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a b s t r a c t 

Medial axes are well-known descriptors used for representing, manipulating, and compressing binary im- 

ages. In this paper, we present a full pipeline for computing a stable and accurate piece-wise B-spline 

representation of Medial Axis Transforms (MATs) of binary images. A comprehensive evaluation on a 

benchmark shows that our method, called Spline-based Medial Axis Transform (SMAT), achieves very 

high compression ratios while keeping quality high. Compared with the regular MAT representation, the 

SMAT yields a much higher compression ratio at the cost of a slightly lower image quality. We illustrate 

our approach on a multi-scale SMAT representation, generating super-resolution images, and free-form 

binary image deformation. 

© 2021 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Binary image encoding plays a key role in applications such as 

mage analysis, matching, and retrieval. It is also important for the 

ompression of images and videos [1] . The technologies for binary 

mage encoding can be divided into three classes, namely contour-, 

itmap-, and intrinsic methods. 

Contour-based encoding represents binary images by a closed 

ontour around their boundary via chain coding [2] or geometri- 

al approximations [3] , as detailed further in [4,5] . Approximation 

ethods reconstruct the contour in a lossy manner from a set of 

epresentative vertices via polygons or splines, and enable manipu- 

ation and deformation [6–10] . Bitmap techniques encode the pixels 

f an image as belonging to the shape (foreground) or outside it 

background). These include the modified READ method [11] , based 

n run-length encoding, and context-based arithmetic encod- 

ng [12] , an efficient entropy coding scheme, which was adopted 

y the MPEG-4 standards [13] . 

Intrinsic image encoding considers the interior of a shape rather 

han its boundary. A key representative of this class uses the 

hape’s medial axis transform (MAT) to encode the shape inte- 

ior [14,15] . This allows a flexible trade-off between approximation 

rror and required storage [15] . Recently, Zhu et al. [16] fol- 

owed earlier work that models MATs with multiple cubic 
� This article was recommended for publication by Dr D. Bommes. 
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-splines [17] to automatically compute a compact spline 

epresentation of the MAT of a 2D binary shape. Representing 

ATs with splines requires fewer (control) points to store than 

ontour-based encoding, which can help image compression. 

owever, this method does not offer a separate control of the MAT 

implification and spline approximation. 

In this paper, we propose an alternative approach to 

hu et al. [16] that extracts pixel-based MATs directly from binary 

mages and represents them with splines. Our Spline-based MAT 

SMAT for short) has the following features: 

• Generality: SMAT can directly treat any pixel (binary) image, 

without requiring the extraction of a densely-sampled vector- 

representation of the shape contour. 
• Algorithm advancement: We propose a more refined spline- 

fitting scheme, which includes adaptive B-spline fitting and a 

merge-split algorithm. 
• Computational scalability: We inherit the real-time perfor- 

mance of the underlying GPU-based MAT extraction, allowing 

for high-throughput image processing applications. 
• Evaluation: We show that SMAT effectively represents binary 

images with high accuracy and high compression ratio by mea- 

suring five quality metrics. 
• Applications: We demonstrate the potential of SMAT by appli- 

cations in super-resolution image generation, multiscale MAT 

representation, and free-form image deformation. 

The remainder of the paper is organized as follows. 

ection 2 presents related work in skeletonization, medial 

xis computation, and B-spline modelling. Section 3 details 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

MAT computation methods as a function of the representation of the input I and its 

MAT S I , with our method (SMAT) indicated. 

Rep. of ∂ I

raster vector 

Rep. of S I raster distance field, thinning distance field 

vector SMAT Voronoi methods 
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he construction of SMAT. Section 4 evaluates SMAT on various 

mages and against five quality metrics. Section 5 presents three 

pplications of SMAT. Section 6 discusses our proposal. Finally, 

ection 7 concludes the paper. 

. Related work 

We structure related work into the computation of MATs 

 Section 2.1 ), medial stability and accuracy ( Section 2.2 ), and spline

epresentation models ( Section 2.3 ). 

.1. Medial axis computation 

As an intrinsic shape representation, the notion of medial axes 

as first introduced by Blum [18,19] defined as the locus of centers 

f maximal disks contained in a shape. Formally, for a binary im- 

ge I ∈ R 

2 with boundary ∂ I, the distance transform DT I is defined 

s 

T I (x ∈ I) = min 

y ∈ ∂ I 
‖ 

x − y ‖ 

. (1) 

he medial axis, or skeleton, of I is then defined as 

 I ={ x ∈ I | ∃ f 1 , f 2 ∈∂ I, f 1 � =f 2 : ‖ f 1 −x ‖=‖ f 2 −x ‖ = DT I (x ) } . (2)

hat is, the medial axis S I of I is the set of points inside I with

t least two different closest points, f 1 and f 2 , on the bound- 

ry ∂ I. The points f i are also called feature points of the medial 

oint x [20,21] . The medial axis transform MAT of I is the set 

 x ∈ S I , DT I (x ) } of medial points and their maximal disk radii. The

nion of these maximal disks exactly reconstructs I, which makes 

he MAT a dual representation of shape. For a full discussion of 

ATs and their properties, we refer to [22,23] . 

Analytic solutions of Eq. (2) are very hard to compute, and re- 

uire analytic descriptions of ∂ I, which are in general not avail- 

ble. Hence, one computes the MAT by approximating both the in- 

ut boundary ∂ I, but also the MAT itself. Two such main approx- 

mations exist: Raster methods represent ∂ I and/or S I on a fixed 

ixel grid; vector methods represent ∂ I and/or S I by a piecewise- 

ontinuous description in R 

2 , e.g. , using polylines or higher-order 

urves. With this model, existing MAT computation methods can 

e further classified as follows (see also Table 1 and related sur- 

eys [23,24] ). 

Morphological thinning methods [25] represent both the image 

nd MAT on pixel grids. They erode I inwards with constant speed 

ntil left with a one-pixel-thin connected structure representing 

 I . However, such methods do not in general guarantee that S I is 

entered within I, i.e. , DT I can be poorly approximated. 

