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ABSTRACT
We explore the transfer of control from an automated vehicle to the
driver. Based on data from N=19 participants who participated in a
driving simulator experiment, we find evidence that the transfer
of control often does not take place in one step. In other words,
when the automated system requests the transfer of control back
to the driver, the driver often does not simply stop the non-driving
task. Rather, the transfer unfolds as a process of interleaving the
non-driving and driving tasks. We also find that the process is
moderated by the length of time available for the transfer of con-
trol: interleaving is more likely when more time is available. Our
interface designs for automated vehicles must take these results
into account so as to allow drivers to safely take back control from
automation.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models; Empirical studies in HCI.
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1 INTRODUCTION
The Society of Automotive Engineers (SAE) standardized vehicle
automation types into six categories, from level-0 which designates
vehicles that have no automation features, all the way to level-5
which designates vehicles where human control is not necessary
for any part of the trip [23]. The vast majority of cars on the road
today operate at level-0: the driver is fully in charge of all aspects of
vehicle control. The vehicles with the most advanced automation
features currently operate at level-2. In these vehicles automation
can control lateral and longitudinal position of the vehicle, but
even while automation is engaged the driver must constantly pay
attention to the road and must be ready to intervene immediately
if the automation fails.

The next level of automation that we can expect in cars is level-3
automation. Here drivers will not need to drive for extended periods
of time, and will be able to engage in non-driving tasks. However,
they will also need to be able to return to driving when the system
indicates that it can no longer control the vehicle. The SAE standard
states that the automation must provide drivers “sufficient time” to
take back control - while this language does not prescribe exactly
how long or short this time period is, we can expect that the first
vehicles with level-3 automation will indeed require drivers to take
control of the vehicle quickly, perhaps as quickly as within 10
seconds of the initial signal from the system [9].

We therefore need to understand how best to support drivers
as they perform non-driving tasks while automation controls the
vehicle such that they can also safely take back control of the
vehicle when needed. This is a multi-faceted problem; we need to
understand how the characteristics of different non-driving tasks
and different user interfaces will influence the ability of drivers to
both complete the non-driving tasks and, critically, safely take back
control of the vehicle. In this paper we focus on one aspect of this
broad problem: how drivers transition from the non-driving task
back to driving.

The transition from a non-driving task back to driving has been
explored by a number of researchers [21, 22, 24, 26, 27]. We focus
on the model proposed by Janssen et al. [11]. This model proposes
that the transition is not a one-step process where drivers simply
respond to a request to take back control by stopping the non-
driving task and taking up the driving task. Rather, Janssen and
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Figure 1: Model showing the stages of transition between
driving and non-driving task in a conditionally automated
vehicle [11]. In our experiment the non-driving task is play-
ing the twenty questions task (TQT).

colleagues argue that the process has multiple stages, including
disengagement from the non-driving task, and ultimately taking
control of the vehicle. Furthermore, they argue that for some period
of time, drivers will likely interleave the non-driving and driving
tasks before completely ending the non-driving task and focusing
(hopefully) exclusively on the driving task.

Figure 1 shows the theoretical model [11] that describes the
transition stages during the transition of control in an automated
vehicle. Figure 1 shows the model in the context of our experiment
where participants engage in the twenty questions game during
automated driving (see the Tasks section below). The stages of the
model are as follows: (0) the driver is working on a non-driving
task while automation controls the vehicle, (1) the driver receives
external warning that their input is needed for the driving task (a
pre-alert and later, if needed, an emergency alert), (2) they disen-
gage for the first time from their original task to start a period of
interleaving attention between the original task and the driving
task, (3) they orient towards the driving task, (4) they fully suspend
their original task, (5) they press a button to indicate that they have
taken control of the vehicle, (6) the driver controls the vehicle in
manual driving, which is followed by another interleaving period
during which (7) the system signals that the driver no longer needs
to provide input to the car, (8) the driver disengages from driving,
(9) orients to their original non-driving task, and (10) resumes the
suspended activities on their original task (the twenty questions
game in our experiment).

While the model by Janssen et al. [11] is based on similar models
that describe task switching in other domains (e.g., [2, 3]), this
particular model has not yet been empirically validated. Thus, we
pose the following research questions:

RQ1. Do drivers interleave the non-driving and driving tasks as
they take back control of an automated vehicle? If yes, how is
the probability of interleaving affected by the time available
to take back control?

