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ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) is an important
human pathogen and often colonizes pigs. To lower the risk of MRSA transmission
to humans, a reduction of MRSA prevalence and/or load in pig farms is needed. The
nasal microbiome contains commensal species that may protect against MRSA colo-
nization and may be used to develop competitive exclusion strategies. To obtain a
comprehensive understanding of the species that compete with MRSA in the devel-
oping porcine nasal microbiome, and the moment of MRSA colonization, we ana-
lyzed nasal swabs from piglets in two litters. The swabs were taken longitudinally,
starting directly after birth until 6 weeks. Both 16S rRNA and tuf gene sequencing
data with different phylogenetic resolutions and complementary culture-based and
quantitative real-time PCR (qPCR)-based MRSA quantification data were collected.
We employed a compositionally aware bioinformatics approach (CoDaSeq 1 rmcorr)
for analysis of longitudinal measurements of the nasal microbiota. The richness and
diversity in the developing nasal microbiota increased over time, albeit with a reduc-
tion of Firmicutes and Actinobacteria, and an increase of Proteobacteria. Coabundant
groups (CAGs) of species showing strong positive and negative correlation with colo-
nization of MRSA and S. aureus were identified. Combining 16S rRNA and tuf gene
sequencing provided greater Staphylococcus species resolution, which is necessary to
inform strategies with potential protective effects against MRSA colonization in pigs.

IMPORTANCE The large reservoir of methicillin-resistant Staphylococcus aureus (MRSA)
in pig farms imposes a significant zoonotic risk. An effective strategy to reduce
MRSA colonization in pig farms is competitive exclusion whereby MRSA colonization
can be reduced by the action of competing bacterial species. We complemented
16S rRNA gene sequencing with Staphylococcus-specific tuf gene sequencing to iden-
tify species anticorrelating with MRSA colonization. This approach allowed us to elu-
cidate microbiome dynamics and identify species that are negatively and positively
associated with MRSA, potentially suggesting a route for its competitive exclusion.

KEYWORDS MRSA, Staphylococcus aureus, colonization, microbial shifts, porcine nasal
microbiome

S taphylococcus aureus is an opportunistic pathogen that can colonize and infect
humans and animals. The anterior nares are among the host sites that S. aureus

can colonize. Methicillin-resistant strains of S. aureus (MRSA) have been described since
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1961 (1) and frequently carry additional resistance determinants (2). Since the discov-
ery of livestock associated methicillin-resistant S. aureus (LA-MRSA) in pig farms (3, 4),
such strains have been reported all over the world (5). In 2015, 99.5% of the tested
slaughter pigs in the Netherlands were LA-MRSA positive (6). Between 2009 and 2018,
a high LA-MRSA prevalence was observed in fattening pigs in some European Union
member states (7). This reservoir of antimicrobial-resistant staphylococcal strains in
farm animals creates a risk of zoonotic transfer.

Fortunately, research has shown LA-MRSA mostly transfers from pigs to humans
and less frequently from human to human (8). Currently, it is estimated that 15% of the
MRSA skin and soft tissue infections in the community, compared to 1 to 2% of the
hospital-acquired cases, are LA-MRSA associated (2). Contamination of humans with
LA-MRSA occurs predominantly through occupational exposure (8). However, recent
reports point at the risk of human-adapted LA-MRSA sublineages (9). Therefore, reduc-
ing the number of LA-MRSA-positive pig herds or reducing the load of LA-MRSA in
pigs could reduce LA-MRSA transfer to susceptible people in the population.

Attempts to reduce LA-MRSA in pig farms are estimated to be very costly (10), and
their effectivity over time has not been studied. Although the reduction of antimicro-
bial usage resulted in a decrease of resistance levels in E. coli (11), the prevalence of
LA-MRSA in pig farms remained stable (6, 12), indicating that other strategies are
needed to reduce the colonization of LA-MRSA in pigs.

One strategy, competitive exclusion, consists of introducing microorganisms that
will effectively out-compete a species in the host microbiome. Competitive exclusion
has been famously applied to control Salmonella in poultry (13, 14). Attempts have
been made to alter the human nasal microbiome to make it hostile to MRSA. For exam-
ple, several studies have shown that Staphylococcus epidermidis can destroy MRSA bio-
films and protected against nasal colonization with S. aureus (15, 16). In the 1960s, less
pathogenic S. aureus strains were used to prevent colonization of more harmful S. aur-
eus strains in the noses of infants in nurseries (17, 18). In other body sites probiotic
strategies against MRSA are more frequently studied, for example, the usage of bacillus
probiotics to reduce the S. aureus load in the intestine of humans (19).

Little, however, is known about similar MRSA reduction strategies in pigs. Espinosa-
Gongora et al. described 20 operational taxonomic units (OTUs) from nasal samples
from pigs 3 weeks before slaughter that might be negatively associated with carrying
S. aureus, based on 16S rRNA gene sequencing and mapping against the Ribosomal
Database Project (RDP) (20). Others authors have described a lack of difference
between MRSA carriers and noncarriers (21).

The aim was to identify bacteria that are antagonistic to MRSA colonization in pigs.
Therefore, we studied the dynamics of the nasal microbiome of neonatal pigs in rela-
tion to S. aureus carriage, using two marker genes, the 16S rRNA gene and the elonga-
tion factor thermo unstable (EF-TU) encoding gene, tuf. tuf sequencing was included,
as it provides improved resolution of Staphylococcus species (22, 23). The sequencing
data were complemented with culturing and quantitative PCR data to provide addi-
tional resolution to the S. aureus and MRSA abundance at each time point. We deter-
mined the species residing in the porcine nasal microbiome and the longitudinal dy-
namics of their microbial taxa, while identifying multiple species anticorrelating to
MRSA and S. aureus.

