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A B S T R A C T   

Minimizing antimicrobial use (AMU) in livestock is needed to control antimicrobial resistance (AMR). In the 
Netherlands, the livestock sector reduced AMU by almost 70 % since 2009, but this reduction stagnated in recent 
years. With only therapeutic AMU allowed, it is clear that besides socio-economic and behavioral factors, also the 
farm technical characteristics influence the conditions under which farmers need AMU. These characteristics 
pertain to farm management, including biosecurity, vaccination schemes, nutrition, micro-climate and hus
bandry practices. Identifying farm-related risk factors for AMU is needed to control AMR in a sustainable and 
pragmatic way. This need, often concerns the overall contribution of seemingly related (rather than individu
alized) factors. Here, risk factors for AMU in pig and calf farms were determined using two approaches: a typical 
risk factor analysis based on generalized estimating equations (GEEs) or hierarchical mixed-effects models and a 
multiblock partial least-squares regression analysis. These methods were applied to longitudinal data from two 
previous studies, i.e. a panel study and an intervention study involving 36 multiplier pig farms and 51 veal calf 
farms in the Netherlands, respectively. The multiblock analysis allowed us to quantify the importance of each 
factor and their respective block (i.e. farm management domain). For pigs, factors related to internal biosecurity 
had the highest impact on AMU, while for calves, these were mainly related to micro-climate. Structural char
acteristics, such as farm size and production type, followed in importance for both sectors. While both methods 
provided similar outcomes, the multiblock approach provided further insights by grouping and comparing fac
tors believed to be inter-related.   

1. Introduction 

In the last decades, antimicrobial resistance (AMR) has become a 
public health concern. Antimicrobial use (AMU) in both human and 
animals has set the ground for the emergence and spread of AMR in 
bacterial populations, resulting in increasing antimicrobial therapy 
failure. Conservative estimates show that, every year, AMR causes over 
700,000 human deaths worldwide (Neill, 2014), with 33,110 deaths in 
Europe alone (Cassini et al., 2019). The link between AMU in livestock 
and AMR in humans is due to resistant bacteria emerging by selection 
pressure of AMU in animals being transferred to humans through 
exposure to animals (Van Cleef et al., 2015), foods (De Boer et al., 2011) 
and the environment (Pikkemaat et al., 2016). A recent meta-analysis 

observed that reducing AMU in animals would decrease the preva
lence of antimicrobial-resistant bacteria in animals by about 15 % and 
multidrug-resistant bacteria by 24–32 %. Comparable effects were also 
observed in humans, in which the pooled prevalence of AMR reported 
was 24 % lower in the intervention groups compared to the control 
groups, with a stronger association seen for humans with direct contact 
with food-producing animals (Tang et al., 2017). Additionally, a 
modelling study on the effects of curtailing AMU in animals on AMR in 
humans has shown not only that the response to any intervention is 
strongly determined by the rate of transmission from humans to animals, 
but also that failure to address AMU in animals limits the potential of 
tackling the problem from the human side (van Bunnik and Woolhouse, 
2017). 
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Studies on the sources and transmission pathways of AMR have 
shown that livestock production is among the main reservoirs (Iwu et al., 
2020; Van Boeckel et al., 2015; Dorado-García et al., 2016). Between 
2009 and 2019, Dutch farms (broilers, pigs, veal calves and dairy cattle) 
as a whole were able to reduce AMU by approximately 69.6 % (based on 
sales data). The main tools for achieving that were important legislative 
measures, such as prohibition of preventive use, strict rules for 3rd 
choice antimicrobials, mandatory reduction goals set by the Ministry of 
Agriculture (MoA), along with adoption of herd health and treatment 
plans, guidelines, benchmarking systems and transparency in pre
scriptions (Speksnijder, 2017). Yet, differences between livestock sec
tors and farms are extensively present. The pig farming sector in 
particular has achieved a 62 % AMU reduction since 2009 (i.e. from 21 
to 8 defined daily dose animal (DDDANAT) approximately; DDDANAT 
represents the amount of antimicrobials used within a particular live
stock sector in the Netherlands and it is expressed in 
DDDA/animal-year), becoming the second lowest sector for AMU in the 
country in 2019, after dairy cattle. The veal farming sector, at the same 
period of 2009–2019 managed to reduce its AMU by 51 % (from 34 to 16 
DDDANAT approximately), with that decline having started already prior 
to 2009 (SDa, 2020). In general, all livestock sectors in the Netherlands 
have almost or at least halved their AMU since 2009, but this reduction 
has begun to stagnate in recent years. This indicates that a 70 % or 
higher AMU reduction (i.e. the current Dutch government’s goal 
(“Policy on the use of antibiotics in food-producing,” 2015) would 
require more fundamental changes at the farm level above those 
implemented, to be achieved. In the future, the Dutch MoA, apart from 
going beyond the aforementioned 70 % AMU reduction, also intends to 
implement sector-specific goals. 