Geometric methods [26,27] find S I as a subset of the edges of 

he Voronoi diagram of a polyline representation of ∂ I. However, 

uch methods require specific sampling conditions for the points 

escribing ∂ I to be met [28] . The method of Zhu et al. [16] also

alls in this class. While very accurate and compact in representa- 

ion, finding a vector representation of ∂ I for shapes provided in 

aster (image) form is not evident. 

Finally, distance field methods [20,21,29–32] compute a raster 

epresentation of DT I from either raster or vector representations 

f ∂ I, and next find S along singularities of DT . Most current MAT 
I I 

166 
ethods fall in this class, given that DT I can be estimated exactly 

nd in linear time [20,21,32] . Such methods can be further acceler- 

ted on the GPU, yielding real-time MAT computation [33,34] . 

Our method (SMAT) combines the advantages of distance field 

ethods (it accepts any binary image as input, has real-time per- 

ormance, and computes DT I accurately) with those of a vector rep- 

esentation of S I (built-in smoothness, compact storage). SMAT is, 

o our knowledge, the first (and thus only) method producing vec- 

or representations of the MAT from raster representations of input 

hapes ( Table 1 ). 

.2. Medial axis stability and accuracy 

Medial axes S I estimated from Eq. (2) are notoriously unsta- 

le [24] : Small perturbations along ∂ I, created e.g. by sampling 

nherent to both raster and vector representations, introduce many 

o-called spurious medial branches, which contribute little (or 

ot at all in practice) to the description of I, but considerably 

omplicate S I . Effort has been invested in simplifying medial axes, 

y removing (parts of) the spurious branches, to make them 

table. However, a simplified S I cannot exactly represent, or en- 

ode, I. Hence, accuracy (of representing a shape) and stability (of 

AT computation) are related, but competing goals. We classify 

ttempts to improve stability and accuracy into two groups, as 

ollows. 

Medial-axis-based methods aim mainly to compute a stable, 

r regularized, ˜ S I by removing spurious branches from S I . For this, 

ne can estimate the so-called importance ρ(x ) of every medial 

oint x ∈ S I , as the boundary length between the feature points 

 1 and f 2 of x . Only medial points with ρ(x ) above a user-given

hreshold are taken over from S I into ˜ S I . Importance thresholding is 

imple to implement for both raster [31,32] and vector [26,27] me- 

ial representations, delivers connected skeletons, and has an 

ntuitive interpretation: the image ˜ I reconstructed from 

˜ S I replaces 

ll bumps along ∂ I shorter than the threshold by circular arcs, 

ffectively acting like a low-pass noise-boundary filter. The salience 

etric [35] replaces ρ(x ) by 

(x ) = ρ(x ) /DT I (x ) , (3) 

hich removes only the noise-induced medial branches. This 

ields reconstructions ˜ I where small-scale boundary bumps are 

moothed out, but important (salient) corners are kept untouched. 

ther similar metrics include the angle between feature vec- 

ors [21,36–38] and divergence of the distance transform [39] . 

uch metrics have proven very effective in producing simplified 

table skeletons (also for 3D shapes [40] ). However, they optimize 

or accuracy only implicitly , given the fact that spurious branches 

epresent only small-scale details along ∂ I. Distance-based MATs 

ave been also used to compress grayscale images based on the 

simplified) MATs of their threshold-sets [41,42] . 

Reconstruction-based methods approach the joint stability- 

ccuracy problem by maximizing reconstruction accuracy, i.e. , the 

ifference between I and 

˜ I [43] . This can be estimated using the 

ausdorff distance [44] between (sampled representations) of ∂ I

nd ∂ ̃  I , defined as 

(I, ̃  I ) = max 
{

h (I, ̃  I ) , h ( ̃ I , I) 
}
, (4) 

here h (A, B ) is the one-sided Hausdorff distance given by 

 (A, B ) = max 
a ∈ ∂A 

{ 

min 

b ∈ ∂B 
‖ a − b ‖ 

} 

. (5) 

The MAT method of Zhu et al. [16] uses this approach to 

ompute the simplified 

˜ S I by iteratively removing endpoints from 

 I , continuously checking their reconstruction error ( Eq. (5) ) and 

topping when this reaches a user-allowed level. This is compu- 

ationally expensive. Moreover, while H is a recognized metric for 
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Fig. 1. Five rectangular shapes with different amounts of noise added to the boundary (a1–a5) and the comparisons (b1–b5) between the reconstructions (grey regions) and 

the original boundaries (black contours) of (a1) and (a5). 

Table 2 

Accuracy evaluation of the MATs for the images in Fig. 1 . 

Images H H Jaccard MS-SSIM 

(a1) 2.2 0.28 0.992 0.991 

(a2) 7.0 0.98 0.975 0.959 

(a3) 5.0 1.00 0.974 0.955 

(a4) 6.3 1.35 0.967 0.936 

(a5) 9.0 1.66 0.959 0.921 
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F

omparing contours, it is sensitive to noise or outliers [45] . This 

an prevent regularization: we cannot remove spurious branches 

rom S I since they will create small changes in 

˜ I that H highly 

enalizes. This can be improved by replacing Eq. (4) by a variant 

sing the average operator, i.e. , 

 (A, B ) = avg 
a ∈ ∂A 

{ 

min 

b ∈ ∂B 
{ ‖ a − b ‖ } 

} 

, (6) 

eading to the average Hausdorff distance 

 (I, ̃  I ) = max 
{

h (I , ̃  I ) , h ( ̃ I , I ) 
}
. (7) 

Besides considering the similarity of boundaries , one can take 

he overall shapes into account. The Jaccard similarity coeffi- 

ient [46] achieves this by considering the size of the intersection, 

ormalized by the size of the union, of two shapes 

accard(I, ̃  I ) = 

∣∣I ∩ ̃

 I 
∣∣∣∣I ∪ ̃

 I 
∣∣ . (8) 

The Multi-Scale Structural SIMilarity (MS-SSIM) in- 

ex [47,48] provides an advanced top-down model of how 

he human visual system interprets images. Although designed to 

easure the similarity of grayscale images, it can also be used for 

inary images. Both Jaccard and MS-SSIM range in [0,1], where 

 indicates the two input shapes are exactly the same, while 0 

eans the two are completely different. 

