994; Spetzler & Dost, 2017), explosions 
(Ruigrok et al., 2019), infrasonic events (Evers et al., 2007), observations of volcanic unrest (Carbone & 
Greco, 2007; Sparks et al., 2012), and to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty 
(Coyne et al., 2012), followed by rapid dissemination of information to the public. With advances in sensing 
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Figure 1.  Map of the (Caribbean) Netherlands showing accelerometers, broadband seismometers, geophones, and microbarometers deployed in the 
Netherlands Seismic-Acoustic Network (NSAN). The network is dense near the Groningen gas field in the north of the Netherlands where geophones are 
deployed in 200 m deep boreholes at 50 m depth intervals. In October 2020, the network consists of a total number of 728 instruments. Not illustrated are four 
Global Navigation Satellite System (GNSS) receivers installed on the islands of St. Eustatius and Saba in the Caribbean Netherlands.
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techniques and rapidly expanding network densities due to rising interest in, for example, geothermal ex-
ploration and large-N networks, data quantities are growing at an increasing rate (e.g., Dost, 1994; Strollo 
et al., 2020). As mandated by data volumes easily exceeding hundreds of terabytes across data centers and 
growing beyond tens of terabytes per year, quality verification of data must increasingly rely on automated, 
trusted, and documented policies and procedures.

Obtaining reliable data from geophysical monitoring infrastructures begins with adequate network design, 
proper instrument installation and configuration, completeness of metadata, and setting up the necessary 
infrastructure for reliable telemetry to transfer the recordings to a data center for storage. From there, con-
tinuous quality assessment of the incoming data is the backbone to sustain consistent and high data quality 
standards and create reliable products. The challenges in maintaining an extended and diverse network of 
geophysical instruments are to verify that (a) the configuration of each instrument in the field is consistent 
with its metadata, and (b) the performance of the instruments does not degrade over time. Developments 
toward (automated) geophysical data quality monitoring systems have been made over the last decades, for 
example, PQLX (McNamara & Boaz, 2006a), MUSTANG (Ahern et al., 2015), DQA (Ringler et al., 2015), 
WFCatalog (Trani et al., 2017), AutoStatsQ (Petersen et al., 2019), and component ratio monitoring (Ped-
ersen et al., 2020). These systems are often designed to detect and identify data anomalies due to changes 
in, for example, local site conditions, technical instrumental problems, timing issues, transmission failures, 
and to reveal inconsistencies in the instrument metadata. Because these problems are inherent to all sensor 
deployments and exist independently from the instrument in question, similar data quality assessment 
techniques can be applied for different instruments. Often such anomalies and discrepancies are detected 
by a researcher, for example, after analyzing a series of earthquake data. A more proactive approach is 
favorable, and this study presents a system that facilitates the discovery of such potential problems at an 
early stage based on the comparison of instrumental power spectral density (PSD) estimates against strict 
quality metrics. Our work extends previous developments in the analysis of PSD estimates for the purpose 
of quality control by introducing multiple new independent metrics and making recommendations on what 
metrics to apply to various instruments in a geophysical monitoring network.

The performance of many geophysical instruments can be assessed through a PSD estimate of a segment of 
its output recording (McNamara & Boaz, 2006b; Rosat et al., 2004). This estimate is a measure of how the 
power density of the signal is distributed over the full instruments bandwidth. Using estimates of the PSD 
from different time segments, a probability density function (PPSD) can be aggregated, which introduces a 
confidence interval on the stochastic PSD estimates. The performance of an instrument can be monitored 
through the temporal evolution of the PSD, for example, at discrete selected frequencies (De Zeeuw-van 
Dalfsen et al., 2018), or over its full bandwidth. For example, the PSD estimates of broadband recordings of 
ground motion are expected to fall within a specific range, for example, the New High (NHNM) and New 
Low Noise Models (NLNM) derived from global observations (Peterson,  1993). Besides the NHNM and 
NLNM, alternative statistical bounds are described in the literature, for example, Berger et al. (2004) and 
Castellaro and Mulargia (2012). Similar confidence intervals have been estimated for accelerometers (Cauz-
zi & Clinton, 2013) and infrasonic sensors and hydrophones (Brown et al., 2012). These models can serve as 
a preliminary constraint to verify that the waveform data is recorded within prevalent environmental con-
ditions. Because variations in the PSD can possibly be attributed to local underlying geophysical processes 
(Burtin et al., 2008; García et al., 2006) global models are often insufficient, and every instrument and site 
needs to be verified independently. Furthermore, the global models themselves are sensitive to uncertain-
ties introduced by the PSD processing and smoothing that may exceed the uncertainty of the data (Anthony 
et al., 2020). Therefore, it is recommended that a combination of multiple strategies is used to automatically 
monitor the performance of geophysical instrumentation when using PSD estimates.

For each instrument constraints are defined on the statistical parameters of the PPSD calculated from the 
latest month of data based on (a) global noise models from the literature, (b) datalogger quantization noise 
models following Bennett  (1948) and Sleeman  (2006), (c) confidence intervals established on manually 
validated archived waveform data (McNamara et al., 2009), and (d) regionally expected ambient noise char-
acteristics. Datalogger quantization noise models are derived for the network of geophone boreholes and 
accelerometers in the Dutch province of Groningen where the instruments are configured to measure rel-
atively large ground accelerations without distortion or clipping. As a consequence, the self-noise of the 
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equipment, which is dominated by digitizer noise, comes close to and at certain frequencies dominates over 
the ambient noise level. For each sensor and datalogger combination, a model for digitizer quantization 
noise is derived and used as a theoretical lower limit of the PPSD that can be observed. In addition, for in-
struments that are expected to be dominated by digitizer noise at low frequencies, the PPSD distribution is 
expected to fall close to the derived quantization noise level. It is demonstrated that the approach is easily 
applicable to tiltmeters, despite not being incorporated in the NSAN operational network.

Confidence intervals on the PPSD of incoming data can be derived from an upper and lower percentile of 
the PPSD of archived and validated data from the same instrument recorded in regular conditions over a 
full year to encapsulate seasonal variability. These confidence bands represent local low and high-noise 
models that are distinct for each instrument and site. Additionally, when an instrument records more 
than just instrumental noise, that is, environmental noise, a scatter is introduced on the stochastic PPSD 
distribution that is confirmed to be present in the data. Finally, the characteristics of the microseisms 
are used. In the Netherlands, the spectral peak of the microseisms provides a stable and well-recogniz-
able regional reference for performance monitoring and is used to constrain characteristics of the PSD 
estimates.