RESULTS
Cohort characteristics and sequencing summary. A total of 104 samples from 8

piglets across 13 different time points were collected to study the association of the
microbiota with carriage of MRSA and S. aureus in the nasal cavity of growing piglets. Of
these, 39 samples were detected as S. aureus-positive based on quantitative real-time
PCR (qPCR) and cultural enumeration data, but none of the piglets were found to be S.
aureus-negative on all sampling occasions (Fig. S1). Most of the piglets became positive
after day 4, with the exception of piglets from litter A, which were intermittently positive
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during initial time points. Piglets from litter A were more often positive for S. aureus than
piglets from litter B (24/52 versus 15/52 samples). The mean number of S. aureus in posi-
tive samples was 4.60� 104 and 3.0� 104 log CFU-equivalents (CFUeq)/swab for litter A
and litter B, respectively. Notably, 31 of the 39 S. aureus-positive nasal samples were also
MRSA-positive. MRSA was detected in 20 S. aureus-negative samples (Fig. S1). The mean
number of MRSA CFU in positive samples was 138 and 19 CFU/swab in piglets from litter
A and litter B, respectively.

Microbiome analysis was carried out on 7.07 and 7.34 million error-corrected, non-
chimeric amplicon sequence variant (ASV) reads with a mean count of 80,2826 26,624
standard deviation (SD) and 71,2726 28,735 SD reads for the 16S and tuf data sets,
respectively. In addition, 4 negative-control samples were sequenced, but considerably
fewer error-corrected reads were generated, with an average of 401 and 2,351 reads
for the 16S and tuf data sets, respectively (Figure S2a). Overall, 2,787 unique 16S ASVs
were identified, 23 of which were detected as potential contaminants. For tuf, 39 of the
1,278 ASVs were identified as potential contaminants and were removed. However,
this did not have any effect on overall sequencing depth (Figure S2b). Samples with
less than 5,000 (n=8) reads in the 16S and 13,000 (n=1) reads in the tuf data sets were
excluded from further analysis. The numbers of reads retained after abundance-based
filtering, i.e., after excluding ASVs present in less than 10% of samples with less than
0.001% abundance, were 95.246 8.75% and 97.176 6.45% for 16S and tuf sequencing,
respectively (Figure S2b). Thus, the contribution of the excluded ASVs to the overall
number of reads per sample was found to be very small or negligible.

General population structure of piglet nasal microbiota. At phylum level in the
16S data set, a total of 25 unique phyla, including Proteobacteria, Firmicutes,
Actinobacteria, Bacteroidetes, and Euryarchaeota were observed, with Proteobacteria
(39.5%) being the most abundant, followed by Firmicutes (30.1%) and Actinobacteria
(25.2%), across each time point (Fig. S3A), accounting for 94.8% of all reads. The most
abundant taxa at the genus level were Moraxella (29.7%), Rothia (23.9%), Streptococcus
(11.5%), and Mannheimia (6.8%), while Clostridium, Aerococcus, Bergeyella, Corynebacterium,
Staphylococcus, Lactobacillus, and Porphyromonas, each accounting for.1% of total bacte-
rial abundance (Fig. S3C and Fig. S4A).

In contrast, tuf sequences were classified to only four phyla, with Firmicutes (86.3%)
and Proteobacteria (13.6%) being the most abundant (Fig. S3B), whereas Streptococcus
(46.2%), Staphylococcus (17.1%), Moraxella (13.6%), Enterococcus (9.0%), Micrococcus
(2.1%) and Gemella (1.5%) were the most dominant genera (Fig. S3D and S4B). The rela-
tive abundances of the top most-abundant phyla and genera from both 16S and tuf
data sets are reported in Fig. S3 and S4.

tuf gene sequencing provided species-level resolution of Staphylococcus taxa.
It has previously been noted that the V4 hypervariable region of the 16S rRNA gene alone
is not sufficiently discriminative for the identification of species within the Staphylococcus
genus (24, 25). Therefore, to increase the resolution of the Staphylococcus genus, which
was one of the aims of the current study, we also carried out amplicon sequencing of the
tuf gene, which better discriminates between different species of Staphylococcus,
Streptococcus, and Enterococcus (26, 27). In particular, tuf gene sequencing led to the iden-
tification of 22 different Staphylococcus species, while 16S rRNA gene sequencing only
detected the Staphylococcus sciuri species (Fig. 1A and B). When examining the data at
the even more granular ASV level, we identified 137 and 10 different sequence variants
belonging to Staphylococcus taxa from the tuf and 16S data sets, respectively (Fig. S5). As
expected, the abundance of ASVs assigned to the Staphylococcus genus in samples
sequenced for both 16S rRNA and the tuf gene correlated significantly (rmcorr coefficient
[rrm] = 0.75, confidence interval [CI] = 0.68 to 0.86, P=1� e217).

