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FOUR PAGES ARE INDEED NECESSARY FOR PLANAR GRAPHS

Michael A. Bekos,∗Michael Kaufmann,†Fabian Klute,‡

Sergey Pupyrev,§Chrysanthi Raftopoulou,¶and Torsten Ueckerdt‖

Abstract. An embedding of a graph in a book consists of a linear order of its vertices
along the spine of the book and of an assignment of its edges to the pages of the book, so
that no two edges on the same page cross. The book thickness of a graph is the minimum
number of pages over all its book embeddings. Accordingly, the book thickness of a class
of graphs is the maximum book thickness over all its members. In this paper, we address
a long-standing open problem regarding the exact book thickness of the class of planar
graphs, which previously was known to be either three or four. We settle this problem by
constructing planar graphs that require four pages in all of their book embeddings, thus
establishing that the book thickness of the class of planar graphs is four.

1 Introduction

Embedding graphs in books is a fundamental problem in graph theory, which has been the
subject of intense research over the years mainly due to the numerous applications that it finds,
e.g., in VLSI design, transportation planning and graph drawing [9, 11, 47, 14, 32, 36, 44, 40,
45]. Early results date back to the 70s by Ollmann [39], while several important milestones
appear regularly over the years [8, 11, 14, 23, 26, 49]. In a book embedding of a graph, the
vertices are restricted to a line, called the spine of the book, and the edges are assigned to
different half-planes delimited by the spine, called pages of the book, so that no two edges
on the same page cross; see Fig. 1. The book thickness (or stack number or page number) of
a graph is the minimum number of pages required by any of its book embeddings.

Back in 1979, Bernhart and Kainen observed that the book thickness of a graph can be
linear in the number of its vertices; for instance, the book thickness of the complete n-vertex
graph Kn is dn/2e; see [8]. Bounds on the book thickness that are sublinear in the number of
vertices are known for several classes of graphs; see [35, 34, 18, 23, 12, 37, 3]. Planar graphs are
the most notable such class, as is evident from the numerous papers that have been published
on the topic over the years [13, 26, 31, 8, 38, 33, 16, 43, 22, 4, 30, 20, 24, 26, 25, 48, 49, 42, 1].
In particular, the graphs with book thickness one are precisely the outerplanar graphs [8]. The
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graphs with book thickness at most two are the subgraphs of planar Hamiltonian graphs [8],
which include planar bipartite [22] and series-parallel graphs [43].

The study of the book thickness of general planar graphs was suggested by Leighton,
who asked whether their book thickness is bounded by a constant; see [13]. Even though
Bernhart and Kainen [8] initially conjectured that even the planar 3-trees (i.e., planar graphs
with treewidth 3) have unbounded book thickness, the first positive answer to the question
by Leighton was given by Buss and Shor [13], who proposed a simple recursive (on the
number of separating triangles) algorithm to embed every planar graph in a book with nine
pages; note that a planar graph without separating triangles is Hamiltonian [46], and thus
embeddable in two pages.

The bound of nine pages by Buss and Shor was improved to seven by Heath [26], who
introduced an important methodological foundation called peeling-into-levels1, according to
which the vertices of a planar graph are partitioned into levels such that (i) the vertices on
the unbounded face are at level 0, and (ii) the vertices that are on the unbounded face of the
subgraph induced by deleting all vertices of levels ≤ i− 1 are at level i (0 < i < n). It is not
difficult to see that the subgraph induced by the vertices at each level is outerplanar, and
thus embeddable in a single page [8]. Hence, the main challenge is to embed the remaining
edges, that is, those connecting vertices in consecutive levels.

Heath [26] managed to address this challenge with a relatively simple algorithm
that uses six pages. In a subsequent work, which is probably the most cited in the field,
Yannakakis [49] improved upon Heath’s algorithm. Using the peeling-into-levels technique,
he proposed a simple algorithm that yields embeddings in books with five pages (even though,
the details of the algorithm are left to the reader). With a more complicated and involved
algorithm, which is based on distinguishing different cases of the underlying order and the
edges to be embedded, Yannakakis reduced the required number of pages to four, which is
currently the best-known upper bound on the book thickness of planar graphs.

The best-known lower bound is usually attributed to Goldner and Harary [24], who
proposed the smallest maximal planar graph that is not Hamiltonian, and therefore not
embeddable in books with two pages; see Fig. 1a. However, this particular graph is a
planar 3-tree and by a result of Heath [26], it is embeddable in a book with three pages; see
Fig. 1b. Note that determining the exact book thickness of a planar graph turns out to be
an NP-complete problem, even for maximal planar graphs [46].

To the best of our knowledge, there is no planar graph described in the literature
that requires more than three pages despite various efforts. In an extended abstract of [49],
which appeared at STOC in 1986 [48], Yannakakis claimed the existence of such a graph
and provided a sketch of a proof; notably the arguments in this sketch seem to be sound
apart from the fact that some of the gadget-graphs that are central in the proof are not
defined. The details of this sketch, however, never appeared in a paper. Furthermore, the
proof-sketch was not part of the subsequent journal version [49] of the extended abstract [48].
Thus the problem of determining whether there exists a planar graph that requires four pages
still remains unsolved, as also noted by Dujmović and Wood [18] in 2007, and clearly forms
the most intriguing open problem in the field. Note that, in the same work, Dujmović and

1In the literature, sometimes this technique is erroneously attributed to Yannakakis [49].
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Figure 1: Illustration of (a) the Goldner-Harary graph and (b) its 3-page book embedding in
which edges assigned to different pages are colored differently.

Wood proposed a planar graph that might require four pages in any of its book embeddings.
However, they had overlooked a previous result by Heath [26] regarding the book thickness
of planar 3-trees, which immediately implies that their claim was not valid. A more recent
attempt to find a planar graph that requires four pages was made by Bekos, Kaufmann,
and Zielke [7], who proposed a formulation of the problem of testing whether a given (not
necessarily planar) graph admits an embedding into a book with a certain number of pages
as a SAT instance, and systematically tested several hundred maximal planar graphs but
without any particular success. Later Pupyrev [42] computed book embeddings of all maximal
planar graphs of size n ≤ 18 and found no instance that requires four pages.

Our contribution. In this paper, we address the aforementioned long-standing open
problem. Our main result is summarized in the following theorem.