Prudent AMU can be promoted by applying a major two-step strategy 
(Speksnijder, 2017). First, to decrease the incidence of infections on 
farm (e.g. by strict biosecurity measures and vaccination protocols) 
under the paradigm that every infection avoided, is a treatment with 
antimicrobials prevented. Second, to apply antimicrobials only in those 
cases where preventive measures have failed and antimicrobial treat
ment is indicated. Previous research has shown that AMU is influenced 
by multiple factors (Dorado-García et al., 2016; Speksnijder, 2017; SDa, 
2020; Sjölund et al., 2015). In traditional risk factor analyses, the indi
vidual variables in question tend to differ substantially (in meaning and 
structure) among studies; therefore, it is difficult to compare their in
formation unless the same variable is used (i.e. derived from the same 
question). To work around this constraint, a multiblock analysis can be 
applied in which the different individual factors associated with AMU at 
the farm level can be grouped into fewer biologically meaningful groups 
(hereinafter referred to as “blocks”) that are relevant to livestock pro
duction (Laanen et al., 2013; Collineau et al., 2018). The aim of each 
block is to capture the overall importance of seemingly related factors 
pertaining to the same farm management domain. This offers the op
portunity to consider the importance of these factors as a whole, 
allowing for the observed differences in block importance among the 
different studies and livestock sectors to be appreciated because each 
block represents comparable management goals and priorities for the 
farmers. Some examples of these blocks are internal and external bio
security, vaccination, husbandry practices, nutrition and herd perfor
mance, among others. To decrease AMU in a rational and sustainable 
way, it is important to identify the determinants of AMU in animals and 
to quantify their relative contributions in explaining the outcome. 

In 2011–2013, two longitudinal studies were conducted in the 
Netherlands to determine the prevalence and risk factors for AMR in pigs 
and veal calves respectively. The study on pigs focused on methicillin- 
resistant Staphylococcus aureus (MRSA) and extended-spectrum beta- 
lactamase (ESBL) carriage in pigs and pig farmers (Dohmen et al., 2017; 
Dorado-García et al., 2015a) and the veal calf study focused on control 
measures for MRSA (Dorado-García et al., 2015b). While both studies 
showed AMU to be among the significant predictors of AMR on farm, 
they did not study risk factors for AMU itself. Therefore, the aim of this 

study was two-fold i) to perform a comparative risk factor analysis for 
AMU in pig and veal calf farms, and ii) to assess the outcomes of a 
dimension reduction modelling approach as compared to a more tradi
tional variable selection method. Both objectives were addressed by 
re-using the data from the previous two studies. However, given that the 
data were collected almost a decade ago, when some husbandry prac
tices and the general attitude towards AMU in the Netherlands were 
different from the present day, the analysis performed here is not able to 
provide an updated picture of the current situation and, therefore, is not 
meant to provide actual targets for AMU-reducing interventions. While 
the age of the data may render them less suitable for certain manage
ment changes, they may still provide insights into the general relation
ship between AMU and farm management. Moreover, the data sets used 
here are well suited for the analysis from a methodological perspective 
(i.e. adaptation of a multiblock analysis to longitudinal data) and for 
providing a historical baseline for comparison with other studies on this 
topic, as well as for re-interpretation of existing data. 

2. Materials and methods 

2.1. Pig study 

2.1.1. Study design 
During 2011–2013, an 18-month panel longitudinal study aimed at 

investigating the prevalence and determinants of livestock-associated 
MRSA (LA-MRSA) and Extended-Spectrum Beta-Lactamase (ESBL), 
was conducted on 36 multiplier pig farms (sows and piglets present, 
with or without finishing pigs) in the Netherlands. A detailed description 
of the study design, including type of farms enrolled, data collection 
methods applied and information collected, is available in (Dohmen 
et al., 2017) and (Dorado-García et al., 2015a) along with information 
on data availability. Each farm was assessed four times during that 
period (6-month intervals) using a survey about on-farm practices and 
characteristics such as internal and external biosecurity, swine hus
bandry and vaccination and their AMU. Total AMU for each farm was 
expressed as defined daily dosages per animal per year (DDDA/Y) for the 
four periods preceding each sampling time. The different age categories 
present on farm were taken into account by including standardized 
weights for each category within the DDDA formula. The DDDA/Y in
dicates the number of days of antimicrobial drug use per year for an 
average animal on the farm. 

2.1.2. Risk factor analysis 
Given the longitudinal nature of the data set, generalized estimating 

equation (GEE) was used to determine factors associated with AMU. GEE 
is a marginal modelling approach (Ziegler, 2011; Lee and Nelder, 2004) 
that can handle correlated, non-normally distributed and hetero
scedastic data. Analyzing the data under the independence correlation 
structure showed that the model residuals had a decreasing correlation 
over time; thus, the correlation structure was set to be first-order 
autoregressive (AR-1). In all analyses, the outcome variable was the 
transformation of DDDA/Y values by Eq. 1 (Busse and Hefeker, 2007), as 
this transformation provided normally distributed residuals like the 
traditional approach of taking the natural logarithm, but with main
taining a 0 (instead of minus infinity) when DDDA/Y values were 0. 

y = ln(x +
̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + 1

√
) (1) 

