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Growth forms and life-history strategies predict
the occurrence of aquatic macrophytes in relation
to environmental factors in a shallow peat lake complex

Ralph J. M. Temmink . Martijn Dorenbosch . Leon P. M. Lamers .

Alfons J. P. Smolders . Winnie Rip . Wouter Lengkeek . Karin Didderen .

Gregory S. Fivash . Tjeerd J. Bouma . Tjisse van der Heide

Received: 8 February 2021 / Revised: 10 May 2021 / Accepted: 16 May 2021 / Published online: 27 May 2021

� The Author(s) 2021

Abstract Aquatic ecosystems provide vital services,

and macrophytes play a critical role in their function-

ing. Conceptual models indicate that in shallow lakes,

plants with different growth strategies are expected to

inhabit contrasting habitats. For shallow peat lakes,

characterized by incohesive sediments, roles of

growth forms, life-history strategies and environmen-

tal factors in determining the occurrence of aquatic

vegetation remain unknown. In a field survey, we

sampled 64 points in a peat lake complex and related

macrophyte occurrence to growth forms (floating-

leaved rooted and submerged), life-history strategies

for overwintering (turions, seeds, rhizomes) and

environmental factors (water depth, fetch, and pore-

water nutrients). Our survey showed that macrophyte

occurrence relates to water depth, wind-fetch, and

nutrients, and depends on growth form and life-history

strategies. Specifically, rooted floating-leaved macro-

phytes occur at lower wind-fetch/shallower waters.

Submerged macrophytes occur from low to greater

wind-fetch/water depth, depending on life-history

strategies; macrophytes with rhizomes occur at greater

wind-fetch/depth relative to species that overwinter

with seeds or turions. We conclude that growth form

and life-history strategies for overwintering predict

macrophytes occurrence regarding environmental
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factors in peat lakes. Therefore, we propose an adapted

model for macrophyte occurrence for such lakes.

Altogether, these results may aid in species-selection

to revegetate peat lakes depending on its environment.

Keywords Floating-leaved rooted macrophytes �
Submerged macrophytes � Vegetation � Nutrients �
Fetch � Water depth

Introduction

Aquatic ecosystems provide a large range of ecolog-

ical and economic services, including freshwater

supply, fisheries, habitats and food for organisms

driving biodiversity (Hammer & Bastian, 1989; Jack-

son et al., 2001; Borst et al., 2018). The occurrence and

abundance of aquatic macrophytes, determined by

abiotic and biotic drivers, strongly influence these

services (Bornette & Puijalon, 2011; Bakker et al.,

2013). Abiotic conditions that determine macrophyte

occurrence and abundance include water transparency

(i.e., light availability), carbon, nitrogen and phos-

phorus availability in surface water and sediment,

water movement and soil phytotoxicity (Søndergaard

et al., 2003; Lamers et al., 2013; Verhofstad et al.,

2017). Biotic drivers of plant occurrence, abundance

and growth include herbivory and bioturbation by

water birds, large fish and crayfish (Gulati & van

Donk, 2002; Bakker et al., 2013; Bakker et al., 2016).

Aquatic macrophytes occur in a range of freshwater

lakes that differ considerably in depth and surface area

(Lehner & Döll, 2004; Murphy et al., 2019). In

shallow lakes, typically less than 3 m deep, the effect

of sediment-water interactions is relatively large

(Scheffer, 1997; Bakker et al., 2013). In addition,

submerged macrophytes can fill up the entire water

column. As a consequence, they increase their com-

petitive advantage over algae by lowering nutrient

levels and providing shelter for algae-grazing zoo-

plankton and piscivorous fish feeding on bioturbating

and zooplankton- eating fish (Scheffer et al., 2001;

Scheffer et al., 2003; Smolders et al., 2006).

