
Parallel Computing 96 (2020) 102640

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

An improved exact algorithm and an NP-completeness proof for

sparse matrix bipartitioning

Timon E. Knigge

a , ∗, Rob H. Bisseling

b

a ETH Zürich, Zürich, Switzerland
b Mathematical Institute, Utrecht University, Utrecht, the Netherlands

a r t i c l e i n f o

Article history:

Received 5 November 2018

Revised 14 January 2020

Accepted 30 April 2020

Available online 12 May 2020

Keywords:

Bisection

Exact algorithm

Maximum flow

NP Complete

Partitioning

Sparse matrix

a b s t r a c t

We investigate sparse matrix bipartitioning – a problem where we minimize the communication volume

in parallel sparse matrix-vector multiplication. We prove, by reduction from graph bisection, that this

problem is N P -complete in the case where each side of the bipartitioning must contain a linear fraction

of the nonzeros.

We present an improved exact branch-and-bound algorithm which finds the minimum communica-

tion volume for a given matrix and maximum allowed imbalance. The algorithm is based on a maximum-

flow bound and a packing bound, which extend previous matching and packing bounds.

We implemented the algorithm in a new program called MP (Matrix Partitioner), which solved 839

matrices from the SuiteSparse collection to optimality, each within 24 h of CPU-time. Furthermore, MP

solved the difficult problem of the matrix cage6 in about 3 days. The new program is on average more

than ten times faster than the previous program MondriaanOpt.

Benchmark results using the set of 839 optimally solved matrices show that combining the medium-

grain/iterative refinement methods of the Mondriaan package with the hypergraph bipartitioner of the

PaToH package produces sparse matrix bipartitionings on average within 10% of the optimal solution.

© 2020 Elsevier B.V. All rights reserved.

1

o

t

t

o

l

o

w

b

a

g

c

a

1

r

b

B

m

w

a

s

fi

t

t

t

a

f

f

s

h

i

f

t

d

w

h

0

. Introduction

Sparse matrix partitioning is important for the parallel solution

f sparse linear systems by direct or iterative methods. In itera-

ive solvers, the basic kernel is the multiplication of a sparse ma-

rix and a dense vector, the SpMV operation. A good partitioning

f the sparse matrix and the vector will balance the computation

oad in a parallel SpMV by spreading the matrix nonzeros evenly

ver the parts assigned to the processors of the parallel computer,

hile also leading to less communication of the vector components

etween the processors.

In the past decades, much effort has been spent on developing

nd improving heuristic partitioning methods. In particular, hyper-

raph methods have been very successful because they model the

ommunication volume (the total number of data words sent) ex-

ctly. Two-dimensional (2D) partitioning methods are superior to

D methods, since they are more general and can split both the

ows and columns of the matrix and hence in principle can provide

etter solutions. Heuristic algorithms for hypergraph-based sparse
∗ Corresponding author

E-mail addresses: knigget@student.ethz.ch (T.E. Knigge), R.H.Bisseling@uu.nl (R.H.

isseling).

v

M

ttps://doi.org/10.1016/j.parco.2020.102640

167-8191/© 2020 Elsevier B.V. All rights reserved.
atrix partitioning have been implemented in the sequential soft-

are packages hMetis [1] , PaToH [2] , Mondriaan [3] , KaHyPar [4] ,

nd the parallel packages Par k way [5] and Zoltan [6] . The current

tate-of-the-art methods for 2D sparse matrix partitioning are the

ne-grain [7] method and the medium-grain method [8] .

How good are the current methods and is it still worthwhile

o improve them? To answer this question we need to compare

he quality of the outcome, i.e., the communication volume, to

he optimal result. To enable such a comparison, we need an ex-

ct algorithm that provides the minimum communication volume

or a specfied maximum load imbalance. The first exact algorithm

or this problem (with two parts) was proposed by Pelt and Bis-

eling [9] , based on a branch-and-bound method. This algorithm

as been implemented in the program MondriaanOpt, included

n the Mondriaan package, version 4.2. As of today, 356 matrices

rom the SuiteSparse (formerly University of Florida) sparse ma-

rix collection [10] have been bipartitioned to optimality by Mon-

riaanOpt. 1 Being able to increase the size of the solution subset

ould be valuable for benchmarking heuristic partitioners, by pro-

iding more comparison data of a more realistic size. Heuristic par-
1 The solutions can be found at http://www.staff.science.uu.nl/ ∼bisse101/

ondriaan/Opt/ .

https://doi.org/10.1016/j.parco.2020.102640
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2020.102640&domain=pdf
mailto:knigget@student.ethz.ch
mailto:R.H.Bisseling@uu.nl
http://www.staff.science.uu.nl/~bisse101/Mondriaan/Opt/
https://doi.org/10.1016/j.parco.2020.102640

2 T.E. Knigge and R.H. Bisseling / Parallel Computing 96 (2020) 102640

t

p

c

t

u

o

1

t

t

a

s

f

a

l

t

d

c

i

t

r

o

c

O

r

n

e

t

r

t

t

t

T

c

(

a

m

s

i

t

S

m

m

i

i

c

r

d

b

t

d

2

a

p

l

p

2

p
titioners are aimed at large problems, although they will encounter

smaller problems after their inital splits.

Optimal partitionings are easiest to compute for splitting into

two parts: the required computation time grows quickly with a

larger number of parts, as discussed by Pelt and Bisseling [9] . Fur-

thermore, heuristic partitioners often are based on recursive bipar-

titioning, so that it is most important to gauge the quality of the

bipartitioner. (A notable exception is KaHyPar, which computes a

direct k -way partitioning.) Therefore, both the exact partitioner im-

plemented in MondriaanOpt and the improved partioner MP (for

Matrix Partitioner) presented in this article, compute optimal so-

lutions for bipartitioning. Another question that arises is about the

N P -completeness [11] of the sparse matrix bipartitioning prob-

lem. It is known that the decision problem of graph bipartitioning

with a tolerated imbalance is N P -complete [12, Theorem 3.1] and

so is hypergraph partitioning [13, Chapter 6] , but sparse matrix

bipartitioning is a special case of hypergraph bipartitioning (for

instance, with vertices contained in only two hyperedges), and

whether this problem is N P -Complete is still open.

The novelty of this paper is twofold: (i) we present an improve-

ment of the previous state-of-the-art exact algorithm [9] by gener-

alizing a matching-based lower bound on the necessary commu-

nication to a stronger maximum flow-based bound, and by gener-

alizing a packing bound (using ideas found by Delling et al. [14]);

(ii) we formalize sparse matrix bipartitioning as a decision prob-

lem and prove that it is N P -complete.

The matrix bipartitioning problem that we solve by an exact

algorithm can be formulated as follows. Given an m × n sparse ma-

trix with | A | nonzeros and an allowed imbalance fraction of ε ≥ 0,

find disjoint subsets A 1 , A 2 ⊆A such that

A = A 1 ∪ A 2 , (1)

and

| A i | ≤ (1 + ε)

⌈ | A |
2

⌉
, for i = 1 , 2 , (2)

and such that the communication volume VOL (A 1 , A 2) is minimal.

Here, the communication volume is defined as the total number

of rows and columns that have nonzeros in both subsets. Each of

these cut rows and columns gives rise to one communication of a

single scalar in a parallel SpMV. Eq. (2) represents a constraint on

the load balance of two processors of a parallel computer execut-

ing the SpMV.

In this paper, we will only consider the communication vol-

ume as the metric to be minimized. Note that other possible ob-

jectives, such as minimizing the maximum communication volume

per processor or minimizing the total number of messages, may

also be relevant. For bipartitioning, however, these metrics need

not specifically be optimized: for two processors, the volume per

processor is just half the total volume, if we count sending and

receiving data as equally important; furthermore, the total num-

ber of messages sent is at most two, so there is not much to be

optimized. Here, we ignore any costs needed for packing the data

words into a message; these costs are proportional to the number

of data words to be sent. For partitioning into a larger number of

parts than two, recursive bipartitioning is often used, and then the

history of previous bipartitionings must be taken into account if for

instance we also want to minimize the total number of messages.

Here, starting up a new message incurs an extra cost, above the

cost of sending a data word. This could be done by a sophisticated

recursive hypergraph bipartitioning approach [15] that simultane-

ously reduces the communication volume and the number of mes-

sages, thus solving a different optimization problem; this problem,

however, is beyond the scope of the present paper.

Many exact partitioning algorithms have been developed for

graphs [14,16–19] . All these algorithms minimize the edge cut, not
he communication volume. Felner [18] solves a graph partitioning

roblem with uniform edge weights to optimality with a purely

ombinatorial branch-and-bound method, reaching up to 100 ver-

ices and 10 0 0 edges. Delling et al. [14] solved larger problems

sing packing-tree bounds and graph contractions, and solved the

pen street map problem luxembourg with 114,599 vertices and

19,6 6 6 edges in less than a minute.

For hypergraphs, much less work has been done on exact par-

itioning [20–22] . Kucar [21] uses integer linear programming (ILP)

o solve a problem with 1888 vertices, 1920 nets (hyperedges),

nd 5471 pins (nonzeros) in three days of CPU time; the heuristic

olver hMetis [1] managed to find a solution in less than a second

or the same problem, and it turned out to be optimal. Bisseling

nd his team members [22] solved an industrial call-graph prob-

em by formulating it as a hypergraph partitioning problem with

he cut-net metric, and they solved it heuristically by using Mon-

riaan and exactly by an ILP method (in 9 days of CPU time).