This study focuses on the NSAN, but also demonstrates the approach for geophysical instrumentation that 
are not presently operated in the monitoring network. In the verification process that is operated weekly, 
statistical parameters of the latest monthly PPSD of all instruments are compared to these constraints. 
When an instrument fails to meet these criteria, the station operator is notified about the potential degrad-
ed performance of the equipment. The methodology and background to calculate the PSD estimates are 
described, followed by the database design which is optimized for the storage and retrieval of many PSD 
estimates efficiently. Next, the spectral constraints devised for accelerometers, geophones, broadband seis-
mometers, microbarometers, gravimeters, tiltmeters, hydrophones, and GNSS receivers are discussed, that 
are suggested to be applied as quality metrics. Finally, the quality verification procedure operated by the 
NSAN and its process logic are described, with examples of degraded instrument performance detected by 
the system. This study is concluded with an operational product for automated data quality assessment for 
geophysical instruments deployed in the NSAN.

2.  Methodology
2.1.  Definition of the PSD Estimate

The PSD is calculated by taking the Discrete Fourier Transform (DFT) of a time-variant signal and squaring 
the magnitude of its complex coefficients, normalizing the power per unit frequency following, for example, 
Heinzel et al. (2002):

PSD f
y

f
( )m

m

s

| |

N
 2

2

� (1)

where sE f  represents the instrument sampling frequency, | |my  the complex modulus of the mth frequency 
component of the DFT, and NE  the number of samples used in the DFT. In this convention, the power distri-
bution is mapped to positive frequencies, expressed by the factor 2.

2.2.  Systematic Computation of Power Spectral Densities

Despite the publication of the Fast Fourier Transform (FFT; Cooley & Tukey, 1965), the calculation of power 
spectra remains a computationally intensive task. It is inefficient to load archived data from disk and cal-
culate PSDs on demand for instrumental monitoring purposes and a caching strategy for the PSD segments 
is recommended. The computational challenge is then shifted toward the storage of millions of spectra and 
to efficiently retrieve them. Our solution is to store a smoothed and decimated approximation of the PSD 
estimates using a custom compression scheme that minimizes the storage footprint and offers a flexible and 
fast retrieval mechanism.
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PSDs are estimated from hourly segments of continuous data with 50% overlap between segments. All data 
are preprocessed using the Python library ObsPy (Beyreuther et al., 2010) by which overlapping samples in 
one segment are removed and time-discontinuous data segments are rejected from further processing. The 
approach of McNamara and Buland (2004) is followed and PSDs are calculated within a predefined fixed 
frequency range. During the calculation, the hourly waveform segment is split into 13 segments of even 
length with 75% overlap. For each partial segment, the linear trend is removed and a normalized 10% cosine 
taper is applied to dampen the effect of spectral leakage caused by discontinuity at the segment edges. The 
instrument response is evaluated using ObsPy through evalresp, and corrected for in the frequency domain 
to obtain spectral amplitudes in physical units (e.g., m s−2 for seismic data). The spectral amplitudes are 
squared to power and normalized following Equation 1. The 13 resulting PSDs are averaged to obtain the 
final PSD for that hourly segment following the method of Welch (1967). The averaged PSD of the hourly 
segment is smoothed over a full-octave band and is expressed in dB and stored for 256 fixed frequencies 
at one-eight octave intervals, following the sequence defined in Equation 2, starting at 0E f  1,024 Hz for 
all instruments. A property of this sequence is that it generates whole integer frequency bin centers at, for 
example, 1, 2, and 4 Hz commonly used for inspection.

      0.125
0 02 [ , ,4, ,2, ,1 , ]n

nf f f� (2)

The upper and lower bounds of a frequency bin can be calculated by adding or subtracting half the bin 
width from its center frequency, respectively. Powers for frequencies above the Nyquist frequency and below 
the limit that is imposed by the segment length used in the DFT are registered as invalid by a reserved value. 
The number of selected fixed frequencies in Equation 2 can be chosen arbitrary, but must be large enough 
to include the low frequencies of interest. The remaining power values are rounded to 1 dB sized bins. The 
smoothed and decimated approximation of the PSD segment reduces its compressed storage size signifi-
cantly, and more optimization can be achieved with an appropriate data storage strategy as defined below.

2.3.  Storage Strategy

For each segment, the result relates frequency to power at discrete bins that can be represented as a sparse 
two-dimensional binary matrix, which shape depends on the chosen binning granularity (Figure 2). Because 
the PSD( )E f  relationship is continuously spaced across the frequency domain, and the chosen frequency and 

Figure 2.  Synthetic power spectral density (PSD) estimate over 20 arbitrary frequency bins. The binned frequencies 
and corresponding power densities can be treated as a sparse two-dimensional binary matrix. This particular segment 
only requires a total of 20 bytes to be stored, outside of additional metadata required for full reconstruction.
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amplitude bins are equivalent for all segments, the full spectrum can thus be represented as a contiguous 
one-dimensional array of PSD values, with the associated frequencies implicitly following the sequence 
defined in Equation 2.

Invalid powers for frequencies that are beyond the Nyquist frequency are eliminated from the start of the 
array, and the index of the first valid frequency (  offsetE f  ) is stored auxiliary to the array so that the spectrum 
can be reassembled. Power values for low frequencies beyond the segment length will truncate the array to 
the lowest valid frequency and simply reduce its length. Most currently available recordings are digitized 
with 24 bits which results in a dynamic range that is smaller than 150 dB. When the power densities are 
rounded to whole integer dB units the difference between the minimum and maximum value fits within 
a single-byte integer. This property enables a shift of the PSD by an integer shiftE PSD  that brings all power 
values to the positive range, and is stored as metadata to the array. A single PSD segment can thus be repre-
sented as an array of 8-bit unsigned integers composed as follows:

 
  uint8offset offset 1 offset NUInt8Array [ , , , ]f f fPSD PSD PSD� (3)

where E N represents the number of valid frequencies that is a function of the instrument Nyquist frequency 
and thus the sampling interval. Following this method, the PSD of a single segment, even at high sampling 
rate, can be represented with a small storage footprint (Figure 3). This size excludes the size of the metadata 
required to identify the segment within the database, including the offset (  offsetE f  ) and shift (  shiftE PSD  ) required 
for reconstruction.

2.4.  Database Selection

The derived PSD segments are stored in a database with metadata that describes its time coverage and the 
seismological standard SEED data stream identifier (Ahern et al., 2007). This metadata is indexed and used 
to retrieve the spectra that satisfy particular search criteria for, for example, a specific instrument and time 
span. A checksum of the raw waveform data and metadata are included to detect changes in the (meta)data 
that mandates the reprocessing of PSD segments in the database.