Within these shallow lake systems, shallow peat

lakes form a specific type. They can be natural or

human-made, created by the extraction of peat in

combination with erosion of surrounding peatlands

(Gulati & van Donk, 2002; Immers et al., 2015). The

bottom of these lakes is characterized by very soft,

organic sediment that forms a non-cohesive sludge

layer (Schutten et al., 2005). Peat lakes therefore have

different environmental dynamics compared to for

instance sandy-sediment lakes (Bengtsson & Hell-

ström, 1992; Schutten et al., 2005). Because of their

soft sediments, peat lakes are much more prone to

wind-induced sediment resuspension that negatively

affects water clarity (Bengtsson & Hellström, 1992).

Furthermore, the non-cohesive structure of the sedi-

ment may easily lead to macrophyte uprooting

(Schutten et al., 2005). These factors may negatively

influence macrophytes occurrence. Bornette & Pui-

jalon (2009) proposed a broadly applicable conceptual

model in which they show the expected distribution of

five major growth forms along several gradients of

several abiotic factors (water transparency, seasonal

temperature fluctuations, oxygen availability, sub-

strate grain-size, nutrient level and water movement).

For instance, they expected the occurrence of small

caulescents (e.g., Elodea sp., Ceratophyllum demer-

sum L.) at locations with higher water movement,

while tall caulescents (e.g., Potamogeton lucens L.)

and rooted floating-leaved macrophytes (Nymphaea

sp.) are expected at conditions with lower water

movement. They further expected the opposite rela-

tionship for nutrient levels for these species. Although

they created this model to gain insight into the

expected distribution of major macrophyte growth

forms in shallow waters, the model was not specifi-

cally devised for shallow lakes with thick and non-

cohesive sediments, such as peat lakes. Therefore, it

remains unknown whether the conceptualized rela-

tionships for different macrophyte growth forms holds

true for peat lakes.
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In shallow peat lakes, we observed large-scale

uprooting of aquatic macrophytes after several storms

from late summer until winter. This indicates that local

survival of aquatic macrophytes can be challenging,

probably due to the combination of incohesive sedi-

ment and storms (Schutten et al., 2005; Łoboda et al.,

2018). Therefore, we hypothesize that the occurrence

of macrophytes is not only dependent on growth form

and abiotic conditions (Bornette & Puijalon, 2009),

but that life-history strategies for overwintering (via

seeds, turions or rhizomes) of aquatic macrophytes

play an important role in determining their occurrence

in peat lakes with unstable sediments. Next to our

observation of uprooting, Schutten et al. (2005)

showed that peat lakes have a low sediment cohesion

relative to lakes with a sand soil. Moreover, they found

that plants uproot more easily in sediments with a low

sediment cohesion. While some species invest a large

part of their energy in subsurface overwintering parts

such as rhizomes that also increase anchoring strength,

others occur as annuals and produce aboveground

reproductive parts such as seeds or turions (Wiegleb

et al., 1991; Song et al., 2017). The effectiveness of

these life-history strategies depends on environmental

conditions, successional stage and hydroperiod. For

instance, heavy seeds require firm sediment for

germination, because these will sink to depths where

they are unable to germinate in non-cohesive sedi-

ments (Barrat-Segretain, 1996). Yet, to our knowl-

edge, there are no studies that address the occurrence

of aquatic macrophytes in shallow peat lakes and link

that to growth form, life-history traits for overwinter-

ing and environmental conditions.

In this study, to fill these knowledge gaps for

shallow peat lakes, we relate the occurrence of rooted

floating-leaved, and submerged vegetation to environ-

mental factors, growth forms and life-history strate-

gies for overwintering. We performed a field survey to

relate macrophyte growth form and life-history strate-

gies for overwintering (via seeds, turions or rhizomes)

to environmental variables such as fetch, water depth

(proxy for light availability) and nutrient availability

in a peat lake complex (Stichts Ankeveense Plassen) in

the Netherlands. We chose to study these traits, as

plants can easily uproot in the incohesive sediments in

shallow peat lakes (Schutten et al., 2005) during

storms that most frequently occur from late summer to

early spring in the Netherlands (The Royal Nether-

lands Meteorological Institute, KNMI). We

hypothesized that submerged and rooted floating-

leaved macrophyte occurrence under certain environ-

mental conditions (e.g., water depth and fetch) is

driven by their growth forms combined with their life-

history strategies for overwintering.

