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1. Introduction. Consider a system f of polynomials f1, . . . , fr ∈
Z[x1, . . . , xn] = Z[x] of degree d ≥ 2. It was shown by Birch [2] that if
these polynomials are homogeneous, they satisfy the smooth Hasse principle
provided

(1) n− dimV ∗ > r(r + 1)(d− 1)2d−1,

where V ∗ is the so-called Birch singular locus of the the projective variety
V corresponding to f . Let V sm be the smooth locus of V (which consists of
the points where the the Jacobian matrix of f has rank r). Then the system
f is said to satisfy the smooth Hasse principle if∏

ν

V sm(Qν) 6= ∅ implies that V (Q) 6= ∅.

Here, the product is over all places ν of Q and we set Q∞ = R.
In this paper we are interested in the distribution and the size of the

rational points on V (or integer points on V when the system is not as-
sumed to be homogeneous). More specifically, let VZ be an integral model
of V . Let A∞ be the adele ring of Q outside the place ∞ and let VA∞ be
the base change of VZ to A∞. We say that V satisfies strong approxima-
tion outside ∞ if the image of the diagonal map VZ → VA∞ is dense. Note
that strong approximation outside ∞ implies the smooth Hasse principle.
For V as in Birch’s theorem strong approximation outside ∞ holds. Theo-
rem 3.11 below is a quantitative version of this statement, which is a first step
in understanding the distribution of the integer zeros of arbitrary systems
of integer polynomials. This result follows directly from our main theorem
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stated in Section 1.2. In order to obtain this result we generalise the work
of Birch [2] to find quantitative asymptotics (in terms of the maximum of
the absolute value of the coefficients of these polynomials) for the number
of integer zeros of this system within a growing box. Using a quantitative
version of the Nullstellensatz, we obtain an upper bound on the smallest
non-trivial common zero of f .

1.1. Related work. There are many improvements on Birch’s result if
we restrict to a single form. For example, Heath-Brown [13] showed that a
cubic form has a non-trivial integer zero provided only that n ≥ 14. Assuming
that the variety V is non-singular, a form of degree 2, 3, or 4 satisfies the
smooth Hasse principle provided that n ≥ 3, n ≥ 9 or n ≥ 40 respectively
[12, 14, 11]. Browning and Prendiville [5] slightly relaxed condition (1), by
showing that for a form of degree d ≥ 3 the smooth Hasse principle holds
provided that n− dimV ∗ ≥

(
d− 1

2

√
d
)
2d.

Recent results by Rydin Myerson [17, 18] improve on Birch’s result for
systems of forms when V is a complete intersection (which is implied by (1) in
Birch’s theorem). He shows that under this condition one can replace condi-
tion (1) by n ≥ 9r respectively n ≥ 25r for systems of degree 2 respectively 3.

Unconditional improvements include the observation that dimV ∗ can
be replaced by a smaller quantity ∆, to be defined in (2), as shown inde-
pendently by Dietmann and Schindler [9, 20]. Another improvement is the
observation by Schmidt [23] that the assumption that the system of polyno-
mials is homogeneous is not necessary. We make use of these improvements
in this work.

There are known results on the smallest zero of a single form in many
variables. Let Λ(f) be the smallest integer zero of a form f ∈ Z[x1, . . . , xn]
with coefficients bounded in absolute value by C. For d = 2, Cassels [6, 7]
showed that

Λ(f) ≤ cnC(n−1)/2,

where the constant cn is explicit and depends only on n. This estimate
has the best possible exponent, i.e. for all n and C, there exists an f ∈
Z[x1, . . . , xn] and a constant dn only depending on n such that Λ(f) ≥
dnC

(n−1)/2. However, for generic quadratic forms one can do much better [3].
Sardari [19] proved an optimal strong approximation theorem for f − N ,
where f is a non-degenerate quadratic form andN a sufficiently large integer.

If d = 3, the best possible exponent for sufficiently large n is smaller than
the exponent (n−1)/2 in Cassels’ result. Browning, Dietmann and Elliott [4]
showed that Λ(f) ≤ cC360000 for some absolute constant c provided n ≥ 17,
whereas by a result due to Pitman [16], for any ε > 0 and sufficiently large n
one has Λ(f) ≤ cn,εC25/6+ε for some constant cn,ε. In case the hypersurface
corresponding to f has at most isolated ordinary singularities, the former
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authors provide visibly better bounds, e.g. Λ(f) ≤ cC1071 for n = 17. In
fact, Browning, Dietmann and Elliott [4] wonder whether their ideas “could
be adapted to handle non-singular forms of degree exceeding 3” analogous
to “the extension of Birch [2] to higher degree of Davenport’s treatment of
cubic forms [8]”. The main result of the present paper is that this is indeed
possible, although their method to achieve effective lower bounds for the
singular series and integral is completely different from ours.

1.2. Main result. Let f̃ denote the top degree part of the system f .
Let V and Ṽ denote the affine and projective variety corresponding to f
and f̃ respectively. Let C and C̃ be the (real) maximum of the absolute
value of the coefficients of f and f̃ respectively. For any b ∈ Zr, we let
f̃b = b1f̃1 + · · · + brf̃r. For a form g we let Sing(g) be the singular locus
of g in affine space. Define the quantity ∆ of Dietmann and Schindler and
define K by

(2) ∆ = max
b∈Zr\{0}

(dimSing(f̃b)) and K =
n−∆
2d−1

.

Throughout this work we assume that

(3) K > r(r + 1)(d− 1).

In particular, V is a complete intersection. Note that (3) corresponds to
Birch’s assumption on the number of variables (i.e. (1)) after replacing the
dimension of the Birch singular locus by ∆.

Our main theorem, which is proven in Section 3.4, makes Birch’s result,
stated in the second sentence of this paper, quantitative in terms of C and C̃:

Theorem 1.1. Let fi ∈ Z[x] = Z[x1, . . . , xn] for i = 1, . . . , r be polyno-
mials of degree d such that K − r(r + 1)(d − 1) > 0, f has a zero over Zp
for all primes p, and f̃ has a real zero. Assume that the affine and projective
varieties V and Ṽ corresponding to f and f̃ respectively are non-singular.
Then there exists an x ∈ Zn \ {0}, polynomially bounded by C and C̃, such
that f(x) = 0 in fact

(4) max
1≤i≤n

|xi| ≤ c(C3C̃2)
2n2rn+1(d−1)nd·K+r(r+1)(d−1)

K−r(r+1)(d−1) ,

where the constant c does not depend on C or C̃.