Fig. 1 (a1–a5) shows five rectangular shapes with randomly 

dded noise on their boundary, and their simplified medial axes for 

0 = 1 . 5 . We see that, as the noise increases, the simplified medial

xes change little, and are thus quite stable to noise. 

Table 2 shows the above four quality metrics H, H , Jaccard, 

nd MS-SSIM for the reconstructed images. The more noise on 

he boundary, the larger H and H , and the lower the Jaccard 

nd MS-SSIM scores. To give an intuitive understanding of these 

alues, Fig. 1 (b1–b5) compares the reconstructed images (gray) 

ith the original boundaries (black) of (a1–a5), respectively. For 

b1), the two almost overlap, yielding a very small H = 0 . 08% of 

he image diagonal, and Jaccard and MS-SSIM scores above 0.99. 

he reconstruction in (b5) preserves the salient features of the 

riginal image while removing small-scale boundary noise. This 

till yields a small H = 0 . 45% of the image diagonal, and high

accard and MS-SSIM scores. 
167 
.3. B-spline representation 

Storing and manipulating simplified medial axes ˜ S I and their 

orresponding MATs can benefit from the observation that such 

tructures correspond to piecewise smooth curves (branches) [23] . 

ollowing this, Yushkevich et al. [17] first proposed to model the 

AT with cubic B-splines. However, their method needs to build a 

emplate continuous medial representation model manually , which 

s then manipulated to fit a target shape. Zhu et al. [16] improve 

his by proposing a fully automatic way to represent MATs with B- 

plines. Yet, their method handles only vector representations (of 

oth the shape and its medial axis). In contrast, our method uses 

aster representations for both I and S I ( Section 3 ), and converts 

he latter into a vector representation using splines. This (1) makes 

ur method directly applicable to any binary image, without the 

eed to extract a piecewise-continuous contour ∂ I with sampling 

uarantees; and (2) provides vector-based medial representations 

or any raster-based MAT computation method, in contrast to [16] , 

hich only works with the Voronoi-based MAT method of [27] . 

B-splines are a common and preferred way of specifying very 

mooth curves ( C (d−1) continuity for degree d) in computer graph- 

cs and geometric design [49] . Given n + 1 control points (CPs) 

 0 , . . . , p n and a knot vector U = [ u 0 , . . . , u m 

] , the B-spline curve of

egree d is defined as [50] 

 (u ) = 

n ∑ 

i =0 

N i,d (u ) p i . (9) 

he functions N i,d (u ) are the B-spline basis functions , defined recur- 

ively via 

N i, 0 (u ) = 

{
1 , u i ≤ u ≤ u i +1 

0 , otherwise 

N i,d (u ) = 

u −u i 
u i + d −u i 

N i,d−1 (u ) + 

u i + d+1 −u 
u i + d+1 −u i +1 

N i +1 ,d−1 (u ) . 

(10) 

A B-spline curve given by n + 1 control points, m + 1 knots, and

egree d must satisfy m = n + d + 1 . The knot vector is either open

r periodic . In this work, we use open-uniform knot vectors, given 

y 

 i = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

a, 0 ≤ i ≤ d 

a + 

i − d 

n + 1 − d 
(b − a ) , d < i ≤ n 

b, n < i ≤ n + d + 1 

, (11) 

here a and b are usually set to 0 and 1 respectively. This allows 

enerating a B-spline curve based only on a set of n + 1 control 

oints and degree d with 0 < d < n + 1 . 

. Proposed SMAT representation 

We compute our SMAT representation as follows (see also 

ig. 2 ). We start with a binary image I as input. For simplicity of 
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Fig. 2. Pipeline of the proposed SMAT representation. 

e

c

t

c  

a

w

S

b

u  

w  

s

s

i  

c

b

I

3

d

A

u

t

p

a

a  

s

e  

a  

a

o

3

 

B  

(  

Algorithm 1: Skeleton segmentation algorithm 

Input : Simplified MAT (S ′ I , DT ′ I ) 
Output : Set B of medial branches 

1 Make S ′ I 8-connected 

2 Find x = a point in S ′ I 
3 B = ∅ 

4 Trace( x , B ) 
5 return B 
6 

7 Function Trace( y , B ) : 
8 B .push_back( y , DT ′ I (y ) ) 

9 erase y from S ′ I 
10 if size( y .neighbors) = 1 then 
11 Trace( y .neighbors[0], B) 

12 else 
13 add B to B 
14 for n in y .neighbors do 
15 Trace( n , ∅ ) 

G

p

d

i

a

3

 

B

t

b

s  

a

i

m

t

t

(  

b

t  
xposition, we next consider I has a single foreground connected 

omponent (black pixels in Fig. 2 a); in practice, our implementa- 

ion handles multiple such components, one at a time. We next 

ompute the full MAT (S I , DT I ) using the method in [31] . However,

ny other raster-based MAT computation can be used as well. Next, 

e compute the simplified medial axis 

 

′ 
I = { x ∈ S I | σ (x ) ≥ σ0 } , (12) 

y upper-thresholding the salience metric σ ( Section 2.2 ) by a 

ser-specified value σ0 . The simplified MAT is given by (S ′ I , DT ′ I ) ,

here DT ′ 
I 

is the restriction of DT I to the pixels of S ′ 
I 
. We use the

implified MAT as input for our SMAT construction. For this, we 

egment S ′ I into separate branches ( Section 3.1 ) and fit them us- 

ng splines ( Section 3.2 ). Finally, we encode the entire set of spline

ontrol points efficiently ( Section 3.3 ). The resulting encoding can 

e then used to reconstruct an approximation 

˜ I of the input shape 

( Section 3.4 ). 

.1. Medial axis segmentation 

To carry out the piecewise B-spline fitting, the simplified me- 

ial axis should be segmented into branches ( Fig. 2 , Step 3). 

lgorithm 1 outlines the segmentation procedure. First, we clean 

p S ′ I so it is 8-connected. We next characterize medial points by 

he number of neighbors in S ′ 
I 

they have, as follows: Branch end- 

oints have a single neighbor; regular points have two neighbors; 

nd branch junctions have three or more neighbors. We then find 

n endpoint (or an arbitrary point if no endpoints exist) x of S ′ I and

tart tracing along the medial axis from there, adding the discov- 

red MAT points (y , DT ′ 
I 
(y )) to the current branch B . When arriving

t a junction or endpoint, we add B to the branch-set B and, if at

 junction, start tracing new branches from all medial neighbors n 

f the current point y . 

