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Abstract
Among topological modular forms with level structure, TMF0(7) at the prime 3 is the
first example that had not been understood yet. We provide a splitting of TMF0(7) at
the prime 3 as TMF-module into two shifted copies of TMF and two shifted copies
of TMF1(2). This gives evidence to a much more general splitting conjecture. Along
the way, we develop several new results on the algebraic side. For example, we show
the normality of rings of modular forms of level n and introduce cubical versions of
moduli stacks of elliptic curves with level structure.
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1 Introduction

The main objects of our study, spectra of topological modular forms, are beasts in
which arithmetic geometry and stable homotopy theory heavily intertwine. This entails
that a huge part of our article is purely concerned with modular forms and different
moduli stacks and a smaller part draws the consequences in homotopy theory. For
the convenience of readers with different backgrounds, we have accordingly divided
the introduction into two parts that separate our algebraic and homotopy-theoretic
motivations and results.

Modular forms and moduli stacks Given a congruence subgroup � ⊂ SL2(Z), we
consider the corresponding ring of holomorphic modular forms mf(�;C). For every
subring R ⊂ C, we can further consider mf(�; R), the subring of modular forms
whose q-expansion has coefficients in R. We will mainly be interested in the cases
� = �0(n) and�1(n).Whilemodular formswith respect to these groups have received
an extraordinary amount of attention in number theory, the ring-theoretic properties
of mf(�0(n); R) and mf(�1(n); R) have been far less studied. Exceptions are Deligne
and Rapoport [1], who show that these rings are finitely generated Z[ 1n ]-algebras, and
the work of Rustom [2,3], where he provides both bounds on the degrees of generators
and relations and an algorithm to determine the ring structure of mf(�1(n); R) in
weights at least 2 if R = Z[ 1n ].

Part of our algebraic aims in this article is to continue the study of the rings
mf(�1(n); R) and also of the corresponding moduli stacks M1(n). These are the
compactifications of the moduli stack M1(n) of elliptic curves with a chosen point
of exact order n over Z[ 1n ]-algebras. The connection is that at least for 1

n ∈ R we can
reinterpret the weight-k-part mfk(�1(n); R) as H0(M1(n)R;ω⊗ k), where ω denotes
the pushforward of the sheaf of differentials of the universal generalized elliptic curve.
Similarly, we can reinterpret mfk(�0(n); R) as H0(M0(n)R;ω⊗ k), whereM0(n) is
the compactification of the moduli stackM0(n) of elliptic curves with chosen cyclic
subgroup of order n over Z[ 1n ]-algebras. This allows to define modular forms for
Z[ 1n ]-algebras R not contained in C as well.

Our first aim is to give equations for the universal elliptic curve over M1(n) in
terms of modular forms. A more precise statement can be found in Proposition 3.12
and its surrounding.
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Theorem 1.1 For n ≥ 3, the universal elliptic curve overM1(n) can be expressed via
an equation

y2 + α1xy + α3y = x3 + α2x
2,

where the αi are holomorphic modular forms for �1(n) of weight i , with explicit
formulae for their q-expansions.

Our main example is the case n = 7.

Theorem 1.2 There is an isomorphism

mf(�1(7);Z) ∼= Z[z1, z2, z3]/(z1z2 + z2z3 + z3z1)

with |zi | = 1. A generator t of the group �1(7)\�0(7) ∼= (Z/7)× acts via

t .z3 = −z1, t .z1 = −z2 and t .z2 = −z3.

The αi are given by

α1 = z1 − z2 + z3, α2 = z1z2 + z1z3 and α3 = z1z
2
3.

While our computation of mf(�1(7);Z) is not difficult to obtain, the reader should
compare the simplicity of its expression with the presentation Rustom [3, Section 3.1]
is forced to give by ignoring the elements of weight 1.

After these explicit computations, we also prove more structural results about rings
of modular forms.

Theorem 1.3 For every n ≥ 2, the ring mf(�1(n);Z[ 1n ]) is normal.
Using results from [4], we give moreover a criterion for mf(�1(n);Z[ 1n ]) being

Cohen–Macaulay, which is satisfied for all 2 ≤ n ≤ 28.
These commutative algebra results help us to develop cubical analogues of the

stacksM1(n). To this purpose recall thatM1(n) is usually defined as the normalization
of the compactified moduli stack of elliptic curves Mell in M1(n). The stack Mell

embeds into the larger stack Mcub of all curves that can locally be described by a
cubic Weierstraß equation. We can defineM1(n)cub as the normalization ofMcub in
M1(n). We show:

Theorem 1.4 For n ≥ 2, the stack M1(n)cub is equivalent to the stack quotient
Specmf(�1(n);Z[ 1n ])/Gm. Moreover, the mapM1(n)cub → Mcub,Z[ 1n ] is finite and
flat if mf(�1(n);Z[ 1n ]) is Cohen–Macaulay.

Our reason to consider these cubical stacks is that vector bundles seem to be easier
to study onMcub than onMell , a view inspired by work of Mathew [5]. This line of
thought is already implicit though in the classification of vector bundles over weighted
projective lines in [6, Proposition 3.4], where the idea was to extend them to vector
bundles on the non-separated stack A

2/Gm . For Mcub this idea takes the form that
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there is a smooth cover Spec A → Mcub with A = Z[a1, a2, a3, a4, a6] given by
Weierstraß curves and thus quasi-coherent sheaves on Mcub become equivalent to
comodules over a certain explicit Hopf algebroid (A, �). For explicit calculations, this
outweighs the disadvantage that Mcub is neither Deligne–Mumford nor separated.

Our wish for such explicit calculations was motivated by the results from [4]. There
it was shown that the pushforward ( fn)∗OM1(n)(p)

along the map

fn : M1(n)(p) → Mell,(p)

splits for a prime p under mild hypotheses into a few simple pieces and the same is
true for the pushforward (hn)∗OM0(n)(p)

along hn : M0(n)(p) → Mell,(p) if p does

not divide |(Z/n)×| or p > 3. For p = 3, the first case not covered is M0(7). By
extending the vector bundle (h7)∗OM0(7)(3)

toMcub,(3) and performing computations
with comodules over Hopf algebroids, we arrive at the following splitting result.

Theorem 1.5 The quasi-coherent sheaf (h7)∗OM0(7)(3)
onMell,(3) is a vector bundle

of rank 8, which can be decomposed as a sum

OMell,(3)
⊕ ω−6 ⊕

(
( f2)∗OM1(2)(3)

⊗ ω−2
)

⊕
(
( f2)∗OM1(2)(3)

⊗ ω−4
)

.

This obviously implies for every Z(3)-algebra R a splitting

mf∗(�0(7); R) ∼= mf R∗ ⊕mf R∗−6 ⊕mf∗−2(�1(2); R) ⊕ mf∗−4(�1(2); R) (1.6)

(with mf R∗ = mf∗(SL2(Z); R)), but is a far stronger statement. One reason for our
interest in this stronger statement will be apparent in the next subsection when we
discuss a topological analogue of (1.6).

Topological modular forms The spectrum TMF of topological modular forms was
introduced by Goerss, Hopkins and Miller as a topological analogue of the ring
MF(SL2(Z);Z) of meromorphic modular forms (i.e. holomorphic on the upper half-
plane, but meromorphic at∞). It is constructed as the global sections of a sheaf of ring
spectra on the moduli stack of elliptic curves Mell . As such it has the disadvantage
that its homotopy groups are infinitely generated in most degrees, which is different
for the refinement Tmf that is based on the compactifiedmoduli stackMell instead. Its
connective cover tmf can be seen as a topological analogue of the ring mf(SL2(Z);Z)

of holomorphic modular forms. The unit map S → tmf identifies it moreover as a
good approximation to the sphere spectrum in a certain range. We refer to [7] as a
basic reference for topological modular forms.

In many respects, TMF and Tmf can be seen as analogues of the real K -theory
spectrum KO at chromatic height 2. The study of modules over KO has been central
in Bousfield’s work on the classification of E(1)-local spectra at the prime 2 [8]. In
analogy, we expect modules over topological modular forms to play a central role in
our understanding of E(2)-local spectra. For concrete incarnations of this philosophy
after a further K (2)-localization see for example [9] or [10].
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The TMF-modules of relevance in this context are examples of topological modular
formswith level structure. Among themost important of these are the spectra TMF1(n)

and TMF0(n), which are topological analogues of the rings of meromorphic modular
forms for the congruence groups �1(n) and �0(n), respectively. More precisely, they
arise as the global sections of sheaves of ring spectra on the stacksM1(n) andM0(n)

introduced above, where we still implicitly invert n everywhere. Hill and Lawson [11]
were able to define spectra Tmf0(n) and Tmf1(n) based on the compactified moduli
M0(n) and M1(n) as well. While the K (2)-localizations of TMF0(n) and Tmf0(n)

are equivalent, the latter appears to be a more powerful tool to understand the E(2)-
local world and is also the first step to construct connective versions tmf0(n) with
interesting cohomological properties.

Analogously to the algebraic splitting results mentioned above, the first-named
author [12] has proven splitting results for Tmf1(n) and Tmf0(n) in many cases if we
localize at a prime p. If p > 3, there is an explicit criterionwhen thesemodules are free
over Tmf. If p = 3, the splittings have shifted copies of Tmf1(2)(3) as their summands.
As π∗ Tmf1(2)(3) is torsionfree, splittings into shifted copies of Tmf1(2)(3) can only
exist if π∗ Tmf0(n)(3) is also torsionfree, which is not expected if 3 divides |(Z/n)×|
and the criterion from [12] does indeed not apply in this case. The first case where this
occurs is Tmf0(7), where we can prove the following modified splitting result.

Theorem 1.7 The Tmf(3)-module Tmf0(7)(3) decomposes as

Tmf(3) ⊕�4 Tmf1(2)(3) ⊕ �8 Tmf1(2)(3) ⊕ L,

where L ∈ Pic(Tmf(3)), i.e. L is an invertible Tmf(3)-module. The TMF(3)-module
TMF0(7)(3) decomposes as

TMF(3) ⊕�4 TMF1(2)(3) ⊕ TMF1(2)(3) ⊕ �36 TMF(3) .

This topological analogue of (1.6) is based on the algebraic splitting result Theo-
rem 1.5 and on computations by M. Olbermann. The necessary parts of the latter can
be found in “Appendix B”, whose results are completely those of Olbermann. These
also allow to characterize L precisely, using additionally the work of Mathew and
Stojanoska [13].

While in itself, Theorem 1.7 might seem an isolated result, it is an important test
case of the following more general conjecture for arbitrary n ≥ 1.

Conjecture 1.8 TheTMF-moduleTMF0(n)(3) decomposes into possibly shifted copies
of TMF1(2)(3) and of TMF(3).

If H1(M0(n);ω) has no 3-torsion, the Tmf-module Tmf0(n)(3) decomposes into
possibly shifted copies of Tmf1(2)(3) and into invertible Tmf(3)-modules.

By the results of [14], this conjecture actually implies the corresponding algebraic
conjecture that ( fn)∗OM1(n)(3)

splits under the same condition on H1(M0(n);ω) into

copies of ω⊗? and ( f2)∗OM1(2)(3)
⊗ ω⊗?. There are also analogues of Conjecture 1.8

for other primes. For primes p > 3 it was already proven in [12] that TMF0(n)(p)
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is (after p-completion) a free TMF(p)-module. For p = 2, we expect a splitting into
possibly shifted copies of TMF1(3)(2), TMF0(3)(2) and TMF0(5)(2).

Lastly, wemention that we believe the stacksM1(n)cub andM0(n)cub to be impor-
tant for the understanding of connective variants tmf1(n) and tmf0(n) of topological
modular forms with level structure, a point we plan to come back to in future work.

Overview of the structure of the paper In rough outline, our strategy is to show The-
orem 1.5 in Sects. 2 to 7 and to deduce Theorem 1.7 in the last section. As first
preparation, Sect. 2 computes the ring mf(�1(7),Z) together with its natural action
by �1(7)\�0(7) ∼= (Z/7)×. Moreover, it provides explicit q-expansions of the gener-
ators. In Sect. 3 we study the equations of the universal elliptic curves over M1(n).
In particular, we show Theorem 1.1 and the identification of the αi in Theorem 1.2,
which is important input for our later computations.

Our strategy to show Theorem 1.5 is to show a statement about the correspond-
ing comodules. The precise relationship between quasi-coherent sheaves and graded
comodules will be recalled in Sect. 4. It is both easier and yields stronger results to
use this relationship not forMell but forMcub instead. The latter stack has a presen-
tation by the Hopf algebroid (A, �) with A = Z[a1, a2, a3, a4, a6] and at the prime
3 actually also by a smaller Hopf algebroid ( Ã, �̃). Thus, quasi-coherent sheaves on
Mcub,(3) become equivalent to graded ( Ã, �̃)-comodules. To formulate a version of
Theorem 1.5 on Mcub we define and explore the cubical versions of M1(n) and
M0(n) by a normalization procedure in Sect. 5.

The next step is to make the Hopf algebroids corresponding to M1(7)cub and
M0(7)cub explicit. In Sect. 6, we produce explicit Ã-bases of Ã-algebras RÃ and SÃ,
which are defined by

Spec RÃ
∼= M1(7)cub ×Mcub Spec Ã and Spec SÃ ∼= M0(7)cub ×Mcub Spec Ã.

This allows us to prove in Sect. 7 a splitting of SÃ as a graded comodule over ( Ã, �̃),
which implies Theorem 1.5. In Sect. 8 we apply standard techniques (the transfer and
the descent spectral sequence) to deduce our topological main theorem.

We continuewith “AppendixA”,which gives an exposition of the theory ofmodular
forms with level over general rings and their q-expansions. The reason for the length
of this appendix is the subtle difference between so-called arithmetic and naive level
structures, which only agree in the presence of an nth root of unity. To achieve a
q-expansion principle in the form we need, we have to choose a slightly unusual
identification of the sections of ω⊗∗ on M1(n)C with holomorphic �1(n)-modular
forms in the classical sense.

Lastly, “Appendix B” explains the pieces of M. Olbermann’s unpublished compu-
tation of π∗ Tmf0(7) we need to prove the precise form of Theorem 1.7.

Conventions All quotients of schemes by group schemes (like Gm) are understood to
be stack quotients. Unless clearly otherwise, all rings and algebras are assumed to be
commutative and unital. Tensor products of quasi-coherent sheaves are always over
the structure sheaf.
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2 Modular forms of level 7

Our goal in this section is to understand the ring of modular forms mf(�1(7);Z)

with respect to the congruence group �1(7) ⊂ SL2(Z) together with the action of
(Z/7)× ∼= Z/6. We refer for notation and background on modular forms and in
particular on the q-expansion principle to “Appendix A”.

We begin with some recollections about moduli of elliptic curves. We denote by
Mell the moduli stack of elliptic curves and byMell its compactification in the sense
of M1 of [1, Chapter III], i.e. the stack classifying generalized elliptic curves whose
geometric fibers are elliptic curves or Néron 1-gons. ByM1(n) we denote the moduli
stack of elliptic curves E with chosen point P : S → E of exact order n over schemes
S with n invertible and byM0(n) themoduli stack of elliptic curves with chosen cyclic
subgroup of order n over such schemes. More precisely, we demand for M1(n) that
for every geometric point s : Spec K → S the pullback s∗P spans a cyclic subgroup
of order n in E(K ) or, equivalently, that P defines a closed immersion (Z/n)S → E .
Moreover, we call a group scheme over S cyclic if it is étale locally isomorphic to
(Z/n)S .

We can define compactificationsM1(n) andM0(n) as the normalizations ofMell

in M1(n) and M0(n), respectively (for the definition of normalization see Sect. 5).
The relevance for our purposes is that we have isomorphisms

mfk(�1(n); R) ∼= H0(M1(n)R;ω⊗ k) and

mfk(�0(n); R) ∼= H0(M0(n)R;ω⊗ k).

for every Z[ 1n ]-algebra R. The relevant case for us is the first one and is explained
in “Appendix A.5”. For Z[ 1n ]-algebras R that do not embed into C, we will use the
formula above as a definition of mfk(�1(n); R). In general, mf(�1(n); R) differs from
mf1(n)⊗ R, where we use mf1(n) as an abbreviation for mf(�1(n);Z[ 1n ]). But we
have the following useful lemma.

Lemma 2.1 Let R → S be a flat ring extension of Z[ 1n ]-algebras. Then the canonical
map mf(�1(n); R)⊗R S → mf(�1(n); S) is an isomorphism.

Proof This is a variant of flat base change applied to the sheafω⊗ i onM1(n). IfM1(n)

is a scheme, we can apply [15, Lemma 5.2.26] directly. For Deligne–Mumford stacks,
the proof is the same using étale instead of Zariski coverings. �

To determine mfk(�1(n); R) for small n, we will use the following lemma.

Lemma 2.2 The stack M1(n) is equivalent to P1
Z[ 1n ] for 5 ≤ n ≤ 10 and n = 12. For

n = 7, the line bundle ω corresponds under this equivalence to O(2).

Proof The first statement is proven in Section 2 of [4]. The Picard group of P1
Z[ 1n ] is

isomorphic to Z. Indeed, by [16, Prop 6.5c], we have a short exact sequence

0 → Z → PicP1
Z[ 1n ] → PicA1

Z[ 1n ] → 0,
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where the first map is split by degree and PicA1
Z[ 1n ]

∼= PicZ[ 1n ] = 0 by [16, Prop 6.6].

Thus, we have only to compute the degree of ω on M1(7). In general, the degree
of ω onM1(n) is 1

24n
2 ∏

p|n(1− 1
p2

) [4, Lemma 4.3]. So we conclude that for n = 7
that the degree is 2. �

This directly implies that mf(�1(7);Z[ 17 ]) is isomorphic to the subalgebra of
Z[ 17 ][x, y] of polynomials of even degree. Our plan is to find explicit modular
forms as generators and to use this to determine the action of (Z/7)× ∼= Z/6 on
mf(�1(7);Z[ 17 ]). A priori there are two different actions, one on the analytic side via
an isomorphism �1(7)\�0(7) ∼= (Z/7)× and one by the inverse of the (Z/7)×-action
on the torsion points of precise order 7 in the modular interpretation. These actions
and their comparison are discussed more precisely in Remark A.9.

We will identify a basis of mf1(�1(7);C) using Eisenstein series. According to
[17, Theorem 4.8.1], there is for every odd character ϕ : (Z/7)× → C

× an Eisenstein
series E(ϕ) ∈ mf1(�1(7);C) and these are linearly independent. Fixing the generator
t = [3] in (Z/7)× induces an isomorphism (Z/7)× ∼= Z/6. In terms of this generator,
the three odd characters ϕ1, ϕ2, ϕ3 : (Z/7)× → C

× are described by

ϕ1(t) = ζ6,

ϕ2(t) = −1,

ϕ3(t) = −ζ6 + 1,

where ζ6 = exp( 2π i6 ) is a sixth primitive root of unity. As dimCmf1(�1(7);C) = 3
by our identification of the ring mf(�1(7);Z[ 17 ]) above, we conclude that E(ϕ1),

E(ϕ2), E(ϕ3) are a basis of mf1(�1(7);C). The (Z/7)×-action on E(ϕ) is described
by the character ϕ. According to [17, Section 4.8 and Formula (4.33)] (or [18]), the
q-expansions of these Eisenstein series looks like follows:

E(ϕ j )(τ ) = − 1

14

6∑
n=1

nϕ j (n) +
∞∑
k=1

⎛
⎝ ∑

l|k,l>0

ϕ j (l)

⎞
⎠ qk, with q = exp(2π iτ).

To actually obtain an integral basis of the weight 1 modular forms, we consider the
following three modular forms instead of the Eisenstein series.

z1 = 1

3
(3ζ6 − 1)E(ϕ1) + 2

3
E(ϕ2) + 1

3
(−3ζ6 + 2)E(ϕ3),

z2 = 1

3
(−ζ6 − 2)E(ϕ1) + 2

3
E(ϕ2) + 1

3
(ζ6 − 3)E(ϕ3),

z3 = 1

3
(−2ζ6 + 3)E(ϕ1) + 2

3
E(ϕ2) + 1

3
(2ζ6 + 1)E(ϕ3).
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Note that the base change matrix

1

3

⎛
⎝

3ζ6 − 1 −ζ6 − 2 −2ζ6 + 3
2 2 2

−3ζ6 + 2 ζ6 − 3 2ζ6 + 1

⎞
⎠

has determinant 2
27 (84ζ6 − 42), which is invertible in C. Thus, z1, z2, z3 form a new

C-basis of mf1(�1(7);C).