The case that the system f is homogeneous is treated separately in The-
orem 3.10.

Remark 1.2. The bound in the above theorem is in no sense believed to
be optimal, and is far worse than the known bounds for small degrees dis-
cussed in Section 1.1. However, we provided an upper bound in a far more
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general setting; it has not been shown before that such an upper bound
exists in our setting. Moreover, as pointed out in Remark 3.9, in contrast
to the bounds for small degrees discussed before, the exponent should grow
exponentially in n when d ≥ 4 is even. The main contribution to this bound
is due to our lower bound for the singular series and integral, which follows
from a quantitative version of the Nullstellensatz by D’Andrea, Krick and
Sombra [1] as discussed in Section 3.1. This theorem, although sharp in gen-
eral, is not believed to be sharp in the present setting. It would be interesting
to explore whether a stronger quantitative version of the Nullstellensatz can
be applied in this setting, yielding a significant improvement on (4).

1.3. Structure of this paper. In Section 2 we generalise the work of
Birch [2] to deduce an asymptotic formula (quantitative in C and C̃) for
the number of integer points on V within a box PB for P → ∞, which is
the content of Theorem 2.15. Familiarity with Birch’s work is not necessary:
we prove all results which are direct generalisations of his work. We obtain
lower bounds for the singular series and integral (introduced in Sections 2.4
and 2.5 respectively) in Sections 3.2 and 3.3. We end with the proofs of our
main theorems in Section 3.4.

1.4. Notation. On the vector spaceQn
p (p prime or p =∞) we introduce

the sup norm |α|p = max1≤i≤n |αi|p, where | · |p is the absolute value on Qp.
We write | · | for | · |∞. For β ∈ R, we let ‖β‖ = mini∈Z |i − β| be the
least distance from β to an integer, and for a point α ∈ Rn we write ‖α‖ =
max1≤i≤n ‖αi‖. If a ∈ Zm and q ∈ Z, we abbreviate gcd(a1, . . . , am, q) to
gcd(a, q). For x ∈ R and q ∈ Z we write e(x) for e2πix and eq(x) for e2πix/q.
For functions f, g defined on a subset of the real numbers we use Vinogradov’s
notation f � g to mean f = O(g). Without a specific indication, the implied
constant may depend on n, r and d, but not on C or C̃.

Let E denote the box [−1, 1]n and let B be an n-dimensional box con-
tained in E of side length at most 1, i.e. there are aj , bj ∈ R with −1 ≤ aj ≤
bj ≤ 1 and 0 < bj − aj < 1 such that B is given by

∏n
j=1[aj , bj ]. We write

sums of the form
∑

x∈PB∩Zn as
∑

x∈PB.

2. A quantitative asymptotic formula for the number of integer
zeros

2.1. Estimates of exponential sums. Let α ∈ [0, 1)r and ν ∈ Zr. We
obtain estimates for the exponential sums

S(α) =
∑
x∈PB

e(α · f(x)) and S(α, ν) = S(α)e(−α · ν)

depending on α1, . . . , αr not being too well approximable by rational num-
bers with small denominators.
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LetM(P, ν) denote the number of integer points in the box PB satisfying
f(x) = ν. This counting function is the principal object of study in the first
part of this work. Observe that

(5) M(P, ν) =
�

α∈[0,1)r
S(α, ν) dα.

The following lemma, generalising [20, Lemma 2], enables us to split the
right-hand side of (5) into a main term and an error term.

Lemma 2.1. Let ε > 0 and 0 < θ < 1. One of the following holds:

(i) |S(α)| � Pn−Kθ+ε;
(ii) (rational approximation to α with respect to the parameter θ) there are

a ∈ Zr and q ∈ Z>0 such that gcd(a, q) = 1,

2|qα− a| < C̃r−1P−d+r(d−1)θ and q < C̃rP r(d−1)θ.

Proof. Following [20, proof of Lemma 2], let Γi(x(1), . . . , x(d)) for 1 ≤ i
≤ r be the multilinear form associated to f̃i, satisfying Γi(x, . . . , x) = d!f̃i(x).
Let N(P ξ, P−η;α) be the number of integer vectors x(i) ∈ Zn for 2 ≤ i ≤ d
such that |x(i)| ≤ P ξ and∥∥∥ r∑

i=1

αiΓi(ej , x
(2), . . . , x(d))

∥∥∥ < P−η for all 1 ≤ j ≤ n.

We introduce an r × nN(P θ, P−d+(d−1)θ;α) matrix Ψ , the rank of which
enables us to distinguish between two cases. The entries of Ψ are given by
Γi(ej , x

(2), . . . , x(d)) where the rows of Ψ are indexed by i and the columns
by (j, x(2), . . . , x(d)) for 1 ≤ j ≤ n and x(2), . . . , x(d) running over all vectors
counted by N(P θ, P−d+(d−1)θ;α).

Case 1: rankΨ < r. In this case, there exists a b ∈ Zr \ {0} such that∑r
i=1 biΨi,l = 0 for all l. In particular, the system of equations

r∑
i=1

biΓi(ej , x
(2), . . . , x(d)) = 0 (1 ≤ j ≤ n)

has at least N(P θ, P−d+(d−1)θ;α) integer solutions x(i) ∈ Zn for 2 ≤ i ≤ d
with |x(i)| ≤ P θ. On the other hand, the number of solutions is
� P (d−2)nθ+∆θ+ε by [20, the last equation on p. 212 and the third equa-
tion on p. 216].

Now, suppose k is such that |S(α)| > Pn−k. Then [2, Lemma 2.4] implies

N(P θ, P−d+(d−1)θ;α)� P (d−1)nθ−2d−1k−ε,

which follows from Weyl’s inequality and Davenport’s application of the
geometry of numbers. This estimate is independent of the coefficients of f ,
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i.e. the implied constant does not depend on C or C̃. Hence,

P (d−2)nθ+∆θ+ε � P (d−1)nθ−2d−1k−ε,

so that k ≥ Kθ. Therefore,
|S(α)| < Pn−Kθ+ε.