From the full survey, explanatory variables with more than 10 % 
missing values or less than 10 % variation were excluded from the 
analysis (Dorado-García et al., 2015a). Then the variables were assessed 
univariably, with those having a p-value <0.1 for their association with 
the outcome, being selected for inclusion in multivariable analysis. 
Variables selected after the univariable analysis were grouped into 
biologically meaningful blocks. Specifically, four blocks of variables 
were created, namely: a block for internal biosecurity (block X1), 
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external biosecurity (block X2), husbandry practices (block X3) and 
nutritional practices (block X4). Within these blocks separately, vari
ables were checked for collinearity using the Variance Inflation Factor 
(VIF) (O’Brien, 2007); for variables with a VIF > 10, the Corrected 
Quasi-likelihood under Independence Model Criterion (QICC) was used 
to retain only one of the collinear variables (Boruff et al., 2012). Then 
manual backward elimination procedure using multivariable GEE 
analysis was applied for further selection of significant variables 
(p-value <0.05) for building the best fitted model within each block 
independently. Subsequently, those significant variables retained in 
each block (i.e. block specific models) were combined and tested for 
significance altogether again with manual backward elimination 
(p-value <0.05) to conclude in an overall and final multivariable GEE 
model. Three factors that defined the profile of the farm at large, being 
associated with both the outcome and the other covariates of interest 
based on literature, were included in all model as a-priori control 
covariates (Table 1): i) total number of animals in the farm per year (i.e. 
sows, suckling piglets, weaned piglets, gilts and fatteners) as continuous 
variable; ii) type of production, a binary variable defining an “open” or 
“closed” farm; and iii) type of farm, a binary variable defining a “far
rowing” or “farrow-to-finish” farm. A farm was defined as “open” when 
it received external supply of gilts more than once a year from at least 
one supplier and as “closed” when gilts were not supplied externally. A 
“farrowing” farm did not produce fatteners and delivered growers (25 kg 
live weight) to finishing farms (with the exception of one farm that 
delivered gilts for farrowing), while “farrow-to-finish” farms integrated 
farrowing and finishing production and delivered fattening pigs to the 
abattoir. The model building approach is schematized in Fig. 1. 

2.1.3. Multiblock variable importance analysis 
The relative contribution of each block of variables to the DDDA/Ys 

was quantified by combining partial least-squares (PLS) and GEE ana
lyses (Fig. 2). Our approach resembled the previously applied multi
block PLS (mbPLS) regression method on cross-sectional data (Collineau 
et al., 2018; Wold, 1984; Bougeard et al., 2011a; Bougeard et al., 
2011b), as in our case it needed to be adapted to longitudinal data. 
Briefly, multiblock regression analysis is suited to data organized in (K +
1) blocks of variables, consisting of a block of variable(s) to be explained 
(i.e. block Y), and an extended number of explanatory variables (i.e. 
potential risk factors, organized in K meaningful blocks X1,…,Xk) (Col
lineau et al., 2018). MbPLS then performs the following three steps: 

i) An overall factor analysis, between each explanatory block and the 
response variable, to summarize the information contained in each 
block Xk into K partial components tk (i.e. here the first dimension 
extracted from the PLS in each block was used) 

tk =
∑

i
Xki∗wki (2)  

where k refers to the block number, i refers to the variable number 
within the block Xk and wki to the weight (i.e. loading) of Xki within tk. 
The squared loading of an original variable in a component reflects the 
proportion of the explained variance of that component by that variable. 
The score tk is the value that each observation obtains for that PLS 

component which can be used to predict y. 
ii) Afterwards, a global component t is defined as a linear combina

tion of the tk, oriented towards explaining Y and summing up the partial 
components tk for (K = 1,…,K) 

t =
∑

k
ak∗tk =

∑

k
ak ∗ Xk∗wk = X ∗ w (3) 

iii) Finally, a multiple linear regression of Y against the global 
component t is performed: 

Y = t ∗ c + ε (4)  

where c is the regression coefficient of Y upon t, and ε represents the 
residuals of the regression models. The mbPLS method provides also two 
interpretation tools for block and variable importance called ‘block 
importance index (BlockImp)’ and ‘variable importance index (VarImp)’ 
respectively. If K is the number of explanatory blocks, BlockImpk is 
defined as: 

BlockImpk = a2
k (5) 

With a2
k being the squared weight for the explanatory block k = (1,…, 

K). As a2
k satisfies 

∑

k
a2

k
= 1 BlockImpk can also be expressed as a per

centage. If P is the total number of explanatory variables included in the 
model, VarImpp is defined as: 

VarImpp = a2
k∗w2

p (6) 

With w2
p being the squared weight for the explanatory variable p = (1, 

…,P). VarImpp can also be expressed as a percentage since w2
p satisfies 

∑

p
w2

p

= 1 too. 

In our analysis, the second and third step were replaced by directly 
combining the partial components tk in a GEE model, to account for the 
longitudinal intercorrelation of the observations. Subsequently, block 
importance was calculated by dominance analysis (Azen and Budescu, 
2003) based on the percentage of adjusted R2 of the full GEE model (i.e. 
adj.R2

full− model) explained by each partial component (i.e. adj.R2
k for (K =

1,…,K)), instead of using a global component, and the threshold value of 
1/K was used to identify significant associations between the blocks and 
Y (Bougeard et al., 2011b; Bougeard and Dray, 2018) (i.e. a block Xk is 
considered to be significantly associated with the Y block, if Block_
Importance_k is larger than 1/K and its 95 % tolerance interval does not 
include this threshold value). 