Materials and methods

Study site

Stichts Ankeveense Plassen (SAP) is a complex of

connected shallow peat lakes situated in an extensive

peat region in the provinces of Holland and Utrecht in

the Netherlands (52�16015.7800N, 5� 4049.1500E,

Fig. 1). The area was exploited for its peat in the

1800s, which created a characteristic landscape of peat

ponds (‘petgaten’ in Dutch; pits from which peat was

extracted by dredging) and ‘baulks’ (land to dry

dredged peat) (Zeeuw, 1978). Over a century, wave-

induced erosion and enhanced organic matter degra-

dation due to external eutrophication led to the

formation of a complex of connected lakes of [
80 ha with lakebeds of thick layer of organic, non-

cohesive sludge (1.26 [1.3] ± 0.5 m, average [median]

± SD, lake open water in the survey *60 ha, Fig. 1b).

Over the last 30 years, water quality and related clarity

have improved by mitigation measures in a number of

lakes in the Netherlands including SAP, and have

become sufficient to support the growth of submerged

macrophytes (Dorenbosch et al., 2017; Fraters et al.,

2017). Specifically, the relatively stable and average

light extinction from 2012 to 2016 was 1.9 m (min:

1.3, max: 2.7, n = 58; data from Dorenbosch et al.,

2017). Furthermore, the availability of both carbon

dioxide (CO2) (40 lmol L-1) and bicarbonate (HCO3
- )

(1 mmol L-1) in the water layer is relatively low at our

study site (Dorenbosch et al., 2017). As there is low

recreation pressure in SAP, physical disturbances

caused by recreation, mowing of the vegetation and

sediment resuspension by boat propellers are negligi-

ble, unlike in many other peat lakes.

Survey

To study the occurrence of rooted floating-leaved and

submerged vegetation in SAP, we generated 64

random points – sampling stations – inside our study

area using QGIS that were sampled in July 2018
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(Fig. 1b). At each sampling station we visually, either

by aquascope or eye, determined the total cover of

rooted floating-leaved and submerged vegetation (%)

and relative abundance per species (%) for a given

sampling area of approximately 4 m2. To account for

possible species present underneath the highly dom-

inant vegetation, we additionally used a rake con-

nected to a rope to sample the vegetation (34.5 cm

wide rake with 6.5 cm long teeth spaced 2.5 cm apart).

We threw the rake four times, once at each corner of

the boat, and dragged it one meter across the sediment.

If visibility was too low for visual cover estimation,

we estimated the cover using the rake (Verhofstad

et al., 2017).

Next, we measured water and sludge depth using a

stainless steel grid attached to a marked pole (sediment

level stave, Eijkelkamp, Giesbeek, the Netherlands).

First, the grid rests on the sludge to measure the water

level, then the grid is pushed until the hard min-

eral/peat subsoil, thus measuring the sludge depth.

After this, we took a 30 cm deep sediment core of

undisturbed and unvegetated sediment using a piston

sampler (100 cm long; 4 cm in diameter, Eijkelkamp,

Giesbeek, the Netherlands). Sediment concentrations

of sulfide were low everywhere, based on the absence

of its odor in the sediment (i.e., below 0.3-4 lmol l-1;

(National Research Council Committee, 2010).

Finally, we stored each sample in an airtight plastic

bag, and transported it to the lab, where it was stored at

4 �C overnight.