Case 2: rankΨ = r. In this case there is an r× r submatrix of Ψ of full
rank, which we denote by Ψ̂ . Let pl denote the lth column of Ψ̂−1. We now
define

q = det Ψ̂ , a = q

r∑
l=1

pl
(
(Ψ̂α)l − ‖(Ψ̂α)l‖

)
.

As Ψ̂ is an integer matrix and (qpl)
r
l=1 is the adjoint of Ψ̂ , it follows that

a ∈ (Z≥0)r and q ∈ Z. Moreover, q is non-zero as Ψ̂ has full rank. After
removing a common factor of q and the ai, the conditions gcd(q, a) = 1 and
q > 0 are satisfied. We check that a and q satisfy the remaining properties
of clause (ii). As every entry of Ψ can be estimated by C̃P (d−1)θ, we find

(6) q � C̃rP r(d−1)θ.

Moreover,

|qαi − ai| = |q|
∣∣∣ r∑
l=1

(Ψ̂−1)i,l‖(Ψ̂α)l‖
∣∣∣.

By Cramer’s rule, q(Ψ̂−1)i,l � C̃r−1P (r−1)(d−1)θ and one has ‖(Ψ̂α)l‖ �
P−d+(d−1)θ by construction of Ψ . Hence,

(7) |qαi − ai| � C̃r−1P (r−1)(d−1)θP−d+(d−1)θ.

Finally, note that by scaling θ, the implied constants in (6) and (7) can be
transferred to the implied constant in (i).

For a ∈ Zr and q ∈ Z>0, let

Sa,q =
∑
x (q)

eq(a · f(x)), Sa,q(ν) = Sa,qeq(−a · ν).

Here, the summation is over a complete set of residues modulo q for ev-
ery vector component of x. The following lemma, which is a corollary of
Lemma 2.1 and generalises [2, Lemma 5.4], will be useful when we define the
singular series in terms of Sa,q in Section 2.4.

Lemma 2.2. For every ε > 0 we have

(8) |Sa,q| � C̃K/(d−1)qn−K/(r(d−1))+ε.

Proof. Observe that Sa′,q′ is a particular case of S(α) with P = q′ and
α = a′/q′. Take θ such that r(d− 1)θ < 1− logq(C̃

r). Then the inequalities
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in Lemma 2.1(ii) read

|qa′ − q′a| < q′2−d, 1 ≤ q < q′.

As d ≥ 2, this system has no solutions, hence (i) is satisfied.

2.2. Minor arcs. Let

M(θ) = {(a, q) ∈ Zr≥0 × Z>0 : gcd(a, q) = 1, |a| ≤ q < C̃rP r(d−1)θ}

be the set of all pairs (a, q) occurring in Lemma 2.1(ii). Given (a, q) ∈ Zr ×
Z>0 and 0 < θ ≤ 1, define a major arc by

Ma,q(θ) = {α ∈ [0, 1)r : 2|qα− a| < C̃r−1P−d+r(d−1)θ}.

Then, define the major arcs to be

(9) M(θ) =
⋃

(a,q)∈M(θ)

Ma,q(θ).

Observe that M(θ) consists of all α satisfying (ii) of Lemma 2.1. Define the
minor arcs by m = [0, 1)r \M. The contribution of α ∈ m to the integral
in (5) will be considered as an error term. In order to estimate this error
term, we first estimate the volume of M(θ), generalising [2, Lemma 4.2]:

Lemma 2.3. The major arcs M(θ) have volume at most

C̃r
2
P−rd+r(r+1)(d−1)θ.

Proof. Each major arc Ma,q(θ) has volume (q−1C̃r−1P−d+r(d−1)θ)r. As
M(θ) is the (not necessarily disjoint) union of major arcs, an upper bound
for the volume of M(θ) is given by∑

(a,q)∈M(θ)

(q−1C̃r−1P−d+r(d−1)θ)r.

If the major arcs are disjoint, we can write�

M(θ)

S(α, ν) dα =
∑

(a,q)∈M(θ)

�

Ma,q(θ)

S(α, ν) dα.

This is the case for θ small enough, which generalises [2, Lemma 4.1]:

Lemma 2.4. Suppose θ is such that d > 2r(d − 1)θ + (2r − 1) logP (C̃).
Then M(θ) in (9) is a disjoint union of Ma,q(θ).

Proof. Suppose that α lies in distinct sets Mb,q(θ) and Mb′,q′(θ). It fol-
lows that there is an i such that bi/q 6= b′i/q

′. Then

1 ≤ |b′iq − q′bi| ≤ q|q′αi − b′i|+ q′|qαi − bi| < C̃2r−1P−d+2r(d−1)θ,

which contradicts our assumption on θ.



226 J.-W. M. van Ittersum

Now, take major arcs M(θ0), where 0 < θ0 < 1, 0 < δ < 1 and η are
such that

η = r(d− 1)θ0,(10)

d > 2η + (2r − 1) logP (C̃),(11)
K

r(d− 1)
− (r + 1) > δη−1.(12)

Observe that assumption (12) is a quantitative version of our main assump-
tion (3). By (11) the major arcs Ma,q(θ0) are disjoint. Later, we choose η
and δ satisfying (11) and (12). From now on, write Ma,q for Ma,q(θ0).

We use Birch’s idea of a sliding scale to bound S(α, ν) on the minor arcs.
Note that the estimate

S(α)� Pn−Kθ+ε

for α ∈ m is the stronger the larger θ is. Therefore, in order to show that	
m |S(α, ν)| dα is negligible, we let θ depend on α. For most α, we take θ
large and have a strong estimate for |S(α)|. When this estimate is invalid,
we have to use a smaller value of θ, but we have the compensation that this
only happens for a set of α of small measure by the previous lemma. So,
the worse the estimate for |S(α)|, the smaller the set of α for which it is
necessary to use this estimate. Hence, we find the following generalisation of
[2, Lemma 4.4]:

Lemma 2.5. �

m

|S(α, ν)| dα = O(C̃r
2
Pn−rd−δ),

where O does not depend on C or C̃.

