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Abstract 
Scientific data analyses often combine several computational tools in 
automated pipelines, or workflows. Thousands of such workflows 
have been used in the life sciences, though their composition has 
remained a cumbersome manual process due to a lack of standards 
for annotation, assembly, and implementation. Recent technological 
advances have returned the long-standing vision of automated 
workflow composition into focus. 
This article summarizes a recent Lorentz Center workshop dedicated 
to automated composition of workflows in the life sciences. We survey 
previous initiatives to automate the composition process, and discuss 
the current state of the art and future perspectives. We start by 
drawing the “big picture” of the scientific workflow development life 
cycle, before surveying and discussing current methods, technologies 
and practices for semantic domain modelling, automation in workflow 
development, and workflow assessment. Finally, we derive a roadmap 
of individual and community-based actions to work toward the vision 
of automated workflow development in the forthcoming years. 
A central outcome of the workshop is a general description of the 
workflow life cycle in six stages: 1) scientific question or hypothesis, 2) 
conceptual workflow, 3) abstract workflow, 4) concrete workflow, 5) 
production workflow, and 6) scientific results. The transitions between 
stages are facilitated by diverse tools and methods, usually 
incorporating domain knowledge in some form. Formal semantic 
domain modelling is hard and often a bottleneck for the application of 
semantic technologies. However, life science communities have made 
considerable progress here in recent years and are continuously 
improving, renewing interest in the application of semantic 
technologies for workflow exploration, composition and instantiation. 
Combined with systematic benchmarking with reference data and 
large-scale deployment of production-stage workflows, such 
technologies enable a more systematic process of workflow 
development than we know today. We believe that this can lead to 
more robust, reusable, and sustainable workflows in the future.

Keywords 
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Introduction
Computational pipelines, commonly referred to as scientific workflows*, play a key role in modern life science
research.1–3 Analysesmust be tailored to highly complex biological data by successive application of different algorithms
and routines to maximize biological insight. Hence, scientists regularly use sophisticated workflows, composed from
several software tools and data resources, for tailored data analysis processes. The highly dynamic eScience software
ecosystem, which continuously sees new tools emerging, new reference data being provided and computational
infrastructure improving, provides the basis for new and innovative workflows. Once developed, workflows are rarely
considered stable, but are regularly adapted and reimplemented to meet the latest state of the art.

For more than two decades, dedicated scientific workflow management systems4–9 have been developed to support
researchers at the different stages of the workflow development life cycle.10 There is a flourishing ecosystem around
these systems, including software-oriented ontologies,11–16 tool registries with rich metadata and functional annota-
tions,12,17–19 containerization technologies,20,21 workflow management and execution frameworks,7,22–25 workflow
repositories,26–29 workflow exchange formats,30 and more.31 Importantly, with the use of workflows in large scale data
science and machine learning systems32–36 there has been a large increase in the interest in composing and executing
workflows at scale.37 These developments bring the long-standing vision of automated workflow composition38 - the use
of algorithms to perform the often tedious, time-consuming, limited and error-prone workflow development process -
within reach.

To biologists there is a latent fear to have chosen the wrong computational paths for the analysis of their data, which could
cause problems during the peer review, and in the worst case misdirect the data interpretation and invalidate downstream
experiments. While human expert knowledge is an indispensable factor for validating and curating computational
workflows, their automated assembly can significantly reduce the effort of getting from novel ideas to production and
mainstream application, and at the same time help to increase scientific quality, reliability, and robustness. In fact,
benefits of (partially) automated workflow development are manifold and include:

• Minimal technicalities in software composition. Manual workflow construction can be a tedious process. It
requires the workflow developer to get familiar with the individual tools, sort out the compatibility of their input/
output data formats, and connect them correctly to perform the intended process. An automated composer would
not only save valuable research time, but also reduce errors.

• Exhaustive exploration of data-analytical possibilities. Given the abundance of bioinformatics tools available
today, it is impossible for a human to consider all possible combinations that could be relevant for their problem.
Indeed, scientists often resort to the tools and workflows with which they are familiar, at the risk of missing
better suited or more effective pipelines for their problem. Assisted or even automated workflow composition
would systematically and comprehensively explore the workflows that are possible with the available tools,
and could also rank the possible workflows based on specific user requirements, such as runtime, compute
requirements, underlying database usage, etc. This would enable new scientific findings by discovering well or
better performing workflows that researchers would not have thought of themselves.

• Generating ensembles of workflows.When using workflows to test biological hypotheses, automated workflow
composition enables us to generate ensembles of orthogonal workflows combining different tools and services
seizing on different aspects of the data (for example, algorithms that concentrate on different subsets of the raw
data). This idea has been proposed by Gil et al.39 and is not epistemologically novel. As Hempel summarized
over half a century ago, “The confirmation of a hypothesis depends not only on the quantity of the favorable
evidence available, but also on its variety: the greater the variety, the stronger the resulting support”.40 As a single,
linear, workflow is typically unable to collect all available evidence and parallelization is not always an option,
workflow ensembles can provide additional confidence in rejecting null hypotheses.

• Repairing workflows by tool substitution. Within a strictly and semantically well-defined context, alternative,
semantically equivalent tools or services may be fully automatically substituted when the default is deprecated
or unavailable. In a less well-defined setting, the workflow developer might still be semantically guided
towards possible alternatives and receive suggestions for sensible replacement tools. Ideally, the resulting
workflows would also be tested automatically, to check if they produce the same or similar output as the old

*We use the terms “pipeline” and “workflow” interchangeably here. Another common, more differentiating view is that pipelines are purely
computational and as such a subset of the more general notion of workflows, which can also involve a human element.
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workflow on available benchmarking data. Workflows that can be automatically repaired in this way are
inherently more robust and viable.

• Optimizing workflow output. Workflow topology, components as well as parameters can be optimized in
an integrated workflow composition and benchmarking framework. This can be used, for example, to maximize
output, e.g. identified proteins in a proteomics experiment, or minimize some computational resource,
e.g. memory or CPU time. Specific properties of a data set might influence such optimization adapting the
methods not only to the data type but also the data itself.

• Ensuring the methodological quality of workflows.Automated composition can ensure that data is correctly used
within components (e.g. training and test data are properly used in machine learning). Likewise, it can prevent
errors in parameter setting as well as combinations of components.

In this article we report on the state of the art of automated workflow development in the life sciences, discuss current and
future challenges and develop perspectives for the coming years. The report is based on discussions during a Lorentz
Center workshop (held at the Lorentz Center in Leiden, Netherlands, from 9-13 March 2020) dedicated to this topic41

(workshop program available inExtended data115), with the authors as participants. In the sectionWorkflow life cycle we
outline a “big picture” of the scientific workflow development life cycle, before surveying and discussing current
methods, technologies and practices for semantic domainmodelling (section Semantic domainmodelling), automation in
workflow development (section Automation in workflow development), and workflow assessment (section Workflow
assessment). In the Roadmap section, we derive a roadmap of individual and community-based actions to work toward
the vision of automated workflow development in the forthcoming years. Finally, the Conclusion section wraps up the
discussion.

Workflow life cycle
The development of scientific workflows is an involved, multistep, and often iterative process. The schematic process in
Figure 1 captures the “big picture” that emerged from the discussions at the Lorentz Center workshop. It extends earlier
descriptions of the scientific workflow life cycle,42–44 and will provide guidance for the discussion of automation
approaches in the remainder of this article. The life cycle distinguishes six principal stages:

Figure 1. Scientific workflow life cycle.
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1. The scientific question to answer, or the hypothesis to test. It guides the subsequent exploration of suitable
analysis methods, as well as for the choice of data, methods, tools, platforms, and interpretation of results.

2. The conceptual workflow, as a sketch of the methodical steps that the workflow should perform on data from a
specific experiment type, from a domain-specific perspective. It is the result of exploring possible analysis
methods for the scientific question/hypothesis and the data at hand. It can be formalized, for example as a
ConceptMap,45,46 but often it will only take the form of a paper ormental sketch. Nevertheless, it is an important
stage in the workflow development process.