Lemma 2.3 The z j have only integer coefficients in their q-expansion.

Proof Denote the coefficient of qn in z j by cn(z j ). First, we compute c0(z j ). This
calculation is somewhat different from the ones for higher coefficients:

c0(z1) = 1

3
(3ζ6 − 1) ·

(
− 1

14

6∑
n=1

nϕ1(n)

)
+ 2

3
·
(

− 1

14

6∑
n=1

nϕ2(n)

)

+ 1

3
(−3ζ6 + 2) ·

(
− 1

14

6∑
n=1

nϕ3(n)

)

Evaluating the sum for ϕ1, we obtain

6∑
n=1

nϕ1(n) = 1 + 2ζ 2
6 + 3ζ6 + 4ζ 4

6 + 5ζ 5
6 + 6ζ 3

6 = −4ζ6 − 2,

using that ζ 2
6 = ζ6 − 1 and ζ 3

6 = −1. For ϕ2, we obtain

6∑
n=1

nϕ2(n) = 1 + 2 − 3 + 4 − 5 − 6 = −7.

For ϕ3, recall that 1 − ζ6 = ζ 5
6 , so we obtain

6∑
n=1

nϕ3(n) = 1 + 2ζ 4
6 + 3ζ 5

6 + 4ζ 2
6 + 5ζ6 + 6ζ 3

6 = 4ζ6 − 6.

Inserting this values into the formula for c0(z1), we get

c0(z1) = 1

3
(3ζ6 − 1) ·

(
− 1

14
(−4ζ6 − 2)

)
+ 1

3

+ 1

3
(−3ζ6 + 2) ·

(
− 1

14
(4ζ6 − 6)

)
= 0.

Similarly, we obtain c0(z2) = 0 and c0(z3) = 1.
Now we will show that ck(z j ) for k > 0 and j ∈ {1, 2, 3} is always an integer. For

z1, we obtain
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ck(z1) = 1

3
(3ζ6 − 1) ·

⎛
⎝ ∑

l|k,l>0

ϕ1(l)

⎞
⎠ + 2

3
·
⎛
⎝ ∑

l|k,l>0

ϕ2(l)

⎞
⎠

+ 1

3
(−3ζ6 + 2) ·

⎛
⎝ ∑

l|k,l>0

ϕ3(l)

⎞
⎠

=
∑

l|k,l>0

1

3
((3ζ6 − 1)ϕ1(l) + 2ϕ2(l) + (−3ζ6 + 2)ϕ3(l)) .

where l denotes also its congruence class in Z/7.
We give the values of the summands depending on l:

l mod 7 0 1 2 3 4 5 6
Summand 0 1 −1 −2 2 1 −1

In particular, the sumweobtain has only integer summands, thus is itself an integer. The
calculations for ck(z2) and ck(z3) are similar andweobtain z1, z2, z3 ∈ mf1(�1(7);Z).

�
We want to show that z1, z2, z3 ∈ mf1(�1(7);Z) is a basis. For this, we consider

the q-expansions of z1, z2, z3 modulo q3:

z1 ≡ q mod q3

z2 ≡ −q + q2 mod q3

z3 ≡ 1 + 2q + 3q2 mod q3

The right-hand sides form obviously aZ-basis ofZ�q�/(q3). Thus, mf1(�1(7);Z) →
Z�q�/(q3) is surjective. Since the composite

mf1(�1(7);Z) → mf1(�1(7);C) → C�q�/(q3)

is as a composition of an injection and a surjection between 3-dimensional C-vector
spaces an injection as well, we conclude that mf1(�1(7);Z) → Z�q�/(q3) is actually
an isomorphism. This implies that z1, z2, z3 ∈ mf1(�1(7);Z) is indeed a basis. The
same is thus true in mf1(�1(7);Z[ 17 ]).

Our next goal is to understand all of mf1(7) in terms of zi ’s. We will prove the
following proposition:

Proposition 2.4 There is an isomorphism of rings

Z
[ 1
7

] [z1, z2, z3]/(z1z2 + z2z3 + z3z1) → mf
(
�1(7);Z

[ 1
7

])
.

Proof Wewill first show using q-expansions that the relation z1z2+z2z3+z3z1 = 0 is
satisfied inmf2(�1(7);Z). Recall from above that z3, z1 and z1+z2 aremodular forms
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whose q-expansions begin with 1, q and q2, respectively. Thus, the q-expansions of
the modular forms

z23, z1z3, z3(z1 + z2), z1(z1 + z2) and (z1 + z2)
2 (2.5)

begin with 1, q, q2, q3 and q4, respectively. As by the dimension formulae from [17,
Section 3.9] the vector space mf2(�1(7);C) has dimension 5, we immediately see that
the modular forms in (2.5) form a basis of mf2(�1(7);C) and that hence a modular
form in mf2(�1(7);C) is determined by its q-expansion modulo q5. Knowing the
q-expansions of the zi modulo q3, determines the q-expansion of z1z2 + z2z3 + z3z1
modulo q5 and one deduces easily that it is actually zero modulo q5.

We have noted before that

mf(�1(7);Z[ 17 ]) ∼= H0(M1(7);ω⊗ ∗) ∼= H0(P1

Z[ 17 ];O(2∗)).

Thus, this ring is abstractly isomorphic to polynomials of even degree in two variables
of degree 1 (and the degree of the modular form is half the degree of the polynomial).
The ring of such polynomials is generated by the three monomials of degree 2 with
one quadratic relation between those. Thus, the ring mf(�1(7);Z

[ 1
7

]
) is generated in

degree 1 and hence by the elements z1, z2, z3. We obtain a surjective map

Z[ 17 ][z1, z2, z3]/(z1z2 + z2z3 + z3z1) → mf(�1(7);Z[ 17 ]),

which has to be an isomorphism as counting ranks shows. �
Next, we want to identify the (Z/7)× action on the left-hand side in terms of the

generator t = [3] ∈ (Z/7)×, where we use the conventions from Remark A.9.

Lemma 2.6 The action of (Z/7)× on mf(�1(7);Z[ 17 ]) is given by t .z1 = −z3 and
t .z2 = −z1 and t .z3 = −z2.

Proof From the known action on the Eisenstein series, we calculate as follows:

t .z1 = 1

3
(3ζ6 − 1)ϕ1(t)E(ϕ1) + 2

3
ϕ2(t)E(ϕ2) + 1

3
(−3ζ6 + 2)ϕ3(t)E(ϕ3)

= 1

3
(3ζ6 − 1)ζ6E(ϕ1) − 2

3
E(ϕ2) + 1

3
(−3ζ6 + 2)(−ζ6 + 1)E(ϕ3)

= 1

3
(2ζ6 − 3)E(ϕ1) − 2

3
E(ϕ2) − 1

3
(2ζ6 + 1)E(ϕ3)

= −z3.

Similarly, one obtains t .z2 = −z1 and t .z3 = −z2. �
Note that the resulting action onZ[z1, z2, z3]makes it isomorphic as aZ/6 ∼= Z/2×

Z/3-representation to Zsign⊗Z[z1, z2, z3], where Zsign is the sign representation of
Z/2 and Z/3 acts on Z[z1, z2, z3] by permuting the variables as indicated above. We
record without proof the following consequence.
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Proposition 2.7 If we denote by σ1, σ2, σ3 ∈ Z[z1, z2, z3] the elementary symmetric
polynomials, we obtain that the invariants

mf
(
�0(7);Z

[ 1
7

]) ∼= H0(Z/6,Z[z1, z2, z3]/σ2)

are the even degrees of the free Z[σ1, σ3]-module on 1 and z21z2 + z22z3 + z23z1. As
explained in “Appendix A.1.1”, this implies

MF(�0(7);Z
[ 1
7

]
) ∼= H0(Z/6,Z[z1, z2, z3]/σ2)[�−1].

3 q-expansions of the coefficients of universal elliptic curves

The aim of this section is to obtain q-expansions for the coefficients of Weierstraß
equations for the universal elliptic curves with a �1(n)-level structure. It is easy to
see that for such curves there exists a Weierstraß equation whose coefficients are
meromorphic �1(n)-modular forms. Our computations show in particular that we
can find a Weierstraß equation in Tate normal form whose coefficients are indeed
holomorphic. In the special case of n = 7, this will allows us to identify them with
polynomials in the modular forms z1, z2, z3 from the previous section.

3.1 Coordinates for generalized elliptic curves

In this section, we will need some results about Weierstraß equations for generalized
elliptic curves in the sense of [1, Definition II.1.12]. Actually for the main results of
this section, Proposition 3.12 and Theorem 3.13, we could work with the usual smooth
elliptic curves instead, but first of all we will show here a similar statement to Propo-
sition 3.12 without the necessity of calculations with q-expansion and furthermore we
will need the specific form of Proposition 3.5 in the Proof of Proposition 5.13. In the
following theorem we will summarize the necessary input from [19, §1].

Theorem 3.1 Let S be a scheme and let p : E → S be a generalized elliptic curve
whose geometric fibers are either smooth or Néron 1-gons. Let furthermore (e) be the
relative Cartier divisor defined by the unit section e : S → E .
(a) The sheaves p∗OE (ke) are locally free of rank k for k > 0 and are related by

short exact sequences

0 → p∗OE ((k − 1)e) → p∗OE (ke) → ω
⊗(−k)
E → 0 (3.2)

for k > 1. The morphisms OS → p∗OE → p∗OE (e) are isomorphisms. More-
over, R1 p∗O(ke) = 0 for k > 0.

(b) Zariski locally one can choose a trivialization of ωE and splittings of (3.2) for
k = 2 and 3 and these choices define a trivialization

(1, x, y) : O3
S

∼=−→ p∗O(3e).
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This gives rise to a closed embedding E → P
2
S with image cut out by a cubic

equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with a1, a2, a3, a4, a6 ∈ �(OS) and the ai are completely determined by the
previous choices.

Remark 3.3 We want to discuss the role of gradings in the preceding theorem. Let
p : E → S be a generalized elliptic curve as in the theorem with chosen splittings of
(3.2) for k = 2 and k = 3. This yields an isomorphism

p∗OE (3e) ∼= OS ⊕ ω
⊗(−2)
E ⊕ ω

⊗(−3)
E .

Let q : T → S be amorphismwith a trivializationOT
ω−→ ωET , where pT : ET → T is

the pullback of p along q. By [20, Proposition 4.37], the natural map q∗ p∗OE (3e) →
pT∗ OET (3e) is an isomorphism. The resulting isomorphismO3

T → pT∗ OET (3e) sends
the standard basis to elements (1, x, y) and we get associated quantities ai ∈ �(OT ).
Changing the trivialization to λω for some λ ∈ Gm(T ) produces new coordinates
(1, x ′, y′) = (1, λ−2x, λ−3y) with associated quantities a′

i = λ−i ai .
In particular, we can consider the Gm-torsor q : T → S given by the relative

spectrum T = Spec
(⊕

i∈Z ω⊗ i
E

)
. This comes with a canonical trivialization of q∗ωE

and thus by (A.4) also of ωET ; this produces elements ai ∈ �(OT ). The computation
above shows that the degree of ai is i , where the grading on �(OT ) comes from the

Gm-action on T or equivalently from the identification with
(⊕

i∈Z ω⊗ i
E

)
(S).

The following standard fact will be needed for the Proof of Proposition 3.5.

Lemma 3.4 Let R be a nonnegatively graded ring, Z the vanishing locus of the ideal
generated by the positive degree homogeneous elements and U its complement in
Spec R. Then U/Gm is separated.

Proof By the valuative criterion it suffices to show that for every valuation ring V
with field of fractions K , the map pV : (U/Gm)(V ) → (U/Gm)(K ) of groupoids
is fully faithful [21, Proposition 7.8]. As every Gm-torsor over V is trivial, the
groupoid (U/Gm)(V ) can be up to equivalence described as follows: It has as objects
Gm-equivariant maps Spec V × Gm → U and morphisms are Gm-equivariant endo-
morphisms of Spec V × Gm over Spec V and U . More concretely, its objects can
be described as ring morphisms f : R → V such that f (r) is invertible for some r
homogeneous of positive degree. A morphism g → f is given in this language by
an element λ ∈ Gm(V ) such that g(r) = λi f (r) for all homogeneous r of degree i .
The description of (U/Gm)(K ) is analogous. AsGm(V ) includes intoGm(K ), we see
that pV is faithful. Now suppose that f , g : R → V are two objects in (U/Gm)(V )

and λ ∈ Gm(K ) satisfies g(r) = λi f (r) for all homogeneous r of degree i . We can
choose an r ∈ R such that f (r) is invertible in V and thus λi ∈ V and hence λ ∈ V as
V is normal. Repeating this argument for an r ′ ∈ R such that g(r ′) is invertible yields
that λ−1 ∈ V and hence λ ∈ Gm(V ). Thus pV is full. �
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Proposition 3.5 Let n ≥ 2 and

π : M1
1(n) = Spec

(⊕
i∈Z

ω⊗ i

)
→ M1(n)

be theGm-torsor trivializing ω. Let p : E → M1(n) be the generalized elliptic curve
classified by the mapM1(n) → Mell that is induced by the forgetful mapM1(n) →
Mell .

Then there are

a1, a2, a3, a4, a6 ∈ mf1(n) = H0
(
M1

1(n),OM1
1(n)

)

with |ai | = i such that the generalized elliptic curve π∗E is defined by the cubic
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (3.6)

Consider moreover the canonical morphism M1
1(n) → Specmf1(n). It is an open

immersion onto the complement of the common vanishing locus of c4 and � for the
usual quantities c4 and� associated with a1, . . . , a6. Moreover, c4, c6 and� coincide
with the images of the classes with the same name along mf1(1) → mf1(n).

Proof To apply Theorem 3.1 and Remark 3.3, it suffices to show that the inclusions

p∗OE ((k − 1)e) → p∗OE (ke)

split for k > 1. By induction, we can assume that p∗OE ((k−1)e) is via such splittings
isomorphic to OM1(n)

⊕ ω⊗(−2) ⊕ · · · ⊕ ω⊗(−k+1). The vector bundle p∗OE (ke) is

an extension of p∗OE ((k − 1)e) and ω⊗(−k) and thus we have to show the vanishing
of a class χ in

ExtOM1(n)
(ω⊗(−k), p∗OE ((k − 1)e)) ∼= H1(M1(n);ω⊗ k ⊕ ω⊗(k−2) ⊕ · · · ⊕ ω)

The vanishing result [4, Proposition 2.14] implies that the projection to

ExtOM1(n)
(ω⊗(−k), p∗OE ((k − 1)e)/p∗OE ((k − 2)e)) ∼= H1(M1(n);ω)

is an isomorphism and thus it suffices to show the vanishing of the projection χ ′ of χ .
As E is the pullback of the universal generalized elliptic curve Euni → Mell along
M1(n) → Mell , the class χ ′ actually lies in the image from

ExtOMell
(ω⊗(−k), p∗OEuni ((k − 1)e)/p∗OEuni ((k − 2)e)) ∼= H1(Mell;ω).
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As shown in [4, Proposition 2.16], the map H1(Mell;ω) → H1(M1(n);ω) is trivial
and thus the inclusions p∗OE ((k − 1)e) → p∗OE (ke) are split for k > 1. We see that
π∗E is indeed given by a cubic equation as in (3.6) with |ai | = i .

If S → Mell classifies a generalized elliptic curve E → S given by a cubic equation
as in (3.6), then the images of c4,� ∈ H0(Mell;ω⊗∗) in H0(S;ω⊗ ∗

E ) coincide with
the corresponding polynomials in the coefficients ai of the Weierstraß equation; thus
c4,� ∈ H0(S;OS) have an unambiguous meaning. Moreover, a curve on S defined
by a cubic equation as in (3.6) defines a generalized elliptic curve only if c4 and �

vanish nowhere simultaneously [22, Proposition III.1.4].

As ω is ample on M1(n) by [12, Lemma 5.11], the pullback π∗ω on M1
1(n) is

both trivial and ample and thus M1
1(n) is quasi-affine, i.e. the canonical morphism

M1
1(n) → Spec H0(M1

1(n),OM1
1(n)

) = Specmf1(n) is an open immersion [23,

Propositions 13.83 and 13.80]. Moreover, π∗E being a generalized elliptic curve

implies that the immersion M1
1(n) → Specmf1(n) has image in the complement

U of the common vanishing locus of c4 and �. Note that the inclusion M1
1(n) → U

is Gm-equivariant.
By Lemma 3.4,U/Gm is separated. AsM1(n) is proper over SpecZ[ 1n ] andU/Gm

is separated, we obtain analogously to [16, Corollary II.4.6] that the open immersion
M1(n) ↪→ U/Gm is proper. Thus, the image is closed.Asmf1(n) is an integral domain
by [4], we see that U and hence U/Gm are connected. We deduce that M1(n) ↪→
U/Gm is an isomorphism. �

At least over a field, the following lemma is well-known.

Lemma 3.7 Let E → S := Spec R be an elliptic curve given by aWeierstraß equation,
where R is graded. Assume that the associated quantities ai ∈ �(OS) = R have degree
i . Let there furthermore be a section P : S → E of exact order n ≥ 3. Then there are
coordinates for E such that the associated Weierstraß equation is of the form

y2 + α1xy + α3y = x3 + α2x
2,

P corresponds to the point (0, 0) and |αi | = i .

This special form of the Weierstraß equation is called Tate normal form or also
sometimes Kubert–Tate normal form.

Proof We perform a similar transformation as in the proof of [24, Theorem 1.1.1].
First, observe from formulae in [22, Section III.1] that any Weierstraß equation of the
form

y2 + a1xy + a3x = x3 + a2x
2 + a4x + a6

can be transformed so that the chosen torsion point (x0, y0) on this curve is moving
to (0, 0). This transformation has the transformation parameter

r = x0, t = y0, s = 0.
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Thus we may assume a6 = 0 and the torsion point to be (0, 0). Over any field K ,
it follows from [25, Remark 4.2.1] that if a3 = 0 over this field, then (0, 0) would be
either singular or a 2-torsion point, contradicting the assumption that it is a torsion
point of strict order n ≥ 3. Thus, a3 is invertible in R since it maps to a non-zero
element in every field for any ring map R → K .

This allows to define a transformation with transformation parameters

r = 0, t = 0, s = a4
a3

,

and the resulting coefficients are

y2 + α1xy + α3y = x3 + α2x
2.

�
Remark 3.8 If we start with the Weierstraß equation y2 + a1xy + a3x = x3 + a2x2 +
a4x + a6 as above, we want to record for later use the values of αi obtained by the
procedure in the proof of the lemma above. Denote by s′ the auxiliary quantity (the
invertibility of the denominator follows from the lemma above)

s′ = a4 + 2a2x0 − a1y0 + 3x20
a3 + a1x0 + 2y0

.

Then we obtain

α1 = a1a3 + 2a4 + (a21 + 4a2)x0 + 6x20
a3 + a1x0 + 2y0

α2 = a2 + 3x0 − a1s
′ − (s′)2

α3 = a3 + a1x0 + 2y0.

3.2 The q-expansions of the coefficients ofWeierstraß equations

In the last subsection, we showed that the universal elliptic curve over M1
1(n) has a

Weierstraß equation in Tate normal form and that the corresponding quantities αi are
elements in

H0(M1
1(n);OM1

1(n))
∼=

⊕
i∈Z

H0(M1(n);ω⊗ i )

of degree i , i.e. meromorphic modular forms of weight i . In this subsection, we will
show that theαi are actuallyholomorphicmodular forms andprovide a general formula
for the q-expansion. This will allow us to identify them with explicit polynomials in
the zi in the case n = 7. Our first goal will be to prove a criterion to check whether a
meromorphic �1(n)-modular form is actually holomorphic.
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Recall from “Appendix A.1.1” that meromorphic �1(n)-modular form g of weight

k (in the analytic sense) is holomorphic if for every γ =
(
a b
c d

)
∈ SL2(Z), the map

g[γ ]k , given by

z �→ (cz + d)−kg

(
az + b

cz + d

)

is holomorphic at ∞.
Similarly to e.g. [26, Section 4], we use certain operators [Wm] to rephrase holo-

morphy of a �1(n)-modular form. We will see in the Proof of Lemma 3.10 that these
operators are closely related to the equivalence ϕ : M1(n) → Mμ(n) in LemmaA.11
(see also [27, Section VII.6]).