Proof. First, observe that |S(α, ν)| = |S(α)|. Let ε > 0 be small. Now,
define a sequence

(13) θT > θT−1 > · · · > θ1 > θ = θ0 > 0

such that

(r + 1)(d− 1)θT = 2d,

r(r + 1)(d− 1)(θt+1 − θt) < δε for 0 ≤ t ≤ T − 1.(14)

This can be done with T � P δε (independent of C̃).
By Lemma 2.1 and as −KθT + ε < −2rd by (3), we find

�

α 6∈M(θT )

|S(α, ν)|dα� Pn−2rd.
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By Lemmata 2.3 and 2.1,
�

M(θt+1)−M(θt)

|S(α, ν)|dα ≤
�

M(θt+1)

|S(α, ν)| dα

� C̃r
2
P−rd+r(r+1)(d−1)θt+1Pn−Kθt+ε.

By (14), (12), (10) and (13) we have

r(r + 1)(d− 1)θt+1 −Kθt + ε < −δ − δε,

so that �

M(θt+1)−M(θt)

|S(α, ν)|dα� C̃r
2
Pn−rd−δ−δε.

Therefore,

�

α 6∈M(θ0)

|S(α, ν)| dα =
�

α 6∈M(θT )

|S(α, ν)|dα+
T−1∑
t=0

�

M(θt+1)−M(θt)

|S(α, ν)|dα

� Pn−2rd + P δεC̃r
2
Pn−rd−δ−δε.

Since for our choice of δ and θ0 the major arcs are disjoint, we obtain the
following generalisation of [2, Lemma 4.5].

Corollary 2.6.

M(P, ν) =
∑

(a,q)∈M(θ0)

�

Ma,q

S(α, ν) dα+O(C̃r
2
Pn−rd−δ).

2.3. Approximating exponential sums by integrals. Given α in
Ma,q, we let β = α − a/q. Similarly, given x ∈ PB ∩ Zn, we let z = x − qy
for y ∈ Zn such that 0 ≤ zi < q for all i. Then

S(α, ν) =
∑
z(q)

∑
z+qy∈PB

e
(
α · (f(z + qy)− ν)

)
(15)

=
∑
z(q)

eq
(
a · (f(z)− ν)

) ∑
z+qy∈PB

e
(
β · (f(z + qy)− ν)

)
.

The following lemma replaces the sum∑
z+qy∈PB

e(β · f(z + qy))

by an integral. For a measurable subset C of E and γ ∈ Rr, we write

(16) I(C, γ) =
�

ζ∈C
e(γ · f̃(ζ)) dζ.



228 J.-W. M. van Ittersum

Lemma 2.7. Given z ∈ Zn, β ∈ Zr and q ∈ Z>0, we have

(17)
∑

z+qy∈PB
e(β · f(z + qy)) = I(B, P dβ)P

n

qn
+O

(
(C|P dβ|+ 1)

Pn−1

qn−1

)
.

Proof. For the system of polynomials r = f − f̃ of degree at most d− 1
we have

|e(β · r(z + qy))− 1| � |β| |r(z + qy))| � |β|CP d−1,
where we assume that z + qy ∈ PB. There are O((P/q)n) values of y in the
sum, hence∑
z+qy∈PB

e(β · f(z + qy)) =
∑

z+qy∈PB
e(β · f̃(z + qy)) +O

(
|β|CP

n+d−1

qn

)
.

Next, we replace the sum on the right-hand side by the integral

(18)
�

z+qω∈PB
e(β · f̃(z + qω)) dω.

The edges of the cube of summation and integration have length P/q. In
the replacement of the sum by the integral, we have an error of at most
� (P/q)n−1 coming from the boundaries. The variation in e(β · f̃(z + qy))

results in an error of at most O(|β|qC̃P d−1(P/q)n). Hence, the total error in
(17) is

� |β|CP
n+d−1

qn
+ |β|C̃ P

n+d−1

qn−1
+
Pn−1

qn−1
� (C|P dβ|+ 1)

Pn−1

qn−1
.

Applying the substitution z + qω = Pζ to (18) gives the desired result.

Corollary 2.8. Given z ∈ Zn and α ∈Ma,q with β = α−a/q, we have∑
z+qy∈PB

e(β · f(z + qy)) = I(B, P dβ)P
n

qn
+O

(
CC̃r−1

Pn+η−1

qn

)
.

Proof. Estimate the error term in Lemma 2.7 by observing that for α in
Ma,q we have |P dβ| ≤ C̃r−1q−1P η and 1 ≤ C̃rq−1P η.

Recall Sa,q(ν) is defined by (2.1). Applying the corollary to (15) we obtain
(compare with [2, Lemma 5.1]):

Corollary 2.9. Let α = a/q + β ∈Ma,q. Then

S(α, ν) = q−nSa,q(ν) · I(B, P dβ) · e(−β · ν) · Pn +O(CC̃r−1Pn+η−1).

In the next two sections we study the singular series and singular inte-
gral which will be obtained by putting together q−nSa,q(ν) and I(B, P dβ)
respectively for all α ∈M.
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2.4. Singular series. Define the singular series by

S(ν) =
∞∑
q=1

q−n
∑
a(q)

gcd(a,q)=1

Sa,q(ν).

It converges absolutely under assumption (12) on K. This is made quanti-
tative in the following lemma, generalising [2, p. 256]:

Lemma 2.10. For all τ ≥ 0 we have∑
q>P τη

q−n
∑
a(q)

gcd(a,q)=1

|Sa,q(ν)| � C̃K/(d−1)P−τδ.

Proof. Observe that |Sa,q(ν)| = |Sa,q|. By Lemma 2.2 and (12), we have∑
q>P τη

q−n
∑
a(q)

gcd(a,q)=1

|Sa,q(ν)| �
∑
q>P τη

q−n
∑
a(q)

gcd(a,q)=1

C̃K/(d−1)qn−K/(r(d−1))+ε

� C̃K/(d−1)
∑
q>P τη

q−1−δη
−1 � C̃K/(d−1)P−τδ.