Block Importancek(%) = adj.R2
k

/
adj.R2

full− model ∗ 100% (7) 

Variable importance was calculated in a similar manner to VarImpp 
and expressed as a percentage too. Here again the threshold value of 1/P 
can also be used to identify significant associations between original 
explanatory variables and Y (Bougeard et al., 2011b; Bougeard and 
Dray, 2018) (i.e. a variable Xkp is considered to be significantly associ
ated with the Y block, if Variable_Importancep is larger than 1/P and its 
95 % tolerance interval does not include this threshold value). 

Variable Importancep(%) = Block Importancek∗w2
p ∗ 100% (8) 

In this case, apart from the results of univariable screening, authors’ 
expertise was also used to define the biologically meaningful blocks 
(Table S1 in supplementary material, Fig. 2). Thus, to the four blocks 
present, a fifth was added for including variables related to vaccination 
(block X5) even though they were not significant in the univariable 
screening. In the null model, the three control variables (Table 1) were 
included to account for the different types and sizes of farms. Moreover, 
collinear variables within each block were not excluded from the PLS 
analysis. Finally, a bootstrap procedure was used to compute 95 % 
confidence intervals (95 % CI) with 1000 iterations. 

Table 1 
Control variables of the null model for 36 pig farms and their descriptive 
statistics.  

Control variables of the null model for pigs Number of farms (Frequency) 

Open/Close farm  
Open 22 (61.1 %) 
Close 14 (38.9 %) 

Production type  
Farrow to finish 24 (66.7 %) 
Multiplier 12 (33.3 %) 

Number of animals mean: 4410; range: 1,390− 22,020  
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2.2. Veal calf study 

2.2.1. Study design 
In 2012, 51 veal calf farms were followed up in an intervention 

study, over a period of 12 weeks starting at the beginning of two 
consecutive production cycles and they were assigned to three different 
study arms (i.e. 3 × 17). These three arms corresponded to two inter
vention groups and a control group. The farms were recruited in triplets 
to ascertain comparability. Each triplet was selected at a same time point 
within the same cooperative having the same breed of calves and 
comparable production parameters (mainly mortality and AMU in pre
vious cycles). Each farm within a triplet was randomly assigned to one of 
the three following study arms: intervention farms reducing AMU by 
protocol (named RAB arm); intervention farms reducing AMU by pro
tocol and applying cleaning and disinfection program of stables (RAB- 
CD arm); and control group of farms where no interventions were 
implemented (control arm). The protocol for AMU reduction in RAB and 
RAB-CD arms promoted individual treatments and focused on limiting 
group treatments by favoring a transition from treating whole herds to 
treating herds partially. A detailed description of the study is provided 
elsewhere (Dorado-García et al., 2015b) along with information on 
availability of the data. 

AMU information was available for the four consecutive pre-study 
production cycles and the two study cycles. In each farm, AMU was 
calculated as defined daily dosages per animal per cycle (DDDA/C) for 
each of the four baseline and two study cycles. For interpretation of the 
results, a DDDA/C of 1 represents that the average animal in the pop
ulation was exposed to antimicrobials for one day during the cycle 
(approximately six months). The values were transformed again with 
Eq. 1. 

2.2.2. Risk factor analysis 
For the analysis of the calf data set, a similar approach to the pig data 

set was used, but instead of a GEE model, a hierarchical mixed-effects 
model was applied to account for the two nested levels of clustering, 
as in the latter their coding was more straightforward. In the mixed- 
effects model, a random intercept was introduced to account for the 
clustering in the three arms and another random intercept was used to 
account for the farm clustering of the two repeated measurements. The 
total number of animals in the farm in a year (i.e. bulls, heifers, dairy 
cattle and calves combined) was always forced in all models as a control 
covariate. The model building approach is schematized in Fig. 3. 

2.2.3. Multiblock variable importance analysis 
The two procedures (i.e. the multivariable model reduced by back

ward elimination and the block and variable importance) were applied 
in a similar manner as in pigs with the main difference that in the second 
one, the marginal R2 (R2 due to fixed effects only) was used to calculate 
the importance (Table S2 in supplementary material, Fig. 4). During the 
analysis of both datasets linearity was explored visually where relevant. 
All analyses were performed in the open-source environment R version 
3.6.2 (R Core Team, 2020) using the packages “geepack” (Yan, 2002), 
“lme4′′ (Walker et al., 2015) and “pls” (Bjorn-Helge et al., 2019). 

3. Results 

3.1. Risk factors for AMU in pigs 

The factors significantly associated with AMU in the final multivar
iable model for pig farms are reported in Table 2. Overall, three vari
ables from the internal biosecurity block, one from the husbandry 

Fig. 1. Conceptual scheme of the risk factor analysis for antimicrobial use in the pig data set. Information about the variables present in the blocks can be found in 
Table S1 in the supplementary material. UA1: Univariable analysis; BE2: Backward elimination. 