We grouped all aquatic macrophyte species based

on growth form: 1) rooted floating-leaved, and 2)

submerged macrophytes (we observed no free-floating

and emergent macrophytes in our survey), and life-

history strategies related to overwintering 1) turions/

winter buds, 2) rhizome or 3) seeds (Table 1). We

chose to correlate occurrence to overwintering strate-

gies, because plants are prone to uprooting in unsta-

ble sediments during storm events (Schutten et al.,

2005), which depends, on among others, on their

overwintering root systems. Moreover, plants have

different life-history strategies to cope with the cold

conditions in winter (daily average temperature in

winter 5.2 �C [minimum -8.5 �C] and summer: 18.9 �C
2018 [maximum 37.5 �C]; KNMI weather station de

Bilt, the Netherlands). Obviously, many plants pro-

duce seeds for reproduction; however, in our study

lake in the Netherlands, plants that overwinter follow

mainly the depicted classification (Table 1).

Chemical analyses

Sediments were carefully mixed in closed bags, after

which porewater was extracted in the dark by inserting

a rhizon sampler (Rhizon SMS, Rhizosphere Research

Products B.V., Wageningen, the Netherlands) through

the plastic, attached to a vacuumed syringe. We

focused on the major nutrients for plant growth,

namely, nitrogen, phosphorus and potassium. A

10-mL subsample of each sample was conserved by

(a) (b)

Fig. 1 Study site and experimental setup. (a) The Netherlands

with the shallow peat lake complex Stichts Ankeveense Plassen

(SAP) indicated by the red circle. (b) Detail of the study site.

Blue circles indicate sampling stations in our field survey. Map

data made with Natural Earth (a) and OpenStreetMap contrib-

utors, CC BY-SA (b)
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adding 0.1 mL of nitric acid (HNO3) (65%) and stored

at 4 �C until P-analysis by inductively coupled plasma

emission spectrophotometry (ICP-OES iCAP 6000;

Thermo Fisher Scientific, Waltham, MA, USA). The

rest of each sample was stored in polyethylene bottles

at -20 �C prior to further analysis. Ammonium

(NH4
?) was measured colorimetrically with an auto

analyzer (Auto Analyzer III, Bran and Luebbe GmbH,

Norderstedt, Germany). Potassium (K?) was deter-

mined by flame photometry (FLM3Flame Photometer,

Radiometer, Copenhagen, Denmark). Within one day

after sampling, pH and alkalinity of the porewater

were determined using an Ag/AgCl electrode (Orion

Research, Beverly, MA, USA) and a TIM 840

Titration Manager (Radiometer Analytical SAS,

Villeurbanne, France). Total inorganic carbon (TIC -

HCO3
– and CO2) was measured using an infrared

carbon analyser (IRGA; ABB Analytical, Frankfurt,

Germany), followed by pH-based calculation of CO2

and HCO3 – concentrations (van Bergen et al., 2020).

Finally, at each sampling station, we determined the

fetch as the maximum distance from the sampling

station toward the land in north, north-east, east, south-

east, south, south-west, west and north-west direction

with Google Earth Pro.

Statistical analyses

For the survey data, we used ANOVAs to test for

differences between groups and environmental param-

eters. Macrophytes were categorized in groups based

on growth form (rooted floating-leaved and sub-

merged) and life-history trait-categories. This resulted

in four groups, namely, (1) rooted floating-leaved

(seed/rhizome), (2) submerged & seed, (3) submerged

& turion and (4) submerged & rhizome. For, the rooted

floating-leaved group, we did not distinguish between

seed and rhizome, as the two species that we found are

both able to overwinter with seeds and rhizomes.

Specifically, we tested whether differences occurred

between these groups for water depth (3rd root

transformed), southwestern fetch (square root trans-

formed, prevailing wind direction in the Netherlands,

Supplementary Fig. S1), porewater P (square root

transformed), K and NH4
? concentrations (square root

transformed). If necessary, variables were transformed

to achieve a normal distribution of the residuals.

Differences between groups were determined using

Tukey post hoc tests. To prevent a large influence of a

few individuals, sampling stations with a cover[5%

were only used for the analyses. Relationships

between environmental parameters were explored

using regression analyses between sludge depth and

NH4
?, P, HCO3

- or alkalinity, and the southwestern

fetch and sludge depth. All analyses were performed in

R (version 3.6) statistical and programming environ-

ment (R Core Team, 2020). All results are shown with

average, median and standard deviation (±SD). The

significance level was assumed at p\0.05.