Lemma 3.9 Let g : H → C be a meromorphic �1(n)-modular form of weight k. Then
the function

Wng := g[Wn]k : H → C

τ �→ (nτ)−kg

(
− 1

nτ

)

is a meromorphic �1(n)-modular form again, where Wn =
(
0 −1
n 0

)
. Moreover, g is

holomorphic as a modular form if and only if Wng is holomorphic as a modular form.

Proof Given any matrix γ =
(
a b
c d

)
∈ �1(n), observe that its conjugate

WnγW
−1
n =

(
d − c

n−bn a

)
= W−1

n γWn

also lies in �1(n) and hence W−1
n �1(n)Wn = �1(n). Thus our lemma becomes a

special case of [17, Exercise 1.2.11(c)]. �
For the next lemma recall the Tate curve Tate(qn) from the discussion after Theo-

rem A.16, as well as the description of torsion points on this curve.

Lemma 3.10 Let g ∈ NatCk (Ell1�1(n)(−), �(−)) be a Katz modular form over C and
let β1(g) ∈ MF(�1(n);C) be its associated modular form as in “Appendix A.2.1”.
Assume that the evaluation at the Tate curve Tate(qn) with its invariant differential
ηcan over Convqn yields a power series (as opposed to a general Laurent series) for

any choice of torsion point (X(ζ dqc, qn),Y (ζ dqc, qn)) with ζ = e
2π i
n . Then β1(g) is

actually holomorphic.

Proof Throughout this proof, let τ be an arbitrary point in the upper half-plane. By
definition, β1(g)(τ ) = g(C/Z + nτZ, dz, τ ). We claim that

(Wnβ1(g))(τ ) = (−n)−kg

(
C/Z + τZ, dz,

1

n

)
.
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Indeed, multiplication by −τ induces an isomorphism from the elliptic curve
C/Z + n−1

nτ
Z to C/Z + τZ. Thus, (C/Z + n−1

nτ
Z, dz, −1

nτ
) is isomorphic to (C/Z +

τZ, (−τ)−1dz, 1
n ). We obtain

(Wnβ1(g))(τ ) = (nτ)−kβ1(g)

(
− 1

nτ

)
= (nτ)−k(−τ)kg

(
C/Z + τZ, dz,

1

n

)

as was to be shown.
The assignment g′ : H → C, given by τ �→ g(C/Z+τZ, dz, 1

n ), can be checked to
define ameromorphic�1(n)-modular form. In particular, it suffices by Lemma 3.9 and
our previous computation to show that g′ is holomorphic. By definition, this means

that g′[γ ]k is holomorphic at ∞ for every γ ∈ SL2(Z). If we write γ =
(
a b
c d

)
for

such a γ , we have

g′[γ ]k(τ ) = (cτ + d)−kg

(
C/Z + aτ + b

cτ + d
Z, dz,

1

n

)

= g

(
C/Z + aτ + b

cτ + d
Z, (cτ + d)dz,

1

n

)

= g

(
C/Z + τZ, dz,

cτ + d

n

)

= g

(
C

×/qnZ0 ,
du

u
, ζ dqc0

)

with q0 = e
2π iτ
n . If we push the Tate curve Tate(qn) forward along the evaluation

map evq0 : Convqn → C, the resulting elliptic curve with chosen torsion point is
isomorphic to

(
C

×/qnZ0 , du
u , ζ dqc0

)
. By naturality, the values of g are also related via

evq0 . Because g(Eqn , η
can, (X(ζ dqc, qn),Y (ζ dqc, qn))) is a power series in qn by

assumption, we see thus that g′[γ ] is holomorphic at ∞. �

From now on we will assume n ≥ 3. Our aim now is to compute the q-expansions
of the coefficients αi of the Tate normal form

y2 + α1xy + α3y = x3 + α2x
2

for the Tate curve Tate(qn) given by y2 + xy = x3 + a4(qn)x + a6(qn) over Convqn
with a chosen n-torsion point (x0, y0). The values from Remark 3.8 specialize to
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s′ = a4(qn) − y0 + 3x20
x0 + 2y0

,

α1 = x0 + 6x20 + 2a4(qn)

x0 + 2y0
,

α2 = 3x0 − s′ − (s′)2,
α3 = x0 + 2y0.

Next, we want to specify the torsion point (x0, y0) on the Tate curve Tate(qn). We
use methods from [28, Section V.3], to simplify the expressions for X(vqk, qn) and
Y (vqk, qn) in our case, where v and q are complex numbers with |v| = 1 and |q| < 1
and 0 ≤ k < n. First, we reindex the sum over positive natural numbers:

X(vqk, qn) =
∑
m∈Z

vqmn+k

(1 − vqmn+k)2
− 2s1(q

n),

= vqk

(1 − vqk)2
+

∑
m≥1

(
vqmn+k

(1 − vqmn+k)2
+ v−1qmn−k

(1 − v−1qmn−k)2

− 2
qmn

(1 − qmn)2

)
.

Recall the following formulae for |x | < 1, obtained e.g. by differentiating the geo-
metric series:

x

(1 − x)2
=

∑
l≥1

lxl and
x2

(1 − x)3
=

∑
l≥1

l(l − 1)

2
xl and

x

(1 − x)3
=

∑
l≥0

l(l + 1)

2
xl .

Inserting this into the expression for X(vqk, qn), we obtain for k > 0

X(vqk, qn) =
∑
l≥1

lvlqkl +
∑
m≥1

∑
l≥1

(
lvlq(mn+k)l + lv−lq(mn−k)l − 2lqmnl

)
.

For k = 0 and v �= 1 we obtain similarly

X(v, qn) = v

(1 − v)2
+

∑
m>0

⎛
⎝∑

l|m
l(vl + v−l − 2)

⎞
⎠ qmn .
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For Y (vqk, qn) we get

Y (vqk, qn) =
∑
m∈Z

v2q2(mn+k)

(1 − vqmn+k)3
+ s1(q

n),

= v2q2k

(1 − vqk)3
+

∑
m≥1

(
v2q2(mn+k)

(1 − vqmn+k)3
− v−1qmn−k

(1 − v−1qmn−k)3

+ qmn

(1 − qmn)2

)
.

Using again the formulae derived from geometric series, we obtain for k > 0

Y (vqk, qn) =
∑
l≥2

(l − 1)l

2
vlqkl +

∑
m≥1

∑
l≥1

(
(l − 1)l

2
vlq(mn+k)l

− l(l + 1)

2
v−lq(mn−k)l + lqmnl

)
.

For k = 0 and v �= 1, we obtain instead

Y (v, qn) = v2

(1 − v)3
+

∑
m>0

⎛
⎝∑

l|m

(
l(l − 1)

2
vl − l(l + 1)

2
v−l + 1

)⎞
⎠ qmn .

Lemma 3.11 As before let |q| < 1, |v| = 1 and 0 ≤ k < n. In terms of the X(vqk, qn)
and Y (vqk, qn) the Laurent series α1, α2 and α3 are actually power series in q as
well if we assume v �= ±1 in case that k = 0 or k = n

2 .

Proof Note that in each of the cases above both X(vqk, qn) and Y (vqk, qn) are not
just Laurent series in q, but actually power series. In particular, so is α3 = X + 2Y .
Given the expressions for α1 and α2, we only need to check that

s′ = a4(qn) − X(vqk, qn) + 3X(vqk, qn)2

X(vqk, qn) + 2Y (vqk, qn)

is a power series to obtain that α1 and α2 are power series as well. In our Tate curve,
we have

a4(q
n) = −5s3(q

n) = −5
∑
m≥1

σ3(m)qmn

so this power series has n > k as lowest exponent of q. Thus, the lowest power of q
occuring in the numerator is the same as for X (unless the numerator is 0 and thus
s′ = 0). It thus suffices to show that the lowest term of the power series for X has at
least the order of the lowest term of the power series defining X + 2Y . In the table
below we will compute the lowest term in the power series defining X , Y and X + 2Y
in the different cases.
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X Y X + 2Y

k = 0 v

(1−v)2
v2

(1−v)3
v+v2

(1−v)3

0 < k < n
2 vqk Higher term vqk

k = n
2 (v + v−1)q

n
2 −v−1q

n
2 (v − v−1)q

n
2

n
2 < k < n v−1qn−k −v−1qn−k −v−1qn−k

Note that v+v2

(1−v)3
= 0 only if v = −1 and v − v−1 = 0 only if v = ±1. �

Proposition 3.12 If n ≥ 3, the universal elliptic curve over M1
1(n) has a Weierstraß

equation of the form

y2 + α1xy + α3y = x3 + α2x
2,

where the αi are holomorphic modular forms in mf(�1(n);Z[ 1n ]) of degree i .

Proof Lemma 3.11 checks exactly the holomorphy criterion Lemma 3.10 once we
observe that P = (X(ζ dqk, qn),Y (ζ dqk, qn)) cannot be a point of exact order n if
k = 0 or k = n

2 and ζ d = ±1 because this would imply that P is of order 2. �

According to the conventions from “Appendix A.4” we obtain the q-expansions
of the αi by specializing to the torsion point (X(q, qn),Y (q, qn)) above and use our
explicit expressions of the αi in terms of X and Y .

In our case of n = 7 we obtain the following q-expansions for X and Y :

X = q + 2q2 + 3q3 + 4q4 + 5q5 + 7q6 + 5q7 + 9q8 + · · ·
Y = q2 + 3q3 + 6q4 + 10q5 + 14q6 + 22q7 + 28q8 + · · ·

As in the Proof of Proposition 2.4, the form of the q-expansions of z1, z2 and z3
implies that there are elements of mfk(�1(7);Z[ 17 ]) with q-expansions of the form
qi + higher terms where i runs over all integers in [0, 2k]. As mfk(�1(7);Z[ 17 ]) is
free of rank 2k + 1, these elements form automatically a basis and thus every element
in mfk(�1(7);Z[ 17 ]) is determined by its q-expansion modulo q2k+1. Comparing the
q-expansions of the zi with those of theαi usingMAGMA implies the following theorem.

Theorem 3.13 The elliptic curve classified by the composition

SpecMF(�1(7),Z[ 17 ]) → M1(7) → Mell

is given by the equation

y2 + α1xy + α3y = x3 + α2x
2
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with

α1 = z1 − z2 + z3,

α2 = z1z2 + z1z3,

α3 = z1z
2
3.

4 Graded Hopf algebroids and stacks

In this section, all gradings can be taken to be either over Z (as convenient in the
algebraic setting) or over 2Z (as convenient in the topological setting) if this choice is
done consistently. In either case, we assume our graded rings to be commutative and
not just graded commutative. All comodules over Hopf algebroids, a notion which we
will recall in this section, are chosen to be left comodules.

4.1 General theory

We begin with the relationship between graded and ungraded Hopf algebroids. Let
(B, �) be a graded Hopf algebroid, i.e. a cogroupoid object in the category of graded
rings. To such a graded Hopf algebroid, we can associate an ungraded Hopf algebroid
(B, �[u±1]) as follows. The structure maps ηL and ε are essentially unchanged. The

right unit η(B,�[u±1])
R : B → �[u±1] is given by

η
(B,�[u±1])
R (x) = uiη(B,�)

R (x)

if x ∈ B is a homogeneous element of degree i . The comultiplication

ψ(B,�[u±1]) : �[u±1] → �[u±1] ⊗B �[u±1]

is given by

ψ(B,�[u±1])(s) = uiψ(B,�)(s)

for homogeneous elements s ∈ � of degree i andψ(u) = 1⊗ u+u ⊗ 1.One can show
that the category of graded comodules over (B, �) is equivalent to that of comodules
over (B, �[u±1]).

In the following, we will assume that (B, �) is flat, i.e. that� is flat as a B-module.
We observe that� is flat as a B-module with respect to the left module structure given
by ηL if and only if it is flat as a B-module with respect to the right module structure
given by ηR . This can be shown using the conjugation.

Definition 4.1 The associated stack for a graded Hopf algebroid (B, �) is the stack
X (B, �) associated to the (ungraded) Hopf algebroid (B, �[u±1]) defined above, i.e.
the stackification of the presheaf of groupoids represented by the groupoid scheme
(Spec B,Spec�[u±1]) on the fpqc site of schemes.
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As explained in [29, Section 3] the stack X = X (B, �) is automatically algebraic
in the sense of op. cit. and actually an Artin stack if� is a finitely presented B-algebra
(see [21, Théorème 10.1]). Moreover, it comes with a map Spec B → X and the
pullback Spec B ×X Spec B can be identified with Spec�[u±1]. The pullback

QCoh(X ) → QCoh(Spec B) � B -mod

refines to an equivalences from QCoh(X ) to left (B, �[u±1])-comodules by [29,
Section 3.4]; cf. also [30, Theorem 2.2]. Given an F ∈ QCoh(X ), the comodule
structure

F(B) → �[u±1] ⊗B F(B)

is given by composing F(η
B,�[u±1]
L ) : F(B) → F(�[u±1]) with the inverse of the

isomorphism �[u±1] ⊗B F(B)
∼=−→ F(�[u±1]) induced by F(η

B,�[u±1]
R ).

Example 4.2 Let B be a graded ring viewed as a gradedHopf algebroid (B, B). Its asso-
ciated stack is Spec B/Gm with the Gm-action corresponding to the grading. Graded
B-modules are the same as graded comodules over (B, B) and are thus equivalent to
QCoh(Spec B/Gm).

Composing the equivalences betweeen QCoh(X ) and (B, �[u±1])-comodules and
between the latter and graded (B, �)-comodules, we obtain the following.

Proposition 4.3 The map (idB, ε) : (B, �) → (B, B) of graded Hopf algebroids
induces amap f B : Spec B/Gm → X and the pullback functor ( f B)∗ : QCoh(X ) →
QCoh(Spec B/Gm) refines to an equivalence between quasi-coherent sheaves on X
and graded comodules over (B, �).

It is easy to check that this equivalence is monoidal, when we put the following
tensor product ongraded comodules: Let (M, ψM ) and (N , ψN )be twograded (B, �)-
comodules. Then we set (M, ψM )⊗(N , ψN ) = (M ⊗A N , ψM ⊗ N ), where ψM ⊗ N

denotes the composite

M ⊗B N
ψM ⊗ψN−−−−−→ � ⊗B M ⊗B � ⊗B N → � ⊗B M ⊗B N ,

with the last map being induced by the multiplication on �. Here we use that the
associated graded comodule to some F ∈ QCoh(X ) can be described completely
analogously to the ungraded case above, only replacing �[u±1] by � and observing
that F(B) has a natural grading.

Under the equivalences of Example 4.2 and Proposition 4.3, the pullback functor
QCoh(X ) → QCoh(Spec B/Gm) translates into the forgetful functor from graded
(B, �)-comodules to graded B-modules. This forgetful functor has a right adjoint,
sending a graded B-module M to the extended graded (B, �)-comodule � ⊗B M
with the comodule structure

ψ ⊗ idM : � ⊗B M → � ⊗B � ⊗B M
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[31, Definition A1.2.1]. Under the equivalence above this translates into the right
adjoint f B∗ : QCoh(Spec B/Gm) → QCoh(X ) to ( f B)∗.

For the next lemma, consider a graded ring R. We recall that an S-valued point
of Spec R/Gm corresponds to a Gm-torsor T → S together with a Gm-equivariant
map T → Spec R. Here, we consider the Gm-action on Spec R corresponding to its
grading. In particular the universal R-valued point Spec R → Spec R/Gm corresponds
to the trivialGm-torsor Spec R[u±1] → Spec R together with theGm-equivariantmap
Spec R[u±1] → Spec R induced by

R → R[u±1], x �→ xun for x of degree n(if we grade over Z).

Here, we recall that the trivial Gm-torsor is induced by the obvious inclusion
i : R → R[u±1] and the Gm-action on Spec R[u±1] is given by the grading on
R[u±1] where |u| = 1 and i is the inclusion of the degree 0 elements. For an arbi-
trary S → Spec R/Gm , we obtain T as the pullback of this universal Gm-torsor
Spec R → Spec R/Gm .

Lemma 4.4 The pullback Spec B×X Spec B/Gm can be identifiedwith Spec�, where
the first projection corresponds to ηL and the second to the composite of the map
ηR : Spec� → Spec B with the projection Spec B → Spec B/Gm. Moreover, the
map Spec B/Gm → X is fpqc.

Proof Consider the trivial Gm-torsor i : � → �[u±1] as above. The right unit ηuR =
η

(B,�[u±1])
R defines a grading preserving map from B to�[u±1]. We obtain a diagram

Spec�[u±1] Spec� Spec B

Spec B Spec B/Gm X

i

ηuR

ηL

As noted already above, the outer rectangle is a pullback square. The left square is
a pullback square as it is a map of Gm-torsors. By fpqc descent along Spec B →
Spec B/Gm the right square is a pullback square as well. As by [29, Section 3.3],
the map Spec B → X is fpqc, � is flat over B by assumption and moreover ε is a
retraction of ηL , we see that Spec B/Gm → X is fpqc as well.

It remains to identify the map Spec� → Spec B/Gm . Using the discussion

before this lemma, we see that the composite Spec�
ηR−→ Spec B → Spec B/Gm

corresponds to the trivial Gm-torsor i : Spec�[u±1] → Spec� together with the
Gm-equivariant map ηuR : Spec�[u±1] → Spec B, exactly as claimed. �

Dually, we can of course also identify Spec B/Gm ×X Spec B with Spec� and
obtain analogous descriptions of the projections. In particular, we see that

Spec B/Gm ×X Spec B and Spec B ×X Spec B/Gm

are equivalent over Spec B/Gm ×Spec B/Gm . In the next lemma we investigate what
happens after base change along a morphism B → C .
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Lemma 4.5 Let B → C and B → D be grading preserving ring morphisms. This
induces a morphism f C : SpecC/Gm → Spec B/Gm → X and similarly for D.

(1) The pullback Spec B ×X SpecC/Gm is equivalent to Spec� ⊗B C, where � is
a B-module via the right unit ηR.

(2) The quasi-coherent sheaf f C∗ OSpecC/Gm corresponds under the equivalence from
Proposition 4.3 to the extended (B, �)-comodule structure on � ⊗B C.

(3) The pullbacksSpecC×X Spec D/Gm andSpec D/Gm×X SpecC are equivalent
to Spec� with � = C ⊗B � ⊗B D and � = D ⊗B � ⊗B C, respectively. If
C = D and the maps B → C coincide, then (C,�) obtains the structure of a
graded Hopf algebroid.

(4) The stack associated with (C,�) is equivalent to X if f C is fpqc.

Proof Recall that Spec B ×X Spec B/Gm � Spec�. Pulling back along the map
SpecC/Gm → Spec B/Gm gives the equivalence in the first item. The second item
follows by the remarks above as we can factor f C into the map SpecC/Gm →
Spec B/Gm and f B . Pulling back the equivalence from the first item along Spec D →
Spec B gives the equivalences in the third item. The pullback SpecC ×X SpecC is of
the form�[u±1] for analogous reasons. By [29, Section 3.3],X is the stack associated
with the (ungraded) Hopf algebroid (C,�[u±1]) and thus also with the graded Hopf
algebroid (C,�). �

We remark that with notation as in the preceding lemma, the identity on � =
C ⊗B � ⊗B D provides us with an equivalence between SpecC ×X Spec D/Gm and
SpecC/Gm ×X Spec D that is compatible with the projections to SpecC/Gm and to
Spec D/Gm .

4.2 Stacks related to elliptic curves

Recall that we are working with the moduli stack of elliptic curves Mell . Let

A := Z[a1, a2, a3, a4, a6] and � := A[r , s, t].
There is an element � ∈ A corresponding to the discriminant for cubical curves; see
e.g. [22, Section III.1] for a precise formula. The stackMell is equivalent to the stack
associated with the gradedWeierstraß Hopf algebroid (A[�−1], �[�−1]) in the sense
recalled in Sect. 4.1. For the precise structure maps, see e.g. [32]; note the name comes
from the fact that this Hopf algebroid is related to Weierstraß equations for elliptic
curves and the right unit ηR comes from change-of-coordinates formulas for these.
Our grading convention is that |ai | = i .