Figure 3.  Showing the number of bytes required to store a single power spectral density (PSD) array binned at 1 dB and one-eight octave bins within the fixed 
frequency range defined in Equation 2. The number of valid frequencies is limited by the Nyquist frequency of the instrument and the chosen segment length 
for the Discrete Fourier Transform (DFT). The relationship between the instrument sample rate and required storage is logarithmic.
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Several technical solutions were explored for the storage of millions of PSD segments, accounting for the 
way the database will be used. Due to the inherent variability of individual PSD estimates, the PPSD is used 
to represent a statistical distribution of multiple PSD estimates. The objective of aggregating individual 
binned PSD segments to a PPSD is equivalent to generating a two-dimensional histogram ( E PSD , E f  ) that 
is accumulated over a third temporal dimension ( t  ), namely the PSD segments over time. Initially, SciDB 
was tried (Stonebraker et al., 2013) as it is designed for array and matrix operations of this kind. One large 
challenge was encountered as arrays are expected to have a predefined size, which conflicted with a contin-
uously growing number of PSD segments over time. The ObsPy library offers a method to calculate PPSDs 
and save them using NumPy (Van Der Walt et al., 2011) compressed files. This approach has a storage foot-
print that is orders of magnitude larger than our custom compression scheme and was therefore not used. 
The NoSQL database MongoDB became the storage database of choice, as the schema-less nature of this 
database facilitates rapid prototyping and quickly evolved into a functional product. Alternatively, a Rela-
tional Database Management System (RDBMS; e.g., MySQL, MariaDB, PostgreSQL) can be chosen with no 
significant effect on the database performance. The compression scheme presented in this study keeps the 
spectral database of the current waveform archive (100 TB) at a manageable size of roughly 30 GB, which 
is about 0.03% of the raw data volume.

2.5.  Aggregation to Probabilistic Power Spectral Densities

On top of the spectral database an Application Programming Interface (API) was developed to find and 
access the PSD estimates and aggregate the results. When an API request is made, the PSD segments that 
match the request criteria (e.g., temporal coverage, or that for a particular SEED identifier) are returned. 
These segments are passed to a subroutine that allocates an empty zero-filled matrix of dimensions 255 E  
256 (NP E  Nf) that corresponds to the number of selected power and frequency bins, respectively. For every 
PSD segment, the array of 8-bit unsigned integer values are unpacked and used to find the respective cells 
within the matrix to be incremented, where invalid values are discarded. The frequency bin can be calculat-
ed from its frequency offset (  offsetE f  ), in combination with its particular index in the array. The power value 
is represented by the unsigned byte value corrected for by the power shift (  shiftE PSD  ) value. When all spectra 
have been aggregated the resulting matrix is divided element-wise by the total number of segments used 
to convert the absolute values to probability of occurrence. The resulting histogram then represents a fully 
reconstructed PPSD for the requested options and can be returned to the client for further analysis.

3.  Automating PSD Quality Control for the NSAN
Extensive and precise quality control of data is one of the most vital and resource intensive tasks of a data 
center. The large quantity of incoming geophysical data from the NSAN requires that the process of quality 
control becomes increasingly automated. The operational procedure includes all types of instruments and 
divides them into three distinctive processing stages. Stage (0) includes instruments in the first month of 
operation and serves to validate whether the instrument performs well enough to be moved into production. 
Stage (1) contains the set of instruments in the first year of operation until one year of high quality data 
is available and the instrument proceeds to the following stage. Stage (2) enforces the guarantee that the 
quality of an instrument does not degrade over time by comparing incoming data to a history of manually 
validated data that was archived during stage one of the instruments deployment.

3.1.  Instrument Performance Criteria

Power spectra can be utilized as a quality metric as the distribution of power over frequency generally 
falls within an expected range depending on ambient noise conditions and intrinsic instrumental noise. 
In the following sections the recommended PPSD criteria for many geophysical instruments are defined 
and discussed that can be applied as a performance metric. In the NSAN, the latest monthly PPSD of all 
instrumental channels are automatically verified in weekly intervals against these criteria. If one of the met-
rics fails, the station operator is notified of the suspected degraded instrument performance. Geophysical 
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instruments that are not part of the NSAN operational network are discussed and it is demonstrated how 
these instruments can be easily integrated in the future.

3.1.1.  Quantization Noise Constraint

Geophysical monitoring infrastructures consist of many different types of sensors and dataloggers, and the 
combination of the two is referred to as an instrument. The dynamic range of an instrument is determined 
by the ratio of the maximum to minimum amplitude of a signal that can be recorded and can be limited by 
either the sensor or datalogger (Steim, 2015). The maximum amplitude is usually defined by the clip level 
of the sensor, whereas the minimum amplitude is often limited by self-noise of the digitizer. An expression 
for the self-noise of the system thus provides a constraint on the minimum PSD level that can be expected 
in any output recording.

For ground motion data, the instrumental noise is expressed in terms of ground acceleration power den-
sity (m2 s−4 Hz−1). The maximum sensor amplitude (i.e., clip level) E A must thus be expressed in terms of 
ground acceleration too. This amplitude is constant for accelerometers, that is, a flat frequency response, 
and frequency dependent for, for example, geophones and broadband seismometers (Figure 4). The fre-
quency band for the quantization noise constraint is defined between 0.033 Hz and 80% of the instrument 
Nyquist frequency. The self-noise models are inaccurate near the Nyquist frequency where the effects of 
anti-aliasing filters play a significant role in decreasing the instrument sensitivity (Sleeman, 2006), and at 
low frequencies due to instabilities caused by tilt, wind, pressure, and temperature variations.

Analog-to-digital converters (ADC) discretize continuous functions to quantization levels, and in this pro-
cess, truncation errors to the nearest quantization level are introduced. Bennett (1948) derived an equation 
for the quantization noise power of an ADC over a full-load sine wave:




2
2
rms 12

� (4)

Figure 4.  Examples of frequency-dependent sensor gain. (Top) sensor gain in V for a geophone with a resonant frequency of 4.5 Hz, a damping factor of 
0.702, and an effective generator constant eGE  of 75.8 V m−1 s−1. The amplitude of the frequency response to ground displacement (green), velocity (orange), 
and acceleration (blue) is shown. The sensitivity of geophones to ground acceleration decays around its resonant frequency 0E f  indicated by the vertical 
gray line. (Bottom) sensor gain for an STS-1 broadband station with a eGE  of 2,332 V m−1 s−1, corner frequencies of 0E f  360 s and 1E f  10 Hz, and damping 
factors 0 0.707E h  and 1 0.623E h  . The broadband station is much more sensitive to ground displacements at low frequencies compared to a geophone. An 
accelerometer has a flat response to ground acceleration below its resonant frequency and is therefore not shown.
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where E  is the digitizer resolution or quantization interval which can be expressed as 2 / 2nE A  with E n the num-
ber of effective bits of the digitizer, and E A the full-load amplitude. Despite the assumption of a full-load sine 
wave input, this equation appears to hold for sufficiently complex signals passing over many quantization 
intervals (Oppenheim & Schafer, 2009). For a white noise spectrum the power density is constant over the 
full bandwidth. This means that the PSD of the quantization error can be estimated as the mean square 
error 2

rmsE   derived in Equation 4 replaces | |my
2 over NE  in Equation 1 following Parseval's theorem:

 
2
rms

min
s

2PSD
f

� (5)

Equation 5 can be expanded using Equation 4, rewritten, and expressed in dB relative to a reference value 
of 1 m2 s−4 Hz−1 for ground motion instruments.

        

2

min 10
210 log

6 2n
T APSD� (6)

Equation 6 describes an absolute minimum white noise spectrum that is uniform over all frequencies. This 
level depends on the sampling interval E T  (  1

sE f  ), as the total noise power does not change with a different 
number of samples per second, effectively reducing the PSD (Oppenheim & Schafer, 2009; Sleeman, 2006).

