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ABSTRACT
The intrinsic alignments of galaxies, i.e. the correlation between galaxy shapes and their environment, are a major source of
contamination for weak gravitational lensing surveys. Most studies of intrinsic alignments have so far focused on measuring and
modelling the correlations of luminous red galaxies with galaxy positions or the filaments of the cosmic web. In this work, we
investigate alignments around cosmic voids. We measure the intrinsic alignments of luminous red galaxies detected by the Sloan
Digital Sky Survey around a sample of voids constructed from those same tracers and with radii in the ranges: [20–30; 30–40;
40–50] h−1 Mpc and in the redshift range z = 0.4−0.8. We present fits to the measurements based on a linear model at large
scales, and on a new model based on the void density profile inside the void and in its neighbourhood. We constrain the free
scaling amplitude of our model at small scales, finding no significant alignment at 1σ for either sample. We observe a deviation
from the null hypothesis, at large scales, of 2σ for voids with radii between 20 and 30 h−1 Mpc, and 1.5σ for voids with radii
between 30 and 40 h−1 Mpc and constrain the amplitude of the model on these scales. We find no significant deviation at 1σ for
larger voids. Our work is a first attempt at detecting intrinsic alignments of galaxy shapes around voids and provides a useful
framework for their mitigation in future void lensing studies.

Key words: (cosmology:) large-scale structure of Universe – galaxies: statistics – gravitational lensing: weak – methods: data
analysis.

1 IN T RO D U C T I O N

Galaxies are known to align their shapes towards each other in the
Universe (Brown et al. 2002; Mandelbaum et al. 2006; Hirata et al.
2007a; Blazek, McQuinn & Seljak 2011; Singh, Mandelbaum &
More 2015; Johnston et al. 2019; Pedersen et al. 2020; Samuroff,
Mandelbaum & Blazek 2021; Singh, Yu & Seljak 2021). They also
show preferential alignments with respect to the ‘cosmic web’, the
network of nodes and filaments that constitutes the structure of the
universe (Chen et al. 2015; Georgiou et al. 2019). These alignments
are most often present for luminous red galaxies and they constitute
a regular contaminant to weak gravitational lensing observables in
photometric samples (Hirata et al. 2007b; Krause, Eifler & Blazek
2015). Blue galaxies, on the contrary, show no significant shape
alignment so far (Hirata et al. 2007a; Mandelbaum et al. 2010;
Samuroff et al. 2019), though numerical simulations suggest these
could be detected by future surveys (Chisari et al. 2016b).

Models for intrinsic alignments rely on a connection between
a galaxy shape and the tidal field (Catelan, Kamionkowski &
Blandford 2001; Blazek et al. 2011; Vlah, Chisari & Schmidt 2020)
at large scales. This connection is a linear dependency in the case of
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elliptical, pressure-supported, galaxies; and quadratic for spirals.1

At small scales, alignments are modelled within the ‘halo model’
framework (Cooray & Sheth 2002; Schneider & Bridle 2010;
Fortuna et al. 2021). This assumes that the distribution of satellite
galaxies in a halo follows the spherically symmetric density profile
of the dark matter, and that the orientations of their major axes are
towards the centre of the halo.

Gravitational lensing refers to the deflections of photons as they
travel through the gravitational potential of the large-scale structure
of the universe to our telescopes. ‘Weak’ gravitational lensing
(corresponding to small and correlated distortions at approximately
per cent level) is one of the most promising observational techniques
in order to elucidate the nature of dark matter and dark energy because
it establishes a relation between apparent shapes of observed objects
and the matter density field throughout the history of the universe
(Kaiser & Squires 1993). Therefore, several experiments have made
weak lensing a key part of their programs. Currently ongoing ones are
the Kilo-Degree Survey (de Jong et al. 2012), Hyper Suprime-Cam
(Aihara et al. 2017), and the Dark Energy Survey (DES Collaboration
et al.2021). Planned to start early in this decade are the Vera Rubin
Observatory (Ivezic et al. 2019) and Euclid (Amendola et al. 2018).

1For simplicity and due to limitations in the data samples, elliptical galaxies
are typically equated to red ones in the literature; and spirals are all assumed
to be blue.
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Figure 1. Galaxy shapes (ellipses) patterns for intrinsic (I) alignments and
extrinsic gravitational (G) lensing. On the left column, we show the case of a
massive structure at the centre of the image: an overdensity δ+. On the right
column, we show the case of a cosmic void: an underdensity δ−. The bottom
panels assume a positive void bias.

Although most studies of weak gravitational lensing focus on
the effect of matter overdensities in background galaxy shapes, the
lensing by voids is emerging as a useful tool to constrain cosmology
(Krause et al. 2012; Higuchi, Oguri & Hamana 2013; Melchior
et al. 2014; Clampitt & Jain 2015; Gruen et al. 2015; Sánchez et al.
2017; Davies, Cautun & Li 2018; Fang et al. 2019). Several studies
(Barreira et al. 2015; Baker et al. 2018) suggested that lensing
by voids could be used as a test of general relativity. Voids offer
other possibilities for testing the cosmological model, including the
presence of massive neutrinos (Massara et al. 2015; Banerjee &
Dalal 2016; Kreisch et al. 2019; Schuster et al. 2019), probing
gravity through redshift–space distortions (Hamaus et al. 2015; Cai
et al. 2016; Hamaus et al. 2016; Hawken et al. 2017; Achitouv 2019;
Aubert et al. 2020), studying the nature of dark matter (Reed et al.
2015; Yang et al. 2015; Baldi & Villaescusa-Navarro 2017; Pisani
et al. 2019) and looking for signatures of primordial non-Gaussianity
(Chan, Hamaus & Biagetti 2019). In the context of photometric
galaxy samples, it is yet unclear whether and how galaxy alignments
could contaminate these types of studies.