Theorem 1. There exist planar graphs that do not admit 3-page book embeddings.

Together with Yannakakis’ upper bound of four [49], Theorem 1 implies the following corollary.

Corollary 1. The book thickness of the class of planar graphs is four.

We provide two proofs of Theorem 1. The first one is combinatorial (with some computer-
aided prerequisites) and regards a significantly large planar graph. After recalling basic
notions and results on book embeddings in Section 2, we describe the construction of this
graph in Section 3, where we also present two properties of a particular subgraph of it, which
have been verified by a computer (refer to Facts 1 and 2). In Section 4, we prove that the
graph presented in Section 3 does not admit a 3-page book embedding. We give the main
ingredients of this proof in Section 4.1, while in Section 4.2 we investigate a systematic
analysis of cases of different underlying linear orders to conclude our main result.

We remark that our graph has treewidth 4. This is in contrast with planar graphs of
treewidth 3 that always admit 3-page book embeddings [26]. Note that, in general, the class
of graphs with treewidth k has book thickness k if k ≤ 2 and k + 1 if k ≥ 3 [18, 23].

The second proof of Theorem 1 is purely computer-aided; see Section 5. With two
independent implementations [5, 41] of the SAT formulation presented in [7], we confirm that
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a particular maximal planar graph with 275 vertices does not admit a 3-page book embedding;
see Fig. 9 for an illustration of the graph. A key to our approach is the introduction of
several symmetry-breaking constraints in the SAT instance. These constraints help to reduce
the search space of possible satisfying assignments and made the instance verifiable using
modern SAT solvers. We conclude in Section 6 with several open problems.

Remark 1. We remark that some weeks after we made our results available on ArXiv [6], a
paper by Yannakakis [50, 51] appeared online independently proving Theorem 1. Although the
flavor of the arguments are similar in both papers, our proofs are more concrete and provide
exact estimations on the size of the constructed graphs. Additionally, we provide a fairly
small planar graph, which is not 3-page book embeddable. Notably, this graph is the smallest
known example that requires four pages.

2 Preliminaries

A vertex ordering ≺ of a simple undirected graph G = (V,E) is a total order of its vertex
set V , such that for any two vertices u and v, u ≺ v if and only if u precedes v in the order.
Two vertices u and v are said to be on opposite sides of an edge (x, y), where u ≺ v and
x ≺ y, if u ≺ x ≺ v ≺ y or x ≺ u ≺ y ≺ v. Otherwise, u and v are on the same side of
(x, y). We write [v1, v2, . . . , vk] to denote vi ≺ vi+1 for all 1 ≤ i < k. Let F be a set of k ≥ 2
independent pairs of vertices 〈si, ti〉, that is, F = {〈si, ti〉; i = 1, 2, . . . , k}. Assume without
loss of generality that si ≺ ti, for all 1 ≤ i ≤ k. If the order is [s1, . . . , sk, tk, . . . , t1], then we
say that the pairs of F form a k-rainbow, while if the order is [s1, t1, . . . , sk, tk], then the pairs
of F form a k-necklace. The pairs of F form a k-twist if the order is [s1, . . . , sk, t1, . . . , sk].
Note that since each edge is defined by a pair of vertices, the three definitions are directly
extendable to independent edges; see Fig. 2. For this case, two independent edges that
form a 2-twist (respectively, 2-rainbow, 2-necklace) are commonly referred to as crossing
(respectively, nested, disjoint).

A k-page book embedding of a graph is a pair E = (≺, {E1, . . . , Ek}), where ≺ is a
vertex ordering of G and {E1, . . . , Ek} is a partition of E into sets of pairwise non-crossing
edges, called pages. Equivalently, a k-page book embedding is a vertex ordering and a
k-edge-coloring such that no two edges of the same color cross with respect to the ordering.
The book thickness of a graph G is the minimum k such that G admits a k-page book
embedding. As noted in several papers, a k-page book embedding, E , can be transformed
into a circular embedding, C(E), with a k-edge-coloring in which all vertices appear on a
circle in the same order as in E and the edges are drawn as straight-line segments in the
interior of the circle, such that no two edges of the same color cross, and vice versa [8, 26];
see Fig. 5. The next lemma, whose proof is immediate, provides sufficient conditions for the
non-existence of a 3-page book embedding.

Lemma 1. A 3-page book embedding of a graph does not contain: (i) four edges that form a
4-twist in ≺, (ii) a pair of crossing edges that both cross two edges assigned to two different
pages, and (iii) an edge that crosses three edges assigned to three different pages.

The next result by Erdős and Szekeres [19] is used to simplify our case analysis.
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Figure 2: Illustration of three edges that form: (a) a 3-rainbow, (b) a 3-twist, and (c) a
3-necklace.

Lemma 2 (Erdős and Szekeres [19]). Given a, b ∈ N, every sequence of distinct real numbers
of length at least a · b+ 1 contains a monotonically increasing subsequence of length a+ 1 or
a monotonically decreasing subsequence of length b+ 1.

Lemma 2 implies that, for every r ≥ 1, if the input graph has sufficiently many
independent edges, then one can always find r of them that form an r-rainbow or an r-twist or
an r-necklace in every ordering ≺. To see this, assume that the graph contains r3 independent
edges. Represent each edge connecting the i-th with the j-th vertex in ≺ by a pair (i, j)
with i < j. Consider the pairs sorted by the first coordinates, and apply Lemma 2 with
a = r2 and b = r − 1 to the second coordinates of the edges. Then, either (i) there exists
r2 + 1 edges such that every pair of them forms a 2-twist or a 2-necklace (corresponding to
an increasing subsequence), which implies that r of them form an r-twist or an r-necklace [2],
or (ii) there exists an r-rainbow (corresponding to a decreasing subsequence). Note that the
same argument can be applied to r3 designated pairs of vertices (not necessarily connected
by an edge); thus we have the following corollary.

Corollary 2. For every vertex ordering, ≺, of a graph with r3 designated pairs of vertices,
one can identify r pairs that form either an r-rainbow or an r-twist or an r-necklace in ≺.

3 The Basic Graph Structure

The graph used to prove Theorem 1 is built using a sequence of gadgets—planar graphs
that do not admit a 3-page book embedding under certain conditions. To define a gadget,
denoted by Qk, we recall the operation of the stellation of a face f , that is, the addition of a
vertex in the interior of f connected to all vertices delimiting f . Accordingly, the operation
of stellating a plane graph consists of stellating all its bounded faces.