RQ2. If drivers do interleave, what are they using the time for
during interleaving, and how does this depend on the time
available to take back control?

2 PRIORWORK
A number of researchers explored the question of how long it takes
for a driver to take back control of a vehicle safely and the various
factors that could affect this take-over time (e.g., [5, 8, 25, 27]).
The time needed to take over depends on how long the driver
needs to gather information from the environment and develop
sufficient situational awareness to then act accordingly. Visual-
manual non-driving tasks, in particular, seem to lead to poorer
driving performance [20].

Gold et al. explored the relationship between the length of time
that is available to a driver to take back control, and how quickly
they actually take back control [8]. The results show that with a
shorter available time, the driver comes to a decision more quickly,
reacts faster, but the quality is generally worse. In their experiment,
8 seconds appeared to be sufficient for the driver to understanding
the situation and take back control.

Walch et al. recorded driver performance during take-over with
different assisting system methods [25]. The experiment tested dif-
ferent warnings and handover procedures, including alerts and take
over requests (TOR) with 4 seconds and 6 seconds. Different han-
dover procedures include immediate handover, step-wise handover,
and system monitored handover. The results show that participants
preferred the combination of auditory and visual handover assistant
with 6 seconds of TOR time.

Mok et al. examined the unstructured transition timing for dis-
tracted drivers in automated vehicles when the automation is off
due to an emergency situation with three different take-over times
– 2 seconds, 5 seconds, and 8 seconds [19]. The study recommends
that the minimum amount of time needed for the transition of
control is between 2 seconds and 5 seconds.

The above efforts provide important information about how
take-over time and success are affected by factors such as the type
of non-driving task, and type of take-over alert. However, they
mostly treat take-over as a single event. Yet from prior work in
other domains we know that people often handle interruptions by
interleaving the ongoing and interrupting task for a while [2, 3, 6].
In the work presented here we extend our understanding of how
drivers take back control from automation by exploring the steps
that are involved in switching between the non-driving and driving
tasks, arguing that this switch is not a one-step process (cf. [11]).

In our experiment we use a word game, the twenty questions
game (described in the next section), as the non-driving task. A
version of this game was used in prior driving-related research
[15, 18], as were other games (e.g. Taboo [12, 14], and last-letter
game [15]). We chose twenty questions as it is an engaging game, it
allows scoring participant performance, and it has a clear discourse
structure which allows analysis of how the context of the game
affected driving behaviors.

3 METHOD
We designed an experiment to study how drivers switch between a
driving and a non-driving task in an automated vehicle. Participants
were seated in front of a driving set-up where they periodically had
to control a simulated vehicle. When not in control of the vehicle
they played a word game with an experimenter.
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Figure 2: Experiment setup showing the threemonitors used
as the driving display, the gaming steering wheel and pedals
used to control the simulated vehicle, the PC keyboard used
to signal that the driver is assuming manual control of the
simulated vehicle, the laptop used for the Twenty Questions
Task (TQT), and the eye tracker

3.1 Tasks
3.1.1 Driving Task. Participants played the BeamNG.drive game
on a PC and had to control a simulated vehicle. This game has also
been used by other researchers to simulate driving in an experiment
[4, 7]. The simulated road was a single lane rural road with no traffic,
in daylight. The setup is shown in Figure 2.

Participants were engaged in two driving modes: manual driving
and automated driving. In manual driving mode, participants were
tasked to maintain lateral (side-to-side) and longitudinal control of
the vehicle by operating the gaming steering wheel and gaming
pedals. In automated driving mode, the game controlled all aspects
of driving, and participants could completely focus on the non-
driving task: the twenty questions game.

The experiment started with a system voice announcement of
“start the experiment.” This signaled to the participants to initiate
manual driving. Participants continued to control the simulated
vehicle for 65 seconds. At that point the system issued a beep
followed by a voice alert message saying “autonomous mode” and
the game’s automation took over control of the vehicle.

Once automation was in control the participant was expected to
turn to the twenty questions game.