3. The abstract workflow, describing sequences of computational tools that implement the conceptual workflow. It
is the result of composing individual tools into workflows, taking into account the compatibility of their input/
output types and other kinds of static information. An abstract workflow is not yet (fully) configured, however,
and thus not readily executable.

4. The concrete workflow, as the fully implemented, fully configured and readily executable stage. It is the result of
instantiating an abstract workflow with the relevant data and parameters.

5. The production workflow, deployed and ready for (re) use by other parties. It is the result of benchmarking
different variations of a workflow in order to arrive at a tested and robust version for wider use.

6. Finally, the scientific results that emerge from executing the workflow with the research data. They are
interpreted by the domain scientists, and ideally shared with others in a manner that promotes reproducibility
and transparency. This often leads to new scientific questions or hypotheses, to be addressed by another
workflow.

In practice, these stages are often not so clearly distinguishable. They can be interleaved, skipped, and taken in a different
order than the life cycle suggests. A non-exhaustive list of examples includes:

• A workflow developer might not produce an (explicit) conceptual sketch of the workflow before starting to
explore and compose tools, but rather do so in one go.

• Trying to compose an abstract workflowmight reveal that the research question/hypothesis and/or the conceptual
workflow need to be refined.

• Many popular workflow management systems, such as Galaxy,7,57 handle both composition and instantiation
simultaneously and combine abstract and concrete workflows in one formalism. Typically, they also allow for
workflow execution for both benchmarking and production purposes, thus covering additional stages in the life
cycle.

• A benchmarked workflow might be used to generate results, but is never actually deployed for reuse by others.

• Existing workflows from repositories like myExperiment,28,29 Dockstore47 or theWorkflowHub26 can be reused
at different stages, preceding stages in the principal life cycle to be either skipped or shortened.

• Popular production workflows, such as those provided by the Bioinformatics Core Facility48 are routinely used
by researchers in a close execution -> results -> interpretation -> execution sub-cycle.

• Specific data and study properties pre-determine workflow components by prior knowledge about tool
performance.

The figure also indicates the importance of literature, data, domain ontologies and tool registries and workflow
repositories. They provide the basis for exploring, composing, implementing, running, evaluating, sharing, and reusing
computational pipelines, and are thus central to thewhole workflow life cycle. In fact, they are the enablers ofmany of the
“shortcuts” outlined above.

Finally, the figure distinguishes two principal roles in the workflow life cycle: 1) the workflow user, here represented by a
wet-lab biologist, who has research questions and data for which they use computational tools and workflows to obtain
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results, and 2) theworkflow developers, here represented by a technology-oriented bioinformatician, who has the skills to
develop and provide computational workflows for their colleague’s data analysis problems. While there are obviously
individuals who perform both roles, there is an increasing specialization happening in the field of scientific workflows,
with research software engineers skilled in workflow technologies emerging as a professional profile in its own right.49

Semantic domain modelling
In the context of scientific workflow development, the semantic domain model is (formalized) knowledge about
the technical entities within a domain. It includes domain ontologies as controlled vocabularies for annotating entities
with metadata, and registries and repositories of annotated data, tools and workflows. For the purpose of automating
(parts of) the workflow construction process, tools and their functional annotations are of particular importance. Possible
connections of individual tools are in the first place determined based on the annotated input/output data types and
formats.

The eScience community, and especially the life science circles, were early adopters of semantic technologies. For
example, driven by the myGrid project in the UK, the myGrid Ontology16 was an early initiative of a software-oriented
ontology designed to facilitate bioinformatics service discovery, and the BioCatalogue18,19 was one of the first domain-
specific web service registries, providing a curated collection of semantically annotated bioinformatics services. Around
the same time in the same context, myExperiment28,29 emerged as one of the first repositories for scientific workflows,
allowing users to upload, describe, annotate and share their computational pipelines. As a successor to myExperiment,
EOSC-Life has now established the FAIR Computational Workflow registry WorkflowHub.50 Whereas myExperiment
treated workflows as data objects, WorkflowHub recognises them as software objects with dependencies and other
properties.

Over the last decade, these early ideas, approaches and platforms have evolved further, and are now increasingly being
adopted by the life science and wider eScience communities.

Examples of semantic domain models
Three important, contemporary and active semantic domain modelling platforms are EDAM/bio.tools, OntoSoft and
SADI. They support the production and dissemination of semantic software descriptions that help to make these tools
more FAIR (Findable, Accessible, Interoperable and Reusable).51–53

EDAM and bio.tools

The EDAM ontology of bioinformatics terms14 and the bio.tools registry54,17 have become the primary resources for
semantic software annotation in the European life sciences community. EDAM provides a controlled vocabulary for
the annotation of computational tools with relevant bioinformatics topics, performed operations, as well as type and
format of the input and output data. The bio.tools registry uses EDAM for the fine-grained semantic description of tools
and their functionality according to a pragmatic model defined in the biotoolsSchema.55 The annotations facilitate the
discovery of individual tools, and the assessment of their (inter) operability such as their combination intoworkflows. The
development of both EDAM and bio.tools is driven and supported by the broader community.

bio.tools is part of the ELIXIR Tools Platform and becomes increasingly connected with its other services such as
BioContainers,56 Galaxy,7,57 BioConda,58 WorkflowHub26 and OpenEBench,59 as well as external services like Debian
Med.60 This will form a centralised, transparent ecosystem of information about tools and services in the life sciences.
Here, EDAM serves as a common language to connect and enrich extensive software dossiers.

OntoSoft

The OntoSoft ontology20,21 has been designed as an ontology for scientific software metadata. OntoSoft allows for
the description of software. This includes understanding how to access and update that software, how to execute it, how to
use it, and information on who supports the software. The OntoSoft ontology is the basis for the design of the user
interface in the OntoSoft portal, the organization of the underlying knowledge base, and the integration with other
software repositories. Although OntoSoft is currently focused on earth sciences applications, providing geoscientists in
the NSF EarthCube project61 with an intelligent system to share and reuse code, its principles are equally applicable in
other domains.

OntoSoft-VFF (Ontology for Software Version, Function and Functionality)62 extends OntoSoft. It stores semantic
software metadata needed to manage workflow evolution and updates, suitable to help scientists to find and select the
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right tools to implement given workflow steps, explore alternative tools to use in their workflows, and keep track of tool
and workflow changes. Similarly, OntoSoft is the basis for OKG-Soft,63 an open knowledge graph that describes
scientific software in a machine-readable manner and supports the FAIR principles for software.

SADI registries

SADI (Semantic Automated Discovery and Integration)64 is a framework for creating Semantic Web Services and a
design pattern for the formal description of the service interfaces. Services are described by an ontology that defines I/O
class names, predicates and service names with a unique URL. The ontology specifies an explicit relationship (semantic
predicate) describing the functionality of a service between the I/O, for example “getDrugNamebyDocument”.65 The
service descriptions are collected in a SADI registry. From there, SADI Services can be readily discovered and composed
into workflows, as all services consume and generate RDF (syntactic interoperability) and thus the output of one SADI
service can be directly consumed by any other SADI service. Through the provisioning of Semantic Web services on top
of relational databases for semantic querying, SADI facilitates both data-as-a-service and algorithms-as-a-service.
Recently Valet SADI66 was developed as a service generator for assisting the technically involved authoring of SADI
Web Services. Designed as middleware, SADI is not accessed directly, but through specialized query engines (see
section SHARE & HYDRA).

Discussion of semantic domain modelling
Semantic domain modelling is hard.67 Especially in highly collaborative community efforts like EDAM/bio.tools,
OntoSoft and SADI, it is important to realize that the controlled vocabulary defined by the domain ontology constitutes a
kind of social contract that all tool annotators must understand and respect. Using the same interpretations of the terms
defined by the ontology is crucial for the meaningfulness and consistency of the domain model.