For k ≥ 2, graph Qk is a plane graph, which contains as a subgraph the complete
bipartite graph K2,k with bipartition {{A,B}, {t0, . . . , tk−1}}; see Fig. 3a. We choose the
embedding of Qk such that the faces of K2,k are Fi = 〈A, ti, B, ti+1〉 for i = 0, . . . , k − 1
(indices taken modulo k) with Fk−1 being its outerface. We refer to vertices A and B as the
poles of Qk, and to the vertices t0, . . . , tk−1 as the terminals of Qk. For i = 0, . . . , k − 2, we
call terminals ti and ti+1 of Qk consecutive; notice that t0 and tk−1 are not consecutive by
the definition.

Let i ∈ {0, . . . , k − 2}. In Qk, vertices A and B are connected by a path of length 3
which is embedded within Fi and consists of the following three edges: (A, bi), (bi, ai) and
(ai, B); see Fig. 3b. We refer to the two vertices ai and bi of this path as the satellites of the
(consecutive) terminals ti and ti+1; accordingly, we refer to the edge connecting ai and bi as the
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Figure 3: Illustration for the construction of graph Qk.

satellite edge of ti and ti+1. Observe that we do not embed any path in Fk−1. The two faces
on the opposite sides of the path embedded in Fi are triangulated by the edges (ti, ai), (ti, bi)
as well as (ti+1, ai) and (ti+1, bi). We proceed by stellating the graph constructed so far
twice (refer to the gray and blue vertices in Fig. 3b, respectively). Let ci, di, ei and fi
be the vertices that stellated 〈A, ti, bi〉, 〈A, bi, ti+1〉, 〈B, ti, ai〉 and 〈B, ai, ti+1〉 in the first
round of stellation. Let c′i, d

′
i, e
′
i and f

′
i be the vertices that stellated 〈ci, ti, bi〉, 〈di, bi, ti+1〉,

〈ei, ti, ai〉 and 〈fi, ai, ti+1〉 in the second round of stellation; refer to the blue-colored vertices
that lie within the gray-shaded regions of Fig. 3b. We proceed by stellating faces 〈ci, c′i, ti〉,
〈ci, c′i, bi〉, 〈di, d′i, bi〉, 〈di, d′i, ti+1〉, 〈ei, e′i, ti〉, 〈ei, e′i, ai〉, 〈fi, f ′i , ai〉 and 〈fi, f ′i , ti+1〉; refer to
the red-colored vertices of Fig. 3b. The satellite edge (ai, bi) delimits two faces, each of which
is neighboring two other faces that we stellate; refer to the green-colored vertices of Fig. 3b.
Edge (A,B) completes the construction of Qk. Note that graph Q2, the first member in the
described family, consists of 42 vertices and 126 edges.

The following two facts that hold for certain members of the constructed graph family
have been verified by a computer using the SAT-formulation proposed in [7]; we provide
further details in Section 5. We use these facts in the combinatorial proof of Theorem 1.

Fact 1. Graph Qk with k ≥ 7 does not admit an embedding in a book with three pages, Blue,
Red and Green, under the following restrictions: (i) the poles A and B are consecutive in
the ordering, (ii) all edges from A to the terminals of Qk belong to Blue, and (iii) all edges
from B to the terminals of Qk belong to Red or Green.

Fact 2. Graph Qk with k ≥ 10 does not admit an embedding in a book with three pages,
Blue, Red and Green, under the following restrictions: (i) all terminals of Qk are on the
same side of (A,B), (ii) all edges from A to the terminals of Qk belong to Blue, and (iii) all
edges from B to the terminals of Qk belong to Red.

Note that Fact 1 imposes stronger restrictions in the vertex ordering than Fact 2, while
Fact 2 imposes stronger restrictions to the edges adjacent to A and B. In the remainder, we

http://jocg.org/


JoCG 11(1), 332–353, 2020 338

Journal of Computational Geometry jocg.org

K4K4
C4

Figure 4: Attaching two copies of the complete graph K4 along two edges of a 4-cycle C4.

denote by Q the smallest member of the constructed family of graphs for which both Facts 1
and 2 hold:

Q := Q10

Consider a plane graph G and let H be a plane graph with two designated vertices A
and B that appear consecutively along its outerface. The operation of attaching H along an
edge (u, v) of G consists of removing (u, v) from G and of introducing H into G by identifying
vertex A of H with vertex u of G and vertex B of H with vertex v of G; see Fig. 4. The
obtained graph is clearly planar, since both G and H are planar and simple due to removal
of (u, v) from G.

4 A Combinatorial Proof with Computer-Aided Prerequisites

In this section, we construct a planar graph G containing several copies of Q. Using Facts 1
and 2, we explore certain properties of graph G (Section 4.1) to prove that it does not admit
a 3-page book embedding by analyzing possible vertex orderings (Section 4.2).

4.1 The Idea

We prove Theorem 1 by contradiction, that is, by assuming that G admits a book embedding
E with three pages denoted by Blue, Red, and Green. Graph G contains as a subgraph a
base graph, which we denote by GN , consisting of a large number N � 1 of copies of graph Q
that share the same pair of poles, A and B, and edge (A,B). Hence, graph GN is symmetric
with respect to A and B. Let nQ and mQ be the number of vertices and edges in Q, and
let bQ be the number of 3-page book embeddings of graph Q. Clearly bQ is upper bounded
by 3mQ · nQ!; it follows that if N is at least κ · 3mQ · nQ!, then by pigeonhole principle GN
contains κ copies of graph Q with the majority property, that is, corresponding vertices of Q
in each of these κ copies appear in the same relative order in E , and additionally the edges
that connect these vertices in each of the copies are assigned to the same pages. We refer
to two vertices that correspond to the same vertex in Q and that belong to different copies
satisfying the majority property as twin vertices. Accordingly, two edges connecting twin
vertices are called twin edges.

Lemma 3. A pair of independent twin edges either form a 2-rainbow or a 2-necklace in E.