Inside active electronic components the electronic noise level is inversely proportional to frequency. This 
1E f  type of noise dominates the power spectrum at low frequencies. Following Sleeman (2006), min ( )E PSD f  is 

expressed, now a function of frequency, as a superposition of the flat white noise spectrum defined in Equa-
tion 6 and a frequency-dependent pink noise spectrum. This model assumes that the frequency-dependent 
noise is thus proportional to 1E f  , which often holds for instruments in the NSAN, but is not a universally 
valid assumption under all circumstances.

              

2 2

min 10 1 2

2 2( ) 10log
6 62 2n n
T A T APSD f

f
� (7)

where 1E n  and 2E n  represent the effective number of bits for each spectrum, respectively. From experience 
with instruments deployed in the NASN, it is found that the value of 2E n  is related to 1E n  following  2 1 1E n n  . 
This eliminates one unknown and combines both number of effective bits into a single variable number of 
proxybits E  . When the sampling interval E T  is also implicitly included in the number of unknown proxybits 
E  , Equation 7 can be reduced and rewritten to:



            

2

min 10
1 2 1( ) 10 log 1
6 42

APSD f
f

� (8)

For every datalogger and sensor combination, the single unknown variable E  is estimated by fitting it to an 
instrument that is dominated by self-noise over part of its bandwidth, generally at frequencies below 1 Hz 
where 1E f  noise dominates. The exact value of E  must be close to the number of bits provided by the digitizer 
manufacturer but depends on the (noise) specifications of the instrument and the configured internal (over)
sampling interval of the datalogger. This constraint is determined once, and then applied to other instru-
ments of the same type. The minimum of the PPSD may under no circumstances fall below this theoretical 
baseline. The results for all types of instruments in the NSAN are compiled in Table 1, and details on the 
methodology per instrument type is discussed in Section 3.2.

3.1.2.  Global Noise Model Constraint

For highly sensitive instruments (e.g., broadband seismometers and gravimeters), the level of ambient noise 
usually exceeds that of quantization noise, and a generic global noise model is more suitably chosen as a 
lower limit. One example is the Peterson (1993) global noise model that includes long period disturbances, 
microseisms, and anthropogenic noise. Instruments installed in a high-noise environment may produce 
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PSDs above the NHNM, whereas the PSD of instruments installed in quiet ambient conditions sites may fall 
near the NLNM. These models are based on observations from broadband instruments and therefore the 
NLNM does not translate well to strong motion accelerometers (Cauzzi & Clinton, 2013) and geophones, of 
which many are installed in the NSAN. The International Data Centre (IDC) provides similar noise models 
for acoustic and hydroacoustic data (Brown et al., 2012). The median of the monthly latest PPSD of an in-
strument should fall within its respective global noise model from the literature and constrains the PPSD 
over a large bandwidth.

3.1.3.  Microseisms Constraint

Oceanic wave-wave interaction and coastal swell imposes a distinctive and reliable noise field over the 
Netherlands that is limited to a certain frequency band (Kimman et al., 2012). These microseisms serve a 
stable minimum and maximum constraint on the expected level of ambient noise at the instrument site. 
The geographical extent of this field is frequency dependent, but frequencies of E f  0.3 Hz attenuate less 
than higher frequencies and thus can be observed consistently across the Netherlands, even at depths down 
to 200 m depth by geophones in boreholes (Figure 5). The minimum and maximum expected power at E f  
0.3 Hz was constrained over a full year at monthly intervals with 3 E  confidence intervals for various dis-
tances from the coast as illustrated in Figure 6.

Despite a clear relationship between the observed PSD around the secondary microseism frequency and 
distance to an active coastal area can be recognized, a single minimum and maximum for the entire Neth-
erlands is used. The expected noise power in the Netherlands at E f  0.3 Hz appears limited between maxE PSD  
at −90 dB and minE PSD  at −140 dB. These two values provide a constraint for the expected level of the micro-
seism at 0.3 Hz specifically for the Netherlands.

3.1.4.  Low-Frequency Constraint

This threshold is suggested for accelerometers and geophones at E f  0.025 Hz where the PSD is expected 
to be dominated by quantization noise. As the probabilistic distribution over these frequencies is narrow in 
this range, it is expected that the median of the power spectrum falls within the theoretically derived minE PSD  
from Equation 8 and minE PSD  10 dB.

3.1.5.  Minimum-Maximum Difference Constraint

This threshold is introduced in order to detect broken sensors, or instruments for which the sensor is not 
(properly) connected to the digitizer. In these cases only instrumental noise is recorded. In normal condi-
tions, the difference between the statistical minimum (  th2.5E  ) and maximum (  th97.5E  ) percentile of the PPSD 

Instrument E A (m s−2) sensorE V dataloggerE V E

Batch-1 accelerometers 4g 20 20 24.7

Batch-2 accelerometers 2g 5 20 22.7

Batch-3 accelerometers 2g 20 20 24.7

Batch-4 accelerometers 2g 5 5 24.7

Etna-2 accelerometers 2g 2 5. 2 5. 24.5

SM6 geophones E f  -dependent 2 5. 2 5. 24.3

SM6H geophones E f  -dependent 2 5. 2 5. 24.3

Note. All instruments sample at 200 Hz. E A represents the maximum amplitude that may be frequency dependent, sensorE V  and dataloggerE V  the sensor output voltage 
and datalogger input voltages, respectively. A list of all instruments per group can be found in Table S1. The Difference in the estimated proxybits between 
Batch-2 and Batch-3 accelerometers emerges from a different setting between the configured sensor output voltage range between −5 and 5 V and expected 
digitizer input voltage between −20 and 20 V. This inconsistency in the instrument configuration introduces a range of factor four that is never digitized, 
effectively not using two available bits on the datalogger.
Abbreviation: NSAN, Netherlands Seismic-Acoustic Network.

Table 1 
Compilation of Different Accelerometers and Geophones Deployed in the NSAN and the Parameters Used to Calculate the Instrumental Lower Noise Bounds
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over a month at E f  3 Hz must display at least a typical scatter of 5 dB. This frequency is chosen because it 
falls in the bandwidth of anthropogenic noise where a large variance in the PSD estimates is expected. If 
this difference is smaller than 5 dB, a warning is issued that the instrument might be dysfunctional. False 
positives of this constraint have been identified in the system for functional instruments operating in very 
quiet conditions.

Figure 5.  Showing the averaged and smoothed power spectral density (PSD) over 2019 of instruments G440 (surface accelerometer) and G441-G444 
(geophones) deployed at 50 m depth intervals, respectively. Noise at higher frequencies attenuates faster than lower frequencies with increasing depth. The 
noise power through all depth levels is near each other around 0.3 Hz. The surface accelerometer is influenced by tilt and atmospheric variations and always 
expresses higher noise levels when averaged over a full year. The New High Noise Model (NHNM) after (Peterson, 1993) is shown for reference.