Longitudinal development of piglet nasal microbiota. The composition of the
piglet nasal microbiota based on 16S rRNA gene sequencing shows clear segregation of
the samples based on time points (Fig. 1C). The piglets exhibited a gradual shift in collec-
tive microbiome composition from day 0 to day 42, with permutational multivariate anal-
ysis of variance (PERMANOVA) analysis showing a significant time point-associated
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FIG 1 Longitudinal changes in the piglet nasal microbiome structure and community diversity. (A
and B) Taxonomic tree structure of the microbial community as revealed by (A) 16S rRNA gene and
(B) tuf gene sequencing. From the inner to outer circle, the taxonomic levels range from domain to
specie levels of taxa. Different colors of dots indicate different taxonomy levels according to the
color key shown. Numbers in parentheses indicate the total number of unique taxonomies detected
at each level. Different colors in the background represents phylum-level taxa. Dots, lines, and name
of the species in black represent species identified from Staphylococcus taxa. (C and D) PCA analysis
based on an Aitchison distance matrix shows distinct clustering of the samples based on time points
from birth to day 42 with less but significant litter effect on overall microbiome composition in (C)
16S rRNA and (D) tuf gene sequencing data. The inset PCoAs are labeled by litter membership. The
bottom panel shows variation of phylum- and family-level microbiome composition along the PC1
axis in 16S rRNA and tuf gene sequencing, respectively. (E and F) Box plots show the Shannon and
Chao1 alpha diversity measures according to (E) 16S rRNA and (F) tuf gene alpha diversity. Nonlinear
trends in alpha diversity from birth to day 42 were identified by fitting loess regression splines from
the ggplot2 package.
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variance on microbiota structure (R2 = 0.55, P=1� e24). In alignment with the 16S rRNA
gene data, significant changes in community membership and a clear structural shift
from day 0 to day 42 (PERMANOVA: R2 = 0.49, P=1� e24) were also apparent from tuf
analysis (Fig. 1D). Litter membership explained significant but less of the variation of the
microbiome community structure (PERMANOVA: 16S R2 = 0.03, P=1� e24; tuf R2 = 0.04,
P=1� e24). High interindividual differences and separate clustering observed for 0-h and
8-h samples might be related to the effect of unstable microbiota derived from fecal or
soil contamination in newborn piglets (Fig. S4A and S6). Interestingly, we observed that
as the piglets age, Proteobacteria (i.e., Moraxellaceae in tuf) increase, while taxa belonging
to Firmicutes (i.e., Staphylococcaceae in tuf) decrease (Fig. 1C and D).

We observed higher microbiota alpha diversity in 0-h and 8-h samples in both 16S
and tuf data sets, but these levels then dropped dramatically at 16 h, after which the di-
versity gradually increased for 16S data (Fig. 1E), while it successively decreased for tuf
data after a peak at day 7 (Fig. 1F). There was a high presence of the genus Clostridium, a
strict anaerobe often described in the gut, at 0 h and 8h (Fig. S6). The higher microbial
richness and diversity observed in the 0-h and 8-h samples might be related to bacteria
introduced from the birth canal or fecal or soil contaminants in the newborn piglets.
These observations were used as evidence to exclude the first two time points from the
anticorrelative analysis against S. aureus. Next, we investigated dynamic changes in alpha
diversity over time, and we found a significant increase in chao1 (richness; 16S: rrm =
0.67, CI = 0.50 to 0.80; tuf: rrm = 20.62, CI = 20.73 to 20.45) and Shannon index (even-
ness; 16S: rrm = 0.50, CI = 0.28 to 0.66; tuf: rrm = 20.51, CI = 20.62 to20.38) with time af-
ter exclusion of 0-h and 8-h samples. The negative alpha diversity trend observed in the
tuf data set may be explained by the reduced abundance of the taxa-rich Firmicutes phy-
lum in nasal microbiota of growing piglets at later time points (Fig. 1F and Fig. S3B).

The age-based dynamic changes of the microbiome compositions were further
evaluated at a lower taxonomic level. Using 16S data, we found there were 22 genera
markedly changed among the top 50 abundant ASVs. The relative abundance of ASVs
from the genus Rothia (and Rothia nasimurium at species level) increased from 16h to
7 days but subsequently decreased after 14 days. Decreases in abundance of Rothia
was accompanied by increases of Moraxella and Streptococcus genera (Fig. 2A). In the
tuf data, Staphylococcus accounted for more than 25% of the bacterial sequences until
the age of 1 day but decreased dramatically from day 2 to day 14, which agrees with
the 16S data. Of the 22 identified Staphylococcus species, S. microti (6.4%), S. haemolyti-
cus (3.2%) and S. hyicus (3.2%) were the most abundant, while S. hominis, S. simulans, S.
cohnii, S. arlettae, S. epidermidis, and S. aureus each accounted for approximately 0.1%
of total bacterial abundance (Fig. 2B, bottom annotation;).

Association of microbiota with MRSA and S. aureus carriage. We subsequently
investigated whether the abundance of nasal microbiota can predict MRSA or S. aur-
eus nasal colonization, using repeated measure correlation analysis. Here, we identi-
fied 28 genera that were significantly associated with colonization of MRSA, of which
Sphingobacterium, Pseudomonas, Rothia, Staphylococcus, Gemella, and Alloiococcus
were strongly negatively correlated with MRSA colonization (rrm . 20.5; all adjusted
[adj.] P values, 0.05), while Oscillospira, Dorea, Peptococcus, Lactobacillus, Coprococcus,
and Methanobrevibacter were strongly positively correlated (rrm . 0.5; adj. P value, 0.05)
(Table S1). In terms of S. aureus colonization, of the total 21 significantly associated genera,
Staphylococcus (rrm =20.49) and Actinobacillus (rrm =20.48) were the most negatively cor-
related, and Oscillospira, Eubacterium, Blautia, and Methanobrevibacter were the most posi-
tively correlated (rrm . 0.5; adj. P value, 0.05) taxa (Table S1). Comparable results were
obtained when analyzing genus-level tuf data, with Staphylococcus, Gemella, and
Sphingobacterium (rrm . 20.45; adj. P value, 0.05) negatively correlated and
Moraxella (rrm = 0.61) and Vagococcus (rrm = 0.58) positively correlated with MRSA
colonization (Table S1).