Fig. 2. Conceptual scheme of the relationships between explanatory blocks (X1, 
…,X5) and the response block Y in the pig data set. 
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practices block and one from the nutrition block were found to be sig
nificant. In the internal biosecurity block, factors significantly associ
ated with increased AMU were the mixing of slow growers when housed 
together after delivery of pigs, and the renewal of needles in sows once 
every week vs. at least once per day. Conversely, keeping stable groups 
of sows and applying 5-week farrowing system was significantly asso
ciated with decreased AMU. In the nutrition block, only drinking water- 
related variables were present and it was found that providing water 
from a private supply (water well) was significantly associated with 
increased AMU levels. 

3.2. Risk factors for AMU in calves 

The results from the risk factor analysis for calves are shown in 
Table 3. In total, four variables remained in the final multivariable 
model (two from the nutrition block, one from the micro-climate block 
and one from the internal biosecurity block). Specifically, the provision 
of pelleted feed was associated with reduced AMU while, the use of 
straw was associated with increased AMU. Furthermore, a lower AMU 
was observed when the temperature was not lower than 10 ◦C and when 
disinfection of the stables occurred every few rounds as compared to 
never. This association was not fully consistent, as the effect of dis
infecting at every round although protective was not significant. This 
might be due to power since only a few farms applied that measure in 
both rounds. 

3.3. Multiblock variable importance for antimicrobial use in pigs 

With 60.14 % variance explained in the AMU levels, internal bio
security was the main block, with factors contributing significantly to 
the total adjusted R2 (mean bootstrapped adjusted R2 = 0.288, with CI =
0.286 / 0.290), along with the null model. The three factors included in 
the null model (i.e. type of farm, type of production, and number of 
animals) explained altogether 20.6 % of the variation (mean 

Fig. 3. Conceptual scheme of the risk factor analysis for antimicrobial use in the calf data set. Information about the variables present in the blocks can be found in 
Table S2 in supplementary material. UA1: Univariable analysis; BE2: Backward elimination. 

Fig. 4. Conceptual scheme of the relationships between explanatory blocks (X1, 
…,X4) and the response block Y in the calf dataset. 

Table 2 
Factors significantly associated with antimicrobial use in the final multivariable 
model* for pig farms**.  

Variable Answer(s) β-coefficient p- 
value 

95 % CI  

- Piglets from various 
compartments are housed 
together after delivering 
("leftover piglets") (Ref: No) 

Yes 0.29 0.01* 0.07 / 
0.5  

- Needles for vaccination of 
sows are renewed (Ref: at 
least once per day) 

Once per 
week 

0.39 0.01* 0.09 / 
0.69  

When 
needed 

− 0.13 0.62 − 0.66 / 
0.4  

- The sows are housed in 
stable groups (Ref: No) 

Yes − 0.31 0.01* − 0.55 / 
-0.07  

- Animals get water from 
private mineral water 
source (Ref: No) 

Yes 0.5 0.004 
* 

0.16 / 
0.8  

- Weekly system followed 

3-week − 0.33 0.38 − 1.07 / 
0.41 

4-week 0.16 0.66 
− 0.5 / 
0.8 

5-week − 0.64 0.27* 
− 1.22 / 
- 0.07  

- Open-close type (Ref: 
Open) 

Close − 0.33 0.38 − 1.08 / 
0.42  

- Production type (Ref: 
farrow-to-finish) 

Farrowing 0.56 0.165 − 0.22 / 
1.36  

- Number of animals (x100)  − 0.005 0.02* 
− 0.01 / 
-0.001  

* The used GEE model accounts for intercorrelation of the 4 repeated mea
surements in 36 farms with the following variables forced in the model: Open- 
close type, production type and number of animals. 

** Data were obtained from 36 pig farms in the Netherlands 
during.2011–2013. 
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bootstrapped adjusted R2 = 0.083, with CI = 0.081 / 0.086). This was 
followed by nutrition (8.74 %), husbandry practices (7.07 %), vacci
nation (5.14 %), and external biosecurity (1.79 %). Fig. 5A summarizes 
the results of block importance to AMU. 

As shown in Fig. 5B, the individual factors within the internal bio
security and nutrition blocks had the largest importance in explaining 