Figure 6.  The power spectral density (PSD) at 0.3 Hz, as a function of distance from the (active) coast. The round markers indicate the average levels over one 
year of data from the labeled station, the bars illustrate the 3  and 3  region (99.7% confidence region). From this distribution of PSD levels, the microseism 
constraint is derived, yielding at 0.3 Hz a minE PSD  of −140 dB and a maxE PSD  of −90 dB.
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3.1.6.  Default Bound Constraint

The default bound comparison comprises a check against a constant upper and lower default bound of −80 
and −140 dB, respectively, for seismic instruments. These wide bounds are based on best estimates for the 
Netherlands from experience and have no physical background but should identify large anomalies at any 
frequency.

3.1.7.  Percentile Constraint

The percentile constraint has been previously applied by, for example, Ringler et al. (2015) and is the most 
effective metric that is placed on instruments that have been deployed for over a year and have an archived 
record of manually verified high quality data. For each instrument, from archived PSD estimates stored in 
the database an upper (  th2.5E  ) and lower (  th97.5E  ) percentile curve is computed. These data-driven bounds rep-
resent confidence limits for incoming data, within average environmental and instrumental noise for that 
particular instrument and location. Every week, the median of the latest monthly PPSD is compared against 
these statistical constraints, and when a threshold is crossed, the deviation may be caused by degraded 
instrument performance over time. Crossing of the bounds may also be caused by the addition or removal 
of a strong persistent source of noise. The sensitivity of the detection can be tuned by choosing a particular 
percentile limit (Figure 7). Furthermore, both the mean and median of the PPSD can be used as a trigger, 
where using the median will decrease the sensitivity toward single large anomalies.

3.2.  Quality Assessment of Geophysical Instruments

3.2.1.  Accelerometers

Most accelerometers in the NSAN are of type EpiSensor (Kinemetrics) with a dynamic range of 155 dB 
and a clip level of 2 or 4 g. The instruments sample ground acceleration at sampling rates of 200 Hz using 
24-bit dataloggers. Accelerometers are characterized by a flat response to acceleration below their resonant 
frequency. Because the instrument is dominated by instrumental noise over part of its bandwidth, a low-
er limit imposed by quantization noise can be empirically derived. The maximum amplitude E A expressed 
with respect to ground acceleration is thus equivalent to an accelerometers clip level, and can therefore be 
inserted in Equation 8 as a constant. The 1E f  component is found by fitting Equation 8 to data to estimate 
the number of proxybits E  as illustrated in Figure 8, resulting in an estimate of   22.7E  for that particular 
instrument.

Figure 7.  Showing the probability density function (PPSD) of surface accelerometer G400 (vertical) with the th50E  
(median; dashed), th2.5E  , th25E  , th75E  , and th97.5E  percentiles (dotted) projected on the PPSD.
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3.2.2.  Geophones

Geophones are passive velocity transducers and generally have a flat velocity response above its resonant 
frequency 0E f  (Figure 4). Below this frequency, the sensitivity decays proportional to a nominal damping 
factor E h as described by, for example, Havskov and Alguacil (2016) and can be expressed in terms of ground 
acceleration:


  


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a e 2 2
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where eGE  is the effective instrument generator constant in V/m s−1, E  and 0E  are the angular and resonant 
frequency, respectively. The maximum amplitude E A expressed as acceleration is found by dividing the max-
imum sensor output voltage maxE V  by the complex modulus of the frequency-dependent sensitivity as defined 
in Equation 9:
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The frequency-dependent amplitude ( )E A f  for geophones expressed in acceleration can be applied in Equa-
tion 8, and used to estimate E  following an identical approach as demonstrated for accelerometers. Exam-
ples for station T064 for various proxybits E  are illustrated in Figure 9, where the number of   24.3E  is 
empirically recovered.

3.2.3.  Broadband Seismometers

Broadband seismometers remain sensitive to ground accelerations at low frequencies, yet not to direct com-
ponents at zero frequency (Figure 4). The STS-1 sensors installed in the network have a flat response to 
ground velocity between 360 s and 10 Hz. The high sensitivity of the sensor limits the maximum ground 
acceleration that can be measured by the seismometer before clipping. This suggests that for dataloggers 
with input that is (a) aligned with the maximum sensor output without distortion, and (b) have a large 
dynamic range ( E  140 dB) may have quantization noise below the ambient noise (Figure 10). For an STS-1, 
because of its lower and upper corner frequency the response is expressed as Equation 9 multiplied by an 
extra term (Dost & Haak, 2002):

Figure 8.  Probability density function (PPSD) of surface Batch-2 accelerometer G400 (vertical). The median value of 
the PPSD is illustrated by the dotted white line. Curves for various proxybits E  following Equation 8 are shown. For 
this example, a value for   22.7E  is found and used to model the digitizer quantization noise of this instrument and all 
other instruments with the same setup (Table 1).
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where the indices represent the natural damping iE h  and frequency iE  of the lower (0) and upper (1) corner, 
respectively (Figure 4). The theoretical curves for two proxybits E  are shown in Figure 10 and confirm that 
the limit falls below that of environmental noise. The presented equations are different for STS-2 (Dost & 
Haak, 2002) or STS-5 sensors and depend on the generation of the electronics, but the conclusion remains 
unchanged. A quantization noise model is not effective when it falls below a seismic noise model for the 
entire bandwidth of interest. For broadband seismometers the Peterson (1993) NLNM sets a stricter and 
more useful lower limit.

Figure 10.  Probability density function (PPSD) of STS-1 broadband station HGN (vertical). The theoretical 
quantization noise of a datalogger for   24.0E  is shown. From the data alone it is impossible to fit a model of 
quantization noise. Even at very low frequencies, electronic 1E f  noise does not overtake the ambient noise signal. The 
quantization noise model has no added value, and a stricter measure for the expected lower limit of noise over the full 
bandwidth is the Peterson (1993) New Low Noise Model (NLNM), illustrated in dashed gray.

Figure 9.  Probability density function (PPSD) of borehole SM6H geophone T064 (vertical) at 200 m depth. The median 
value of the PPSD is illustrated by the dashed white line. Curves for various proxybits E  following Equations 8–10 are 
shown. For this example, a value of   24.3E  is found and used to model the instrumental lower noise limit of this 
instrument and all other instruments with the same setup (Table 1).
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3.2.4.  Microbarometers

The sensitivity of KNMI microbarometers (Mentink & Evers, 2011) to pressure is roughly flat throughout 
the frequency spectrum of interest. The dynamic range of the instruments is limited by the sensor at 100 dB, 
while the 24-bit dataloggers yield a dynamic range in the order of 146 dB, prohibiting a fit for quantization 
noise. Furthermore, the ambient atmospheric noise also clearly exceeds the expected 1E f  noise of 10 dB per 
decade, and thus a more reliable measure for the expected lower limit of noise over the full bandwidth is the 
IDC Infrasound Global High and Low Noise Models (Brown et al., 2012) illustrated in Figure 11.