3.1.2 Twenty Questions Task. We used a simplified version of the
twenty question task (TQT) as the non-driving task for our ex-
periment. For this version, participants were required to guess a
word out of 18 possible words. Each of these words represented
a household item that would normally be located in one of three
rooms in the house: the kitchen, the bathroom, and the living room.
Each item had two additional characteristics to help participants
identify them - see for example Figure 3 for a visual representation
of kitchen items and their characteristics. Before the start of the
experiment, we trained participants to efficiently search for the

kitchen.png

Figure 3: Sample of twenty questions (TQT) task based
kitchen items

items by asking questions about the 3 characteristics of each item.
Training was done by one experimenter for all the participants in
the study.

For the TQT, the participant and experimenter played the game
by typing messages using the Skype application. The participant
typed on a laptop which was placed next to the gaming PC as shown
in Figure 2.

Participants completed multiple games while the simulated ve-
hicle was under the control of automation. The number of games
depended on how quickly participants completed each game.

3.1.3 Switching between tasks. After 100 seconds of automated
driving, and playing the twenty questions game, the system issued
a pre-alert, indicating that soon the driver will be required to take
back control of the simulated vehicle. The pre-alert was a beep
followed by the voice message saying “there is a narrow road and
merging ahead.” If the driver did not take back control, the pre-alert
was followed by an emergency alert saying "Emergency, take over
the control!" This indicated that the driver must take back control
in 8 seconds or less.

Participants took back manual control by pressing the space bar
on the game PC keyboard (Figure 2). They could take back manual
control any time after the pre-alert. If they did not take back control
once the maximum total takeover time had passed (15 seconds or
30 seconds, depending on the condition), the system automatically
turned on manual control. Participants could continue to play the
twenty questions game regardless of alerts and the need for manual
driving.

3.2 Experimental design
We conducted a within-subjects experiment that manipulated pre-
alert timing with two levels. In one condition ("short") the time
between the pre-alert and the emergency alert was relatively short
at 7 seconds. In the other condition ("long") this time period was
slightly longer at 22 seconds. After the pre-alert there was always
an external emergency alert (8 s before the critical event). Thus,
for the two conditions the maximum total takeover time from the
moment the pre-alert was issued was 7+8=15 seconds (short) and
22+8=30 seconds (long). We counter-balanced the presentation of
conditions between participants.
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Figure 4: Participants completed two trials in the experi-
ment, one under each alert condition (short and long). This
figure shows the sequence of manual and automated driv-
ing segments within each trial, and the points of take-over
requests where we could observe interleaving between the
twenty questions task and the driving task (TOR)

We introduced the two conditions because both of our research
questions (RQ1 and RQ2) ask how the available takeover time will
affect interleaving behavior. We selected 15 seconds for the short
takeover time for two reasons. First, we wanted to make the time re-
alistic, and we know that the first level-3 vehicles will have takeover
times in this vicinity (e.g. 10 seconds according to [9]). Second, we
took into account that for a 15 second takeover time, the emergency
alert will arrive after only 7 seconds, again placing us in the vicinity
of 10 seconds. We selected 30 seconds as the longer takeover time
because doubling the available takeover time is likely to be at the
edge of capabilities for automated vehicles.

Each participant completed two trials, one under each alert con-
dition (short and long), with three take-over request observations
per trial. Specifically, each trial started with manual driving for
65 second. Next, game automation took over control and the par-
ticipant started the twenty questions task. After 100 seconds of
automated driving the driver heard the pre-alert and, if needed, the
emergency alert. This was followed by the participant taking back
manual control and driving for another 65 seconds. After manual
driving, automation again took over control of the vehicle and the
participant continued the twenty questions game. This pattern re-
peated for a total of four times as shown in Figure 4, resulting in
three take-over requests (TOR) per trial/condition, where we could
observe interleaving between the twenty questions task and the
driving task.

3.3 Participants
Participation in this experiment was an optional assignment in a
course at the University of New Hampshire. Specifically, students
had the option of either participating in the experiment or com-
pleting a different assignment. Students who participated in the
study received course credit for their participation. Twenty-one
students opted to participate in the experiment. Due to technical
problems that resulted in incomplete data recording, we discarded
data from 2 participants. Thus, we present results from N=19 par-
ticipants. Furthermore, again due to technical problems, for 2 of
these 19 participants we discarded data related to the third instance
of switching from automated driving to manual driving, both in
the short takeover and in the long takeover condition.