The 16S rRNA and tuf gene sequencing data provided species-level resolution for
some, but not all, of the ASVs. In total, 28 different species were significantly
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correlated with colonization of MRSA and S. aureus (Fig. 2A; Table S1). Consistent
with what we obtained at the genus level, rmcorr analysis demonstrated species
such as Streptococcus agalactiae, Acinetobacter schindleri, Mannheimia varigena,
Helcococcus ovis, Corynebacterium stationis, and Rothia nasimurium (rrm . 20.55; adj. P
value, 0.05) to be strongly anticorrelated with MRSA colonization in 16S data (Fig. 3A
and Fig. S7). Similarly, C. stationis and M. varigena were found to be anticorrelated with S.
aureus colonization (rrm . 0.55; adj. P value, 0.05). Although a low level of C. stationis
was also observed in MRSA-positive samples, we exclusively observed increased C. statio-
nis abundance in MRSA-negative samples (Fig. S7). Of note, there was a weak but insignif-
icant correlation of the genus Corynebacterium with carriage of MRSA (rrm = 20.31; adj.
P value. 0.05) and S. aureus (rrm =20.32; adj. P value. 0.05).

Of the 40 species, 18 were significantly correlated with nasal colonization of MRSA
and S. aureus in the tuf data set (Fig. 2B, Table S1). As expected, Staphylococcus aureus
was positively correlated with MRSA (rrm = 0.52; adj. P value, 0.001) and S. aureus
(rrm = 0.44; adj. P value, 0.001) nasal carriage (Fig. 3B). Apart from this, Staphylococcus
hominis, Staphylococcus pettenkoferi, Staphylococcus epidermidis, and Staphylococcus
cohnii also displayed significant positive correlation with carriage of MRSA (Fig. 3B and
Fig. S8). In contrast, other Staphylococcus species, such as Staphylococcus microti and
Staphylococcus simulans were found to be anticorrelated with MRSA colonization
(rrm . 20.50; adj. P value, 0.05). In addition, Moraxella bovoculi, Vagococcus teuberi,
and Vagococcus lutrae were most positively correlated (rrm . 0.50; adj. P value, 0.05),
while Enterococcus faecium and Streptococcus spp. were the most negatively correlated
(rrm . 20.50; adj. P value, 0.05) with nasal colonization of MRSA (Fig. 3B and Fig. S8).

To confirm the detected correlation-based associations, we performed logistic
regression analysis to correlate MRSA/S. aureus colonization with the genus and spe-
cies level microbiota. As expected, taxa identified as most significantly associated with
MRSA/S. aureus colonization using correlation-based associations were further vali-
dated with the regression-based analysis. Genera and species found to be significantly

FIG 2 Community-level changes in microbial taxa associated with nasal colonization of MRSA and S. aureus over time. (A and B) The heatmap shows the
association of CFUeq of S. aureus/CFU of MRSA with species summarized microbial taxa in (A) 16S rRNA and (B) tuf gene sequencing data and culture
results. Columns (samples) are ordered by time points, and rows (species) are ordered by a Spearman correlation distance matrix and ward linkage
hierarchical clustering. Time points and density of CFUeq of S. aureus/CFU of MSRA are depicted as the top annotation. The strength of correlation of taxa
with MRSA/S. aureus nasal colonization as measured by the rmcorr package is displayed as sidebars (rrm coefficient). Taxa showing significant correlation
(adj. P value, 0.05) with MRSA/S. aureus colonization are labeled as text annotations in green (positive correlation) and red (negative correlation). The
overall relative abundance of the top 50 most abundant ASVs colored based on their genus is noted in the bottom annotation in 16S rRNA data. The
actual relative abundance of Staphylococcus taxa (bottom) and sum-normalized relative the abundance of Staphylococcus taxa are noted in the bottom
annotation in the tuf gene sequencing data.
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associated with MRSA/S. aureus colonization using 16S- and tuf-based data sets are
provided in Table S2.

Microbial taxa anticorrelated with MRSA/S. aureus nasal colonization tend to
cooccur. As the nasal cavity is a nutrient-limited environment, the composition of
nasal microbiota can be modulated by interactions between different bacterial species.
Intermicrobial interactions can be a major driver of microbial community composition,
and understanding such interactions can unveil important insights regarding establish-
ment and carriage of MRSA/S. aureus in the nasal environment. Thus, we further inves-
tigated if microbial taxa identified as negatively associated with MRSA/S. aureus nasal
colonization display a tendency toward cooccurrence or not. Using 16S species-level
data, we identified nine Coabundant groups (CAGs), each comprising bacteria signifi-
cantly correlated with each other from 16 h to day 42 (Fig. 4A). Of these, CAG 6, CAG 7,
CAG 8, and CAG 9 were composed of taxa which were positively correlated (MRSA/S.
aureus-positive CAGs), while CAG 1, CAG 2, CAG 3, CAG 4, and CAG 5 were composed
of bacterial taxa which were negatively correlated with MRSA/S. aureus colonization
(MRSA/S. aureus-negative CAGs). The constituent taxa of the CAGs not only cooccurred
in terms of overall abundances, but also varied consistently over time. In particular,
CAG 1/CAG 3/CAG 4/CAG 5 were anticorrelated with CAG 6/CAG 7/CAG 8 (Fig. 4B). We
noted potential driver-passenger dynamics in CAG 6 whereby Moraxella spp. (marked *) is
the first taxa to increase in abundance over time and is then followed by the other CAG 6
species. Using this 16S amplicon, only “unclassified Staphylococcus” in CAG 3 (marked §)
was classified for this genus, but since it was negatively correlated with MRSA/S. aureus
levels, we believe it is of a different species than S. aureus.