To be useful for practical application, ontologies have to be designed for a clear purpose. In the context of workflow
composition, it needs to be defined, for example, if the ontology is supposed to help the (manual) search for and/or the
automated composition of computational tools, and if it targets the creation of informatically, bioinformatically and/or
biologically valid workflows. Furthermore, the ontology needs to use an adequate level of detail, neither too simple nor
too complex, to avoid overgeneralization as well as overfitting. These challenges are both technological and social, with
the latter typically being harder to address. Thiswas also reflected by the discussion of semantic domainmodelling during
the Lorentz workshop, with the use of EDAM and bio.tools as guiding examples.

Scope

In the case of bio.tools, the EDAM ontology and the biotoolsSchema provide a technical basis and general direction for
the annotation of bioinformatics tools in the registry. However, they leave room for interpretation, calling for clarifica-
tion. What kinds of tools are in scope, and what exactly should be included in their annotation?

Content: The bio.tools Curators Guide46 defines the scope of relevant tools as “application software with well-defined
data processing functions (inputs, outputs and operations)”. This clearly includes, for example, command-line tools for
sequence alignment, or web services for database searches. For other workflow building blocks this is less clear. On the
one hand, workflows often require the inclusion of “shims”,68,69 small formatting or conversion tasks between the actual
data processing steps. They are often not considered tools in their own right, but are indispensable for interoperability.
Automatedworkflow composers aswell as humanworkflow developers would hence benefit from their availability in the
registry, and it would prevent a lot of reinvented wheels. While these are strong arguments for the inclusion of shims in
bio.tools, there is also a certain risk of fragmentation and overloading the registry with trivial functionality that needs to be
managed. On the other hand, workflows can also be considered tools that can be used in (other) workflows. From the
perspective of a tools registry it is desirable to include them as “black boxes” providing certain functionality as a service.
The inner workings can be visible in a workflow repository like the WorkflowHub, similar to the source code of other
computational tools being available in a repository like GitHub.

Similarly, clear guidelines are needed for meaningful annotation of tool suites and multifunctional tools. The bio.tools
Curators Guide recommends registering tool suites as such (the biotoolsSchema foresees a tool type “Suite”), but to also
add separate entries for the individual tools to capture their functionality clearly. An example is the SAMtools suite70 and
its members, such as samtools_sort and samtools_slice_bam. Multimodal tools with different functions should be
annotated with multiple specific functions (as supported by the biotoolsSchema) rather than trying to cover all modes of
operations in one generic annotation.
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Annotation: The biotoolsSchema includes various kinds of attributes that can be used for tool annotation. The bio.tools
Curators Guide46 provides guidance for tool annotators and describes which information must, should, should not, and
must not be included. For automated workflow composition, the annotation of tool function (performed operation, data
type and format of inputs and outputs, execution command) is essential. In practice annotators often face ambiguous
situations, such as:

• Tool inputs can be distinguished into payload data and configuration parameters. For example, a set of sequences
to be aligned is payload data, and a gap penalty value is a parameter for an alignment tool. This distinction is
however not always clear. For example, a substitutionmatrix used by the algorithm as a parameter but provided as
an additional input file could be placed in either of the categories. Currently tool annotation in bio.tools mostly
focuses on the annotation of payload input (for pragmatic reasons such as conciseness and limitation of
complexity), but for full automated workflow construction information about the parameters to be configured
would also be required.

• The biotoolsSchema readily distinguishes between the type (kind of content, domain perspective) and the format
(representation, technical perspective) of input and output data. For example, an “RNA sequence” is a type, and
“FASTA” is one of the possible formats in which it can be represented. This distinction is however not always
easy to make. The IUPAC International Chemical Identifier (InChI),71 for example, is classified as a format in
EDAM, but it could also be viewed as a type of data. The domain ontology should have clear criteria for the
classification of such formats, and ideally make sure that all formats included are connected to at least one type of
data (and vice versa) to enable meaningful tool annotation.

• Composite data formats contain different parts, where a specific tool might only use one or some of them. For
example, RetroPath 2.072 works with InChI identifiers that are available from one column of a CSV file.
Currently it is not clear how these would bemodeled in the ontology and annotated in the registry in the best way.
Possible solutions might include a combination of reusing approaches such as the structured metadata for CSV
and other tabular data73 and providing corresponding, ideally automatically generated, shim libraries.

Clearly, the domain ontology needs to provide a vocabulary that supports the required annotations and the desired level of
granularity. As the needs change, also the ontology has to evolve. EDAM is indeed continually evolving based on input
from the bioinformatics and, in particular, the bio.tools community. It is for example well developed for the proteomics
domain, due to recent work on (automated) workflow composition and benchmarking.

Quality

The quality of automatically composed workflows critically depends on the quality of the domain ontology and tool
annotations (“garbage in, garbage out”).74,75 Hence it is important that all tool annotations consistently adhere to the
curation guidelines that capture the defined scope and annotation conventions. Consequently, if annotations are too vague
or imprecise, automatic composition will likely generate incorrect or nonsensical workflows. If they are overly specific or
narrow, possible workflows might be overlooked due to overfitting. This sounds simple, but is difficult in practice. It
requires not only a thorough understanding of the curation guidelines and annotation conventions, but also expert-level
knowledge in the application domain of the tools, and ideally practical experience of using them. Variations in the
stringency of rules for the annotation being followed have direct effects on the interpretability of queries to the system.

Note that the semantics of the annotation is typically limited to a positive tagging, that is, no negative statements as in “not
performing indexing” can be expressed, and there are no set operations like intersections or exclusions. When also
allowing negative statements, or exceptions to a universal quantifier, this easily leads to semantically incorrect workflows
merely by omission. Thus, negative statements or set operations shift responsibilities for correctness to the maintainers of
higher-level resources like ontologies. This poses a challenge to synchronize the development of catalogs and ontologies
as their granularity in biological expressiveness needs to match the decision making of users for the applicability of
scientific tools for a given problem.With a larger amount of scrutiny on the ontologies than on individual catalog entries,
this may support stringency and help overall quality.

The quality problem is aggravated when there is a need to annotate large numbers of tools (at the time of writing, for
example, bio.tools comprises almost 19,000 entries). Ideas to scale up annotation rates include text-mining of annotation
information from the tool’s documentation pages, deriving annotations from other repositories (such as the Galaxy
Toolshed76), and the automation of semantic description of tools and services via propagation from tried-and-tested
workflows.77While enabling the inclusion of more tools in a shorter time, such automated approaches do not guarantee a
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consistent high-quality annotation of tools. Therefore, automatically annotated tools should be checked for a minimal
level of curation quality before being made available for automated workflow composition.

A community registry like bio.tools needs to find a balance between being open to contributions and curating entries
for quality control. At the end of the day the (manual) curation work invested needs to reflect the actual usage,
i.e. frequently used tools justify greater curation efforts. Curators need adequate training to become able to deliver
high-quality annotations. While desirable, it is unrealistic to assume that this is feasible to provide to everybody who
might (potentially) contribute. A pragmatic way out might be tomark curated entries to distinguish them from unchecked
ones, for instancewith a tag or badge denoting that the functional tool annotationwas checked and the tool is suitable to be
used by automated workflow composers. This could be combined with procedures to develop consensus annotations for
widely used tools by a group of experts, which can then serve as landmark or even “gold standard” examples for tool
annotation. Furthermore, technical monitoring of tools, continuously performed by e.g. OpenEBench,59 could provide
up-to-date information about tool status and availability. In any case thesemechanisms should be defined in a governance
model, together with the processes for maintaining and updating the entries in the registry.

Finally, it is not only tools that develop, but also their metadata in the registries. Inconsistencies can easily lead to errors or
unsatisfactory performance of automatically composed workflows. Manual verification is likely to fall short, especially
since registries take a passive stance towards tools’ updates. With good reference workflows and benchmarking data
available, however, workflows could be tested automatically as a joint quality control for the tools and their semantic
descriptions in the registry. One may anticipate that such an automated quality assurance even prepares for workflow
optimization.