On the other hand, intrinsic alignments have been proposed as
a probe of cosmology in their own right. Examples of potential
applications include probing inflationary models (Schmidt, Chisari &
Dvorkin 2015; Chisari et al. 2016a; Kogai et al. 2020), gravitational
waves present in the early universe (Chisari, Dvorkin & Schmidt
2014; Biagetti & Orlando 2020), baryon acoustic oscillations (Chis-
ari & Dvorkin 2013), the role played by neutrinos in the evolution of
the universe (Lee & Ryu 2020), or modifications of gravity (Reischke
et al. 2021). Overall, intrinsic alignments encode information in a
complementary manner to other probes of the large-scale structure.

Motivated by significant detections of red galaxy alignments
around overdensities in the matter field, we would similarly expect
red galaxies to be aligned with cosmic voids. Such effects could
potentially act as a contaminant to void lensing studies, or a
cosmological probe. We will see shortly that our model predicts
that galaxy shapes align around voids tangentially near the void, and
radially (tangentially) far from the void, for a positive (negative) void
bias, as illustrated in Fig. 1. While we focus on the alignments of

red galaxy shapes around voids, there is a previous evidence that
blue galaxies align their rotation axes preferentially with respect to
voids. Trujillo, Carretero & Patiri (2006) and Varela et al. (2012)
have reported > 95 per cent confidence level detections of this mode
of alignment (although Slosar & White 2009 have found this to be
consistent with null). This type of alignment could, as well, constitute
an eventual contaminant to void lensing but are not considered here.

In this work, we take the first steps towards the modelling and
measurement of the alignments of the shapes of galaxies around
voids using a sample of 3192 voids with redshifts 0.4 < z <

0.8, and effective radii between 20 and 50 h−1 Mpc. The study of
alignments around cosmic voids is driven by two motivations. First,
we expect that the assumption that galaxy shapes respond linearly
to the tidal field should be very accurate. In other words, voids
would offer an excellent environment where to test the linear model
of galaxy alignments. This is motivated by the findings of Pollina
et al. (2017), who demonstrated that the clustering of tracers around
voids is very accurately described by a linear model, in contrast to the
autocorrelation of the positions of those tracers. Second, we envisage
that alignments of galaxies around voids could help constrain void
properties such as their density profile, or their bias, and help
enable some of their cosmological applications. Reischke & Schäfer
(2019) already investigate the environmental dependence of the
intrinsic ellipticity of spiral and elliptical galaxies, respectively, with
a Gaussian random density field. The dependence on environment is
modelled by the number of positive eigenvalues of the tidal tensor,
which allows a differentiation between voids, sheets, filaments, and
superclusters. They find that alignment around voids is weak – an
order of magnitude lower than for other environments. In this work,
we develop our own theoretical model for alignment around voids,
and contrast this against observations.

This paper is organized as follows. In Section 2, we describe the
linear alignment model along with our void-matter power-spectrum
model. Section 3 describes the galaxy and void catalogues, and the
estimator we use to measure the two-point correlation function. We
present our results in Section 4, analyse them in Section 5 and
conclude in Section 6. For all of the model predictions, we use the fol-
lowing cosmology: h = 0.7, �CDM = 0.225, �b = 0.045, �� = 0.73,
σ 8 = 0.8, and ns = 1. We measure distances in h−1 Mpc. This work
used version 2.1 of the CCL library (Chisari et al. 2019) to compute
essential cosmological functions, including matter power spectra
derived from the CAMB software (Blas, Lesgourgues & Tram 2011).

2 FORMALI SM

2.1 Weak gravitational lensing

Working under the flat-sky approximation, we introduce a Cartesian
frame defined by unit vectors êx and êy in the projected plane and êz

along the line of sight. To describe the shape of a galaxy, we introduce
two quantities: γ 1 and γ 2. γ 2 represents the stretching along êx and
γ 1 along the axis êx rotated by −45 degrees.

In order to describe the shape relative to the separation vector
between two points, corresponding to the coordinates of a galaxy
and a void, we introduce the angle φ between this line and the êx

axis. The shape in this frame is described by the rotation of γ = (γ 1,
γ 2) by an angle 2φ, as

γ+ = − cos(2φ)γ1 − sin(2φ)γ2,

γ× = sin(2φ)γ1 − cos(2φ)γ2. (1)

Thus, a positive γ + corresponds to a radial alignment.
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Table 1. Characteristics of the various samples used in estimating the correlation function of galaxies
around voids (equation 29). All samples span the redshift range 0.4 < z < 0.8.

Sample Small voids Intermediate voids Large voids Galaxies
rv = [20, 30] h−1 Mpc rv = [30, 40] h−1 Mpc rv = [40, 50] h−1 Mpc

Data 1089 1220 883 560 011
Random 11 777 12 021 8485 7 828 387

In practice, the ellipticity of a galaxy is measured as

(ε+, ε×) = 1 − (b/a)2

1 + (b/a)2
(cos(2φ), sin(2φ)), (2)

where b is the length of the minor axis and a, the length of the major
axis. For a given galaxy i, the observed shape can be decomposed
in the initial ellipticity εi

source, assumed to be random, an intrinsic
ellipticity, γ I

i , distorted by the large-scale structure, and the distortion
due to weak lensing, γ G

i (see Hirata & Seljak 2004):2

εi
obs = εi

source + γ I
i + γ G

i . (3)

γ I
i and γ G

i are correlated with the overdensity of the matter field, δ.
Thus, taking the average over all observed galaxies〈

δε
j

obs

〉
= 〈

δ γ I
j

〉 + 〈
δ γ G

j

〉
. (4)

Equation (4) illustrates how intrinsic alignments act as a weak-
lensing contaminant.