For exact sparse matrix partitioning, the problem could in prin-

iple be formulated as a hypergraph bipartitioning problem by us-

ng the fine-grain model [7] : each matrix nonzero becomes a ver-

ex in the hypergraph; the nonzeros in a row are connected by a

ow-net and the nonzeros in a column by a column-net. Thus, we

btain a hypergraph with | A | vertices and m + n nets, with the spe-

ial property that each vertex is contained in precisely two nets.

ne of these nets thus belongs to a group of m pairwise disjoint

ow-nets, and the other to a group of n pairwise disjoint column-

ets. Furthermore, no two vertices have the same pair of nets. An

xact general hypergraph partitioner could then be used to solve

he problem to optimality. This, however, is less efficient than di-

ect exact sparse matrix partitioning, since the hypergraph parti-

ioner would not exploit the aforementioned properties. In con-

rast, the direct matrix approach imposes them by construction.

Previous work [9] presented the first direct exact matrix par-

itioner, implemented in the open-source software MondriaanOpt.

his work was optimized and parallelized by Mumcuyan and

oworkers [23] who reordered the matrix given to MondriaanOpt

thus changing the order in which the search space was traversed),

utomatically choosing the best reordering method from a set of

ethods by a machine-learning approach, and by parallelising the

oftware for a shared-memory computer using OpenMP. Our own

mprovements, in the present article, are orthogonal to these ex-

ensions, so that they can be combined.

The remainder of this paper is organized as follows:

ection 2 presents the N P -completeness proof for ε-balanced

atrix bipartitioning. Section 3 briefly reviews the previously

entioned branch-and-bound algorithm [9] that was implemented

n MondriaanOpt, and presents the generalized bounds and their

mplementation. Section 4 presents the experimental results,

omparing MP to MondriaanOpt for 368 small matrices, and giving

esults for 471 larger matrices that could not be solved by Mon-

riaanOpt within the allotted time. It also presents a comparison

etween two heuristic methods, PaToH and Mondriaan, using

hese optimal partitionings. Section 5 presents the conclusions and

iscusses possible future work.

. Hardness results

In this section we will formally analyze matrix bipartitioning

nd prove that it is N P -Complete, even if we fix the number of

rocessors to k = 2 (instead of leaving k ≥ 2 arbitrary). This prob-

em is a special case of the N P -Complete hypergraph partitioning

roblem [13, Chapter 6] .

.1. Preliminaries

To begin, let us define a formal decision-variant of the matrix

artitioning problem for k = 2 , based on the optimization variant

T.E. Knigge and R.H. Bisseling / Parallel Computing 96 (2020) 102640 3

Fig. 1. Bipartite graph and matrix equivalence.

d

m

s

ε

l

w

h

s

t

e

t

p

i

f

e

b

h

A

w

s

a

t

e

n

s

o

s

c

a

t

g

v

Fig. 2. Solving ε-Graph Bisection using ε-Graph Edge-Bisection .

t

A

E

2

l

a

a

g

w

o

i

n

l

M

G

p

o

p

o

g

D

d

j

t

t

t

escribed in Section 1 where the goal is to minimize the total com-

unication volume. We formulate our decision problems in the

tyle of Garey and Johnson [11] . Given a fixed ε ∈ [0, 1), we define

-Matrix Bipartition as follows:

ε-Matrix Bipartition

Input: An m × n matrix A, whose nonzeros are pre

cisely indexed by the set Z ⊆ { 1 , . . . , m }×
{ 1 , . . . , n } , and an integer M, the required

maximum volume.

Question: Does there exist a disjoint partitioning of Z

into Z 1 ∪ Z 2 such that | Z i | ≤ (1 + ε) | Z|
2

and volume V OL (Z 1 , Z 2) ≤ M?

Note that ε is not part of the problem instance, but of the prob-

em definition. Each ε induces its own partitioning problem, and

e really have a class of bipartitioning problems here.

Here VOL (Z 1 , Z 2) counts the number of rows and columns that

ave nonzeros in Z 1 and Z 2 , as before. Additionally, to simplify pre-

entation we will from here on, without loss of generality, assume

hat (1 + ε) | Z|
2 is an integer, rather than place rounding symbols

verywhere. Ultimately, all the value of ε does is induce some in-

eger upper bound on the | Z i |. So for any ε we can, for the pur-

oses of whichever problem instance we are considering, replace

t with some ε′ satisfying this integrality constraint, without af-

ecting the bound on | Z i |. Notice that requiring | Z i | ≤ (1 + ε) | Z|
2 is

quivalent to requiring that
∣∣| Z 1 | − | Z 2 |

∣∣ ≤ ε| Z| , and that ε| Z | must

e an integer as well.

When thinking about the matrix bipartitioning problem, it is

elpful to reformulate it in terms of graphs. Given an m × n matrix

 we can define a bipartite adjacency graph G (A) = (V (A) , E(A))

ith m vertices representing the rows of A , and n vertices repre-

enting the columns, where a row vertex r and a column vertex c

re connected if and only if A rc is nonzero.

This equivalence extends to the partitioning problem. A biparti-

ioning of the nonzeros of A corresponds to a bipartitioning of the

dges of G (A), and the rows and columns contributing to the fi-

al volume correspond precisely to the vertices with edges in both

ides of the partition. See also Fig. 1 .

This procedure is also reversible, i.e. for any bipartite graph G

n m and n vertices, we can construct a corresponding matrix A of

ize m × n which has nonzeros precisely for the vertices that are

onnected in G . While the nonzero entries of this matrix can have

ny nonzero value, the associated nonzero pattern is uniquely de-

ermined by the edges of G .

To this end, we define an equivalent bipartitioning problem on

raphs that we will base our reduction on:

ε-Graph Edge-Bisection

Input: Given a graph G = (V, E) and an integer M.

Question: Does there exist a disjoint partitioning of E

into E 1 ∪ E 2 such that | E i | ≤ (1 + ε) | E|
2

and

| (∪ e ∈ E 1 e) ∩ (∪ e ∈ E 2 e) | ≤ M?

2
2 If we write an edge as the set { u, v } ⊂V , then
⋃

e ∈ E 1 e gives precisely the set of

ertices touched by E 1 .

u

c

m

s

We call a vertex with adjacent edges from both sides of the par-

itioning ‘cut’. The goal is to minimize the number of cut vertices.

dditionally, when we explicitly need the partitioning/coloring of

 , we will write it as a map π : E → {1, 2}.

.2. ε-GRAPH EDGE-BISECTION is N P -Complete

We will perform a reduction from the ε-Graph Bisection prob-

em, a classical problem first proven N P -Complete for ε = 0 [24] ,

nd later also for all ε ∈ [0, 1) [12,25] .

ε-Graph Bisection

Input: A graph G = (V, E) , an integer M.

Question: Does there exist a disjoint partitioning of V

into V 1 ∪ V 2 with | V i | ≤ (1 + ε) | V |
2

such that

|{ { u, v } ∈ E | u ∈ V 1 , v ∈ V 2 }| ≤ M?

Analogously to the ε-Graph Edge-Bisection problem, we call

n edge with endpoints in both sides of the partitioning “cut’; the

oal is then to minimize the number of cut edges. We similarly

rite a partitioning of V as a map τ : V → {1, 2}. We can also think

f τ as coloring the vertices in V , where one side of the partition-

ng has the color red, and one side has the color blue. This should

ot be confused, however, with the classical graph coloring prob-

em, since we allow neighbouring vertices to have the same color.

Let us give a sketch of our proof strategy: given an instance (G,

) of the ε-Graph Bisection problem, we will build a new graph

′ , whose optimal solution under the ε-Graph Edge-Bisection

roblem will give us an optimal solution under ε-Graph Bisection

n G .

We first define the construction of such an instance, giving the

romised sketch directly after. Let us define the clique expansion

f a graph. A visual example (with smaller S , for legibility) is also

iven in Fig. 2 .

efinition 2.1. Given a graph G = (V, E) , let S = 4 + 2 | V | (| E|
2

)
. We

efine the clique expansion K (G) = (V ′ , E ′) as first taking a dis-

oint union of | V | copies of the complete graph K S . Then, labelling

he edges in E as e 1 , e 2 , . . . , e | E| , for each edge e i = { u, v } we merge

he i th vertex of the clique K S representing u with the i th vertex of

he clique K S representing v .

Here, the chosen clique size S will allow us to prove several

seful propositions later. Notice that by construction, each pair of

liques is merged at most once, each time in a previously un-

erged vertex. As a consequence, while two cliques can share a

ingle vertex, they do not share edges.

4 T.E. Knigge and R.H. Bisseling / Parallel Computing 96 (2020) 102640

P

u

t

b

m

h

t

t

m

b

c

o

s

t

|
w

a

t

a

K

c

c

o

P

P

τ

a

a

m

b

t

e

c

K

s

t

a

i

m

o

s

e

n

a

o

t

w

i

c

t

b

a

o

r

Informally, for each vertex u ∈ V we create a clique K u of size S .