Incentives

The success of registries like bio.tools depends on community contributions, which is predicated upon the motivation
of tool users and developers. There are several incentives for potential contributors. For example, for tool developers,
rich annotation of their software will increase its findability and comprehension, and thus its potential to be (re-)used
individually or within a workflow. This in turn can improve the impact and eventual citations of the software. Improved
tooling (intuitive user interface, annotation help, very-well defined metadata schemas) that integrates well with the tool
development infrastructure can help to lower the threshold to tool registration and annotation. Registering tools in a
community is also in line with recent practice guides like the “Four simple recommendations to encourage best practices
in research software”78 and the “Five Recommendations for FAIR Research Software”,53 which are increasingly
attracting the attention of organizations and project-funding agencies. Similarly, publishers might require the registration
of tools in a community registry as a condition to accept papers that are describing or using the software, providing
additional enforcement. A related problem is the incentives for updating registry entries when the respected tool has
changed (updates, new versions, new features).

Ideally, the problem would be solved through “knowledge acquisition by stealth”: sneaking in metadata curation steps in
people’s normal routines, and e.g. scrape them from available documentation or with smart tools that integrally capture
the semantics from the start, so that people do not feel like having to do something extra. This is an appealing but complex
long-term goal, however, which requires consideration of the entire lifecycle of tool and workflow development.

Automation in workflow development
The possibilities for automation in themulti-stageworkflow development process aremanifold and range from assistance
in specific phases to full automation. The most likely basic form of assistance, the possibility to search for available
components with keywords or filter criteria, is a common feature of visual and interactive workflow management
systems. More sophisticated is the assistance through context-dependent suggestions, which can take the form of guided
workflow construction. An early example here is the ontology-driven assisted web service composition facilitated by
BioMoby,79 whichwas integrated in the Tavernaworkflow system to guideworkflow construction.80 Further down in the
workflow life cycle, automated service configuration can assist the user to set parameters and get the workflow ready for
execution. Automated service substitution aims to replace unavailable or otherwise deprecated tools by semantically
equivalent but operating ones, to repair a workflow and make it executable again. Related, automated shim suggestion
is intended to introduce mere technical steps (such as reformattings or format conversions) between the actual data
analysis tools. One of the most intriguing forms of automation in workflow development is the automated anticipation,
or exploration, of entire new workflows. Systems like Magallanes81,82 and PROPHETS,83,84 for example, have
already demonstrated about a decade ago that AI planning and program synthesis techniques can be applied in pursuit
of this goal.
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Examples of approaches to automation in workflow development
At the Lorentz workshop, the following four current and active approaches to automation in the workflow design process
were presented and discussed in greater detail.

The tool recommender system in Galaxy

Galaxy7,57 is a popular web-based platform for high-throughput sequencing data and other big data analyses. Researchers
can use it to share data and analyze them by running workflows. Workflows can be imported (shared workflows),
extracted from history, or built manually. With more than 2,000 tools available in Galaxy, users need guidance during
workflow construction. Therefore, a recommendation system has been developed to suggest possible next tools in a
workflow under construction.85 The recommender system uses an approach based on deep learning. The idea is to learn
possible tool combinations from existing workflows, and use this knowledge to suggest tools for new workflows. The
model is trained on tool sequences that are extracted from workflows. A Recurrent Neural Network with gated recurrent
units (RNN-GRU)86 is used, with tool usage as weights. The recommender system uses the trained model to predict
possible next tools, ranking them by a score that is provided by the model and indicates the prevalence of the respective
combination.

Workflow INstance Generation and Selection (WINGS)

WINGS6,39,87 is a semantic workflow system that assists scientists with the design of computational experiments. A
unique feature of WINGS is its high-level semantic workflow representations that are automatically configured and
customized into executable workflow instances. Therefore, WINGS employs workflow reasoning algorithms that
use constraint-based planning. The constraints can reference both workflow constituents (steps, data, parameters) and
metadata of input datasets, and are used to customize a workflow to a given dataset. For example, a constraint could
require that the alignment step and the assembly step in a bioinformatics pipeline are done with the same reference
genome. Such constraints capture domain expertise about workflows (as purpose-specific combinations of tools) that
goes beyond what the metadata of the individual tools can express.

Another interesting feature of WINGS with regard to automation is that it allows for the use of abstract (in terms of our
Figure 1: conceptual) steps in theworkflow,which can be implemented by different tools or sub-workflows. For example,
PeptideSearch is a method that is performed by the tools X! Tandem,112 MSGF+113 andMyrimatch.114 The implementa-
tions can flexibly be chosen and exchanged, making it easy to quickly generate and compare workflow variants, for
example to assess the robustness of the method or to take part in benchmarking challenges.88

The Automated Pipeline Explorer (APE)

APE89 is a command-line tool and application programming interface (API) for the exploration of possible workflows in
large collections of semantically annotated tools. Input for APE is a high-level workflow specification that captures the
user’s intents. It includes the available input data (type and format), the desired output data (type and format), and possibly
additional constraints (such as tools to use or to avoid). For example, a proteomics workflow might be specified (using
EDAM terms) as taking “Mass spectrum” in “Thermo RAW” format as input, producing an “Amino acid index” in any
format (see here), and using a “Retention time prediction” operation in the analysis.When applied to bio.tools, APE finds
several workflows that meet this specification.

The exploration algorithm inAPE is a variant of LTL-guided program synthesis, implemented as bounded search through
iterative deepening.90,91 The domain model (ontology and tool annotations as provided by EDAM and bio.tools) and
workflow specification are encoded as a SAT instance (a propositional Boolean formula in conjunctive normal form), and
given to a SAT solver to find a satisfying assignment of variables. The SAT solutions are translated back into actual
workflows, which can be transformed further into, for example, executable shell scripts, CWL workflows or other
representations.

SHARE & HYDRA

SHARE92 and HYDRA93–95 are specialized query engines to work with SADI registries. They receive user input in the
form of SPARQL queries and use the registry as a knowledge base for automated workflow composition, matching the
query to thousands of services (Data as a Service (DaaS)/Application as a Service (AaaS)). Concretely, a SADI query
engine maps triple patterns from the WHERE clause of a SPARQL query to indexed SADI properties in the registry. In
particular it checks the I/O descriptions to ensure compatibility between services. In doing so it discovers SADI Web
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Services capable (when combined in a workflow) of generating the required triples. Finally the query engine plans and
orchestrates a workflow with calls to RESTful web services, integrating service outputs locally in RDF.

While SHARE supports the construction of the queries through a textual mechanism called SPARQL Assist, HYDRA
also provides a keyword-based and graphical interface. Moreover, HYDRA performs reasoning on an input SPARQL
query with respect to ontologies, leveraging the service registry to identify service calls may help answering the
query. Iteratively, data returned from service calls triggers new registry calls to identify further relevant service calls.
Through this incremental workflow extension, answers are produced incrementally with the user in the loop. The process
terminates when all service calls have been made and all available answers have been produced.

Discussion of approaches to automation in workflow development
The four approaches sketched above introduce automation to different phases of the workflow development life cycle,
thus complementing each other. In the following we discuss cross-cutting aspects of automation in different phases of the
life cycle.

Target audience

The different approaches clearly fit different user profiles and are intended to serve different target audiences. It seems
useful to broadly distinguish between biologists as workflow users and bioinformaticians as workflow developers
(obviously there are people who qualify for both roles). Many biologists simply want answers to their (biological)
questions. They want to be able to find software solutions for their computational problems that they can trust, that have
been tested and evaluated, that are reliable and that will run. They are not interested in the technical details of tools,
workflows or even their construction processes. Despite the increasing integration of (bio) informatics education in life
science curricula, this is not likely to change much. Hence this group of users is a target audience for production
workflows as end results of the workflow development process. The development of workflows is in the hands of tech-
savvy bioinformaticians. Within this large group, it seems that the “workflow engineer” emerges as its own professional
profile. They compose, curate, evaluate and deploy workflows for specific bioinformatics problems, and make them
ready for the actual end users.