Results

In our shallow peat lake complex, thickness of the

sludge layer was negatively related to the southwest-

ern fetch (R2 = 0.3, p\ 0.001), while sediment and

porewater nutrient concentrations in turn were posi-

tively related to sludge thickness (R2 = 0.3, 0,3, 0,5

and 0.6 for porewater NH4
?, P, HCO3

- and alkalinity,

respectively, p \ 0.001 for all, Fig. 2). The spatial

Table 1 Groups of aquatic macrophyte species, growth form and life-history strategies for each found species including numbers of

observations

Submerged Floating-leaved

Free-floating Rooted

Turions/winter buds Seeds Rhizome

Elodea nuttallii (n=1)* Najas marina (n=12) Myriophyllum spicatum (n=1) Nymphaea alba (n=18)

Ceratophyllum demersum (n=9) Potamogeton lucens (n=23) Nuphar lutea (n=8)

P. crispus L. (n=1)

P. perfoliatus L. (n=3)

*is not free-floating
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distribution of aquatic macrophytes was found to

strongly depend on macrophyte growth form and life-

history traits in relation to water depth, fetch and

porewater nutrients concentrations (Fig. 3, 4).

In the shallow zone of the lake (40 – 100 cm) with a

corresponding low SW fetch (\100 m, Fig. 3), we

found the rooted floating-leaved macrophytes Nuphar

lutea (L.) Sm. and Nymphaea alba L. (rhizome/seed)

and the submerged macrophyte Najas marina L.

(seed). At an intermediate depth (100 to 140 cm) with

a corresponding SW fetch of 180 m (Fig. 3), we found

the rooted floating-leaved macrophytes N. lutea and N.

alba, as well as various species of submerged macro-

phytes, including N. marina (seed), C. demersum

(free-floating) and Elodea nuttallii (Planch.) St. John

(turions), Myriophyllum spicatum L. (rhizome) and P.

lucens (rhizome). At the deepest zone of the lake, from

140 to 180 cm depth with a corresponding SW fetch of

at maximum 400 m, only submerged macrophytes

with rhizomes occurred (P. lucens, Fig. 3).

Specifically, we found the rooted floating-leaved

vegetation to occur at water depths from 54 to 130 cm

(97 [95] ± 21 cm; average [median] ± SD) and

submerged vegetation from 45 to 177 cm (average

135 [145] ± 36 cm). Within the submerged vegetation

group, macrophytes having rhizomes or turions

occurred at depths greater than 120 cm (average 155

[164] ± 24 and 123 [127] ± 27 cm, for macrophytes

with rhizomes or turions respectively), while macro-

phytes that overwinter with seeds showed a great

variation in water depth from 45 to 177 cm (average

97 [86] ± 34 cm, F3,72 = 27.26, p \ 0.001). The

recorded water depth was strongly related to the

southwestern (SW) fetch – the predominant wind

direction in the Netherlands (R2 = 0.7, p \ 0.001,

Fig. 3c).

Rooted floating-leaved vegetation occurred when

SW fetch was less than 100 m (average 26 [18] ±

28 m). In contrast, SW fetch did not affect the

occurrence of submerged macrophytes that have

rhizomes, as indicated by the large range from 8 to

389 m (average 167 [143] ± 99 m, F3,72 = 28.65, p\
0.001). However, SW fetch strongly affected the

occurrence of submerged macrophytes that overwinter

via seeds or turions (average 48 [40] ± 43 and 83 [75]

± 28 m for seeds or turions, respectively).

Rooted floating-leaved vegetation occurred at sed-

iment porewater concentrations lower than 12 lmol P

L-1 (average 4 [3] ± 4 lmol L-1, F3,72 = 25.73, p\
0.001) and 250 lmol L-1 for NH4

? (average 87 [50]

± 98 lmol L-1, F3,72 = 26.45, p\ 0.001) (Fig. 4).