For every edge { u, v } ∈ E , we merge two vertices in the cliques K u

and K v together into a single vertex. We then solve the ε-Graph

Edge-Bisection problem on the resulting graph (V

′ , E ′), and trans-

late the resulting coloring of its edges into a coloring of the ver-

tices of (V, E). (Here, the colors correspond to the two parts in

the partition.) We note that if each clique in (V

′ , E ′) is colored

monochromatically then we can color each vertex in (V, E) with the

color of its corresponding clique in (V

′ , E ′). Then an edge between

two differently colored vertices in (V, E) will correspond precisely

with a vertex shared by two differently colored cliques in (V

′ , E ′).
The ε-Graph Edge-Bisection problem gives us no guarantee that

each clique is indeed colored monochromatically, but we will work

around this later.

Throughout this section we will make a slight abuse of termi-

nology. A clique usually (and up until now) refers to any collec-

tion of pairwise connected vertices. However, from now on, when

we talk about ‘cliques’ in K (G) we will be referring specifically to

the cliques corresponding to vertices, i.e. the cliques { K u | u ∈ V } in

K (G) .

So after building K (G) from the ε-Graph Bisection instance G ,

we can solve the ε-Graph Edge-Bisection problem on it. We now

want to show that both problems have optimal solutions of equal

volume (cost). For a graph G = (V, E) , let GB ε (G) denote the vol-

ume of any optimal solution of the ε-Graph Bisection problem on

G , and let GEB ε (K (G)) denote the volume of any optimal solu-

tion of the ε-Graph Edge-Bisection problem on its clique expan-

sion K (G) .

Proposition 2.2. For any graph G we have GEB ε (K (G)) ≤ GB ε (G) .

Proof. Consider any valid ε-balanced bipartitioning τ of G =
(V, E) of cost M (that is, there are exactly M edges { u, v } with

τ (u)
 = τ (v)). For any vertex u , color all edges in the correspond-

ing clique K u in K (G) = (V ′ , E ′) with the same color, i.e. for any

edge e in K u let π (e) := τ (u), giving a partitioning E ′ = E ′ 1 ∪ E ′ 2 .
Since each clique K u in K (G) has the same number of edges,(

S
2

)
, and by assumption the partitioning of V satisfies | V i | ≤ (1 +

ε) | V | 2 , it follows that | E ′
i
| ≤ (1 + ε) | V | 2

(
S
2

)
= (1 + ε) | E ′ | 2 .

Now let s be a vertex in K (G) . If s is contained in only one

clique, it cannot be cut, since we color the edges of each K u

monochromatically. If s is shared by two cliques K u and K v , then

s corresponds to the edge e = { u, v } ∈ E, and we can see that this

vertex is cut by π if and only if e is cut by τ (since K u and K v

are colored like u and v respectively). Since by construction, each

vertex is in at most two cliques, there is no ambiguity.

So the number of cut vertices in the induced partitioning π of

the edges of K (G) is exactly the number of cut edges in the origi-

nal partitioning τ of the vertices of G . We can then minimize over

all valid partitionings τ of G to achieve the desired inequality. �

Unfortunately, the converse is harder to prove since we cannot

guarantee that an optimal partitioning of K (G) colors each clique

monochromatically. It turns out however, that we can still deter-

ministically associate a color with each clique, provided we have

an optimal partitioning.

Definition 2.3. Let K be a clique and suppose we have a coloring

of its edges. The dominating color of K is a color c such that there

exists a vertex in K with all of its adjacent edges colored c .

While this property is not well-defined in general, it is for our

restricted case:

Lemma 2.4. Given a graph G = (V, E) and an optimal partitioning π
of the edges of its clique expansion K (G) . Then each clique K u in

K (G) has a well-defined dominating color.
roof. Fix a clique K u in K (G) . We need to prove existence and

niqueness of its dominating color.

First we prove uniqueness: to the contrary, assume there are

wo vertices r, b in K u such that r has only red edges adjacent, and

 only blue edges. Since K u is a clique, the edge { r, b } exists, which

ust be both red and blue, a contradiction.

As for existence, assume to the contrary that every vertex in K u

as both blue and red edges adjacent. But this means each ver-

ex in K u is cut by the partitioning π , and so the cost of this par-

itioning of K (G) is at least the clique size S = 4 + 2 | V | (| E|
2

)
. One

ay verify that for any graph, S > | E |. However, | E | is a trivial upper

ound on the ε-Graph Bisection problem on (V, E) (in which we

ut every edge in E), which, by Proposition 2.2 is an upper bound

n the optimal partitioning of the edges of K (G) . Since we as-

umed our partitioning π is optimal, i.e. has cut size exactly equal

o GEB ε (K (G)) , this implies that

 E| ≥ GB ε (G) ≥ GEB ε (K (G)) ≥ S > | E|
hich is a contradiction, so there must exist a vertex that only has

djacent edges of a single color. �

In addition to the above, we would like to note in particular

hat by definition, if K u has dominating color c (meaning there is

 vertex u ′ with all adjacent edges colored c), then any vertex in

 u has at least one adjacent edge with color c (namely the one

onnecting it to u ′).
We now have the tools to formulate a proof strategy: we will

olor vertices in G by the dominating color of their cliques in an

ptimal partitioning of K (G) .

roposition 2.5. For any graph G we have GB ε (G) ≤ GEB ε (K (G)) .

roof. Fix any optimal partitioning π of K (G) = (V ′ , E ′) , and let

color each vertex u in G = (V, E) with the dominating color of its

ssociated clique K u in K (G) . We would like to prove two things

bout this partitioning τ : that the number of cut edges in G is no

ore than the number of cut vertices in K (G) , and that it is a

alanced partitioning of V .

We first show the number of edges cut by τ in G is at most

he number of vertices cut by π in K (G) . Suppose τ cuts edge

 i = { u, v } ∈ E, that is, τ (u)
 = τ (v). This means that the dominating

olors of K u and K v are different, say without loss of generality that

 u is red and K v is blue. Hence, the vertex s in K (G) that corre-

ponds to e i , which we obtained during construction by merging

he i th vertex of K u with the i th vertex of K v , must have red edges

djacent, because it is contained in K u , and blue edges, because

t is contained in K v . So π cuts s . Since for every edge e j ∈ E we

erged different vertices (specifically, for e j we used the j th vertex

f the two cliques), each edge in E cut by τ has a unique corre-

ponding vertex s in K (G) cut by π , proving the first part.

Next, to show that τ is a balanced partitioning of V , we will

quivalently show that our optimal partitioning π of K (G) colors

o more than (1 + ε) | V | 2 cliques with red as their dominating color,

nd the same for blue.

Let r, b ≥ 0, r + b = | V | , count these quantities, assuming with-

ut loss of generality that r ≥ b . First we derive a lower bound on

he number of red edges in a clique in K (G) . In each red clique

e have at most | E | cut vertices (since we assumed our partition-

ng was optimal, as in the proof of Lemma 2.4 ; in fact, across all

liques there are at most | E | cut vertices, but for a lower bound

his will suffice), and the edges between two such vertices may be

lue, but none of the other S − | E| vertices in this clique are cut, so

ll other edges should be red, and a lower bound on the number

f red edges in π is

((
S

2

)
−

(| E|
2

))
.

T.E. Knigge and R.H. Bisseling / Parallel Computing 96 (2020) 102640 5

e

c

d

b

b

o

m

o

r

(

i

4

T

w

0

h

t

t

i

i

P

s

P

w

g

O

T

P

B

b

a

B

b

B

2

A

e

l

–

b

s

c

B

D

S

V

E

T

b

M

w

P

P

(≥

(≤

Similarly, we can find an upper bound for the number of blue

dges by the following reasoning: we color each blue-dominated

lique entirely blue, and as many edges as possible in each red-

ominated clique (at most
(| E|

2

)
, as before). This gives as an upper

ound

(
S

2

)
+ r

(| E|
2

)
.

But since π was an optimal balanced partitioning of the edges

f K (G) , certainly the lower bound on the number of red edges

ust be smaller than or equal to the upper bound on the number

f blue edges, plus the imbalance allowed by ε:

((
S

2

)
−

(| E|
2

))
−

(
b

(
S

2

)
+ r

(| E|
2

))
≤ ε| E ′ | = ε| V |

(
S

2

)
.

Reordering terms gives:

(r − b − ε| V |)
(

S

2

)
≤ 2 r

(| E|
2

)
. (3)

Recall that we took S = 4 + 2 | V | (| E|
2

)
. Since S ≥ 4 we have S ≤

S
2

)
, as well as r ≤ | V |. So if Eq. (3) holds, then certainly the follow-

ng holds:

(r − b − ε| V |) S ≤ 2 | V |
(| E|

2

)
.

Substituting S and rewriting we get

(r − b − ε| V |) + 2(r − b − 1 − ε| V |) | V |
(| E|

2

)
≤ 0 .

Since we assumed ε| V | ∈ N we also have (r − b − ε| V |) ∈ Z .

hen the inequality can only be true if r − b − ε| V | ≤ 0 , and since

e assumed r ≥ b , this gives

 ≤ r − b ≤ ε| V | ,
ence our partitioning is balanced in G = (V, E) .