Of the 19 participants, 11 participants were women (57.89%) and
8 were men (42.1%). The age of the participants was between 18 -
22 years old (Mean = 19.26 ; SD= 1.02 years of age). Out of the 19,
13 participants (68.42%) had a driver’s license and 6 participants
didn’t have a driver’s license.

3.4 Procedure
Participants reviewed an introductory sheet explaining the steps of
the experiment. After this, participants read and signed the consent
forms, and filled out a demographic survey.

Next, we trained the participants on the driving simulator and
twenty questions task. The participants played the TQT game by
speaking directly to the experimenter. The participants practiced
the tasks before completing the two trials. Eye tracker calibration
was done to the driving simulator screen using calibration markers.

After training, the participants completed the two trials, one
under each alert condition (short and long).

3.5 Equipment and software
The equipment we used for the experiment is shown in Figure 2.
Participants played the BeamNG.drive game on a computer with
three 22 inch -displays. They controlled the vehicle using a Logitech
G920 Driving Force steering wheel and pedals combination. They
typed on a Dell Inspiron laptop with a 15 inch screen to play the
twenty questions game. The experimenter typed on another PC
(not shown in Figure 2) to play the game.

The BeamNG.Drive game has an option for enabling and dis-
abling automated driving modes. We used python scripts to au-
tomate the movement of the cursor on the screen to enable and
disable the driving modes (manual or automated).

Participants also wore an Ergoneers Dikablis head-worn eye
tracker. The eye tracker was connected to a PC computer by a
tether. We placed 2D markers on the three PC displays as well as
on the laptop. The eye tracker used these markers to identify areas
of interest.

We ran the Ergoneers D-Lab software to log data from the eye-
tracker, participants typing data, and the experimenter typing data.
D-Lab supports synchronous integration of data from different
data sources using IP address connections. Since D-lab logged eye-
tracker data, driving related events (e.g. alerts, drivingmode switch),
and keystrokes from participants and experimenter synchronously,
we were able to easily compare timestamps from different sources
for our analysis.

3.6 Data collection, processing and analysis
We collected the following data during the experiment:

Driving automation switch and alerts timestamp. At the
beginning and end of the experiment, after playing each alert sound,
and after each switch between manual and automated driving, a
message was sent to the D-lab software. D-lab logged the event
with corresponding timestamps.

Gaze positionwith respect to two areas of interest.We iden-
tified two areas of interest (AOI) in the three-dimensional space
of our experiment. One was the area related to the driving task.
This area consisted of the three PC screens. The second AOI was
the area related to playing the twenty questions game. This area
consisted of the laptop computer. Using the Ergoneers eye tracker,
we collected gaze locations and then processed these using the
D-lab software to assess if the participants looked at either of the
two areas of interest. We also identified if they looked somewhere
else, or if the eye tracker was unable to track their gaze at certain
moments. We collected this data at a 60 Hz rate.
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Keystrokes. All the key presses on the desktop and laptop by
the participants, and on the experimenter’s desktop, were logged
into D-lab software. The key press on the desktop by the partici-
pants represents the event of them taking over the control of the
vehicle from automated driving mode. Key presses on the laptop
by the participants and on the desktop by the experimenter were
used to transcribe each twenty question task. We determined if the
participant typed a yes/no question or a guess, and we marked the
time they pressed the ENTER key for all questions and guesses.

Using the data we collected we calculated the following mea-
sures.

Takeover time.We measured the takeover time as the time it
took the participant to take control of the driving after the pre-alert
was announced. Participants take control of the driving by pressing
the space bar. The takeover time is calculated as the time between
the pre-alert and when the space bar is pressed.

Transition stages.We identified which stage of the model [11]
the participant was in at any given time as follows:

Stage 0: Performing twenty question task (TQT). The
participant plays the twenty questions game while the simu-
lated vehicle is under the control of automation - this mode is
on for 100 seconds. The time stamp of the start of automated
driving mode is the start of stage 0.
Stage 1: External alert. The participant heard a pre-alert
and an emergency alert. We used the timestamp of the pre-
alert message as the time of the external alert.
Stage 2: Disengage from TQT. We used the timestamp of
the first glance of the driver away from the laptop screen.
Stage 3: Orient to driving.We used the timestamp of the
first glance of driver at the driving screen after the pre-alert
was issued.
Stage 4: TQT suspension. This is the last moment when
the participant played the TQT.We determine this time as the
time stamp of either (1) the last glance on the laptop screen,
or (2) the last TQT-related keystroke, before the physical
take-over of driving. Whichever of (1) and (2) occured later
was designated as the timing of Stage 4.
Stage 5: Physical transfer of control. We used either the
time stamp of when the participant hit the space bar on the
gaming PC keyboard to take back control, or the time stamp
when the system was automatically switched to manual
control at the end of the take-over period (15 or 30 seconds).
Stage 6: Contribute to driving.This stage starts with Stage
5 and in our experiment lasts 65 seconds.