Of the automation approaches sketched above, HYDRA is the only one that directly and explicitly targets a workflow
end user. This is made possible by the careful service curation that enables the direct execution of the workflows
composed for the queries. The other approaches are better suited to support workflow developers in different phases of the
construction process. APE ismost suited to supportingworkflow exploration and composition in an early phase, acting as
a “route planner” that automatically explores and generates new possibilities of workflows for an abstractly described
problem. The obtained “recipes” can then be developed further into concrete and executable workflows. The Galaxy tool
recommender also targets the early, still exploratory phases of workflow construction, but based on a concrete workflow
under construction. WINGS takes an abstract/template workflow as the basis, and then takes care of automatically
instantiating it to obtain a concrete and executable workflow. Interestingly, to the best of our knowledge, the existing
approaches do not cover automated workflow benchmarking yet, which will however be essential for bringing
automatically created workflows to the production stage.

Applicability and trust

All approaches have in common that their applicability depends on the quality of the underlying knowledge base or
semantic domain model (cf. Section Semantic domain modelling). Generally, a somewhat lower quality seems to be
tolerable for assisted workflow composition, as the developer can correct or discard suggestions based on their domain
knowledge. This is the case, for example, when using a tool recommender system, like that in Galaxy, where the user can
at any point decide whether or not to follow the recommendation. Semi-automated approaches like in APE and WINGS
require higher-quality semantic annotations, but as the workflow developer still has the possibility to check and revise the
workflow before execution, they can tolerate medium-quality annotations to some extent, Complete automation is
possible for specific application areas or use cases with well-defined domain knowledge and high-quality annotations. As
the required curation efforts are substantial, it is not realistic to achieve this in a generic framework. HYDRA instances,
for example, are set up for well-defined application areas and invest in a rigorous semantic annotation of the provided
WebServices. As a result, end users can useHYDRA to query for and directly execute workflows. Another good example
for complete automation in a well-defined scope is Automated Machine Learning (AutoML),35 where machine learning
models are generated automatically given a start and end point.

Conversely, the higher the degree of automation, the more the user needs to decide whether to blindly trust the outcome,
or conduct checks to verify its plausibility and correctness. This is again connected to the quality of the knowledge base/
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semantic domain model, but also has to do with the degree of involved “blackbox” behaviour. For example, a HYDRA
workflow is not easily validated before execution (as it is directly executed during construction), but the recorded
provenance data make it possible to inspect and assess the performed computations afterwards. In contrast, the Galaxy
tool recommender leaves the control about selecting workflow steps to the user, but requires trust in the quality of its
recommendations. As they are machine-learned from tool combinations in existing workflows, there is likely a bias
towards frequently used and against less used and new tools. Further metrics and criteria to base recommendations on are
of course possible (such as a functional similarity index, compatibility, citation index or novelty), but in any case they
should be made transparent to the user and create awareness for possible biases.

Abstract Workflows

Different levels of abstraction are key to differentiating the phases of the workflow development life cycle and assess the
potential for automation (Figure 1). Indeed, automation in the development process usually means automated concret-
ization. The process starts with a domain-level problem description as an initial idea, and then phase by phase boils it
down to a concrete implementation, until a production workflow brings it back to the domain level and end user.

The term abstract workflow has been used with different meanings.38 In the executable Common Workflow Language
(CWL),30 for example, it is possible to define a workflowwith step/tool implementations (e.g. Docker containers) or with
abstract placeholder operations; in either case the workflow defines and connects all workflow steps and their parameters.
In CWL an abstract workflow can thus be classified as containing one or more placeholder operations; note however that
CWL engines may still permit partial workflow execution for the concrete steps.

In CWL such abstract operations can still refer to a concrete tool that should be usedwhen implementing theworkflow for
execution (omitting details such as command line), or to a class of possible tools (e.g. by using an EDAMoperation term).
InWorkflowHub, CWL is used as the canonical workflow description forworkflowswhere possible, alongside the native
workflow description: for example a Galaxy workflow for Climate analysis that is expressed in Abstract CWL.96 In
WINGS, an abstract workflow is even more generic and flexible, allowing not only for abstract operations, but also for
missing steps that are filled in during workflow elaboration.

Here we separate the notions of conceptual and abstract workflows (cf. Fig. 1): We define a conceptual workflow
to be a sketch of a data analysis pipeline, similar to a concept map,45,46 that describes the process in domain-level but
implementation-independent terms, for instance using operation and data terms from the EDAM ontology. Next to that,
we define an abstract workflow to be a template that describes complete sequences of computational tools, but that is not
yet fully configured and executable. Such conceptual and abstract workflows make it possible to focus on the workflow
steps without complexities such as parameter settings, execution or data sets. They are also convenient for enabling
search (both for users and automation) and comparisons with other workflows, thus providing a suitable exchange level
and intersection point for different stakeholders and communities. They can be the target (e.g. the result of workflow
exploration with APE) as well as the input (e.g. a starting template for workflow elaboration withWINGS) for automated
composition approaches.

Furthermore, abstract workflows can be obtained by automated abstraction from (collections of) concrete workflow
instances.97-99 They are useful for better describing, understanding and evaluating workflows, and for preserving the
essence of computational pipelines in automatically generated method sections also when the executable instances of the
workflow decay.98 They can therefore provide a way to document workflows in a FAIR way.50-52

Workflow assessment
The abundance of computational tools available in today’s eScience ecosystem leads to an enormous number of possible
workflows.With automated composition approaches these can bemore easily accessed and generated. There is a problem
of identifying and selecting the “best” (whatever that means in the concrete case and context) alternatives among various
options at different stages of the workflow development process: Which methods should be chosen given the available
data and the analysis goals? Which individual tools should be given preference over others? Which combinations of
tools to favor over others? Which workflow candidates to select for implementation? Which workflows to bring into
productive use?

To enable automated composers to make informed choices, tools and workflows need to be compared with well-defined
meaningful criteria. To structure the discussion of possible criteria and selection strategies, we follow the traditional
distinction between static (based on information that is available without execution of the workflow) and dynamic (based
on workflow execution) analysis.
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Static analysis
Static analysis is performed on the “source code” of the workflow (may be in a classical scripting language or a specific
workflow formalism) without actually executing it, treating the individual tools as black-box building blocks that have
particular (static) properties. As such, static analysis mostly concerns the early stages of the workflow development
life cycle, where the workflow developer (human or machine) can use available information about individual tools and
tool combinations to explore possible workflows and the tools to implement them. Arguably, static analysis is often less
meaningful than the results obtained through actual execution, but provides a powerful way for pre-screening the
capability of a workflow. In addition, in many cases it is simply not possible to implement and execute all possible
workflows in order to choose between options. Hence it is important to leverage what can be said about tools and
workflows without executing them. Which information can be used to compare and (pre-)select individual tools and
entire workflows at this stage?What wouldwe like to see in aworkflow beforewe run it?What can (possibly) be provided
by tool registries and workflow repositories?

There are many qualities andmerits to consider, but there seem to be three categories of information relevant at this stage,
on which we elaborate in the following: technical parameters, domain-specific considerations, and community influence
(summarized in Table 1).

Technical Parameters

Technical parameters of individual tools and their combinations are relevant to their operation in the context of
a composite workflow. These include a whole range of properties, as indicated in Table 1. It is worth noting here
that several of these properties (for static analysis at design time of the workflow) are in fact based on prior dynamic
analysis of individual tools or other workflows on different levels of abstraction. This underscores the relevance of
systematic dynamic analysis of scientific tools and workflows, discussed further below. For use in (automated) workflow
composition, we assume the availability of such information in a tool registry like bio.tools, as additional metadata in the
tool annotations. Ideally, suchmetadatawould also be collected “by stealth” through themajor community platforms, and
provided to tool registries in a standard format. Similarly, an archive of historical workflow traces would be useful, which
could provide representative data about prior use of tools and their combinations.