the AMU levels. More specifically, within the internal biosecurity block, 
cleaning of the farrowing passage with cold water and mixing of slow 
growers after delivery of pigs displayed the highest risk effect sizes (10.6 
% and 6.7 % respectively), followed by keeping manure on the farm 
during winter and summer less than three months compared to 3–6 
months (3.4 % and 1.8 %, respectively), having a group size of gestating 
sows more than 30 compared to less than 10 (1.9 %) and changing the 
needles for piglets and fatteners per pen instead of not (1.6 %). On the 
other hand, cleaning the farrowing passage by sweeping and supplying 
water mainly via a nipple in the fattener section had a significant pro
tective effect on AMU with variable importance of 8.5 % and 7% 
respectively. Similar protective effects were observed for: keeping pig
lets within the same litter (4.4 %), having at least 24 h drying period 
after cleaning (3%), keeping manure during winter 6–9 months 
compared to 3–6 months (2.1 %), using soaking agents for cleaning the 
fattener section (2.1%), placing the carcass cooler on the dirty road (i.e. 
passage where the animals have access) (1.7 %) and having a group size 
of gestating sows between 25 and 30 compared to less than 10 (1.7 %). 
Although the blocks of nutrition, vaccination and husbandry practices as 
a whole were not significant, two similar variables in the latter were (i.e. 
their importance was higher than 1/K*1/P). That was application of a 5- 
week system compared to 1-week which was associated with reduced 
AMU (2.7 %). Within the nutrition block, providing tap water had a 
protective effect (3.8 %), whereas providing water from a private source 
was a risk factor for AMU (3.8 %) but both were not significant. Lastly, in 
the vaccination block, vaccinating piglets and fatteners and imple
menting PCV2 vaccination were not significant but positively associated 
with AMU (1.2 % and 1.0 % respectively). As in the risk factor analysis 
here we also found that “closed” farms (mean of bootstrapped coefficient 

Table 3 
Factors significantly associated with antimicrobial use in the final multivariable 
model* for veal calves**.  

Description Answer(s) β-coefficient p- 
value 

95 % CI  

- Are pellets provided to 
the calves (Ref: No) 

Yes − 0.2 0.01* − 0.34 / 
-0.04  

- Is straw provided to the 
calves (Ref: No) 

Yes 0.31 <0.001 
* 

0.16 / 
0.45  

- What is the minimum 
temperature inside the 
stables (Ref: Less than 10 
◦C) 

Between 
10− 15 ◦C − 0.35 

<0.001 
* 

− 0.53 / 
-0.16 

Between 
15− 20 ◦C − 0.43 

<0.001 
* 

− 0.64 / 
-0.21  

- When do you generally 
disinfect the stables? 
(Ref: Never) 

Not after 
every 
round 

− 0.3 
<0.001 
* 

− 0.45 / 
-0.15 

After every 
round − 0.07 0.27 

− 0.20 / 
0.05  

- Number of animals 
(x100)  0.003 0.53 

− 0.006 / 
0.01  

* The used mixed-effects model included two random intercepts for two nested 
clusters, i.e. 17 farms per each study arm with 2 repeated measurements per 
farm, with the number of animals as control variable forced in the model. 

** Data were obtained from 51 veal calf farms in the Netherlands in 2012. 

Fig. 5. (A & B); A: Relative contributions of each block of variables to the overall antimicrobial use levels (i.e. block importance) of 36 pig farms in the Netherlands 
based on the dominance analysis in the GEE model of the first partial component of each block which was extracted after applying the PLS method. The asterisk * 
denotes whether the block was contributing significantly. Bars display 95% confidence intervals. The null model was composed by three original variables which 
were: i) the number of animals; ii) the type of production, which was a binary variable defined as “open” or “closed”; and iii) the type of farm, which was a binary 
variable defined as “farrowing” or “farrow-to-finish” farms. B: Variable importance based on the PLS weights for all variables in all blocks except null model 
(variables with variable importance <1% are not shown). The asterisk * denotes whether the variable was contributing significantly. Signs in parentheses display the 
direction of the regression coefficients β showing a protective (-) (i.e. last twelve entries) or risk (+) (i.e. first twelve entries) effect of the variable. Bars display 95% 
confidence intervals. 
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= -0.802, with CI = -0.811 / -0.793) and higher number of animals were 
negatively associated with AMU (mean of bootstrapped coefficient =
-0.0064, with CI = -0.0064 / -0.0063), while, “farrow-to-finish” farms 
were positively associated (mean of bootstrapped coefficient = 0.52, 
with CI = 0.51 / 0.53). 

3.4. Multiblock variable importance for antimicrobial use in calves 

Block and variable importance for AMU in veal calves are displayed 
in Fig. 6A and B, respectively. Micro-climate had the biggest importance 
in explaining AMU (55.4 %; mean bootstrapped marginal R2 = 0.38, 
with CI = 0.37 / 0.38), followed by the number of animals (i.e. null 
model) with 28.9 % block importance (mean bootstrapped marginal R2 

= 0.2, with CI = 0.19 / 0.2). The nutrition block had an importance of 
10.4 % but it was not significant in itself. Internal and external bio
security had minor importance to the marginal R2 (3% and 2.2 % 
respectively). 

Within the micro-climate block, several variables displayed signifi
cant associations with AMU, as shown in Fig. 6B. In particular, me
chanical ventilation compared to natural ventilation (32.7 %), more 
days for drying after cleaning of stables (20 %) and minimum temper
ature of stables at 15− 20 ◦C compared to 10 ◦C (11 %) had the largest 
significant protective effects. Although the nutrition block as a whole 
and the individual variables within had no significant importance to
wards AMU, the provision of straw was still apparent as a risk factor. 
From the internal biosecurity block, disinfecting the stables every few 
rounds as compared to never (1.5 %) was negatively associated with 
AMU. 