Combining the obtained results, we can turn any optimal solu-

ion to the ε-Graph Edge-Bisection problem on K (G) into a solu-

ion of equal value to the ε-Graph Bisection problem on G , prov-

ng Proposition 2.5 . �

We are now almost ready to show that ε-Graph Edge-Bisection

s N P -Complete. All that remains is showing that it is in N P :

roposition 2.6. The size of K (G) = (V ′ , E ′) is polynomial in the

ize of G = (V, E) .

roof. By construction, each vertex in V induces a subgraph

ith O (| V || E | 2) vertices and O (| V | 2 | E | 4) edges. After merging, the

raph will only become smaller. So | V

′ | is O (| V | 2 | E | 2) and | E ′ | is

 (| V | 3 | E | 4). �

We can now conclude:

heorem 2.7. ε-Graph Edge-Bisection is N P -Complete.

roof. We claim ε − GraphBisection ≤P

ε − GraphEdge −
isection . For a given instance of ε-Graph Bisection (G, M),

y Proposition 2.2 and Proposition 2.5 we know GB ε (G) ≤ M if

nd only if GEB ε (K (G)) ≤ M. So if we can solve ε-Graph Edge-

isection on K (G) (which has size polynomial in the size of G ,

y Proposition 2.6) in polynomial time, we can also solve ε-Graph
isection on G in polynomial time. �
.3. ε-MATRIX BIPARTITION is N P -Complete

We now consider the original ε-Matrix Bipartition problem.

s mentioned in Section 2.1 , it is equivalent to partitioning the

dges of a graph. We would like to immediately draw an equiva-

ence between ε-Matrix Bipartition and ε-Graph Edge-Bisection

but note that for a matrix A the associated graph G (A) is always

ipartite. Therefore, not every graph on which we might want to

olve the ε-Graph Edge-Bisection problem can be immediately

onverted to an equivalent matrix in the context of the ε-Matrix

ipartition problem. However, we can resolve this:

efinition 2.8. Given a graph G = (V, E) , its edge-split graph

 (G) = (V ′ , E ′) is given as:

′ = V ∪ { v e | e ∈ E }

′ =

⋃

e = { u,w }∈ E
{ { u, v e } , { v e , w } } .

In other words, we replace each edge by a path of length two.

he resulting graph is bipartite (with sides V and V

′ �V). Using this

ipartite extension of a graph, we can build a matrix and use ε-

atrix Bipartition to solve the ε-Graph Edge-Bisection problem.

First, we prove that we can safely take the edge-split graph

ithout affecting the ε-Graph Edge-Bisection problem.

roposition 2.9. For any graph G, we have GEB ε (G) = GEB ε (S (G)) .

roof. Let G = (V, E) and S (G) = (V ′ , E ′) .

) Let π be an optimal coloring of E . We define a coloring π ′ of

E ′ as follows. Let e ′ = { u, v e } ∈ E ′ with u ∈ V ⊆V

′ and v e ∈ V

′ �V . So

e ′ is half of the length-two path associated with e in G . We set

π ′ (e ′) = π(e) , that is, we give each edge in E ′ the color of the

edge in E that induced it.

Then no vertices in V

′ �V were cut, since both edges in a path

have the same color, and the vertices cut by π ′ in V ⊆V

′ are

precisely those cut by π in V .

) Let π ′ be any optimal coloring of E ′ . Now for each edge e ∈ E

there are three possibilities:
• Both corresponding edges in E ′ are colored red by π ′ .
• Both corresponding edges in E ′ are colored blue by π ′ .
• The corresponding edges in E ′ are colored with two colors.

Let these quantities be counted by n r , n b and n rb , respectively.

Then | E| = n r + n b + n rb . Also the number of red and blue edges

in π ′ is counted by 2 n r + n rb and 2 n b + n rb , respectively. But by

the balancing constraint we get

| (2 n r + n rb) − (2 n b + n rb) | ≤ ε| E ′ | = 2 ε| E| .
From this we can derive that | n r − n b | ≤ ε| E| . That is, if we have

an edge in G whose associated pair in S (G) is monochrome,

then copying these colors back into a coloring (for now ignor-

ing those edges in G whose associated pair is not monochrome)

gives a coloring that already satisfies the load balancing con-

straint. This induced partial coloring will form the basis of our

optimal coloring of E .

What remains is to assign the bicolored pairs a color. We claim

that we can recolor such a pair to a single color without in-

creasing the volume of the solution. Indeed suppose without

loss of generality that e = { u, w } ∈ E satisfies π ′ ({ u, v e }) = 1

and π ′ ({ v e , w }) = 2 . Now construct a coloring π ′′ identical to

π ′ except that π ′′ ({ v e , w }) = 1 .

So π ′ and π ′′ are identical on the edges adjacent to V

′ �{ v e , w },

and hence cut the same vertices here. Note that π ′ also cuts v e ,

but π ′′ does not. So even if w now goes from ‘not cut’ to ‘cut’,

this does not matter since ‘uncutting’ v e compensates for this.

6 T.E. Knigge and R.H. Bisseling / Parallel Computing 96 (2020) 102640

Fig. 3. Solving ε-Graph Edge-Bisection using ε-Matrix Bipartition .

(

p

r

l

s

o

W

t

a

3

(

e

e

b

w

w

b

m

e

s

t

b

s

t

i

a

h

a

m

c

C

w

i

i

a

p

c

P

h

f
Applying a change like this decreases n rb by one, and increases

n r or n b by one (depending on the choice of color), therefore

changing | n r − n b | by one. Let us now distinguish two cases:

(ε| E | ≥ 1) Since a priori we have | n r − n b | ≤ ε| E| , we can repeat-

edly either increase n r or n b by one while never violat-

ing the balancing constraint.

 ε| E| = 0) In this case we must in fact have

2 n r + n rb = 2 n b + n rb

and hence n r = n b . Since | E | is even (otherwise no parti-

tioning exists), we get that n rb = | E| − (n r + n b) is even

as well. Therefore we can pair up such bicolored pairs,

making one of them fully red and one fully blue at each

step, causing no change in the value of | n r − n b | .
In either situation we can find a new coloring π ′′ of E ′ with

equal volume but with no bicolored pairs. Additionally, the

number of monochrome pairs of each color satisfies the load

balancing constraint | n r − n b | ≤ ε| E| of the original graph. So

we can then map this coloring to E , like in case (≥). �

Now we can turn any graph into a bipartite graph without

changing its smallest edge bisection. Using this we can prove the

main theorem of this section:

Theorem 2.10. ε-Matrix Bipartition is N P -Complete.

Proof. We will show that ε − GraphEdge − Bisection ≤P

ε − MatrixBipartition Given a graph G , let G

′ = S (G) = (L ∪ R, E ′) .
Create an | L | × | R | matrix A with A i j = 1 if i ∈ L and j ∈ R are

connected by an edge from E ′ , and 0 otherwise.

We can now solve the ε-Matrix Bipartition problem on A , and

using the correspondence between matrices and bipartite graphs

described in Section 2.1 , we can turn this into an ε-balanced par-

titioning of E ′ , since we have a correspondence between the parti-

tioning of edges and the partitioning of nonzeros, and a correspon-

dence between cutting vertices and cutting rows and columns. This

is displayed in Fig. 3 .

Now Proposition 2.9 and its proof give us a constructive al-

gorithm to transition between G

′ and G , solving ε-Graph Edge-

Bisection on G . �

3. Exact algorithm

In this section we give an exact algorithm for finding an opti-

mal ε-balanced bipartitioning of a matrix, extending the branch-

and-bound algorithm by Pelt and Bisseling [9] . They approach the
roblem with a branch-and-bound technique and use combinato-

ial bounds to bound the volume of a partial partitioning from be-

ow. A major drawback of their bounds however, is that they are in

ome sense ‘local’. They only consider the direct neighbourhoods

f assigned sections of the matrix (or rather, its underlying graph).

e extend both bounds to the entire graph to take full advan-

ages of its connectivity. We will first briefly discuss the branch-

nd-bound algorithm, before looking at the two classes of bounds.

.1. Branch and bound

Recall that a branch-and-bound algorithm initially starts with

a representation of) the whole solution space, and then repeat-

dly branches on properties of the solutions until these are refined

nough that they specify a single solution (this is a leaf in the

ranch-and-bound tree). When the properties are chosen carefully,

e may prune (‘bound’) large parts of the search tree well before

e reach a leaf.

In the case of matrix bipartitioning, a first obvious choice would

e to branch on which partition to put each nonzero in. For an

 × n matrix with N nonzeros this results in 2 N leaf nodes. How-

ver, this is not our only option. Instead, we can branch on the

tatus of each of the rows and columns of the matrix: each of

hem is either entirely red, entirely blue, or ‘cut’, i.e. it contains

oth colors. As a result, we only have 3 m + n leaves, which is already

maller than 2 N when m + n < log 3 (2) N ≈ 0 . 63 N. In fact, not all of

he 3 m + n states are even reachable: if a row and column intersect

n a nonzero, we cannot mark one of them as red and one of them

s blue (i.e., we do require assignments to be consistent).

When we traverse the branch-and-bound tree, at each stage we

ave a ‘partial assignment’, where some of the rows and columns

re red, blue , or cut , and some are still unassigned. For a given

atrix A and its bipartite graph representation G (A) = (V, E) (re-

all the equivalence from Section 2), we will write R ⊆V (resp. B,

 ⊆V) for the vertices (corresponding to rows and columns) that

ere assigned red (resp. blue, cut). Additionally, while all remain-

ng vertices are unassigned, they may still be connected to vertices

n R, B and C . For example, if an unassigned column vertex u is

djacent to a row vertex r ∈ R , this means that A ru is nonzero. In

articular, since row r is red, we cannot make u blue. So we will

all u partially red , with the corresponding subset of V written as

 R (with P B defined analogously). Finally, an unassigned vertex may

ave neighbours in both R and B . Although it is unassigned, we are

orced to cut this vertex. Because of this, we assume that whenever

T.E. Knigge and R.H. Bisseling / Parallel Computing 96 (2020) 102640 7

Fig. 4. Looking at the matrix, it is not a priori clear that row 3 and column 2 are connected. In the graph representation of the matrix we can clearly see the connecting

path.

s

i

t

t

d

3

i

o

c

a

a

w

e

c

t

r

P

s

i

c

t

b

t

c

n

s

a

a

c

t

n

c

t

b

c

H

w

t

r

b

m

t

t

R

o

f

s

T

l

s

o

a

c

t

o

b

B

b

3

i

c

i

N

d

a

c

|

a

v

g

s

w

p

a

s

i

r

u

e

t

a

i

p

uch a vertex is created, we immediately cut it. Therefore we will

gnore these vertices.