.2. B-Spline fitting 

To each branch B i = { (x ∈ S ′ 
I 
, DT ′ 

I 
(x )) } found in the branch-set

 = { B i } , we fit a B-spline curve C i using a least-squares algorithm

 Fig. 2 , step 4). For details of the least-squares fit, we refer to [51] .
168 
iven a user-provided fitting error γ0 between B i and C i , we com- 

ute the minimal number of needed control points N and spline 

egree d by an adaptive algorithm ( Section 3.2.1 ). We further min- 

mize the number of needed splines C i across several branches by 

 merge-split algorithm ( Section 3.2.2 ). 

.2.1. Adaptive-degree fitting 

Although it is common to use quadratic ( d = 2 ) or cubic ( d = 3 )

-splines to approximate a set of points, we compute d so as to get 

he lowest number of control points N needed to reach an error 

elow the user-given threshold γ0 . Computing d follows the con- 

traints 1 ≤ d < N (see Section 2.3 ) and N ≥ 2 , where N = 2 implies

 line segment fit to the branch B . The procedure ( Algorithm 2 ) 

s a global minimization of N for all possible d values within a 

aximum number of iterations MaxIter (set in practice to 10 0 0) 

o speed up computations for large branches. The fitting error γ of 

he spline C to branch B is given by the Hausdorff distance H(B, C) 

 Eq. (4) ) computed over all the pixels x ∈ B . It is known that the

oundary approximation error H(I ′ , ̃  I ) between I ′ (the reconstruc- 

ion from the simplified MAT (S ′ , DT ′ ) ) and 

˜ I is upper bounded

I I 
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Fig. 3. Comparison of the adaptive B-spline fitting (d) with quadratic (b) and cubic (c) B-spline fitting for a given image (a) and error γ0 = 0 . 5% of the image diagonal. For 

(b–d), different colors show different branches. Control points are colored like their branches. 

Algorithm 2: Adaptive B-spline fitting algorithm. 

Input : MAT branch B and user-given maximal error γ0 

Output : B-spline curve C fitted to B under error γ0 

1 Initialization: N = 2; γmin = INFINITY 
2 for i from 0 to MaxIter do 
3 for d from 1 to N − 1 do 
4 C = LeastSquaresFit( d, N, B ) 
5 γ = H(B, C) 
6 if γ < γmin then 
7 γmin = γ ; d min = d 

8 if γmin < γ0 then 
9 break 

10 else 
11 N++ 

12 C = LeastSquaresFit( d min , N, B ) 

Table 3 

Number of control points N needed to fit each of the four medial branches for the 

quadratic, cubic, and adaptive schemes in Fig. 3 . Values in brackets give the degree 

d of each B-spline. 

Branch Quadratic Cubic Adaptive 

B 1 (blue) 10 (2) 8 (3) 8 (3) 

B 2 (red) 9 (2) 11 (3) 9 (2) 

B 3 (green) 3 (2) 4 (3) 2 (1) 

B 4 (black) 19 (2) 14 (3) 11 (5) 

Total 41 37 30 
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Fig. 4. Comparison of SMAT for a lizard shape without merge-split (a) and with 

this algorithm used (b). Cyan shows the SMAT-based reconstruction of the shape. 

Branch segments are shown in different colors. The negative numbers in (b) show 

the number of control points saved per branch by MS. 
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2 γmax [52] , where γmax is the maximal fitting error over all 

plines C i . Thus, users can set γ0 either directly — to control the 

edial axis approximation error — or based on the desired bound- 

ry approximation error H(I ′ , ̃  I ) . 

Fig. 3 compares our adaptive B-spline fitting with quadratic and 

ubic B-spline fitting for a simple shape. Fig. 3 (a) shows the im- 

ge I (black) and its medial axis S ′ 
I 

(white). We set here γ0 = 0 . 5%

f the image diagonal. As visible, our adaptive fitting ( Fig. 3 (d) 

equires only N = 30 control points, whereas quadratic and cubic 

-splines require N = 41 and N = 37 control points, respectively. 

able 3 lists the number of control points and degree for the four 

edial branches of the shape, for each of the above three spline- 

tting schemes. For long and curved branches, like B 4 (black), our 

cheme uses a high degree d = 5 to reduce the required N; for 

hort and straight branches, like B 3 (green), our method reduces 

by using a lower degree d = 1 than the quadratic and cubic 

chemes. Overall, our adaptive-degree B-spline fitting saves about 

0% control points. 

.2.2. Merge-split algorithm 

Algorithm 2 describes the adaptive B-spline fitting for a sin- 

le branch. When the medial axis S I is only slightly simplified, 

 

′ 
I 

contains many short branches corresponding, as outlined in 

ection 2.2 , to small-scale details along ∂ I. Encoding these requires 

any control points, so we propose to merge these short branches 

o alleviate this. For each branch-fragment A , we find all fragments 
169 
 i connected to it, and select the most suitable one B j to merge 

ith A . The criterion for the merge is 

j = arg min i N A + B i | N A + B j < N A + N B j , (13) 

here N A + B i is the number of control points needed to fit the 

erged branch A ∪ B i , and N A and N B j 
are the number of control

oints required for branch-fragments A and B j , respectively. 

A separate issue is that there may be long and curved branches 

hich are difficult to fit with a B-spline, requiring more than N max 

set to 15 in practice) control points. We address this by split- 

ing such branches before fitting. Let B i = { (x k ∈ S ′ I , DT ′ I (x k )) } n k =0 

e the branch to be split; then B i 1 = { (x k ∈ S ′ 
I 
, DT ′ 

I 
(x k )) } n/ 2 

k =0 
and

 i 2 = { (x k ∈ S ′ 
I 
, DT ′ 

I 
(x k )) } n k = n/ 2+1 

are the two branches obtained

y splitting B i in half . We consecutively split long and curved 

ranches in half until all resulting branch-segments can be fitted 

y Algorithm 2 with splines with fewer than N max control points, 

nd the fitting error is under the user-specified γ0 . 