4. Discussion 

In this study, risk factors for AMU in pig and veal calf farms were 
inferred using two different analytical approaches applied to two lon
gitudinal data sets. These data sets were generated in previous studies on 
risk factors for AMR, but were not used to study AMU per se, so no 
comparison could be done with them. The importance of blocks of 
variables, describing certain characteristics of the farms, regarding AMU 
and their individual effects were also assessed. Although several studies 
exist on risk factors for AMU in both pigs and veal calves, only one study 
so far has used a multiblock approach to assess variable importance in a 
cross-sectional study design (Collineau et al., 2018), whilst this method 
is also valuable in identifying risk factors for diseases (Bougeard et al., 
2011b). The advantage of this approach is particularly evident when 
multiple and seemingly related risk factors are analyzed in blocks, as this 
is epidemiologically more informative and reflects better the complexity 
of the farm. Livestock farming is such a case since there is a handful of 
different aspects that a farmer has to pay attention to. Indeed, the 
analysis can be done also in the “classical” way where all factors are 
included as one group, but then the information regarding those 
different aspects of the farm would be limited to only those factors 
concluded in the final multivariable model. Consequently, one would 
not be able to identify which factors are the most important within each 
block (e.g. internal biosecurity or others) and what is the relative 
importance of the different blocks. This approach therefore provides an 
original perspective to the study of risk factors that are, in fact, better 
addressed altogether as a more general entity. As the backward variable 
elimination method is quite drastic in nature (i.e. variables are excluded 
from the model completely until it is final), the PLS approach provides a 
more “gentle” exploration of the variables and their blocks altogether 
with regard to AMU. 

Fig. 6. (A & B); A: Relative contributions of each block of variables to the overall antimicrobial use levels (i.e. block importance) of 51 veal calf farms in the 
Netherlands based on the dominance analysis in the mixed-effects model of the first partial component of each block, which was extracted after applying the PLS 
method. The asterisk (*) denotes whether the block was contributing significantly. Bars display 95% confidence intervals. The null model was composed by one 
original variable which was the number of animals. B: Variable importance based on the PLS weights for all variables in all blocks except null model (variables with 
variable importance <1% are not shown). The asterisk (*) denotes whether the variable was contributing significantly. Signs in parentheses display the direction of 
the regression coefficients β showing a protective (-) (i.e. last eight entries) or risk (+) (i.e. first entry) effect of the variable. Bars display 95% confidence intervals. 
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Here, we found that internal biosecurity as a whole had the largest 
impact on AMU in pig farms. This is in line with the initial risk factor 
analysis, as 3 out of the 5 significant factors belonged to that block. 
Previously identified risk factors for AMU in pigs are limited and studies 
did not look at different farm characteristics altogether, but rather to a 
certain selection of factors (e.g. only biosecurity). In the study of Laanen 
et al. (Laanen et al., 2013) in which the Biocheck® questionnaire (Anon, 
n.d.) was used, it was also found that improved internal biosecurity was 
highly likely to reduce prophylactic AMU, but the impact of similar 
factors is expected to vary among countries (Collineau et al., 2018). 
Regarding cleaning and disinfection practices, three factors appeared to 
be significant: sweeping instead of cleaning with just cold water, the 
usage of soaking agents and a drying period of at least 24 h. The last two 
have also been observed elsewhere (Hancox et al., 2013). Besides 
cleaning and disinfection procedures in pig farms, another important 
risk factor observed here and in other studies is the mixing of pigs. This 
may manifest in multiple ways across the different production stages. 
Such cases, for example, are the mixing of gilts when originate from 
different suppliers without proper quarantine, absence of an 
all-in/all-out system or as in our case was the mixing of slow growers 
when placed together after delivery of the properly fattened pigs (i.e. 
mixing of ‘leftover’ pigs). In the study of (Arnold et al., 2016), increased 
oral AMU in Swiss fattening pig farms was associated with mixing of pigs 
from different suppliers, as well as the absence of an all-in/all-out sys
tem, the latter factor though was not significant in our final model. In 
another Swiss study, however, the all-in/all-out system was identified 
again as a significant risk factor (Kreuzer, 2014). Another important 
topic is the needle management, which has been found to be associated 
with animal welfare, carcass quality and on-farm accidents; hence, 
needle-free vaccines are increasingly being promoted (Technical and 
Unit, n.d.). 