One observes that the structure maps do not use the fact that � was inverted, so
one can consider the graded Weierstraß Hopf algebroid (A, �).

Definition 4.6 Let the moduli stack of cubical curvesMcub be the Artin stack associ-
ated with the graded Weierstraß Hopf algebroid (A, �).

The name is justified, as there is a modular interpretation for this stack, see [5,
Section 3.1], and in particular themorphismSpec A → Mcub classifies theWeierstraß
cubical curve over A given by the usual equation
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y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

We record the relationship with the moduli stack of elliptic curves.

Lemma 4.7 There is a pullback square

Spec A[�−1] Spec A

Mell Mcub

In particular,Mcub containsMell as an open substack and the inclusion is an affine
morphism.

Proof The existence of the pullback square corresponds to the fact that a cubical curve
given by a Weierstraß equation is an elliptic curve if and only if its discriminant � is
invertible.

As noted in the last subsection, Spec A → Mcub is fpqc. Since both being open
immersion and being affine [23, Proposition 14.51] can be checked after faithfully flat
base change, the remaining claims follow. �
Definition 4.8 We define the line bundle ω on Mcub to be the one corresponding to
the shift A[1] under the equivalence between quasi-coherent sheaves on Mcub and
graded (A, �)-comodules. Here, A[1]i = Ai+1 and the comodule structure is induced
by ηL : A[1] → �[1] ∼= � ⊗A A[1].

By [19, (1.2)], our definition of ω agrees with the more geometric definition of
Deligne; in particular, our definition restricts to the corresponding definition onMell

we give in the appendix. By the transformation formulae in [22, Section III.1], it is
easy to see that ηL and ηR agree on � ∈ A12. Thus, � defines a map A → A[12]
of graded (A, �)-comodules and hence a section of ω⊗ 12 on Mcub. Theorem A.16
implies that this � corresponds after restriction to Mell and under the isomorphism
H0(Mell;ω⊗ 12) ∼= MF12(SL2(Z);Z) indeed to the modular form � that we intro-
duced via its q-expansion in “Appendix A.1.1”.

Next, we will need the following easy lemma.

Lemma 4.9 The morphism Spec A/Gm → Mcub is smooth.

Proof As noted in the last subsection, Spec A → Mcub is fpqc. Moreover, � =
A[r , s, t] is smooth over A and Spec� � Spec A×Mcub Spec A/Gm . As smoothness
can be tested after base change along an fpqc morphism [33, Tag 02VL], we obtain
the claim. �

When working at the prime 3, it turns out to be more convenient to work with a
different smooth cover of Mcub = Mcub,Z(3) , namely with Spec Ã → Mcub, where
Ã := Z(3)[a2, a4, a6] and the morphism is given by composition of the canonical
morphism Spec A → Mcub with the one induced by the ring map A → Ã, given by

a1, a3 �→ 0 and ai �→ ai for i ∈ {2, 4, 6}.



Rings of modular forms and a splitting of TMF0(7) Page 27 of 73 7

The cubical curve corresponding to the morphism Spec Ã → Mcub is

y2 = x3 + a2x
2 + a4x + a6.

Note that there are different conventions for simplifying the elliptic or cubical curves
when 2 is inverted. In particular, the convention used in [22] differs from ours.

We want to show that this smooth cover induces a different Hopf algebroid ( Ã, �̃)

with �̃ := Ã⊗A�⊗A Ã representingMcub. Formore details on the explicit description
of ( Ã, �̃), see [32, Section 3]. We will first prove that it is indeed a presentation for
Mcub, and then recall some of the structure maps we will be using later.

Lemma 4.10 At the prime 3, the stack associated to the graded Hopf algebroid
( Ã, �̃) is equivalent to Mcub. In particular, there is an equivalence between quasi-
coherent sheaves on Mcub and graded ( Ã, �̃)-comodules. Moreover, the morphism
Spec Ã/Gm → Mcub is a smooth cover.

Proof We would like to apply Lemma 4.5. Thus, we only have to check that the
composition Spec Ã/Gm → Spec A/Gm → Mcub is fpqc. As explained in Sect. 4.1,
the map Spec A → Mcub is fpqc, so by faithfully flat descent, it is enough to check
that the pullback map Spec A×Mcub Spec Ã/Gm → Spec A is smooth and surjective.
By Lemma 4.5, we can identify the source with Spec�⊗A Ã. By inspection, we arrive
at the isomorphism of A-modules

� ⊗A Ã ∼= A[r , s, t]/(ηR(a1), ηR(a3)).

Using the right unit formulae

ηR(a1) = a1 + 2s,

ηR(a3) = a3 + a1r + 2t,

and the fact that we inverted 2, we get � ⊗A Ã ∼= A[r ]. In particular, this is a smooth
A-algebra and the claim follows. �

By the proof of the previous lemma we obtain

�̃ ∼= Ã⊗A A[r ] ∼= Ã[r ].

The structure formulae for the Hopf algebroid (A, �) determine under this identifica-
tion the formulae

ηR(a2) = a2 + 3r ,

ηR(a4) = a4 + 2ra2 + 3r2,

ηR(a6) = a6 + ra4 + r2a2 + r3,

whereas ηL is the canonical inclusion of Ã.
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Remark 4.11 Note that there is an even easier smooth cover of Mcub coming from
M1(2)cub and a corresponding graded Hopf algebroid yielding Mcub again. For our
approach, it has the following disadvantage: there is no meaningful module struc-
ture on mf1(7) over the corresponding ring. On the contrary, mf1(7) is a Ã-module
corresponding to a cubical curve discussed later.

5 The definition and properties ofM1(7)cub andM0(7)cub

Fix throughout the section an integer n ≥ 2 and the notation

A = Z
[ 1
n

] [a1, a2, a3, a4, a6].

We want to extend the moduli stacks M0(n) = M0(n)
Z

[
1
n

] and M1(n) =
M1(n)

Z

[
1
n

] to algebraic stacks that are finite over Mcub via a normalization con-

struction.

5.1 Definition and basic properties ofM1(n)cub andM0(n)cub

Let us recall the notion of normalization. Let X be an Artin stack and A a quasi-
coherent sheaf of OX -algebras. Let A′ ⊂ A be the presheaf that evaluated on any
smooth SpecC → X consists of those elements in A(SpecC) that are integral over
C . This is an fpqc (and in particular étale) sheaf because being integral for an element
can be tested fpqc-locally (as generating a finite module can be checked fpqc-locally).
Thus, we obtain a sheaf on the subsite of the lisse-étale site of X consisting of affine
schemes (see [21, Section 12] or [33, Tag 0786] for the definition).

Lemma 5.1 This construction has the following properties.

(1) If X = Spec D is affine, then A′ is the quasi-coherent sheaf associated with the
D-algebra that is the normalization of D in A(Spec D).

(2) If p : Y → X is a smooth morphism of Artin stacks, then the map p∗(A′) →
(p∗A)′ is an isomorphism.

(3) The sheaf A′ is quasi-coherent for general Artin stacks X .

Proof Let X = Spec D be affine and let D → C be a smooth map of rings. By [33,
Tag 03GG] and using that A is quasi-coherent we obtain that the canonical map
A′(Spec D)⊗D C → A′(SpecC) is an isomorphism. This implies that A′ is quasi-
coherent in this case.

Let now p : Y → X be a smoothmorphismofArtin stackswithX general again and

let SpecC
q−→ Y be smooth as well. Then both p∗(A′)(SpecC) and (p∗A)′(SpecC)

are computed as the normalization of C in (q∗ p∗A)(C) = A(C).
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Finally, let

SpecC Spec D

X

r

p q

be a 2-commutative diagram where the vertical maps are smooth. To show the quasi-
coherence of A′, we need to show that the natural map

A′(Spec D)⊗D C → A′(SpecC) (5.2)

is an isomorphism. From the above, q∗A′ is quasi-coherent on Spec D. Hence
(r∗q∗A′)(SpecC) can be computed as (q∗A′)(Spec D)⊗D C = A′(Spec D)⊗D C .
Thus we can identify the map (5.2) with the evaluation of the isomorphism r∗q∗A′ ∼=
p∗A′ on SpecC . �
Definition 5.3 We define the normalization of X in A to be the relative Spec of A′
over X . For a quasi-compact and quasi-separated morphism p : Y → X , we define
the normalization of X in Y to be the normalization of X in p∗OY , where p∗ denotes
the pushforward of quasi-coherent sheaves as in [33, Tag 070A].

Directly from Lemma 5.1 and [21, Proposition 13.1.9] we obtain:

Lemma 5.4 Relative normalization commutes with smooth base change.

Recall that the compactifications M0(n) and M1(n) are defined as the normal-
izations of Mell in M0(n) and M1(n), respectively. This motivates the following
definition.

Definition 5.5 We defineM0(n)cub andM1(n)cub as the normalizations ofMcub in
M0(n) and M1(n).

It remains an open problem to provide modular interpretations for M1(n)cub and
M0(n)cub similar to those in [34,35] forM1(n) andM0(n). Moreover, we warn the
reader that there is no reason to expect the map M1(n)cub → M0(n)cub to be the
stack quotient by the natural (Z/n)×-action on the source.

Note that the normalization maps are by definition affine and in the next lemma we
will even show finiteness.

Lemma 5.6 The maps M1(n)cub → Mcub and M0(n)cub → Mcub are finite.

Proof LetX → Mell be an affine map of finite type from a reduced Artin stack. Note
that reducedness is local in the smooth topology [33, Tag 034E] so that we can define
an Artin stack to be reduced if it has a smooth cover by a reduced scheme. We want to
show that the normalization X ′ ofMcub in X is finite overMcub. The relevant cases
for us are X = M1(n) and X = M0(n).

Let Spec A → Mcub be the usual smooth cover. Denote by T the global sections of
the pullbackX ×Mcub Spec A, which is an affine scheme. By Lemma 5.4, the pullback
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X ′ ×Mcub Spec A is equivalent to the spectrum of the normalization A′ of A in T . As
finiteness can be checked after faithfully flat base change, it thus suffices to show that
A′ is a finite A-module.

By [33, Tag 03GR], we just have to check that A is a Nagata ring, Spec T → Spec A
is of finite type and T is reduced. As A is a polynomial ring over a quasi-excellent ring,
it is quasi-excellent again and hence Nagata [33, Tag 07QS]. The second point is clear
by base change. For the last one note that Spec T is equivalent to Spec A[�−1]×MellX
by Lemma 4.7, and also that this pullback is affine. Moreover, Spec A[�−1] → Mell

is smooth by Lemma 4.9. Since being reduced is local in the smooth topology, we
conclude that T is reduced. Hence, we obtain finiteness of A′ over A and thus of X ′
over Mcub. �

5.2 Commutative algebra of rings of modular forms

For structural results about M1(n)cub we need some information about the commu-
tative algebra of rings of modular forms. We will use the abbreviation mf1(n) for
mf(�1(n);Z[ 1n ]). Recall from “Appendix A.5” that mfk(�1(n); R) ∼= H0(M1(n)R;
ω⊗ k) for every subring R ⊂ C and thus we set in general

mfk(�1(n); R) = H0(M1(n)R;ω⊗ k)

for every Z[ 1n ]-algebra R.
Our first goal is to investigate when mf1(n) is Cohen–Macaulay. This will be later

the key to show that for many n the map M1(n)cub → Mcub is flat. Recall that a
noetherian commutative ring R is called Cohen–Macaulay if for every maximal ideal
m ⊂ R the depth of the ideal mRm equals the Krull dimension of Rm.

On the other hand, mf1(n) is a graded ring and it might appear more natural to
consider a graded notion of being Cohen–Macaulay, where graded always means Z-
graded for us. An ideal is called graded if it is generated by homogeneous elements;
this results in the notion of a graded prime ideal and thus also in the notion of graded
Krull dimension. Moreover, a graded ideal is called graded maximal if it is maximal
among all graded ideals. Note that with these definitions, the following lemma is not
completely obvious, but also not hard to show:

Lemma 5.7 Any graded maximal ideal in a graded ring is a graded prime ideal.

Given a graded prime ideal p in a graded ring R, we denote by R(p) the localization
at the multiplicatively closed subset of all homogeneous elements not in p. The graded
depth of an ideal I ⊂ R is the maximal length of a regular sequence of homogeneous
elements in I .

Definition 5.8 A graded noetherian ring R is graded Cohen–Macaulay if for every
graded maximal ideal m ⊂ R the graded depth of mR(m) equals the graded Krull
dimension of R(m).

Note that the graded Krull dimension of R(m) agrees with the Krull dimension of
Rm by [36, Theorem 1.5.8].
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Lemma 5.9 Let R be a graded noetherian ring. Then R is Cohen–Macaulay if it is
graded Cohen–Macaulay.

Proof According to [36, Exercise 2.1.27], R is Cohen–Macaulay if and only if R(p)

is Cohen–Macaulay for every graded prime ideal p ⊂ R. As by [36, Theorem 2.1.3]
being Cohen–Macaulay is preserved by localizations, this happens if and only if R(m)

is Cohen–Macaulay for every graded maximal ideal m ⊂ R. Thus, we may assume
that R contains a unique graded maximal ideal m.

By [36, Exercise 2.1.27] again, it suffices to show that Rm is Cohen–Macaulay.
Let d be the dimension of Rm. By assumption, there is a R(m) = R-regular sequence
x1, . . . , xd inm. A straightforward check shows that the same sequence is also regular
on Rm. This completes the proof.

�
Remark 5.10 By [36, Corollary 2.2.6] every regular ring is Cohen–Macaulay, but the
ring mf1(n) is not regular in general, even over the complex numbers. Indeed, a
maximal ideal of mf1(n)⊗C is generated by all elements of positive degree and thus
needs at least dimCmf1(n)1 ⊗Cmany generators. On the other hand, mf1(n)⊗C has
Krull dimension 2 as in the proof of [4, Theorem 5.14] and thus mf1(n)⊗C can only
be regular if mf1(n)1 ⊗C is of dimension at most 2. This does not happen for n ≥ 7 as
the dimension of mf1(n)1 ⊗C is at least half the number of regular cusps, i.e. at least
1
4

∑
d|n ϕ(d)ϕ( nd ) by [17, Theorem 3.6.1 and Figure 3.3], where ϕ denotes Euler’s

totient function. On the other hand, the rings mf1(n) are polynomial for 2 ≤ n ≤ 6
and in particular regular.

There is the related property of being Gorenstein, which is stronger than Cohen–
Macaulay, but weaker than regular. The values of n for which mf1(n) is Gorenstein
were found by Dimitar Kodjabachev in his thesis [37].

Proposition 5.11 The ring mf1(n) is a Cohen–Macaulay ring if and only if the map
mf1(n)1 → mf1(�1(n);Fl) is surjective for all primes l not dividing n. This happens
if and only if H1(M1(n);ω) is torsionfree.

Proof This follows from [4, Theorem 5.14] and Lemma 5.9. �
Example 5.12 As noted in [4, Remark 3.14], the condition of Proposition 5.11 is equiv-
alent to the non-existence of a cusp form in mf1(�1(n);Fl) that is not liftable to a
cusp form in mf1(n)1. For n ≤ 28, Buzzard [38] shows that only for n = 23 there is
a nonvanishing cusp form in mf1(�1(n);Fl). But [12, Corollary 5.8] shows that on
M1(23) there is an isomorphism �1

M1(23)/Z[ 1n ]
∼= ω. By [4, Proposition 2.11], this

implies that we can identify the reduction map mf1(23)1 → mf1(�1(23);Fl) with
the surjection Z[ 1

23 ] → Fl . (A similar argument also appears in [38].)
Thus, mf1(n) is Cohen–Macaulay for all 2 ≤ n ≤ 28. It is not Cohen–Macaulay

for example for n = 74 or n = 82 (see [4, Remark 3.14]).

In the context of normalizations it is furthermore an important question whether
the rings mf1(n) are normal.

Proposition 5.13 The ring mf1(n) is normal for every n ≥ 2.
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Proof We begin with some recollections on the general commutative algebra of R =
mf1(n). By [4, Proposition 2.13] the ring R is an integral domain so that (0) is its only
prime ideal of height 0.Moreover, R/p is an integral domain for every prime number p
not dividing n because mf(�1(n);Fp) is an integral domain by [4, Proposition 2.13]
and R/p embeds into mf(�1(n);Fp) [4, Remark 3.14]. The same [4, Proposition
2.13] also says that R0 = Z[ 1n ]. We also note that R is noetherian, e.g. as it is finitely
generated over the noetherian ring mf(SL2(Z);Z[ 1n ]) ∼= Z[ 1n ][c4, c6,�]/(1728� =
c34 −c26) [4, Corollary 1.4]. Thus Serre’s normality criterion [39, Théorème 5.8.6] says
that it suffices to show that R = mf1(n) satisfies R1 and S2.

Condition R1 says that for every prime ideal p ⊂ R of height 1, the localization

Rp is regular. Let M1
1(n) → M1(n) be the Gm-torsor over which the line bundle ω

trivializes. By Proposition 3.5, the schemeM1
1(n) is quasi-affine and can be identified

as the complement of the common vanishing locus V (c4,�) of c4 and � in Spec R.
We claim that no point p of height 1 of Spec R can be in V (c4,�), essentially as

this is closed of codimension 2. More precisely, we claim that c4,� form a regular
sequence and thus c4,� ∈ p would imply that the height of p is at least 2 [36,
Proposition 1.2.14]. As R is torsionfree and� is not divisible by any non-unit in Z[ 1n ]
(as can be seen by its q-expansion q−24q2+· · · ), it suffices to show that c4,� forms
a regular sequence in RQ. By [4, Theorem 1.1], RQ is free of finite rank over the ring
S = Q[c4, c6] of modular forms and we see indeed that c4 and � = 1

1728 (c
3
4 − c26)

form a regular sequence in S and hence in RQ.

We conclude that p ∈ M1
1(n) and the localization Rp can be identified with a

stalk inM1
1(n). ButM1

1(n) is smooth over Z[ 1n ] (asM1(n) is smooth over Z[ 1n ] and
Gm-torsors are smooth) and thus regular.

Condition S2 says that the depth of Rp is for every prime ideal p ⊂ R at least the
height of p or at least 2. As R is an integral domain, p has at least depth 1 if it is
nonzero. Thus, we need to show that every prime ideal p of height at least 2 has depth
at least two.

Assume first that p ∈ p for some prime number p. By Krull’s principal ideal
theorem, p cannot be principal and thus it contains some x /∈ (p). As R/p is an
integral domain, p, x is a regular sequence of length 2 in p.

Assumenow that no prime p is inp. ThenpRQ is still a prime ideal andpRQ∩R = p.
Moreover Rp is a Q-algebra, namely the localization of RQ at pRQ. As noted above,
RQ is finite and free over S = Q[c4, c6]. By [36, Theorem A.6], the ideal p ∩ S has
still height 2. As S is regular we can choose a regular sequence of length 2 in p ∩ S
that is automatically also regular in RQ and hence in Rp. �
Example 5.14 The ring mf1(7) ∼= Z[ 17 ][z1, z2, z3]/(z1z2 + z2z3 + z3z1) is no longer
regular by Remark 5.10, but still Cohen–Macaulay by Example 5.12 and normal by
the proposition above.
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5.3 The flatness ofM1(n)cub → Mcub

The two aims of this section are to show thatM1(n)cub agrees with Specmf1(n)/Gm

and that under some conditions M1(n)cub → Mcub is flat. These claims will be
special cases of the more general criterion Proposition 5.15.

Wewill still use our convention that we work implicitly overZ[ 1n ] for a fixed n ≥ 2,
i.e. thatMcub meansMcub,Z[ 1n ] and A = Z[ 1n ][a1, a2, a3, a4, a6] etc. Note moreover

thatMcub → SpecZ[ 1n ] is smooth as Spec A → SpecZ[ 1n ] is. In particular,Mcub is
reduced by [33, Tag 034E].

Proposition 5.15 Let R be a graded ring with a graded ring map A → R. Assume
that the induced map

Spec R[�−1]/Gm → Spec A[�−1]/Gm → Mell

is surjective and RA = � ⊗A R is a finitely generated A-module.