A total of three CAGs in tuf species-level data were identified, where CAG 1 and
CAG 2 (containing S. aureus marked *) were positively correlated. CAG 3, on the other
hand, was negatively correlated with MRSA/S. aureus nasal colonization (Fig. 5A). This
CAG was the largest cluster containing taxa such as S. microti, S. simulans, E. faecium,
and Streptococcus spp., and we observed no obvious driver-passenger dynamics in this
potential MRSA-excluding group. Interestingly, Staphylococcus cohnii was correlated
with S. aureus in CAG 2, while S. epidermidis and S. hominis were part of a separate

FIG 3 Evaluation of microbial taxa associated with nasal colonization of MRSA and S. aureus in growing piglets. (A and B) The scatterplot displays the most
negatively correlated and positively correlated species-level taxa in (A) 16S rRNA and (B) tuf gene sequencing data. Longitudinal measurements and
correlation trends are drawn per individual animal by their litter (litter A, solid line; litter B, dashed line), and correlation statistics for each species are
provided above the plot (r, rmcorr correlation coefficient [rrm coefficient]; CI, 95% confidence interval). Each black line corresponds to a modeled slope for
each individual animal across the time point as calculated with the rmcorr package.
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CAG, suggesting differences in their abundance dynamics over the course of time
(Fig. 5B).

DISCUSSION
Species anticorrelated to S. aureus and MRSA were identified. Detection of S.

aureus in marker gene analysis can be hampered by the fact that the piglet nostrils har-
bor relatively small amounts of S. aureus. The low abundance of S. aureus observed in
this study is in concordance with previous findings (20, 21). The genus- and species-
level resolution obtained from the sequencing data, substantiated with S. aureus-spe-
cific qPCRs and MRSA-specific culturing allowed successful identification of genera and
species, which anticorrelated with S. aureus and MRSA. Interestingly, anticorrelating
OTUs of Helcococcus and Acinetobacter have been described before in relation with
low numbers of MRSA in pig noses (20), but there was no match with phyla or genera
anticorrelated with MRSA in the study from Weese et al. (21). A limitation of our study
is the small number of pigs that were analyzed, and it is possible that identified phyla
or genera are not completely correlated with findings in other studies studying the pig
microbiome.

FIG 4 Longitudinal dynamics of bacterial species comprising coabundant groups (CAG) in 16S rRNA gene sequencing. (A) Heatmap plot of the rrm
coefficient values between each pair of species-level taxa. CAGs were obtained based on clustering of rrm coefficient values by Spearman correlation and
ward linkage hierarchical clustering. Cutting the dendrogram at a height of 1.0 allowed us to identify nine different CAGs. Taxa showing significant
association with MRSA/S. aureus nasal colonization as measured by the rmcorr package are displayed as sidebars (rrm coefficient). A phylum-level grouping
of each individual species is displayed as the leftmost side bar. (B) Longitudinal dynamics of each species based on their identified CAGs across the time
points. Species comprising different CAGs have been identified and annotated on a dendrogram based on their CAG assignment. Each individual line chart
displays within-CAG dynamics of bacterial species across the time points, and the colors of the lines are matched according to their CAG assignment. Each
line represents a single species.
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tuf gene sequencing identified Staphylococcus microti and Staphylococcus simulans
as negatively associated with S. aureus. Such an inhibiting effect was recently described
by Brown and colleagues, showing that peptides of S. simulans protected against
MRSA colonization and associated skin damage in a mouse model (28). These peptides
were inhibiting or disrupting of the arg-based quorum sensing of S. aureus that has
been associated with colonization and virulence factor activation. Production of arg
quorum sensing inhibiting peptides has been detected in multiple coagulase-negative
staphylococci (CoNS), including S. simulans, from porcine nasal swabs (29). It is consid-
ered an important mechanism for bacterial interactions evoking S. aureus competition.
Other competition mechanisms involved in nasal colonization, apart from the produc-
tion of small molecules, include competition for adhesions sites and nutrients, antibio-
sis, and inducing host defenses (30).

tuf gene sequencing improves Staphylococcus species resolution. To understand
the composition of the nasal microbiome and its interactions, high taxonomic resolution at
the species or even strain level is needed, as identifying anticorrelating genera to MRSA
could lead to misinterpretations. For example, Yan et al. showed that two species of the ge-
nus Corynebacterium, the species C. accollens and C. pseudodiphtericum might act differently
on S. aureus colonization in the nasal cavity (31). They identified that these species showed
either inhibition or stimulation of S. aureus growth in vitro. Therefore, in-depth analysis of
individual bacterial species to find S. aureus anticorrelative species is crucial. A limitation in

FIG 5 Longitudinal dynamics of bacterial species comprising coabundant groups (CAG) in tuf gene sequencing. (A) Heatmap plot of the rrm coefficient
values between each pair of species-level taxa. CAGs were obtained based on clustering of rrm coefficient values by Spearman correlation and ward linkage
hierarchical clustering. Cutting the dendrogram at a height of 1.0 allowed us to identify three different CAGs. Taxa showing significant association with
MRSA/S. aureus nasal colonization as measured by the rmcorr package are displayed as sidebars (rrm coefficient). Family-level grouping of each individual
species is also displayed as the leftmost side bar. (B) Longitudinal dynamics of each species based on their identified CAGs across the time points. Species
comprising different CAGs have been identified and annotated on a dendrogram based on their CAG assignment. Each individual line in the color of its
CAG assignment displays the dynamics of the CAG species across the time points.
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our study is the reliance on the V4 region of the 16S rRNA gene, as this sequence region
contains low sequence diversity and is unable to discriminate S. aureus from other
Staphylococcus species in microbiome analysis (26, 27). However, several studies
applying tuf gene sequencing have shown that this gene is discriminating of all
Staphylococcus species (23, 26, 27) but can also monitor shifts in abundance of clinically
important Staphylococcus species in the nasal microbiome (26, 32, 33). Using tuf gene
sequencing, we identified 22 Staphylococcus species. This is in contrast to previous work
where 12 Staphylococcus species were identified, with S. equorum as the most abundant in
the porcine nose (32). In our study, S. microti was the most abundant staphylococ-
cal species and was predominantly present in the first week of life. Moreover, we
found that it was negatively associated with S. aureus, and its abundance decreases
after day 4, when stable S. aureus colonization was established. Our species-level
identification highlights the added value of complementing 16S rRNA sequencing
with tuf gene sequencing, or multiple 16S rRNA gene regions (34), in microbiome
studies, especially when Staphylococcus species are a target. To achieve even higher
resolution and also functional information, metagenomic shotgun sequencing would
be required.