2.2 Voids

The void density profile is well described by the function (Hamaus,
Sutter & Wandelt 2014b)

δv(r) ≡ ρv(r)

ρ̄m
− 1 = δc

1 − (r/rs)
α

1 + (r/rv)β
, (5)

with four free parameters δc, rs, α, β, and the measured void radius
rv. δc < 0 is the central density contrast of the void, ρv and ρ̄m

are the matter density field around the void centre and its average
background value, respectively. Spherical symmetry is warranted
when one averages over a sufficiently large number of arbitrarily
shaped voids with random orientations. For r > 2rv, ρv(r) ≈ ρ̄m,
and the average void density profile quickly converges to the average
density of the universe. At the void centre, ρv(0) = ρ̄m(1 + δc), which
represents a drop in density with respect to the average. 
v is negative
at the centre of the void but can change sign near r ∼ rv (Hamaus
et al. 2014b). Far from the centre of the void, 
v(r) ∼ 0 due to the
convergence to the mean density of the universe. Typical values of
the free parameters in equation (5), derived from simulated mock
catalogues, are: (rs/rv, α, β, δc) = (0.82, 1.6, 9.1, −0.36) (Hamaus
et al. 2020). These parameters correspond to a population of mock
galaxies with bias of bg ≈ 2.2. For our sample (Table 1), we expect
a slightly lower bias, about 1.85, and thus the value of δc could be
slightly different than the one we assume.

2.3 Linear alignment model

Catelan et al. (2001) proposed a linear relation between the shape of
a galaxy and the tidal field of the universe, expressed as

γ+,×(x) = −AIC1

4πG

(∇2
x − ∇2

y , 2∇x∇y

)
S [�] , (6)

2Formally, one needs to take into account a responsivity factor in connecting
measured ellipticities to the lensing shear (Bernstein & Jarvis 2002). In this
work, because we are only interested in assessing a potential detection of
intrinsic alignments, this factor is not included in the calculations.

where AIC1 is a constant representing the response of a galaxy shape
to a tidal deformation, and S is a filter which cuts off fluctuations of the
gravitational potential � at small scales. C1 is retained for historical
reasons: It is the value of the first intrinsic alignment measurement
by Brown et al. (2002). Equivalently, in Fourier space,

γ+,×(k) = AIC1

4πG

(
k2

x − k2
y, 2kxky

)
�, (7)

where � is the Fourier transform of the gravitational potential,

�(k) = −4πG
ρ̄0

m

D(z)

δm(k)

k2
(8)

with ρ̄0
m, the mean density of the universe at redshift z = 0, and D(z),

the growth function (normalized to unity at z= 0). The alignment bias
can depend on many parameters such as the dynamical properties of
a galaxy, its merger history, its redshift or its environment. Because
this model is linear, it is only valid for large scales where the density
fluctuations are small. We will neglect the filter S in the rest of this
work, because we will mainly focus on modelling linear scales where
it does not have a significant impact.

2.4 Correlation functions

We introduce δm, the matter overdensity, and δv, the void distribution,

δm(x) = (ρm(x) − ρ̄m) /ρ̄m, (9)

δv(x) = 1
N tot

v

∑
i∈V δ(3)(x − xi), (10)

where V is the void sample, δ(3) is the Dirac function, N tot
v the

number of voids, and {xi} are the void centres. The void-matter
power spectrum is defined as the correlation of δm and δv (Hamaus
et al. 2014a)〈
δv(k)δm

(
k′)〉 = δ(3)(k − k′)Pvm(k)(2π )3. (11)

The correlation functions between galaxy shapes and the void
distribution are

ξv+(r) = 〈δv(x)γ+(x + r)〉, (12)

ξv×(r) = 〈δv(x)γ×(x + r)〉, (13)

where 〈. . . 〉 represents an average over many realizations of the
universe. The void-intrinsic galaxy shape correlation is given by

ξv+(r) = −AIC1ρc�m

D(z)

×
“

d3kd3k′

(2π )6
〈δv(k)δm(k′)〉k2

x − k2
y

k2
ei(kx rp+kz�), (14)

with �m = ρ̄0
m/ρc, ρc being the critical density and r = rpêx + �êz,

with rp the component perpendicular to the line of sight, and � the
component along the line of sight. The x-axis has been defined as the
separation axis on the sky.3

3In reality, what we measure is not γ I directly, but sampled at the locations
of galaxies. Hence, the actual observable is γ̃I = (1 + δg)γI (Blazek et al.
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We can simplify equation (14) by integrating over the angle in �k⊥
space, with k⊥ =

√
k2

x + k2
y . Using kx = k⊥cos (θ ) and k2

x − k2
y =

k2
⊥ cos (2θ ), we recognize the second Bessel function J2, and obtain

the expression

ξv+(r) = AIC1ρc�m

π2D(z)

×
∫ ∞

0

∫ ∞

0
dk⊥dkzPvm(k)

k3
⊥

k2
cos(kz�)J2(k⊥rp). (15)

Similarly, one can show that ξ v × = 0. Observational studies
most often measure the projected correlation function, obtained by
integrating equation (15) over the line of sight

ωX(rp) =
∫ +�max

−�max

ξX(rp, �)d�, (16)

with X ∈ {v +, v × }. We chose �max = 150 h−1 Mpc to ensure that
we capture the alignments in the environments of voids.4 Obviously,
ωv × = 0, and

ωv+(rp) = AI

π2

C1ρc�m

D(z)

×
“

0

∞dk⊥dkz

k3
⊥

k2kz

Pvm(k) sin(kz�max)J2(k⊥rp). (17)