(a) If R is a normal domain, the normalization of Mcub in Spec R[�−1]/Gm is
equivalent to Spec R/Gm.

(b) If R is Cohen–Macaulay, then RA is a flat A-module and thus the morphism
Spec R/Gm → Mcub is flat as well.

Proof We begin with part (a). Let SpecC → Mcub be any smooth map. As
Spec R/Gm → Mcub is by Lemma 4.5 and fpqc descent an affine morphism, the
fiber product SpecC ×Mcub Spec R/Gm is affine again and we denote it by Spec RC .
With the same notation, the fiber product SpecC ×Mcub Spec R[�−1]/Gm is equiva-
lent to Spec RC [�−1]. By the definition of the normalization, we thus must show that
the normalization of C in RC [�−1] equals RC .

As a first step, we will show that the natural maps C → RC [�−1] (and hence
C → RC ) are injections. We can work locally and assume that the pullback of ω to
SpecC is trivialized so that � ∈ H0(Mcub;ω⊗ 12) defines an element of C , well-
defined up to multiplication by a unit. Note further that SpecC is noetherian and
hence it is the disjoint union of finitely many affine components; thus we can assume
moreover that SpecC is connected. As Spec RC [�−1]/Gm → Mell is surjective by
assumption, its base change Spec RC [�−1] → SpecC[�−1] along SpecC[�−1] →
Mell is surjective as well. We see that the kernel of C[�−1] → RC [�−1] lies in the
intersection of all prime ideals, i.e. in the nilradical. AsMcub is reduced and hence C
is reduced as well, it follows thatC[�−1] → RC [�−1] is injective. Thus, it suffices to
show that C → C[�−1] is injective. Note that SpecC is smooth over Z[ 1n ] as Mcub

is. Thus SpecC is regular and its connectedness implies that SpecC is irreducible
by [40, Corollary 10.14] and [23, Exercise 3.16]; hence C is an integral domain.

Furthermore, we show that � ∈ C is nonzero. Indeed, we can check this in
SpecCA ∼= SpecC ×Mcub Spec A. The non-vanishing locus of � in A is dense (as A
is an integral domain) and SpecCA → Spec A is smooth and hence open. Thus, the
image of � in CA is nonzero and � �= 0 in C as well. This implies that C → C[�−1]
and hence C → RC [�−1] are indeed injective.
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According to Lemma 4.5 again, the pullback Spec A ×Mcub Spec R/Gm is equiv-
alent to Spec RA. Thus, Spec R/Gm is finite overMcub. We see that RC is finite over
C and hence every element of RC is integral over C . As R is normal and RC is smooth
over R, also RC is normal [33, Tag 033C]. Thus, every element that is integral over C
(and hence RC ) in RC [�−1] is already in RC . Thus, RC is the normalization of C in
RC [�−1] and we obtain part (a).

For part (b), we observe first that the flatness of Spec RA → Spec A indeed implies
the flatness of Spec R/Gm → Mcub as the former map is by Lemma 4.5 the base
change of the latter map along the fpqc morphism Spec A → Mcub. Moreover it
suffices to show the flatness of the base change RAp = RA ⊗A Ap over Ap for all prime
ideals p in A. We want to envoke Hironaka’s flatness criterion [41, 25.16], by which a
ring extension Ap ⊂ B is automatically flat if B is Cohen–Macaulay and finite as an
Ap-module. The ring RA is Cohen–Macaulay as it is by base change smooth over R and
being Cohen–Macaulay is local in the smooth topology [33, Tag 036B].Moreover, any
localization of a Cohen–Macaulay ring is Cohen–Macaulay again [36, Theorem 2.1.3]
and thus RAp is indeed Cohen–Macaulay. To apply Hironaka’s criterion, it suffices
thus to show that the map Ap → RAp is injective.

We argue similarly to part (a). As A is an integral domain, the map Ap → Ap[�−1]
is an injection. Thus, it suffices to show the injectivity of Ap[�−1] → RAp[�−1]. But
Spec RAp[�−1] → Spec Ap[�−1] is surjective as the base change of Spec R/Gm →
Mell along Spec Ap[�−1] → Mell , and the reducedness of A implies thus that
Ap[�−1] → RAp[�−1] is indeed injective. �

We will apply this criterion to R = mf1(n). While it was already shown that
mf1(n) is always normal and often Cohen–Macaulay in the last section, the next thing
to check is the finiteness of RA over A in this case. A crucial ingredient is the following
proposition.

Proposition 5.16 The mapsM1(n) → Mell andM0(n) → Mell are finite and flat.
In particular, also M1(n) → Mell and M0(n) → Mell are finite and flat. The
degree dn of M1(n) → Mell satisfies dn = n2

∏
p|n(1 − 1

p2
) and M0(n) → Mell

is of degree dn
ϕ(n)

for ϕ Euler’s totient function.

Proof The first part is contained in Theorem 4.1.1 of [34]. For the formula for dn note
that the degree ofM1(n) → Mell agrees with that ofM1(n)C → Mell,C asMell is
connected. As recalled in “Appendix A.2.3”, for n ≥ 5 the analytification ofM1(n)C
agrees with X1(n) and as the generic point of Mell,C has automorphism group of
order 2, the degree dn is twice the degree of X1(n) → X1(1), which is computed
in [17, Sections 3.8+3.9]. The cases n = 2, 3 and 4 are easily computed by hand.

The degree ofM0(n) → Mell agrees with that ofM0(n) → Mell . AsM1(n) →
M0(n) is a (Z/n)×-Galois cover, it has degree ϕ(n). The formula for the degree of
M0(n) → Mell follows. �

Before we come to the next proposition, consider again the Gm-torsor M1
1(n) →

M1(n) that trivializes ω. As H0(M1
1(n),OM1

1(n)
) = mf1(n), we obtain a Gm-

equivariant map M1
1(n) → Specmf1(n) and thus M1(n) → Specmf1(n)/Gm ,
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where the Gm-action on Specmf1(n) corresponds to the standard grading on the ring
of modular forms.

Lemma 5.17 The map M1(n) → Mell → Mcub factors over Specmf1(n)/Gm,
resulting in the following commutative square:

M1(n) Specmf1(n)/Gm

Mell Mcub

j

f f̃

i

Proof Proposition 3.5 yields a commutative square

M1
1(n) Specmf1(n)

Spec A

Mell Mcub

Quotiening byGm gives the result since themap A → mf1(n) is grading preserving
(i.e. |ai | = i). �
Proposition 5.18 The A-module RA = � ⊗A mf1(n) is finitely generated.

Proof Set R = mf1(n). We will use the graded ring map R → A classifying a
Weierstraß equation for the universal elliptic curve overM1(n) and recall the resulting
commutative square from Lemma 5.17:

M1(n) Spec R/Gm

Mell Mcub

j

f f̃

i

As a quasi-coherent sheaf on Spec R/Gm is determined by its graded global sections
as explained in Example 4.2, we see that j∗OM1(n)

is exactly OSpec R/Gm . Consider
the cartesian square

U Spec A

Mell Mcub.

k

q p

i

Note that k is an open immersion onto the complement of the common vanishing
locus V (c4,�) of c4 and� by [22, Proposition III.1.4]. As Spec RA ∼= Spec A×Mcub

Spec R/Gm by Lemma 4.5, we see that RA are the global sections of
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p∗ f̃∗OSpec R/Gm
∼= p∗ f̃∗ j∗OM1(n)

∼= p∗i∗ f∗OM1(n)
.

As p is flat, we have an isomorphism p∗i∗ f∗OM1(n)
∼= k∗q∗ f∗OM1(n)

. As f is
finite flat by the last proposition, q∗ f∗OM1(n)

is a vector bundle. We claim that for
every reflexive sheaf F on U the pushforward k∗F is reflexive and hence coherent.
In particular, this would imply that �(k∗q∗ f∗OM1(n)

) = RA is a finitely generated
A-module if we apply the claim to F = q∗ f∗OM1(n)

.
To finish the proof, let F be a reflexive sheaf on U . It is possible to extend F to a

reflexive sheaf E on Spec A (see e.g. [6, Lemma 3.2]). By [42, Proposition 1.6], we
see that k∗F ∼= k∗k∗E ∼= E as A is normal and the complement V (c4,�) of U has
codimension 2. Thus, k∗F is reflexive. �
Theorem 5.19 For every n ≥ 2, we have an equivalence

M1(n)cub � Specmf1(n)/Gm

and more generallyM1(n)cub,B is equivalent to Specmf(�1(n); B)/Gm for every flat
Z[ 1n ]-algebra B.

Moreover, if mf1(n)1 → mf1(�1(n);Fl) is surjective for all primes l not dividing
n, the map M1(n)cub → Mcub is flat. This is in particular true for all n ≤ 28.

Proof The stack M1
1(n) is representable by an affine scheme for n ≥ 2 (see

e.g. [4, Proposition 2.4, Example 2.5]). As MF1(n) = MF(�1(n);Z[ 1n ]) coincides
with the global sections of OM1

1(n), we obtain M1
1(n) � SpecMF1(n) and thus

M1(n) � SpecMF1(n)/Gm for all n ≥ 2. As M1(n) → Mell is surjective, we
see that SpecMF1(n)/Gm → Mell is surjective as well. Thus the identification
mf1(n)[�−1] ∼= MF1(n) from “Appendix A.1.1” together with the commutative dia-
gram from the Proof of Lemma 5.17 shows the first condition of Proposition 5.15.

Propositions 5.18 and 5.13 imply that we can apply the criterion Proposition 5.15
to conclude that M1(n)cub � Specmf1(n)/Gm . This implies M1(n)cub,B �
Specmf(�1(n); B)/Gm for any flat Z[ 1n ]-algebra B as mf(�1(n); B) ∼= mf1(n)⊗ B
by Lemma 2.1.

The statement about flatness follows again from Proposition 5.15 if we use Propo-
sitions 5.18, 5.11 and Example 5.12. �

Whether a correspondingflatness result exists forM0(n)cub remains open, although
our main algebraic result Theorem 1.5 provides such a result in a special case.

Next we will fix the notation already introduced in the Proof of Proposition 5.15,
specializing to R = mf1(n).

Notation 5.20 For a given n and an A-algebra C , we define RC and SC by the equiv-
alences

Spec RC � SpecC ×Mcub M1(n)cub

Spec SC � SpecC ×Mcub M0(n)cub.

Here we use that by construction M1(n)cub → Mcub and M0(n)cub → Mcub are
affine. We will show in the next lemma that SC = (RC )(Z/n)× .
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As normalization commutes with smooth base change by Lemma 5.4, the stack
M1(n)cub ×Mcub Mell is the normalization ofMell inM1(n), which isM1(n) itself
as M1(n) → Mell is finite by Proposition 5.16. Thus

SpecC ×Mcub M1(n) � Spec RC ×Mcub Mell .

As RC is an A-algebra and Spec A ×Mcub Mell � Spec A[�−1] by Lemma 4.7, we
obtain an equivalence SpecC ×Mcub M1(n) � Spec RC [�−1] that forms a commu-
tative square with defining equivalence of RC and the obvious maps. Similarly, we
obtain SpecC ×Mcub M0(n) � Spec SC [�−1] with the analogous property.
Lemma 5.21 Let C be an A-algebra such that the composite SpecC → Spec A →
Mcub is smooth.

(1) The map SC → R(Z/n)×
C is an isomorphism.

(2) The ring of invariants R(Z/n)×
C[�−1] is projective over C[�−1]. Its rank is precisely the

degree of the map M0(n) → Mell .

A formula for the degree of M0(n) → Mell was recalled in Proposition 5.16.

Proof We start by analyzing the situation after inverting �. As the map M1(n) →
M0(n) is a (Z/n)×-torsor, the pullback

SpecC ×Mcub M1(n) → SpecC ×Mcub M0(n)

is a (Z/n)×-torsor as well. This map can be identified with Spec RC [�−1] →
Spec SC [�−1] and thus the map SC [�−1] → RC [�−1](Z/n)× is an isomorphism. As
Spec SC [�−1] → SpecC[�−1] agrees with the base change of M0(n) → Mell

along SpecC[�−1] → Mell , we see that SC [�−1] is a projective module over
C[�−1], whose rank agrees with the degree of M0(n) → Mell (or equivalently
of M0(n) → Mell ).

Next we want to show that the map SC → (RC )(Z/n)× is an isomorphism. By
Lemma 5.4, SC consists of those elements in SC [�−1] that are integral over C and in
particular SC → SC [�−1] is an injection. For analogous reasons RC → RC [�−1] is
injective as well. Thus, the two maps in the composition

SC → R(Z/n)×
C → R(Z/n)×

C [�−1] ∼= SC [�−1]

are injections. Hence, it remains to show that every element in R(Z/n)×
C is integral over

C to obtain that SC → R(Z/n)×
C is surjective as well.

As RA is a finite A-module by Theorem 5.19, RC ∼= C ⊗A RA is a finiteC-module.
Moreover, C is noetherian as it is smooth and hence finitely presented over the stack
Mcub and the latter is noetherian because A is. Hence, (RC )(Z/n)× is finite over C and
thus every element of it is indeed integral over C . �
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6 Computation of invariants

In order to understand M0(7)cub and M1(7)cub, we will perform in this section
crucial preliminary calculations. Recall that at the prime 3, there is a smooth cover
Spec Ã → Mcub, where Ã := Z(3)[a2, a4, a6] as discussed in Sect. 4.2. This defines
rings RÃ and SÃ as in Notation 5.20. Lemma 5.21 identifies SÃ with the invariants

R(Z/7)×
Ã

. Here and in the following we consider the case n = 7 so that

Spec RÃ � Spec Ã ×Mcub M1(7)cub.

Our main goal in this section is to compute explicitly RÃ together with its (Z/7)×-
action and especially the invariants SÃ. Later we will see that the pushforward of
OM0(n)cub toMcub corresponds under the equivalence fromLemma 4.10 to an ( Ã, �̃)-
comodule structure on SÃ. Thus, the computation of SÃ will be key to our splitting
result Theorem 1.5. Throughout this section, we localize implicitly at the prime 3.

We recall fromSect. 4.2 the gradedHopf algebroid ( Ã, �̃).We have an isomorphism
�̃ ∼= Ã[r ] and ηR is determined under this identification by

ηR(a2) = a2 + 3r ,

ηR(a4) = a4 + 2ra2 + 3r2,

ηR(a6) = a6 + ra4 + r2a2 + r3,

whereas ηL is the canonical inclusion of Ã.
We transform the Tate normal form of the universal cubical curve over

mf1(7) ∼= Z(3)[z1, z2, z3]/(z1z2 + z2z3 + z3z1)

into the Weierstraß form

y2 = x3 + κ(a2)x
2 + κ(a4) + κ(a6),

determining a map κ : Ã → mf1(7) which makes the diagram

Specmf1(7) Spec Ã

M1(7)cub Mcub

κ

commutative. Using Theorem 3.13, we compute this map κ : Ã → mf1(7) to be given
by
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a2 �→ 1

4
α2
1 + α2 = 1

4
(z1 − z2 + z3)

2 − z2z3,

a4 �→ 1

2
α1α3 = 1

2
z1z

2
3(z1 − z2 + z3),

a6 �→ 1

4
α2
3 = 1

4
z21z

4
3.

Using Lemma 4.5 and Lemma 4.10, the map Ã → mf1(7) allows us to rewrite RÃ
as follows:

RÃ
∼= �̃ηR ⊗̃

A
mf1(7).

Proposition 6.1 RÃ is a free Ã-module of rank 48.

Proof Recall that Spec RÃ is the pullback Spec Ã ×Mcub M1(7)cub. The map
M1(7)cub → Mcub is finite and flat by Lemma 5.6, Theorem 5.19 and Example 5.14.
Thus, RÃ is a finite projectivemodule over Ã. As Ã is a polynomial ring over a discrete
valuation ring, the Quillen–Suslin Theorem [43,44] implies that RÃ is already free.
Its rank coincides with the degree of the mapM1(7)cub → Mcub that coincides with
that of the restriction M1(7) → Mell . By Proposition 5.16, this is 72 − 1 = 48. �

We want to identify RÃ with mf1(7)[r ]. The tensor product RÃ
∼= �̃ηR ⊗̃

A
mf1(7)

can be described as

RÃ
∼= mf1(7)[a2, a4, a6, r ]/(ηR(a2) = κ(a2), ηR(a4) = κ(a4), ηR(a6) = κ(a6)).

Looking closely at the formulae, we can eliminate a2, a4, a6 and this yields a ring
isomorphism to mf1(7)[r ]. The resulting composite

λ : Ã ηL ⊗ 1−−−→ �̃ ⊗ Ã mf1(7) ∼= mf1(7)[r ]

defines a rather complicated Ã-module structure. Concretely it is given by:

a2 �→ 1

4
(z1 − z2 + z3)

2 − z2z3 − 3r ,

a4 �→ 1

2
z1z

2
3(z1 − z2 + z3) − 2r

(
1

4
(z1 − z2 + z3)

2 − z2z3 − 3r

)
− 3r2,

a6 �→ 1

4
z21z

4
3 − r

(
1

2
z1z

2
3(z1 − z2 + z3) − 2r

(
1

4
(z1 − z2 + z3)

2 − z2z3 − 3r

)
− 3r2

)

− r2
(
1

4
(z1 − z2 + z3)

2 − z2z3 − 3r

)
− r3.

The map λ corresponds to the projection Spec Ã ×Mcub M1(7)cub → Spec Ã under
the identification of the source with Specmf1(7)[r ].



7 Page 40 of 73 L. Meier, V. Ozornova

Our next aim is to make Proposition 6.1 explicit. More precisely, we claim that
there is an Ã-basis of RÃ of the form X  Xr  Xr2, where X is a 16-element subset
of the image of mf1(7) in RÃ. To prove this, we will use the following graded version
of the Nakayama lemma.

Lemma 6.2 Let R be a nonnegatively graded commutative ring such that R0 is local
with maximal ideal m0. Let m be the homogeneous ideal generated by m0 and the
ideal of all homogeneous elements of positive degree. Let furthermore M and N be
nonnegatively graded R-modules that are finitely generated over R0 in every degree.
Then a map M → N of graded R-modules is surjective if M/m → N/m is surjective.

Proof It suffices to show that N = 0 if N/m = 0. By the usual Nakayama lemma it
suffices to show that N/(m0) is zero. Assume otherwise and let i be the minimal non-
vanishing degree of N/(m0) andhence of N . As (mN )i = m0Ni , we have (N/(m0))i ∼=
(N/m)i . Thus (N/(m0))i vanishes as well. �

Recall the notation σ1 = z1 + z2 + z3 and σ3 = z1z2z3 for elementary symmetric
polynomials in zi .

Lemma 6.3 The subset

X = {1} ∪ {σ1, z2, z3} ∪ {σ 2
1 , σ1z2, σ1z3, z2z3} ∪ {σ 3

1 , σ 2
1 z2, σ

2
1 z3, σ3}

∪ {σ 4
1 , σ 3

1 z2, σ
3
1 z3} ∪ {σ 4

1 z2}.

of RÃ gives an Ã-basis of RÃ of the form X  Xr  Xr2.

Proof As we already know by Proposition 6.1 that RÃ is a free Ã-module of rank 48
and Ã is noetherian, it is enough to show that X  Xr  Xr2 is a generating system
(since it has precisely 48 elements).

We want to apply the graded Nakayama Lemma 6.2 to the ideal I = (3, a2, a4, a6)
in the ring Ã. Thus, it is enough to show that the images of X  Xr  Xr2 form a basis
of RÃ/I . This is done by the following MAGMA code.