Proof. Observe that two independent twin edges cannot form a 2-twist, as they are assigned
to the same page in E by the majority property.
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Next we further increase N to guarantee an additional property, called the monotonic
property, for the κ copies of graph Q that comply with the majority property. Denote by pQ
the number of pairs of vertices in Q, that is, pQ =

nQ(nQ−1)
2 . By Corollary 2, if N is at least

κ3·pQ · 3mQ · nQ!, then one can identify κ copies of Q in GN complying with the majority
property, such that, for each pair of vertices of Q, the corresponding pairs of vertices in these
κ copies form a κ-rainbow or κ-twist or a κ-necklace in E . We specify κ in the case analysis
of Section 4.2.

While we mainly focus on the base graph GN , to facilitate our analysis in cases in
Section 4.2, we perform an augmentation step that completes the construction of G. Let HN

be a copy of the base graph GN . We attach a copy of HN along every satellite edge of the
base graph GN . We refer to the obtained graph as the final graph G, which by construction
is biconnected; the poles of the base graph GN and the endvertices of each of its satellite
edges are separation pairs in G. Next we investigate all possible vertex orderings of G in its
3-page book embedding E .

4.2 Case analysis

Consider the base graph GN and let Q1, . . . ,Qκ be the κ copies of graph Q that comply
with the majority and the monotonic properties. Assuming that A is the first vertex in E ,
we consider two main cases in our proof:

C.1. There exist two terminals of Q1 that are on opposite sides of edge (A,B) in E .
C.2. All terminals of Q1 are on the same side of (A,B) in E .

Case C.1: We first rule out Case C.1 in which there exist two terminals of Q1, say 〈x1, y1〉,
that are on opposite sides of edge (A,B) in E . Observe that in this case it is not a loss of
generality to assume that x1 and y1 are consecutive in the sequence of terminals of Q1. By
the majority property, the corresponding terminals 〈x2, y2〉, . . . , 〈xκ, yκ〉 of Q2, . . . ,Qκ are
also on opposite sides of edge (A,B). Let 〈a1, b1〉, . . . , 〈aκ, bκ〉 be the corresponding satellite
vertices of 〈x1, y1〉, . . . , 〈xκ, yκ〉. W.l.o.g., we further assume that x1 ≺ . . . ≺ xκ, which by
the monotonic property implies that either y1 ≺ . . . ≺ yκ or yκ ≺ . . . ≺ y1. Since GN is
symmetric with respect to A and B, we may further assume that the ordering of the vertices
in E is either [A . . . x1 . . . xκ . . . B . . . y1 . . . yκ] or [A . . . x1 . . . xκ . . . B . . . yκ . . . y1]. We next
prove that both patterns are forbidden, assuming κ = 3. Since GN is symmetric with respect
to A and B, by the majority property we may further assume w.l.o.g. that ai and xi are on
the same side of (A,B), namely, A ≺ ai ≺ B holds, for each i = 1, . . . , κ.

Forbidden Pattern 1. [A . . . x1 . . . x2 . . . x3 . . . B . . . y1 . . . y2 . . . y3 . . . ]

Proof. By the monotonic property, it follows that either a1 ≺ a2 ≺ a3 or a3 ≺ a2 ≺ a1 holds,
and that b1 ≺ b2 ≺ b3 or b3 ≺ b2 ≺ b1 holds. We start with a few auxiliary propositions.

Proposition 1. A ≺ x3 ≺ a3 ≺ a2 ≺ a1 ≺ B.
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Proof. If a1 ≺ a2 ≺ a3, then the twin edges (a1, y1), (a2, y2) and (a3, y3) form a 3-twist in
E , which contradicts Lemma 3. Hence, a3 ≺ a2 ≺ a1 must hold. Assume now that a1 ≺ x1,
which by the majority property implies that ai ≺ xi, for each i = 1, 2, 3. Since a3 ≺ a2 ≺ a1
holds, it follows that the relative order is [A . . . a3 . . . a2 . . . a1 . . . x1 . . . x2 . . . x3 . . . B].
Hence, edges (a1, y1), (a2, B), (a3, x3) and (A, x2) form a 4-twist in E , which is a contra-
diction by Lemma 1.i. Thus, x1 ≺ a1 must hold, which by the majority property implies
that xi ≺ ai, for each i = 1, 2, 3. Since x3 ≺ a3 and a3 ≺ a2 ≺ a1 holds, the proposition
follows.

Similarly, we can prove the following.

Proposition 2. If A ≺ b1 ≺ B, then A ≺ b3 ≺ b2 ≺ b1 ≺ x1 ≺ B.
Proposition 3. If B ≺ b1, then B ≺ b3 ≺ b2 ≺ b1 ≺ y1.

Let i ∈ {1, 2, 3}. We consider two cases, depending on whether ai and bi are on the same or
on different sides of (A,B). Assume first the former case. Since A ≺ ai ≺ B, it follows that
A ≺ bi ≺ B. By Propositions 1 and 2, the relative order is [A . . . b3 . . . b2 . . . b1 . . . x1 . . . x3
. . . a3 . . . a2 . . . a1]. Hence, edges (a1, b1), (a2, b2), (a3, b3) and (A, x1) form a 4-twist; a
contradiction by Lemma 1.i. Assume ai and bi are on different sides of (A,B). By the majority
property, B ≺ yi. By Propositions 1 and 3, the relative order is [A . . . a3 . . . a2 . . . a1 . . . B . . .
b3 . . . b2 . . . b1], which implies that edges (a1, b1), (a2, b2), (a3, b3) and (A,B) form a 4-twist;
a contradiction by Lemma 1.i.

Forbidden Pattern 2. [A . . . x1 . . . x2 . . . x3 . . . B . . . y3 . . . y2 . . . y1]

Proof. Let i ∈ {1, 2, 3}. By the monotonic property, either a1 ≺ a2 ≺ a3 or a3 ≺ a2 ≺ a1
holds, and either b1 ≺ b2 ≺ b3 or b3 ≺ b2 ≺ b1 holds. Since A ≺ ai ≺ B, it follows that
if a3 ≺ a2 ≺ a1, then the twin edges (a1, y1), (a2, y2) and (a3, y3) form a 3-twist, which a
contradiction by Lemma 3. Hence, A ≺ a1 ≺ a2 ≺ a3 ≺ B holds.