Now we need to find a lower bound for any extension to a par-

ial partition. First we can take | C | as our starting point. We then

urn to the unassigned region of the bipartite graph (matrix) to

erive stronger bounds.

.2. Flow bounds

The first way to find a lower bound on a given partial partition-

ng is to consider the connectivity of the underlying graph. The

riginal algorithm [9] uses the following matching bound: let us

onsider some p ∈ P R and q ∈ P B with { p, q } ∈ E . We note that p has

 red edge adjacent (through its adjacent vertex in R), and q has

 blue edge adjacent. Clearly no matter what color we give { p, q },

e will have to cut one of p and q .

We can improve upon this by finding a maximal set of such

dges that are vertex-disjoint (this is necessary, since otherwise we

ould resolve two edges { p, q } and { p, q ′ } just by cutting one ver-

ex p). The relevant graph is just our bipartite graph G (A) = (V, E)

estricted to P R ∪ P B ⊆V , keeping only edges with one endpoint in

 R and one in P B . Bipartite matching is a classical problem we can

olve in polynomial time. Then the size of the maximum matching

s a lower bound on the number of vertices that still have to be

ut by any extension of the current partial assignment.

This bound does not take full advantage of the connectivity of

he graph since it only considers single edges that are adjacent to

oth a red and a blue edge (through P R and P B). There is no need

o restrict ourselves to single edges however, and this is especially

lear when we consider the graph formulation of the problem. We

ow introduce a new flow bound.

Consider a path from P R to P B avoiding R ∪ B ∪ C , that is, a

equence of vertices v 1 , v 2 , . . . , v k with v i
∈ R ∪ B ∪ C for 1 ≤ i ≤ k ,

nd in particular v 1 ∈ P R and v k ∈ P B , such that { v i , v i +1 } ∈ E for

ll 1 ≤ i < k . This corresponds to a series of intersecting rows and

olumns, the first of which contains a red nonzero (corresponding

o the edge between v 1 and its neighbour in R) and the last a blue

onzero. One can see this in Fig. 4 . But then any extension of the

urrent partial assignment that colors (assigns) all remaining ver-

ices, must cut one of these vertices. If v 1 is not cut then it must

e fully red, making v 2 partially red, and so on.

So if a single path between P R and P B implies that we have to

ut at least one vertex, how do we extend this to multiple paths?

ere we run into the same issue as with the matching bound: if

e have two paths that share a vertex, we can just cut that vertex

o separate red and blue edges, for a cost of 1.

Hence, to prove a lower bound of more than 1 we have to

equire that the paths are disjoint. In particular, the best lower

ound we can hope for using this technique will be the maxi-

um number of vertex-disjoint paths between P and P . Note
R B
hat these paths must be vertex-disjoint in P R and P B as well, since

hose vertices may also still be cut. Alternatively, when we imagine

 and B as a single vertex, we are looking for a maximum number

f paths from R to B that are vertex-disjoint outside of R and B . In

act, a theorem by Menger shows that this is actually exactly the

ize of the smallest vertex cut.

heorem 3.1. (Menger [26]) Let G be a finite undirected graph, and

et u and v be two non-adjacent vertices in G, then the size of the

mallest vertex cut separating u and v equals the maximum number

f vertex-disjoint paths between u and v.

Unfortunately, the resulting bipartitioning may be very unbal-

nced. Intuitively, the flow bound might be small if there is a

hokepoint between R and B . However, the actual optimal biparti-

ioning might be much larger if this chokepoint is biased towards

ne of R, B . We would like to correct for this by adding another

ound which considers the sizes of the neighbourhoods of R and

 rather than their connectivity. This motivates the next class of

ounds we introduce.

.3. Packing bounds

The second bound used by Pelt and Bisseling [9] is a local pack-

ng bound. Let E (R) denote all edges that are colored red by the

urrent partial assignment (that is, all edges adjacent to a vertex

n R). For each partially red vertex p ∈ P R , let

 free (p) = { e ∈ E | e is adjacent to p, e
∈ E(R) }
enote all its adjacent unassigned edges. Note that all these edges

re adjacent to a red edge (through p). If we do not want to

ut any more vertices, we have to color all of N free (p) red. But if

 E(R) | +

∑

p∈ P R | N free (p) | is greater than (1 + ε) | E|
2 this will lead to

n unbalanced partition, and so we are forced to cut some of the

ertices p ∈ P R . Since we are looking for a lower bound, we can

reedily take those vertices with largest | N free (p)| until the sum is

mall enough again.

Note that we implicitly assume all N free (p) are disjoint, so that

e can assign their edges independently. Since G (A) = (V, E) is bi-

artite, this is true if we consider each side of the bipartition sep-

rately (that is, the rows and the columns). We can then do the

ame for P B , and add all unavoidable cuts together to get the pack-

ng bound.

As with the matching bound this bound only considers the di-

ect neighbourhood of R ∪ B and leaves large sections of the graph

nexamined. Here too, we use the fact that a path between a red

dge and blue edge must have a cut somewhere in between to in-

roduce a new, stronger packing bound. In particular we will look

t whole subgraphs adjacent to P R , rather than only at free edges

ncident to vertices in P R . This bound is based on a similar ap-

roach taken by Delling and coworkers [14] .

8 T.E. Knigge and R.H. Bisseling / Parallel Computing 96 (2020) 102640

e

p

g

o

b

‘

3

u

h

m

s

s

c

b

b

i

u

n

i

3

m

t

e

e

c

w

n

n

w

w

a

p

c

s

3

a

l

m

fi

t

u

3

e

i

c

f

o

b

b

a

t

t

t

s

b

t

Definition 3.2. Given a graph (V, E) with a partial assignment R, B,

C ⊆V , then an R-adjacent subgraph (V

′ , E ′) is a tuple of subsets V

′ ⊆V,

E ′ ⊆E , satisfying the following properties:

(1) V

′ is disjoint from R ∪ B ∪ C .

(2) For any distinct e 1 , e 2 ∈ E ′ such that u ∈ V is an endpoint of

both e 1 and e 2 , we have u ∈ V

′ .
(3) (V

′ , E ′) is path-connected with respect to edges, i.e. for any

e 1 , e 2 ∈ E ′ we can find f 1 , . . . , f k ∈ E ′ pairwise incident, with

e 1 = f 1 and f k = e 2 .

(4) (V

′ , E ′) is adjacent to R (V

′ ∩ P R
 = ∅).
(5) All edges in E ′ are free in the partial partitioning R, B, C (that

is, no edges are adjacent to R or B).

We can now use these subgraphs to find a lower bound on any

extension of our partial assignment. Indeed, notice that for any

edge in E ′ we can find a path (property 3) to an edge adjacent

to R (property 4) with all internal vertices in V

′ (property 2) and

unassigned (property 1). Therefore coloring at least one of these

edges blue requires us to cut at least one vertex in V

′ .
Note that the definition intentionally does not require us to add

both endpoints of an edge in E ′ to our vertex set V

′ . This is be-

cause if we have an edge between our R -adjacent subgraph and C ,

this edge is still unassigned and we can therefore still find a path

containing an internal vertex that has to be cut, in the event that

this edge is colored blue.

We can now formulate a strategy to find a new, extended pack-

ing bound : we find a maximal collection of R -adjacent subgraphs

(V 1 , E 1) , (V 2 , E 2) , . . . (V k , E k) that are pairwise disjoint. Denoting by

E (R) all edges incident to R , and noticing that all edges in E i are

unassigned by the current partial assignment R, B, C (property 5),

then if we do not want to cut any more vertices and color all of

the R -adjacent subgraphs red, this results in | E(R) | +

∑ k
i =1 | E i | red

edges. If this is larger than (1 + ε) | E|
2 , any resulting partitioning

would be unbalanced, and so we must cut some of the subgraphs.

To find a lower bound we can again assume the ideal case where

we cut the largest subgraphs (in terms of | E i |) first, at a cost of

one cut per subgraph. We can compute a similar quantity for B -

adjacent subgraphs and add the results together for the extended

packing bound.

3.4. Implementation notes

While the previous sections describe how to lower bound the

volume given the existence of these specific paths and subgraphs,

we are also interested in finding them. Additionally, there are var-

ious decisions one needs to make in the implementation process

of a branch-and-bound algorithm, which we detail below in the

interest of reproducibility.

3.4.1. Branching strategy

While we already specified that we branch on marking a row

or column as red, blue , or cut , the order in which we select the

rows and columns for branching could significantly affect the per-

formance of the algorithm as this selection prescribes the order in

which the entire search space is traversed.