F3:=FiniteField(3);
M<z1, z2, z3, r>:=PolynomialRing(F3,4);
ka2:=(z1-z2+z3)ˆ2/4-z2*z3;
ka4:=z1*z3ˆ2*(z1-z2+z3)/2;
ka6:=z1ˆ2*z3ˆ4/4;
la2:=ka2-3*r;
la4:=ka4-2*r*la2-3*rˆ2;
la6:=ka6-r*la4-rˆ2*la2-rˆ3;
RAtildeModI:=quo<M|z1*z2+z2*z3+z3*z1,la2,la4,la6>;
RAtildeModIasVSp, pr:=VectorSpace(RAtildeModI);
Dimension(RAtildeModIasVSp);
sigma1:=z1+z2+z3;
sigma3:=z1*z2*z3;
X:={1, sigma1, z2, z3, sigma1ˆ2, sigma1*z2, sigma1*z3, z2*z3,
sigma1ˆ3, sigma1ˆ2*z2, sigma1ˆ2*z3, sigma3,
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sigma1ˆ4, sigma1ˆ3*z2, sigma1ˆ3*z3, sigma1ˆ4*z2};
Xr:={x*r: x in X};
Xr2:={x*rˆ2: x in X};
IsIndependent(pr(X) join pr(Xr) join pr(Xr2));

Here ka2 denotes κ(a2) and la2 denotes λ(a2) etc. We first check the quotient
RÃ/I to be 48-dimensional as an F3vector space and then show that X  Xr  Xr2 is
linearly independent. �

Now that we have some understanding of RÃ as an Ã-module, we can look at the
(Z/7)×-action on it and the invariants under this action. Recall we have chosen the
generator τ = [3] ∈ (Z/7)× and shown it to act on the zi ∈ mf1(7) via

τ(z1) = −z3,

τ (z2) = −z1,

τ (z3) = −z2.

This grading-preserving action induces an action on RÃ by the identification of its spec-
trum with Spec Ã×Mcub (Specmf1(7)/Gm) via Theorem 5.19 and thus on mf1(7)[r ]
as well. By definition, the projections onto both factors are (Z/7)×-equivariant with
the trivial action on Ã and the action above on mf1(7). Thus, the obvious inclusion
mf1(7) → mf1(7)[r ] is (Z/7)×-equivariant and so is λ : Ã → mf1(7)[r ]. In particu-
lar, τ(λ(a2)) = λ(a2) enforces τ(r) = r + z2z3.

The computation of invariants relies again on MAGMA computations. We will list
now some elements which can be checked to be invariant, and the remainder of the
section is devoted to the proof that these elements actually form a basis of SÃ as an
Ã-module, in particular proving that this module is free.

We consider the elements 1, σ 2
1 , σ 4

1 , σ 2
3 as well as

n4 := σ 2
1 r − z31z3 − z1z

3
2 − z21z

2
3,

σ 2
1 n4 = σ 4

1 r − σ 2
1 · (z31z3 + z1z

3
2 + z21z

2
3),

n6 := σ 2
1 r

2 − 2z31z3r − 2z1z
3
2r − 2z21z

2
3r + 2z31z

3
3 − z21z

4
3

= 2n4r − σ 2
1 r

2 + 2z31z
3
3 − z21z

4
3,

σ 2
1 n6 = σ 2

1 · (σ 2
1 r

2 − 2z31z3r − 2z1z
3
2r − 2z21z

2
3r + 2z31z

3
3 − z21z

4
3),

which we claim to elements in SÃ.
Indeed, to check that the non-obvious elements n4 and n6 are invariant, we use

MAGMA. For the example of n4, we have used the following code:

QQ:=RationalField();
M<z1, z2, z3, r>:=PolynomialRing(QQ,4);
RAtildeQ:=quo<M|z1*z2+z2*z3+z3*z1>;
tau:=hom<M ->RAtildeQ| -z3, -z1, -z2, r+z2*z3>;
proj:=hom<M ->RAtildeQ| z1, z2, z3, r>;
sigma1:=z1+z2+z3;
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n4:=sigma1ˆ2*r -z1ˆ3*z3-z1*z2ˆ3-z1ˆ2*z3ˆ2;
tau(n4)-proj(n4);

Our aim is to prove the following proposition.

Proposition 6.4 The elements

1, σ 2
1 , σ 4

1 , n4, σ
2
1 n4, n6, σ

2
1 n6, σ

2
3

form a Ã-basis of SÃ; in particular, SÃ is a free Ã-module of rank 8.

Proof The proof will proceed in several steps.

Step 1 As a first step, we compute using MAGMA the following expressions for the
listed invariants in terms of the basis X  Xr  Xr2:

1 = 1

σ 2
1 = σ 2

1

σ 4
1 = σ 4

1

n4 = 1

2
σ 3
1 z3 + 4σ 2

1 r − 6σ1z3r − 2a2σ1z3 + a2σ
2
1 − 4a22 + 12a4

n6 = −33

32
σ 4
1 r + 3

8
σ 3
1 z2r + 13

4
σ 3
1 z3r + 233

8
σ 2
1 r

2 − 21

4
σ1z2r

2 − 42σ1z3r
2

+ 3

2
z2z3r

2 − 18a6 − 7

8
a4σ

2
1 − 1

4
a4σ1z2 − a4σ1z3 + 13

2
a4z2z3 + 123

2
a4r

− 11

2
a32 + 11

4
a22σ

2
1 − 1

2
a22σ1z2 − 3a22σ1z3 − 2a22z2z3 − 41

2
a22r

+ 37

2
a2a4 − 11

32
a2σ

4
1 + 1

8
a2σ

3
1 z2 + 3

4
a2σ

3
1 z3 + 67

4
a2σ

2
1 r

− 7

2
a2σ1z2r − 24a2σ1z3r + a2z2z3r

σ 2
1 n4 = −8σ 4

1 r + 6σ 3
1 z2r + 24σ 3

1 z3r + 252σ 2
1 r

2 − 336σ1z3r
2

+ 24a4σ1z2 − 16a4σ1z3 + 96a4z2z3 + 576a4r

− 64a32 + 28a22σ
2
1 − 8a22σ1z2 − 32a22σ1z3 − 32a22z2z3 − 192a22r

+ 192a2a4 − 3a2σ
4
1 + 2a2σ

3
1 z2 + 8a2σ

3
1 z3 + 168a2σ

2
1 r − 224a2σ1z3r

σ 2
3 = 81

64
σ 4
1 r − 3

16
σ 3
1 z2r − 33

8
σ 3
1 z3r − 537

16
σ 2
1 r

2 + 69

8
σ1z2r

2

+ 51σ1z3r
2 − 3

4
z2z3r

2 − 9a6 − 17

16
a4σ

2
1 + 17

8
a4σ1z2 + 1

2
a4σ1z3

− 13

4
a4z2z3 − 267

4
a4r + 27

4
a32 − 27

8
a22σ

2
1 + 1

4
a22σ1z2 + 11

2
a22σ1z3

+ a22z2z3 + 89

4
a22r − 77

4
a2a4 + 27

64
a2σ

4
1 − 1

16
a2σ

3
1 z2 − 11

8
a2σ

3
1 z3

− 179

8
a2σ

2
1 r + 23

4
a2σ1z2r + 34a2σ1z3r − 1

2
a2z2z3r
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σ 2
1 n6 = 5933

3488
σ 4
1 r

2 + 7599

872
σ 3
1 z2r

2 − 255

872
σ 3
1 z3r

2

+ 2997

218
a6σ

2
1 − 11475

109
a6σ1z2 + 816

109
a6σ1z3

− 2339

436
a4σ

4
1 + 4267

1744
a4σ

3
1 z2 + 21951

1744
a4σ

3
1 z3 + 52113

436
a4σ

2
1 r

− 28203

436
a4σ1z2r − 64187

436
a4σ1z3r + 2397

109
a4z2z3r − 13005

218
a4r

2

+ 16659

109
a24 + 11279

1744
a2σ

4
1 r + 789

436
a2σ

3
1 z2r − 7061

436
a2σ

3
1 z3r − 168a2σ

2
1 r

2

+ 224a2σ1z3r
2 + 15373

436
a2a4σ

2
1 − 1077

436
a2a4σ1z2 − 17833

436
a2a4σ1z3

− 6177

109
a2a4z2z3 − 46191

109
a2a4r + 13485

3488
a22σ

4
1 − 2059

1744
a22σ

3
1 z2

− 16675

1744
a22σ

3
1 z3 − 66203

436
a22σ

2
1 r + 9401

436
a22σ1z2r + 86505

436
a22σ1z3r

− 799

109
a22z2z3r + 4335

218
a22r

2 − 51561

218
a22a4 + 13485

218
a42 − 13485

436
a32σ

2
1

+ 2059

436
a32σ1z2 + 16675

436
a32σ1z3 + 2059

109
a32z2z3 + 15397

109
a32r

Step 2Wewant to show that the 8 invariants listed in the statement of the proposition
are Ã-linearly independent elements of RÃ. Since Ã is torsion-free, it is enough to
check linearly independency over Ã⊗ZQ.We observe that there is a non-vanishing
8×8-minor in the 48×8-matrix corresponding to the map Ã8 → RÃ

∼= Ã48 given
by the invariants above. More precisely, after tensoring with Q, the determinant
of the following matrix

1 σ 2
1 σ 4

1 n4 n6 σ 2
1 n4 σ 2

3 σ 2
1 n6⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
σ 2
1 0 1 ∗ ∗ ∗ ∗ ∗ ∗

σ 4
1 0 0 1 ∗ ∗ ∗ ∗ ∗

σ 2
1 r 0 0 0 4 ∗ ∗ ∗ ∗

σ 4
1 r 0 0 0 0 − 33

32 −8 81
64 ∗

σ1z2r2 0 0 0 0 − 21
4 0 69

8 ∗
z2z3r2 0 0 0 0 3

2 0 − 3
4 ∗

σ 4
1 r

2 0 0 0 0 0 0 0 5933
3488
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is invertible in Ã ⊗Z Q. On the left, we recorded the elements of our chosen
basis to which the selected 8 out of 48 rows correspond. This shows that the map
( Ã ⊗Z Q)8 → RÃ ⊗Z Q given by the invariants above is an inclusion of a direct
Ã ⊗Z Q-summand.

Thus, we have shown that the 8 invariants listed above are Ã-linearly independent
elements of RÃ, so they generate a free sub- Ã-module of RÃ of rank 8, which we
denote by V .

Step 3 Our next goal is to show that this module V is already all of SÃ when

tensored with Q. Recall that we identify SÃ with R(Z/7)×
Ã

as in Lemma 5.21 and

likewise SÃ⊗Q
with R(Z/7)×

Ã⊗Q
.

Moreover, there is an isomorphism SÃ⊗Q
∼= SÃ ⊗Z Q since RÃ ⊗Z Q can be

written as a directed colimit of the form

RÃ
·2−→ RÃ

·3−→ . . .

and directed colimits commutewith finite limits in the finitely presentable category
of abelian groups (see e.g. [45, Proposition 1.59]).
As the order of (Z/7)× is invertible in Ã ⊗ Q, the invariants SÃ⊗Q

are a direct
summand of the free Ã ⊗ Q-module RÃ⊗Q

and thus projective. By the Quillen–
Suslin Theorem, it implies that SÃ⊗Q

is also free, automatically of rank 8 as this
is true after inverting � by the second part of Lemma 5.21.
Since the map V ⊗Q → RÃ⊗Q is split injective, so is the map V ⊗Q → SÃ⊗Q.
Since we have shown now both sides to be free Ã ⊗Z Q-modules of rank 8, this
map is also surjective and thus an isomorphism.

Step 4 In this step, we reduce the proof of the proposition to showing that the
map V → SÃ (or to RÃ) is injective when we tensor it with F3. This will
imply the surjectivity of V → SÃ. Indeed, let x ∈ SÃ be some element. By
the rational statement, we know that there is an element y in V and k ∈ N

such that 3k x = y. If k = 0, we are done; otherwise we can conclude that
y is mapped to 0 in RÃ after tensoring with F3, so by injectivity of the map
V ⊗ F3 → RÃ ⊗ F3 it can be divided by 3 in V . Inductively, this implies the
claim.
Step 5 Finally, we show that the map V → RÃ is still injective after tensoring
with F3. We do a similar computation for F3 as we did above rationally. This
time, we consider the following 8 × 8-minor of the 48 × 8-matrix describing the
inclusion V → RÃ, again with the corresponding basis elements displayed on the
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left:

1 σ 2
1 σ 4

1 n4 n6 σ 2
1 n4 σ 2

3 σ 2
1 n6⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
σ 2
1 0 1 ∗ ∗ ∗ ∗ ∗ ∗

σ 4
1 0 0 1 ∗ ∗ ∗ ∗ ∗

σ 2
1 r 0 0 0 4 67

4 a2 168a2 − 179
8 a2 ∗

σ 3
1 z3 0 0 0 1

2
3
4a2 8a2 − 11

8 a2 ∗
σ 4
1 r 0 0 0 0 − 33

32 −8 81
64 ∗

σ 3
1 z3r 0 0 0 0 13

4 24 − 33
8 ∗

σ 4
1 r

2 0 0 0 0 0 0 0 5933
3488

Its determinant is a rational multiple of a2 not divisible by 3. It shows that the map
V → RÃ is still injective after tensoring with F3, as desired. This completes the
proof of V = SÃ. �

7 Comodule structures

Recall from Sect. 4.2 that we denote by Ã the ring Ã = Z(3)[a2, a4, a6]. Recall
moreover that we obtain a graded Hopf algebroid ( Ã, �̃) representingMcub,Z(3) , and
that quasi-coherent sheaves onMcub,Z(3) are equivalent to graded ( Ã, �̃)-comodules.
Thus it suffices for our main algebraic theorem to provide an isomorphism of certain
comodules, which will describe explicitly.

Throughout this section we will again (implicitly) localize everything at the prime
3. Moreover, we will denote by fn the natural map M1(n) → Mell and by f ′

n the
resulting map M1(n)cub → Mcub from the normalization. In the case n = 2, we
will use the abbreviations f = f2 and f ′ = f ′

2. Lastly, we use hn for the natural map
M0(n) → Mell and h′

n for the resulting map M0(n)cub → Mcub.

7.1 The comodule corresponding to f∗f∗O

Wewill useO as a shorthand notation for the structure sheaf onMell orMcub. Recall
that the map f ′ : M1(2)cub → Mcub is affine by construction. This implies that
the pushforward sheaf ( f ′)∗( f ′)∗O is quasi-coherent. By the discussion above, it is
equivalent to a certain ( Ã, �̃)-comodule.
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At the prime 3, the universal elliptic curve with a �1(2)-structure has an equation
of the form

y2 = x3 + b2x
2 + b4x

with (0, 0) being the chosen point of order 2, resulting in an identification M1(2) �
SpecZ(3)[b2, b4,�−1]/Gm (see e.g. [9, Section 1.3]). As in [4, Example 2.1] one can
deduce mf1(2) ∼= Z(3)[b2, b4]. The resulting Ã-module structure is given by

a2 �→ b2 and a4 �→ b4 and a6 �→ 0.

The corresponding ( Ã, �̃)-comodule is given by �̃⊗ Ãmf1(2)with extended comodule
structure by Lemma 4.5. In this tensor product, we use the right Ã-module structure
of �̃. A similar computation to the following appears in [32].

Lemma 7.1 There is a ring isomorphism �̃⊗ Ãmf1(2) ∼= Ã[r ]/(a6+a4r+a2r2+r3),
and the comodule structure is an Ã-module map determined by r �→ 1 ⊗ r + r ⊗ 1
(and ai �→ ai ⊗ 1).

Forgetting the ring structure, we can identify this comodule with the free Ã-module
Ãw1 ⊕ Ãw2 ⊕ Ãw3 with ( Ã, �̃)-comodule structure given by

w1 �→ 1 ⊗ w1,

w2 �→ 1 ⊗ w2 + r ⊗ w1,

w3 �→ 1 ⊗ w3 + 2r ⊗ w2 + r2 ⊗ w1.

Proof Using the formulae for ηR , we obtain a ring isomorphism

�̃ ⊗ Ã mf1(2) ∼= Ã[r , b2, b4]/(R),

where the relations R are generated by

a2 + 3r = b2,

a4 + 2a2r + 3r2 = b4,

a6 + a4r + a2r
2 + r3 = 0.

This immediately implies the first claim.
The first statement about the comodule structure is straightforward since �̃ ⊗ Ã

mf1(2) carries the extended comodule structure.
For the second description of the comodule structure, observe that there is an iso-

morphism of Ã-modules

Ãw1 ⊕ Ãw2 ⊕ Ãw3 → Ã[r ]/(a6 + a4r + a2r
2 + r3)

given by wi �→ r i−1. Thus, to identify the comodule structure, we only need to
compute it on 1, r , r2 on the right-hand side and transfer it via this isomorphism, using
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the compatibility of the comodule structure with the ring structure of Ã[r ]/(a6+a4r+
a2r2 + r3). This yields the claim. �

We will now identify the dual HomO( f∗ f ∗O,O) of the vector bundle f∗ f ∗O
on Mell , which will be useful in the next section. Actually, we will identify rather
HomO( f ′∗( f ′)∗O,O) instead, working on Mcub. As Mell sits as an open substack
inMcub, this directly implies the computation ofHomO( f∗ f ∗O,O).

For the identification, we use the translation into comodules. While this translation
is valid for an arbitrary graded Hopf algebroid, we formulate it in terms of ( Ã, �̃).
Given a graded left ( Ã, �̃)-comodule M that is finitely generated free as a Ã-module,
we can define a right comodule structure on Hom Ã(M, Ã), whose coaction is given
as in [31, Definition A1.1.6] by the composite of

Hom Ã(M, Ã)
�̃ ⊗(−)−−−−→ Hom Ã(�̃ ⊗ Ã M, �̃)

�∗
M−−→ Hom Ã(M, �̃)

with the inverse of the isomorphism

Hom Ã(M, Ã)⊗ Ã �̃
∼=−→ Hom Ã(M, �̃).

Using the conjugation c on �̃ we can transform this into a left comodule.

Lemma 7.2 Let (M, ψM ) be the graded left ( Ã, �̃)-comodule corresponding to a vec-
tor bundle F onMcub under the equivalence from Lemma 4.10. Then the graded left
( Ã, �̃)-comodule Hom Ã(M, Ã) corresponds under the same equivalence to the sheaf
HomOMcub

(F ,OMcub ).

Proof Recall that M = F(Spec Ã) and the maps ηL , ηR : Ã → �̃ define isomor-
phisms

�̃ ⊗ Ã M
∼=−→ F(Spec �̃)

∼=←− M ⊗ Ã �̃.

The composite of the isomorphisms T (from right to left) with the natural morphism
i : M → M ⊗ Ã �̃ is by construction ψM .

One can show that the sheaf HomOMcub
(F ,OMcub ) corresponds to the comod-

ule Hom Ã(M, Ã) with the structure map ψHom that makes the following diagram
commute:

Hom Ã(M, Ã) Hom�̃(M ⊗ Ã �̃, �̃)

�̃ ⊗ Ã Hom Ã(M, �̃) Hom�̃(�̃ ⊗ Ã M, �̃)

ψHom (T−1)∗
∼=

There is a further isomorphism �̃ ⊗ Ã M ∼= M ⊗ Ã �̃, interchanging the two factors
and applying the conjugation to �̃. As the conjugation on �̃ interchanges the roles of



7 Page 48 of 73 L. Meier, V. Ozornova

ηL and ηR , we can identify the composite

�̃ ⊗ Ã M ∼= M ⊗ Ã �̃
T−→ �̃ ⊗ Ã M ∼= M ⊗ Ã �̃

with T−1.
Using this ingredient, a lengthy diagram chase shows that ψHom agrees with the

comodule structure map of Hom Ã(M, Ã) described above. �
Lemma 7.3 The dual of f ′∗( f ′)∗O is isomorphic to f ′∗( f ′)∗ω⊗(−4).

Proof Observe that the conjugation on �̃ is given by ai �→ ηR(ai ) and r �→ −r
because it corresponds on the level of represented functors to inverting an isomorphism
between Weierstraß curves. Inserting this into the above description of the internal
hom and using Lemma 7.1, we arrive at the following left comodule structure on
Ãw∗

1 ⊕ Ãw∗
2 ⊕ Ãw∗

3:

Ãw∗
1 ⊕ Ãw∗

2 ⊕ Ãw∗
3 −→ �̃ ⊗ Ã

(
Ãw∗

1 ⊕ Ãw∗
2 ⊕ Ãw∗

3

)
w∗
1 �→ 1 ⊗ w∗

1 − r ⊗ w∗
2 + r2 ⊗ w∗

3
w∗
2 �→ 1 ⊗ w∗

2 − 2r ⊗ w∗
3

w∗
3 �→ 1 ⊗ w∗

3 .