While our data can be analyzed to assess participant behavior
in stages 7-10 in the model proposed by Janssen et al. [11], in this
paper we focus only on stages 1-6.

3.6.1 Analytical Approach. We adopted a mixed-effects regression
approach (linear or logistic, depending on the DV) based on the
repeated measures nature of the data (i.e., more than one data point
per person). This approach allowed us to model a random intercept
to account for the baseline differences within participants, while
also assessing the effect of our independent variable (length of take-
over time). For the two key models, we used the lme4 package in
R and applied an alpha of .05. We assessed significance using the
’car’ package in R, which provides an estimate of significance of

the model in the form of a chi-square test ( x2). For each model
presented below, we include one fixed effect, which is the length
of take-over time. We also present descriptive statistics and effect
sizes (d), which we hope will be helpful for informing future work.

4 RESULTS
We validated that participants were engaged in the game by eval-
uating their performance in the TQT game. Table 1 shows the
performance of participants in the Twenty questions task. Partic-
ipants attempted an average of 6.11 questions in the 15 second
scenario and 6.53 questions in the 30 second scenario. Along with
attempting numerically more questions overall, participants in the
30 second scenario also appeared to make numerically more correct
and less incorrect guesses compared to 15 seconds. Taken together,
these results suggest that participants were reasonably engaged in
the secondary task during the experiment. This result is comparable
to the level of engagement observed in a similar study [15].

4.1 What is the empirical support for the
stages from the Janssen model of
interleaving? (RQ1)

Overall, we find support for the Janssen model [11]. Out of 110
instances interrupting drivers to take overmanual driving, we found
that 71 instances (64.5%) followed the stage sequences from the
Janssen model. Although participants did engage in the interleaving
predicted by Janssen et al. in the majority of transitions, this was not
the case for each transition. We identified two patterns of switching
from the non-driving task to driving. Specifically, participants either
engaged in stages 3-4 in sequential order (interleaving pattern,
predicted by Janssen, 64.5% of instances), or in the 4-3 in reverse
order (suspension pattern, 35.5% of instances).

In what we call the “interleaving pattern” we observed the canon-
ical order proposed by the Janssen et al. model, where the initial
request to take back control (stage 1) is followed by disengagement
from the twenty questions task (stage 2), then orienting to the driv-
ing task (stage 3), suspension of the twenty questions task (stage
4) and the transfer of control from automation to the driver (stage
5). Note that we observed interleaving of stages between stage 2
and stage 4; this means that after the initial request to take back
control the participants looked away from the twenty questions
task and toward the driving task, but they also returned to the
twenty questions task, interleaving their preparation to take back
control with their engagement in the non-driving task. In what we
call the “suspension pattern” we observed a different order, one in
which participants stopped their engagement in the non-driving
task and immediately resumed control of the simulated vehicle.
Here, the request to take back control (stage 1) was followed by
disengagement (stage 2) and suspension of twenty questions game
(stage 4), and then orienting to (stage 3) and immediately resuming
(stage 5) the driving task. In this “suspension pattern” participants
did not interleave between the non-driving and driving tasks.

4.1.1 Do the patterns depend on allowable transition time? The
Janssen model’s predictions may also be dependent on how long
people are given to regain manual control of the vehicle. Indeed, a
logistic (Pattern 1 vs 2, the "interruption" and "suspension" patterns
entered as a binary DV) mixed-effects model revealed a significant
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Scenario Mean Attempted items Mean Correct guesses Mean incorrect guesses
15 sec 6.11 4.95 0.74
30 sec 6.53 5.64 0.58

Table 1: Mean value of participants’ performance on items attempted by end of experiment.

plot.png

Figure 5: Takeover time for different patterns of switching
to manual driving from non-driving task (TQT)

difference in the rates of the patterns across allowable takeover
time (15s vs. 30s transition time), x2 (1) = 11.9, p < .001, B = -1.86
(SE = .539). The differences in interleaving pattern were particularly
pronounced in the 15s takeover length, where only 49% engaged in
the interleaving pattern. In contrast, 80% of instances were classified
as the interleaving pattern in the 30s takeover time.