To illustrate the effect of the merge-split (MS) algorithm, Fig. 4 

ompares SMAT results for a lizard shape (taken from [16] ) when 

pplying the MS algorithm (b) and not applying it (a). We set 

0 = 0 . 35% of the diagonal of the image. MS creates a SMAT using

nly 57 control points instead of the 65 required if one B-spline 

er MAT branch is used. The negative numbers in Fig. 4 show the 

rop in control points, per branch, due to MS. The long and curved 

ranch along the tail is split into two segments (black and green). 

ewer control points are needed after splitting since the two seg- 

ents can be separately fit with splines using different degrees. 

or short and straight branches, like the ones corresponding to a 

nger of the fore leg, merging them into one branch also decreases 

he control point count. Additionally, using MS greatly reduces the 

otal number of splines from 27 to 20 used since several connected 

AT branches can be approximated by a single spline. More in- 

ormation on the advantages of MS for reducing the information 

eeded to store the SMAT is given in the supplementary material. 
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Table 4 

Evaluation of SMAT for an animal shape. 

Table 5 

SMAT benchmark with 30 images of five types. 

Type Description 

a Simple object shapes 

b Regular geometric structures 

c Animal contours 

d Geometric shapes with jagged or irregular edges 

e Shapes with complex contours 
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.3. SMAT encoding 

Our SMAT representation ( Fig. 2 , Step 5) consists of a tuple 

M = (w, h, { b i } ) . Here, w and h represent the width and height,

n pixels, of the input image I; and b i = (d i , { c j i } ) represents a B-

pline output by the merge-split process ( Section 3.2.2 ), i.e. , which 

ts a merged branch under the user-given error γ0 . Each such B- 

pline has a degree d i and control points c 
j 
i 

(both computed by 

he adaptive procedure in Section 3.2.1 . Each control point c 
j 
i 

= 

p 

j 
i 
, DT ′ I (p 

j 
i 
)) ∈ R 

3 consists of a 2D position p 

j 
i 

and its correspond-

ng DT value. 

.4. Reconstruction 

We reconstruct the approximation 

˜ I of I from the SMAT 

epresentation ( Section 3.3 ) as follows. For each spline b i , the 

pen-uniform knot vector can be determined following Eq. (11) . 

he basis functions N i,d (u ) are next computed using Eq. (10) , 

ollowed by generating the B-spline ( Eq. (9) ). Each such spline is 

ext rasterized on the desired pixel grid, using either the original 

mage resolution (w, h ) or, if desired, a higher resolution (see next 

ection 5.1 ). For rasterization, we first split each branch b i into 

ézier (polynomial) segments. This uses knot insertion to ensure 

hat each internal knot has multiplicity equal to d i , which is done 

fficiently using the Oslo algorithm [53] . Each Bézier segment 

s then rasterized using adaptive binary subdivision based on 

e Casteljau’s algorithm [50] . The adaptive subdivision proceeds 

ntil the maximum distance of all inner Bernstein-Bézier control 

oints from the line-segment given by the end-points of the 

urrent (sub-)segment is below pixel precision, at which point the 

sub-)segment is drawn using Bresenham’s line-drawing algorithm 

ased on the mentioned end-points. 

Once the medial pixels x i with DT values DT i are evaluated this 

ay, we reconstruct ˜ I as the union of disks with centers x i and 

adii DT i , using the efficient procedure for computing this union 

rom [31] . 

.5. Implementation 

We implemented the MAT simplification ( Eq. (12) ), Algo- 

ithms 1 and 2 , the SMAT encoding ( Section 3.3 ), and spline ras-

erization ( Section 3.4 ) in C++. We compute exact Euclidean MATs 

nd also reconstruct the initial image from a rasterized SMAT us- 

ng the public CUDA implementation provided at [54] . Our entire 

ethod, including source code, datasets, and evaluation scripts, is 

ublicly available [55] . 

. Results 

.1. Evaluation methodology 

SMAT depends on two parameters ( Fig. 2 ): the salience thresh- 

ld σ0 , which gives the simplification of the medial axis S ′ 
I 
, and 

he tolerance γ0 that tells how accurately B-splines fit medial 

ranches. We evaluate SMAT based on two factors: 

Similarity Q of the reconstruction 

˜ I provided by SMAT 

 Section 3.4 ) to the original shape I. Here, Q stands for any of the

etrics H, H , MS-SSIM, and Jaccard ( Section 2.2 ). 

Compression ratio CR that measures how more compact SM( ̃ I ) 

s as compared to I. We define CR = | I| / | SM ( ̃ I ) | . Here, SM ( ̃ I ) is the

ize (in bytes) of the SMAT storage scheme outlined in Section 3.3 . 

n contrast, | I| , i.e. , the storage needed for shape I, can be defined

n many ways, depending on how I is represented, e.g. by chain 

oding [2] , geometrical approximation [3] , or bitmap-based encod- 

ng [11,12] . We next model | I| as the size (in bytes) of the contour

I. 
170 
Given the above, the total quality of SMAT can be modeled as 

Q, CR ) = SMAT (σ0 , γ0 ) . (14) 

To find a good trade-off between Q and CR, we do a grid-search 

ver σ0 and γ0 . We use σ0 ∈ { 0 . 1 , 0 . 5 , 1 . 0 , 1 . 5 } as this range was

ndicated in the original salience paper [35] as producing MAT 

implifications that remove small-scale noise but keep salient de- 

ails. We use γ0 ∈ { 0 . 0 02 , 0 . 0 04 , 0 . 0 06 , 0 . 0 08 } (percentages of the

ounding-box diagonal of I) as these represent tight fits of the 

MAT B-splines with the branches of S ′ 
I 
. Table 4 shows the result- 

ng values for all four similarities Q , the compression ratio CR , and 

lso the total number of control points N in the SMAT, for all val- 

es of σ0 and γ0 , for a binary image also used in [31,39] . Several

ther examples are available in the supplementary material. 