Similarly, submerged macrophytes that overwinter

(a) (b)

(c) (d)

(e)

Fig. 2 Abiotic

relationships. Relationships

between porewater

ammonium (lmol L-1, a),

phosphorus (lmol L-1, b)

bicarbonate (lmol L-1, c)

and alkalinity (meq L-1, d)

and sludge depth (cm).

(e) shows the relationship

between sludge depth and

the southwestern fetch (m).

Regression line is depicted

in green. Black dots show

individual data points
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with rhizomes, occurred at low porewater P and NH4
?

concentrations (average 9 [7] ± 5 lmol P L-1,

average 202 [171] ± 115 lmol NH4
? L-1). In

contrast, submerged macrophytes that overwinter with

seeds or turions occurred at higher P (average 33 [24]

± 30 and 37 [35]± 23 lmol P L-1, respectively) and

NH4
? concentrations (average 458 [438] ± 292 and

538 [567] ± 265 lmol NH4
? L-1, respectively).

Porewater K concentrations were equal for all groups

with average concentrations around 100 lmol K L-1

(Fig. 4c, F3,72 = 1.7, p = 0.2).

Discussion

We studied the occurrence of rooted floating-leaved

and submerged macrophytes in a shallow peat lake

complex characterized by a thick and incohesive

sludge substrate. We related their occurrence to

growth form and life-history strategies for wintering

to gain insight into the functioning of this human-

made system. Our survey demonstrates that fetch and

water depth differentially affect the occurrence of

macrophytes, depending on their growth forms and

life-history strategies (Fig. 5). Specifically, tall

caulescents (e.g., P. lucens) occurred at more exposed

locations relative to small caulescents in peat lakes

(e.g., C. demersum), in contrast to the general model

devised by Bornette & Puijalon (2009). Therefore, we

propose an adapted predictive model for the occur-

rence of macrophytes in shallow peat lakes as outlined

below. Altogether, these results may aid in species-

selection to revegetate shallow peat lakes depending

on the environmental context (e.g., exposed versus

sheltered; deep versus shallow).

Occurrence of aquatic macrophytes

The occurrence of N. marina in the shallowest and

lowest-fetch zone of the lake (40-100 cm depth, fetch

\100 m) indicates that light conditions are sufficient

to allow submerged macrophyte growth from seeds

(c)

(b)

(a) bFig. 3 Environmental conditions related to growth form and

winter strategy. Differences between macrophyte characteristics

(growth form: Flr [rooted floating-leaved ] and submerged

[rooted and free-floating; free], and winter strategy: rhizome,

seed or turion) and (a) water depth (cm), (b) southwestern fetch

(m), (c) the relationship between water depth and south-west

fetch. Color: macrophyte form. Symbol: winter strategy. Size of

a symbol: vegetation cover (%). Boxplots show the median

(middle line), quartiles (boxes), 1.5 times the interquartile range

(IQR) (whiskers), and the individual data values (dots). Dots

outside the whiskers are extreme values. Different letters

indicate significant differences (Tukey post hoc tests, p \
0.05). N = 26, 33, 17, and 15 for floating rhizome, submerged

rhizome, submerged seed and submerged turions, respectively
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(Chambers & Kalff, 1987). This is also supported by

the 5-year average light extinction (1.9 m) data at this

site (Dorenbosch et al., 2017). Interestingly, N. marina

reached its highest cover at most-sheltered locations

where fine particulate matter settles and a thick sludge

layer accumulated, but where rooted floating-leaved

macrophytes were absent (Supplementary Fig. S2, 3).