Lookingmore closely shows that this comodule is actually isomorphic to Ãw1⊕ Ãw2⊕
Ãw3 as an ungraded comodule from Lemma 7.1 via the following isomorphism:

w1 �→ w∗
3, w2 �→ −1

2
w∗
2, w3 �→ w∗

1 .

This map shifts grading by 4. As ω⊗(−4) is the line bundle corresponding to the
shift A[−4] under the equivalence between quasi-coherent sheaves on Mcub and
graded (A, �)-comodules, this implies by the monoidality of the equivalence in
Proposition 4.3 an isomorphism HomO( f ′∗( f ′)∗O,O) ∼= f ′∗( f ′)∗O⊗ ω⊗(−4). By
the projection formula this yields the result. �

7.2 The comodules corresponding to (f7)∗(f7)∗O and (h7)∗(h7)∗O

Recall from Proposition 2.4 the 3-local isomorphism mf1(7) ∼= Z(3)[z1, z2, z3]/(σ2).
Again by Lemma 4.5 we obtain that the quasi-coherent sheaf ( f ′

7)∗( f ′
7)

∗O on Mcub

corresponds to the extended ( Ã, �̃)-comodule structure on RÃ
∼= �̃⊗ Ãmf1(7). Recall

further from the beginning of Sect. 6 the induced Ã-module structure on mf1(7)[r ]
from the identification RÃ

∼= mf1(7)[r ].
Lemma 7.4 Consider the natural morphism f7 : M1(7)cub → Mcub. Under the
ring isomorphism RÃ

∼= Z(3)[z1, z2, z3, r ]/(σ2) the ( Ã, �̃)-comodule structure cor-
responding to ( f7)∗( f7)∗O is completely determined by

zi �→ 1 ⊗ zi , for i ∈ {1, 2, 3},
r �→ 1 ⊗ r + r ⊗ 1.
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Recall that we identified SÃ
∼= (RÃ)(Z/7)× (cf. Lemma 5.21) in Proposition 6.4 as

an Ã-module with a free 8-dimensional Ã-module with basis

1, σ 2
1 , σ 4

1 , n4, σ
2
1 n4, n6, σ

2
1 n6, σ

2
3 .

As (h′
7)∗(h′

7)
∗O injects into ( f7)∗( f7)∗O, the corresponding comodule structure on

SÃ is that of a subcomodule of RÃ. Concretely, we obtain the following:

Lemma 7.5 The graded ( Ã, �̃)-comodule structure on SÃ is given by

1 �→ 1 ⊗ 1,

σ 2
1 �→ 1 ⊗ σ 2

1 ,

σ 4
1 �→ 1 ⊗ σ 4

1 ,

n4 �→ 1 ⊗ n4 + r ⊗ σ 2
1 ,

σ 2
1 n4 �→ 1 ⊗ σ 2

1 n4 + r ⊗ σ 4
1 ,

n6 �→ 1 ⊗ n6 + 2r ⊗ n4 + r2 ⊗ σ 2
1 ,

σ 2
1 n6 �→ 1 ⊗ σ 2

1 n6 + 2r ⊗ σ 2
1 n4 + r2 ⊗ σ 4

1 ,

σ 2
3 �→ 1 ⊗ σ 2

3 .

Proof This follows from Lemma 7.4 and Proposition 6.4 by a straightforward com-
putation. �

7.3 The conclusion

We continue to work 3-locally.

Proposition 7.6 There is an isomorphism of graded ( Ã, �̃)-comodules

Ã ⊕ (�̃ ⊗ Ã mf1(2))[2] ⊕ (�̃ ⊗ Ã mf1(2))[4] ⊕ Ã[6] → SÃ,

given by

1 Ã �→ 1,

w1[2] �→ σ 2
1 ,

w2[2] �→ n4,

w3[2] �→ n6,

w1[4] �→ σ 4
1 ,

w2[4] �→ σ 2
1 n4,

w3[4] �→ σ 2
1 n6,

1 Ã[6] �→ σ 2
3 .
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Proof This follows by inspection from Lemma 7.1 and Lemma 7.5. �
This implies our main algebraic theorem by the equivalence of ( Ã, �̃)-comodules

and quasi-coherent sheaves on Mcub,Z(3) from Proposition 4.10:

Theorem 7.7 There is 3-locally an isomorphism

(h′
7)∗OM0(7)cub

∼= OMcub ⊕ ω⊗(−6) ⊕
(
( f ′)∗OM1(2)cub ⊗ ω⊗(−2)

)

⊕
(
( f ′)∗OM1(2)cub ⊗ ω⊗(−4)

)

of vector bundles on Mcub.

By restricting to the open substack Mell,(3), this implies Theorem 1.5.

8 Topological conclusions

Recall from [7] that one obtains the spectrum Tmf as the global sections of a sheaf of
E∞-ring spectra Otop on the étale site of Mell . Given any sheaf of spectra F on the
étale site of any Deligne–Mumford stack X , there is a descent spectral sequence

Hq(X ;πpF) ⇒ πp−q(F(X )),

where π∗F denotes the sheafification of the naive presheaf of homotopy groups [7,
Chapter 5].We have π2p−1Otop = 0 and π2pOtop ∼= ω⊗ p and in particular π0Otop ∼=
OMell

. Thus the descent spectral sequence takes the form

Hq(Mell;ω⊗ p) ⇒ π2p−q Tmf .

In general, the edge homomorphism takes the form πn(F(X )) → (πnF)(X ). In the
case of Otop, this produces a morphism π2n Tmf → mfn(SL2(Z);Z), which is not
an isomorphism integrally even for n ≥ 0.

Actually, the approach of [7, Chapter 12] defines sheaves of E∞-ring spectraOtop
R

on Mell,R for every localization R of the integers by varying the set of primes in the
arithmetic square following Remark 1.6 in op. cit. By construction, π∗Otop

R is again
concentrated in even degrees with π2kOtop

R being the pullback of ω⊗ k to Mell,R . As
R is a filtered colimit over the integers, we can form the analogous filtered homotopy
colimit over Tmf to obtain a spectrum Tmf R with π∗ Tmf R ∼= (π∗ Tmf)⊗ R. As
homotopy colimits do not commute with global sections in general, we have to prove
the following lemma about the global sections �(Otop

R ) = Otop
R (Mell,R).

Lemma 8.1 The map Tmf → �(Otop
R ) factors over an equivalence Tmf R →

�(Otop
R ).

Proof The map (Mell,R,Otop
R ) → (Mell ,Otop) induces a map of descent spectral

sequences in the opposite direction. As R is flat over Z and cohomology commutes
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with flat base change, this map of spectral sequences is just tensoring with R. The
map converges moreover to a map π∗ Tmf → π∗(Otop

R (Mell,R)) and we claim that
the induced map

π∗ Tmf ⊗ R ∼= π∗ Tmf R → π∗�(Otop
R )

is an isomorphism. This is true because the E∞-pages of these descent spectral
sequences are concentrated in finitely many lines, either by computation [46] or con-
ceptually as in [47, Theorem 3.14]. As �(Otop

R ) is an R-local spectrum, the map
Tmf → �(Otop

R ) factors over a map Tmf R → �(Otop
R ) that induces exactly the

isomorphism above on π∗ and is thus an equivalence. �
To avoid cluttering the notation, we will setMell = Mell,R and Tmf = Tmf R etc.

in the following.
We will work in the homotopy category of Otop-modules. We denote the derived

smash product overOtop by ⊗Otop and the internal Hom in this category byHomOtop

(see [12, Section 2.2] for details on the latter). Given twoOtop-modules F and G, we
denote by [F ,G]Otop

the morphism set in the homotopy category and this coincides
with π0 of the global sections HomOtop (F ,G) of the sheaf of spectraHomOtop (F ,G).

Definition 8.2 AnOtop-moduleF is locally free of rank n if there is an étale covering
{Ui → Mell} such that F restricted to Ui is equivalent to

⊕
n Otop|Ui .

Lemma 8.3 Let F and G be Otop-modules and assume F to be locally free.

(1) The homotopy groups πpF are zero for p odd and isomorphic to π0F ⊗ ω⊗ p
2

for p even.
(2) The map πpHomOtop (F ,G) → HomOMell

(π0F , πpG) is an isomorphism for

every p ∈ Z.

Proof The sheaf πpF vanishes for p odd as it vanishes locally. For p even, we can
write πpF ∼= π0�

−pF ∼= π0
(
�−pOtop ⊗Otop F)

. The map

ω⊗ p
2 ⊗ π0F ∼= π0�

−pOtop ⊗π0Otop π0F → π0
(
�−pOtop ⊗Otop F) ∼= π0�

−pF

is an isomorphism as it is an isomorphism locally when F � (Otop)n .
For the second part, we argue similarly that the map

πpHomOtop (F ,G) → HomOMell
(π0F , πpG)

is an isomorphism as it is one locally when F � (Otop)n . �
A related lemma to the following already appears in [24, Lemma 2.2.2].

Lemma 8.4 Let A be a sheaf of Otop-algebras on Mell that is locally free of rank n
as an Otop-module. There is a trace map

trA : A → Otop
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such that the composite trA u with the unit map

u : Otop → A

equals multiplication by n.

Proof Consider the composite

trA : A → HomOtop (A,A)
�←− A⊗Otop HomOtop (A,Otop)

ev−→ Otop.

Here, the middle map is an equivalence because A is locally free of finite rank. We
claim that the composite

trA u : Otop → Otop

equals multiplication by n.
Note first that the map

π0 : [Otop,Otop]Otop → Homπ0Otop (π0Otop, π0Otop)

is a bijection. Indeed, the source agrees with π0�(Otop) = π0 Tmf and the morphism
is the edge homomorphism of the descent spectral sequence for

HomOtop (Otop,Otop) � Otop.

It can be deduced from [46, Section 3, Figure 11, Figure 26] that this edge homomor-
phism is an isomorphism, i.e. that the E∞-term contains in the zeroth column only a
Z in line 0 and nothing above it (see also the proof of [48, Lemma 4.9] for a different
approach). Thus, it is enough to show that trA u is multiplication by n on π0.

As A is locally free,

π0A⊗OMell
π0HomOtop (A,Otop) → π0(A⊗Otop HomOtop (A,Otop))

is locally and hence globally an isomorphism. Note that the source is naturally
isomorphic to π0A⊗OMell

HomOMell
(π0A,OMell

) by Lemma 8.3. Using these iso-

morphisms it can be checked that π0 trA : π0A → π0Otop agrees with the trace map
of π0A over π0Otop = OMell

. Its precomposition with π0u equals n as it does locally
(since we get exactly the trace of the identity map of a free module of rank n). This
shows the claim. �

Now we assume that 1
2 ∈ R. We will need the following variant of [49, Lemma

5.2.2]. Recall that we denote by f the natural map M1(2) → Mell . By [11], we
have a sheaf of E∞-ring spectraOtop

M1(n)
on the étale site of everyM1(n). We denote

by f∗ f ∗Otop the sheaf f∗Otop

M1(n)
on Mell , i.e. the one associating with every étale

map U → Mell the E∞-ring spectrum Otop

M1(2)
(U ×Mell

M1(2)). By the proof
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of [12, Theorem 3.5] the odd homotopy of f∗ f ∗Otop vanishes and π2i f∗ f ∗Otop ∼=
f∗ f ∗ω⊗ i . This implies in paticular that f∗ f ∗Otop is locally free.

Lemma 8.5 Let F be a locally free Otop-module on Mell of finite rank. Let
galg : f∗ f ∗ω⊗(−i) → π0F be a split injection. Then galg can be uniquely realized by
a split map

g : �2i f∗ f ∗Otop → F

with π0g = galg.

Proof Using Lemma 8.3 and the projection formula, we reduce to the case i = 0 by
possibly suspending F to simplify notation.

We will use our earlier identification in Lemma 7.3 of the dual of the vector bundle
f∗ f ∗OMell

∼= f∗OM1(2)
with ω⊗(−4) ⊗OMell

f∗OM1(2)
∼= f∗ f ∗ω⊗(−4). As πpF is

locally free and using Lemma 8.3, this implies

πpHomOtop ( f∗ f ∗Otop,F) ∼= HomOMell
( f∗ f ∗OMell

, πpF)

∼= f∗ f ∗ω⊗(−4) ⊗Mell
πpF

∼= f∗ f ∗(ω⊗(−4) ⊗Mell
πpF).

As f is affine and every quasi-coherent sheaf on M1(2) has cohomology at most in
degrees 0 and 1 by [4, Proposition 2.4(4)], the descent spectral sequence

Hq(Mell;πpHomOtop ( f∗ f ∗Otop,F)) ⇒ πp−q HomOtop ( f∗ f ∗Otop,F)

is concentrated in the lines 0 and 1. Moreover, the E2-term is zero for p odd and thus
the edge homomorphism

[ f∗ f ∗Otop,F]Otop = π0 HomOtop ( f∗ f ∗Otop,F) → HomOMell
( f∗ f ∗OMell

, π0F)

is an isomorphism.
Similarly, one shows that

[F , f∗ f ∗Otop]Otop = π0 HomOtop (F , f∗ f ∗Otop) → HomOMell
(π0F , f∗ f ∗OMell

)

is an isomorphism. The lemma follows. �
Recall that we denote the natural map M0(7) → Mell by h. By the work of [11],

we have a sheaf of E∞-ring spectraOtop

M0(7)
on the étale site ofM0(7) and we denote

by h∗h∗Otop its pushforward toMell along h.

Theorem 8.6 We can decompose Tmf0(7)(3) as a TMF(3)-module into

Tmf(3) ⊕�4 Tmf1(2)(3) ⊕ �8 Tmf1(2)(3) ⊕ L,
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where L ∈ Pic(Tmf(3)), i.e. L is an invertibleTmf(3)-module. There is a corresponding
splitting

h∗h∗Otop
(3) � Otop

(3) ⊕ �4 f∗ f ∗Otop
(3) ⊕ �8 f∗ f ∗Otop

(3) ⊕ L

for a certain invertible Otop
(3) -module L.

Proof Throughout this proof, we will implicitly localize at 3. By Lemma 8.4, the unit
map Otop → h∗h∗Otop splits off as an Otop-module; denote the cofiber by F . Note
that πkF = 0 for k odd. By Theorem 7.7,

π0F ∼= ω⊗(−6) ⊕ f∗ f ∗ω⊗(−2) ⊕ f∗ f ∗ω⊗(−4).

By Lemma 8.5, we obtain a decomposition

F ∼= L ⊕ �4 f∗ f ∗Otop ⊕ �8 f∗ f ∗Otop

with π0L ∼= ω⊗(−6). As a summand of a locally free module, L is locally free as
well and thus an invertible Otop-module as it has rank 1. We obtain our result by
taking global sections because the global sections of h∗h∗Otop are Tmf0(7). To see
that L = �(L) is an invertible Tmf-module, we use that the global sections functor

� : QCoh(Mell ,Otop) → Tmf −mod

is a symmetric monoidal equivalence of ∞-categories by one of the main results
of [14]. �

In “Appendix B” we will identify this invertible TMF(3)-module L precisely. In
particular, we will show that LQ � �12 TmfQ and L ∧Tmf TMF � �36 TMF. This
implies directly that L is not just a suspension of Tmf(3). Moreover, we obtain together
with the 8-fold periodicity of TMF1(2) the following corollary.

Corollary 8.7 We can decompose TMF0(7)(3) as a TMF(3)-module into

TMF(3) ⊕�4 TMF1(2)(3) ⊕ TMF1(2)(3) ⊕ �36 TMF(3).
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Appendix A: Modular forms and q-expansions

The aim of this appendix is to review several different definitions of modular forms
(complex-analytic, in the sense of Katz and via stacks) and compare them via explicit
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isomorphisms. Moreover, we will repeat this for modular forms with respect to the
congruence subgroup �1(n) and the corresponding algebraic definition via the moduli
stack of elliptic curves with level structure. We have no claim of originality here. The
main reason for writing this appendix anyhow is the existence of two different versions
of level structures, often called naive and arithmetic, whose precise relationship has
confused at least the authors in the past. In particular, we will deduce a q-expansion
principle for the naive level structure, namely Theorem A.19.

We have based our treatment on [17,26,50] and [51, Section 2], of which we rec-
ommend especially the first two as an introduction to modular forms. We also refer
to [52] for a thorough treatment of the geometry on the analytic side.

A.1 Modular forms

In this section, we will give three definitions of modular forms and compare them.

A.1.1 Analytic definition of modular forms

We start by recalling the classical definition of modular forms. Let f be first any
1-periodic holomorphic function H → C. Then there is a well-defined holomorphic
function g : D\{0} → C satisfying f (z) = g(e2π i z), where D denotes the open unit
disk.We say that f is holomorphic/meromorphic at ∞ if and only if g can be extended
holomorphically/meromorphically to 0. In these cases, we call the Laurent expansion
of g at 0 the classical q-expansion of f (at ∞).

Given a matrix γ =
(
a b
c d

)
∈ GL2(R) with positive determinant, an integer k and

an arbitrary function f : H → C, one defines a new function f [γ ]k as follows:

f [γ ]k : H → C

z �→ (cz + d)−k f

(
az + b

cz + d

)
.

By [17, Lemma 1.2.2], we have ( f [γ ]k)[γ ′
k] = f [γ γ ′]k for γ, γ ′ ∈ SL2(Z) and the

same proof works actually for arbitrary γ, γ ′ ∈ GL2(R) of positive determinant. We
say that a holomorphic function f : H → C for a fixed k is holomorphic/meromorphic
at all cusps if f [γ ]k is 1-periodic and holomorphic/meromorphic at ∞ for all γ ∈
SL2(Z).

Let �1(n) ⊂ SL2(Z) be the subgroup of matrices that reduce to a matrix of the

form

(
1 ∗
0 ∗

)
modulo n. Note that for n = 1, we obtain �1(1) = SL2(Z). We denote

by mfk(�1(n);C) the set of holomorphic functions f : H → C that satisfy

f

(
az + b

cz + d

)
= (cz + d)k f (z) for every z ∈ H and

(
a b
c d

)
∈ �1(n) (A.1)
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and are holomorphic at all cusps. Note that it is automatic that f [γ ]k is 1-periodic

for all γ ∈ SL2(Z) as γ

(
1 1
0 1

)
γ −1 ∈ �1(n). Elements of mfk(�1(n);C) are called

holomorphic modular forms of weight k for �1(n). If we instead require f to be
meromorphic at all cusps, we speak of meromorphic modular forms of weight k and
denote the set of these by MFk(�1(n);C).

For a subring R0 ⊂ C, we denote byMFk(�1(n); R0) the subset of MFk(�1(n);C)

of modular forms with coefficients of classical q-expansion of f lying in R0 and we
use the notation mfk(�1(n); R0) analogously.

We note that the multiplication of functions induces a multiplication on the direct
sumMF(�1(n); R0) = ⊕

k∈ZMFk(�1(n); R0), making it into a graded ring of modu-
lar forms.Theq-expansion defines a ring homomorphismMF(�1(n); R0) → R0((q)).

An important example of a modular form is the modular discriminant � ∈
mf12(SL2(Z);Z)with q-expansion q−24q2+· · · . From the q-expansion we see that
for every meromorphic modular form f ∈ MFk(SL2(Z); R0), there is a k > 0 such
that�k f is a holomorphic modular form.Moreover,� vanishes nowhere on the upper
half-plane [17, Corollary 1.4.2] so that �−1 is a meromorphic modular form over Z
again. We see that mf(SL2(Z); R0)[�−1] → MF(SL2(Z); R0) is an isomorphism.
As �[γ ]12 = � for all γ ∈ SL2(Z), we can repeat the argument above to see that
mf(�1(n); R0)[�−1] → MF(�1(n); R0) is an isomorphism for all n and similarly for
other congruence subgroups of SL2(Z).

A.1.2 Algebro-geometric definitions of modular forms

For the algebro-geometric definitions of modular forms, we will concentrate in this
part on the situation without level, i.e. the one corresponding to modular forms for
SL2(Z). We denote for a (generalized) elliptic curve p : E → T the quasi-coherent
sheaf p∗�1

E/T byωE . For the definition of a generalized elliptic curve see [1,Definition
1.12].

Proposition A.2 ([1, Proposition II.1.6]) Let p : E → T be a generalized elliptic
curve, and denote its chosen section by e : T → E. Then the sheaf ωE = p∗�1

E/T is
a line bundle on T . Moreover, the adjunction counit

p∗ p∗�1
E/T → �1

E/T

is an isomorphism and thus p∗�1
E/T

∼= e∗�1
E/T .