2.5. Singular integral. For T ∈ R, define a continuous function JT :
Rr → R by

JT (µ) =
�

|γ|≤T

I(B, γ)e(−γ · µ) dγ,

where I(B, γ) is defined by (16). The next two lemmata, generalising [2,
Lemmata 5.2 and 5.3], show that the sequence (JT )T∈N converges uniformly
in µ to a function J(µ) which we call the singular integral.

Lemma 2.11. For all ε > 0 one has

|I(B, γ)| � min
(
1, (C̃1−r|γ|)−r−1−δη−1

(C̃|γ|)ε
)
.

Proof. |I(B, γ)| � 1 follows directly. Therefore, in proving the second
part of the inequality we may assume that

(19) C̃1−r|γ| > 1.

Take P = C̃|γ|(C̃1−r|γ|)K/(r(d−1)). By (19) and d ≥ 2 we find that P >

(C̃|γ|)2/d. Hence, for α = P−dγ we have |α| < (C̃P d)−1/2. Let ϕ satisfy

|α| = C̃r−1P−d+r(d−1)ϕ.

Then by Lemma 2.4 we find thatM(ϕ) is given as a disjoint union ofMa,q(ϕ).
Observe that α lies on the boundary of the open set M0,1(ϕ). Hence, α is
not in M(ϕ). Lemma 2.1 now implies that

(20) |S(α)| � Pn+ε(C̃1−rP d|α|)−K/(r(d−1)).
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On the other hand, by Lemma 2.7 with z = 0, q = 1, a = 0, we obtain

(21) S(α) =
∑
y∈PB

e(α · f(y)) = I(B, P dα)Pn +O((C̃|P dα|+ 1)Pn−1).

Hence, combining (20) and (21) yields

|I(B, γ)| � (C̃1−r|γ|)−K/(r(d−1))(C̃|γ|)ε.

Estimating K/(r(d− 1)) by r + 1 + δη−1 using (12) completes the proof.

Lemma 2.12. If T2 > T1, then for all ε > 0 one has

|JT1(µ)− JT2(µ)| � C̃r
2−1+(r−1)δη−1+εT−1−δη

−1+ε
1 .

Proof. Using Lemma 2.11 we find

JT2(µ)− JT1(µ) =
�

T1≤|γ|≤T2

I(B, γ)e(−γ · µ) dγ

�
�

T1≤|γ|≤T2

(C̃1−r|γ|)−r−1−δη−1
(C̃|γ|)ε dγ

�
T2�

T1

C̃r
2−1+(r−1)δη−1+εΓ−r−1−δη

−1+εΓ r−1 dΓ

� C̃r
2−1+(r−1)δη−1+εT−1−δη

−1+ε
1 .

Taking the limit as T2 →∞ we obtain

(22) JT1(µ)− J(µ)� C̃r
2−1+(r−1)δη−1+εT−1−δη

−1+ε
1 .

This implies the following upper bound for J(µ):

Corollary 2.13. For all µ ∈ Zr and ε > 0 we have

J(µ)� C̃r(r−1)+ε.

Proof. By the trivial bound in Lemma 2.11 we have J
C̃r−1(µ)� C̃r(r−1).

By (22) we see that J(µ)− J
C̃r−1(µ)� C̃r(r−1)+ε. The result follows by the

triangle inequality.

2.6. Major arcs. Combining the results in the previous sections, we
obtain a quantitative asymptotic theorem for the number of integer zeros of
f − v in a box PB, generalising [2, Lemma 5.5]:

Lemma 2.14.
M(P, ν)

Pn−rd
= S(ν)J(P−dν) +O1 +O2,

where

O1 = O(CC̃2r2+r−1P−1+2(r+1)η) and O2 = O(C̃K/(d−1)+r
2−r+εP−δ).
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Proof. By Corollary 2.6 we have

M(P, ν) =
∑

(a,q)∈M(θ0)

�

Ma,q

S(α, ν) dα+O(C̃r
2
Pn−rd−δ).

Note that K/(d− 1)− r + ε > 0. Let β = α− a/q. Then

M(P, ν) =
∑

(a,q)∈M(θ0)

�

M0,q

S(a/q + β, ν) dβ + Pn−rdO2.

As |Sa,q(ν)| ≤ qn and |M(θ0)| ≤ (C̃rP η)r+1,∑
(a,q)∈M(θ0)

|Sa,q(ν)|
qn

CC̃r−1Pn+η−1
�

M0,q

dβ = Pn−rdO1.

Hence, Corollary 2.9 implies that

(23)
M(P, ν)

Pn−rd
= P rd

∑
(a,q)∈M(θ0)

Sa,q(ν)

qn
J
C̃r−1P η

(P−dν) +O1 +O2.

By Lemma 2.10 for τ = 0 we find∑
(a,q)∈M(θ0)

|Sa,q(ν)|
qn

C̃r
2−1+(r−1)δη−1+ε(C̃r−1P η)−1−δη

−1+ε = O2.

Hence, using (22) for T1 = C̃r−1P η to rewrite (23) we obtain
M(P, ν)

Pn−rd
=

∑
(a,q)∈M(θ0)

Sa,q(ν)

qn
J(P−dν) +O1 +O2.

By Lemma 2.10 for τ = 1 and Corollary 2.13 we can plug in the singular
series and obtain

M(P, ν)

Pn−rd
= (S(ν) +O(C̃K/(d−1)P−δ))J(P−dν) +O1 +O2

= S(ν)J(P−dν) +O1 +O2.

Theorem 2.15.

M(P, ν) = Pn−rdS(ν)J(P−dν) +O(CC̃K/(d−1)+r
2−1Pn−rd−δ),

where

(24) δ <
K − r(r + 1)(d− 1)

K + r(r + 1)(d− 1)
.

Proof. Let δ be as in (24) and let

η =
r(d− 1)

K + r(r + 1)(d− 1)
.

As η < 1
r+1 , condition (11) is satisfied for P large enough (e.g. P > C̃4r/d).