N. marina is known to colonize such areas, because

seedling establishment is successful on soft sediments

and unsuccessful on firm sediments (Forsberg, 1965;

van Vierssen, 1982, Handley & Davy, 2002). How-

ever, rooted floating-leaved rooted are not well

adapted to very soft sediments, as their heavy seeds

can sink to a depth that inhibits germination (Barrat-

Segretain, 1996). Furthermore, our data show that

rooted floating-leaved macrophytes occur at a water

depth up to 120 cm depth and a southwestern fetch of

100 m (Fig. 3a-b, Supplementary Fig. S2), while

submerged macrophytes do not occur as frequently

in this zone (see e.g., submerged macrophytes with

turions/rhizomes in Fig. 3a). As submerged macro-

phytes occur in the shallowest (seeds) and deeper parts

of the lake (seed, turion, rhizomes), but not in the zone

dominated by floating-rooted macrophytes, their

occurrence may be driven by competition between

rooted floating-leaved plants and submerged-growing

plants. A possible explanation might be that rooted

floating-leaved macrophytes reduce light availability

for submerged vegetation. Indeed, Nuphar is known to

grow dense and strongly block light (Nurminen &

Horppila, 2006; Wahl, 2008; Schoelynck et al., 2014),

making them superior competitors for light that

outcompete submerged-growing plants (Scheffer

et al., 2003; Netten et al., 2010; Seto et al., 2013;

Strange et al., 2018). Furthermore, perennial aquatic

species (e.g., N. lutea, N. alba, Potamogeton sp.) are

known to typically take over communities mainly

consisting of seed or vegetatively-dispersed macro-

phytes during succession (e.g., C. demersum or N.

marina) (Bornette & Puijalon, 2011).

We found that in the deepest zone of the lake with

largest fetch, submerged macrophytes with an exten-

sive rhizomal network still occurred (e.g., P. lucens),

while less strongly rooted or submerged free-floating

plants were consistently absent (e.g., C. demersum,

Fig. 3). The lack of submerged macrophytes other

(a)

(b)

(c)

bFig. 4 Porewater nutrients related to growth form and life-

history strategies. Differences between macrophyte character-

istics (growth form: Flr [rooted floating-leaved] and submerged

[rooted and free-floating; free], and winter strategy: rhizome,

seed or turion) and (a) porewater P concentrations (lmol L-1),

(b) porewater NH4
? concentrations (lmol L-1), and (c) pore-

water K concentrations (lmol L-1). Boxplots show the median

(middle line), quartiles (boxes), 1.5 times the interquartile range

(IQR) (whiskers), and the individual data values (dots). Dots

outside the whiskers are extreme values. Different letters

indicate significant differences (Tukey post hoc tests, p \
0.05). N = 26, 33, 17, and 15 for floating rhizome, submerged

rhizome, submerged seed and submerged turions, respectively

123

3994 Hydrobiologia (2021) 848:3987–3999



than strongly rooting ones can either be explained by

wind-driven waves or lower availability of light. A

high fetch, and thus wind-driven waves, may result in

macrophyte damage, breakage or uprooting (Schutten

et al., 2005). An extensive rhizomal network provides

(1) strong anchoring in unstable sediment during storm

events, (2) storage of energy in the rhizomes that

allows a fast regrowth in spring, and (3) an advantage

by forming high stands that reach the water surface,

allowing them to cope with poor light conditions

(Wiegleb et al., 1991; Schutten et al., 2005; van

Zuidam & Peeters, 2012). These observations differ

from the expected distribution of major growth forms

described by the conceptual model from Bornette &

Puijalon (2009). Moreover, as opposed to their model,

we found that tall caulescents (e.g., P. lucens)

occurred at locations with lower porewater nutrient

concentrations, while small caulescents (e.g., C.