4.2 How do participants use their interleaving
time? (RQ2)

We also tested how allowed transition time impacts the actual
manual takeover. We constructed a linear mixed-effects regression
where each take-over time was regressed on transition time (15s
vs. 30s). Not surprisingly, the 30s transition time resulted in a sig-
nificantly longer takeover time (M = 19.2; SD = 9.30) than the 15s
time (M = 9.82; SD = 3.95), x2 (1) = 73.2, p< .001, B = 9.4 (SE = 1.10),
d = 1.32. This finding is consistent with previous research which
suggests urgent situations may lead to shorter takeover time [27].

A more interesting thing to note is that pattern (interleaving vs
suspension) seemed to moderate the effect of available transition
time on actual takeover time. We tested this by regressing takeover
time on the interaction term between pattern and allowable transi-
tion time, and observed a significant interaction, x2 (1) = 20.1, p<
.001, B = 10.5 (SE = 2.34). Takeover time was statistically different
across the 15s and 30s transition time when drivers followed the
interleaving pattern, but were similar in terms of takeover time
for the suspension pattern as seen in Figure 5. This implies that
drivers do not simply ignore a take over request. If they follow
the suspension pattern, they take over the control of the vehicle
immediately after the request in both 15s and 30s conditions. If

they follow the interleaving pattern, they interleave the driving
and non-driving tasks.

Furthermore, we asked: what types of actions do participants
take in the twenty questions game after the system issued the
pre-warning? As shown in Table 2, we considered four possible
options:

• Stopped: the participants stopped participating in the twenty
questions game and switched to driving immediately after
the takeover request.

• Attempted, not finished: The participant continued the twenty
questions game but did not make a guess about the item that
the experimenter had in mind.

• Finished and stopped: The participant continued playing the
twenty questions game, made a guess (correct or incorrect),
and then switched to the driving task.

• New item started: The participant continued the twenty ques-
tions game, made a guess, and then started asking questions
about the next item, before switching to driving.

Table 2 provides interesting results in terms of participants’
choice of action depending on the allowed time before taking over
the control of the vehicle, most strikingly in the difference in new
items started. We can see that in the 15 second scenario none
of the participants started guessing a new item. However, in the
longer, 30 second scenario, this happened 11 times, indicating a
clear difference between the two conditions. A closer examination
of the data shows that eight of the 19 participants started a new
TQT task after the takeover request was issued. This indicates that
some drivers may continue the non-driving task beyond a natural
break point even after the takeover request is issued.

5 DISCUSSION
Our experimental results support the model proposed by Janssen
and colleagues [11] in a driving simulator setting. We found empir-
ical support for interleaving between the non-driving and driving
tasks as they took back control from automation and commenced
manual driving. We also found that the length of time available for
takeover has an effect: when only 15 seconds are available to take
over control, drivers were not as likely to interleave the tasks as
when 30 seconds were at their disposal.

These findings are important as we think about how to design
interfaces that (better) support drivers in future automated vehicles.
First, we can expect that when the system requests drivers to take
back control, drivers will engage in interleaving behavior, at least
some of the time. We cannot assume that, once they receive the
system request to take back control, drivers will discontinue their
non-driving task, and immediately take up the driving task.

From a safety perspective, it is important to note that we ob-
served interleaving even when the maximum takeover time was
15 seconds. In about half of the instances when participants had
this short takeover time, they still interleaved the non-driving and
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Scenario Stopped Attempted Not Finished Finished and stopped New Item started
15 sec 19 29 7 0
30 sec 12 19 13 11

Table 2: Number of instances of different actions participants took in TQT task during take-over time.

driving tasks. Clearly, interleaving can have negative safety con-
sequences: instead of shifting their full attention to the driving
task, drivers use a portion of their visual, manual, and cognitive
resources to work on the non-driving task. When we design in-
terfaces for future automated vehicles, we need to account for the
likelihood that drivers will be engaged in non-driving tasks when
automation is active, and will need support to quickly shift their
attention to driving.