Trends in the developing nasal microbiome. Here, we captured the dynamic and
longitudinal development of the nasal microbiota of piglets. The identification of CAGs
of bacteria also demonstrated time-dependent trends, further supporting that the por-
cine nasal microbiota is not stable but develops throughout time with a succession of
coabundant species. The finding that the Proteobacteria and Firmicutes were the most
abundant phyla agrees well with previous nasal microbiota studies of pigs (21, 32, 33,
35–37). A large drop observed in the relative abundance of Actinobacteria after day 7
has also been described (36). Moreover, the rise in abundance of Proteobacteria after
weaning relates to Moraxella becoming the most abundant genus, and this finding is
in line with the increase of Moraxella and Bergeyella upon removal of perinatal anti-
microbials (35). But it is important to note that neither the piglets nor the sows
received any antimicrobials for our study. Additionally, R. nasimurium from the phy-
lum Actinobacteria has been previously described as a commensal on porcine tonsils
and capable of producing the antibiotic valinomycin (38). The onset of the R. nasimu-
rium decrease was around the time that S. aureus was detected and coincided with
the decrease of the taxa from tuf-CAG 3, 16S-CAG 3, 16S-CAG 4, and 16S-CAG 5, con-
sisting of additional anticorrelating species to S. aureus and MRSA colonization.
Moreover, the taxa of 16S CAGs 6 and 7 were positively correlated with MRSA and
contained the genera Oscillospira, Dorea, Peptococcus, Lactobacillus, Coprococcus, and
Methanobrevibacter. This hints at a microbial shift associated with a loss of a protec-
tive effect against, or a stable colonization of, S. aureus around this time point. The
question remains whether this shift is universal or an effect of host or environmental
stimuli. No farm-related effects could be studied here, as the piglets were obtained
from a single farm. Other environmental effects that might explain the microbial shift
could be fecal input, as evident by an increase in the genus Clostridium around day
14, and other gut-related genera from 16S-CAG 6, 7, and 8. A decrease of maternal
immunity after the first week of life, dietary changes approaching weaning, or
applied perinatal antimicrobials are other factors that can modulate microbial shifts
in the microbiome (39). This indicates that phyla and genera negatively associated
with MRSA identified in silico will require further investigation with regard to their
interactions with MRSA and their ecological context in the microbiome of the host.

In the human gut, the importance of an initial priming effect of natural birth on the
further development of the microbiome and host immunology has been well described
(40, 41). As we showed that the microbiome is shaped by development of the piglets,
we expect that manipulations of the microbiota in early life could later in life stabilize in
the microbiome. It is important that these manipulations will not result in dysbiosis and
enable colonization of pathogenic bacteria. This underlines why longitudinal investiga-
tion of a priming effect and the developing and stabilizing community in the nasal
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microbiome is essential. Microbes from the maternal gut, birth canal, and skin, are the
first to colonize the naive nose epithelium of the newborn piglets. Some of the species
present at initial time points were found throughout the study, indicating that develop-
ment of the microbiome started directly at birth and stabilized over time. Detection of
Archaea and anaerobic bacterial species at the later time points might indicate continu-
ous introduction of fecal species into the nostrils of piglets. This could be a result of the
rooting behavior of piglets. However, recent studies have described a large archaeal di-
versity in the human nose (42), and Archaeamight be a stable constituent of the porcine
nasal microbiome. As the number of longitudinal pig microbiome studies from birth is
extremely low, more research is needed to understand the drivers of the development
of the porcine nasal microbiome. Our study observed a potential early-in-life protective
delay of MRSA colonization. We identified CAGs of species negatively associated with
MRSA. Members of these CAGs were present at all time points. This could indicate that
these species remain colonized and could establish a lower or negative MRSA presence
later in life. Therefore, it is important to investigate the species negatively associated
with MRSA in a larger number and more diverse set of animals and to obtain data from
pigs that present a long-term stable MRSA-negative status.

Conclusion. Combining 16S rRNA and tuf marker gene sequencing with culture and
qPCR-based quantification led to the identification of bacterial species negatively associ-
ated with MRSA and S. aureus in the pig nasal microbiome. The nasal microbiome devel-
oped with a time-dependent succession of coabundance groups that may indicate early-
in-life protection of S. aureus or MRSA colonization. Supplementing this study with next-
generation sequencing free of amplification bias, such as shotgun metagenomics, will
potentially lead to a higher taxonomic resolution and functional insights. The higher re-
solution is needed to study interactions at the strain level, enabling a better understand-
ing of the complexities of the developing nasal microbiome, which could lead to novel
strategies to reduce colonization of pathogens.