Table 1. Relevant information for static analysis of workflows.

Technical parameters Domain-specific considerations Community influence

• Basic tool information (such
as license, version, recent
updates)

• (Theoretical) compatibility of
tools based on their functional
annotation

• (Practical) compatibility of
tools based on their use in
existing workflows

• Tool statistics like number of
runs, number of users, speed,
reliability, etc.

• Service monitoring informa-
tion about availability, uptime,
downtime, runtime, etc.

• Number of shims (format
converters) needed in the
workflow

• Data format flexibility (generic
vs. tailored)

• Data-flow properties (such as
live and dead variables) of the
workflow

• Control-flow properties (such
as cyclomatic complexity,
parallelization potential)

• Tool and workflow FAIRness
metrics

• Subject-specific unique or
essential features of tools that
theworkflow needs and relation
to a typical concept map in the
domain

• Establishment of tools (known
quality metrics, well-understood
configuration). Usage in
commonly used workflows and
known compatibilities by actual
usage

• Novelty of tools (new functionali-
ties, potential for novel results,
adaptation to new data types)

• Similarity to existing concrete or
abstract workflows (see above),
workflow motifs

• Type and format of produced
results. Potential for direct
comparison with output from
other workflows

• Availability of common quality
control, benchmarks and
benchmarking data

• Reception in the domain
literature (citations,
altmetrics, praise and
criticism)

• Reputation, someone or
something being
“famous”

• Trends, currently
popular technologies

• User comments and
ratings (reflecting, e.g.,
adequacy, understand-
ability, usability)

• Trust in developers
and/or providers
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Domain-specific considerations

While technical parameters are important to consider for operational workflows, they need to be complemented with
domain-specific considerations to obtain scientifically meaningful results. Examples of domain-specific considerations
in (automated) workflow composition are given in Table 1.

Community influence

Finally, community dynamics also influencewhich tools andworkflows are considered preferable. Examples are given in
Table 1.While these influences are probably stronger for humanworkflow developers, also automated composers rely on
community-provided information and are thus not agnostic to the corresponding biases.

Dynamic analysis
Dynamic analysis refers to assessment based on execution, and naturally mostly concerns workflows at the later stages of
the life cycle, when they are configured, executable and can be applied to actual data and produce results. We simply
distinguish between plain executability, basic validation and systematic benchmarking in the following. Note that the
focus of the discussion during the workshop was on benchmarking.

Executability

Executability is probably the most basic and at the same time the most important property of a computational tool or
workflow.Only executionwill show if the workflow actually works, if the individual tools are compatible in practice (and
not only on the annotation level), and if all components have been configured correctly. In practice, it is not uncommon
that this executability is applied as the only criterion: If it works and produces results at all, it is considered good enough.
If it does not work, one can either try to fix it (requiring understanding why it fails) or discard it. With automated
composition and workflow repositories on the rise, which give easier access to alternative workflows for the same
problem, the latter is becoming an increasingly viable option.

Validation

Between mere executability and systematic benchmarking there is an area of workflow assessment that we here call
validation. It is about critically assessing the behaviour of the workflow. Is the workflow doing what it is supposed to do?
Can the results be true?Note that this notion of validation is related to, but not the same as testing, which is a separate issue
for scientific software.100–102 In scientific practice, validation is often done by the workflow developer through execution
of (parts of) workflows and inspection of results to see if they look as expected. Ideally, a “testing set of mind”would be
taken and, for example, the workflow be tried with data that is outside of the supported range to see if/how it crashes or
gives incorrect results. Such assessment can be cumbersome and challenging as it requires knowledge of both the tool
functions and the applied data.

In more formal terms, we may classify these concerns into validation, verification, sensitivity analysis and uncertainty
quantification (UQ) of a workflow (or workflow instance), with the canonical use of these terms being found in.103 These
terms, and the distinction between them, are foundmore often in discussions of computationalmodels used in physics and
engineering,104,105 but the concepts are relevant to (and may be adapted to) the general scientific workflows covered in
this article.

In simple terms, validation asks if what we want to do is correct; verification asks if our implementation is doing what we
think it is doing; and uncertainty quantification asks about how sensitive our results are, for example, to uncertainty in the
initial inputs. More concretely, validation refers to the accuracy of the theoretical approach we are trying to implement
(the mathematical model or analysis procedure) and is measured by agreement with 'reality' e.g. comparing predictions
with experimental results. Verification is a much broader term, encompassing various assessments of the correctness of
the implementation itself - is execution ofmyworkflow or code reproducing the theoretical approach I think it is? Finally,
uncertainty quantification is an enormous field in its own right, and there are many levels at which it may be introduced to
a workflow, frommodification of individual steps (most intrusive) through to repeatedly sampling the entire workflow as
a 'black box' (least intrusive, e.g. see reference.106

While only a subset of the abovemay be relevant to any givenworkflow, a scientific workflow in general will be subject to
all three concerns. Adoption of automatedworkflow composition tools in thewider scientific communitywill likely come
with demands for rigorous checks of correctness, and a range of definitions thereof.
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Benchmarking

When done systematically, the dynamic analysis of computational tools andworkflows is also known as benchmarking.59

In the scientific workflow development life cycle (Figure 1) benchmarking helps to determine which workflow versions
or instances will be put into production for large-scale use by third parties. It assumes that the workflows are executable
and validated. Generally, benchmarking can be performed with regard to scientific (e.g. analysis quality), technical
(e.g. runtime performance, robustness) and usability (e.g. ease of reuse) aspects. Ideally, benchmarking uses publicly
available (gold, silver, or artificial/synthetic) reference datasets. Benchmarking can be performed in a single lab (often
done for benchmarking on specific aspects) or by a community of researchers (advantageous to avoid bias, often done for
common and shared challenges). Due to their composite nature, workflows are generally more fragile than individual
tools, which is also relevant for their benchmarking. For instance, benchmarking can help to identify problematic tools or
non-interoperable tool combinations.

OpenEBench59 provides a platform for community-based benchmarking of bioinformatics resources. Its scientific
benchmarking component provides a virtual research environment in which individual researchers or scientific commu-
nities can share data, tools, workflows and metrics for their benchmarking challenges. The virtual research environment
supports the execution of automated metrics generation workflows, and the comparison of different resources’ bench-
marking results. In addition, OpenEBench has a technical monitoring component, which automatically checks basic
technical properties of the registered resources, and updates the OpenEBench entry on a daily basis. Information captured
here includes, for example, the availability of documentation, uptime/access time of remote resources, and the number of
citations on corresponding publications. Currently metrics for the FAIR software principles52 are being developed, which
will also be integrated in OpenEBench’s technical monitoring component.

Discussion of workflow assessment
Although we discussed separately static and dynamic workflow analysis, it is clear that in practice they are used together,
often interleaved. Workflow developers would combine a first few tools, then execute to see what happens, and from
there adapt and extend the workflow. Automated approaches to workflow development should follow this pattern, and
assist the workflow developer in this incremental, checkpoint-rich style of development, rather than aiming for complete
start-to-end automation. In the following we discuss three major, cross-cutting aspects of workflow assessment further:
the question of what is “best”, the idea of a fitness function to measure to what extent a workflowmeets its purpose, and a
“great bake-off” perspective on automated composition and systematic benchmarking.

The “best”

Somewhat didactically, we started off the discussion about workflow assessment with the aim of looking for the “best”
possible workflows. However, obviously it is highly context-dependent and often unclear what thismeans.With the large
number of candidates potentially generated by automated composition, it is often more sensible to cull nonsensical
workflows rather than trying to find the very best. Doing this with the most coarse-grained criteria will ideally lead to a
significantly reduced list of options that is amenable to more fine-grained analysis and evaluation. Nevertheless, the
question of what kind of workflows to prefer remains context-specific. It seems advisable to explicate concrete use cases
and personas to get a better understanding of relevant situations, perspectives, and requirements. Some spontaneous ideas
from the workshop are summarized in Figure 2.