Moreover, (12) is satisfied. As −1+ 2(r+1)η < −δ and r2 + r < K/(d− 1),
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both error terms O1 and O2 in Lemma 2.14 are O(CC̃K/(d−1)+r
2−1P−δ).

The statement now follows from that result.

3. Quantitative strong approximation

3.1. The Nullstellensatz for non-singular varieties. From now on
assume that V and Ṽ are non-singular over Q as affine and projective vari-
eties respectively (see Section 1.2 for both our main assumption (3) (1) and
the definition of V and Ṽ ). Then, if f has a zero modulo a prime power,
we can invoke Hensel’s lemma to find more zeros modulo higher powers of
the same prime. The real analogue of this statement is the implicit function
theorem around a zero of f̃ . These ideas can be used to deduce known re-
sults on the non-vanishing of the singular series and integral provided the
existence of local zeros. In Proposition 3.4 and Corollary 3.8 we prove this
in a quantitative manner. In order to do so, we need to control the minors
of the Jacobian matrices of f and f̃ , for which we use a quantitative version
of the Nullstellensatz, as explained below.

Let I be a subset of [n] := {1, . . . , n} of size r and let ∆I(x) be the r× r
minor of the Jacobian matrix of f (of dimensions r×n) with columns given
by the elements of I. Similarly, let ∆̃I(x) be the r× r minor of the Jacobian
matrix of f̃ with columns given by the elements of I.

Consider the polynomials f and all r×r minors ∆I . As V is non-singular,
these polynomials have no common zero over Q. Hence, by the Nullstellen-
satz, the ideal generated by these polynomials equals Q[x]. This is made
quantitative in [1, Theorem 2] (we take V = An(Q), g = 1 and s = r +

(
n
r

)
in that result): there exists an N ∈ Z>0 and polynomials g1, . . . , gr and gI
in Z[x] for all I ⊂ [n] with |I| = r such that

(25)
r∑
i=1

fi(x)gi(x) +
∑
I

∆I(x)gI(x) = N,

satisfying the estimate log(N)− 2(n+1)rn(d− 1)n−1d log(Cr)� 1. Hence,

(26) N � C2(n+1)rn+1(d−1)n−1d = C,

where the above equality defines C.
For the projective variety Ṽ we have a similar reasoning for every affine

patch of Ṽ obtained by setting one of the coordinates xj equal to 1. Let
1 ≤ j ≤ n be given. Because Ṽ is non-singular over Q, we find Ñj ∈ Z>0 and
polynomials g̃1,j , . . . , g̃r,j and g̃I,j in Z[x] for all I ⊂ [n] with |I| = r such

(1) In fact, for the lower bounds for the singular series and singular integral it suffices
to assume n ≥ r, but we need (3) again in Section 3.4.
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that

(27)
r∑
i=1

f̃i(x)g̃i,j(x) +
∑
I

∆̃I(x)g̃I,j(x) = Ñj

for all x with xj = 1. Let ‖g‖∞ denote the height of a polynomial g, that
is, the maximum of the absolute values of the coefficients of g. Then, by the
same result [1, Theorem 2], we have

log(‖g̃I,j‖∞)− 2nrn−1(d− 1)n−2d log(C̃r)� 1

for all I ⊂ [n] with |I| = r. Hence,

(28) ‖g̃I,j‖∞ � C̃2nrn(d−1)n−2d = C̃,

where the above equation defines C̃. Let Ñ = minnj=1 Ñj .

3.2. Lower bound for the singular series. As usual, for each prime
p define the local density at p to be

(29) σp(ν) = lim
m→∞

#{x mod pm : f(x) ≡ ν mod pm}
pm(n−r) .

Observe that

pm(n−r)
m∑
k=0

∑
a(pk)

gcd(a,p)=1

p−knSa,pk(ν)

is the number of points satisfying f(x) = ν mod pm. So, equivalently we
could have defined

σp(ν) =
∞∑
k=0

∑
a(pk)

gcd(a,p)=1

p−knSa,pk(ν).

Then, by multiplicativity of Sa,q, we can factorise the singular series as a
product over the local densities, i.e. S(ν) =

∏
p prime σp(ν). The rest of

this section is devoted to providing quantitative lower bounds for the local
densities and singular series, using the ideas described in the previous section.

Lemma 3.1. If there exists a non-singular solution x0 ∈ Znp to f(x0) = ν,
then

σp(ν) ≥
(
p−1max

I
|∆I(x0)|2p

)n−r
.

Proof. Take e ∈ Z such that maxI |∆I(x0)|p = p−e and assume that
m > 2e+1. The non-singular solution x0 ∈ Znp gives a non-singular solution a
modulo p2e+1. Using Hensel’s lemma (see, for example, [10, Proposition 5.21
and Note 5.22]), we can lift this solution to at least p(n−r)(m−2e−1) non-
singular solutions of f(x) ≡ ν mod pm. Hence, by (29) the result follows.
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Lemma 3.2. For all primes p for which there exists a solution x0 ∈ Znp
of f(x0) = 0 we have

max
I
|∆I(x0)|p ≥ |N |p.

Proof. Let p be a prime such that there is an x0 ∈ Znp with f(x0) = 0,
so that the first set of terms on the left-hand side of (25) vanish for x = x0.
Then taking p-adic absolute values in (25) shows that

max
I
|∆I(x0)|pmax

I
|gI(x0)|p ≥ |N |p.

As gI ∈ Z[x], we obtain maxI |∆I(x0)|p ≥ |N |p.

Lemma 3.3. If p is prime such that p - d and p - N , then

(30) σp(0)− 1� p−n/2+r+ε.

Proof. Suppose V is singular over Fp. Then there exists an x ∈ Fnp such
that f(x) = 0 and ∆I(x) = 0 over Fp for all I ⊂ [n] with |I| = r. Considering
(25) over Fp, we deduce that N ≡ 0 mod p. This contradicts our assumption,
so V is non-singular over Fp.