2.5 Window function and redshift–space distortions

Equation (17) for ωv + was implicitly given at a specific redshift.
We introduce pv(z) ≡ 1/N tot

v dNv/dz and pg(z) ≡ 1/N tot
g dNg/dz, the

redshift distributions of voids and galaxies, respectively, and the
corresponding redshift window function (Mandelbaum et al. 2010):

W (z) = pv(z)pg(z)

χ2dχ/dz

(∫
pv(z)pg(z)

χ2dχ/dz
dz

)−1

. (18)

We integrate equation (17) to yield the final prediction for the
observable,

ωv+(rp) = AIC1ρc�m

π2

∫
dz

W (z)

D(z)

∫ +∞

0
dk⊥

∫ +∞

0
dkz

{
k3

⊥
k2kz

Pvm(k, z) sin(kz�max)J2

(
k⊥rp

)}
. (19)

One might consider a correction to equation (19) due to the presence
of redshift–space distortions, first derived by Kaiser (1987) and
consisting of a Doppler shift due to peculiar velocities. Including
redshift–space distortions in our analysis would yield a correction
smaller than 10 per cent at very large scales (rp ∼ 100 h−1 Mpc).
Since this correction is significantly smaller than the size of our error
bars, we neglect it. Finally, as we restrict this study to galaxies
in the immediate vicinity of voids (< 150 h−1 Mpc), the lensing
contribution is expected to be small.

2.6 Void-matter power spectrum

To determine the void-matter power spectrum, we will consider two
regimes. The intermediate-scale regime will be used for scales rp

2011). Since δg is proportional to δm, this term is higher than linear order and
we will neglect it here. Further details can be found in Appendix A. Here the
x-axis has been defined to coincide with the direction of the separation vector
projected on the sky.
4For groups or galaxy alignments, the literature most often quotes values of
60h−1 Mpc < �max < 100h−1 Mpc.

∼ rv, i.e. near the void boundary. A second regime will describe
large scales, i.e. rp far enough from the void (typically rp > 2rv).
We do not consider a small-scale regime rp � rv, since by definition
this region contains very few galaxies resulting in a large statistical
uncertainty of our measurement. The combination of both models
gives the alignment pattern of bottom-right panel of Fig. 1 (for a
positive void bias).

2.6.1 Intermediate-scale regime

For a single void of radius rv centred at the origin, if r ∼ rv, we
can consider that the matter distribution is well described by the
void density profile, ρv(r). In this case, the void-matter two-point
correlation is given by (Hamaus et al. 2015; Pollina et al. 2017)

〈δv(x − 0)δm(x + r)〉 = ρv(r)

ρ̄m
− 1 = δv(r). (20)

Thus, the power spectrum between void centres and the matter distri-
bution at intermediate scales is (Chan, Hamaus & Desjacques 2014)

δv(k) ≡ P is
vm(k) =

∫ +∞

0
4πr2dr

sin(kr)

kr
δv(r). (21)

An empirical expression of 
v in real space is obtained from
simulations and only describes scales smaller and equivalent to the
size of the void. To ensure the consistency of our separation of scales,
we checked numerically that the contribution of the usual power
spectrum with a cutoff at k >π /2rv (a basic model for large-scale con-
tamination) is negligible. Thus, there is no large-scale contribution to
equation (19) at rp ∼ rv. The mathematical reason for the large-scale
contribution to be suppressed is that J2(k⊥rp) kernel peaks near k⊥rp

∼ π . This case is similar to the usual Limber approximation.
The power spectrum depends on the void radius, which motivates

us to split our data into narrow radius intervals of 10 h−1 Mpc.
To account for potential mismatches between 
v as predicted by
simulations, and our observations, e.g. coming from different values
of the density contrast of the voids, as detailed in Section 2.2, we
introduce a free parameter av by assuming δdata

v (k) = avδ
sim
v (k). For

intermediate scales, we obtain the following model for the void-
intrinsic shape correlation

ωv+(rp) = AV
I av

C1ρc�m

π2

∫
dz

W (z)

D(z)

∫ +∞

0
dk⊥

∫ +∞

0
dkz

{
k3

⊥
k2kz

δsim
v (k) sin(kz�max)J2

(
k⊥rp

)}
, (22)

with AV
I the alignment coefficient corresponding to void

neighbourhood.5 Notice we have not considered any explicit redshift
dependence in the parameters that characterize the voids, and we
instead hold them constant over our redshift range of interest, 0.4 <

z < 0.8.

2.6.2 Large-scale regime

The void-matter power spectrum can be split into two terms (Chan
et al. 2014)

Pvm(k) =
∫ +∞

0
dr 4πr2 sin(kr)

kr

[
δv(r) − bv(rv)ξ lin

mm(r)
]

+bv(rv)
∫ +∞

0
dr 4πr2 sin(kr)

kr
ξ lin

mm(r), (23)

5As we mention in Section 2.3, the alignment coefficient depends on many
parameters including the environment.
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where bv is the void bias (Hamaus et al. 2014a), and ξ lin
mm is the matter

correlation function predicted from linear theory.
In the large-scale limit, the void-matter power spectrum should

approach the shape of the matter–matter power spectrum. This
implies there exists a radius r� such that δv(r > r�) = bv(rv)ξ lin

mm(r).
Therefore, equation (23) can be simplified to

P ls
vm(k) =

∫ r�

0
dr 4πr2 sin(kr)

kr

[
δv(r) − bv(rv)ξ lin

mm(r)
]

+bv(rv)P lin
mm(k). (24)

For small wave vectors (large scales), the first term can be neglected,
and we recover the familiar linear bias result