To understand the trends in Table 4 , we use next two scatter- 

lots ( Figs. 5 ) showing H vs CR and MS-SSIM vs CR , respectively.

he plots of H vs CR and Jaccard vs CR are similar to Fig. 5 (a) and

b), respectively, and are not included for space constraints. In each 

lot, the sixteen points correspond to combinations of (σ0 , γ0 ) val- 

es. We encode σ0 in four base colors (hues), and γ0 in the size of 

he bullets. Fig. 5 (a) shows a roughly direct correlation of H with 

R , while Fig. 5 (b) shows an inverse correlation of MS-SSIM with 

R , as expected. In general, the larger σ0 , the more simplified S ′ 
I 
, so

he lower the MS-SSIM and the higher the H and CR . Overall, the 

uality has not decreased much, but the CR has been greatly im- 

roved. Under a certain σ0 , γ0 determines how close the B-spline 

s to the current skeleton. Although there is no very strict trend, 

n general, with the increase of γ0 , Q tends to decrease while CR 

ncreases. 

.2. Joint compression-quality evaluation 

We next evaluate SMAT’s ability to compress images and retain 

imilarity by a benchmark containing 30 images of five different 

ypes ( Table 5 and Fig. 6 ), mainly selected from the MPEG-7 bench-

ark [56] . To optimize both reconstruction similarity Q and CR for 
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Fig. 5. H vs CR (a) and MS-SSIM vs CR (b) for the shape in Table 4 . 
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ach shape, we next set Q = MS-SSIM , as we argue that, from the 

et of four considered similarity metrics, MS-SSIM best represents 

ow humans perceive two shapes I and 

˜ I as being similar. Also, we 

ombine MS-SSIM and CR into a simple joint quality metric 

 

′ = 

MS - SSIM + CR 

2 

, (15) 

here CR for a given shape is its CR value normalized by the 

aximal CR over all shapes in the benchmark. This way, both CR 

nd MS-SSIM range in [0,1], so can be combined in Eq. (15) . The

ptimization is the result that maximizes Q 

′ over all 16 studied 

γ0 , σ0 ) values. 

Fig. 6 shows the obtained results. Rows indicate shapes in the 

ve benchmark classes (see Table 5 ). Cyan shows the reconstruc- 

ion 

˜ I with optimal Q 

′ . Black outlines show the boundaries ∂ I of 

he input shapes. In all cases, the reconstruction is visually almost 

dentical to the original shape, also confirmed by the high MS- 

SIM values. Compression values CR also are in general quite high, 

ess so for shapes having many small-scale details such as (d6) and 

e6). Images (a6), (e1), and (e6) show that SMAT can handle shapes 

ith holes with no problem. Relative boundary length, defined as 

oundary length | ∂ I| divided by the diagonal of the image, is color- 

oded in the legend in Fig. 6 . Fig. 7 summarizes the SMAT perfor-

ance on the 30 images in Fig. 6 by a scatterplot of MS-SSIM vs

R . Colors indicate the relative boundary length just as in Fig. 6 .

e see a slight inverse correlation of high CR and MS-SSIM with 

he relative boundary length, which is expected: shorter bound- 

ries have, on average, fewer details, so are easier to encode by 

MAT. This is also visible in the fact that complex shapes (types d 

nd e) reach lower CR and MS-SSIM, while simpler shapes (types 

 and b) reach higher CR and MS-SSIM. We also see the relatively 

trong effect that even tiny boundary details have on CR : Shapes 

1, b1, b4, and b2 are arguably of very similar visual complexity 

nd all have short boundaries (dark blue in Fig. 7 ). All compress 

ith a very high MS-SSIM > 0 . 985 . However, their CR ’s vary be-

ween 37.2 (a1) and 133 (b2). This is caused by tiny, pixel-size, 

oise, present e.g. along a1’s boundary, but largely absent for the 

ther three shapes. To keep such tiny details, we need to keep 

any branches in the MAT. 

.3. Comparison with compressed MAT representation 

Besides comparing SMAT with the ground-truth I, it is inter- 

sting to compare it with other methods that provide compressed 

AT representations. One such method [41] essentially uses the 

ame MAT extraction [31] and simplification [35] as SMAT, but next 

ompresses the pixel-chains in S ′ 
I 

using delta encoding rather than 

-splines as we do. Fig. 8 shows the average MS-SSIM vs CR for the

ve shape types in our benchmark for SMAT and the delta method 

n [41] . For that method, we define CR = | I| / | M AT ( ̃ I ) | , where M AT 
171 
s the size (in bytes) needed to store S ′ 
I 

with delta encoding for a 

inary image, which is an efficient way to store 8-connected pixel- 

aths. As in our case, ( Section 4.1 ), | I| denotes the size (in bytes)

eeded to store ∂ I. 

In the figure, the larger the γ0 (the larger the filled dots), means 

he larger the approximation error of the spline, so the lower the 

uality, the higher the CR . When γ0 equals 0.002, the MS-SSIM 

core of SMAT is only 0.002 lower than the one of the delta en- 

oding, but SMAT yields CR values 2 up to 6 times higher. 

.4. Comparison with Zhu et al. [16] 

esult quality: Fig. 10 compares SMAT with Zhu et al. [16] , which, 

s mentioned earlier, is the most similar method (in aims) to 

urs. This comparison must however be done carefully. As men- 

ioned ( Section 2.3 ), their input shape boundaries ∂ I must be care- 

ully (densely) sampled to capture the boundary topology faith- 

ully [28] . How this is done is not further detailed. Also, they 

se for reconstruction error Q the one-sided Hausdorff distance 

 Eq. 5 ) from these sample points P ∈ P of ∂ I to the boundary

 ̃

 I of the reconstructed shape. This leads to a smaller distance 

alue than if all points of ∂ I were considered. Fig. 9 illustrates 

his. If the (one-sided) Hausdorff distance is defined as h (I, ̃  I ) = 

ax 
x i ∈ P 

{ 

min 

x j ∈ ∂ ̃ I 
‖ x i − x j ‖ 

} 

as in [16] , then some of the distance val- 

es (like l in the figure) will be less than (maximally equal to) val- 

es obtained when considering all points on ∂ I (like l ′ in the fig- 

re). In addition, they only considered the one-sided Hausdorff dis- 

ance h (I, ̃  I ) , for reasons deemed as simplicity. The other one-sided 

ausdorff distance, h ( ̃ I , I) = max 
x j ∈ ∂ ̃ I 

{
min 

x i ∈ P 
‖ x j − x i ‖ 

}
, would generate 

 higher value than h (I, ̃  I ) (denoted m in the figure). 