Obviously these use cases and personas need to be worked out much further and only cover a part of the possible
scenarios, but they clearly show that the meaning of “best” workflow spans a wide range of interpretations.

Fitness function

Another way to think about the problem of workflow assessment is designing a fitness function in an evolutionary
computing approach or reward function in reinforcement learning.107 Thus, the goal is to try to learn or optimize a
particular workflow given the required output. Such an optimization lens could be useful for applying advances in
machine learning or evolutionary computing to workflow composition. Thus, the aim would be to devise functions to
evaluate how “fit for purpose”workflows are, given a goal like, for example, a certain benchmark. Such a function should
consider functional (biological) as well as performance (computational) metrics, such as:

• Biological ground truth, what is known biologically

• Robustness to a non-specialist user, and to evolving technical requirements (execution architecture)
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• Performance, reliability, reproducibility

• Tool compatibility, tool popularity

• Ratings from users who have employed workflows that are presented as possibilities (akin to looking at the
ratings of a product on Amazon.com when making a purchase)

• How unique is the combination of tools.

A critical challenge for adopting this approach is the translation of the rich information both about workflows and
surrounding biological knowledge into structures amenable to these optimization frameworks.

Great Bake-Off

We found it an appealing perspective to think about workflow assessment in the context of automated composition as a
‘Great Bake-Off’: carry out a pre-selection of automatically generated alternative workflows with low-effort assessment
methods, and then let the remaining candidates compete against each other through rigorous benchmarking, in order
to finally determine the workflow(s) to use in production. This process should include all areas of benchmarking
(i.e., scientific, technical, and usability), though possiblywith varyingweighting depending on context. A similar strategy
has for example successfully been taken by Automated Machine Learning (AutoML)35 for the automated generation of
machine learning models.

Generally, technical benchmarking is comparatively easy and objective, while scientific and usability benchmarking are
quite involved, less objective andmore subject to bias. They require expert knowledge and ideallymany different test data
sets and metrics provided by different people. Critical assessments using unpublished data with ground truth may be a

Figure 2. Workflow personas and use cases. Demands for configurability are ordered from low (top) to total
(bottom). All participants need a publication-ready description of the provenance of their findings for perfect
reproducibility.Noton the list is Rob theRoutinier,whokeepsdoinghis stuff just thewayhedid it for the last tenyears.
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reliable means to get quality benchmarking information from the communities. This can also include the creation of
synthetic benchmarking data sets in case no suitable real data is available. Synthetic data might furthermore deliberately
contain noise or wrong items, to test if workflows are robust or able to detect unsuitable data quality.

Obviously, for a ‘Great Bake-Off’ there needs to be a decision or agreement on the metrics used to determine the “best”.
For wide acceptance, they need to be informative and domain-specific, but also community-supported. These community
approaches should be objectively executed without including the tool and workflow developers. Unfortunately, such
endeavours are rare at the time being.

Roadmap
The Lorentz workshop aimed at developing a common perspective on future directions for automated composition
of workflow in the life sciences. Ideas were collected in the discussion during the whole week, but the last workshop
day was devoted to formulating concrete action items for the coming years. Generally speaking, the overall goal of these
actions is to bring the different individual pieces discussed in the workshop together in a (more) coherent framework. We
deliberately focused on actions for the next five years, acknowledging that we, in our thinking, need to distinguish
between the short-term practical possibilities from long-term speculations and the things that might be achieved only over
decades. In the following we outline such future directions for foundations, tooling and infrastructure, community and
applications of automated workflow composition in the life sciences.

Foundations
Achieving broad application of automated workflow composition depends on solid foundations, including a common
understanding of its scope and purpose as well as community-approved definitions and standards that support these aims
(see Table 2).

The lack of clearly defined use cases was a recurring theme during the workshop discussions. While all approaches
and methods make implicit assumptions about the usage scenarios and user groups they target, this is hardly spelled out
explicitly. Their elucidation (using established methods from software requirements engineering) is a priority and will
form a solid basis for future joint efforts. For example, a user who has some data and a desired endpoint, wondering how to
possibly get there, might benefit from a “PipelineSketcher” that can automatically propose suitable sequences of
(conceptual) operations. Another user might want to take an existing concrete workflow and get suggestions for new
tools, which could be given by a “RoboAdvisor”.

Another important area of foundational work is the definition and development of lacking standards and methods, such
as universal workflow identifiers and methods for meaningful workflow comparison. Furthermore, several promising,
but so far little developed ideas wait to be explored further. Examples include the use of workflow provenance traces as a
knowledge base for heuristic improvements of automated composition, methods for automating the benchmarking or
workflows, and the concept of “knowledge acquisition by stealth”.

Tooling and infrastructure
Developing and maintaining effective tooling and infrastructure for automated composition of workflows is hard. The
workflow discussions highlighted several challenges of the current software ecosystem, in particular related to missing

Table 2. Future work on foundations.

Action Examples

Clarification of usage
scenarios

Collect and explicate concrete user stories and scenarios, including personas (“as a
<role> I want to <capability> so I can <do x>”). Elicit requirements, prioritize using the
MoSCoW method.

Definition of lacking
standards

Universal identifier for workflows, IDs for code and tools. Format to formally represent
parameter sets in a general way.
Standardized hardware constraints of software (e.g. technical parameters, firmware).

Development of lacking
methods

Systematic collection and analysis of tool usage data (for funding, sustainability,
benchmarking). Alignment and similarity measures between workflows, together with
methods for comparing abstract and concrete workflows.

Exploration of new ideas “Knowledge acquisition by stealth” for scaling up tool annotations and provenance
trace collection. The use of workflow provenance traces for heuristic improvements of
automated composition. Methods or automated workflow benchmarking, possibly
reusing approaches from machine learning (AutoML).
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functionality, insufficient compatibility and interoperability, usability and convenience. Accordingly, the list of actions
on tooling and infrastructure grew very easily (see Table 3).

The concept and technology of nanopublications108 could possibly have a role in contributing to solutions to the above
points. Nanopublications are small snippets of provenance-aware semantic representations, which can among other
things be used to represent workflows, workflow steps, and the data they consume and produce. An ecosystem of tools
and services around nanopublications has recently emerged that allows for decentralized and robust interaction with such
semantic representations, which could now be harnessed for automated workflow composition.

Clearly, the field faces a trade-off between a limited workforce and many wishes, underscoring the need for well-defined
use cases and prioritized requirements (see above) and community involvement (see below).

Community
Community is known to be key, and not surprisingly several actions were proposed in relation to community building and
involving the community in further development. Several future steps can benefit from existing communities and connect
to ongoing initiatives, making them feasible in the medium term. Table 4 shows some of the concrete actions proposed.

Applications
At the beginning of the workshop several workflow applications from the fields of genomics, proteomics, proteogenomics,
metabolomics,metaomics, scientometrics and textminingwere presented to set the scene. After all, such applications should
drive the developments, and theywillmercilessly putmethods, tools and infrastructure to the test. Several applications of the
availableworkflow composition frameworkswere sketched by the participants, somemore domain-oriented and somemore
tool-oriented, but all with the potential of creating valuable insights for further developments (see Table 5).

Table 3. Future work on tooling and infrastructure.

Action Examples

Provide missing functionality Enrich bio.tools entrieswith additional information, e.g. annotationquality, user
ratings, automated composition readiness. Enrich bio.tools with additional
functionality, e.g. for finding similar tools, collection of user experience
information.

Increase compatibility and
interoperability

Support automated workflow composition in/to general workflow specification
languages such as CWL. Exchange valid/benchmarkable workflows in common
format (e.g. RO-Crate). Capture parameter settings as standardized items.
Automatic conversion of data set metadata (data repositories) into correctly
applied workflow parameters. Maintain dedicated libraries of helper services
(shims). Improve information exchange between systems, e.g. OpenEBench,
bio.tools, Conda and WorkflowHub.