P ls
vm

(
k <

2π

rv
|rv, z

)
= bv(rv)P lin

mm(k, z). (25)

Here again, the power spectrum depends on void radius (as bv does),
which justifies our selection of void radius intervals of 10 h−1 Mpc
for the large-scale measurements. The resulting projected correlation
function in the large-scale regime is given by

ωv+(rp) = AV
I bv(rv)

C1ρc�m

π2

∫
dz

W (z)

D(z)

∫ +∞

0
dk⊥

∫ +∞

0
dkz

[
k3

⊥
k2kz

P lin
mm(k, z) sin(kz�max)J2

(
k⊥rp

)]
. (26)

3 ME T H O D O L O G Y

3.1 Data sets

We introduce the following notations for samples used in this work.
V represents the void sample positions and RV, the corresponding
randoms. S+ represents the shapes and positions of the sample of
galaxies, and RS, the corresponding randoms.

3.1.1 Galaxy positions and shapes

We use a sample of galaxies from data release 12 (DR12) of
the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS;
Eisenstein et al. 2011). We consider the CMASS sample: massive
galaxies at redshift 0.4 < z < 0.8. We use the catalogue of galaxy
shapes complied by Singh et al. (2021) by matching the CMASS
sample with the galaxy shape measurements from Reyes et al.
(2012). We also make use of the random catalogue provided by the
BOSS collaboration, which is a realization of an unclustered galaxy
distribution with the same survey geometry (mask). We use 13 times
more random points than galaxies at any given redshift to avoid the
size of the random catalogue having an impact on the observables.

3.1.2 Void positions

The void catalogue is obtained using the VIDE software6 (Sutter
et al. 2015) applied to the combined sample of DR12 BOSS
galaxies previously used in Hamaus et al. (2020). VIDE is based
on ZOBOV (Neyrinck 2008), an algorithm that identifies voids by
searching for ‘basins’ in the density field of the observed tracers. Each
location within the survey volume is attributed to its closest tracer
(i.e. a galaxy). This operation defines a Voronoi tessellation with
cells of volume Vi for each tracer i. The density field of tracers ρ(x)
at any given location x inside the survey volume is then estimated by
evaluating 1/Vi . VIDE identifies voids as watershed basins of arbitrary

6https://bitbucket.org/cosmicvoids/vide public/

Figure 2. Redshift distribution of CMASS galaxies (red) and voids (blue).
Red dashed lines represent the redshift range used in our study. The
distribution is normalized such that

∫
zp(z)dz = 1. The presence of voids

at z < 0.4 is due to the catalogue being constructed from the full DR12
BOSS data. In practice, we are only interested in cross-correlations between
physically close pairs of galaxies and voids.

shape, uncovering extended underdense regions that are surrounded
by overdense boundaries. Every Voronoi cell contained in such a
basin is then considered as part of a void.

The location of the void centre X is defined as the volume-
weighted barycentre among all of its constituent Voronoi cells: X =∑

i xiVi/
∑

i Vi , where xi is the location of each tracer that defines the
void. The effective void radius is defined as rv = (3/4π

∑
i Vi)1/3.

The galaxy and void catalogues cover the same region of the sky
and redshift range. In Fig. 2, we present their redshift distributions,
which are very similar over the CMASS redshift range. Voids appear
equally distributed within that galaxy sample.

Finally, we use a random catalogue for void positions, RV, which
has been generated with same redshift and void radii distributions,
and takes into account the survey mask. This random catalogue is
10 times larger than the void one.

3.2 Estimators

We measure the correlation function of void positions and galaxy
shapes using a Landy–Szalay estimator (Landy & Szalay 1993)

ξv+(r) = V S+ − RV S+
RV RS

, (27)

where the terms VS+, RVS+ and RVRS stand for the sums7

V S+(rp, �) =
∑

i∈S,j∈V
|i−j |=rp,�

γ
(i)
+ 〈i|j〉,

RV S+(rp, �) =
∑

i∈S,j∈RV|i−j |=rp,�

γ
(i)
+ 〈i|j〉,

(28)

where γ
(i)
+ 〈i|j〉 denotes the + shape of a galaxy i relative to void

j. RVRS(rp, �) is the number of pairs of random voids and random
galaxies that are separated by rp and �. We numerically normalize
the terms RVS+ and RVRS to account for the relative size of random
and galaxy catalogues.

7The condition |i − j| = rp, � means that the vector between objects i and j
is within a certain range of projected value rp and value � along the line of
sight.

MNRAS 509, 1985–1994 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/1985/6408486 by guest on 17 D
ecem

ber 2021

https://bitbucket.org/cosmicvoids/vide_public/


1990 d’Assignies D. et al.

To obtain the projected correlation function, we divide the line-of-
sight interval into n bins of length 2
�(m) and centred at �(m),

ωv+(rp) ≈
n∑

m=1

ξv+
(
rp, �

(m)
)

2
�(m). (29)

The different samples used in the estimation of the correlation
functions are described in Table 1. We divide the void sample accord-
ing to their sizes in intervals of small voids: [20, 30] h−1 Mpc, inter-
mediate voids: [30, 40] h−1 Mpc, and large voids: [40, 50] h−1 Mpc.
The choice of minimum radius is driven by the fact that smaller voids
are surrounded by overdensities (e.g. clusters) which can induce a
very strong correlation and wash out the void signal. We also had
at our disposal voids with a radius larger than 50 h−1 Mpc, but the
number of these voids per interval of 10 h−1 Mpc is significantly
smaller. Since our measurements are already not significant for the
voids with radii in 40–50 h−1 Mpc range, we did not extend this study
to these larger voids.