As pointed out by Schmidt [22], a result of Deligne, worked out in [24,
Appendice], then shows that

#VFp(0) = pn−r +O(pn/2+ε)

provided p - d, where the implied constant depends at most on n and d.
Observe that if x ∈ Zn is a solution of f(x) = 0 mod pe for some e ∈ Z>0,
then x reduces to a non-singular point on VFp . Hence, x mod pe can be
obtained by lifting a point of VFp . We conclude that

#{x mod pm : f(x) ≡ ν mod pm} = pm(n−r) +O(p(m−1)(n−r)+n/2+ε).

Using (29), we obtain (30).

Proposition 3.4. Suppose that for each prime p there exists a solution
x0 ∈ Znp to f(x0) = 0. Then

S(0)� N−3(n−r).

Proof. Let S be the finite set of primes for which p | dN . Applying Lem-
mata 3.1 and 3.2 and using the product formula for | · |p we obtain∏

p∈S
σp(0) ≥

∏
p∈S

(p−1|N |2p)n−r � (N−1N−2)n−r = N3(r−n).

It follows from Lemma 3.3 that∏
p 6∈S

σp(0) =
∏
p 6∈S

1 +O(p−n/2+r+ε)� 1,
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where the implied constant does not depend on C. We conclude that

S(0) =
∏
p∈S

σp(0)
∏
p 6∈S

σp(0)� N−3(n−r).

3.3. Lower bound for the singular integral. The following lemma
is a quantitative version of the implicit function theorem. We use this result
to prove Lemma 3.6, which is the real analogue of Lemma 3.1. Recall that
∆̃I(x) is the r×r minor of the Jacobian of f̃ with columns determined by I.
Abbreviate ∆̃{1,...,r}(x) to ∆̃(x).

Lemma 3.5. Given x0 ∈ Rn with |x0| ≤ 1, assume that

M := max
I⊂[n], |I|=r

|∆̃I(x0)| = |∆̃(x0)| > 0.

Let g : Rn → Rn be given by

g : x 7→ (f̃1(x), . . . , f̃r(x), xr+1, . . . , xn).

Then there are open subsets U ⊂ Rn and W ⊂ Rn with x0 ∈ U and g(x0)
∈ W such that g is a bijection from U to W and has differentiable inverse
g−1 :W → U satisfying det((g−1)′) ≥M−1. Furthermore, one may choose

W = {y ∈ Rn : |g(x0)− y| < M2/C̃2r−1}.

Proof. We explicitly find a small open neighbourhood of x0 in which the
implicit function theorem is applicable, following the proof of [25, Theorem
2.11] or [15, Lemma 9.3]. Note that M � C̃r. Let U be the closed rectangle
given by

U = {x ∈ Rn : |x− x0| ≤ aM/C̃r},

for a sufficiently small constant a ∈ R depending only on d, n and r. Then
for x ∈ U we have |x| ≤ |x− x0|+ |x0| � 1. Hence, for x ∈ U one finds that
∂gi
∂xjxk

(x)� C̃ for all 1 ≤ i, j, k ≤ n. It follows that∣∣∣∣ ∂gi∂xj
(x)− ∂gi

∂xj
(x0)

∣∣∣∣� C̃|x− x0| � aC̃1−rM.

Let Dg be the Jacobian matrix of g and write g′(x) = g(x)−Dg(x0) · x. As

∂(g′(x))i

∂xj
=
∂gi
∂xj

(x)− ∂gi
∂xj

(x0),

for x1, x2 ∈ U we have

(31) |g′(x1)− g′(x2)| � aC̃1−rM |x1 − x2|.

Given an invertible n × n matrix A, let |A| = maxi,j |Ai,j | be the max
norm. For all h ∈ Rn one has |h| ≤ |adj(A)|

detA |Ah| with adj(A) the adjugate
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of A. Now take A = Dg(x0). Then |adj(A)| � C̃r−1. Since M = |∆̃(x0)| =
|det(Dg(x0))|, for x1, x2 ∈ U we have

|Dg(x0)(x1 − x2)| � C̃1−rM |x1 − x2|.

Hence,

|g′(x1)− g′(x2)|+ |g(x1)− g(x2)| ≥ |Dg(x0)(x1 − x2)| � C̃1−rM |x1 − x2|.

Therefore, using (31) for a small enough, we find for all x1, x2 ∈ U that

|g(x1)− g(x2)| � C̃1−rM |x1 − x2|.

This implies that if x is on the boundary of U then

|g(x)− g(x0)| � C̃1−rM |x− x0| = aM2/C̃2r−1.

Now set b = aM2/C̃2r−1 so that for x on the boundary of U we have
|g(x)− g(x0)| � b, and define

W =
{
y ∈ Rn : |y − g(x0)| < 1

2b
}
.

The proof of [15, Lemma 9.3] ensures that W has the required properties
(after shrinking U).

Lemma 3.6. Suppose that x0 ∈ Rn with |x0| ≤ 1 satisfies f̃(x0) = 0 and
that M = maxI⊂[n], |I|=r |∆̃I(x0)| > 0. Then

J(0)�M−1(M2/C̃2r−1)n−r.

Proof. In [21, Paragraph 11], Schmidt shows that for µ ∈ Rr we have

J(µ) = lim
t→∞

tr
�

|f̃(x)−µ|≤t−1

r∏
i=1

(1− t|f̃i(x)− µi|) dx.

Let 11/(2t) : R→ {0, 1} be the characteristic function of the interval
[
− 1

2t ,
1
2t

]
.

Let U,W, g be as in Lemma 3.5. Then

J(0) ≥ lim
t→∞

(
t

2

)r �
U

r∏
i=1

11/(2t) ◦ f̃i(x) dx.

Applying the change of variables as in Lemma 3.5 we obtain
�

U

r∏
i=1

11/(2t) ◦ f̃i(x) dx =
�

W

|det((g−1)′)|
r∏
i=1

11/(2t)(yi) dy

≥
�

W

M−1
r∏
i=1

11/(2t)(yi) dy.

As for t sufficiently large, 11/(2t) ≡ 0 outside W , the theorem follows.
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Lemma 3.7. Let x0 ∈ Rn be such that |x0| = 1 and f̃(x0) = 0. Then for
some 1 ≤ j ≤ n one has

max
I
|∆̃I(x0)| � C̃−1Ñj .