Improve usability and
convenience

Improve the ease and regularity of updating ontologies such as EDAM.
Integrate tool recommendation, workflow exploration and user feedback
features in WfMS (e.g. Galaxy), workflow repositories and registries (e.g.
WorkflowHub). Use registry and workflow engine usage data for training
recommendation systems. Collect tool usage data (anonymous, public) and
workflow usage data (anonymous, public). Create infrastructure for
(automated) workflow integration testing (in silico generated data and
community-maintained test data). Support open-source community health
checks (e.g. Cauldron, CHAOSS, repostatus.org).

Table 4. Future work on community.

Action Examples

Community
building

Use hackathons to bring the community together, e.g. propose topics in established
Hackathons (e.g. BioHackathon Japan, European Biohackathon 2020). Establish a regular
dedicated hackathon on the theme of automated workflow composition. Identify
opportunities to train researchers to use resources and participate in the community
efforts. Identify “hot topics” and forums for community mobilisation, e.g. collecting
abstract workflows for an instructive “picture book of bioinformatics”.

Community
development

Survey stakeholder needs, including industry, publishers (e.g. Gigascience), data
repositories, frameworks (e.g. bioconductor, Linux distributions) etc. Leverage ELIXIR to
drive the technical & political consolidation. Establish an ELIXIR Focus Group on
automated workflow composition.
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Currently the coverage in ontologies and maturity of tool annotations vary considerably between life science domains,
with genomics and more recently proteomics having received more attention. As success stories from adjacent fields are
so important in encouraging joint efforts and widening adoption, we see future efforts focused on providing high-quality
tool curations with concomitant ontology updates in specific fields, such as metagenomics, metaproteomics, metabo-
lomics, epidemiology or biomedical imaging.

Conclusion
In this report we have summarized the salient points from five days of intense scientific discourse ranging from fine-
grained technical details to very broad thematic topics. Naturally, not everything that was discussed in the workshop
could be included here. Despite similar ideas and efforts having struggled to find widespread application in the past, the
attendees left the workshop with renewed confidence and optimism that we are at least considerably closer now, having
clearly identified what development of community standards, ontologies and annotations is still needed to achieve broad
adoption of automated workflow composition techniques across the life sciences.

In the time between the workshop and finalizing this report, several things have happened. For example, bio.tools
received a number of new features, and continues to grow. TheWorkflowHub has been released and is now in productive
use. Along with this, the Bioschemas Computational Workflow Profile,109 a schema.org-based specification for
describing a computational workflow, has been defined. It is used by the WorkflowHub to mark up its entries and as
the description of a workflow in the Workflow-RO-Crate,110 the interchange packaging format which is a specialisation
of the RO-Crate packaging format,111 also based on schema.org. This enables workflows and associated components to
be exchanged between the WorkflowHub, workflow management systems like Galaxy, Snakemake and Nextflow and
their repositories, and workflow utilities like OpenEBench and LifeMonitor. Given its schema.org web markup basis,
workflows marked up using the profile are readily accessible to search engines. Furthermore, case studies have been
started, project proposals written, and further papers published.

While some of these developments were in some form anticipated at the workshop, others emerged from ongoing
developments and urgent needs. Perhaps this is representative for a field that strives to push and challenge the frontiers of
life science infrastructure. After all, the value of automated workflow composition lies in the unexpected.

Data availability
Underlying data
No underlying data are associated with this article.

Extended data
Open Science Framework: Lorentz Center Workshop: Automated Workflow Composition in the Life Sciences. https://
doi.org/10.17605/OSF.IO/A5EJ7.115

This project contains the following extended data:

- Executive Summary.pdf (short post-workshop summary)

- Workflow Poster.jpg (workshop poster)

- Workshop Program.pdf (workshop agenda)

Table 5. Future work on applications.

Action Examples

Annotation of tools Map command lines to individual tool functions. Organize available and possible
shims. Annotate possible format transformations.

Automated composition of
workflows

Compare the benefits of alternative methods for automated composition
(exploration, recommendation, elaboration) on concrete examples. (Try to)
reproduce a workflow found in a paper using literature mining and automated
workflow composition.

Benchmarking of
workflows

Explore the value of automated workflow composition in combination with
systematic benchmarking (“Great Bake-Off”). Work towards a fully benchmarked
set of >10 automatically composed proteomics workflows as a demonstrator.
Collect data sets with ground truths and benchmarkmetrics in the omics domains.
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Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
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The paper is the final report from a 2020 workshop on automated workflow development in life 
sciences. 
 
This is overall a well written paper, which, scope-wise, is framed by the discussions of the 
workshop rather than being an exhaustive state-of-the-art paper on semantic workflow 
development techniques. The paper is lengthy and covers many topics in a partly explored 
research space in scientific workflows, it requires multiple reads to have an overall viewpoint. 
 
The contributions of the paper are the following:

A scientific workflow lifecycle outlining the various activities and artefacts in stages of the 
lifecycle. I think this is the strongest contribution of the paper. It acts as a map for authors 
to place various past and future research. 
 

○

A survey of current technologies and practices that directly or indirectly support workflow 
composition. This is not an exhaustive survey reporting research and techniques in 
workflow composition, instead focuses on what is currently working and available to life 
science researchers. 
 

○

A set of future directions on research and technology development to enable automated 
workflow composition across the lifecycle. 
 

○

The paper reports on a stimulating topic and can act a kick starter for the next era of research on 
the intersection of semantic technologies and scientific workflows.  
 
Suggestions for improvements:

The paper does not utilise section numbers which makes reading difficult. If the journal 
format allows I’d recommend the use of numbering. 
 

○

Abstract reads “Recent technological advances have returned …” What are those? Give one ○
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example in the abstract. 
 
In the introduction you do not mention explicitly the bioinformatician but say “To biologists 
there is a latent fear to have chosen …” and later mention “human expert knowledge” which 
I guess refers to the bioinformatician. So I gather automated composition will ultimately 
assist the bioinformatician. Without such clarification the paragraph reads as if biologists 
due to their “latent fear of making a mistake” will consult “automated assembly”. I believe 
that is an overly optimistic statement without any reference to any surveys or observations 
on biologists’ and bioinformaticians’ expectations or experience with workflows. During 
peer-review scientists are held _accountable_ for their analytical methods and in this 
paragraph it is not justified with any references how an automated decision made by 
composition software increases trustworthiness of the method. 
 

○

The introduction states the ”developments bring the long standing vision of automated 
composition … within reach”. Here 1-2 sentences, will be helpful, that summarise to date 
how much progress has been made on this vision (a very brief summary of page 11 
essentially). 
 

○

The paper often cites multiple papers to refer to the same system or approach. Taverna, 
Galaxy, myExperiment, Biocatalogue, Ontosoft, Magallenes, Prophets are all cited with refs 
to multiple papers. While this is useful to have an overview of all papers, it would help the 
reader if you cited the definitive or the more relevant papers for these systems. If both 
citations are needed then footnotes will be helpful on what different can be found in each 
particular paper for one system. Tightening up the citations could also help creating space 
for citations of past workflow systems which have addressed assisted workflow composition 
e.g. Vistrails or perhaps references to any useful reviews (if exist) on the topic. 
 

○

Static analysis of scientific workflows* (an area that has received limited attention), is closely 
tied to data and control flow constructs in workflow languages and provenance. Static 
analysis (re: technical parameters) can tell whether resulting provenance traces from a 
workflow would provide granular traceability or not. This may as well be another technical 
parameter aiding automated composition. 
 

○

Static analysis over workflows re: domain-specific characteristics has so far been done to 
understand, compare and contrast various scientific domains and their use of workflows **. 
Findings from such studies may help in refine “domain-specific considerations”.

○

 
* Alper P, Belhajjame K, Goble C: Static analysis of Taverna workflows to predict provenance 
patterns. Future Generation Computer Systems. 2017; 75: 310-329 
 
** Garijo D, Alper P, Belhajjame K, Corcho O, et al.: Common motifs in scientific workflows: An 
empirical analysis. Future Generation Computer Systems. 2014; 36: 338-351 
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