3.2.5.  Hydrophones

Hydrophones are not employed in the NSAN, and the PSD processing is done similarly to that of infra-
sonic stations, but the response of a hydrophone to pressure usually decreases with lower frequencies. It 
is challenging to determine an empirical noise model because the mechanical transfer functions of the 
instruments are more complex compared to seismometers. Instead, for demonstrative purposes the poles 
and zeros are evaluated from the metadata to obtain the precise instrument transfer function. However, 
this makes the analysis practically useless since one goal of this criteria is to detect inconsistencies with the 
instrument metadata in the first place. The simplified quantization and electrical noise model derived in 
Equation 8 does not hold well for the combination of the rising and flat part of the noise spectra (Figure 12). 
The slope of the 1E f  electronic noise fits well with the data, however, a more suitable model is one with 
more degrees of freedom (Sleeman, 2006). In any case, the IDC Hydroacoustic Global High and Low Noise 
Models (Brown et al., 2012) provide a much tighter constraint and will generally always fall above any fitted 
quantization noise model, rendering the digitizer quantization noise constraint redundant.

3.2.6.  Tiltmeters

Tiltmeters are commonly used in monitoring infrastructures on the flanks of active volcanoes to detect 
periods of surface deformation caused by, for example, periods of inflation and deflation (Dzurisin, 2003). 
The added value of observations from tiltmeters was explored in monitoring the Alkmaar gas field for sub-
surface deformation induced by pressure variations in the gas reservoir back in the end of the th20E  century 
(Sleeman et al., 2000). The instruments are no longer in use in favor of a dense network of geophones and 
accelerometers. The working mechanism behind the tiltmeter is similar to the principle of an accelerome-
ter, but instead of measuring ground motion it records the angle between the vertical component of gravity 
and the surface normal of the instrument. This measurement was historically done using a pendulum, but 

Figure 11.  Probability density function (PPSD) of infrasound station DBN01 deployed at the Royal Netherlands 
Meteorological Institute (KNMI) for 2019 using a segment length of 1 h using a reference of 1 Pa2 Hz−1. There is a large 
seasonal variability in the noise characteristics of the atmosphere, leading to a scattered power spectral density (PSD) 
distribution. The International Data Centre (IDC) Infrasound Global High and Low Noise Models (Brown et al., 2012) 
are illustrated in dashed gray.
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in modern tiltmeters the most accurate measurement is accomplished through an optical bubble level. 
Inside tiltmeters, the equivalence principle states that a tilt of E  radians provides an identical record as a 
horizontal acceleration of:

 ( ) g tan ( )a t t� (12)

where gE  is the local gravitational acceleration ( E  9.81 m s−2 in the continental Netherlands). Using Equa-
tion 12, the observed tilt in radians is converted to a virtual horizontal acceleration (Figure 13). The instru-
ment response is flat to acceleration, and the maximum amplitude E A is specified by the manufacturer data-
sheet at 330 μrad. A theoretical quantization noise model can be fitted using Equation 8 using a flat response 
to ground acceleration resulting in to   17.0E  , closely matching the specification of the manufacturer of the 

Figure 13.  Probability density function (PPSD) of Applied Geomechanics LILY Tiltmeter (Serial Number: 8209) 
deployed in Oklahoma for 2019 using a segment length of 1 h. The Peterson (1993) noise models are illustrated in 
dashed gray. The number of fitted proxybits E  comes out to approximately 17.0.

Figure 12.  Probability density function (PPSD) of hydrophone H11S3 deployed in the network of International 
Miscellaneous Stations (IMS). The hydrophone is of type High-Tec HTI-90-U and processed with a segment length of 
1 h using a reference of 1 μPa2 Hz−1. The instrument response is evaluated using the poles and zeros information from 
the metadata, using a maximum voltage of 3.2768 V as specified by the manufacturer of the data acquisition system.
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internal 16-bit datalogger. The microseisms are clearly observable in the instrument too and is also recom-
mended to be used as a constraint on the median of the PPSD.

3.2.7.  Relative Gravimeters

At present, the NSAN does not employ gravimeters for geophysical monitoring in its operational infrastruc-
ture, but acknowledges the potential for, for example, volcano monitoring in the Caribbean Netherlands, 
similar to what is being explored in the NEWTON-g project (Carbone et al., 2020; Ménoret et al., 2018; Mid-
dlemiss et al., 2016), or for hydrothermal monitoring purposes (Sugihara & Ishido, 2008).

The working principle behind the relative mechanical spring gravimeter is identical to that of an accelerom-
eter, and superconducting gravimeters work by the levitation of a niobium sphere in a stable persistent mag-
netic field, creating a virtual non-mechanical mass-on-spring system (Van Camp et al., 2017). Compared to 
accelerometers, gravimeters are designed with a lower resonant frequency and are thus characterized by a 
much higher sensitivity (Havskov & Alguacil, 2016). Its transfer function is flat to acceleration except the 
sensitivity drops proportional to 2E  above the resonant frequency. The high sensitivity of the gravimeter at 
low seismic frequencies makes it easily saturated by, for example, surface waves from seismic events.

Compared to seismometers, for gravimeters it is less common to publish experimental transfer function 
estimates and generally a single flat sensitivity is used. This sensitivity is generally sufficient for the study of 
low frequencies signals (e.g., earth normal modes, tides), which is the instruments main frequency band of 
interest. In the seismic band, above the resonant frequency, it is necessary to correct data for the instrument 
frequency response when comparing data with ground motion models. The recommendation of Francis 
et al. (2011) and others is emphasized, for operators to determine the full bandwidth frequency response of 
the instrument, similar to, for example, the Network Of Superconducting Gravimeters (1997), and publish 
the transfer function in widely used poles and zeros formats, for example, StationXML (Ahern et al., 2015).

For the purpose of quality assessment, the data are processed using a segment length of 1 h, therewith 
eliminating frequencies below 0.001 Hz. The low-frequency signals and spectral peaks (e.g., caused by earth 
tides) would be smoothed out regardless and contribute little value to quality control. The detection of 
changes in the seismic band is sufficient to confirm the instrument is performing as expected. The instru-
ment in question (iGrav SG) clips at E  10 V, with a sensitivity depending on configuration between 700 and 
1,000 nm s−2 V−1 below the resonant frequency, thus recording a maximum acceleration E A of 7–10 μm s−2. 
Internally, a 24-bit ADC digitizes the analog signal, placing the quantization noise far below the NLNM 
(Figure 14), also for frequencies below 0.001 Hz. The PPSD reaches the thermal noise floor due to Brownian 

Figure 14.  Probability density function (PPSD) of station MEMB (GWR C021 iGrav) superconducting gravimeter 
deployed in Membach, Belgium for 2019. The data have been corrected for the instrument acceleration frequency 
response over its full bandwidth. The white dashed line is the median of the PPSD. The quantization noise model from 
Equation 8 with two values for proxybits E  is shown in black, where the internal analog-to-digital converter (ADC) has 
24 available bits. The Peterson (1993) noise models are illustrated in dashed gray.
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motion in a mechanical oscillator at roughly −180 dB (Rosat & Hinderer, 2018; Warburton et al., 2010), fur-
ther suggesting that no quantization noise is recorded at any frequency. When corrected for the instrument 
frequency response, the microseisms are clearly visible and can serve as another constraint on the PSD 
estimate for gravimeters.