3.3 Covariance matrix

We use the jackknife method to obtain estimates of the covariance
matrix and error bars for the projected correlation function of void
positions and galaxy shapes. We split the observed area of the sky
into Nreg subregions taking the survey mask into account. We measure
a set of projected correlation functions, ω̃i

v+(rp), by removing one
subregion i at a time. We define ω̄v+(rp) as the mean of ω̃i

v+(rp). The
covariance matrix C[ri

p, r
j
p ] is estimated via

C
[
ri

p, r
j
p

]
= Nreg − 1

Nreg

Nreg∑
k=1

[
ω̃k

(
ri

p

)
− ω̄v+

(
ri

p

)] [
ω̃k

(
rj

p

)
− ω̄v+

(
rj

p

)]
.

(30)

The diagonals represent the error bars shown in the figures,

σ (ri
p) =

√
C[ri

p, r
i
p]. These expressions provide accurate estimates

of the uncertainty in the estimated projected correlation function, if
subregions satisfy the following properties:

(i) the subvolume sizes are larger than the biggest scale probed in
the observable,

(ii) Nreg is larger than the number of bins where the projected
correlation function is estimated, and

(iii) the number of data points (e.g. voids and galaxies) in each
subvolume is approximately the same.

As the number of voids is limited (a few thousand), in order for
them to be distributed equally among the subregions, the number
of subregions must be kept small. We use 64 subregions as a
compromise to meet the above conditions. To determine the actual
subregions, we use a K-means algorithm on the sphere to find
maximally separated centres in a RA and Dec distribution of randoms
RS. The choice of RS (versus RV) for determining the jackknife
subregions is due to higher sampling and justified by the fact that the
voids are selected from the same galaxy sample.

3.4 Model fits

We perform a χ2 minimization in order to obtain constraints for
the free parameters of the models. For a given free parameter a, we
minimize the function

χ2(a) = [
ω̄v+ − ωmodel

v+ (a)
]
C−1

[
ω̄v+ − ωmodel

v+ (a)
]�

. (31)

The best fit corresponds to the minimal value of χ2: χ2
model. The

confidence interval is determined by the requirement that

χ2(x) < χ2
model + δχ2, (32)

with δχ2 depending on the number of free parameters and the
confidence level. We report 68 per cent confidence levels as default,
which sets δχ2 = 1 for one free parameter. We also calculate the χ2

value for the null model: χ2
0 , and the difference between both


χ2 = χ2
0 − χ2

model ≥ 0. (33)

From χ2
model, χ2

0 and 
χ2, we calculate three p-values pmodel, p0

and p
. pmodel and p0 evaluate the rejection or not of the model,
and the null hypothesis, by the data. p
 gives an assessment on the
significance of goodness of the best fit in comparison to the null
hypothesis.

4 R ESULTS

We restrict our measurements of the projected correlation (equa-
tion 29) to scales rp > 10 h−1 Mpc. Smaller scales are affected by
large error bars due to a paucity of galaxy-void pairs given the
intrinsic low density of these environments (Sutter et al. 2014). The
intermediate-scale model (equation 22) is fit at rp < 1.5rv, and the
large-scale model (equation 26) is adopted when rp > 2rv. We, thus,
obtain a constraint for the free coefficients of each model: AV

I av at
intermediate scales (introduced in Section 2.6.1) and AIbv(rv) at large
scales (introduced in Section 2.6.2). The bias of the voids depends
on their radius (Hamaus et al. 2014a), so we expect different values
for each measurement.

A summary of our results is presented in Table 2 and discussed in
the following subsections. In Appendix B, we show results for ωv × to
check its consistency with a null signal, which corresponds to a non-
zero p-value. These measurements confirm that for rv ∈ 20–30 and
30–40 h−1 Mpc, there is no × correlation. For larger voids, we find
a small p-value (p0 < 0.01), which means that ωv × is not consistent
with the null hypothesis. We give some possible explanation of this
measure in B3, and will not exploit in detail the + correlation for
large voids since it might be affected by systematics.

Combining the three void sample measurements, we find no
significant deviation from the null hypothesis for either intermediate-
and large-scale regimes (p0 = 0.41), the large-scale regime (p0 =
0.25), or the intermediate-scale regime (p0 = 0.60).

4.1 Small voids

The measurement of ωv + for this sample of voids is shown in
Fig. 3, along with the resulting large-scale model fit, applied to
scales rp > 46 h−1 Mpc (five points). We do not show the best fit
with the intermediate-scale model, because it has been rejected by
the data at 1.8σ : pmodel = 0.075. The null hypothesis is rejected at
2σ for both fit ranges (p0 ∼ 0.05 for both regimes).

For the large-scale model, we find AIbv(rv) = 27.0 ± 11.1,
with pmodel = 0.74. Here, the large-scale model describes the
measurements well. Nonetheless, p
 = 0.12, which means that the
significance for a detection of the alignment is lower than 1.5σ .

4.2 Intermediate voids

We use the intermediate-scale model for 10 h−1 Mpc < rp <

46 h−1 Mpc (seven points) and the large-scale one for rp >

60 h−1 Mpc (four points) for the intermediate-size voids. The mea-
surements and both models are shown in Fig. 4. The null hypothesis
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Table 2. Results of intrinsic alignment amplitude fits from ωv + measurements in both regimes and for the different void radius ranges. Columns 5 and
6 indicate the quality of the best fit via the chi-squares and p-values. Columns 7 and 8 show the corresponding values for the null hypothesis (no signal).
Column 9 provides p
, the probability for rejection of the null hypothesis, assuming the model is valid.

rv (h−1 Mpc) Regime #Points Scales fit (h−1 Mpc) χ2
model pmodel χ2

0 p0 
χ2 p
 Bias factors

[20, 30] Intermediate scales 6 10-36 10.0 0.075 11.3 0.046 1.3 0.93 AV
I av = −123 ± 105