In contrast to the above, Fig. 10 (a2–c2) shows the two-sided H

 Eq. 4 ), and considers every pixel on both boundaries ∂ I and ∂ ̃  I . We

sed here images extracted from the paper [16] , since no data or 

ode for that method was available. In this image, ε is the one- 

ided Hausdorff distance used by [16] explained above. The other 

etrics are ours, explained earlier. Overall, SMAT produces results 

hat are very similar to Zhu et al., but requires 15% fewer control 

oints N. Importantly, H, the double-sided Hausdorff distance we 

se for SMAT, is always larger than the one-sided Hausdorff dis- 

ance ε used by Zhu et al., by definition – meaning that our test 

or accurate reconstruction is more stringent than the one in Zhu 

t al. 

arameters: Zhu et al. offer a single parameter ˆ ε which con- 

rols both the MAT simplification and the spline fitting. Small ˆ ε
alues, thus, will keep most of the raw MAT branches and also 

ightly fit B splines to them. Conversely, large ˆ ε values will sim- 

lify the MAT significantly and fit B splines looser. In contrast, we 
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Fig. 6. Comparison of SMAT reconstructions (blue) with original shapes (black outlines) for 30 images in our benchmark. Colored boxes left of the labels show the relative 

length of the shape contour (blue is short, red is long). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 7. MS-SSIM vs CR of 30 shapes for SMAT representation. Colors encode the 

relative boundary length just as in Fig. 6 . 
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eparate the two concerns: Our parameter σ0 controls the MAT 

implification, thereby allowing us to specify what (of the MAT) we 

ext want to approximate. Next, γ0 controls the spline fitting, i.e. , 

ow well we want to approximate the simplified MAT. This sepa- 

ation has several advantages: (1) We can e.g. decide we want to 

eep the nearly-complete MAT (low σ0 ) but approximate it more 

oosely (high γ0 ), or simplify the MAT significantly (high σ0 ) but 

t it tightly with splines (low γ0 ). (2) We can use any other MAT 

implification besides the saliency, simply by replacing the defini- 

ion of S ′ I with any other MAT simplification deemed suitable; the 

est of the pipeline stays unchanged. (3) We can compute multi- 

cale SMATs by computing the full MAT only once and next sim- 

lify it using any desired combination of σ0 and γ0 , at interactive 

ates (see Section 5.2 for details). 

peed: Zhu et al. only report the cost of computing the final B- 

plines from the simplified MATs. Yet, going from the raw MATs 

produced by the Voronoi method [27] ) to the simplified MATs 

akes tens of seconds for a shape of 512 2 pixels. In contrast, our 

otal time, from receiving I up to computing SM( ̃ I ) , is only tens of 

illiseconds (see Fig. 10 a2–f2). 
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Fig. 8. Average MS-SSIM vs CR for the five shape types in our benchmark for delta- 

encoding MAT [41] (asterisks) and SMAT for three different γ0 values (filled dots in 

three different sizes). 

Fig. 9. Analysis of Hausdorff distance used in [16] . P is one of the sample points of 

the original shape boundary ∂ I. ∂ ̃ I is the boundary of the reconstructed shape. 
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ig. 10. Comparison of SMAT (a2–f2) with [16] (a1–f1) for six shapes. Blue shows the re

nd black dots in (a1–f1) show the B-spline curves and their corresponding control point

rrors ε, H and H are in percentages of the diagonal of the image. Timings t for (a1–f1) c

re the end-to-end costs. (For interpretation of the references to color in this figure legen
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. Applications 

In addition to the shape or MAT compression ( Section 4 ), 

MAT also provides other useful results. We outline here super- 

esolution medial axes ( Section 5.1 ), multiscale SMAT representa- 

ions ( Section 5.2 ), and shape manipulation by MAT control points 

 Section 5.3 ). 

.1. Super-resolution 

As B-splines are smooth, one can rasterize them at any resolu- 

ion in the reconstruction step ( Section 3.4 ). This does not incur 

ny extra storage: the same SMAT representation ( Section 3.3 ) 

an be used. Fig. 11 shows the effect of increasing the resolution 

y 10 times on a jagged shape. The top images show the SMAT 

econstruction of a shape at its original resolution ( 200 × 200 pix- 

ls). Bottom images show the SMAT reconstruction, from the same 

M representation , at a 10 times higher resolution than the input 

mage. As visible, the super-resolution reconstruction removes 

he discretization artifacts of the original reconstruction while 

eeping the reconstructed boundary ∂ ̃  I (line separating black from 

hite in the image) smooth. To our knowledge, this is the only 

ethod providing super-resolution raster MATs apart from [57] . 

n comparison to [57] , SMAT is fully generic and simpler, i.e. , does 

ot need to use special (image-based) interpolation tricks to create 

he super-resolution MATs. 

.2. Multiscale SMAT representation 

SMAT uses as input the simplified MATs S ′ I of its input shapes 

( Section 3 ). These simplified MATs depend on the user-provided 

alience parameter σ0 . In practice, this means that if a user simpli- 

ed S ′ I too much (by setting σ0 too high), one would have to re-run 

he entire SMAT pipeline, which is tedious and time consuming. 

e improve this by proposing a multiscale SMAT representation. 
constructed shapes ˜ I . Black shows boundaries of the input shapes I. White curves 

s. In (a2–f2), different colors show different branches and their control points. The 

over only the spline extraction from simplified MATs in [16] . Our timings t (a2–f2) 

d, the reader is referred to the web version of this article.) 
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Fig. 11. Super-resolution effect on a shape with jagged edges. 

Fig. 12. Multiscale SMAT fitting (b) and the progressively simplified skeletons and 

the corresponding reconstruction (c1–c6) on a jagged shape (a). 
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ig. 13. Deformations of a running horse shape by manipulating the control points and 

-spline they affect. 

174 
nstead of simplifying the MAT ( Fig. 2 , Step 2), we encode the full

AT together with the importance ( ρ) value at each MAT point 

s a 4D curve-set (S I .x, S I .y, DT I , ρ) , using B-splines. As we encode

oth DT I and ρ , we can next compute the salience σ using Eq. 3 . 