3.2.8.  GNSS Receivers

The ground displacement observations from GNSS receivers in the NSAN are utilized for the detection of 
volcanic deformation on the islands of Saba and St. Eustatius in the Caribbean Netherlands. Ground dis-
placement data can be derived from high temporal resolution ( E  1 Hz) GNSS instruments that continuously 
record the position of the receiver against a reference earth ellipsoid. GNSS precise point position (PPP) 
solutions have inherently low precision, with a resolution on horizontal displacements between 2 and 4 mm 
and vertical displacements at the sub-centimeter level (Xu et al., 2013). Displacement solutions are often 
characterized by high-noise levels due to, for example, the variable number of satellites used for the inver-
sion, environmental multipath reflections, and atmospheric variations. Despite the inherently low precision, 
GNSS data may contribute to the detection of large seismic events or rapidly occurring volcanic phenomena, 
such as caldera collapse (Elósegui et al., 2006; Neal et al., 2019; Wang et al., 2013). For the purpose of long-
term volcano monitoring, the receiver position is conventionally averaged out to a single position per day 
with a higher precision. Raw GNSS data were processed using the PPP algorithm, using the open source 
RTKLIB package (Takasu, 2013) to find vertical displacement ground motion with a 1-Hz sampling rate. To 
express the ground displacement PSD in acceleration the estimate is multiplied by 2E  to differentiate from 
displacement to acceleration in the frequency domain where the resulting PPSD is illustrated in Figure 15.

Because of the large scatter in observations, quantization noise is not expected to be visible in the PSD 
estimate and no theoretical noise model can be fitted following Equation 8. Furthermore, no global noise 
models exist and for lack of better alternatives, the only remaining yet most effective metric is the percentile 
criteria. Despite the proven contribution of this technique, automated GNSS anomaly detection is presently 
not included in the operational chain.

3.3.  NSAN Instrument Quality Verification Procedure

In the following section, the quality control procedure and constraints that are applied to specific sets of 
instruments are discussed. The procedure is operated weekly on the latest monthly PPSD for each instru-
ment. Not all instruments discussed in Section 3.2 are currently operational in the NSAN and this section 

Figure 15.  Showing the Probability density function (PPSD) of the vertical precise point position (PPP) displacement 
solutions (expressed in acceleration) of Global Navigation Satellite System (GNSS) station SAB1 from 2019, deployed 
on the volcanic island of Saba in the Caribbean Netherlands. The white dashed line is the median of the PPSD. The 
Peterson (1993) New High Noise Model (NHNM) is illustrated in gray.
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is limited to the types of instruments that are. A flowchart of all the imposed constraints from Section 3.1 
on the operational network is schematically visualized in Figure 16. This process can easily be extended for 
other types of instruments.

3.3.1.  All Instruments

For all instruments it is confirmed there is a minimum scatter of 5 dB at E  3 Hz (Section 3.1.5). If the in-
strument is an accelerometer or geophone, the system verifies that the low-frequency constraint is passed 
(Section 3.1.4). The processing is then split into different paths for instruments in the different stages of 
quality control.

3.3.2.  Instrument Stage Zero: New Installations

Instruments in the first month of operation are placed in this stage and do not contribute to operational 
workflows. This stage exists to evaluate the performance of an instrument in its environment before its data 
are used and published. This stage shares the metrics defined in stage one.

3.3.3.  Instrument Stage One: Recent Installations

Instruments with less than one year of archived quality control passed data are kept in the first stage. Be-
cause archived data are absent for new stations the system falls back to comparison against generic limits 
following the flowchart illustrated in Figure 16. For stations in the first stage, the median of the PPSD of 
ground motion instruments is compared against the expected microseisms at 0.3 Hz (Section 3.1.3), and 
the default upper bound over all frequencies (Section 3.1.6). The theoretical quantization noise constraint 
described in Section 3.1.1 is applied for accelerometers and geophones where a theoretical lower bound of 
the instrumental noise is available. Instead, for broadband seismometers and infrasound stations the system 
compares the median against the instruments respective global noise model (Section 3.1.2). Instruments in 
stage one are promoted to stage two if more than a year of high-quality data has been archived.

Figure 16.  Schematic flowchart illustrating the probability density function (PPSD) quality assessment algorithm. The process is divided into two stages 
based on the availability of verified archived data and thus percentile confidence intervals. The algorithm can easily be extended for other types of data and the 
recommended quality criteria discussed in Sections 3.1 and 3.2.
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3.3.4.  Instrumental Stage Two: Existing Installations

Stations in the second stage have their latest monthly median of power spectra compared against archived 
data that includes constraints on the local noise field around the instrument. The PPSD of validated ar-
chived data provides an upper and lower 2.5% confidence limit on the incoming data.

4.  Results
4.1.  Identification of Degraded Instrument Performance

In the following section three examples of degraded instrument performance are presented that were iden-
tified by the system in an operational setting.

4.1.1.  Detection of Pure Instrumental Noise Recordings

Instruments with shorted inputs or dataloggers that are disconnected from the sensor only record intrinsic 
electrical noise. The PSD is expected to be stable and narrow over the full bandwidth. Geophone FDG1 
shows an example of an instrument identified by the system that is recording only digitizer noise (Fig-
ure  17). This example fails the required minimum-maximum difference of 5  dB threshold discussed in 
Section 3.1.5.

4.1.2.  High Noise at Low Frequencies

The PPSD of surface accelerometer BLOP illustrated in Figure 18 should be dominated by instrumental 
noise at lower frequencies. However, a clear scatter can be identified and the PPSD is nowhere near the 
expected quantization noise lower limit. Another undesirable process is introducing high levels of ambient 
noise and the cause should be investigated.

4.1.3.  Percentile Threshold Trigger

Changes in the trend of the PSD estimates of an instrument can be detected by comparing statistical pa-
rameters of the latest PPSD against confidence percentiles calculated from previously archived spectra. The 
PPSD of station DR023 in Figure 19 shows the mean of the distribution of the latest month of data falling 
outside the expected percentile. This divergence of the ambient noise level was automatically detected and 
the station operator was notified. After this detection, the percentile constraint was changed to use the me-
dian of the PPSD instead of the mean.