demersum) occurred at locations with the highest

porewater nutrient concentrations. Also, recent work

in China, highlights that P. lucens can only cope with

hydrodynamic stress when the surface water was not

eutrophic, while C. demersum and M. spicatum were

most tolerant species to both eutrophication and

Fig. 5 Graphical summary of the macrophyte zonation in our

peat lake-system and its possible driving mechanisms. In the

shallow zone, the distribution of floating and submerged

vegetation may be driven by (1) sediment cohesion and seed

weight, as rooted floating-leaved macrophytes may be unable to

germinate in non-cohesive sediment, because their heavy seeds

sink into it (Barrat-Segretain 1996), (2) when they are able to

germinate, they are very strong competitors, because they shade

submerged vegetation, thereby limiting their growth. Rooted

floating-leaved vegetation occurrence may be limited when

fetch and water depth become too great. In the intermediate

zone, when rooted floating-leaved macrophytes vegetation does

not occur (3) various submerged macrophyte species occur that

differ in life-history strategies for overwintering. At even greater

depths and fetch, (4) lower light availability at the sediment

level combined with higher changes of uprooting by exposed

conditions, most likely inhibits submerged vegetation develop-

ing from seeds and turions. Here, only well rooted and tall-

growing submerged plants with an extensive rhizomal network

are able to cope with lower light levels, most likely because they

can utilize energy stored in their rhizomes to invest in the

formation of long shoots at the onset of the growing season.

Symbols for diagrams courtesy of the Integration and Applica-

tion Network, IAN Image Library (https://ian.umces.edu/

imagelibrary/)
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hydrodynamic stress (Zhu et al., 2018b). Taken

together, we propose an adapted conceptual model

for the occurrence of aquatic macrophytes in shallow

peat lakes that includes growth form, life-history

strategies for overwintering and several abiotic factors

(Fig. 5).

Beyond traits for overwintering, C. demersum

differs with respect to other submerged macrophytes,

as it is a free-floating and non-rooted plant and does

not directly absorb phosphorus form the sediment,

while rooted plants do (Barko & Smart, 1981). This

might lead to lower porewater phosphorus concentra-

tions where rooted plants occur (Wigand et al., 1997).

These functional differences might be an alternative

explanation for the differences in porewater nutrient

concentrations between this and other groups of

submerged macrophytes. Next to functional differ-

ences, aquatic plants can adapt their morphology (e.g.,

small and streamlined plants) depending on local

hydrodynamic stress level and on whether the water is

eutrophic or mesotrophic (Zhu et al., 2018a). Future

research endeavors related to the occurrence of aquatic

macrophytes might more explicitly consider changes

in plant morphology.

Implications for shallow lake restoration

In Europe, and in the Netherlands, active revegetation

programs and natural revegetation following

improved water conditions of unvegetated shallow

lakes is important with respect to the European Water

Framework Directive (Bouleau & Pont, 2015). This

framework sets targets for the ecological quality of

water bodies (e.g., composition and abundance of

macrophytes). However, restoration is challenging

due to various, and often human-induced, bottlenecks

including eutrophication, carbon limitation, water

clarity and overgrazing (Gulati & van Donk, 2002;

Lamers et al., 2002; van de Haterd & ter Heerdt, 2007;

Bakker et al., 2013; Phillips et al., 2016). This study

provides insight into the occurrence of certain species

in a shallow peat lake complex, without light limita-

tion and without recreation and associated distur-

bances, which could be driven by growth form and

life-history traits, water depth and fetch. For restora-

tion measures, this implies that some species can only

be expected within a certain fetch and water depth

(e.g., N. lutea and N. alba) or that certain species

should be used for restoration measures that can occur

at sites with a high fetch and water depth (e.g., P.

lucens). Beyond our survey, grazing by water birds,

crayfish and fish may influence the occurrence of

certain species by selective consumption (Bakker

et al., 2013; Roessink et al., 2017). To improve the

understanding of the functioning of shallow peat lakes,

future research might focus on the interaction between

grazing and the occurrence of macrophytes that have

distinct life-history traits. Altogether, the improved

understanding of the biogeochemical and hydro-

morphological functioning of this peat lake complex

may aid in the revegetation and conservation of

shallow peat lakes via species-selection depending on

the environmental context.
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Lehner, B. & P. Döll, 2004. Development and validation of a

global database of lakes, reservoirs and wetlands. Journal

of Hydrology 296: 1–22. https://doi.org/10.1016/j.jhydrol.

2004.03.028.

Łoboda, A., Ł. Przyborowski, M. Karpiński, R. Bialik & V.
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