
The Journal of Systems & Software 169 (2020) 110714

a

b

c
b
t
a
o
a
r
t
q
a
b

a
m
I
s

(

e
p

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Capturing software architecture knowledge for pattern-driven design
Siamak Farshidi a,∗, Slinger Jansen a,b, Jan Martijn van der Werf a
Department of Information and Computer Science, Utrecht University, The Netherlands
Visiting Scientist, School of Engineering Science, LUT University, Finland

a r t i c l e i n f o

Article history:
Received 1 April 2020
Received in revised form 18 June 2020
Accepted 29 June 2020
Available online 3 July 2020

Keywords:
Architectural patterns
Architectural styles
Quality attributes
Design decisions
Knowledge acquisition

a b s t r a c t

Context: Software architecture is a knowledge-intensive field. One mechanism for storing architecture
knowledge is the recognition and description of architectural patterns. Selecting architectural patterns
is a challenging task for software architects, as knowledge about these patterns is scattered among a
wide range of literature.
Method: We report on a systematic literature review, intending to build a decision model for the archi-
tectural pattern selection problem. Moreover, twelve experienced practitioners at software-producing
organizations evaluated the usability and usefulness of the extracted knowledge.
Results: An overview is provided of 29 patterns and their effects on 40 quality attributes. Furthermore,
we report in which systems the 29 patterns are applied and in which combinations. The practitioners
confirmed that architectural knowledge supports software architects with their decision-making
process to select a set of patterns for a new problem. We investigate the potential trends among
architects to select patterns.
Conclusion: With the knowledge available, architects can more rapidly select and eliminate combi-
nations of patterns to design solutions. Having this knowledge readily available supports software
architects in making more efficient and effective design decisions that meet their quality concerns.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Software architecture plays an indispensable role in the suc-
ess or failure of any software system, as it deals with the
ase structure, subsystems, and interactions among these subsys-
ems (Clements et al., 2003). Software architecting can be viewed
s a decision-making process: software architects consider a set
f alternative solutions that could solve a system design problem,
nd select the set that is evaluated as the optimal (Lago and Avge-
iou, 2006). Software architecture decisions are design decisions
hat address system requirements, including both functional and
uality requirements. In this article, we present the results from
n SLR that intends to support architects in the decision process,
y linking quality attributes to software patterns.1
Software architecture design decisions, such as the selection of

rchitectural patterns and software design patterns, are typically
ade in the early phases of the software development life cycle.

n the following paragraphs, we define architectural patterns,
tyles, and tactics (Shaw, 1995).

∗ Corresponding author.
E-mail addresses: s.farshidi@uu.nl (S. Farshidi), slinger.jansen@uu.nl

S. Jansen), j.m.e.m.vanderwerf@uu.nl (J.M. van der Werf).
1 The knowledge base of this study, including the primary studies and
xtracted knowledge, is available as a technical report on the following web
age: http://swapslr.com.
https://doi.org/10.1016/j.jss.2020.110714
0164-1212/© 2020 The Authors. Published by Elsevier Inc. This is an open access art
Architectural patterns are universal and reusable solutions to
commonly occurring problems in software architecture
(Buschmann et al., 2007a). Each architectural pattern describes
high-level structures and behaviors of software systems and
addresses a particular recurring problem within a given con-
text in software architecture design. Architectural patterns aim
to satisfy several functional and quality attribute requirements.
In literature, sometimes the terms ‘‘architectural patterns’’ and
‘‘architectural styles’’ are used interchangeably, since they are, in
essence, the same concepts and only differ in their description
forms (Avgeriou and Zdun, 2005).

Software design patterns are experience-based standard solu-
tions applied by developers to solve common problems when
implementing a software system (Hussain et al., 2017). Note, a
software design pattern is not a finished design that can be trans-
formed directly into source or machine code. Architectural pat-
terns are similar to software design patterns but have a broader
scope. In this study, we focus on architectural patterns, and for the
sake of brevity, we use patterns to refer to them.

Software architecture tactics are design decisions that improve
individual quality attribute concerns (Harrison and Avgeriou,
2010). Tactics that are implemented in existing architectures
can have significant impacts on the patterns in the system. In
other words, tactics are reusable architectural building blocks
that provide generic solutions to address issues about quality

attributes that patterns have impacts on.

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2020.110714
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110714&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:s.farshidi@uu.nl
mailto:slinger.jansen@uu.nl
mailto:j.m.e.m.vanderwerf@uu.nl
http://swapslr.com
https://doi.org/10.1016/j.jss.2020.110714
http://creativecommons.org/licenses/by/4.0/

2 S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714

a
m
m
t
n
S
a
o
s

a
a
i

l
s
t
s
p
m
T
e
i
b
d
d
t
m
c
a

s
t
Q
t
i
b
t
o
s
d
c
p
p
a
2

o
e
B
t
p
a
i
d
e
i
r
b
s
m

b
c

r
L
t
m
l
p
e
r
s
i
a
t
s
p

2

2

I
a
s
d

s
i
r
o
d
c
j
d
c
a

o
2
A
t
p
p
g
t
s

f
p
n
F

2

m
c
c
c
l
l
a
f
‘
d
(

Pattern descriptions contain knowledge about quality
ttributes, and software architects rely on that knowledge to
ake effective design decisions, so increasing such knowledge
eans increasing the role of patterns in satisfying quality at-

ributes (Me et al., 2016a). Patterns and quality attributes are
ot independent and have significant interaction with each other.
uch interactions can be observed as trade-offs between quality
ttributes. Software architects need to select and employ an
ptimal set of patterns to satisfy quality concerns. For instance,
ome studies assert that Reusability is a strength (Qin et al., 2008;
Sabagh and Al-Yasiri, 2011) and Scalability is a liability (Majidi
et al., 2010; Galster et al., 2010) of the Layers pattern. If an
rchitect is looking for both qualities, she has two options: choose
nother (set of) pattern(s) or use software architecture tactics to
mprove Scalability.

Software architects are making the design decisions that have
ong-lasting impacts on quality attributes of a software-intensive
ystem (Kruchten, 2008). Software architects define the archi-
ecture of the system, maintain the architectural integrity of the
ystem, assess technical risks, perform risk mitigation strategies,
articipate in project planning, consult with design and imple-
entation teams, and assist product marketing (Kruchten, 1999).
herefore, software architects make high-level design decisions
very day (Tyree and Akerman, 2005). Software architects engage
n processes of creation, perfection, and destruction on a daily
asis. Their work consists of setting standards for developers,
esigning and implementing new parts of a system’s architecture,
eveloping shells around and interfaces to legacy systems, moni-
oring quality attributes, and occasionally creative destruction to
ake way for significant renovations. Pattern selection is a pro-
ess that happens organically during the process of architecting
system.
Generally speaking, functional requirements define what a

ystem does, whereas quality requirements explain how well
hose functions are performed (Blaine and Cleland-Huang, 2008).
uality requirements tend to present trade-offs that must be
horoughly negotiated and resolved (Chung et al., 2000). For
nstance, a software architect might want to design a system to
e both highly secure and available, or she might want a system
o respond quickly and support thousands of users simultane-
usly. Therefore, she has to design an architectural solution that
upports these conflicting quality requirements to optimize the
elivered system’s value. Quality requirements are often more
hallenging to measure and track than their functional counter-
arts. Whereas functional requirements are either present or not
resent in a system, quality requirements tend to be achieved
t various levels along a continuum (Blaine and Cleland-Huang,
008).
System quality is best exposed in production, independent

f whether system quality has been made explicit. Note, it is
ssential to recall those well-known authors, such as Wiegers and
eatty (2013), classify quality attributes as external (exposed at
he run time/in production, e.g., performance) and internal (ex-
osed at design time, e.g., modifiability). If architects do not think
bout performance, the system will still expose its performance
n the field. The knowledge around the quality of a system under
esign is hard to gather without in the field experiences; how-
ver, experience with similar patterns in other systems provides
nvaluable insight into the inherent qualities of a new system. The
ationale behind this article is that patterns exhibit similar quality
ehaviors when purely implemented (without tactics) in different
ystems and that this knowledge can be used by architects to
ake informed design decisions.
In this study, we followed a mixed research method, a com-

ination of qualitative and quantitative research, to systemati-

ally capture architectural knowledge and make it available in a t
eusable and extendable format. First, we conducted a Systematic
iterature Review (SLR). The SLR has been carried out following
he steps and guidelines of Kitchenham (2004) to identify com-
on lists of patterns and quality attributes, besides strengths and

iabilities, application domains, combinations, and trends of the
atterns. Next, a serious of expert interviews, based on Bogner
t al. (2009), has been conducted to evaluate the usefulness and
eusability of the extracted knowledge. Note, the knowledge is
ummarized in this article, and we propose three ways of dissem-
nating the knowledge to the architect: education, tool support,
nd pattern quality impact reporting. The practitioners who par-
icipated in this research confirmed that the extracted knowledge
upports software architects with their daily decision-making
rocess.

. Background

.1. Patterns in software architecture

Several definitions exist that explain Software Architecture.
t is both seen as the set of structures of software elements,
nd their relations and properties to reason over a software
ystem (Bass et al., 2013), and as the set of principal design
ecisions (Jansen et al., 2008).
In this paper, we consider the former definition, the set of

tructures, as the outcome of the latter, i.e., software architecture
s the outcome of a set of principle design decisions. This is
eflected in the meta-model, depicted in Fig. 1, which is based
n the ISO/IEC/IEEE standard 42010 (ISO, 2011a). Architectural
ecisions may depend on other decisions, pertains to one or more
oncerns of stakeholders, and should contain some rationale to
ustify it. The outcome of the decision affects the architecture
escription. Besides, the decision may raise new concerns. Con-
erns include both functional requirements as well as quality
ttributes (Bass et al., 2013).
An architectural pattern expresses a fundamental structural

rganization schema for software systems (Rozanski and Woods,
012). A closely related term in literature is ‘‘architectural style’’.
s there is no widely accepted definition for both terms in litera-
ure, we refer to both as ‘‘architectural pattern’’. An architectural
attern differs from software patterns, also referred to as design
atterns, in that a software pattern provides a solution for a
eneral design problem (Hussain et al., 2017), whereas an archi-
ectural pattern describes the organizational schema of a software
ystem.
Table 1 outlines the definitions of the foundational concepts

or the SLR. Please note that many of the definitions were hand-
icked from the plethora of definitions available because we
eeded to make sure that the definitions fit the meta-model in
ig. 1.

.2. Decision process

Building a software architecture can be regarded as a decision-
aking process (Lago and Avgeriou, 2006): a software architect
onsiders several alternative solutions (design decisions) that
ould solve the design problem statement, and subsequently
hooses one of the solutions that optimally addresses the prob-
em. The software architecture design decision, such as the se-
ection of architectural patterns, is formulated as follows: (1)
software architect runs into a design problem, (2) she looks

or actual features she thinks can solve this problem, such as
‘distribute data over multiple servers’’, (3) she goes through the
escription of several patterns and identifies several candidates,
4) she identifies an optimum pattern for her problem and goes
hrough tactics to make sure it works in the context. The decision

S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714 3
Fig. 1. shows a meta-model, based on the ISO/IEC/IEEE standard 42010 (ISO, 2011a), for decision-making in software architecture. The essential included elements
are the architect, the architecture, the knowledge base, and the quality attributes.
model for the pattern selection problem can be used in steps
2 and 3 to facilitate the decision-making process for software
architects.