Vaccination itself tends to have variable effects on AMU among 
studies. Here a non-significant positive association was observed by the 
mbPLS method for PCV2 vaccination and vaccination of weaners and/or 
fatteners in general. Overall, vaccinations are proven strategies for 
preventing and controlling infectious diseases (or secondary infections) 
that require antimicrobial treatment, thereby limiting the need of AMU. 
To achieve this consistently, a vaccine should be safe, easily adapted to 
mass‑application, inexpensive to produce and use, easy to register across 
key jurisdictions, and should generate durable protection (ideally after a 
single administration and against a broad range of pathogens), but 
existing vaccines still fall short of these ideals. In fact, many current 
vaccines for food-producing animals have a number of shortcomings 
with regard to safety, efficacy and/or user‑friendliness that limit their 
efficiency and thus their relationship with AMU is not clear-cut (Hoelzer 
et al., 2018a; Hoelzer et al., 2018b). In addition, farmers tend to use 
vaccines when they face a problem, mostly due to their high costs and 
labor intensity, making this cause and effect relationship difficult to 
achieve. Furthermore, manure and water management have shown to 
affect AMU, as they are among the main determinants of several swine 
diseases (Filippitzi et al., 2017). With regard to those factors, in pigs it 
was found that keeping manure on farms for longer periods is signifi
cantly associated with lower AMU, while for water, its source and means 
of provision are important thus hygienic and bio-secure management of 
those two should be a priority for the farmer. The effects of proper 
grouping of sows and lactating piglets need further investigation, as 
other on-farm characteristics are most likely to influence their impact (e. 
g. hygiene, protocol for placing piglets on different litters, density). 
Nevertheless, group-housing of litters and multi-litter systems are more 
promising as compared to the conventional single-litter system with a 
confined sow (van Nieuwamerongen et al., 2015; Nieuwamerongen, 
2017). Finally, the farrowing rhythm seems also to have an effect, with 
the 5-week system associated with lower AMU. This can be possibly 
explained with farms operating in a 1- or 2-week system having a less 
strict separation of piglets of different age groups; therefore, a higher 
chance of within-herd transmission of pathogens. In farms with a 3-, 4- 

or 5-week rhythm, the older group is already or nearly weaned, when 
new piglets are born, thereby preventing a transfer of pathogens by staff 
or other vectors between the different farrowing compartments for the 
corresponding farrowing group (Nathues et al., 2018). 

Regarding veal calves, few studies have been conducted to identify 
on-farm factors associated with AMU (Bokma et al., 2019; Holstege 
et al., 2018; Lava et al., 2016; Schnyder et al., 2019). We found that the 
use of pelleted feed was associated with lower AMU, whereas the use of 
straw was associated with higher. Indeed, pelleted feed is regarded as 
being of high quality and more hygienic compared to other feed forms 
due to its thermal treatment (Ghassemi Nejad et al., 2012) and possible 
additives (e.g. acidifiers). Straw on the other hand, providing it as is 
without any treatment, is more prone to molding if not properly stored, 
creating health risks due to mycotoxins and dust (Bennett and Klich, 
2003). However, this hypothesis is unlikely because the straw given to 
calves is inspected and certified under the IKB regulations (IKB, 2008) 
and therefore unlikely to pose a health risk as such. An alternative 
explanation is that this association is actually the result of reverse cau
sality, as from discussions with calf farmers it appeared that it is com
mon practice to provide (extra) straw as supportive therapy to calves 
with health problems. So the straw would be a consequence and not a 
cause of the disease requiring AMU. 

Air quality-related factors are not extensively examined, however, in 
one case (Lava et al., 2016) the researchers found that using the same air 
space for different groups of calves was positively associated with 
increased treatment incidence in Swiss farms and in another (Schnyder 
et al., 2019) elevated ammonia levels >10 ppm were positively associ
ated with AMU, most likely due to its influence on calf’s vulnerability to 
bovine respiratory disease (BRD) (Assié et al., 2009). Overall, there are 
several predisposing factors (“stressors”) for respiratory diseases among 
bovines, and specifically BRD, which is among the main diseases in 
white veal operations along with digestive disorders and arthritis 
(Pardon et al., 2012; Bähler et al., 2012). These pertain to trans
portation, commingling with other cattle, dust, cold, sudden and 
extreme weather changes, dehydration, hypoxia, exposure to endotoxin, 
cold coupled with wetness, and acute metabolic disturbances. In 
accordance to these stressors, here we found that low temperature (<10 
◦C), natural vs. mechanical ventilation and short dry periods after 
cleaning were risk factors for AMU. Large temperature variation was 
associated with increased mortality when tested univariably in a Swiss 
study (Schnyder et al., 2019). In the same study, mechanical ventilation 
was also associated with increased AMU, while natural ventilation in 
another study had no clear effect (Jarrige et al., 2017). These varying 
results regarding ventilation may be due to the general acceptance that 
the matter at hand here is the susceptibility of calves to air drafts 
(Schnyder et al., 2019; Brscic et al., 2012) either through mechanical or 
natural ventilation. 

Overall, the risk factor analysis was in line with the multiblock 
analysis, with the latter providing a broader overview of the relations 
between all the variables and the outcome. Interestingly, with regard to 
the control covariates forced into the models (i.e. null model), we saw 
that they accounted for a large portion of the variance, especially in the 
calf data set, in which only one factor was present (i.e. number of 
animals). 

5. Conclusions 

Reducing AMU in livestock is a priority for controlling the emer
gence and spread of AMR. To do so in a sustainable and pragmatic 
manner, a good understanding of the factors that determine the need for 
AMU is crucial. Here we showed that a multiblock approach can be of 
help in the analysis when the goal is to summarize and compare the 
effects of several (groups of seemingly related) factors. In doing so, we 
were able to show that internal biosecurity and micro-climate conditions 
influence AMU the most among pig and veal calf farms, respectively. 
This also highlights the variability of targets to be pursued in the 
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different livestock sectors to reduce AMU. 
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