[20, 30] Large scales 5 46-127 2.0 0.74 9.3 0.054 7.3 0.12 AIbv = 27.0 ± 11.1

[30, 40] Intermediate scales 7 10-46 1.7 0.94 4.1 0.63 2.4 0.88 AV
I av = 75 ± 45

[30, 40] Large scales 4 60-127 0.88 0.83 5.8 0.11 4.9 0.18 AIbv = 18.4 ± 8.2

[40, 50] Intermediate scales 8 10-60 2.2 0.99 2.4 0.94 0.2 1 AV
I av = −13 ± 31

[40, 50] Large scales 3 77-127 0.76 0.68 0.82 0.66 0.06 0.97 AIbv = −3.9 ± 16.1

Figure 3. ωv + with rv = [20, 30] h−1 Mpc, and the large-scale prediction
with AIbv = 27.0 ± 11.1. The intermediate-scale model is rejected, and we
did not include it in the plot.

Figure 4. ωv + with rv ∈ [30, 40] h−1 Mpc, the intermediate-scale predic-
tion with AV

I av = 75 ± 45, and the large-scale one with AIbv = 18.4 ± 8.2.

is rejected at 1.5σ on large scales (p0 = 0.11), but it is not rejected
at small scales (p0 = 0.63).

In the intermediate-scale regime, we find AV
I av = 75 ± 45, with

pmodel = 0.94 confirming a good fit. Nonetheless, since p
 = 0.88,
our model is not significantly better than the null one. In the large-
scale regime, we find AIbv(rv) = 18.4 ± 8.2, with pmodel = 0.83.

Figure 5. ωv + with rv ∈ [40, 50] h−1 Mpc, and the large-scale prediction
with AIbv = −3.9 ± 16.1. The signal at intermediate scales is too noisy to
have a detection of alignments in the intermediate-scale regime.

The detection of the alignment is not statistically significant, since
p
 = 0.18.

4.3 Large voids

We use the intermediate-scale model for rp < 60 h−1 Mpc (eight
points) and the large-scale one for rp > 77 h−1 Mpc (three points).
The measurement is shown in Fig. 5, with the resulting large-scale
model overlaid. Here again, we do not show the intermediate-scale
one, because there is no distinction between the best fit, and the null
one: p
 = 1. The null hypothesis is not excluded at both scales: p0 =
0.94 for intermediate scales and p0 = 0.66 for large scales.

On large scales, we find AIbv(rv) = −3.9 ± 16.1, with pmodel =
0.68. There is almost no distinction between the best fit and the null
hypothesis, since p
 = 0.97.

5 D ISCUSSION

Following our modelling, we expect to detect two distinct regimes:

(i) at intermediate scales, due to the proximity of the void, the
correlation should be negative, i.e. the galaxies align tangentially;
and

(ii) at larger scales, the alignment depends on the value of the void
bias; for positive bias, the galaxies align radially (pattern of Fig. 1);
for negative bias, they align tangentially.
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However, these effects, especially for the intermediate scales, are
supposed to be weak and therefore difficult to detect; especially since
we have a limited sample of only a few thousand voids.

For voids with radii between 20 and 30h−1Mpc, we measured
alignments that were compatible with no signal at 2σ . For these
voids we also do not measure any signature of the void contribution
at intermediate scales. This may be due to the tendency of these voids
to contain more tracers at their boundary. At large scales, we find
an intrinsic alignment amplitude of AIbv(25 h−1Mpc) ∼ 27 ± 11.1.
This is an acceptable order of magnitude, since we expect AI ∼ 5
as for LOWZ and CMASS (Singh et al. 2015; Singh et al. 2021),
which would mean that we have a void bias around 2–6, (in order of
magnitude similar to Clampitt, Jain & Sánchez 2016). The analysis of
the × correlation between shapes and voids in Appendix B1 confirms
that this is compatible with null (p0 = 0.96), as expected.

For voids with intermediate sizes, the null hypothesis at large
scales is almost excluded by the p-value test (p0 = 0.11), but it is
not excluded at intermediate scales (p0 = 0.63). Given the noise, and
the fact that even the model only deviates from 0 at a small interval
at rp close to rv, it is not surprising to obtain a high p-value for the
null hypothesis, and we were not able to distinguish statistically the
null model from the best fit one: p
 = 0.88. At large scales, the
model agrees relatively well with the measurement, with a measured
intrinsic alignment coefficient AIbv(35 h−1Mpc) ∼ 18.4 ± 8.2. We
find here again a physically acceptable order of magnitude. Since AI

is the same as in the first measurement (we are working with the same
galaxy shape sample), the void bias for rv ∼ 35 h−1 Mpc appears to
be smaller than the one for rv ∼ 25 h−1 Mpc. A trend of decreasing
bias with increasing void radius has already been suggested by
Hamaus et al. (2014a), Chan et al. (2014), Jamieson & Loverde
(2019), and Chan et al. (2020) from simulations. The analysis of
the × correlation between shapes and voids in Appendix B confirms
again that this is compatible with null as expected, with p0 = 0.17.

Finally, the intrinsic alignments of CMASS galaxies around large
voids are compatible with null (p0 = 0.66 for large scales and p0 =
0.94 for intermediate scales). Moreover, the × correlation between
shapes and voids, presented in Appendix B3, is not compatible with 0
(p0 = 9 × 10−4), which could indicate that the measurements are not
reliable. This may be due to the smaller number of large voids, and
their more complex substructure, which could break the assumption
of spherical symmetry. It is also possible that at large scales the null
measurement of the + correlation is due to a void bias close to 0,
which is typical for compensated voids (Hamaus et al. 2014a).