Intuitively, it makes sense to branch on rows and columns with

more free nonzeros, since their assignment affects the balance of

the bipartitioning the most, and their high connectivity suggests

they may be useful as sources of paths in the Flow Bound or sub-

graphs in the Extended Packing Bound. Thus, at each step we select

for branching a row or column u with a maximal number of unas-

signed nonzeros, breaking ties arbitrarily. Additionally, since the

goal is to cut as few rows and columns as possible, we traverse the

‘ cut ’ subtree last, and since the goal is to balance the bipartition,

we traverse first the subtree that assigns u to the smallest side in

the bipartition. We note that the previous program, MondriaanOpt,
mploys the same ordering strategy. As a remark, we refer to the

aper by Mumcuyan et. al. [23] who show other branching strate-

ies can be faster, and learn to predict the optimal strategy based

n matrix statistics. It turns out that the strategy that performs

est on average is exactly the one we implemented (branching on

 cut ’ vertices last and ordering by number of nonzeros).

.4.2. Initial upper bound

To correctly prune, our branch-and-bound algorithm needs an

pper bound to compare its lower bound against. Before we

ave found our first feasible solution we could use the trivial

in (m, n) + 1 upper bound. Although this upper bound is in some

ense tight (consider an odd square matrix with only one zero), for

parse matrices it is usually quite bad and forces our algorithm to

onsider many suboptimal solutions before arriving at better ones.

Instead, we would like to run the algorithm with an upper

ound as tight as possible. Hence, we use a technique common in

ranch-and-bound algorithms where we run our algorithm with an

nitial (strict) upper bound of U 1 = 1 , and rerun with U i +1 = � 5 4 U i �
ntil we have found a solution. One may interpret this search tech-

ique as a variation of Iterative Deepening A

∗, considering volume

nstead of path length.

.4.3. Implementing the flow bound

Finding a maximal set of vertex-disjoint paths is a classical

aximum flow problem. We can solve it by duplicating each ver-

ex, and connecting the resulting vertex pairs with a capacity 1

dge to enforce that every vertex be used only once. A thorough

xposition of this may be found in the book by Cormen et al. [27,

hapter 26] .

To leave as many edges for the packing bound as possible,

e compute the maximum flow using shortest paths [28] . Fi-

ally, while the maximum flow problem may be solved in poly-

omial time, it still requires computation over the entire graph,

hich may slow down our algorithm for large matrices. Instead,

e reuse the flow from the previous step in the branch-and-bound

lgorithm. Recomputing the flow then involves finding augmenting

aths involving the modified vertex, which speeds up computation

onsiderably especially when this subgraph is small, lower in the

earch tree.

.4.4. Extended packing bound

The quality of this lower bound is highly dependent on the rel-

tive sizes of the subgraphs. Ideally, we would like the size of the

argest subgraphs to be as small as possible, so we are forced to cut

any of them to balance the partitioning. Thus, we start a depth-

rst search from all vertices in R simultaneously, updating each of

he corresponding search trees one by one (cycling through them

sing, for example, a queue) until all searches have terminated.

.4.5. Combining bounds

A priori, the flow and extended packing bound conflict with

ach other, so if we compute both we would be relegated to tak-

ng the maximum of the two (and then adding | C |). However we

an first compute the flow bound, remove the set of paths it found

rom the graph, and then run the packing bound on the remainder

f the graph. Then the packing bound will only use edges not used

y the flow bound and we can add the two bounds together.

Additionally while the combined flow and extended packing

ound together should give the strongest lower bound, they are

lso the most expensive to compute. Therefore we also compute

he weaker, local packing bound [9] , as the overhead to compute

his is negligible. In particular, we do this computation incremen-

ally: if this local packing bound on its own already indicates this

ubtree should be pruned, we do so without computing any other

ounds. Then we compute the flow bound and ask the same ques-

ion, and then finally the extended packing bound.

T.E. Knigge and R.H. Bisseling / Parallel Computing 96 (2020) 102640 9

4

S

d

G

s

p

M

i

t

t

a

n

0

a

T

l

o

s

E

C

2

l

s

t

f

w

t

4

t

s

t

t

b

t

r

b

e

w

a

w

r

m

p

p

i

c

l

M

i

n

0

v

e

P
P

Fig. 5. The top plot shows for a given number of nonzeros N , what percentage of

matrices with at most N nonzeros were solved in the alloted time. The bottom plot

shows for a given time in seconds t , the percentage of matrices in the whole test

set that was solved in t seconds. Note the logscale for t . In both plots, the blue

graph is for MP, and red for MondriaanOpt. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

s

b

s

b

I

t

e

(

s

u

t

d

c

T

M

c

f

t

fi

s

m

l

r

t

t

f

a

c

t

u
. Experimental results

We implemented the branch-and-bound algorithm from

ection 3 in our new program MP. 3 The implementation was

one in C++14, and the final program was compiled with GNU

CC Version 7.1.0 with the -O2 flag. The program was written

equentially, but as a branch-and-bound algorithm it can easily be

arallelized in the future.

To test the capabilities of the new exact matrix bipartitioner

P and to compare it with MondriaanOpt, we performed numer-

cal experiments on a subset of small and medium-sized test ma-

rices from the SuiteSparse Matrix Collection (formerly known as

he University of Florida Sparse Matrix Collection [10]). We chose

s test set the subset of all sparse matrices with at most 10 0,0 0 0

onzeros, which contains 1602 matrices 4 , 5 We chose a value of ε =
 . 03 in Eq. (2) , which is a common value in the literature allowing

 trade-off between load imbalance and communication volume.

o keep the total CPU time used within reasonable bounds, we al-

otted a maximum of 24 h of CPU time to each partitioning run.

All computations were carried out on thin nodes with 24 cores

f the Dutch national supercomputer Cartesius at SURFsara in Am-

terdam, with a core clock speed of 2.4 GHz (for Intel Ivy Bridge

5-2695 v2 CPUs) or 2.6 GHz (for Haswell Bridge E5-2690 v3

PUs). The memory for each thin node is 64 GB. Each batch of

4 jobs is assigned to a node by a runtime scheduler, which may

ead to different types of CPUs being used, causing a slight incon-

istency in our timings. The scheduler carried out all MP runs on

he slower Ivy Bridge nodes and all MondriaanOpt nodes on the

aster Haswell nodes. Since this distribution favors MondriaanOpt,

e provide all results and runtimes uncorrected for this fact. For

he sake of completeness, we performed calibration runs for the

0 longest running matrices using MP on both types of nodes of

he Cartesius computer, and based on the geometric mean for this

et, we found that the Haswell nodes are a factor of α = 1 . 1782

imes faster than the Ivy Bridge nodes.

As a result of our experiments, we may divide the matrices into

hree groups: (i) a group of 368 matrices which could be solved

y both programs, MP and MondriaanOpt. We use these matrices

o compare the speed of the two programs and to verify their cor-

ectness; (ii) a group of 471 matrices which could only be solved

y MP; (iii) a group of 763 matrices which could not be solved by

ither program. All matrices that could be solved by MondriaanOpt

ithin 24 h could also be solved by MP within 24 h.

For the 368 matrices that could be solved by both programs,

ll optimal volumes computed are identical for the two programs,

hich we take as an independent mutual confirmation of their cor-

ectness. We have taken great care in developing the programs to

ake them understandable and to document them well, to sup-

ort our claim that they compute exact, optimal solutions. Both

rograms are available as open-source software and are open to

nspection for correctness. The two programs do not necessarily

ompute the same solution, as there may be several optimal so-

utions. The optimal volume, however, is of course unique.

Of the 368 matrices solved by both programs, MP is faster than

ondriaanOpt in 306 cases (83% of the cases). In 25 cases (6.8%),

t performs equally well, of which 22 cases with both programs

eeding exactly 1 s (our clock resolution), and having a volume of

. In 37 cases (10%), MondriaanOpt is faster, of which 31 cases with

olume 0. For volume 0, the sparse matrix can be split into sev-

ral connected components (when viewed as a graph) of suitable
3 MP is available from https://github.com/TimonKnigge/matrix-partitioner .
4 After having removed five duplicate matrices: Pothen/barth ,
othen/barth4 , Meszaros/fxm3_6 , Boeing/nasa1824 ,
ajek/football .
5 Retrieved September 2018.

m

w

n

l

l

d
izes. This situation is easy to handle and it is quickly discovered

y both programs. In general, there is a tradeoff where the time

pent computing sharper lower bounds should be compensated for

y a sufficient reduction in the size of the branch-and-bound tree.

n our situation this appears to be the case in a large majority of

est matrices.

We synthesize the results of our experiments in Fig. 5 . With the

xception of two matrices, mhd4800b (29574 s) and mhd3200b
7977 s), all matrices solved by MondriaanOpt in a day could be

olved by MP in an hour, all but nine of them in fifteen min-

tes, and all but twenty in two minutes. The geometric average of

he ratio T MP / T Opt between the time of MP and the time of Mon-

riaanOpt is 0.0855. This average is based on 286 matrices that

ould be solved by both programs and for which T MP , T Opt ≥ 1 s.

his means that on average, MP is more than ten times faster than

ondriaanOpt.

Table 1 shows the hardest (longest running) cases that MP

ould still solve within our self-imposed time limit. These are in

act the matrices that take between 3 and 24 h to be solved. Note

hat there is no simple parameter that characterises the most dif-

cult matrices for bipartitioning. Still we can say that the hardest

olvable matrices usually have a communication volume of 10 or

ore, with the exception of the matrix mhd4800b , which has a

ow volume of 2. Furthermore, they also have at least 10 0 0 nonze-

os, with two exceptions, ch4-4-b2 and GD97_a . This particular

op-40 set is our challenge to future exact partitioners.