Fig. 1 represents a meta-model for decision-making in ar-
chitecture. It shows in general terms how patterns, quality at-
tributes, and tactics are related to each other, and how they are
linked to the architecture. It provides a structure for discussion
of the specific ways that applied tactics affect the patterns used.
It also provides a foundation for the description of the impact of
applied patterns and tactics on the software architect’s quality
concerns. Note that we distinguished the applied patterns and
tactics in the architecture from the potential set of design de-
cisions (patterns and tactics that are available in the knowledge
base of software architects).

The pattern selection process is challenging for software ar-
chitects, as knowledge about patterns is scattered among a wide
range of literature. Knowledge regarding patterns has to be col-
lected, organized, stored, and quickly retrieved when it needs
to be employed. There exists a need for a decision support sys-
tem that intelligently supports software architects in selecting
suitable patterns according to their requirements.

2.3. Related studies

It is becoming increasingly common in software engineering to
synthesize results through SLRs, even though that is a relatively
recent phenomenon (Brereton et al., 2007). In software, archi-
tecture research SLRs are also increasingly common (Weinreich
and Groher, 2016; Uzun and Tekinerdogan, 2018) and generally
serve the purpose of mapping out particular research challenges
in the domain. Our SLR was conducted because we lacked a
near-to-complete source of evidence to create a reliable decision
model for architects. Our study distinguishes itself from such
studies as it synthesizes literature intending to collect data for
practitioners and evaluates the collected data with practitioners
themselves. The study also contributes overviews of commonly
discussed patterns and quality attributes, providing a basis for
new research. It is notable, for instance, that many of the quality
attributes found in our study are not present in the well known
ISO standards.

The software architecture field has evolved over the last four
decades (Shaw and Clements, 2006; Clements and Shaw, 2009)
from the early fundamental concepts from the mid-80s to the
ubiquitous proliferation of roles of software architects in con-
temporary industrial practice (Capilla et al., 2016). Architectural
knowledge, such as the impacts of patterns on quality attributes,
has been widely addressed in the literature. However, the knowl-
edge is fragmented over a wide range of heterogeneous stud-
ies (Me et al., 2016b; Buchgeher et al., 2016; Tang et al., 2011),
so a sound methodology is required to capture and aggregate
this knowledge systematically. The data collection is an empir-
ical study that can be quantitative or qualitative (Runeson and
Höst, 2009). Quantitative data comprises numbers and classes,
while qualitative data involves descriptions and explanations of
phenomena. Quantitative data is analyzed using statistics, while
qualitative data is analyzed using expert interviews or/and case
studies to provide a more detailed and more in-depth expla-
nation. However, a combination of qualitative and quantitative

4 S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714

t
t
p
y
r
a
c
o
t
2

a
t
t
h
t
e
t
o
A
s
a

Table 1
List of terms and their definitions used in this article. Please note that all terms except for Functional Requirement can be preceded
by the words ‘‘Software Architecture’’.
Term Definition Refs

Software
architecture

Software architecture is the structure or
structures of the system, which comprise
software components, the externally visible
properties of those components, and the
relationships between them.

Clements et al. (2003)

Pattern universal and reusable solutions to commonly
occurring problems in software architecture.

Buschmann et al. (2007a)

Tactic design decisions that improve individual
quality attribute concerns

Harrison and Avgeriou (2010).

Quality The quality of a system is the degree to which
the system satisfies the stated and implied
needs of its various stakeholders, and thus
provides value.

ISO (2011b)

Architect person, team, or organization responsible for
systems architecture

ISO (2017)

Rationale captures the knowledge and reasoning that
justify the resulting design, and its primary
goal is to support designers by providing
means to record and communicate the
argumentation and reasoning behind the
design process.

Tang et al. (2006), Horner and Atwood (2006)

Decision A decision is consisting of a restructuring
effect on the components and connectors that
make up the software architecture, design
rules imposed on the architecture and
resulting system as a consequence, design
constraints imposed on the architecture, and a
rationale explaining the reasoning behind the
decision.

Bosch (2004)

Functional
requirement

condition or capability that must be met or
possessed by a system, system component,
product, or service to satisfy an agreement,
standard, specification, or other formally
imposed documents

ISO (2017)

Concern is any interest in the system. The term is
derived from the phrase ‘‘separation of
concerns’’ as in Software Engineering. One or
more stakeholders may hold a concern.
Concerns involve system considerations such
as performance, reliability, security,
availability, and scalability.

ISO (2011a)
data often provides a better understanding of the studied phe-
nomenon (Seaman, 1999) (Mixed research).

Research methods are classified based on their data collec-
ion techniques (interview, observation, literature, etc.), inference
echniques (taxonomy, protocol analysis, statistics, etc.), research
urpose (evaluation, exploration, description, etc.), units of anal-
sis (individuals, groups, process, etc.), and so forth. Multiple
esearch methods are combined to achieve a fuller picture and
more in-depth understanding of the studied phenomenon by
onnecting complementary findings that conclude from the use
f methods from the different methodological traditions of quali-
ative and quantitative investigation (Johnson and Onwuegbuzie,
004).
In this study, we considered a systematic literature review

nd expert interviews as a mixed data collection method to iden-
ify frequent mentioning sets of patterns and quality attributes
hat were discussed widely in academic publications. Then, we
ighlighted 29 patterns and 40 quality attributes than were men-
ioned in more than three selected primary studies. Moreover, we
xtracted potential strengths and liabilities of the patterns to map
he patterns to the quality attributes and calculate the impacts
f the patterns on the quality attributes based on fuzzy logic.
dditionally, we realized that the authors of the selected primary
tudies employed the patterns in particular types of systems
nd applications so that we considered them as the potential
application domains of the patterns. Furthermore, we tracked the
publications’ years of the studies and their mentioned patterns to
imply a trendy manner among academics to employ patterns and
research them.

Table 2 positions this study among a subset of selected pri-
mary studies. This table shows that none of the selected pri-
mary studies employed qualitative and quantitative data collec-
tion methods to evaluate a significant number of patterns. Note,
the research results of all of the selected primary studies have
been included in the knowledge base of the SLR (See Section 3.7).

Note, an extensive list of studies addresses the impacts of pat-
terns on quality attributes. Each study considered different sets of
patterns and quality attributes (Columns #P and #QA). Moreover,
we perceived that some patterns have conflicting impacts on a
particular quality attribute. For instance, some studies (Harrison
and Avgeriou, 2008b; Ahmad et al., 2010) expressed that Perfor-
mance efficiency is a key strength of Client–Server, however, some
other studies (Elahi and Babamir, 2015; Jacob and Mani, 2018)
stated that Performance efficiency is a key liability of Client–Server.
The majority of studies in the literature reported some potential
domains of patterns. However, we realized that different studies
suggested different domains. For example, Yang et al. (2012)
stated that Pipe and Filters can be used in Operating Systems, and
Buyya et al. (2013) asserted this pattern can be employed in
Compiler design as well.

S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714 5

a
e
t
(
d
o
a
t
p
v
f
w
a
(
2

t
p
q

R

R

R

R

R
R

s
o
M

m
q
e
t

Table 2
This table shows a subset of studies in literature. The first six columns indicate the selected study (Study), the publication type (PT) (including Research Paper (RP),
Book, and Chapter (Chp)), the publication year (Year), and the data collection method (DCM), the research purpose (Purpose), and data collection type (Type) of the
corresponding selected primary studies, respectively. The seventh and eighth columns (#P and #QA) denote the number of considered patterns and quality attributes
in the selected primary studies. The last three columns identify whether the selected primary studies investigated on the potential domains of patterns, possible
trends of utilizing patterns, impacts of patterns on quality attributes, or not.
Study PT Year DCM Purpose Type #P #QA Domain Trend Impact

This study RP 2020 SLR Interview Evaluation Mixed 29 40 Yes Yes Yes
Pramod Mathew Jacob (2018) RP 2018 Experiment Evaluation Quantitative 4 8 Yes No Yes
Haoues et al. (2017a) RP 2017 Survey Evaluation Quantitative 3 27 No No Yes
Me et al. (2016b) RP 2016 SLR Evaluation Quantitative 8 15 No No Yes
Richards (2015) Book 2015 Case Study Evaluation Qualitative 5 6 Yes No Yes
Buyya et al. (2013) Chp 2013 Case Study Description Qualitative 15 15 Yes No Yes
Yang et al. (2012) RP 2012 Case Study Evaluation Qualitative 7 11 Yes No Yes
Bode and Riebisch (2010) RP 2010 Case Study Evaluation Mixed 9 15 No No Yes
Harrison and Avgeriou (2008a) RP 2010 Statistics Description Quantitative 20 4 Yes No No
Ahmad et al. (2010) RP 2010 Case Study Description Qualitative 5 9 No No Yes
Qin et al. (2008) Chp 2008 Case Study Description Qualitative 7 15 Yes No Yes
Harrison and Avgeriou (2007) RP 2007 Statistics Evaluation Quantitative 7 8 No No Yes
Avgeriou and Zdun (2005) RP 2005 Literature Description Qualitative 24 10 No No Yes
Bushchmann et al. (1996) Book 1996 Case Study Description Qualitative 8 20 Yes No Yes
Garlan and Shaw (1994) Chp 1994 Case Study Description Qualitative 6 5 Yes No Yes
3. Systematic literature review

Recently, we designed a framework (Farshidi et al., 2018a)
nd implemented a Decision Support System (DSS) (Farshidi
t al., 2018b) for supporting software developers and archi-
ects (decision-makers) with their multi-criteria decision-making
MCDM) problems in software production. An MCDM problem
eals with evaluating a set of alternatives and considers a set
f decision criteria (Triantaphyllou et al., 1998). The framework
pplies the six-step decision-making process (Majumder, 2015)
o build maintainable and evolvable decision models for MCDM
roblems in software production. Moreover, the framework pro-
ides a guideline for decision-makers to build decision models
or MCDM problems in software production. Based on the frame-
ork, we built decision models for the selection of Database Man-
gement Systems (Farshidi et al., 2018a), Cloud Service Providers
Farshidi et al., 2018), and Blockchain Platforms (Farshidi et al.,
020).2
In order to capture knowledge systematically regarding pat-

erns and build a decision model, based on the framework, for the
attern selection problem (as future work), the following research
uestions have been formulated to guide our study:

Q1: Which patterns are frequently employed by architects since
the emergence of the field?

Q2: Which quality attributes are commonly utilized by archi-
tects to evaluate patterns?

Q3: What are strengths and liabilities of patterns reported in
literature?

Q4: What are the possible application domains of patterns men-
tioned in literature?

Q5: Which combinations of patterns are available in literature?
Q6: Do architects select patterns based on trends?

RQ1: A set of patterns among an extensive list of patterns
hould be considered. Note, patterns can be alternatives to each
ther, for example, Interpreter, Rule-Based System, and Virtual
achine (Avgeriou and Zdun, 2005).
RQ2: By increasing knowledge about patterns, it is possible to

ake better-informed decisions, avoid failures, and better satisfy
uality attributes and achieve system-wide quality targets (Me
t al., 2016a). A set of quality attributes should be defined in
he decision model. Quality attributes are characteristics of the

2 The decision models and modeling studio are available on the DSS website:
www.dss.amuse-project.org.
system that are intrinsically non-functional. One of the primary
purposes of the architecture of a system is to create a system
design to satisfy the quality attributes (Harrison and Avgeriou,
2007). It is essential to find quality attributes that are widely
mentioned by other researchers to identify the characteristics of
patterns.

RQ3: Part of the software architects’ concerns are those re-
quirements that have impacts on quality attributes of software-
intensive systems (Kazman et al., 1994). Quality requirements
are the horizontal cross-cutting concerns that impact a system,
such as performance, security, and usability. Software architects
should be aware of any requirement or design decision that
impacts one of these concerns and should elicit requirements
that allow for the measurement of quality attributes. Therefore,
to build a beneficial and powerful decision model for the pattern
selection problem, it must be achievable to find which patterns
impact specific quality attributes, compare and contrast impacts,
and highlight their interactions.

RQ4: Application-generic and application-specific knowledge
are two types of architectural knowledge (Lago and Avgeriou,
2006). Application-generic knowledge refers to knowledge that
software architects have implicitly in their heads, from their
former experience. Moreover, application-specific knowledge in-
volves all the decisions taken during the architecting process of
a particular system and the architectural solutions that imple-
mented the decisions. In other words, application-generic knowl-
edge is used to make decisions for a single application and thus
construct application-specific knowledge. Therefore, knowledge
regarding application domains, in which candidate patterns are
already employed, can help software architects make informed
decisions.

RQ5: Patterns tend to be combined to provide greater sup-
port for the reusability during the software design process (That
et al., 2013). A pattern can be blended with, connected to, or
included in another pattern. For instance, the Broker pattern can
be connected to the Client–Server pattern to form the combined
Client–Server–Broker pattern (Harrison and Avgeriou, 2010).

RQ6: Software architecture has experienced considerable
growth over the past decades, and it promises to continue that
growth for the foreseeable future. Although the architectural
design has matured into an engineering discipline that is broadly
recognized and practiced, some significant challenges will need
to be addressed. Such challenges are expected to arise as a
natural outcome of dissemination and maturation of the well-
known architectural practices and technologies (Garlan, 2014).

http://www.dss.amuse-project.org

6 S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714

S
o
a
i
t

c
i
c
d
e
a
u
T
K
r
s
k

3

m

oftware developers and architects should be aware of technol-
gy advancements, standards, and trends that affect potential
rchitecture decisions and concerns. The last research question
nvestigates any potential trends among architects that attract
hem to use a particular pattern.

Systematic Literature Review is one of the most broadly ac-
epted research methods of evidence-based software engineer-
ng (Kitchenham et al., 2004). An SLR provides a prescribed pro-
ess for identifying, evaluating, and interpreting all available evi-
ence relevant to a particular research question or topic (Petersen
t al., 2008). In this study, the SLR functioned as a knowledge
cquisition process to capture knowledge about patterns and
ltimately making it available in forms of reusable knowledge.
he SLR has been carried out following the steps and guidelines of
itchenham (2004): reasoning the necessity of the SLR, defining
esearch questions, searching relevant studies, applying inclu-
ion/exclusion criteria, assessing the quality of studies, extracting
nowledge, analyzing the results.

.1. Data sources and search strategy

In this study, the search strategy has two search methods:
anual search and automatic search. These search methods are

complementary to each other. In the manual search, we investi-
gated published studies in reputable journals and conferences in
the software architecture domain. This search method guarantees
that we explore relevant studies, but it consumes a significant
amount of time and effort in judging many irrelevant studies.

In the automatic search, we defined a search query to retrieve
results from scientific search engines. Firstly, the search query
was built based on the generic keywords extracted during the
manual search process. In other words, the search query only con-
tained generic keywords to avoid possible biased search results;
for instance, we did not consider any standard titles of patterns
(such as Layers and Client–Server) and quality attributes (such
as performance and availability) explicitly. Secondly, we tested
the query on the selected scientific search engines to find out
whether the outcomes are compatible with the results of the
manual search. Note, the query contains the concepts of the meta-
model (see Fig. 1), as it gives an overview of the decision-making
process in designing architecture. In the automatic search (Zhang
et al., 2011), we used the following query:

((‘‘software architecture’’ OR ‘‘software architectural’’) AND
(‘‘pattern’’ OR ‘‘style’’)) AND (‘‘selection’’ OR ‘‘evaluation’’ OR
‘‘quality attribute’’ OR ‘‘design decision’’ OR ‘‘decision-making’’)

Fig. 2 demonstrates the stages of the search process and the
numbers of primary studies in each stage. Moreover, Table 3
shows the journals and conference proceedings considered in
the manual search besides the scientific search engines in the
automatic search. Note, Google Scholar was not involved in the
automatic search since it offers many irrelevant studies. More-
over, it has substantial overlap with the other digital libraries
considered in this SLR.

3.2. Inclusion and exclusion criteria

The inclusion and exclusion criteria were applied to the se-
lected publications at different rounds of the search process, as
illustrated in Fig. 2. The studies were included in the SLR if they
were peer-reviewed, written in English, available, and discussed
patterns. Furthermore, the abstracts or titles of the primary stud-
ies had to explicitly state that the articles were on the topic
of architectural patterns. The articles were published mainly as
journal papers, conference papers, theses, technical reports, or
books.
The peer-reviewed articles relevant to the topic of interest
were published from 1990 to the first half of 2019. Note, we
did not limit the SLR to this period. However, we did not find
any qualified primary studies before 1990 to add to the SLR’s
knowledge base. Editorials, position papers, keynotes, reviews,
tutorial summaries, and panel discussions were excluded from
the SLR. Moreover, all duplicated publications, studies with in-
adequate validation (i.e., no evidence), and on other platforms
instead of computer-based patterns (e.g., Computer Networks,
Electronics) were not considered in the SLR. A publication was
only selected for knowledge extraction when it had at least a
proof of concept (such as a case study or an experiment). The
less mature one was excluded if two publications addressed
the same topic and were published in different conferences or
journals. The journals and conference proceedings in the manual
search besides the primary studies in the automatic search were
reviewed by four researchers (including a principal investigator,
a junior researcher, and two research assistants).

3.3. Quality assessment

In addition to the inclusion and exclusion criteria, it is essen-
tial to assess the quality of primary studies (Kitchenham, 2004).
The quality assessment of primary studies comes up with more
detailed inclusion and exclusion criteria, guides the interpretation
of findings and determines the strength of inferences, and offers
recommendations for further research. Recording the strengths
and weaknesses of primary studies indicates whether aspects of
study design or conduct have biased the results (substantially the
extent to which the study results can be ‘‘believed’’) (Khan et al.,
2001).

Dybå and Dingsøyr (2008) introduced three main issues
(Rigor, Credibility, and Relevance) regarding the quality of pri-
mary studies that should be taken into account when assessing
primary studies in an SLR. Rigor indicates whether a thorough
and appropriate approach has been applied to research methods
in the study. Credibility signifies whether the findings are well-
presented and meaningful. Relevance denotes whether the results
are useful to the software industry and the research community.
Dyba and Dingsoyr presented 11 quality assessment questions
to cover the three main issues that have been used in our
assessment.

Both the first and second authors determined quality assess-
ment criteria independently. Discrepancies arose in around 10% of
the articles, and these were discussed collaboratively to come to
a final judgment. The questions provide a measure of the extent
to which we can be confident that primary study findings can
make a valuable contribution to the review. The grading of each of
the 11 quality assessment questions was done on a dichotomous
(‘‘yes’’ or ‘‘no’’) scale. Table 4 shows the result of the quality
assessment questions for the primary studies in the SLR.

3.4. Search process

The number of primary studies at each stage of the search
process in this paper is presented in Fig. 2. First, we found 20,278
articles as a result of the manual search. Due to the considerable
amount of retrieved publications in this step, the first round of
selection was performed (Review topic area, titles, abstracts, and
conclusions). Some publications were not easy to select based
only on their titles and keywords, so such publications were
preserved for the next round of selection (7042 publications). At
the end of the second step, 2005 publications met the inclusion
criteria in the manual search process. Next, by scanning and
skimming the text of the selected publications, 493 relevant pub-

lications were identified. After that, snowballing was performed

S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714 7

o
a
p

f

Fig. 2. illustrates the phases of the search process and the number of primary studies in each phase of the SLR. The corresponding number of primary studies in
each step of the search process for manual search and automatic search is signified in red and blue, respectively.
Table 3
Selected journals and conference proceedings in the manual and automatic searches.
Source Acronym

Journal of Systems and Software JSS
IEEE Transactions on Software Engineering TSE
Information and Software Technology IST
IEEE Software, International Conference on Software Engineering ICSE
IEEE International Conference on Software Analysis, Evolution and Reengineering. SANER
European Conference on Software Architecture ECSA
International Conference on Software Architecture ICSA
ACM Transactions on Software Engineering and Methodology TOSEM

ACM Digital Library ACM DL
Springer Publishing Springer
IEEE Xplore Digital Library IEEE Xplore
ScienceDirect –
Web of Science –
Elsevier’s Scopus Scopus
Table 4
Quality assessment: each primary study in the SLR has been assessed based on these qualities. This table shows the percentages of the ‘‘yes/no’’
answers to the quality assessment question based on the 232 selected primary studies in the SLR.
Quality assessment question Yes (%) No (%)

Is the paper based on research (or is it merely a ‘‘lessons learned’’ report based on expert opinion)? 98.71 1.29
Is there a clear statement of the aims of the research? 98.29 1.72
Is there an adequate description of the context in which the research was carried out? 96.12 3.88
Was the research design appropriate to address the aims of the research? 75.3 24.57
Was the recruitment strategy appropriate to the aims of the research? 90.95 9.05
Was there a control group with which to compare treatments? 10.34 89.66
Was the data collected in a way that addressed the research issue? 86.64 13.36
Was the data analysis sufficiently rigorous? 85.78 14.22
Has the relationship between researcher and participants been considered to an adequate degree? 46.98 53.02
Is there a clear statement of findings? 100 0.00
Is the study of value for research or practice? 100 0.00
m
A

to scan the references of the selected publications to explore
and identify 43 more studies in the manual search process. In
the last round of selection, if a publication met all the inclusion
and exclusion criteria, it was included. After reading the primary
studies thoroughly, 209 publications were selected. The quality
f the primary studies was reevaluated according to the quality
ssessment questions to exclude the low-quality publications (11
ublications were removed).
Next, the query was built according to the extracted keywords

rom the primary studies of the manual search. After performing
the automatic search, 1095 publications were found. In the first
round of review, 311 primary studies were selected according to
their topic areas, titles, abstracts, and conclusions. Afterward, in-
clusion and exclusion criteria were applied to refine the primary
studies, so 189 articles were moved to the next stage. Based on
the scanning and skimming of the primary studies, 74 papers
were considered for performing snowballing. Subsequently, 9,
ore studies were added to the knowledge base of the SLR.
fter reading the primary studies completely, 37 primary studies

were selected. The quality of the primary studies was reevaluated

8 S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714

a
l

e
p

P

ccording to the quality assessment questions to exclude the
ow-quality publications (3 publications were removed).

Eventually, 232 high-quality primary studies (198 + 34) pro-
moted to the knowledge base3 of the SLR for performing the
knowledge extraction process.

3.5. Knowledge extraction process

A structured coding procedure is employed to extract knowl-
edge from the selected primary studies. Structured coding cap-
tures a conceptual area of the research interest (Saldaña, 2015).
The extracted knowledge has been classified into six categories:
Patterns, Quality Attributes, Impacts, Application domains, Combina-
tions, and Trends. The rest of this study reports the results of data
analysis with a descriptive approach.

3.6. Threats to validity

The validity assessment is an essential part of any empirical
study, including SLRs (Zhou et al., 2016). The validity frequently
involves Construct Validity, Internal Validity, External Validity,
and Conclusion Validity. Other types of validity, such as Theo-
retical validity and Interpretive validity, were rarely considered
in the field of software architecture, so they are not discussed in
this paper.

Construct validity refers to whether an accurate opera-
tional measure or test has been used for the concepts being
studied. In this study, a meta-model (see Fig. 1), based on
the ISO/IEC/IEEE standard 42010 (ISO, 2011a), was built to
represent the decision-making process in designing soft-
ware architecture. The essential elements of the meta-model
are utilized to formulate the research questions. The meta-
model guarantees that the research questions cover all po-
tential publications regarding patterns. The query in the
automatic search was built based on the meta-model, so we
tried to obtain more relevant studies as much as possible.
Internal validity attempts to verify claims about the cause–
effect relationships within the context of a study. In other
words, it determines whether the study is sound or not. In
order to ensure that the paper selection process was unbi-
ased as far as possible, the quasi-gold standard (QGS) (Zhang
et al., 2011; Zhang and Babar, 2010) was adopted. The
QGS systematically integrates manual and automated search
strategies and suggests a relatively accurate search perfor-
mance evaluation in terms of sensitivity and precision. Al-
though we searched six online digital libraries, they are be-
lieved to cover the majority of the high-quality publications
in software architecture. To capture as many publications
as possible, however, we also employed the snowballing
as the complementary search to diminish the possibility of
missing relevant publications. The journals and conference
proceedings in the manual search and the primary studies in
the automatic search were reviewed by four researchers, in-
cluding a principal investigator, a junior researcher, and two
research assistants. Moreover, the practitioner evaluation
sections reflect the usefulness and effectiveness of the SLR
findings from real-world software architects’ perspectives.
External validity defines the domain to which the research
findings can be generalized to real-world applications. Ex-
ternal validity is sometimes employed interchangeably with
generalizability (feasibility of applying the results to other

3 The knowledge base of this study, including the primary studies and
xtracted knowledge, is available as a technical report on the following web
age: http://swapslr.com.
 r
research settings). In this study, we selected publications
that include a discussion about patterns from 1990 to 2019.
The excluded studies and inaccessible studies may affect the
generalizability of the SLR. However, as less than 3% was
not accessible to us, we do not expect that data was missed
that would significantly influence our results. The reusable
extracted knowledge available through this study can help
both academics and practitioners develop new theories and
methods for future challenges.
Conclusion validity verifies whether the methods of a study
such as the data collection method can be reproduced, with
similar results. We captured knowledge from the selected
publications regarding Patterns, Quality Attributes, Impacts,
Application domains, Combinations, and Trends. The accu-
racy of the extracted knowledge was guaranteed through
the protocol that was developed to define the knowledge
extraction strategy and format. The review protocol was
proposed and reviewed by the authors. We defined a data
extraction form to obtain consistent extraction of relevant
knowledge and checked whether the acquired knowledge
would address the research questions. Both the first and
second authors determined quality assessment criteria inde-
pendently. Moreover, the crosscheck was necessary among
the reviewers, and again we had at least two researchers
extracting data independently.

3.7. Analysis and results

3.7.1. Patterns
Patterns offer universal and reusable solutions to commonly

occurring problems in software architecture design (Avgeriou and
Zdun, 2005). Finding the most common set of patterns helps soft-
ware architects to have a better understanding of design decision
problems and potential solutions to solve such problems.

Fig. 3 provides an overview of the number of studies that
considered each pattern as one of their design decisions or pat-
tern alternatives. The primary studies that discuss the patterns
are spread across the early years of the emergence of software
architecture (1990) (Kruchten et al., 2006) to the present (2019).
Fig. 3 shows the distribution of these primary studies over the
29 years. To prevent potential biases, we only considered the
patterns mentioned in at least three primary studies. Each se-
lected publication was at least relevant to a particular pattern
and discussed its characteristics (such as liabilities, strengths,
components, connections, and typologies) and domains (see Sec-
tion 3.7.4). Consequently, 29 patterns4 satisfied the constraints
and were included in this study.

The number of primary studies from the year 2005 has in-
creased significantly. Furthermore, more than 20 percent of the
primary studies were published in the years 2010 and 2011. As
the academic literature is merely a reflection of the multitude
of patterns that are being used in the industry, we must note
that occurrence in academic literature does not necessarily mean
occurrence in the industry. Fig. 3 shows that Client–Server, Layers,
ipes and Filters, Service-Oriented Architecture (SOA), and Model-

View-Controller (MVC) are the top 5 architectural patterns that
were investigated in the primary studies.

3.7.2. Quality attributes
One of the fundamental concepts in software architecture

specification is identifying required levels of measurement of
software quality attributes or system qualities such as perfor-
mance, security, available, and reusability.

4 A textual definition of each of the patterns is available in the technical
eport on the following web page: http://swapslr.com.

http://swapslr.com
http://swapslr.com

S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714 9

T
b

t
c
a
o
p
s
2
e

Fig. 3. demonstrates the number of primary studies per year (1990–2019) that were relevant to a particular pattern. The bottom of the figure indicates the total
number of primary studies that were relevant to the patterns. For example, 90 publications in the knowledge base of this study discussed the Client–Server pattern.
he right side of the figure shows the number of primary studies per year. Some of the studies discussed more than one pattern. Hence the sum of numbers in the
ottom row exceeds the total number of studies found. For instance, we found 87 publications in the year 2010.
In the literature, patterns are described according to the func-
ionality they deliver, and their strengths or liabilities are shown
oncerning several quality attributes (Me et al., 2016a). Strengths
nd liabilities assess the importance of the impact of patterns
n quality attributes (Harrison and Avgeriou, 2007). Therefore,
atterns and quality attributes are not independent and have
ignificant explicit/implicit interactions (Harrison and Avgeriou,
010). Such interactions can be represented as reusable knowl-
dge elements (Me et al., 2016b). For instance, selecting the Layers

pattern involves a trade-off between efficiency and maintainabil-
ity, where the second quality attribute is better fit (Harrison and
Avgeriou, 2007).

We tried to identify the most widespread quality concerns
that were considered in the literature. Fig. 4 indicates the quality
attributes that were explicitly mentioned in at least three primary
studies. We encountered 40 relevant quality attributes. According
to the results of the analysis (see Fig. 4), Reusability, Flexibility, Per-
formance efficiency, Scalability, and Maintainability are the top five
software quality attributes that were investigated and reported
on in more than 30 primary studies.

Fig. 4 shows that Characteristics of the ISO/IEC 25010 standard
(such as Reliability, Performance efficiency, Usability, and Main-
tainability) were considered as quality concerns in the primary
studies. However, Subcharacteristics of the ISO/IEC 25010 standard
(such as Operability and Accountability) were less discussed in the
primary studies. Note, the quality attributes printed in black are
based on the ISO/IEC 25010 standard (ISO, 2011b), and the rest of
them (printed in blue) are not mentioned in the ISO standard.5
Each cell of the matrix contains two rows. The first row is a
triple (L—N—H), including the numbers of studies that reported
a particular quality attribute as a Liability (L), Neutral (N), and
Strength (H) for its corresponding pattern. The decimal numbers
in the second rows of the stained cells show the results of the
fuzzy calculation for the impacts.

3.7.3. Impacts
Every architecture decision is made with a rationale. A

strength or liability is an argument to utilize or to avoid a
pattern in a particular situation (Me et al., 2016a). Therefore, the
degree to which patterns impact quality attributes determines
architectural decisions (i.e., adopting or avoiding a pattern for a
given design problem).

When architects have to make architecture decisions, an un-
derstanding of the impacts of patterns on quality attributes is

5 The definitions of the quality attributes are entirely available in the
technical report on the following web page: Http://swapslr.com.

http://swapslr.com

10 S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714

Fig. 4. shows the Quality Impact Matrix. Liabilities (red cells), Strengths (green cells), Neutrals (yellow cells), and Unknown (white cells) are shown based on the
cell colors. Furthermore, the color intensity is an indicator of agreement among studies as well as the numbers in the cells. This table provides the relationships
between patterns and quality attributes. Note, as this figure is hard to read, a larger version is available from http://swapslr.com. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

http://swapslr.com

S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714 11

N
H

S
t
s
d

S

t

A

F
t

R

N
o
M

needed. The solution space from which an architect must select
one design is far more extensive than an architect can over-
see (Sabry, 2015). Our observation that further illustrates this
problem is that it is not uncommon in industry to hire an archi-
tect with experience and expertise with a particular pattern. As
such, software architects need better decision support tooling, to
help themmake their decisions with the right knowledge at hand.

Identifying the impacts of patterns on quality attributes re-
quires analysis of a considerable amount of knowledge regarding
patterns (Harrison and Avgeriou, 2010). Missing the impacts of
patterns on quality attributes at architecture design time leads to
additional liabilities. Because quality attributes are system-wide
capabilities, they generally cannot be evaluated entirely until the
whole system can be evaluated (Burnstein, 2006).

In the knowledge extraction phase of this study, we realized
some inconsistencies regarding the observed impacts of patterns
on quality attributes. Some studies reported conflicting impacts
of a particular pattern on a quality attribute. For instance, Sharma
et al. (2015), Qin et al. (2008) and Harrison and Avgeriou (2008a)
stated that efficiency is a strength of the Pipe and Filter pattern,
however, Vogel et al. (2011) expressed that efficiency is a liability
for this pattern. Therefore, efficiency can be considered as both
strength and liability of the Pipes and Filters pattern.

Quantifying the impact of a particular pattern on the quality
attributes is complicated because quality attributes are system-
wide capabilities. Generally, they cannot be evaluated entirely
until the whole system can be evaluated. In this study, we applied
fuzzy logic as a method to aggregate the extracted knowledge
regarding the potential impacts of patterns on quality attributes.

Fuzzy Logic Calculations - we employed fuzzy logic (Chen, 1998)
as a method for aggregating individual fuzzy opinions into a
group fuzzy consensus pinion. Suppose each primary study as an
individual expert, where expert Ei(i = 1, 2, . . . , n) constructs a
positive trapezoidal fuzzy number Ri with membership functions
MRi (x) to represent his/her opinion on a particular impact. In this
study, we defined the following trapezoidal fuzzy numbers for
Liability (L), Neutral (N), and Strength (H):

L = (0.0, 0.1428, 0.2856, 0.4286)
= (0.2856, 0.4286, 0.5712, 0.7140)
= (0.5712, 0.7140, 0.8568, 1.0)

uppose R1 = (a1, b1, c1, d1) and R2 = (a2, b2, c2, d2) are two
rapezoidal numbers that represent two experts’ opinion in fuzzy
pace, then the similarity S(R1, R2) between these R1 and R2 is
efined as follows (Chen, 1998):

(R1, R2) = 1 −
|a1 − a2| + |b1 − b2| + |c1 − c2| + |d1 − d2|

4
The degree of agreement A(Ei) of expert Ei is calculated based on
he following equation:

(Ei) =
1

n − 1

n∑
j=1 ∧ i̸=j

S(Ri, Rj); i = 1, 2, . . . , n

The relative degree of agreement RA(Ei) of expert Ei is defined as
follows:

RA(Ei) =
A(Ei)∑n
i=1 A(Ei)

; i = 1, 2, . . . , n

inally, the aggregation of fuzzy opinion is calculated based on
he following equation (Chen, 1998):

= RA(E1) ⊗ R1 ⊕ RA(E2) ⊗ R2 ⊕ · · · ⊕ RA(En) ⊗ Rn

ote, in this study, we used Mean of Maxima (MoM) as a method
f defuzzification, so that, MoM(L) = 0.21, MoM(N) = 0.50, and
oM(H) = 0.79.
Fig. 4 presents the impacts of the patterns on the quality
attributes. Note, the impacts have been reported as Liabilities (red
cells), Strengths (green cells), Neutrals (yellow cells), or Unknown
(white cells). The Unknown impacts mean that we did not find
any information about them. Note, the cells with thick borders
signify singleton impacts, which means that we found only one
study that has been discussed those impacts. The coloring codes
are the results of the calculated fuzzy logic (the decimal number
in the second row of each colored cell) to gain a consensus among
studies. Therefore the color intensity indicates the agreements
among studies on particular impacts. In other words, the color in-
tensity can help decision-makers to have a better understanding
of existing knowledge in the literature concerning the reported
impacts. For instance, we found 20 studies regarding the impact
of Layers pattern on Reusability, so that, 17 studies considered
Reusability as a key strength, 2 studies mentioned some Reusabil-
ity challenge, and only one study asserted that Reusability is a
key liability for the Layers pattern. Therefore, the dark green color
can be interpreted that Reusability is a key liability for the Layers
pattern; however, some Reusability challenges reported in the
literature regarding this impact.

3.7.4. Application domains
By increasing knowledge about patterns, it is possible to make

better-informed decisions, avoid failures, and better satisfy qual-
ity attributes and achieve system-wide quality targets (Me et al.,
2016a).

Application-generic and application-specific knowledge are
two types of architectural knowledge (Lago and Avgeriou, 2006).
Application-generic knowledge refers to knowledge that soft-
ware architects have implicitly in their heads, from their for-
mer experience in working in one or more domains. Moreover,
application-specific knowledge involves all the decisions taken
during the architecting process of a particular system and the
architectural solutions that implemented the decisions. There-
fore, application-generic knowledge is used to make decisions
for a single application and thus construct application-specific
knowledge.

The application domains, in which the observed patterns are
used, support software architects in selecting appropriate pat-
terns for their problem domain. Fig. 5 shows the application
domains of the identified patterns. We categorized the observed
application domains based on the suggested software taxonomy
by Forward and Lethbridge (2008).

3.7.5. Combinations
Despite an extensive list of patterns documented in the litera-

ture, patterns are infrequently applied in a system design in their
original form, and they must be combined with other patterns
to address different design decisions of the system (Buschmann
et al., 2007a). In other words, a particular pattern provides the
missing ingredient needed by another pattern or conflicts with
another one by providing an alternative solution to a related
problem. The goal of combining patterns is to make the resulting
design more complete and balanced (Buschmann et al., 2007b).

In general, not all potential combinations of patterns are use-
ful. However, because each pattern description is self-contained
and independent of the others, it is difficult to extract the useful
combinations from the individual pattern descriptions (Schmidt
et al., 2013). The combinations of patterns are more than ag-
gregates of their elements (Kamal and Avgeriou, 2010). Unfortu-
nately, individual patterns descriptions are not always explicit on
‘‘how’’ to combine them with consistent patterns. For instance,
the Layers pattern can be combined with the Client–Server pat-
tern, or the C2 and Publish–Subscribe patterns can be used as a
paired pattern (Kamal and Avgeriou, 2010).

12 S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714

d
o

Fig. 5. illustrates possible applications of the architectural patterns according to the SLR. The numbers in the cells show the number of studies that discussed the
corresponding application domain of an architectural pattern. Note, in the first column, cells in the dark blue indicate the categories of the application domains. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Suppose PAT is the set of frequently used patterns bu software
architects in the SLR, P1 and P2 are two patterns, where P1, P2 ∈

PAT . When building a solution for a particular problem addressed
by P1, one sub-problem is similar to a problem addressed by P2.
Consequently, the pattern P1 utilizes the pattern P2 in its solution.
Note, a typical combination of patterns is the combination of P1
and P2 (e.g., a software architect can employ the Microservice
pattern besides Rule-based patterns). In contrast to ‘‘P1 employs
P2’’, P1 does not employ P2 in its solution.

Fig. 6 illustrates the combinations of the pattern that we found
uring the SLR. The observed combinations in Fig. 6 are based
n the ‘‘P1 employs P2’’ relationships. For example, 17 primary

studies stated that the Client–Server pattern employs the Broker
pattern. The broker is responsible for receiving all messages, fil-
tering the messages, deciding who is the owner of each message,
and sending the message to the correct clients.

3.7.6. Trends
The possibility of existing trends among researchers in se-

lecting patterns has been investigated in this SLR. As aforemen-
tioned, the primary studies that discuss the patterns are spread
across the early years of the emergence of software architecture
(1990) (Kruchten et al., 2006) to the present (2019).

Although numerous software systems have succeeded by em-
ploying patterns consciously, there have also been failures, due
in substantial part to common misinterpretations about patterns,

S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714 13

t
B
N
p

i
a
s
2
d
o
k
p

t
t
p

q
d
p
d

Fig. 6. demonstrates the observed combinations of patterns while performing SLR. Please note that we only identified couples, so the figure should be read as
hat we encountered the broker pattern combined with the Layers pattern five times in the literature. Moreover, the combinations are not symmetric; for instance,
roker–Layers is not the same as Layers–Broker. Architects can use this figure to decide whether a combination they are planning to make, has been made before.
ote, each cell in the last row (compatibility) indicates the percentage of the patterns that can be combined with the corresponding pattern based on the selected
rimary studies. For instance, the ‘‘Client–Server’’ can be combined with 66% of the other patterns in the list.
.e., what they are and what they are not, what characteristics
nd purpose they have, their target audience, and the various
trengths and liabilities of applying them (Buschmann et al.,
007b). The pattern community has long been interested in un-
erstanding the underlying theories, forms, and methodologies
f patterns, pattern languages, and associated concepts to codify
nowledge about, understanding of, and application domains of
atterns.
Fig. 3 shows the distribution of these primary studies over

he 29 years. To prevent potential biases, we only considered
he patterns that were mentioned at the minimum of three
rimary studies. We observe that SOA, Cloud computing architec-

ture (Spaced-based), and Microservices gained more attention in
recent years. Moreover, some patterns such as C2, Presentation–
abstraction–control (PAC), Remote Procedure Call (RPC) and Batch
sequential patterns are not discussed widely in academic litera-
ture.

3.8. Discussion

This section summarizes the observed answers to the research
uestions and identifies several lessons learned. We end the
iscussion with an interesting question: how can creativity be
reserved when an architecture decision is simplified to a limited
ecision model?
3.8.1. Addressing research questions
In this subsection, we reflect on each of the proposed research

questions based on the SLR.
To answer the first research question (RQ1) that aims at iden-

tifying the frequently employed patterns since the emergence of
the field (1990), we found 29 patterns (see Fig. 3) that discussed
at more than three primary studies.

The second research question (RQ2) is the most frequent
quality attributes that software architects are mainly concerned
about. We found 40 quality attributes (see Fig. 4) that explicitly
mentioned in the primary studies as liabilities and strengths of
the patterns.

The answer to the third research question (RQ3) reveals the
impacts of the patterns on the quality attributes based on the
aggregation of liabilities and strengths reported in primary stud-
ies (see Fig. 4). Such impacts lead to a deeper understanding of
the patterns, identify the potential risks of employing a particular
pattern, facilitate generating a quality attribute utility tree for a
system, improve architecture documentation, and assist software
architects with the pattern selection process.

To answer the fourth research question (RQ4) that aims at
finding common application domains, we observed 35 applica-
tion domains and classified them into 11 categories (see Fig. 5).
With such knowledge regarding the application domains, soft-
ware architects can determine whether similar patterns have
been chosen in their domains.

14 S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714

s
s
s
p
e
d

o
d
f
t
a
m
y
n
a

3

i
o
a
m
a
d
e
d
t
r
c
i

l
c
c
t
n
a
a
p
c

s
i
m
t
S
s
t
t
s
p

i
a
w
o
r
e
b
c
B
P
a

w
m
a
g
I
d
i
g
h
C
a
t
p
m

c
f
i
p
o
p
L
e
s
r
o
o
O
w
o
b
i
c
a

s
t
a
R
s
b
r
a

w
d
r
s
(
(
t
t
t

p
c
f
s
o
s
h
a

To answer the fifth research question (RQ5), we collected a
et of suitable combinations of patterns observed in the primary
tudies (see Fig. 6). Such combinations can address common
ub-problems in patterns, such as solving the communication
roblem in the Client–Server pattern by the Broker pattern. Note,
ach paired pattern (e.g., Client–Server–Broker) can have entirely
ifferent characteristics from its constituent patterns.
The sixth research question (RQ6) asks whether trends can be

bserved in pattern selection among software architects. Fig. 3
emonstrates the distribution of the observed patterns this SLR
rom 1990 up to 2019. We realized that some patterns were
rending for a period, and other patterns gained more attention
fter several years. For instance, the C2 was trending before 2010;
oreover, the Microservice pattern gained attention in recent
ears. However, the Client–Server, Layers, Pipe and Filters, Compo-
ent based patterns were almost always considered as primary
lternatives in the pattern selection process.

.8.2. Lessons learned
Knowledge about software patterns and their impacts on qual-

ty attributes is spread throughout decades of scientific reporting
n pattern observation in practice. Architects must continuously
lign quality requirements, patterns, tactics, and application do-
ains. It is non-trivial for both practitioners and academics to
nswer questions such as ‘‘what kind of effect does the intro-
uction of Microservices have on the variability of a system for
nd-users?’’. Software architects typically neglect to sufficiently
ocument their design decisions because they do not appreciate
he advantages of documentation of such design decisions (Har-
ison and Avgeriou, 2010). This lack of accurate documentation
an significantly impact future design decisions. Furthermore, it
s problematic for the actual architecture in practice.

We can revert to traditional building architecture for several
essons learned. First, we must accept that we will not find a
omprehensive set of patterns: technological innovations will
ontinually introduce more complex and specific patterns. Analog
o how the elevator has enabled us to build taller buildings,
ew innovative patterns such as CQRS enable us to create larger
nd more scalable systems. This continuous innovation remains
responsibility of the academic community to consolidate and
resent architecture knowledge to the practitioner community
ontinuously.
It is possible to identify trends in pattern usage. We hypothe-

ize that software architects are biased towards trending patterns
n their architecture design decisions. Over time, quality require-
ents of systems change because of advances in technology

hat address particular quality concerns of software architects.
oftware architects need to have a more explicit awareness of
oftware architecture trends and evaluate them in the context of
he system requirements. If we look at traditional building archi-
ecture again, it does not come as a surprise that architects are
ensitive to trends: patterns may introduce new possibilities that
rovide end-users with more efficient and satisfying structures.
It is presently impossible to assess which patterns are compat-

ble and frequently used in combination, even though practically
ll systems implement more than one pattern. In this research,
e only focus on individual patterns that solve particular parts
f a design problem. Patterns, however, have several types of
elationships with each other. (1) Patterns can be alternatives to
ach other, for example, Interpreter, Virtual Machine, and Rule-
ased system. (2) Patterns can also be complementary and easily
ombined. For instance, the combination of Client–Server and
roker is valid and mentioned in some studies in the SLR. (3)
atterns may also be incompatible. For instance, we did not find
ny combinations of Pipes and Filters and Broker.
Besides reporting, academics have a responsibility to define
hat architects need to make explicit. The majority of the pri-
ary studies focus on a limited set of patterns and quality
ttributes (see Figs. 3 and 4), and they were more concerned with
eneric quality attributes, such as the quality attributes of the
SO/IEC 25010 standard. According to the ISO/IEC 25010 standard
escription (ISO, 2011b), the Characteristics are broken down
nto Subcharacteristics. The Characteristics are conceptually more
eneric quality attributes, and conversely, the Subcharacteristics
ave more concrete definitions. Several studies considered a
haracteristics and its Subcharacteristics as two separate quality
ttributes (For example, Maintainability and Modifiability). Archi-
ects and researchers need to be more accurate in defining the
atterns, their usage of them, and the quality attributes they
easure them by.
Patterns promoting similar quality attributes sometimes have

ommon characteristics. For instance, both Layers and C2 support
lexibility and separation of concerns, and there is a significant
mplementation overlap between them. While the similarity of
atterns is a reliable indicator of potentially reusable code, it
ften has the opposite effect on the compositionality of those
atterns. Experience shows that the similar patterns (e.g., C2 and
ayers) cannot or are not typically composed together (Malek
t al., 2010). Our main observation here is that essential relation-
hips with other patterns also characterize patterns. The ability to
apidly compose patterns in this manner opens up new avenues
f research to study the compatibility of patterns with one an-
ther and to develop new hybrid and domain-specific patterns.
ne of the most significant threats to this study’s validity is that
e take the academic reporting of patterns as a representative
verview of the industry. In the future, we aim to solve this
y also including gray literature in the study. Furthermore, we
dentify a need for a comprehensive view of patterns, where a
urated set of patterns is regularly published as a reference for
rchitects, similar to other industry-specific catalogs.
Software architecture tactics are a sub-class of design deci-

ions and focus on the improvement of particular quality at-
ributes (Harrison and Avgeriou, 2010). For instance, Ping/Echo
nd Heartbeat are two tactics that can be selected to improve
eliability. If selecting and applying sets of patterns without con-
ideration impede some of the quality attributes, these tactics can
e employed to improve a system’s quality attributes. A future
esearch challenge is to support architects in this fine-tuning of
selected set of patterns using particular tactics.
Our hypothesis remains that an optimal initial set of patterns

ill require less use of tactics at a later stage in a system’s
evelopment. We define an optimal set of patterns as the theo-
etical set of patterns that best addresses the requirements of the
oftware project, including features (e.g., provides an API), quality
e.g., up to current security standards), and project requirements
feasible to implement with allotted resources). We acknowledge
hat identifying this set perfectly is impossible, for instance, due
o the use of tactics, but in software design, we must strive
owards such an optimal set.

Stifling creativity. A relevant question is whether the data
rovided in this article stifles the architect’s creativity: the article
ould be used to discourage particular new pattern combinations,
or instance. We believe that the benefits of having overviews
uch as the most common combinations, such as in Section 3.7.5
f this article, can inspire architects to work with a broader
et of knowledge than they would have before. Following that
ypothesis, the information in this article should broaden the
rchitects’ knowledge instead of stifling them into set rules.

S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714 15
4. Practitioner evaluation

We followed Myers and Newman guidelines (Myers and New-
man, 2007) to conduct a series of qualitative semi-structured
interviews with twelve senior software architects to explore ex-
pert knowledge regarding architectural patterns and evaluate the
outcomes of the SLR.

We developed a role description before contacting potential
experts in order to ensure the right target group. We contacted
43 architects in the Netherlands through email using the role
description and information about our research topic. Overall,
twelve senior software architects at different software producing
organizations in the Netherlands participated in this research. The
experts were pragmatically and conveniently selected according
to their expertise and experience that they mentioned on their
LinkedIn profile. The experts had, on average, more than ten years
of experience with designing architectures. Each of the inter-
views followed a semi-structured interview protocol and lasted
between 60 and 90 min.

According to Runeson et al. (2012), we discuss the four threats:
construct validity, internal validity, external validity, and reli-
ability. We used open questions to elicit as much information
as possible from the experts minimizing prior bias. All inter-
views were done in person and recorded with the interviewees’
permission, then coded for further analysis to decrease a threat
to construct validity. In order to mitigate a possible threat to
internal validity, we consider a set of expert evaluation criteria
(including ‘‘Years of experience’’, ‘‘Expertise’’, ‘‘Skills’’, ‘‘Educa-
tion’’, and ‘‘Level of expertise’’) to select the experts. This study’s
relatively small number of interviewees highlights the issue of
generalization and the external validity of the research results.
However, the diversity of the interviewees, who were working
at twelve different software development companies, lead to un-
biased and generalize results. The interview protocol and coding
were reviewed by two authors of this paper to minimize a threat
to reliability.

Patterns: The domain experts were familiar with most of the
selected patterns in this study. However, some experts asserted
that particular patterns, such as C2 and Indirection Layer, are
not as well-known as the rest of the patterns. Moreover, two
experts mentioned that Master–Slave is not frequently used in
software architecture. The last row in Fig. 3 shows the num-
ber of experts that were familiar with each pattern. Note, all
twelve experts were familiar with well-known patterns, such
as ‘‘Client–Server’’, ‘‘Layers’’, ‘‘SOA’’, ‘‘MVC’’, ‘‘Component-based’’,
and ‘‘Microservices’’.

Quality Attributes: The domain experts were familiar with the
reported quality attributes, i.e., the qualities in the ISO standard
(see Fig. 4). They mentioned that software architects mostly con-
sider a limited set of quality attributes to evaluate real-world soft-
ware systems. Furthermore, they asserted that some of the qual-
ity attributes in our list are semantically close to each other and
can be combined. For instance, one of the experts asserted that
terms such as ‘‘response time’’, ‘‘capacity’’, ‘‘latency’’, ‘‘through-
put’’, and ‘‘execution speed’’ are linked to ‘‘Performance’’; more-
over, quality attributes such as ‘‘modifiability’’ and ‘‘stability’’ are
connected to ‘‘Maintainability’’.

Based on the IEEE Standard Glossary of Software Engineering
Terminology (IEE, 1998; Samadhiya et al., 2010), the quality of
software products is the degree to which a system, component
or process meets specified requirements (such as functionality,
performance, security, and maintainability) and the extent to
which a system, component or process meets the needs or ex-
pectations of a user. It is necessary to find quality attributes that
are widely recommended by other researchers to measure the

characteristics of the system.
The result of the SLR confirmed that researchers do not agree
upon a set of conventional quality attributes (See Fig. 4). Addi-
tionally, we realized that their suggested quality attributes were
mainly applied to specific domains to address different research
questions. Moreover, quality attributes such as ‘‘Security’’ and
‘‘Confidentiality’’, ‘‘Availability’’ and ‘‘Fault-tolerance’’, ‘‘Testabil-
ity’’ and ‘‘Traceability’’, ‘‘Maintainability’’ and ‘‘Manageability’’,
etc. can be considered as synonym terminologies. However, we
observed that some authors distinguished and categorized quality
attributes conceptually. For instance, Yang et al. (2012) stated
that ‘‘Confidentiality’’, ‘‘Integrity’’, ‘‘Accountability’’, ‘‘Authentic-
ity’’ are sub characteristics of ‘‘Security’’. Similarly, Bode and
Riebisch (2010) stated that ‘‘Testability’’ and ‘‘Traceability’’ are
sub characteristics of ‘‘Evolvability’’. Consequently, a set of nonex-
clusive and domain-independent quality attributes is needed to
evaluate software products.

The ISO/IEC 25010 (ISO, 2011b) presents best practice rec-
ommendations on the base of a quality assessment model. The
quality model defines which quality characteristics should be
considered when assessing the qualities of a software product.
The key rationale behind using such software quality models
is that they are a standardized way of measuring a software
product (Haoues et al., 2017b). In Fig. 4, the quality attributes
printed in black are based on the ISO/IEC 25010 standard (ISO,
2011b), and the rest of them (printed in blue) are not mentioned
in the ISO standard.6

Strength and Liabilities: The domain experts asserted that Fig. 4
provides an extensive analysis regarding the impacts. They con-
firmed that such analysis is useful for software architects and
can assist them with their decision-making process to select the
best fitting set of patterns according to their quality concerns.
The experts expressed that in real-world scenarios, software ar-
chitects employ tactics to improve individual quality concerns.
Tactics are mainly implemented in the source code so that their
implementation can be easier or more difficult based on the
nature of the system they are implemented in.

Application Domains The experts asserted that they had almost
similar experiences with selecting and employing patterns in par-
ticular domains. One of the experts confirmed that some patterns
are well-known candidates in particular domains, such as a com-
bination of CQRS, Microservices, Layers, and Client–Server, which
are all commonly used in ERP software. The practitioners stated
that knowledge about application domains could be helpful for
software architects and support them to identify the initial set
of patterns based on the similarity between their application
domains and the observed domains based on other architects’
experiences.

It is interesting to highlight that the knowledge regarding a
limited set of patterns can lead to a cognitive bias (Montibeller
and Winterfeldt, 2015) that forces practitioners an over-reliance
on the patterns that they are familiar with. For instance, we
noticed that some experts during the interviews had emphasized
more on a particular set of patterns that they have mentioned as
their expertise and skills in their LinkedIn profiles.

Combinations: The practitioners stated that in real-world ar-
chitectures, they manipulate and combine patterns with meet-
ing their requirements. Furthermore, they employ combinations
of patterns besides software architecture tactics as architecture
strategies to achieve particular quality attribute goals (e.g., im-
proving security or performance). The practitioners confirmed
that such knowledge about combinations are useful to them and

6 The definitions of the quality attributes are entirely available in the
technical report on the following web page: Http://swapslr.com.

http://swapslr.com

16 S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714

c
t
t
l
C
e
p
o
o
p
e
m

T

V
-
v
M
W
a
C

D

c
t

A

F
f
B
T
n

R

P
a
f

1
A

A

B

B

B

B

B

B

B

B

B

B

B

B

C

an provide guidelines to select patterns and practical combina-
ions. The practitioners also reconfirmed that pattern combina-
ions can exist in many configurations. This presents a new chal-
enge. For example, if a microservice uses CQRS independently,
QRS does not influence the total microservice architecture. How-
ver, if CQRS is used in an event-based architecture, those two
atterns need to be developed in lock-step, as they influence each
ther heavily. For now, we recognize a dichotomy: combinations
f patterns can be made that influence each other, while it is also
ossible to have combinations of patterns that do not influence
ach other at all. In future work, such relationships should be
ade explicit and specified in more detail.

rends: The practitioners asserted that it is a well-known phe-
nomenon that any technology is trend sensitive due to new in-
sights and rapid advancements. Consequently, software architects
have to be informed about the advancements in the technology
industry and trends that can benefit their business in the future.
Software architects sometimes have to select a particular set of
patterns because of legacy technology choices. Sometimes vendor
lock-in makes a customer dependent on a vendor for products
and services, unable to use another vendor without substantial
switching costs. An example of a pattern that has been trending in
recent years is the Microservices pattern. Microservices advantages
can tempt software architects to consider it as a hammer and
convert every problem (design decision) into a nail. In other
words, software architects tend to consider a set of patterns
that are trending. For instance, one of the experts mentioned
that software architects prefer to use Publish–Subscribe instead
of RPC as a communication mechanism. Furthermore, MVC, as
a pattern that facilitates the design of user-interfaces, is more
popular than its alternatives, C2 and PAC. In our research, we need
to be cognizant of these trends, while not becoming dogmatic. In
engineering, new tools have led to some of the greatest advances,
and we expect the job of the software architect to remain an
engineering job primarily for a long time.

5. Conclusion

Knowledge about architectural patterns is scattered among
studies in the literature. In this study, we capture and aggregate
knowledge about architectural patterns and make it available
through this paper and a web site as reusable knowledge for
architects. The amount of data collected from academic literature
surpasses other studies in terms of a number of patterns studied
and quality impacts identified. We also identify possible trends
and application domains of architectural patterns.

The practitioners who participated in this research confirmed
that the provided knowledge in this study could support re-
searchers and practitioners with selecting the best fitting sets of
architectural patterns for designing pattern-driven architecture
according to their quality concerns and application domains.

The lack of sufficient knowledge regarding patterns and their
impacts on quality attributes, plus their application domains in
literature, impedes progress in the software architecture field and
leads to unreliable decisions by software architects. This research
serves several purposes. First, it is an explicit call to action for
all architects and researchers to document their pattern usage,
the quality attributes they meet, the tactics used to optimize
those quality attributes, and the application domains they best
apply. Second, we use this work as a source for designing more
extensive decision support system (Farshidi et al., 2018a) that can
support architects in finding the right combination of patterns for
any software system. We plan to evaluate the decision support
system in expert sessions with seasoned software architects. As
the knowledge base of the decision support system also functions
as a knowledge-sharing platform, it may become the first up to
date and maintained pattern catalog.
CRediT authorship contribution statement

Siamak Farshidi: Conceptualization, Methodology, Software,
alidation, Formal analysis, Investigation, Data curation, Writing
original draft, Writing - review & editing, Visualization, Super-
ision, Project administration. Slinger Jansen: Conceptualization,
ethodology, Validation, Investigation, Writing - original draft,
riting - review & editing, Visualization, Supervision, Project

dministration, Funding acquisition. Jan Martijn van der Werf:
onceptualization, Methodology, Validation.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

We thank the twelve experts that participated in this research.
urthermore, we thank the excellent support we have received
rom the journal editors and reviewers. Finally, we thank Sjaak
rinkkemper for comments on earlier versions of this article.
his work is part of AMUSE Project and funded by NWO [project
umber 628.006.001].

eferences

lease note that the complete set of the selected primary studies
nd extracted knowledge is available as a technical report on the
ollowing web page: http://swapslr.com.

998. Ieee standard for software maintenance. IEEE Std 1219-1998 1–56.
hmad, R., Nadeem, A., Kim, T.-h., et al., 2010. ISARE: An integrated software

architecture reuse and evaluation framework. In: International Conference on
Advanced Software Engineering and its Applications. Springer, pp. 174–187.

vgeriou, P., Zdun, U., 2005. Architectural patterns revisited-a pattern language.
In: European Conference on Pattern Languages of Programs.

ass, L., Clements, P., Kazman, R., 2013. Software Architecture in Practice.
Addison Wesley.

laine, J.D., Cleland-Huang, J., 2008. Software quality requirements: How to
balance competing priorities. IEEE Softw. 25 (2), 22–24.

ode, S., Riebisch, M., 2010. Impact evaluation for quality-oriented architec-
tural decisions regarding evolvability. In: European Conference on Software
Architecture. Springer, pp. 182–197.

ogner, A., Littig, B., Menz, W., 2009. Introduction: Expert interviews—An intro-
duction to a new methodological debate. In: Interviewing Experts. Springer,
pp. 1–13.

osch, J., 2004. Software architecture: The next step. In: European Workshop on
Software Architecture. Springer, pp. 194–199.

rereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M., 2007. Lessons
from applying the systematic literature review process within the software
engineering domain. J. Syst. Softw. 80 (4), 571–583.

uchgeher, G., Weinreich, R., Kriechbaum, T., 2016. Making the case for cen-
tralized software architecture management. In: International Conference on
Software Quality. Springer, pp. 109–121.

urnstein, I., 2006. Practical Software Testing: A Process-Oriented Approach.
Springer Science & Business Media.

uschmann, F., Henney, K., Schmidt, D.C., 2007a. Pattern-Oriented Software
Architecture, on Patterns and Pattern Languages, Vol. 5. John Wiley & Sons.

uschmann, F., Henney, K., Schmidt, D.C., 2007b. Past, present, and future trends
in software patterns. IEEE Softw. 24 (4), 31–37.

ushchmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996. Pattern-
Oriented Software Architecture-A System of Patterns. In: Advances in
Software Engineering and Knowledge Engineering, vol. 1, Wiley and Sons
Ltd, pp. 1–487.

uyya, R., Vecchiola, C., Selvi, S.T., 2013. Principles of parallel and distributed
computing. Master. Cloud Comput.

apilla, R., Jansen, A., Tang, A., Avgeriou, P., Babar, M.A., 2016. 10 years of
software architecture knowledge management: Practice and future. J. Syst.
Softw. 116, 191–205.

http://swapslr.com
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb1
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb4
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb4
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb4
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb5
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb5
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb5
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb6
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb6
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb6
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb6
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb6
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb7
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb7
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb7
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb7
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb7
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb9
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb9
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb9
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb9
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb9
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb10
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb10
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb10
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb10
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb10
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb11
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb11
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb11
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb12
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb12
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb12
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb13
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb13
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb13
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb15
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb15
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb15
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb16
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb16
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb16
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb16
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb16

S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714 17
Chen, S.-M., 1998. Aggregating fuzzy opinions in the group decision-making
environment. Cybern. Syst. 29 (4), 363–376.

Chung, L., Nixon, B., Yu, E., Mylopoulos, J., 2000. Non-Functional Requirements
in Software Engineering. Kluwer Academic Publishers, Massachusetts, USA.

Clements, P., Kazman, R., Klein, M., et al., 2003. Evaluating Software
Architectures. Tsinghua University Press Beijing.

Clements, P., Shaw, M., 2009. "the golden age of software architecture" revisited.
IEEE Softw. 26 (4), 70–72.

Dybå, T., Dingsøyr, T., 2008. Empirical studies of agile software development: A
systematic review. Inf. Softw. Technol. 50 (9–10), 833–859.

Elahi, A., Babamir, S.M., 2015. Evaluating software architectural styles based on
quality features through hierarchical analysis and fuzzy integral (FAHP). In:
Information and Knowledge Technology. IEEE, pp. 1–6.

Farshidi, S., Jansen, S., de Jong, R., Brinkkemper, S., 2018a. A decision support
system for software technology selection. J. Decis. Syst.

Farshidi, S., Jansen, S., de Jong, R., Brinkkemper, S., 2018b. Multiple criteria
decision support in requirements negotiation. In: International Conference
on Requirements Engineering: Foundation for Software Quality.

Farshidi, S., Jansen, S., España, S., Verkleij, J., 2020. Decision support for
blockchain platform selection: Three industry case studies. IEEE Transac-
tions on Engineering Management 1–20. http://dx.doi.org/10.1109/TEM.2019.
2956897.

Farshidi, S., Jansen, S., de Jong, R., Brinkkemper, S., 2018. A decision support
system for cloud service provider selection problems in software producing
organizations. In: IEEE International Conference on Business Informatics.

Forward, A., Lethbridge, T.C., 2008. A taxonomy of software types to facilitate
search and evidence-based software engineering. In: Proceedings of the 2008
Conference of the Center for Advanced Studies on Collaborative Research:
Meeting of Minds. ACM, p. 14.

Galster, M., Eberlein, A., Moussavi, M., 2010. Systematic selection of software
architecture styles. IET Softw. 4 (5), 349–360.

Garlan, D., 2014. Software architecture: a travelogue. In: Proceedings of the on
Future of Software Engineering. ACM, pp. 29–39.

Garlan, D., Shaw, M., 1994. An Introduction to Software Architecture. In:
Advances in Software Engineering and Knowledge Engineering, vol. 12, pp.
1–39.

Haoues, M., Sellami, A., Ben-Abdallah, H., Cheikhi, L., 2017a. A guideline
for software architecture selection based on ISO 25010 quality related
characteristics. Int. J. Syst. Assur. Eng. Manag. 8 (S2), 886–909.

Haoues, M., Sellami, A., Ben-Abdallah, H., Cheikhi, L., 2017b. A guideline
for software architecture selection based on ISO 25010 quality related
characteristics. J. Syst. Assur. Eng. Manag. 8 (2), 886–909.

Harrison, N.B., Avgeriou, P., 2007. Leveraging architecture patterns to satisfy
quality attributes. In: European Conference on Software Architecture. pp.
263–270.

Harrison, N.B., Avgeriou, P., 2008a. Analysis of architecture pattern usage in
legacy system architecture documentation. In: Seventh Working IEEE/IFIP
Conference on Software Architecture. WICSA 2008, IEEE, pp. 147–156.

Harrison, N.B., Avgeriou, P., 2008b. Incorporating fault tolerance tactics in
software architecture patterns. In: International Workshop on Software
Engineering for Resilient Systems. ACM Press, New York, New York, USA,
p. 9.

Harrison, N.B., Avgeriou, P., 2010. How do architecture patterns and tactics
interact? A model and annotation. J. Syst. Softw. 83 (10), 1735–1758.

Horner, J., Atwood, M.E., 2006. Effective design rationale: understanding the
barriers. In: Rationale Management in Software Engineering. Springer, pp.
73–90.

Hussain, S., Keung, J., Khan, A.A., 2017. Software design patterns classification
and selection using text categorization approach. Appl. Soft Comput. 58,
225–244.

ISO, I., 2011a. IEC/IEEE systems and software engineering: Architecture descrip-
tion. In: ISO/IEC/IEEE 42010: 2011 (E)(Revision of SO/IEC 42010: 2007 and
IEEE Std 1471-2000). IEEE New York, NY.

ISO, 2011b. IEC25010: 2011 Systems and Software Engineering–Systems and
Software Quality Requirements and Evaluation (SQuaRE)–System and Soft-
ware Quality Models, Vol. 34. International Organization for Standardization,
p. 2910.

ISO, I., 2017. IEC/IEEE International Standard-Systems and Software Engineering–
Vocabulary. Technical Report, ISO/IEC/IEEE 24765: 2017 (E).

Jacob, P.M., Mani, P., 2018. Software architecture pattern selection model for
Internet of Things based systems. IET Softw.

Jansen, A., Bosch, J., Avgeriou, P., 2008. Documenting after the fact: Recovering
architectural design decisions. J. Syst. Softw. 81 (4), 536–557.
Johnson, R.B., Onwuegbuzie, A.J., 2004. Mixed methods research: A research
paradigm whose time has come. Educ. Res. 33 (7), 14–26.

Kamal, A.W., Avgeriou, P., 2010. Mining relationships between the participants
of architectural patterns. In: European Conference on Software Architecture.
Springer, pp. 401–408.

Kazman, R., Bass, L., Abowd, G., Webb, M., 1994. SAAM: A method for analyzing
the properties of software architectures. In: Proceedings of 16th International
Conference on Software Engineering. IEEE, pp. 81–90.

Khan, K.S., Ter Riet, G., Glanville, J., Sowden, A.J., Kleijnen, J., et al., 2001. Un-
dertaking Systematic Reviews of Research on Effectiveness: CRD’s Guidance
for Carrying Out or Commissioning Reviews, No. 4. NHS Centre for Reviews
and Dissemination, 2n.

Kitchenham, B., 2004. Procedures for Performing Systematic Reviews, Vol. 33,
No. 2004. Keele University, Keele, UK, pp. 1–26.

Kitchenham, B.A., Dyba, T., Jorgensen, M., 2004. Evidence-based software engi-
neering. In: Proceedings of the 26th International Conference on Software
Engineering. IEEE Computer Society, pp. 273–281.

Kruchten, P., 1999. The software architect. In: Working Conference on Software
Architecture. Springer, pp. 565–583.

Kruchten, P., 2008. What do software architects really do? J. Syst. Softw. 81 (12),
2413–2416.

Kruchten, P., Obbink, H., Stafford, J., 2006. The past, present, and future for
software architecture. IEEE Softw. 23 (2), 22–30.

Lago, P., Avgeriou, P., 2006. First workshop on sharing and reusing architectural
knowledge. ACM SIGSOFT Softw. Eng. Notes 31 (5), 32–36.

Majidi, E., Alemi, M., Rashidi, H., 2010. Software architecture: A survey and
classification. In: Communication Software and Networks, 2010. ICCSN’10.
Second International Conference on. IEEE, pp. 454–460.

Majumder, M., 2015. Multi criteria decision making. In: Impact of Urbanization
on Water Shortage in Face of Climatic Aberrations. Springer Singapore,
Singapore, pp. 35–47.

Malek, S., Ramnath Krishnan, H., Srinivasan, J., 2010. Enhancing middleware
support for architecture-based development through compositional weaving
of styles. J. Syst. Softw. 83 (12), 2513–2527.

Me, G., Calero, C., Lago, P., 2016a. A long way to quality-driven pattern-
based architecting. In: Tekinerdogan, B., Zdun, U., Babar, A. (Eds.), Software
Architecture. Springer International Publishing, Cham, pp. 39–54.

Me, G., Calero, C., Lago, P., 2016b. A long way to quality-driven pattern-based
architecting. In: European Conference on Software Architecture. pp. 39–54.

Montibeller, G., Winterfeldt, D., 2015. Cognitive and motivational biases in
decision and risk analysis. Risk Anal. 35 (7), 1230–1251.

Myers, M.D., Newman, M., 2007. The qualitative interview in IS research:
Examining the craft. Inf. Organ. 17 (1), 2–26.

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic mapping
studies in software engineering. In: International Conference on Evaluation
and Assessment in Software Engineering.

Pramod Mathew Jacob, a.P.M., 2018. Software architecture pattern selection
model for Internet of Things based systems. IET Softw. 12 (6), 390–396.

Qin, Z., Zheng, X., Xing, J., 2008. Architectural styles and patterns. Softw. Archit.
34–88.

Richards, M., 2015. Software architecture patterns. O’Reilly Media, Incorporated.
Rozanski, N., Woods, E., 2012. Software Systems Architecture: Working with

Stakeholders Using Viewpoints and Perspectives. Addison-Wesley.
Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study

research in software engineering. Empir. Softw. Eng. 14 (2), 131.
Runeson, P., Host, M., Rainer, A., Regnell, B., 2012. Case Study Research in

Software Engineering: Guidelines and Examples. John Wiley & Sons.
Sabagh, A.A., Al-Yasiri, A., 2011. An extensible framework for context-

aware smart environments. In: International Conference on Architecture of
Computing Systems. Springer, pp. 98–109.

Sabry, A.E., 2015. Decision model for software architectural tactics selection
based on quality attributes requirements. Procedia Comput. Sci. 65, 422–431.

Saldaña, J., 2015. The Coding Manual for Qualitative Researchers. Sage.
Samadhiya, D., Wang, S.-H., Chen, D., 2010. Quality models: Role and value in

software engineering. In: 2010 2nd International Conference on Software
Technology and Engineering, Vol. 1. IEEE, pp. V1–320.

Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F., 2013. Pattern-Oriented
Software Architecture, Patterns for Concurrent and Networked Objects, Vol.
2. John Wiley & Sons.

Seaman, C.B., 1999. Qualitative methods in empirical studies of software
engineering. IEEE Trans. Softw. Eng. 25 (4), 557–572.

Sharma, A., Kumar, M., Agarwal, S., 2015. A complete survey on software
architectural styles and patterns. Procedia Comput. Sci. 70, 16–28.

http://refhub.elsevier.com/S0164-1212(20)30155-2/sb17
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb17
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb17
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb18
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb18
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb18
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb19
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb19
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb19
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb20
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb20
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb20
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb21
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb21
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb21
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb23
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb23
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb23
http://dx.doi.org/10.1109/TEM.2019.2956897
http://dx.doi.org/10.1109/TEM.2019.2956897
http://dx.doi.org/10.1109/TEM.2019.2956897
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb27
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb27
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb27
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb27
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb27
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb27
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb27
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb28
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb28
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb28
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb29
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb29
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb29
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb31
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb31
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb31
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb31
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb31
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb36
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb36
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb36
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb39
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb39
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb39
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb39
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb39
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb41
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb41
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb41
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb42
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb42
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb42
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb43
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb43
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb43
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb44
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb44
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb44
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb47
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb47
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb47
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb47
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb47
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb47
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb47
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb48
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb48
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb48
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb51
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb51
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb51
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb52
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb52
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb52
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb53
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb53
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb53
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb54
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb54
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb54
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb54
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb54
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb55
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb55
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb55
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb55
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb55
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb57
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb57
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb57
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb57
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb57
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb59
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb59
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb59
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb60
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb60
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb60
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb62
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb62
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb62
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb63
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb63
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb63
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb64
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb65
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb65
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb65
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb66
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb66
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb66
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb67
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb67
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb67
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb68
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb68
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb68
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb68
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb68
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb69
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb69
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb69
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb70
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb71
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb71
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb71
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb71
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb71
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb72
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb72
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb72
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb72
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb72
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb73
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb73
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb73
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb74
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb74
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb74

18 S. Farshidi, S. Jansen and J.M. van der Werf / The Journal of Systems & Software 169 (2020) 110714

S

S

T

T

T

T

T

U

V

W

W
Y

Z

Z

Z

haw, M., 1995. Making choices: A comparison of styles for software
architecture. IEEE Softw. 12 (6), 27–41.

haw, M., Clements, P., 2006. The golden age of software architecture. IEEE Softw.
23 (2), 31–39.

ang, A., Babar, M.A., Gorton, I., Han, J., 2006. A survey of architecture design
rationale. J. Syst. Softw. 79 (12), 1792–1804.

ang, A., Liang, P., Van Vliet, H., 2011. Software architecture documentation:
The road ahead. In: 2011 Ninth Working IEEE/IFIP Conference on Software
Architecture. IEEE, pp. 252–255.

hat, M.T.T., Sadou, S., Oquendo, F., Borne, I., 2013. Composition-centered archi-
tectural pattern description language. In: European Conference on Software
Architecture. Springer, pp. 1–16.

riantaphyllou, E., Shu, B., Sanchez, S.N., Ray, T., 1998. Multi-criteria decision
making: an operations research approach. Encyclopedia Electr. Electron. Eng.
15 (1998), 175–186.

yree, J., Akerman, A., 2005. Architecture decisions: Demystifying architecture.
IEEE Softw. 22 (2), 19–27.

zun, B., Tekinerdogan, B., 2018. Model-driven architecture based testing: A
systematic literature review. Inf. Softw. Technol. 102, 30–48.

ogel, O., Arnold, I., Chughtai, A., Kehrer, T., 2011. Architecture means (WITH
WHAT). In: Software Architecture. Springer Berlin Heidelberg, pp. 115–286.

einreich, R., Groher, I., 2016. Software architecture knowledge management
approaches and their support for knowledge management activities: A
systematic literature review. Inf. Softw. Technol. 80, 265–286.

iegers, K., Beatty, J., 2013. Software Requirements. Pearson Education.
ang, H., Zheng, S., Chu, W.C., Tsai, C., 2012. Linking functions and qual-

ity attributes for software evolution. In: 2012 19th Asia-Pacific Software
Engineering Conference, Vol. 1. pp. 250–259.

hang, H., Babar, M.A., 2010. On searching relevant studies in software engi-
neering. In: 14th International Conference on Evaluation and Assessment in
Software Engineering, EASE. pp. 1–10.

hang, H., Babar, M.A., Tell, P., 2011. Identifying relevant studies in software
engineering. Inf. Softw. Technol. 53 (6), 625–637.

hou, X., Jin, Y., Zhang, H., Li, S., Huang, X., 2016. A map of threats to validity
of systematic literature reviews in software engineering. In: 2016 23rd
Asia-Pacific Software Engineering Conference. APSEC, IEEE, pp. 153–160.
Siamak Farshidi is a Ph.D. candidate at the Depart-
ment of Information and Computer Science at Utrecht
University. His research focuses on Decision Support
Systems for Multi-Criteria Decision-Making (MCDM)
problems in software production.

Slinger Jansen is an assistant professor at the Depart-
ment of Information and Computer Science at Utrecht
University. His research focuses on software product
management and software ecosystems, with a strong
entrepreneurial component. Jansen received his Ph.D.
in computer science from Utrecht University, based on
the work entitled ‘‘Customer Configuration Updating in
a Software Supply Network’’.

Jan Martijn van der Werf is an assistant professor
at the Department of Computer Science at Utrecht
University. His research focuses on modeling and an-
alyzing behavior in software architecture of software
products. Van der Werf received his Ph.D. from two
universities: the Eindhoven University of Technology
and the Humboldt Universität zu Berlin, on the disser-
tation entitled ‘‘Compositional Design and Verification
of Component-based Information Systems’’.

http://refhub.elsevier.com/S0164-1212(20)30155-2/sb75
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb75
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb75
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb76
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb76
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb76
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb77
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb77
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb77
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb78
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb78
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb78
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb78
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb78
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb79
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb79
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb79
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb79
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb79
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb80
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb80
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb80
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb80
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb80
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb81
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb81
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb81
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb82
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb82
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb82
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb83
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb83
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb83
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb85
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb88
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb88
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb88
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb89
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb89
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb89
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb89
http://refhub.elsevier.com/S0164-1212(20)30155-2/sb89

	Capturing software architecture knowledge for pattern-driven design
	Introduction
	Background
	Patterns in software architecture
	Decision process
	Related studies

	Systematic literature review
	Data sources and search strategy
	Inclusion and exclusion criteria
	Quality assessment
	Search process
	Knowledge extraction process
	Threats to validity
	Analysis and results
	Patterns
	Quality attributes
	Impacts
	Application domains
	Combinations
	Trends

	Discussion
	Addressing research questions
	Lessons learned

	Practitioner evaluation
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