MATERIALS ANDMETHODS
Animal management and sampling. The study was performed in accordance with the Dutch law

on research animal welfare and was approved and registered under 2014.II.05.036 by the Animal
Ethical Committee of Utrecht University, the Netherlands. The study was carried out on a conven-
tional farm where two random sows from different pens were selected. Eight landrace piglets from
two litters (litter A and litter B) were sampled at 13 different time points. Piglets received colostrum
and had access to solid feed ad libitum. Animals received an iron injection (200mg per animal) at the
age of 1 week as a part of normal pig-farming procedure to supplement iron deficiency. Vaccinations
against mycoplasma and circovirus were performed at the age of 4 weeks. All piglets were housed in
two groups of intact litters until weaning at the age of 4 weeks. As part of farm management practice,
piglets from litter A were separated from the sow hours before sampling at 28 days, and piglets from
litter B were moved to another pen the day after sampling at weaning. After weaning, piglets from
both litters were mixed with piglets from other sows and kept in larger groups. Piglets and sows en-
rolled in this study did not show any illness and therefore did not receive any additional treatment or
antimicrobials. A nasal swab was obtained from all piglets within the minutes after birth (t = 0 days)
using a cotton swab (Medical Wire & Equipment, Wiltshire, United Kingdom). Swabs were also
obtained at 8 h, 16 h, and 24 h (t= 1 day) after the first sampling, after which the piglets were
sampled daily (t = 2, 3, and 4 days) and, finally, weekly until the piglets were 6weeks old (t= 7, 14, 21,
28, 35, and 42 days). Nasal swabs were suspended in 1ml saline supplemented with 1mM EDTA
(molecular grade; Sigma-Aldrich, the Netherlands). Suspension was subsequently subsampled in 3 ali-
quots for (i) microbiome analysis, (ii) real-time PCR to quantify S. aureus in general (including
LA-MRSA), and (iii) bacteriological culturing to enumerate MRSA.

Quantification of S. aureus by real-time PCR. Two hundred ml of the nasal swab suspension was
used to quantify S. aureus using quantitative real-time PCR (qPCR). Briefly, phocine herpes virus (PhHV)
was added to the sample as an internal amplification control (43). DNA was then extracted with the
High Pure PCR template preparation kit (Roche, the Netherlands) according to the manufacturer’s
instructions, and the sample was eluted in 50ml elution buffer. Then, 5 ml of sample DNA was used in a
real-time PCR that quantified S. aureus by targeting the femA (44) and nuc (45) genes using a predefined
standard curve. Quantitative results of the PCR are reported as log CFU-equivalents (CFUeq).

Enumeration of MRSA by culturing. A 10-fold serial dilution of the nasal swab sample suspension
was prepared in phosphate-buffered saline (PBS) (Gibco, the Netherlands). Next, 100 ml of each dilution
(1021 to 1024 dilution) was plated on MRSA selective medium (Brilliance MRSA 2 agar; Oxoid, the
Netherlands) and incubated at 37°C for 18 to 24 h. MRSA-suspected colonies were counted, and the
number of CFU of MRSA was calculated and reported as log CFU. One MRSA-suspected colony from
each sample was confirmed as LA-MRSA by targeting the ST398-specific DNA fragment C01 (46), and
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methicillin resistance was tested by using a mecA (44) PCR. In case the C01 gene-specific PCR was nega-
tive, S. aureus-specific PCRs targeting the femA (44) and nuc (45) genes were performed.

DNA extraction and sequencing. DNA extraction was performed using a modified version of Mag-
Mini bead-beating and a magnetic bead procedure (LGC Genomics, Berlin, Germany) as described by Wyllie
et al. (47). Amplicon libraries targeting the V4 region of the 16S rRNA gene were prepared using 515F
(GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACHVGGGTWTCTAAT) universal primers. Sequencing was
performed on an Illumina MiSeq platform using v2 chemistry (2� 250bp) (48). Similarly, libraries amplifying
the tuf gene, a discriminatory target for Staphylococcus species were prepared using the oligonucleotides
(23) tuf-F (GCCAGTTGAGGACGTATTCT) and tuf-R (CCATTTCAGTACCTTCTGGTAA), and sequencing was per-
formed on an Illumina MiSeq platform using v3 chemistry (2� 300 cycle). Nontemplate DNA extraction con-
trols were also included in the amplification and sequencing protocol to monitor potential contamination.

Microbiota data analysis and preprocessing. For both the 16S rRNA and tuf gene sequenced data
sets, read quality was checked using FastQC v0.11.5 (49). Quality filtering was performed using Trim
Galore v0.6.5 (50) with the following parameters: trimming low-quality ends of the reads (–quality 20),
removing adapter sequences that overlaps by 7 nucleotides (–nextera, –stringency 7), discarding
sequences with,80 nucleotides (–length 80), singleton reads whereby the other pair of the read is dis-
carded excluded from downstream analysis (–paired). Quality-filtered reads were then imported into R
v3.5.0 (51) for subsequent analysis with the DADA2 pipeline v1.12 (52). Amplicon sequence variants
(ASVs) for 16S rRNA data (from here on, “16S” is used for “16S rRNA gene”) were inferred using following pa-
rameters: truncLen=c(200,140), maxEE=c(1), truncQ=c(2), maxN=0, rm.phix=TRUE. While ASVs for tuf data
(from here on, “tuf” is used for “tuf gene”) were inferred using the following parameters: truncLen=c
(240,180), maxEE=c(1), truncQ=c(2), maxN=0, rm.phix=TRUE. Briefly, the DADA2 error correction and chi-
mera removal step was carried out on each forward and reverse read individually and then subsequently
merged. At this stage, merged ASVs with at least 251 and 370 nucleotides of length for 16S and tuf data,
respectively, were retained. The resulting nonchimeric ASVs from the 16S data were further subjected to
the second stage of chimera filtering, using reference-based chimera filtering implemented in USEARCH
v11 (53) with the ChimeraSlayer Gold database v2011051967.