In addition to the literature standard of ε = 0 . 03 , we ran this

op-40 of matrices for ε = 0 and ε = 0 . 1 as well, to see what ef-

ect the choice of ε might have on these hard matrices. Results

re also found in Table 1 . We see that in many cases, the volume

hanges only slightly or not at all. There are several notable excep-

ions however, where the larger imbalance allows for lower vol-

mes which can also be found faster, for example for the iiasa
atrix. The comparative runtimes vary much more. Increasing ε
ill grow the size of the solution space since more partitionings

ow satisfy the load balancing constraint. Conversely, this may al-

ow us to find lower volume solutions that we can use to prune

arger parts of the search tree. Which of these effects is stronger

epends on the matrix, even in a non-linear fashion as can be seen

https://github.com/TimonKnigge/matrix-partitioner

10 T.E. Knigge and R.H. Bisseling / Parallel Computing 96 (2020) 102640

Table 1

The top-40 of matrices with the longest computation time needed by the matrix partitioner MP for ε = 0 . 03 . Given

are the matrix name, number of rows, columns, and nonzeros, and for each ε ∈ {0, 0.03, 0.1} the optimal communica-

tion volume and CPU time (in s) needed for computing an optimal solution. In case a matrix was not solved within

the time limit of 24 h, a dash (–) appears. Of these matrices, MondriaanOpt only solved mhd4800b for ε = 0 . 03 (in

55001 s).

Name m n nz ε = 0 ε = 0 . 03 ε = 0 . 1

V T V T V T

c-28 4598 4598 30590 10 13275 10 11470 10 5494

mhd1280a 1280 1280 47906 – – 44 12375 – –

bp_1000 822 822 4661 35 4058 35 13945 – –

reorientation_4 2717 2717 33630 – – 14 14680 14 28025

DK01R 903 903 11766 – – 20 15070 20 8527

west0479 479 479 1910 33 20982 33 15156 33 46986

ch4-4-b2 96 72 288 24 23469 24 15955 24 39888

celegansneural 294 270 2345 58 10142 57 16203 – –

lp_stocfor3 16675 23541 76473 14 13757 14 18138 14 37751

bayer02 13935 13935 63679 28 18643 27 18832 27 30701

circuit204 1020 1020 5883 – – 41 19078 40 35546

orbitRaising_4 915 915 7790 – – 16 19405 8 14

GD97_a 84 84 332 24 17958 24 20024 24 33897

lp_modszk1 686 1620 3168 34 60417 34 20768 34 45698

mhd4800b 4800 4800 27520 2 23728 2 23298 0 12

Hamrle2 5952 5952 22162 16 13270 16 24322 16 6156

dynamicSoaringProblem_4 3191 3191 36516 – – 22 24533 22 42353

pcb1000 1565 2820 20463 41 37923 40 24601 40 35283

lp_grow22 440 946 8252 20 340 20 25148 20 34

kineticBatchReactor_5 7641 7641 80767 – – 18 26139 18 42805

can_256 256 256 2916 44 4193 43 28300 40 29983

qiulp 1192 1900 4492 – – 40 30445 – –

ex21 656 656 19144 – – 62 31311 – –

lp_bnl1 642 1586 5532 – – 47 31663 – –

c-29 5033 5033 43731 – – 28 32127 – –

fs_541_1 541 541 4285 37 23259 37 33046 – –

fs_541_4 541 541 4285 37 23247 37 33181 – –

fs_541_2 541 541 4285 37 23529 37 33264 – –

fs_541_3 541 541 4285 37 23303 37 33377 – –

bp_600 822 822 4172 – – 33 34244 – –

model1 362 798 3028 47 17281 46 37081 – –

kineticBatchReactor_9 8115 8115 86183 – – 18 44655 – –

kineticBatchReactor_4 7105 7105 74869 – – 18 45586 – –

de063157 936 1656 5119 36 8463 36 46148 – –

ncvxqp9 16554 16554 54040 30 33325 30 46556 30 64409

lp_sctap2 1090 2500 7334 41 29014 40 57920 – –

iiasa 669 3639 7317 14 11410 14 64331 6 3

can_229 229 229 1777 38 42965 38 65317 – –

lp_pilot4 410 1123 5264 – – 47 68010 44 688

lpi_pilot4i 410 1123 5264 – – 47 70176 44 698

Table 2

Results summary of heuristic partitioners.

Partitioner Runtime (in s) Optimality ratio

Mondriaan FG 0.051452 1.63409

Mondriaan FG + IR 0.053945 1.53390

Mondriaan MG 0.029856 1.46326

PaToH FG 0.013915 1.18534

PaToH FG + IR 0.015162 1.16161

PaToH MG 0.009188 1.10145

5

b

fl

b

n
from the results of lp_grow22 where the choice of ε = 0 . 03 ap-

pears especially unfortunate. 6

To emphasize the potential of MP as a benchmark for heuristic

solutions, we applied Mondriaan 4.2.1 to the 839 optimally solved

matrices. We used both the underlying hypergraph partitioner of

Mondriaan as well as PaToH 3.2, and used the fine-grain strategy

(with and without iterative refinement) and medium-grain strategy

(always uses iterative refinement). For all other options we relied

on the Mondriaan defaults. The average runtime (arithmetic mean)

and optimality ratio (geometric mean, after removing volume-0

matrices, at which point 726 matrices remain) may be found in

Table 2 . Furthermore, Fig. 6 contains a performance plot of the six

configurations. To answer the question from the introduction ‘how

good are the current methods?’, we note that the geometric aver-

age achieved by the combination of Mondriaan medium-grain with

iterative refinement and the PaToH bipartitioner is only 10% above

the optimal attainable value, meaning that the heuristic partition-

ing is already very close to what can optimally be achieved.
6 Do note the selection bias here. Among the matrices that are very time con-

suming to solve for ε = 0 . 1 we might similarly find a matrix solved very rapidly for

ε = 0 . 03 .

t

p

r

e

a
. Conclusions and future work

In this work, we have expanded our data base of 356 optimally

ipartitioned sparse matrices to 839 matrices, by developing a new

ow-based bound and a stronger packing bound for our previous

ranch-and-bound algorithm [9] . We implemented this bound in a

ew matrix partitioner, MP, which has the same functionality as

he previous partitioner MondriaanOpt. We are now able to bi-

artition 96.8% of the sparse matrices with at most 10 0 0 nonze-

os from the SuiteSparse collection [10] to optimality, reaching the

xact minimum communication volume for a given load imbal-

nce ε = 0 . 03 . For matrices with less than 10,0 0 0 nonzeros, we are

T.E. Knigge and R.H. Bisseling / Parallel Computing 96 (2020) 102640 11

Fig. 6. For a given ratio r ≥ 1, we show what percentage of the 839 matrices were

solved within a factor r of the optimal solution found by MP, for Mondriaan

fine-grain, Mondriaan fine-grain with iterative refinement, Mondriaan medium-

grain, PaToH fine-grain, PaToH fine-grain with iterative refinement and finally

PaToH medium-grain . For matrices whose optimal volume was 0, we used the con-

vention that x/ 0 = 1 when x = 0 and ∞ if x ≥ 1.

s

1

t

p

m

t

l

n

d

(

C

t

3

o

b

a

s

f

p

h

m

b

D

c

i

A

c

t

c

i

Fig. 7. Bipartitioning of the 93 × 93 matrix cage6 with 785 nonzeros. The mini-

mum communication volume for an allowed imbalance of ε = 0 . 03 equals V = 38 .

The 397 red nonzeros are assigned to one part, the 316 blue nonzeros to the other

part, and the 72 yellow nonzeros can be freely assigned to any part without af-

fecting the communication volume, because both their row and their column are

already cut. We can color these free nonzeros blue to improve the load balance,

giving 397 red and 388 blue nonzeros, corresponding to an achieved imbalance of

about ε′ = 0 . 01 . (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

R

uccessful in 72.8% of the cases, and for matrices with less than

0 0,0 0 0 nonzeros still in 52.3%. The new partitioner MP is more

han ten times faster than MondriaanOpt for problems that both

artitioners can solve, and, more importantly, enables us to solve

any more partitioning problems.

In the near future, we intend to apply the new partitioner also

o selected problems that we could not solve within our imposed

imit of 24 h. Looking already beyond the horizon, the smallest (by

onzeros) matrix that MP could not solve within our limit of one

ay is cage6 . We partitioned this matrix using MP in 283,316 s

over 3 days) on a laptop computer with an Intel i7-8550U 1.8 GHz

PU. By comparison, one of the authors ran MondriaanOpt for

hree months on this instance without solving it. The result of the

-day calculation is shown in Fig. 7 .