Figure 17.  Showing geophone FDG1 (N-component) throughout 2019 that is dominated by instrumental noise over its 
full bandwidth. The range of the white arrow at E  3 Hz covers a 4-dB difference between the minimum and maximum 
that is insufficient to pass the minimum-maximum threshold of 5 dB (Section 3.1.5) and was raised for review by the 
system.
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5.  Discussion
The amount of data flowing into the archive is growing rapidly and network operators must increasingly 
rely on automated and unsupervised processes to detect and identify instrumental anomalies. The main 
objective of the PSD database is to store spectral estimates as input for the automated quality control process 
for the NSAN. The spectral smoothing and binning makes the database less suitable for anomaly detection 
before the higher seismic frequency band ( E  0.01  Hz), and for scientific purposes that require accurate 
resolution of spectral peaks (Anthony et al., 2020). Nonetheless, the system is designed as a data product 
for researchers and analysts that provides conventional PSD estimates for the entire NSAN archive without 
requiring any client-side resources for processing. The API is designed to aggregate and visualize PSD seg-
ments in various ways (e.g., PPSD, spectrogram, and power time series at a particular frequency) depending 
on the user preference. The presented database of individual PSD estimates is the most versatile and flexible 

Figure 18.  The median of the probability density function (PPSD; 2019) of surface accelerometer BLOP (vertical) does 
not fall within the required low-frequency threshold. The median of the distribution exceeds the theoretical model from 
Equation 8 (dashed black line) for a batch-1 accelerometer (Table 1) by more than 10 dB (white arrow) at 0.025 Hz and 
was therefore raised by the system.

Figure 19.  The mean of the probability density function (PPSD; dashed) of geophone DR023 (horizontal) during 
September 2020 exceeds the maximum (  th97.5E  ) archived percentiles (dotted) around 1 Hz, due to anomalously high 
power spectral density (PSD) estimates during the latest month. The percentiles were calculated from validated 
archived data.
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way to cache spectral information. The fine granularity of the hourly segments makes the database valuable 
for studying transient signals present over a sufficiently large bandwidth, for example, looking at the foot-
print of anthropogenic noise (Lecocq et al., 2020), or developing and extending global noise models (Wolin 
& McNamara, 2019).

Because the PSD estimates are cached in the database, no processing is required except for the retrieval of 
the segments. One problem this approach introduces is that the instrument frequency response is already 
deconvolved from the data before it is stored. When the instrument transfer function is corrected by the 
operator, all cached PSD segments for this channel become invalid and need to be scheduled for reprocess-
ing. Another option to consider is to store the PSD in counts and removing the instrument response during 
the request, adding some additional overhead but eliminating the need for reprocessing when metadata is 
altered.

Because the procedure is run weekly, using the past month of data, a delay in the detection is expected 
from the moment an instrument begins to perform poorly. The monthly median of the PPSD is used so that 
the PSD segments are averaged out for short-lived transient effects that may trigger the system as a false 
positive. An alternative consideration is to run the system at a daily interval. However, because of the slow 
evolution of the median of the PPSD, this will not significantly advance the moment of detection. Further-
more, with over 700 stations, having to review the results of the system trigger every day exceeds the avail-
able human resources at our disposal. Fine tuning of the system detection sensitivity is easily performed 
by changing configuration during the PSD calculation, for example, segment length, smoothing range, and 
fixed frequency interval. The sensitivity of the metrics can also be easily adjusted as well, by either raising 
or decreasing the thresholds for detection.

The presented database is highly efficient in terms of storage, amounting to only a total of less than 0.05% 
percent of the size of the NSAN data archive. In comparison, a database of uncompressed PSDs would oc-
cupy the same storage size as the waveform data does in the time domain. A significant reduction in size is 
introduced by the full-octave smoothing, fixed one-eighth frequency intervals, and rounding of power den-
sities to the nearest dB to fit within a single-byte range. The presented custom compression scheme saves 
only a single 8-bit array per spectrum and the metadata required for the PSD reconstruction.

The number of proxybits E  used to model the quantization noise of the datalogger are empirically derived 
from field data, using a part of frequency band that is dominated instrumental noise. The simple theoret-
ical models are based on purely white quantization noise superimposed on a pink noise spectrum 1( )E f  
that works well for accelerometers, geophones, and tiltmeters that are dominated by instrumental noise. 
More accurate models for instrumentation self-noise could be found by conducting laboratory experiments 
through, for example, shorting of the datalogger input and measuring its output. The presented approach is 
based on simple theoretical models (Bennett, 1948; Sleeman, 2006) and empirical fitting because the NSAN 
employs many different types of instruments of varying generations that are currently operational in the 
field. This constraint will be able to detect a mismatch between the sensor output voltage and the datalog-
ger input voltage (Table 1), or when a wrong instrument sensitivity is used. It should be emphasized that 
the system is unable to detect problems if the same error is made in computing minE PSD  and the instrument 
metadata, and suggest the model fitting is done independently from the metadata entry. Datalogger quan-
tization noise models could not be empirically fitted for broadband seismometers, gravimeters, infrasonic 
stations, hydrophones and GNSS receivers. For these instruments, in the frequency band the system applies 
the automated quality control, environmental or sensor noise dominates over instrumental noise.

The derived confidence range of −90 to −140 dB for the microseisms is similar to the Peterson (1993) noise 
models at 0.3 Hz and may be partially redundant for the Netherlands. A more accurate model would include 
the relationship between coastal distances and the value of PSD estimate as illustrated in Figure 6, with a 
slope of approximately −0.15 dB km−1. One downside of this change would be the detection of more false 
positives as the relationship is not fully consistent between all instrumental sites and does not include local 
site effects.

A number of different constraints for the detection of abnormal PSD estimates are applied, so that if one 
constraint fails to trigger as expected, the anomaly may be picked up by another independent metric that is 
based on a completely different characteristic of the PSD. In particular with the availability of confidence 
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intervals per station calculated on archived data that has been verified by the station operator, the system 
will be able to identify deviations from ordinary conditions within a week. The system is designed to support 
extensions with other types of instruments, for example, hydrophones, tiltmeters, gravimeters, and GNSS 
receivers that are presently not included in the NSAN, but may be in the future.

6.  Conclusion
This study presents an operational implementation of a quality verification procedure for the NSAN is 
based on the automated analysis of PSD estimates. The system is designed to efficiently store PSD estimates 
in a database using a custom compression scheme. The NSAN is continuously expanding and interest in 
new and additional instrumentation is rapidly growing, thus highlighting the need for automated policies 
and procedures. A universal method is proposed to automatically verify the performance of many types of 
geophysical instruments in a technically similar way. The variation of PSD estimates through time from 
geophysical instruments serves as an effective mechanism to assess the performance of the instrument. 
The commonly used technique of using PSD estimates for quality control is applied and extended where 
additional quality criteria of the PSD are defined and recommended for different instruments. These cri-
teria are based on (a) conventional global noise models, (b) instrument specific models based on digitizer 
quantization noise, (c) regional models for the Netherlands using the microseisms, and (d) site-local using 
data-driven statistical confidence limits. For the NSAN the automated procedure is scheduled weekly and 
verifies that the latest monthly archived waveform data falls within the limits imposed by our quality con-
straints defined in Section 3.1. This system proves promising for many geophysical instruments and can 
easily be adapted and extended in the future. It is shown that the system is able to monitor that instruments 
in the NSAN are operating as expected, and automatically detect degraded instrument performance at a 
national network scale.
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