Taxonomy was assigned to nonchimeric sequences using the naive Bayes (NB) RDP classifier natively
implemented in QIIME 2 (54). For this, the classifier was trained explicitly on the region of the gene that was
sequenced and used for classification with a bootstrap confidence threshold of 80%. We used the
Greengenes reference database v13.8 clustered at 99% identity for classification of 16S ASVs (55). For the
tuf data, we prepared a custom reference taxonomy database by retrieving full-length bacterium-originat-
ing tuf sequences from KEGG (56) (https://www.genome.jp/dbget-bin/www_bget?ko:K02358; accessed
2019) and used it for classification of tuf ASVs using the method described for 16S data. Additionally, for
16S amplicon data, we used SPINGO for species-level classification wherever possible (57).

Initial preprocessing of the ASV table was conducted using the decontam (58) and CoDaSeq (59)
packages, whereby potential reagent contaminants were identified and removed using the frequency-
based method implemented in the decontam package. Next, we filtered out ASVs based on prevalence
and abundance criteria using the codaseq.filter function from the CoDaSeq package. Only ASVs present
in.10% of samples with a relative abundance of.0.0001 were retained for downstream analysis, which
resulted in 368 ASVs for the 16S and 204 ASVs for the tuf data set. Except in the case of alpha diversity,
this filtered ASV count table was used for all the downstream bioinformatic analyses.

Statistical analysis of compositional data. All statistical analyses and graphical representations
were performed in R using the packages vegan (60), CoDaSeq (59), zCompositions (61), rmcorr (62),
Ggplot2 (63), Heatmaply (64), and ComplexHeatmap (65). Moreover, GraPhlAn was used for visualization
of phylogenetic trees generated from species-level summarized 16S and tuf data sets (66). To account
for the complex compositional structure of the microbiome data and to avoid the likelihood of generat-
ing spurious correlations, we first imputed the zeros in the abundance metrices using the count zero
multiplicative replacement method (cmultRepl, method= “CZM”) implemented in the zCompositions
package and applied a centered log-ratio transformation (CLR) using the codaSeq.clr function in the
CoDaSeq package. Because the ASV table was summarized at different taxonomic levels (from phylum
to species level), we used CLR transformation on each taxonomic level separately. Alpha diversity was
determined using Chao1 (richness) and Shannon index (diversity), and the nonlinear association of a-di-
versity with time point (as numeric) was accessed by fitting the loess splines using the Ggplot2 package.
The statistically significant association of time points with alpha diversity was tested using the rmcorr
package. Principal-coordinate analysis (PCA) was carried out using the prcomp function in R using the
Aitchison distance matrix (CLR plus Euclidean distances). Permutational multivariate analysis
(PERMANOVA [67]) was performed on the Aitchison distances with 9,999 permutations to evaluate the
effect of different clinical variables (i.e., time point and litter) on the nasal microbiota composition.

Association of microbiota data with metadata. Since the nasal piglet microbiota during first two
initial time points (0 h and 8 h) was not stable and harbors bacteria that are commonly found in ani-
mal feces, in the uterus and cervix of the sow, or in soil, we considered them relatively unstable and
excluded them (n = 15 from 16S and n = 16 from tuf) from all statistical analyses. Associations
between taxa and log CFU of MRSA and log CFUeq of S. aureus were obtained using repeated mea-
sure correlation analysis from the rmcorr package (62), which determines the relationship between
two continuous variables while controlling for between-individual variance. Rmcorr identifies a com-
mon regression slope and thereby estimates the association shared among all the individuals. Most
popular correlation techniques, such as Pearsons correlation, assume independence of error between
observations and thus cannot be used where more than one data point is obtained from individuals.
Rmcorr accounts for this nonindependence among observations in repeated measurement data by
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removing measured variance between individuals. Similar to the Pearson correlation coefficient, the
rmcorr coefficient (rrm) ranges from 21 to 11 and reports the strength of the linear association
between two variables. The rmcorr method calculates the rmcorr coefficient (rrm), P value, and a 95%
confidence interval of the rmcorr coefficient by bootstrapping the samples (n= 100). So, when there
is no strong heterogeneity across subjects and parallel lines provide a good fit, the rmcorr effect size
(rrm) will be large, with tight confidence intervals. Next, in order to confirm the rmcorr correlation
findings, we performed logistic regression analysis using multivariate analysis by linear models
(MaAsLin2 v1.1.1) considering litter and animal ID as random effects and MRSA/S. aureus colonization
events as categorical data (68). MaAsLin2 performs boosted, additive general linear models between
metadata and microbial abundance. Boosting of metadata and selection of a model was performed
per taxon. Microbial abundances were CLR-transformed at each taxonomic level to account for the
compositional nature of the data. Multiple testing correction was carried out with the Bonferroni
method where appropriate for all statistical tests (69).

Coabundance analysis. Following rmcorr correlations between each pair of species, species-level
summarized taxa were clustered into the coabundant groups (CAGs) based on their CLR-transformed
abundances across all the samples. Correlations were considered significant below a q value cutoff 0.05 af-
ter Benjamini-Hochberg (BH) multiple testing correction. Hierarchical clustering was performed using the
Spearman distance matrix and ward linkage clustering to identify CAGs cooccurring with each other across
all time points. Next, the dendrogram was cut at a height of 1.0 to generate nine and three different CAGs
for the 16S and tuf data sets, respectively. Taxa comprising each CAG were plotted individually to under-
stand longitudinal dynamics of the microbiome and its association with MRSA and S. aureus colonization.

Data availability. Sequence data are available under NCBI BioProject accession no. PRJNA687981.
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