In this paper, we also gave a proof of the N P -completeness

f ε-balanced sparse matrix bipartitioning. This result may hardly

e surprising, as graph partitioning and hypergraph partitioning

re both known to be N P -complete. Still, this problem is a very

pecific instance of hypergraph partitioning, and it is a motivation

or developing good heuristic partitioners to know that solving the

roblem optimally by an exact algorithm is intractable. It is our

ope that the expanded data base of optimally bipartitioned sparse

atrices will be used in practice to benchmark the quality of the

ipartitioning kernel of such heuristic partitioners.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgements

We thank Oded Schwartz for helpful discussions on N P -

ompleteness. The computations of this paper on the Dutch na-

ional supercomputer Cartesius at SURFsara in Amsterdam were

arried out under grant SH-349-15 from The Netherlands Organ-

sation for Scientific Research (NWO).
eferences

[1] G. Karypis, V. Kumar, Multilevel k -way hypergraph partitioning, in: Proceed-

ings 36th ACM/IEEE Conference on Design Automation, ACM Press, New York,
1999, pp. 343–348, doi: 10.1145/309847.309954 .

[2] Ü.V. Çatalyürek, C. Aykanat, Hypergraph-partitioning-based decomposition for

parallel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib. Syst.
10 (7) (1999) 673–693, doi: 10.1109/71.780863 .

[3] B. Vastenhouw, R.H. Bisseling, A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication, SIAM Rev. 47 (1) (2005) 67–95,

doi: 10.1137/S0036144502409019 .
[4] Y. Akhremtsev, T. Heuer, P. Sanders, S. Schlag, Engineering a direct k -way

hypergraph partitioning algorithm, in: Proceedings of the Nineteenth Work-

shop on Algorithm Engineering and Experiments (ALENEX), 2017, pp. 28–42,
doi: 10.1137/1.9781611974768.3 .

[5] A. Trifunovi ́c, W.J. Knottenbelt, Parallel multilevel algorithms for hypergraph
partitioning, J. Parallel Distrib. Comput. 68 (5) (2008) 563–581, doi: 10.1016/j.

jpdc.20 07.11.0 02 .
[6] K.D. Devine, E.G. Boman, R. T. Heaphy, R.H. Bisseling, U.V. Catalyurek, Parallel

hypergraph partitioning for scientific computing, in: Proceedings IEEE Interna-

tional Parallel and Distributed Processing Symposium 2006, IEEE Press, 2006,
p. 102, doi: 10.1109/IPDPS.2006.1639359 .

[7] Ü.V. Çatalyürek, C. Aykanat, A fine-grain hypergraph model for 2D decompo-
sition of sparse matrices, in: Proceedings IEEE International Parallel and Dis-

tributed Processing Symposium 2001, IEEE Press, 2001, p. 118, doi: 10.1109/
IPDPS.2001.925093 .

[8] D.M. Pelt, R.H. Bisseling, A medium-grain method for fast 2D bipartitioning

of sparse matrices, in: Proceedings IEEE International Parallel and Distributed
Processing Symposium 2014, IEEE Press, 2014, pp. 529–539, doi: 10.1109/IPDPS.

2014.62 .
[9] D.M. Pelt, R.H. Bisseling, An exact algorithm for sparse matrix bipartitioning, J.

Parallel Distrib. Comput. 85 (2015) 79–90, doi: 10.1016/j.jpdc.2015.06.005 .
[10] T.A. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM Trans.

Math. Softw. 38 (1) (2011) 1:1–1:25, doi: 10.1145/2049662.2049663 .
[11] M.R. Garey , D.S. Johnson , Computers and Intractability; A Guide to the Theory

of N P -Completeness, W. H. Freeman & Co., New York, NY, USA, 1979 .

[12] T.N. Bui, C. Jones, Finding good approximate vertex and edge partitions is
NP-hard, Inf. Process. Lett. 42 (3) (1992) 153–159, doi: 10.1016/0020-0190(92)

90140-Q .
[13] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley

and Sons, Chichester, UK, 1990, doi: 10.1007/978- 3- 322- 92106- 2 .

https://doi.org/10.1145/309847.309954
https://doi.org/10.1109/71.780863
https://doi.org/10.1137/S0036144502409019
https://doi.org/10.1137/1.9781611974768.3
https://doi.org/10.1016/j.jpdc.2007.11.002
https://doi.org/10.1109/IPDPS.2006.1639359
https://doi.org/10.1109/IPDPS.2001.925093
https://doi.org/10.1109/IPDPS.2014.62
https://doi.org/10.1016/j.jpdc.2015.06.005
https://doi.org/10.1145/2049662.2049663
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0011
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0011
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0011
https://doi.org/10.1016/0020-0190(92)90140-Q
https://doi.org/10.1007/978-3-322-92106-2

12 T.E. Knigge and R.H. Bisseling / Parallel Computing 96 (2020) 102640

[

[

[

[

[

[14] D. Delling, D. Fleischman, A.V. Goldberg, I. Razenshteyn, R.F. Werneck, An exact
combinatorial algorithm for minimum graph bisection, Math. Program. 153 (2)

(2015) 417–458, doi: 10.1007/s10107- 014- 0811- z .
[15] O. Selvitopi, S. Acer, C. Aykanat, A recursive hypergraph bipartitioning frame-

work for reducing bandwidth and latency costs simultaneously, IEEE Trans.
Parallel Distrib. Syst. 28 (2) (2017) 345–358, doi: 10.1109/TPDS.2016.2577024 .

[16] S.E. Karisch, F. Rendl, J. Clausen, Solving graph bisection problems with
semidefinite programming, INFORMS J. Comput. 12 (3) (20 0 0) 177–191, doi: 10.

1287/ijoc.12.3.177.12637 .

[17] N. Sensen, Lower bounds and exact algorithms for the graph partitioning prob-
lem using multicommodity flows, in: Algorithms - Proceedings ESA 2001, in:

Lecture Notes in Computer Science, volume 2161, Springer, 2001, pp. 391–403,
doi: 10.1007/3- 540- 44676- 1 _ 33 .

[18] A. Felner, Finding optimal solutions to the graph partitioning problem with
heuristic search, Ann. Math. Artif. Intell. 45 (3–4) (2005) 293–322, doi: 10.1007/

s10472- 005- 9001- 2 .

[19] W.W. Hager, D.T. Phan, H. Zhang, An exact algorithm for graph partitioning,
Math. Program. 137 (1–2) (2013) 531–556, doi: 10.1007/s10107- 011- 0503- x .

[20] A .E. Caldwell, A .B. Kahng, I.L. Markov, Optimal partitioners and end-case plac-
ers for standard-cell layout, IEEE Trans. CAD Integr. Circuits Syst. 19 (11) (20 0 0)

1304–1313, doi: 10.1109/43.892854 .
[21] D. Kucar , S. Areibi , A. Vannelli , Hypergraph partitioning techniques, Dyn. Con-

tin. Discrete Impulsive Syst. Ser A. 11 (2–3a) (2004) 339–367 .
22] R.H. Bisseling , J. Byrka , S. Cerav-Erbas , N. Gvozdenovi ́c , M. Lorenz , R. Pen-
davingh , C. Reeves , M. Röger , A. Verhoeven , Partitioning a call graph, in: Pro-

ceedings Study Group Mathematics with Industry 2005, Amsterdam, CWI, Am-
sterdam, 2005, pp. 95–107 .

23] A. Mumcuyan, B. Usta, K. Kaya, H. Yenigün, Optimally bipartitioning sparse
matrices with reordering and parallelization, Concurr. Comput. 30 (21) (2018)

e4687, doi: 10.1002/cpe.4687 .
[24] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified N P -complete graph

problems, Theor. Comput. Sci. 1 (3) (1976) 237–267, doi: 10.1016/0304-3975(76)

90059-1 .
25] D. Wagner, F. Wagner, Between min cut and graph bisection, in: International

Symposium on Mathematical Foundations of Computer Science, Springer, 1993,
pp. 744–750, doi: 10.1007/3- 540- 57182- 5 _ 65 .

26] K. Menger , Zur allgemeinen Kurventheorie, Fundam. Math. 10 (1) (1927)
96–115 .

[27] T.H. Cormen , C.E. Leiserson , R.L. Rivest , C. Stein , Introduction to Algorithms, 3rd

ed., MIT Press, Cambridge MA, 2009 .
28] E.A. Dinic , Algorithm for solution of a problem of maximum flow in networks

with power estimation, in: Soviet Math. Doklady, vol. 11, 1970, pp. 1277–1280 .

https://doi.org/10.1007/s10107-014-0811-z
https://doi.org/10.1109/TPDS.2016.2577024
https://doi.org/10.1287/ijoc.12.3.177.12637
https://doi.org/10.1007/3-540-44676-1_33
https://doi.org/10.1007/s10472-005-9001-2
https://doi.org/10.1007/s10107-011-0503-x
https://doi.org/10.1109/43.892854
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0021
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0021
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0021
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0021
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0022
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0022
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0022
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0022
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0022
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0022
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0022
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0022
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0022
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0022
https://doi.org/10.1002/cpe.4687
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1007/3-540-57182-5_65
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0026
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0026
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0027
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0027
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0027
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0027
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0027
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0028
http://refhub.elsevier.com/S0167-8191(20)30033-8/sbref0028

	An improved exact algorithm and an NP-completeness proof for sparse matrix bipartitioning
	1 Introduction
	2 Hardness results
	2.1 Preliminaries
	2.2 -Graph Edge-Bisection is -Complete
	2.3 -Matrix Bipartition is -Complete

	3 Exact algorithm
	3.1 Branch and bound
	3.2 Flow bounds
	3.3 Packing bounds
	3.4 Implementation notes
	3.4.1 Branching strategy
	3.4.2 Initial upper bound
	3.4.3 Implementing the flow bound
	3.4.4 Extended packing bound
	3.4.5 Combining bounds

	4 Experimental results
	5 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgements
	References