We proceed by distinguishing two subcases depending on whether the satellite vertices
ai and bi are on the same or different sides of (A,B). We first consider the former case.
Since A ≺ a1 ≺ a2 ≺ a3 ≺ B holds, it follows that either A ≺ b1 ≺ b2 ≺ b3 ≺ B or
A ≺ b3 ≺ b2 ≺ b1 ≺ B holds. If b3 ≺ b2 ≺ b1, then the twin edges (b1, y1), (b2, y2) and
(b3, y3) form a 3-twist, which is a contradiction by Lemma 3. Hence, A ≺ b1 ≺ b2 ≺ b3 ≺ B
must hold. By the monotonic property, the partial order of vertices A, B and of the vertices
in {xi, yi, ai, bi; i = 1, 2, 3} is one of the following FP2.1-FP2.4; note that the cases that
corresponds to FP2.3 and FP2.4 in which the terminal xi precedes the satellite vertices ai
and bi, are symmetric to FP2.4 and FP2.3, respectively, due to the symmetry of GN with
respect to A and B.

FP2.1 [A . . . a1 . . . x1 . . . b1 . . . a2 . . . x2 . . . b2 . . . a3 . . . x3 . . . b3 . . . B . . . y3 . . . y2 . . . y1]

Refer to Fig. 5a. Since edges (A, x3), (x1, B) and (a2, y2) form a 3-twist, they are
assigned to different pages in E . By the majority property, we may assume that
(A, xi) ∈ Red, (ai, yi) ∈ Green and (xi, B) ∈ Blue. It follows that (bi, yi) ∈ Green
and (ai, bi) ∈ Green. Consider now vertex saby2 of GN that was introduced due to
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Figure 5: Illustrations for (a) FP2.1, (b) FP2.2, (c) FP2.3, and (d) FP2.4.

the stellation of face 〈a2, b2, y2〉 in GN . Due to edge (b2, s
aby
2 ), vertex saby2 can be

neither in [A . . . a2] nor in [y2 . . . A], as otherwise (b2, s
aby
2 ) crosses (x2, B) ∈ Blue,

(a2, y2) ∈ Green and either (A, x2) ∈ Red or (A, x3) ∈ Red, respectively, which is a
contradiction by Lemma 1.iii. Similarly, due to edge (y2, s

aby
2 ), vertex saby2 cannot

be in [a2 . . . b2]. Finally, due to edge (a2, s
aby
2 ), vertex saby2 cannot be in [b2 . . . y2].

Hence, there is no feasible placement of saby2 in E , which is a contradiction.

FP2.2 [A . . . b1 . . . x1 . . . a1 . . . b2 . . . x2 . . . a2 . . . b3 . . . x3 . . . a3 . . . B . . . y3 . . . y2 . . . y1]

Refer to Fig. 5b. This case can be led to a contradiction following the reasoning
of FP2.1.

FP2.3 [A . . . a1 . . . b1 . . . x1 . . . a2 . . . b2 . . . x2 . . . a3 . . . b3 . . . x3 . . . B . . . y3 . . . y2 . . . y1]

Refer to Fig. 5c. Since edges (A, x3), (x1, B) and (a2, y2) form a 3-twist, we can
assume that (A, xi) ∈ Red, (ai, yi) ∈ Green and (xi, B) ∈ Blue, which implies that
(bi, yi) ∈ Green, (ai, B) ∈ Blue, (A, bi) ∈ Red and (ai, xi) ∈ Blue. Consider now
vertex sBax2 of GN that was introduced due to the stellation of face 〈B, a2, x2〉 in
GN . Due to edge (a2, s

Bax
2 ), vertex sBax2 cannot be in [x2 . . . y2]. Analogously, vertex

sBax2 cannot be in [y2 . . . a2], due to edge (x2, s
Bax
2 ). Finally, vertex sBax2 cannot be

in [a2 . . . x2], due to edge (B, sBax2 ). Hence, there is no feasible placement of sBax2 in
E ; a contradiction.

FP2.4 [A . . . b1 . . . a1 . . . x1 . . . b2 . . . a2 . . . x2 . . . b3 . . . a3 . . . x3 . . . B . . . y3 . . . y2 . . . y1]

Refer to Fig. 5d. Since edges (A, x3), (x1, B) and (a2, y2) form a 3-twist, we
can assume that (A, xi) ∈ Red, (ai, yi) ∈ Green and (xi, B) ∈ Blue. Hence,
(ai, B), (xi, B) ∈ Blue, (bi, yi) ∈ Green and (A, bi), (bi, xi) ∈ Red. It is not hard to
see that there is no feasible placement for vertex sAbx2 of GN introduced due to the
stellation of face 〈A, b2, x2〉 in E .

We now consider the case in which the satellite vertices ai and bi are on different sides of
(A,B). Since A ≺ a1 ≺ a2 ≺ a3 ≺ B, either B ≺ b1 ≺ b2 ≺ b3 or B ≺ b3 ≺ b2 ≺ b1 holds. If
b1 ≺ b2 ≺ b3, then a 3-twist is formed by the twin edges (b1, x1), (b2, x2) and (b3, x3), which
is a contradiction by Lemma 3. Hence, b3 ≺ b2 ≺ b1 must hold. By the monotonic property,
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Figure 6: Illustrations for (a) FP2.7 and (b) FP2.8.

the partial order of vertices A, B and of the vertices in {xi, yi, ai, bi; i = 1, 2, 3} is one of the
following:

FP2.5 [A . . . x1 . . . a1 . . . x2 . . . a2 . . . x3 . . . a3 . . . B . . . b3 . . . y3 . . . b2 . . . y2 . . . b1 . . . y1]

Edges (A, x3), (x1, B), (x2, b2), (a2, y2) form a 4-twist; a contradiction by Lemma 1.i.

FP2.6 [A . . . a1 . . . x1 . . . a2 . . . x2 . . . a3 . . . x3 . . . B . . . y3 . . . b3 . . . y2 . . . b2 . . . y1 . . . b1]

Edges (A, x3), (x1, B), (x2, b2), (a2, y2) form a 4-twist; a contradiction by Lemma 1.i.

FP2.7 [A . . . a1 . . . x1 . . . a2 . . . x2 . . . a3 . . . x3 . . . B . . . b3 . . . y3 . . . b2 . . . y2 . . . b1 . . . y1]

As opposed to FP2.1–FP2.6, we do not directly rule out this case. Instead, we identify
a copy of GN in the final graph G (see Section 4.1) for which the preconditions of
Case C.2 hold. Thus, we reduce this case to C.2, for which a direct contradiction is
shown below.

Refer to Fig. 6a. Since edges (A, x3), (x1, B) and (a2, y2) form a 3-twist, by the
majority property, we may assume that (A, xi) ∈ Red, (ai, yi) ∈ Green and (xi, B) ∈
Blue. Hence, (bi, xi) ∈ Green and (ai, bi) ∈ Green. Since (ai, yi) ∈ Green and since
edges (A, y3), (y1, B) and (a2, y2) also form a 3-twist, by the majority property, we
may further assume that either (A, yi) ∈ Blue and (yi, B) ∈ Red, or (A, yi) ∈ Red
and (yi, B) ∈ Blue. In the following, we discuss the former case; the latter is
analogous.

Consider the copy HN of graph GN that is attached along the satellite edge (a2, b2)
in the final graph G, and let Q(a2,b2) be any copy of graph Q in HN . We prove that
no two terminals of Q(a2,b2) are on opposite sides of (a2, b2). Assume the contrary,
which implies that there exist two consecutive terminals, say x and y, of Q(a2,b2)

that are on opposite sides of (a2, b2). It is not difficult to see that either x is in
[a2 . . . x2] and y is in [b2 . . . y2], or vice versa; see Fig. 6a. By construction of graph
Q(a2,b2), vertices x and y are connected by a path of length 2 in Q(a2,b2) \ {a2, b2}.
Let z be the intermediate vertex of this path. Due to edge (x, z), vertex z can be
only in [x1 . . . x2], which implies that its second edge (z, y) crosses three edges of
different colors; a contradiction by Lemma 1.iii. Hence, all terminals of Q(a2,b2) are
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on the same side of (a2, b2). As this property holds for all copies of graph Q in HN ,
Case C.2 applies for graph HN , as we mentioned above.

FP2.8 [A . . . x1 . . . a1 . . . x2 . . . a2 . . . x3 . . . a3 . . . B . . . y3 . . . b3 . . . y2 . . . b2 . . . y1 . . . b1]

Refer to Fig. 6b. This case can be reduced to C.2 closely following the reasoning
of FP2.7.

This concludes the discussion of Case C.1 in which there exist two terminals of Q1 (and thus,
of Q2, . . . ,Qκ) that are on opposite sides of edge (A,B) in E .

Case C.2: We next rule out the case in which all terminals of Q1 (and, thus of Q2, . . . ,Qκ)
are on the same side of (A,B) in E . By Fact 2 applied on Q1, we may assume that there
exist two terminals, and thus two consecutive terminals 〈x1, y1〉, of Q1 such that either edges
(A, x1) and (A, y1), or edges (B, x1) and (B, y1) have been assigned to different pages in
E . Assume w.l.o.g. that (B, x1) ∈ Red and (B, y1) ∈ Green. Since GN is symmetric with
respect to A and B, we may further assume w.l.o.g. that A ≺ x1 ≺ y1 ≺ B. By the majority
property, the corresponding terminals 〈x2, y2〉, . . . , 〈xκ, yκ〉 of Q2, . . . ,Qκ are also between
A and B in ≺, and (B, xi) ∈ Red and (B, yi) ∈ Green, for each i = 1, . . . , κ. W.l.o.g., let
x1 ≺ . . . ≺ xκ. Finally, let 〈a1, b1〉, . . . , 〈aκ, bκ〉 be the corresponding satellite vertices of
〈x1, y1〉, . . . , 〈xκ, yκ〉. By Lemma 2, there are three subcases to consider, namely, the pairs
〈x1, y1〉, . . . , 〈xκ, yκ〉 can form a κ-twist, a κ-rainbow, or a κ-necklace; refer to Forbidden
Patterns 3, 4 and 5, respectively. To rule out the first two, it suffices to assume κ = 3.
However, for the last one we use a larger value for κ.

Forbidden Pattern 3. [A . . . x1 . . . x2 . . . x3 . . . y1 . . . y2 . . . y3 . . . B]

Proof. Let i ∈ {1, 2, 3}. Since edge (A, y2) crosses both (B, x1) ∈ Red and (B, y1) ∈ Green,
by the majority property that (A, yi) ∈ Blue. Similarly, (A, xi) ∈ Blue or (A, xi) ∈ Green.

Proposition 4. x1 ≺ ai ≺ y3 and x1 ≺ bi ≺ y3

Proof. Assume to the contrary that ai ≺ x1 or y3 ≺ ai. If ai ≺ x1 or B ≺ ai, edge
(a2, y2) crosses (A, y1) ∈ Blue, (B, x1) ∈ Red, (B, y1) ∈ Green, a contradiction by
Lemma 1.iii; see Fig. 7a. Otherwise (y3 ≺ ai ≺ B), edge (a2, x2) crosses (A, y1) ∈ Blue,
(B, x3) ∈ Red, (B, y1) ∈ Green, a contradiction by Lemma 1.iii. The proof of the other
claim is analogous.

Proposition 5. x3 ≺ a3 ≺ a2 ≺ a1 ≺ y1 and x3 ≺ b3 ≺ b2 ≺ b1 ≺ y1

Proof. We argue for the former; the latter is analogous. If the twin edges (a1, x1), (a2, x2)
and (a3, x3) form a 3-necklace, then a2 is in [x1 . . . x3], which implies that edge (a2, y2)
crosses (A, y1) ∈ Blue, (B, x3) ∈ Red and (B, y1) ∈ Green (see Fig. 7b); a contradiction
by Lemma 1.iii. Hence by Lemma 3, (a1, x1), (a2, x2) and (a3, x3) form a 3-rainbow.
Similarly, we argue that edges (a1, y1), (a2, y2) and (a3, y3) also form a 3-rainbow. Since
the two 3-rainbows share a1, a2 and a3, the proof follows from Proposition 4.
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Figure 7: Illustrations for Forbidden Pattern 3.