An invariant differential for E is a nowhere vanishing section of �1
E/T or equiva-

lently a trivialization of ωE .
Our second definition of modular forms will define them as a certain kind of natural

transformations. Fix a commutative ring R0. For any R0-algebra R, denote by Ell1(R)

the set of isomorphism classes of pairs (E, ω) consisting of an elliptic curve E over R
together with an invariant differential. This defines (together with pullback of elliptic
curves and of invariant differentials) a functor

Ell1(−) : (AffSch/Spec(R0))
op → Sets.
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As in [50, Section 1.1], we can consider a notion of a modular form of level
1 and weight k over R0 as the subset of the set of natural transformations f ∈
NatR0(Ell1(−), �(−)) with the following scaling property: For any R0-algebra R,
elliptic curve with chosen invariant differential (E, ω) and any λ ∈ R×, we have

f (E, λω) = λ−k f (E, ω). (A.3)

Denote the set of such natural transformations by NatR0
k (Ell1(−), �(−)). Also here,

the direct sum
⊕

k∈Z NatR0
k (Ell1(−), �(−)) carries a multiplication by multiplying

values in the target. This multiplication gives again a definition of a graded ring of
modular forms.

For the third definition, let Mell,R0 be the moduli stack of elliptic curves over
Spec(R0) (see e.g. [1] or [53]). On its big étale site, one defines a line bundle ω = ωR0
as follows. For a morphism t : T → Mell,R0 from a scheme T , let p : E → T be
the corresponding elliptic curve with unit section e. We associate with (T , t) the line
bundle ωE on T . To check that this actually defines a line bundle consider a cartesian
square

E ′ E

T ′ T

p′

f̃

p

f

with unit section e′ : T ′ → E ′. We obtain a chain of natural isomorphisms

f ∗ωE ∼= f ∗e∗�1
E/T

∼= (e′)∗ f̃ ∗�1
E/T

∼= (e′)∗�1
E ′/T ′ ∼= ωE ′ (A.4)

as required.
The third definition of the meromorphic modular forms over R0 of weight

k is H0(Mell,R0;ω⊗ k
R0

). Here, the direct sum
⊕

k∈Z H0(Mell,R0;ω⊗ k
R0

) carries a

multiplication inherited from the tensor algebra
⊕

k∈Z ω⊗ k
R0

, defining also here a
graded ring of modular forms. Sometimes it is convenient to reinterpret this ring
as H0(M1

ell,R0
,OM1

ell,R
), where M1

ell,R0
is the relative spectrum of

⊕
i∈Z ω⊗ i

R0
[23,

Section 12.1].

A.1.3 Comparision of definitions of modular forms

We start by comparing the two algebro-geometric definitions.

Proposition A.5 There is a natural isomorphism

α : H0(Mell,R0 , ω
⊗k
R0

) → NatR0
k (Ell1(−), �(−)).

Moreover, on the direct sum for all k ∈ Z, the map α induces an isomorphism of
graded rings.
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Proof There is an easy map

α : H0(Mell,R0 , ω
⊗k
R0

) → NatR0
k (Ell1(−), �(−)),

constructed as follows. Start with an element f ∈ H0(Mell,R0 , ω
⊗k
R0

), an R0-algebra
R and an elliptic curve E/R together with an invariant differential ω. If E is classified
by ϕ : Spec(R) → Mell,R0 , we have ϕ∗(ω⊗k

R0
) = ω⊗k

E . By pulling back, f defines an

element in�(ϕ∗(ω⊗k
R0

)), which via the isomorphismω⊗k fromO⊗k
R toω⊗k

E is identified
with

�(ϕ∗(ω⊗k
R0

)) = �(ω⊗k
E ) ∼= �(O⊗k

R ) ∼= �(OR) = R.

Define α( f )(E, ω) to be the image in R of the element defined by f in the left-hand
side. The naturality of α( f ) is clear. Replacing ω by λω for λ ∈ R× multiplies the
chosen isomorphism above by λk , so we obtain

α( f )(E, λω) = λ−kα( f )(E, ω).

Let us sketch why α is an isomorphism. By definition, the section f corresponds
to a compatible choice of sections in H0(T ;ω⊗ k

E ) for all T → Mell,R0 classifying
an elliptic curve E/T . As ωE is locally trivial, f is uniquely determined by its values
on those T where ωE is already trivial and T = Spec R is affine and every coherent
choice of values on such T induces a section of ω⊗ k

R0
. For such T , a section of ω⊗ k

E
corresponds exactly to associatingwith each trivializationω ofωE an element f (E, ω)

such that f (E, λω) = λ−k f (E, ω). This describes NatR0
k (Ell1(−), �(−)). �

Next, we exhibit the map which will turn out to be an isomorphism between the
algebraic geometric definitions and the complex analytic ones.

Proposition A.6 For any subring R0 of C define

β : NatR0
k (Ell1(−), �(−)) → MFk(SL2(Z), R0),

as follows. For any f ∈ NatR0
k (Ell1(−), �(−)) and any τ ∈ H, set

β( f )(τ ) = f (C/Z ⊕ Zτ, dz) ∈ C.

Then β is a natural isomorphism, and induces an isomorphism of graded rings on the
direct sum for all k ∈ Z.

We will check (A.1) for β( f ). Let

(
a b
c d

)
∈ SL2(Z) be given. Observe that we

have a biholomorphism

ψ : C/ (Z · 1 ⊕ Zτ) → C/

(
Z · 1 ⊕ Z

aτ + b

cτ + d

)
,

[z] �→
[

z

cτ + d

]
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and by GAGA thus an isomorphism of the associated algebraic curves. Since f is
well-defined on isomorphism classes, the scaling property implies

β( f )

(
aτ + b

cτ + d

)
= f

(
C/

(
Z · 1 ⊕ Z

aτ + b

cτ + d

)
, dz

)

= (cτ + d)k f (C/Z · 1 ⊕ Zτ, dz) = (cτ + d)kβ( f )(τ ).

We will come back to the question why β( f ) is holomorphic in the interior and
meromorphic at the cusps and why β is an isomorphism in “Appendices A.2.3 and
A.4”.

A.2 Level structures

Throughout this section, let R0 be aZ[ 1n ]-algebra.Whilewegave the analytic definition
of modular forms for �1(n) already above, there are two different corresponding
algebro-geometric notions, based on naive and arithmetic level structures.

A.2.1 Naive level structures

Definition A.7 ([1, Construction 4.8]) For an R0-algebra R, let Ell1�1(n)(R) denote the
set of isomorphism classes of triples (E, ω, j), where E is an elliptic curve over R,
further ω is a chosen trivialization of the line bundle ωE , and j : Z/nZR → E is a
morphism of group schemes over Spec(R) and a closed immersion. This morphism j
is called a �1(n)-level structure.

Recall thatZ/nZR = ∐
Z/nZ Spec(R) as a scheme, with the obviousmap to Spec R

and group structure coming from the group structure on Z/nZ. The group structure on
the elliptic curve is explained in [54, Section 2.1]. We can identify j with the image
P = j(1) ∈ E(R) since it determines j completely.

Remark A.8 We should remark that this variant of level structures is often called
“naive” in the literature. Note also that the analogous definition in [26, Section 8.2],
looks slightly different, but is equivalent by using that being closed immersion can be
checked for proper schemes on geometric points.

Using again the scaling condition A.2 we can define NatR0
k (Ell1�1(n)(−), �(−))

analogously to our definition without level in “Appendix A.1”.
We can also define a moduli stack M1(n) classifying elliptic curves over Z[ 1n ]-

schemes with �1(n)-level structure. We obtain a morphism fn : M1(n) → Mell

by forgetting the level structure. As in “Appendix A.1.3” we obtain a comparison
isomorphism

α : H0(M1(n);ω⊗ k) → NatR0
k (Ell1�1(n)(−), �(−));

here and in the following we will abuse notation to denote the pullback of ω toM1(n)

by ω as well.
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There are differentways to comparemodular formswith andwithout level structure.
The particular form of compatibility we want to use is expressed in the following
commutative diagram.

NatR0
k (Ell1(−), �(−)) NatR0

k (Ell1�1(n)(−), �(−))

MFk(SL2(Z), R0) MF(�1(n), R0)

(C/Z+τZ,dz)

(E,P) �→E/〈P〉

(C/Z+nτZ,dz,τ )

We refer to [55, Example 4.40] for the fact that the quotient of an elliptic curve by a
finite subgroup scheme is an elliptic curve again. Moreover, we will denote the right
vertical morphism by β1. The reason for our particular choice of β1 might become
clearer in the next subsection and even clearer when we discuss q-expansions. That
β1 actually lands in MF(�1(n), R0) will follow from “Appendices A.2.3 and A.4”.

Remark A.9 The group (Z/n)× acts on Ell1�1(n)(−) by multiplication on the point of

order n. Moreover, if we denote by �0(n) ⊂ SL2(Z) the subgroup of matrices

(
a b
c d

)

with c divisible by n, the quotient group�1(n)\�0(n) acts onMF(�1(n),C) as follows.
For g ∈ MFk(�1(n),C) and γ ∈ �0(n), we define the action by g.[γ ] = g[γ ]k in the
sense of “Appendix A.1.1”. The map

�1(n)\�0(n) → (Z/n)×,

(
a b
c d

)
�→ a

is an isomorphism and under this isomorphism β1 is equivariant.
To be compatible with [17, Section 5.2], we will actually work with the opposite

convention though. This means that we will act with the inverse of an element of
(Z/n)× on Ell1�1(n)(−) and M1(n) and use the identification

�1(n)\�0(n)
∼=−→ (Z/n)×,

(
a b
c d

)
�→ d.

By the above, this makes β1 into an equivariant map as well and this will be the
equivariance we will use throughout this document.

A.2.2 Arithmetic level structures

Nowwewould like to discuss a different variant of level structures, called “arithmetic”
in the literature.

Definition A.10 For an R0-algebra R, let Ell1�μ(n)(R) denote the set of isomorphism
classes of triples (E, ω, ι), where E is an elliptic curve over R, again ω is a chosen
trivialization of the line bundleωE , and ι : μn,R → E is a morphism of group schemes
over Spec(R) and a closed immersion. Here, μn,R is a group scheme given by the
spectrumof the bialgebra R[t]/(tn−1)with comultiplication determined by t �→ t⊗t .
The morphism ι is called an arithmetic (or �μ(n)-) level structure on E .
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For a Z
[ 1
n , ζn

]
-algebra R, the group schemesμn,R and Z/nZR are isomorphic, but

this is not true in general.
We can define the set of weight k modular forms with arithmetic level structure to

be NatR0
k (Ell1�μ(n)(−), �(−))with the same scaling condition as before. Likewise, we

can define a moduli stack Mμ(n) of elliptic curves with �μ(n)-level structure (over
bases with n invertible). As before we obtain a comparison isomorphism

α : H0(Mμ(n);ω⊗ k) → NatR0
k (Ell1�μ(n)(−), �(−)),

where we abuse notation again to denote the pullback of ω toMμ(n) by ω as well.
We need to discuss a relation between�1(n)- and�μ(n)-level structures. After base

change to aZ
[ 1
n , ζn

]
-algebra R, the stacksMμ(n) andM1(n) become equivalent over

Mell,R via the isomorphism μn,R ∼= Z/nZR . Less obviously, there is also a different
equivalence between Mμ(n) and M1(n) that does not require any base change, but
changes the underlying elliptic curve. To that purpose we recall the Weil paring [54,
Section 2.8]

en : E[n](S) × E[n](S) → Gm,S(S)

for an elliptic curve E/S. Here, E[n] denotes the n-torsion E ×E S, using the
multiplication-by-n morphism [n] : E → E and the unit morphism S → E in the
pullback. Using these ingredients, we add in the following lemma some details to the
treatment in [51, Section 2.3].

Lemma A.11 There is an equivalence ϕ : M1(n) → Mμ(n) sending (E → S, P)

to (E/〈P〉 → S, δ), where δ can be described as follows: For ζ ∈ μn(S), choose
Q ∈ E[n](S) such that en(P, Q) = ζ−1. Then δ(ζ ) = π(Q) for π : E → E/〈P〉.
Proof With notation as in the statement of the lemma, we define δ : μn,S → E/〈P〉
as follows: As explained in [54, Section 2.8] there is a bilinear pairing

〈−,−〉π : ker(π) × ker(π t ) → Gm,S (A.12)

of abelian group schemes for π : E → E/〈P〉 the projection and π t the dual isogeny.
By [54, 2.8.2.1] and because ker(π) = 〈P〉 ∼= (Z/n)S , this induces a chain of isomor-
phisms

ker(π t ) → HomS−gp(ker(π),Gm,S)
evP−−→ μn,S . (A.13)

The map δ is the composition of the inverse of this isomorphism with the natural
inclusion ker(π t ) → E/〈P〉 composed with [−1]. The reasons for composing with
[−1] will be apparent in the example below.

An analogous construction dividing out μn,S provides an inverse of ϕ. To see this,
we are using that in the situation above, (E/〈P〉)/δ ∼= E/E[n], and the isomorphism
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E/E[n] ∼= E induced by [n], the multiplication-by-n morphism. Thus, ϕ : M1(n) →
Mμ(n) is an equivalence of stacks.

One can computeϕ in terms of theWeil pairing as follows:Asππ t = [n], we obtain
from [54, 2.8.4.1] that 〈P, π(Q)〉π for Q ∈ E[n](S) can be computed as en(P, Q).
Consider now ζ ∈ μn(S). The inverse of the composition (A.13) sends ζ to π(Q) for
some Q ∈ E[n](S) with en(P, Q) = ζ . We obtain en(P,−Q) = ζ−1 showing the
result. �
Example A.14 Let E = C/(Z + nτZ) be an elliptic curve over SpecC with chosen

n-torsion point τ . We claim that ϕ(E, τ ) = (C/Z + τZ, ζn �→ 1
n ) with ζn = e

2π i
n .

Indeed, we have en(τ, 1
n ) = ζ−1

n by [54, 2.8.5.3] and thus ζn has to be send to 1
n as

claimed by the preceding lemma.

The example implies directly the following lemma.

Lemma A.15 The following diagram commutes:

H0(Mμ(n)R0 , ω
⊗k) H0(M1(n)R0 , ω

⊗k)

NatR0
k (Ell1�μ(n)(−), �(−)) NatR0

k (Ell1�1(n)(−), �(−))

MF(�1(n); R0)

ϕ∗

α α

ϕ∗

(C/Z+τZ,dz,ζn �→ 1
n )

(C/Z+nτZ,dz,τ )

We will denote the diagonal arrow by βμ and it will follow from “Appendices A.2.3
and A.4” that βμ actually lands in MF(�1(n); R0).

A.2.3 Compactifications and comparison of algebraic and analytic theory

In this section we discuss the comparison of the algebraic and the analytic theory.
The basic sources are [1,52] and we will just give a short summary. We will use
the compactifications M1(n) of M1(n) as recalled in the beginning of Sect. 2. It is
shown in [1, Section IV] that M1(n) → SpecZ[ 1n ] is proper and smooth of relative
dimension 1.

For n ≥ 5, the stack M1(n) is representable by a projective scheme (see e.g. [4]).
It is shown in [52, Thm. 2.2.2.1] that the Riemann surface associated with M1(n)C
is isomorphic to a more classical construction, namely the compactification X1(n) of
the quotient Y1(n) of the upper half-plane H by �1(n). Indeed, Conrad shows that
both M1(n)C and X1(n) classify generalized elliptic curves over complex analytic
spaces with �1(n)-level structure. The family of elliptic curves (C/Z+ nτZ, τ ) with
�1(n)-level structure overH descends to Y1(n) and extends to X1(n). (Indeed, Conrad
considers the universal family (C/Z+ τZ, 1

n ) as in [52, Section 2.1.3], but the choice

of e2π i/n as an nth root of unity allows us to consider the automorphismM1(n)C
ϕ−→

Mμ(n)C � M1(n)C that carries one family of elliptic curves into the other as follows
from Example A.14.) This specifies an isomorphism from X1(n) to the Riemann
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surface associated with M1(n)C, and by restriction to the locus where the fibers of
the universal generalized elliptic curve are smooth, also an isomorphism from Y1(n)

to the Riemann surface associated with M1(n)C. More information about Y1(n) and
X1(n) can be found in [52] and in [17, Chapter 2].

We will abuse notation again and denote by ω the line bundle on X1(n) cor-
responding to the analytification of ω on M1(n)C under the isomorphism above
and likewise its restriction to Y1(n). By GAGA [56, Théorème 1], the morphism
H0(M1(n)C;ω⊗ k) → H0(X1(n);ω⊗ k) is an isomorphism. Given a section of ω⊗ k

on Y1(n) we can pull it back along π : H → Y1(n) and obtain a holomorphic function
on H by trivializing π∗ω via dz. It is shown in [52, Lemma 1.5.7.2] that the image
consists exactly of those holomorphic functions on H satisfying the transformation
formula (A.1) for modular forms of weight k for �1(n). Moreover, Conrad shows
that the image of H0(X1(n);ω⊗ k) ↪→ H0(Y1(n);ω⊗ k) corresponds exactly to the
holomorphic modular forms of weight k for �1(n).

In summary, we obtain an isomorphismψ : H0(M1(n)C;ω⊗ k) ∼= mfk(�1(n);C).
Unraveling the definitions from [52, Section 1.5.1 and 1.5.2] shows that this is com-
patible with our comparison map

β1α : H0(M1(n)C;ω⊗ k)
∼=−→ NatCk (Ell�1(n)(−), �(−)) → {functions on H}.

We will argue why β1α actually takes values in MFk(�1(n);C) (as claimed before)
and why with this target β1α becomes an isomorphism.

The modular form � ∈ mf12(SL2(Z);Z) ⊂ mf12(�1(n);C) (see “Appendix
A.1.1”) corresponds to a holomorphic section of ω⊗ 12 on X1(n) with simple zeros
at all cusps, i.e. at all those points in the complement of Y1(n); this can be seen
by considering the q-expansion of � and the construction of the X1(n). Thus,
H0(X1(n);ω⊗∗)[�−1] corresponds exactly to those holomorphic sections of ω⊗∗
on Y1(n) that can be meromorphically extended to X1(n). This in turn corresponds
exactly to the (algebraic) sections of ω⊗ ∗ on M1(n)C. This implies an identification
H0(M1(n)C;ω⊗∗) ∼= H0(M1(n)C;ω⊗ ∗)[�−1]. Under this identification, β1α can
be written as

H0(M1(n)C;ω⊗∗)[�−1] ∼=−→
ψ

mf∗(�1(n);ω⊗∗)[�−1] ∼= MF∗(�1(n);C),

(followed by the inclusion into {functions on H}). This shows our claims.
For n < 5, M1(n) is no longer a scheme. In this case, one can analogously use a

GAGA theorem for stacks as, for example, proven in [57]. In our situation the proof
should be considerably simplified though as M1(n)C has a finite faithfully flat cover
by a scheme (e.g. byM1(5n)C) and one should be able to deduce a sufficiently strong
GAGA theorem just by descent from the scheme case.
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A.3 The Tate curve

In this section, we will discuss the Tate curve, which will give us an algebraic way
to define q-expansions of modular forms. For an alternative treatment we refer e.g.
to [54, Section 8.8]. We first discuss the situation over the complex numbers.

Theorem A.16 ([28, Theorem V.1.1]) For any q, u ∈ C with |q| < 1, define the
following quantities:

σk(n) =
∑
d|n

dk,

sk(q) =
∑
n≥1

σk(n)qn =
∑
n≥1

nkqn

1 − qn
,

a4(q) = −5s3(q),

a6(q) = −5s3(q) + 7s5(q)

12
,

X(u, q) =
∑
n∈Z

qnu

(1 − qnu)2
− 2s1(q),

Y (u, q) =
∑
n∈Z

(qnu)2

(1 − qnu)3
+ s1(q).

(1) Then the equation

y2 + xy = x3 + a4(q)x + a6(q) (A.17)

defines an elliptic curve Eq over C, and X ,Y define a complex analytic isomor-
phism

C
×/qZ → Eq

u �→
{

(X(u, q),Y (u, q)), if u /∈ qZ,

O, if u ