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This study aims to improve the estimates of the economic impacts of climate change by developing a river flood
risk model CLIMRISK-RIVER and introducing it into an existing climate-economy integrated assessment model
(IAM). It operates on a local scale and can project climate change-related river flood damage for various so-
cioeconomic, climate and flood adaptation scenarios. Whereas other IAMs have relied on temperature as a
climate change proxy, we show that precipitation is a key variable in projecting river flood damage. The way

adaptation is accounted for in our flood damage functions has a large influence on the results, highlighting the
relevance of modelling local level adaptation in IAMs. Results presented at different spatial scales demonstrate
the relevance of river flood damage functions for estimating the economic impacts of climate change and allows
for exploration of the spatial distribution of impacts through local estimates.

1. Introduction

Integrated assessment models (IAMs) of climate and the economy are
commonly used to project the future economic impacts of climate
change. While some IAMs estimate the climate impacts on specific
physical systems (eg. energy, land use (Bosetti et al., 2007, Bouwman
et al., 2006, Raoet al., 2008)), others paint a more general picture of
climate impacts on the economy (Stern, 2008, Nordhaus, 2013, Anthoff
and Tol, 2014). The latter set usually provides monetized climate im-
pacts through climate damage functions and/or estimates of benefits of
climate policy aimed at reducing the greenhouse gas emissions. Such
models estimate the complex relationship between the anthropogenic
and climate system using transparent and simplified reduced form
functions. Since the original version of the DICE model (Nordhaus,
1992), one of the first IAMs of climate change and the economy, envi-
ronmental economists have made several attempts to improve these
models to aid policymakers in making decisions about climate policy in
the face of climate change uncertainty (Tol, 2018).

Nevertheless, climate-economy IAMs have received various criti-
cisms, including the aggregated spatial dimension of the models (Farmer
et al.,, 2015), the incomplete representation of climate change risks
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(Stern, 2013), (van den Bergh and Botzen, 2014) and the fact that the
damage functions that translate global warming into economic impacts
are outdated and require an improvement (Diaz and Moore, 2017). In
this respect, it should be noted that in most cases, these IAMs work on an
aggregated spatial scale, meaning that there is either one region - the
Earth - or several larger regions. For example, the well-known RICE
model, which is the regional version of the global DICE model, estimates
the economic impacts from climate change for 12 world regions
(Nordhaus and Yang, 1996), (Nordhaus, 2017).

Global information about the projected economic impacts of climate
change is increasingly available at a refined spatial resolution for spe-
cific impact categories, which can serve as a basis for updating the IAM
impact functions if this improves IAM estimates of the economic costs of
climate change. The effects of extreme weather and natural hazards on
the economy due to climate change have been included in climate-
economy IAMs to a very limited extent and estimates from catastrophe
models of how natural disaster risks are expected to develop under
climate change have become increasingly available (Botzen et al.,
2019). For instance, river flooding is an important damage category that
must be better represented in IAMs, because it poses a significant eco-
nomic impact, and sophisticated global modelling approaches to
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Fig. 1. Structure of the CLIMRISK-RIVER model.

estimate river flood risk at a detailed spatial resolution are increasingly
available (Wardet al., 2015). About $ 50 trillion' and 0.8 billion people
are subjected to a 1-in-100-years river flood event (Kundzewicz et al.,
2013) and the direct economic losses from river floods between 1980
and 2013 exceeded $ 1 trillion and caused a loss of more than 220,000
lives (Munich et al., 2014). The river flood risk is expected to increase in
many regions in the world (Wardet al., 2013), and it is important to take
this into account in economic IAMs of climate change.

The main goal of this paper is to improve the local estimates of the
economic impacts of climate change by developing CLIMRISK-RIVER, a
spatially-explicit model of river flood risk that is introduced into a
broader climate-economy IAM CLIMRISK. There are four main reasons
why CLIMRISK is the preferred IAM for this study. First, other IAMs
(including RICE) do not provide precipitation projections, which we find
to be an important explanatory variable of future changes in flood
damages. Second, with CLIMRISK, we can model spatial heterogeneity
in climate change impacts. The results of CLIMRISK-RIVER show that
spatial heterogeneity in projected flood damages is substantial and
modelling this provides insights into which areas face a high river flood
risk. Third, CLIMRISK allows us to model climate projections

1 All units are in US dollars.

probabilistically, which gives insights into uncertainty of climate change
impacts. Fourth, with CLIMRISK, we are flexible with exploring how
climate change impacts develop under many different scenarios, with
limited computing time.

CLIMRISK-RIVER also accounts for local human adaptation through
the use of recently developed local flood protection standard database
FLOPROS (Scussoliniet al., 2016). Accounting for local flood adaptation
in estimating the river flood damage functions for the IAM is important
as flood protection standards that reduce the probability of a river
flooding already exist in many areas in the world. Governments are
likely to update these standards if flood risk increases as a result of
climate change. Most studies that use IAMs, such as DICE, account for
adaptation implicitly through the reduction in the climate damage used
in estimating the damage function (Nordhaus, 2017). We follow this
approach by estimating the river flood damage functions implicitly
using flood damage estimates that account for different flood protection
standard scenarios. These scenarios range from maintaining current
flood protection standards to implementing economically optimal pro-
tection given a climate and socio-economic scenario. Through creating
unique flood damage functions under each flood protection scenario, we
contribute to the small body of literature that has made adaptation
explicit in damage functions in climate-economy IAMs (de Bruin et al.,
2009), (Hope, 2011), (Dumas and Ha-Duong, 2013).
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Our approach of accounting for river flood risk in a climate-economy
IAM is currently the closest to the work of (Kuik, 2017) in introducing
the river flood damage functions in the Climate Framework for Uncer-
tainty, Negotiation and Distribution (FUND) model, a climate-economy
IAM (Anthoff and Tol, 2014). The flood damage functions in FUND
generate estimates for 16 regions as a product of a regional damage
coefficient, regional temperature, and gross-domestic product (GDP).
Moreover, the functions make use of ad hoc medium and high adapta-
tion scenarios from (Jongmanet al., 2015). However, with gridded flood
damage and flood protection standard data available, it is now possible
to produce accurate local estimates of expected annual flood damage.
CLIMRISK-RIVER flood damage functions are spatially more detailed;
more complete, as they account for wet and dry regions by means of
gridded precipitation projections as an additional explanatory variable;
and have a more realistic representation of adaptation policy. The
reason for the latter is that flood adaptation scenarios are not implicitly
assumed, but are modelled using data on existing, and future,
economically optimal flood protection standards (Scussoliniet al.,
2016), (Wardet al., 2017).

The end product of CLIMRISK-RIVER is a set of flood damage func-
tion estimates which are introduced into a general framework of
CLIMRISK, which allows the user to explore climate change related
damage, including the expected damage due to river flooding. The
model works for any user defined climate change and socioeconomic
scenario combination presented in the IPCC 5th assessment report. The
model can be used by policymakers interested in expected future
changes in flood risk and implementing a flood adaptation policy in a
particular geographic area. For this audience, CLIMRISK-RIVER can
serve as a preliminary quick scan that gives insights into how flood risk
is expected to develop under future scenarios and the effectiveness of
flood protection infrastructure to limit this risk, which can be a moti-
vation for conducting additional higher resolution studies to identify
appropriate local flood risk management measures. Other users are
members of the academic community who are interested in mapping
river flood hotspots under different future scenarios to motivate further
local-scale flood adaptation or climate hazard research. Moreover, the
integration of flood risk in a general climate-economy IAM is likely to
appeal to the broader community of researchers and policymakers who
are interested in understanding global, regional, or local economic im-
pacts from climate change.

2. Methodology and data

In this section, we present the methodology used to develop
CLIMRISK-RIVER. This section follows a downstream flow that re-
sembles the flow of methods presented in the flowchart Fig. 1. Firstly,
we outline the ingredients required for developing the new river flood
damage functions that emulate GLOFRIS (subsection 2.1). Next, we
develop 6 regression models and evaluate their performance based on
in-sample and out-of-sample GLOFRIS data (subsection 2.2). Once the
most suitable model - Model 6 - is selected, it is introduced into the
CLIMRISK model by feeding it downscaled climate and socioeconomic
data from a spatially explicit IAM CLIMRISK (explained in Appendix
subsection A). Finally, the results of CLIMRISK-RIVER and the resulting
total climate damage of CLIMRISK after integration are presented in
Section 3.

2.1. Flood risk ingredients

The main goal in developing CLIMRISK-RIVER is to produce vali-
dated river flood damage functions for different protection standard
assumptions that can be fed with temperature, precipitation and GDP
estimates from any climate or socioeconomic scenario combination. The
input for the flood risk emulator CLIMRISK-RIVER is based on the
GLOFRIS model, a global framework for flood risk assessment that works
on a detailed spatial scale (30” x 30”) and includes all main river basins
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worldwide (Winsemius et al., 2012). The main ingredients of the new
flood damage functions for CLIMRISK-RIVER are as follows:

e Risk: Expected annual damage (EAD)

e Vulnerability: Flood protection standards
e Hazard: Climate projections

e Exposure: Economic projections

Each of the above listed ingredients are explained in more detail in
the following sections.

2.1.1. Risk: expected annual damage (EAD)

Formally, flood risk can be defined as the expected annual damage
(EAD) or the damage of a hazardous event weighted by the probability
of its occurrence. Over a smooth probability curve, it can be written as:

1

EAD = /pD(p)dp @

0

where EAD represents the EAD of the particular cell, D(p) is the damage
in that cell caused by a flooding event of probability p, which is related
to a flooding with return period r(p) in the following way:

r(p) =~ 2

The EAD estimates are made using current and future flood hazard
layers, built-up area, GDP estimates, country level maximum damage
estimates and depth-damage curves based on the occupancy type (Ward
et al., 2017), (Tiggeloven et al., 2020), (Winsemius et al., 2016).

To estimate the flood damage functions for CLIMRISK-RIVER using
GLOFRIS data, we must retrace the steps of how the data were created in
the first place. In GLOFRIS, flood damage is estimated for flood return
periods of 2, 5, 10, 25, 50, 100, 250, 500 and 1000 years. For illustra-
tion, the damage of a 2-year return period represents the loss that would
be caused by relatively small floods with annual exceedance probability
of 0.5. The resulting flood probabilities were calculated using Equation
(2) and a smooth probability curve was obtained for the purpose of EAD
estimation between the above-mentioned points. The EAD in CLIMRISK-
RIVER for any particular cell can be calculated using the trapezoidal rule
for approximating definite integrals:

10000
pADg = 3 Dorl) FPor(u) ®

i=1
where EADgr is the approximation of EAD (Eq. (1)) in the GLOFRIS (GF)
model, x € [0,0.0001 ...,1] is a vector of equally spaced 10,000 points
and Ax, = Ax is the length of equal spacing.

These loss data are estimated in GLOFRIS for current conditions, but
also for future climate and socioeconomic scenarios, and are available
for different time periods centered around three years: 2030, 2050 and
2080. The GLOFRIS modelling cascade uses forcing data from EU-
WATCH (Weedonet al., 2011) over the period of 1960-1999 to force
the hydrological model PCR-GLOBWB (Sutanudjajaet al., 2018) which is
used for the flood inundation modelling as baseline conditions. As
baseline for the socioeconomic data, GLOFRIS uses the HYDE database,
which consists of gridded percentages of built-up area, population and
GDP projections.

As a starting point, damage estimates for rivers of different return
periods for the baseline period are collected and these do not depend on
different emissions or socioeconomic scenarios. Hence, the baseline
represents current climate and socioeconomic conditions. The future
projections of flood damage, however, are available for various climate®

2 Climate scenarios: RCP2.6, RCP4.5, RCP6.0, RCPS.5.



P. Ignjacevic et al.

Earth-System

Model Pathway

SSP2

SSP3

SSP4

SSP5

WEAE6

Shared Sociceconomic

V1

Environmental Modelling and Software 132 (2020) 104784

Representative
Concentration Pathway Year

RCP
6.0

BibDR

RCP
85

—

Fig. 2. All possible future scenario combinations of flood damage data used to generate the flood damage functions.

and socioeconomic scenarios.” Finally, the data are available for five
different earth system model (ESMs)” simulations that were used to
force the GLOFRIS model projections for each RCP scenario (see Fig. 2).
Each of the above-mentioned combinations of climate and socioeco-
nomic scenarios for different ESMs in different time periods produces a
single observation of EAD for each cell. Therefore, each cell ideally
contains 305 observations of EAD with no missing data.” By pooling
estimates from different ESMs in our damage function estimation, we are
effectively averaging across all five available ESMs and making our
emulator ESM independent. With respect to climate input, the user
would only need to specify the RCP scenario and global average tem-
perature percentile realization through MAGICC (Appendix A.1), which
would naturally correspond to a particular ESM.

All the EAD estimates are expressed in billions of US dollars (2005
PPP) and are available for 30”"x30” cells. To integrate CLIMRISK-RIVER
into the CLIMRISK model, all the GLOFRIS river flood data must be
upscaled to 0.5° x 0.5° by aggregating the impacts over the 30” x 30"
cells. Prior to integration with CLIMRISK-RIVER, the emulated damage
estimates were translated into US dollars (2010 PPP) to match the
CLIMRISK monetary impact estimates when providing the total climate-
change damages.

2.1.2. Vulnerability: flood protection standards
To obtain more reliable estimates of annual expected river flood
damage, the current flood protection standards must be taken into

8 Socioeconomic scenarios: SSP1, SSP2, SSP3, SSP4, SSP5.

4 ESMs used: HadGEM2-ES, GFDL-ESM2M, NorESM1-M, IPSL-CM5A-LR and
MIROCESM-CHEM.

5 The number 305 comes from the fact that there are 5ESMs x 5SSPs x
4RCPs x 3years = 300 plus 5 additional baseline period observations (for each
ESM).

account. The flood protection standards enter the flood risk model
through the EAD function whereby damages of rivers with return pe-
riods lower than the available protection standards are assumed to be
zero. For example, if an area is protected against a 500 year return
period flood, this means that the sum in Equation (3) only contains
damage estimates of rivers with return periods greater than 500 years.

A comprehensive global database - FLOPROS - of observed and
modelled current river protection standards has recently been compiled
(Scussoliniet al., 2016). The flood protection data are available at the
state level and any given cell receives protection equal to its estimated
state protection level. The river protection data are currently available
for 2683 states in the world in the form of river return periods against
which the state is protected. However, in estimating the annual expected
flood damage in the future, we also need estimates of future flood pro-
tection standards that depend on adaptation decisions about flood pro-
tection investments. FLOPROS data consists of two options for future
protection standards®

e Baseline Height Standards (BaseHeightStd), which assume that the
protection infrastructure is maintained at the baseline year height in
the future and allow the river flood risk to vary over the course of the
century. This scenario does not imply any additional river flood
adaptation.

Baseline Probability Standards (BaseProbStd), which assume that the
protection standards are updated so as to keep the baseline flood
probability constant. This scenario does imply additional river flood
adaptation as the flood protection standards are upgraded according
to the varying natural factors in order to maintain constant flood

6 The names assigned to the protection standards in this paper are arbitrary
and do not correspond to the names given by the original authors of the flood
protection standards.
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probability. Regardless of the constant flood probability, the flood-
related damage could still vary with the amount of exposed assets
and the severity of flooding.

Taking this research a step forward through cost-benefit analysis,
policymakers’ desired economic decision-making has been taken into
account when designing the optimal level of river flood protection
(Kuik, 2017).

e Optimal Standards (OptimalStd), which assume that all states behave
in an economically optimal manner and invest today in the level of
protection that would yield the highest net present value (NPV) over
the twenty-first century.

In addition to the three adaptation scenarios, a fourth scenario - No
Standards (NoStd) - will be used for comparison with the other as-
sumptions. As suggested by the name, this scenario assumes that no cells
are protected against any potential river floods, thereby ignoring exist-
ing protection standards as modelled in FLOPROS. This is true for both
the baseline year estimates and future projections. Although this is not a
very realistic assumption, it helps us understand how important flood
protection standards are in estimating the flood damages in an IAM.

The data for optimal protection standards is not available for some
cells due to, for example, missing future projections of socioeconomic
data. In such cases, we assume that the protection is maintained at the
BaseHeightStd level (if available).

2.1.3. Hazard: climate change projections

As in many climate IAMs, annual surface air temperature is among
the primary climate variables of interest and serves as the main proxy for
climate change. We are also interested in the effect of annual precipi-
tation on the river flood risk. Precipitation has, until now, not been
introduced into an IAM damage function and it is important to assess its
impact on river flood risk in light of newly available local precipitation
data. Although floods are generally short-lived events that are mainly
driven by extremes in precipitation, we follow the common approach in
IAMs to use annual climate indicators (in our case annual temperature
and precipitation) as a proxy of climate change. This is in line with the
purpose of CLIMRISK-RIVER to project changes in long term annual
expected flood damage in response to long term trends in economic
exposure and climate change, which as our results show can be
approximated by changes in annual temperature and precipitation
(Section 3.1).

Whereas the climate forcing data in CLIMRISK is generated through
MAGICC with the use of pattern scaling (see Appendix A.1), the forcing
data in GLOFRIS contains daily gridded estimates of surface temperature
and precipitation. These are generated using different ESMs, interpo-
lated to 0.5° x 0.5°, and they are bias corrected using observations from
1960 to 1999 for the EU-WATCH project. These same estimates are then
used to force the PCR-GLOBWB global water and hydrological model
(Sutanudjajaet al., 2018). The EU EU-WATCH forcing observations are
also used to generate the baseline flood risk. The reason why 2010 is not
used as the baseline period for the climate forcing data in GLOFRIS is the
fact that the authors used a 40-year interval around the year of interest
in extreme value analysis. As observed data is not available for
1990-2030, the authors assume that global hydrological processes did
not drastically change between 1980 and 2010 after accounting for
climate. Therefore, the EU-WATCH baseline period estimates are used in
the year 2010 as the baseline period. To create the climate input vari-
ables necessary for the river flood damage functions, daily temperatures
were converted to annual mean temperature and daily precipitation to
total annual precipitation. Since the GLOFRIS model produces estimates
for three periods centered around years 2030, 2050 and 2080, mean
annual surface temperature and total annual precipitation estimates
were averaged over the years 2010-2050, 2030-2070 and 2060-2100.
Finally, differences of precipitation and temperature with respect to the
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baseline period average climate were taken in order to fit the MAGICC
climate projection units. For temperature, the difference is expressed in
absolute value of degrees Celsius, while for precipitation the percentage
change of precipitation with respect to baseline period is required.

2.1.4. Exposure: economic projections

Exposure is another important determinant of flood damage, because
it captures the extent of assets that are prone to flooding. GDP PPP was
extracted from the SSP-database with the OECD Env-Growth GDP pro-
jections. The GDP data used to estimate the flood damages in GLOFRIS
are derived from the IIASA SSP Database (Riahiet al., 2017). Next, the
future development of urban areas is estimated using the 2UP model
(Van Huijstee et al., 2018). In this model, urban and rural populations
are distributed according to a map of urban areas, which helps in
determining the exposure of a certain area. In CLIMRISK-RIVER, we
proxy the GLOFRIS exposure data using IIASA projections for various
SSP scenarios combined with the compatible SRES scenarios to create a
spatially explicit, 0.5° x 0.5° grid of local GDP estimates. More infor-
mation about exposure, SSP and SRES data can be found in Appendix
A.2.

2.2. CLIMRISK-RIVER

An important step in CLIMRISK-RIVER development is the formu-
lation of the flood damage functions. The main decisions involved in this
step are:

e Geographic scale of model parameters
e Choice of explanatory variables

The geographic scale of model parameters refers to the geographic
area that a particular damage function coefficient covers. Depending on
input data availability, the scale can range between highly local 30" x
30~ grid cells and global. Since the scale of downscaled inputs in our
IAM is somewhere in between, the primary candidates for the model
scale in CLIMRISK-RIVER are the 0.5° x 0.5° grid cell and river basin
level. The main advantage of river basin level functions is simplicity -
each cell within a river basin would inherit the set of parameters cor-
responding to the basin. The main disadvantage, however, is the loss of
model fit as heterogeneous grid cell data are aggregated into a single
function over a potentially large basin area. The opposite is true of a grid
cell level function. As we prefer the higher explanatory power of the grid
cell level functions over the smaller total number of function estimates,
we set the scale to grid cell level to make full use of local input data. The
scale of results is still entirely up to the user who can explore various
scenario combinations at different levels of aggregation.

The next step concerns the choice of the dependent and explanatory
variables. The main goal of the regressions that follow is to project the
AEADy, that is, the change in EAD with respect to the baseline period. For
the available data, t represents a time period mid-point for which the
GLOFRIS expected annual damage estimates are made, namely, t €
[2010, 2030, 2050, 2080].

In order to find the most suitable statistical model for CLIMRISK-
RIVER, we take a nested model approach and evaluate several func-
tional forms with increasing number of terms.

The following nested model consisting of six functional forms is
evaluated:

Model 1: AEAD gy = p;AGDP;

Model 3: AEAD g, B1AGDP, + f,AT,, where AT, represents the
absolute change in annual mean surface air temperature in year t’
Model 3: AEAD gp; = p1AGDP; + PoAT: + P3AT?

7 All changes in temperature and precipitation are with respect to 1980
observed climatology from EU-WATCH (Weedonet al., 2011).
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Model 4: AEAD ¢y = p1AGDP+ p,AT: + ﬂ3ATt2 + p4AP;, where
AP, represents the percentage point change in precipitation in year t.
Model 5: AEAD g, = BAGDP, + BoAT, + B3AT? + B4AP, + PsA P?

Model 6: AEAD gr; = S1AGDP, + foAT: + B3AT2 + f,AP, +
PsA Pf + pATAP; , where AT.AP; represents the interaction term
between temperature and precipitation change.

After evaluating the six different emulator models, Model 6 proved to
have the best predictive power across different RCP-SSP scenario com-
binations. In other words, Model 6 presents the best emulator of our
chosen river flood risk model GLOFRIS and is chosen as the CLIMRISK-
RIVER model. It is defined as:

AEAD Gr, = B AGDP, + B,AT, + B, AT + B,AP, + fsA PP + BATAP,
@

where ; is the effect of a $1 billion increase in GDP,® AGDP, is the
difference in GDP between year t and 2010, S5 is the effect of a 1 °C
increase in surface air temperature, AT, represents the change in mean
surface air temperature at t, f3 is the squared term of surface air tem-
perature, AT? is the change in squared surface air temperature at t, 4 is
the effect of a 1% increase in total annual precipitation, AP; is the per-
centage point change total annual precipitation at t, fis is the squared
term of total annual precipitation, AP? is the percentage point change in
total squared annual precipitation at t, fi¢ is the effect of a 1% increase in
total annual precipitation conditional on a 1 °C increase in surface air
temperature and AT.AP; is the interaction term between the change in
mean surface air temperature and the percentage point change in mean
total annual precipitation at t.

This model was selected so as to take advantage of the explanatory
power of precipitation when estimating AEAD. Precipitation could
capture the effect that wetter (or drier) regions could have on the fre-
quency of flooding. In addition, the interaction between temperature
and precipitation could capture the interaction between, for example,
hotter and wetter regions both of which could lead to an increase in
flood risk higher than estimated by temperature and precipitation alone.
This functional form is similar to the functional form of the RICE damage
function, where quadratic climatic terms are used to capture nonlinear
effects on damage of high temperature and in our case also precipitation
that is excluded in RICE (Nordhaus, 2014). There is no constant term in
the regression as the function passes through the origin, and the left and
right-hand side terms are zero in the baseline year. While the GDP es-
timate in RICE is multiplied by the impact function (Eq. (11)), the AGDP,
in this model is an explanatory variable. The specific units for temper-
ature and precipitation explained above were selected so as to match the
MAGICC model output (Appendix A.1). MAGICC generates differences
in annual surface temperature in degrees Celsius and percentage dif-
ference in annual precipitation with respect to any particular base year.
Since the precipitation data used for the fitting was originally expressed

in %, a unit conversion is necessary to obtain the percentage difference:

P, —P
AP, = 100* ‘P 0

0

(5)

where AP, is the percentage change in total annual precipitation in year
t, P, is the total annual precipitation estimate at time t, and Py is the
baseline total annual precipitation estimate.

Due to the large number of possible scenario combinations that can
be fed to the CLIMRISK-RIVER model, a select few are presented in this
paper. As climate and economic trajectories are uncertain, it is useful to
consider the “middle-of-the-road” case of either flood risk driver and to
explore the impact of varying the other. In this paper, we chose to keep
the socioeconomic aspect of development fixed by opting for the SSP2

8 All the listed effects refer the change in expected flood damage AD,.
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Table 1
Comparison of average Adj.R2 across different CLIMRISK-RIVER model
candidates.

Average Adj. R? NoSTD BaseProbSTD BaseHeightSTD OptimalSTD
Model 1 0.57 0.62 0.44 0.37
Model 2 0.64 0.69 0.52 0.48
Model 3 0.66 0.71 0.56 0.57
Model 4 0.74 0.77 0.66 0.63
Model 5 0.75 0.78 0.67 0.64
Model 6 0.76 0.78 0.69 0.66

scenario. Therefore, we vary the climate projection and mainly focus on
the following two scenario combinations

1. Unsustainable World in the Middle of the Road (RCP6.0 - SSP2): In this
scenario, the carbon emissions peak around year 2080, declining
thereafter. In combination with the SSP2 scenario of intermediate
challenges for both adaptation and mitigation, this scenario combi-
nation allows us to explore the impact of an intermediate baseline
scenario without any emission reduction policies.

2. Sustainable World in the Middle of the Road (RCP2.6 - SSP2): “Abiding
by the Paris Climate Agreement (RCP2.6) and strongly curbing car-
bon emissions (well below 2 °C) this scenario is consistent with the
sustainable future assumption whereby countries are abiding by the
Paris Climate Agreement (Schleussneret al., 2016).

Given these two contrasting representations of carbon emission
development, expected economic damages from not mitigating climate
change to 2 °C can be calculated. In addition, we will also compare SSP1
and other SSPs in the Results section to explore the uncertainty arising
from economic development. Since the model can project annual dam-
ages up to 2100, it is common practice to calculate the net present value
(NPV) of those damages using a discount rate (Tol, 2008). This estimate
is referred to as discounted climate damages. This rate is set at 3% as is
common in other IAMs (Tol, 2018), (Nordhaus, 2017). Therefore,
whenever we refer to discounted total AEAD, we are, in fact, referring to
the change in total EAD in a particular area in the twenty-first century
between the years 2010 and 2100, discounted at 3% annually.

After the proposed Model 6 is selected as the CLIMRISK-RIVER
model, the next step is to introduce it into CLIMRISK in the following
manner (see Appendix A):

1. MAGICC model is used to generate probabilistic estimates of global
temperatures for the period 2010-2100.

2. CLIMRISK’s pre-defined downscaling factors for each cell are used to
obtain grid-cell level annual mean temperature and precipitation
data.

3. The downscaled MAGICC climate and SRES/IIASA socio economic
data is fed to the CLIMRISK-RIVER damage function to obtain grid
cell level river flood damage estimates.

4. The absolute expected river flood damage is added to the CLIMRISK
damage estimates, making up the improved CLIMRISK estimate of
climate-related damages.

In the following section, the expected river flood damage estimates
of the CLIMRISK-RIVER are presented first, followed by the total ex-
pected climate-related damage from the integrated CLIMRISK model.

9 In addition to these two consistent climate-economy scenarios, we also
present some results for other RCP scenarios when we explore the advantages of
climate change mitigation in Section 3.2.
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Fig. 3. In-sample (IN) and out-of-sample (OUT) model fit and forecasting performance of Models 3 and 6. There is no evidence of over-fitting as there is little
difference between the NRMSE and adjusted R2 distribution of IN (row 2) and OUT (row 3).

3. Results

In this section, we present some key results from the CLIMRISK-
RIVER model. First, the model is validated using in-sample and out-