A single multiscale SMATs allows generating an entire family 

f progressively simplified MATs, and their corresponding recon- 

tructions, by running only the σ0 thresholding on the decoded 

 I produced by Step 6 in Fig. 2 , followed by reconstruction (Step 

). Fig. 12 (b) shows the 4D data (S I .x, S I .y, DT I , ρ) in red, fitted by

-splines (green) for the jagged shape in Fig. 11 . Videos showing 

dditional results on this experiment are in the supplementary 

aterial. Figs. 12 (c1–c6) show the gradually-simplified MATs S ′ 
I 

nd corresponding reconstructions ˜ I for increasing thresholds σ0 . 

ultiscale SMAT is cost-effective: obtaining the six simplifica- 

ions in Fig. 12 (c1–c6) is about five times faster than running six 

ingle-scale SMATs. Note that producing such multiscale SMATs is 

ot possible with [16] : Indeed, for any change of the error user 

arameter ˆ ε proposed there, the entire pipeline of MAT simplifi- 

ation and spline-fitting has to be re-run, which is expensive, as 

utlined in Section 4.4 . 

.3. Shape manipulation 

Manipulating 2D shapes is important in applications like char- 

cter animation [58,59] and image editing [60] . Several methods 

uch as m-reps [61] , subdivision skeletons [62] , and medial surface 

eformation [63] have used MATs to this end, by changing the 

hape via changing its medial axis. Still, picking suitable control 

oints to manipulate the MAT is not easy. In contrast, SMAT allows 

eforming a shape simply by manipulating the SMAT descriptor. 

ig. 13 shows five deformations where we keep the human body 

nd horse rump fixed and change the horse legs by adding ( + c), 

eleting ( −c), moving ( m ) control points and/or increasing the 

-spline degrees ( + d , −d ). A few of the manipulations are outlined

ext. To overlap the two hind legs and vary the curvature of 

heir joint silhouette (d, e) we increased the number of control 

oints for the leg-to-body connection branch (dark blue) and also 

educed the number of control points for these legs. A similar edit 

as done to the purple branch in (f) to overlap the front legs. To 

et a curled up right front leg (dark red, image (e)), we reduced 

he degree of its B-spline to 1 so as to better control it to clearly

how each leg joint, and next moved its control points as desired. 
the degree of B-splines. Control points and manipulations are colored just as the 
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Fig. 14. The full medial axis of a rectangular shape (a) with zoomed-in detail (b) 

and color-coded segmented branches (c). 
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. Discussion 

We next discuss several aspects of our SMAT representation. 

ase of use: SMAT has two parameters that affect the trade-off

etween compression ratio and reconstruction accuracy: σ0 and 

0 . Intuitively, σ0 controls how many small-scale details (bumps) 

n the shape boundary are removed (MAT simplification); while 

0 controls how much the MA branches are ‘smoothed out’ into 

plines (MAT approximation). 

peed: Since our MAT is implemented on the GPU ( Section 2.1 ), 

he SMAT pipeline is very fast. For a shape of 512 2 pixels, the en-

ire pipeline takes only a few tens of milliseconds on a Linux PC 

ith an Nvidia RTX 2060 GPU. Following [41] , the complexity of 

he SMAT computation is linear in the number of pixels in the in- 

ut image. 

omparison: It is useful to summarize the differences between 

MAT and Zhu et al. [16] . A key point is that Zhu et al. sim-

lify MATs based on the reconstruction error , which naturally yields 

mall errors. SMAT simplifies MATs based on how salient their 

oints are for shape perception. Hence, our reconstructions can 

ave a possibly larger Hausdorff distance H to the initial shape, as 

e are not explicitly optimizing for H. Both approaches are valid 

ut for different goals: If one wants simplified MATs that recon- 

truct a shape as close as possible with respect to H, and is fine

ith computation times of minutes, Zhu et al. is to be used. If one 

ccepts small reconstruction errors in non-salient shape parts, de- 

ires a multiscale MAT for simplification with different thresholds, 

nd needs a real-time response, then our method is to be used. 

imitations: SMAT cannot (yet) be lossless, i.e. , yield an exact, 

ero Hausdorff-distance-to-original, reconstruction. To fully recon- 

truct the input shape, the full , unsimplified, MAT should be 

sed. Fig. 14 (a) shows the full medial axis of a simple rectan- 

ular shape. As Fig. 14 (b) shows, the full-MA branches are very 

lose. Algorithm 1 will segment this MA into tens of thousands 

f very short branches (shown in Fig. 14 (c) with one color per 

uch branch). The spline fitting ( Sections 3.2.1 and 3.2.2 ) will 

pproximate-and-merge such branches, resulting in a SMAT that 

annot perfectly reconstruct the input shape. However, SMAT can 

chieve 0.3% approximation error and an MS-SSIM score of up to 

.99 ( Section 4 ). We argue this is sufficient for most applications 

uch as shape matching, retrieval, and deformation, which do not 

equire perfectly lossless encoding. 

. Conclusion 

We have presented SMAT, a method for encoding the me- 

ial axis transform (MAT) of raster (binary image) shapes with 
175 
-splines. For this, we simplify raster MATs using a salience 

etric, segment them into branches and branch-segments, and 

ptimize the fit of a set of B-splines over the resulting segments to 

inimize the number of required control points while maximizing 

he spline-to-MAT fit. We evaluated SMAT on a collection of raster 

hapes of different types and complexities, using several quality 

etrics for image and shape comparison. Our results show that 

MAT can achieve visually indistinguishable results to the original 

mages, while reducing the space needed to store the MAT by 

ne to two orders of magnitude. SMAT has only two simple-to-set 

arameters: the degree of MAT simplification and desired MAT 

pproximation error. We showed how SMAT enables generating 

uper-resolution images, can capture multiscale MATs, and allows 

hape manipulation. SMAT is implemented on the GPU making its 

pplication real-time for images up to 10 0 0 2 pixels. 

We next aim to extend SMAT beyond binary shapes, to encode 

rayscale and color images and potentially 2D and 3D scalar fields 

or scientific visualization applications. Separately, we aim to ex- 

lore the potential of SMAT for image vectorization applications. 
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