If (A, xi) ∈ Blue, then (xi, ai) ∈ Green and (B, ai) ∈ Red, which imply that edge (a3, y3)
crosses (A, y1) ∈ Blue, (x1, a1) ∈ Green and (B, a2) ∈ Red (see Fig. 7c); a contradiction by
Lemma 1.iii. Hence, (A, xi) ∈ Green. This implies that (x2, a2) ∈ Blue and (a2, y2) ∈ Red;
see Fig. 7d. Since by majority property (xi, ai) ∈ Blue and (ai, yi) ∈ Red, it follows that
(B, ai) ∈ Green. We next argue about b2. By Proposition 5, b2 is in [x3 . . . y1]. In the
presence of a1, a2 and a3 in the same interval, we can further restrict the placement of b2
either in [a3 . . . a2] or in [a2 . . . a1]. However, in both cases edge (A, b2) crosses three edges
of different colors, namely, (B, a3) ∈ Green, (x1, a1) ∈ Blue and (a3, y3) ∈ Red, which is a
contradiction by Lemma 1.iii.

Forbidden Pattern 4. [A . . . x1 . . . x2 . . . x3 . . . y3 . . . y2 . . . y1 . . . B]

Proof. Since (B, xi) ∈ Red and (B, yi) ∈ Green, as in the proof of Forbidden Pattern 3, we
prove that (A, yi) ∈ Blue, and that either (A, xi) ∈ Blue or (A, xi) ∈ Green. As in the proof
of Proposition 5, we can further prove that a 3-rainbow is formed both by the twin edges
(a1, x1), (a2, x2) and (a3, x3) and by the twin edges (a1, y1), (a2, y2) and (a3, y3). Since both
rainbows share a1, a2 and a3, it is not possible that they exist simultaneously due to the
underlying order [x1 . . . x2 . . . x3 . . . y3 . . . y2 . . . y1].

Forbidden Pattern 5. [A . . . x1 . . . y1 . . . x2 . . . y2 . . . xκ . . . yκ . . . B]

Proof. Let i ∈ {1, 2 . . . , κ}. Recall that (B, xi) ∈ Red and (B, yi) ∈ Green. Since each of
(A, x2) and (A, y2) crosses both (B, x1) ∈ Red and (B, y1) ∈ Green, by majority property
it follows that (A, xi) ∈ Blue and (A, yi) ∈ Blue; see Fig. 8. To rule out this case, we
assume that κ is even, such that κ > dQ + 4, where dQ denotes the length of the maximum
shortest path between a terminal of graph Q and every other vertex of it that passes neither
through A norB. Note that dQ 6= nQ. Consider the copy Qκ/2 of graph Q, to which the
terminals xκ/2 and yκ/2 belong. By Case C.2, all terminals of Qκ/2 are in [A . . . B] in E . In
the following, we show that all the vertices of Qκ/2 that are different from A and B are in
[y1 . . . xκ]. This implies that each of the terminals of Qκ/2 is connected to A through an edge
of the Blue page (as it is involved in crossings with (B, x1) ∈ Red and (B, y1) ∈ Green),
and to B through an edge of either the Red or of the Green page (as it is involved in a
crossing with (A, y1) ∈ Blue). The contradiction is obtained by Fact 1 applied to Qκ/2,
whose preconditions (i)–(iii) are met as discussed above.
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Figure 8: Illustration for Forbidden Pattern 5.

To complete the proof, we observe that all the vertices of Qκ/2 that are different
from A and B and at distance 1 either from xκ/2 or from yκ/2 lie in [xκ/2−1 . . . yκ/2+1], as
otherwise an edge incident to xκ/2 or yκ/2 is inevitably crossing three edges of different colors;
a contradiction by Lemma 1.iii. By induction, we obtain that all the vertices that are different
from A and B and at distance j either from xκ/2 or from yκ/2 lie in [yκ/2−j/2−1 . . . xκ/2+j/2+1],
if j is even, and in [xκ/2−bj/2c−1 . . . yκ/2+bj/2c+1], if j is odd. By the definition of dQ, any
vertex of Qκ/2 different from A and B is in [xκ/2−bdQ/2c−1 . . . yκ/2+bdQ/2c+1], which by the
choice of κ is in [x2 . . . yκ−1], and thus in [y1 . . . xk], as desired.

By Cases C.1 and C.2, it follows that graph G does not admit a 3-page book embedding,
which completes the proof of Theorem 1.

We conclude this section with some insights on the size of graph G. For most of the
patterns that we proved to be forbidden, the value of κ is 3. However, in Forbidden Pattern 5,
this value is increased to dQ + 5, which equals 28. Using this value, one can compute the
number N of copies of graph Q in the base graph GN with nQ = 354, mQ = 1,056 and
pQ = 62,481. Since each of the N copies of graph Q in the base graph GN gives rise to
nine copies of the base graph in the final graph G, the size of graph G is enormously large.
In the next section, we present a considerably smaller graph that serves as a certificate to
Theorem 1.

5 A Computer-Aided Proof

In this section, we first briefly recall an efficient automatic approach for computing book
embeddings with certain number of pages that was first proposed in [7]. Then, we apply this
approach (with appropriate modifications) to find a medium-sized planar graph that requires
four pages, and to verify Facts 1 and 2 for Q7 and Q10, respectively.
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To formulate the book embedding problem as a SAT instance, Bekos et al. [7] use
three different types of variables, denoted by σ, φ and χ, with the following meanings: (i) for
a pair of vertices u and v, variable σ(u, v) is true, if and only if u is to the left of v along the
spine, (ii) for an edge e and a page ρ, variable φρ(e) is true, if and only if edge e is assigned
to page ρ of the book, and (iii) for a pair of edges e and e′, variable χ(e, e′) is true, if and
only if e and e′ are assigned to the same page. Hence, there exist in total O(n2 +m2 + pm)
variables, where n denotes the number of vertices of the graph, m its number of edges, and
p the number of available pages. A set of O(n3 +m2) clauses ensures that the underlying
order is indeed linear, and that no two edges of the same page cross; for details we point the
reader to [7].

Using the above SAT formulation, we are able to test various planar graphs on 3-page
embeddability. One that does not admit a 3-page book embedding (see Fig. 9) is constructed
from graph Q8 by removing the edge connecting its poles A and B and by identifying its
opposite terminals, t0 and t7. Formally, start with an embedded Q8 = (V8, E8) having the
outerface 〈A, t0, B, t7〉 after the removal of (A,B). Then, contract t0 and t7, that is, create a
new graph Q◦8 = (V ◦8 , E

◦
8) in which (i) V ◦8 = V8 \ {t8}, (ii) for every edge (u, v) ∈ E8 such

that u 6= t7, v 6= t7, there exists a corresponding edge (u, v) ∈ E◦8 , and (iii) for every edge
(v, t7) ∈ E8, there exists a corresponding edge (v, t0) ∈ E◦8 ; refer to Fig. 9 for an illustration.
It is easy to see that the contraction of t0 and t8 can be done in a planarity-preserving way,
and hence, Q◦8 is maximal planar with 275 vertices and 819 edges.

Our early attempts to verify 3-page embeddability of Q◦8 were unsuccessful due to an
enormous search space of possible satisfying assignments. To reduce the search space, we
introduce several symmetry-breaking constraints, that is, variable assignments that preserve
the satisfiability of an instance:

– we choose a particular vertex as the first one along the spine: σ(A, v) for every
v ∈ V ◦8 \ {A};

– since Q◦8 is symmetric with respect to the terminals, we select t0 to be the first among
the terminals in the vertex ordering: σ(t0, ti) for all 0 < i ≤ 6;

– a vertex ordering can be reversed without affecting its book embeddability; we introduce
a rule so that the SAT instance contains only one of the two possible solutions: σ(t1, t2);

– to break symmetries of page assignments, we fix an edge to a particular page: φ1(A, t0);

– similarly, another edge can be assigned to one of the first two pages: φ1(B, t0)∨φ2(B, t0);

– since K4 is not 1-page book embeddable (as it is not outerplanar), we impose for every
K4 subgraph of Q◦8 that not all its edges are assigned to the same page, namely, for
every such a subgraph with edges e1, . . . , e6 we set: ¬φρ(e1) ∨ . . . ∨ ¬φρ(e6), for every
1 ≤ ρ ≤ 3.

With two independent implementations of [7] and using the above extra rules, we are
able to verify that graph Q◦8 is not 3-page embeddable, thus providing an alternative proof
to Theorem 1. The source codes of both implementations are available to the community
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Figure 9: Illustration of graph Q◦8 consisting of 275 vertices and 819 edges.

at [5, 41]. The first implementation [41] was executed on a dual-node 28-core 2.4 GHz
Intel Xeon E5-2680 machine with 256GB RAM. To verify unsatisfiability, we used the
plingeling [10] parallel SAT solver, which needed approx. 48 hours using 56 available
threads. The second implementation [5] was executed on a much weaker single-node 4-core
3.3 GHz Intel Core i5-4590 machine with 16GB RAM. Since the machine is weaker, to verify
unsatisfiability, we split the actual problem into subproblems depending on the number of
terminals between A and B. Since the graph is symmetric with respect to A and B, it is
enough to assume that there exist 0, 1, 2 or 3 terminals between A and B. For each of the
cases, we further distinguish subcases depending on the relative order of these terminals. In
total, we consider 28 subproblems, which we solved using the lingeling [10] SAT solver on
a single thread. The total time needed to verify unsatisfiability of these subproblems was
approx. 35 hours.

We emphasize that Q◦8 is likely the minimal graph from the considered family that
requires four pages. For example, an analogously constructed Q◦7, as well as non-contracted
variants, Qk, with up to k = 10, do admit book embeddings in three pages. Similarly,
performing fewer stellations yields 3-page embeddable instances.
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Unlike computationally expensive processing of Q◦8, our approach is very efficient
for verification of Fact 1 and Fact 2. The main reason is that the generated SAT instances
contain more constraints, which significantly reduce the search space of possible solutions.
We use the same two implementations to verify that Q7 does not admit a 3-page book
embedding under the restrictions of Fact 1 and that Q10 does not admit a 3-page book
embedding under the restrictions of Fact 2. Both implementations are able to process the
graphs within several minutes, even when a single-threaded SAT solver is utilized. Again we
stress that the two graphs are minimal in the considered family that satisfy the properties of
the facts.

6 Conclusion

By closing the gap between the lower bound and the upper bound on the book thickness of
planar graphs, we resolved a problem that remained open for more than thirty years. We
mention three interesting research directions that are related to our work.

1. There exist several subclasses of planar graphs with book thickness two proposed in
the literature. For example, 4-connected planar graphs [38], planar graphs without
separating triangles [33], Halin graphs [16], series-parallel graphs [43], bipartite planar
graphs [22], planar graphs of maximum degree 4 [4], triconnected planar graphs of
maximum degree 5 [30], and maximal planar graphs of maximum degree 6 [20]. On
the other hand, the planar graphs with book thickness three are less studied, and
to the best of our knowledge only include the class of planar 3-trees [26]. Recently,
Guan and Yang [25] suggested an algorithm to embed general (that is, not necessarily
triconnected) planar graphs of maximum degree 5 in books with three pages, but it is
not known whether there exist such graphs that require three pages (an open problem
of independent research interest). Here, we suggest to study other natural subclasses
of planar graphs with book thickness three. Two candidates are: (a) the class of planar
Laman graphs, and (b) the class of planar graphs with bounded maximum degree
∆ ≥ 7. Note that both classes contain members that are not 2-page book embeddable.

2. In the literature, book embeddings are also known as stack layouts, since the edges
assigned to the same page (called stack in this context) follow the last-in-first-out
model in the underlying linear order. The “dual” concept of a book embedding is the
so-called queue layout in which the edges assigned to the same page (called queue
in this context) follow the first-in-first-out model. A recent breakthrough result by
Dujmović et al. [17] suggests that planar graphs admit queue layouts with at most 49
queues. Here, we are asking whether planar graphs admit mixed layouts with s stacks
and q queues for some s < 4 and q < 49? Such mixed layouts partition the edges of a
graph into s stacks and q queues, while using a common vertex ordering; they have
been introduced by Heath, Leighton and Rosenberg [27]. Pupyrev [42] showed that one
stack and one queue do not suffice for planar graphs, while de Col et al. [15] proved
that testing the existence of a 2-stack 1-queue layout of general (non-planar) graphs is
NP-complete.

http://jocg.org/
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3. Finally, we would like to see progress on the book thickness of planar directed acyclic
graphs (DAGs). Note that in the directed version of the book embedding problem,
the edge directions must be consistent with the constructed vertex ordering. Heath
et al. [29, 28] asked whether the book thickness of upward planar DAG is bounded
by a constant, and they provided constant bounds for directed trees, unicyclic DAGs,
and series-parallel DAGs. Frati et al. [21] extended their results in the upward planar
triangulations of bounded diameter or of bounded maximum degree. However, the
general question remains open.
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