6 C O N C LUSION AND PERSPECTIVES

We have studied intrinsic alignments of galaxies around cosmic
voids, in SDSS-III BOSS CMASS galaxies. Using this sample,
we have investigated the shape-position correlation from 10 to
140 h−1 Mpc scales, binning voids by size.

Our model suggests the existence of two regimes: For scales equiv-
alent to the void radius, the correlation should be negative, which
means that galaxies align tangentially. At large scale, for positive
void bias, the correlation should be positive, which implies a radial
alignment for galaxies (negative bias implies a tangential alignment).
The intermediate-scale regime with the negative correlation is more
difficult to observe, because the available number of galaxies close
to the void centre is small. However, it may be the most interesting
one in order to extract physical information and constraints, since it
directly depends on the mass distribution inside voids.

We find that the large-scale model fits well data for void radius
ranges: 20–30 and 30–40 h−1 Mpc, giving constraints for the void

bias. For the void radius range 40–50 h−1 Mpc, the measurement is
consistent with 0 at any scale. For the large-scale part, it may be
the consequence of a vanishing void bias. Furthermore, we find a
significant null model deviation for the × correlation, which implies
to be careful with this last measurement.

For the intermediate-scale regime, as expected, the noise is the
main limit for the detection of a correlation. Our intermediate-scale
model seems ineffective to describe the measurement for 20–30 and
40–50 h−1 Mpc void radius ranges, because the model is rejected by
data for smaller voids, and equivalent compatible with null for larger
voids. Keeping only voids with radius between 30 and 40 h−1 Mpc,
we achieve a tentative detection of a negative correlation in agreement
with the predictions of our intermediate-scale model. Smaller voids
are more clustered than bigger ones, which may lead to a strong
positive correlation coming from high-density environments. In such
a case, the contribution from the voids would be hard to detect. Large
voids are not very numerous, which combined with an important
proportion of voids being elongated and featuring substructure, may
contradict the spherical symmetry assumption of our model and
may lead to biased measurements. Furthermore, voids with radius
between 30–40 h−1 Mpc are the most abundant, which helps to
increase the signal-to-noise ratio and reduce potential systematics
coming from small-number statistics.

The number of voids is supposed to drastically increase with future
surveys by about two orders of magnitude (Pisani et al. 2019), which
will necessarily lead to a substantial reduction of the noise due to the
noise contribution to the covariance scaling directly with the inverse
of the number density for both voids and galaxy shapes.

Thus, future surveys will allow us to confirm or rule out the
tentative detection of a negative alignment correlation at intermediate
scale for voids of all sizes. With a noise reduction, it would also be
possible to make a joint analysis with other correlations to remove
the degeneracies of the coefficients, and extract physical constraints.

In anticipation, we plan to investigate the validity of our model with
numerical simulations. This could open the door for new applications
of intrinsic alignments and for calculating their contamination to void
lensing studies with photometric or spectroscopic galaxy samples
(e.g. Clampitt & Jain 2015; Sánchez et al. 2017; Fang et al. 2019).
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(arXiv:2103.01657)
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APPENDIX A : IMPAC T O F
DE NSITY- WEIGHTING O F G ALAXY SHAPES

The γ I field is not uniformly sampled by observations. Rather, we
sample it at the locations of galaxies. Thus in reality, we observe

γ̃ I = (1 + bgδ)γ I . (A1)

Using Fourier transformation on γ̃ I , we obtain an integral expression

γ̃ I (k , z) = −C1ρ̄m

D(z)

•
d3k1

{(
k2

2x − k2
2y , 2k2xk2y

)
δ(k2, z)

(
δ(3)(k1) + bgδ(k1 , z)

)}
, (A2)

with k2 = k − k1. Here, we directly see that in the Fourier space,

〈δvγ̃I 〉 = 〈δvγI 〉 + O
(
δvδ

2
m

)
. (A3)

Thus, if we restrict our study to linear order, we can omit the
correction to γ I.

APPENDIX B: × C O R R E L AT I O N

We present here the measurements of the × correlation, which we
expect to be consistent with a null signal. Otherwise, it could be
a possible indication that systematics affect the measurement. We
estimate the × correlation using equation (27), with S× instead of
S+. We compute the p-value for each measurement (corresponding
to different void radii), and summarize the results in Table B1.

Table B1. Table of the p-values of the null hypothesis for the × correlation.

rv (h−1 Mpc) p0

[20, 30] 0.96
[30, 40] 0.17
[40, 50] 0.0009

B1 Void radius in 20–30 h−1 Mpc range

The measurement is presented in Fig. B1. For small voids, we find a
p-value compatible with a null signal: p0 = 0.96.

Figure B1. × correlation for voids with rv ∈ [20, 30] h−1 Mpc.

Figure B2. × correlation for voids with rv ∈ [30, 40] h−1 Mpc.

Figure B3. × correlation for voids with rv ∈ [40, 50] h−1 Mpc.

B2 Void radius in 30–40 h−1 Mpc range

The measurement is presented in Fig. B2. We find a p-value quite
compatible with a null signal: p0 = 0.16, even if its value is lower
than for smaller voids, mainly because of the positive trend at rp ∼
10h−1Mpc.

B3 Void radius in 40–50 h−1 Mpc range

The measurement is presented in Fig. B3. For large voids, we find
a p-value that suggests the rejection of the null hypothesis: p0 =
0.0009. The measurements for these voids are not exploited in detail
in the analysis presented in the main body of the manuscript, since
they may be subject to systematics. It is also possible that we detect
a non-vanishing signal due to important substructure inside voids,
and the void sample could not be large enough to average out their
contribution. Alternatively, the error bars could be underestimated.
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