Proof. This is essentially the same proof as that of Lemma 3.2. Substitute
x = x0 in (27) for a choice of j such that (x0)j = |x0| = 1. Then the first
sum vanishes and we find that

max
I
|∆̃I(x0)|max

I
|g̃I,j(x0)| � |Ñj |.

Note that g̃I,j(x0)� ‖g̃I,j‖∞ � C̃. This implies that

max
I
|∆̃I(x0)| � C̃−1Ñj .

Corollary 3.8. Suppose f̃ has a real zero. Then

J(0)� Ñ2(n−r)−1

C̃2(n−r)−1C̃(2r−1)(n−r)
.

Proof. Observe that by homogeneity of f̃ we can assume that the non-
singular real zero x0 satisfies |x0| = 1. The corollary then follows directly
from Lemmata 3.6 and 3.7.

3.4. Main theorems

Proof of Theorem 1.1. From Theorem 2.15, it follows that for P satisfying

P �
(
CC̃K/(d−1)+r

2−1

S(0)J(0)

)1/δ

we have M(P, 0) > 1 (if the implied constant is large enough). Hence, there
exists a non-trivial integer zero x of f with |x| ≤ P .

By Proposition 3.4, Corollary 3.8, (26) and Ñ ≥ 1 it follows that

S(0)J(0)� C̃−(2(n−r)−1)C̃−2r(n−r)
(
Ñ2

N3

)n−r
Ñ−1

� C−3(n−r)C̃−(2(n−r)−1)C̃−(2r−1)(n−r).

Using (n+ 1)(n− r) < n2 − r one finds

CC̃K/(d−1)+r
2−1

S(0)J(0)
� C

3n2

n+1 C̃
2n2

n+1
C

C
r

n+1

C̃K/(d−1)+(2r−1)(n−r)+r2−1

C̃1+ r
n+1

As K ≤ n/2d−1, the two fractions on the right-hand side are bounded by 1,
so one can take

P � (C3C̃2)
2n2rn+1(d−1)nd·K+r(r+1)(d−1)

K−r(r+1)(d−1) .
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Remark 3.9. The upper bound (4) should be compared with the follow-
ing example generalising Kneser’s example in [7]. Suppose d ≥ 4 is even and
let

f(x) = xd1 −
n−1∑
i=1

(xi+1 − cxd/2i )2 − 1

for some c ∈ N. Then C = C̃ = c2, f is non-singular, and x given by
xi = c

∑i−1
j=1(d/2)

i−1

is a zero of f . If a is a non-trivial integer zero of f , then
clearly a1 6= 0. Moreover,

|ai+1 − cad/2i | ≤ |a1|
d/2

for all i = 1, . . . , n− 1. Inductively one can show that

|ai| � c(d/2)
i−2

|a1| (2 ≤ i ≤ n),
where the implied constant only depends on i. Hence, in case r = 1 and d ≥ 4
is even, the right-hand side of (4) is at least C(d/2)n−2/2. Note that—in con-
trast to the cases d = 2 and d = 3—the exponent of C grows exponentially
in n.

We can do slightly better than Theorem 1.1 in case we add the assump-
tion that the polynomials f are homogeneous:

Theorem 3.10. Suppose f̃i ∈ Z[x] for i = 1, . . . , r are homogeneous
polynomials of degree d such that K − r(r + 1)(d − 1) > 0, f̃ has a zero
over Zp for all primes p and a real zero. Assume that the corresponding
projective variety Ṽ is non-singular. Then there exists an x ∈ Zn \ {0},
polynomially bounded by C and C̃, such that f̃(x) = 0, more precisely

|x| � C̃
6n2rn(d−1)n−2d·K+r(r+1)(d−1)

K−r(r+1)(d−1) .

Proof. As in the proof of Theorem 1.1 (with C = C̃) we use the fact that
for P satisfying

P �
(
C̃K/(d−1)+r

2

S(0)J(0)

)1/δ

we have M(P, 0) > 1 (if the implied constant is large enough). Moreover,
the quantitative version of the Nullstellensatz for f̃ given in (28) does still
hold. Hence, mutatis mutandis, the proof of Proposition 3.4 applies and we
find that S(0) ≥ Ñ−3(n−r). Together with Corollary 3.8 and (26) it follows
that

S(0)J(0)� C̃−(2(n−r)−1)C̃−2r(n−r)Ñ−n+r−1 � C̃−(3(n−r)−2)C̃−2r(n−r).

One finds that one can take

P � C̃
6n(n−r)rn(d−1)n−2d·K+r(r+1)(d−1)

K−r(r+1)(d−1) .
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As already indicated in the introduction, we provide a quantitative strong
approximation theorem for systems f satisfying the same conditions as in
Theorem 1.1. Call x ∈ Rn totally positive if xi > 0 for all i.

Theorem 3.11. Let m,M ∈ Zn. Suppose fi ∈ Z[x] for i = 1, . . . , r are
polynomials of degree d such that K−r(r+1)(d−1) > 0 and the corresponding
varieties V and Ṽ are non-singular affine respectively projective. Suppose that
for every prime p there exists a zero y ∈ Zp of f satisfying yi ≡ mi modMi

and suppose f̃ has a totally positive real zero. Then there exists an x ∈ Zn>0,
polynomially bounded by C and C̃, such that

f(x) = 0 and xi ≡ mi modMi

and
|x| � (|M |5dC3C̃2)

2n2rn+1(d−1)n−1d·K+r(r+1)(d−1)
K−r(r+1)(d−1) ,

where the implied constant does not depend on C, C̃, m or M .

Proof. Let

g(y) = f(My +m) and g̃(y) = [f(My +m)]∼ = f̃(My),

where (My)i = Miyi. Observe that over Q the system f is non-singular if
and only if g is non-singular and similarly for f̃ . Moreover, the condition on
the existence of zeros of f ensures that g has zeros over Zp for all primes p
and that g̃ has a totally positive zero over R. After scaling, this zero lies in
B ⊂ (0, 1]n. Now, apply Theorem 1.1. The statement follows by noting that
the maximal coefficient of g and g̃ is � |M |dC and � |M |dC̃ respectively
as we can assume without loss of generality that |mi| ≤ |Mi| for all i =
1, . . . , n.
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