Yet, our data indicate that participants paid attention to main-
taining good driving performance. We know from prior work by
Janssen and Brumby that people might not wait to reach a sub-task
boundary in order to switch from the non-driving task back to
driving, if such a delay would results in poor driving performance
[10]. The data in Table 2 is consistent with their results: when
participants had only 15 seconds to return to driving, there were
more instances of stopping or not finishing a game, than when they
had 30 seconds to return to driving. Presumably, our participants
felt that waiting to stop the twenty questions game at a natural
break point would hurt their driving performance in the 15 second
scenario.

Nevertheless, it is also interesting to observe that our participants
did not always stop the non-driving task once they reached a natural
break point in the twenty questions game. In our implementation of
the twenty questions game, one such natural break point is when the
participant makes a guess about an item. At this point one twenty
questions game is over, and the next one has not started yet. A
range of prior experiments showed that users can take advantage of
such natural break points to switch tasks (e.g. [1, 10, 15]). Thus, our
expectationwas that if our participants complete a twenty questions
game during the transition from automated to manual driving, they
will suspend this non-driving task (stage 4 in Janssen model) and
transition to the driving task (stage 5). Yet, eight participants in 11
different instances did not do this - rather they started a new twenty
questions game. While we only observed this behavior for the
longer maximum takeover time (30 second), this is a warning to us
as we design in-vehicle user interfaces. Specifically, it is a warning
that our users might prioritize the non-driving task over driving,
and as Janssen et al. predicted, treat driving as the interruption of
the ongoing non-driving task.

6 LIMITATIONS
While our experimental results provide important insights for the
design of interfaces for future automated vehicles, there are a num-
ber of limitations we need to mention. One limitation is the fact
that the experiment was performed in a low-fidelity simulation: our
participants played a game on a PC. Their behaviors in an actual
vehicle might differ from those we observed in this experiment. For
example, they might be more inclined to take back control quickly,

given that driving on the road is a safety-critical task. Still, as is
broadly the case in driving simulator studies [13], we observed our
participants to be engaged in the driving task. In addition to visual
observations of this engagement by the experimenter, takeover
behavior also supports this conclusion: of the 110 takeovers we
recorded, in 91 cases (82.7%) the participants took over before the
maximum time expired. Thus, our results can serve as an indicator
of what types of behaviors we can expect in real vehicles.

Another limitation is that participants only participated in one
experiment. Yet, their behaviors might change over time - research
shows that drivers’ trust in automated vehicle technology can in-
crease as they use the technology over time [16]. Additional re-
search is needed to assess how interfaces that support interleaving
can help users calibrate their trust appropriately [17].

Additional limitations are that we only explored one specific sec-
ondary task, and only one implementation of this task. Namely, our
participants played a word game by exchanging text messages with
an experimenter. Other tasks and implementations might result in
different levels of engagement in the non-driving task, as well as
different levels of connection to the outside world and specifically
the driving environment. Taken together, such differences can have
an effect on interleaving behaviors.

Furthermore, we did not account for where in the non-driving
task (the twenty questions game) our participants were interrupted.
Yet, their progress in the non-driving task might have affected their
responses to the pre-alert and emergency alert (see e.g. [15]).

Finally, the experiment was conducted with a homogeneous
group of participants - they were all young college students. It
will be important to understand how different user groups engage
in different non-driving tasks under different contexts in future
automated vehicles.

7 CONCLUSION
Our driving simulator experiment provides evidence to support the
interleaving model proposed by Janssen and colleagues: namely
that in future automated vehicles, when the system requests that
drivers take back control from the automation, users will often
interleave the non-driving and driving tasks before fully taking
control of the vehicle. This result has important implications for the
design of in-vehicle user interfaces and driving safety. Specifically,
these results indicate that we cannot count on drivers to always
shift their full attention to driving immediately after they receive
the takeover request, or even immediately after they first disengage
from the non-driving task and start orienting themselves to the
driving task. Rather, in some cases drivers will be inclined to shift
their manual, visual, and cognitive resources between the non-
driving and driving tasks. Our interface designs have to take this
behavior into account such that drivers can safely take back control
from automation.
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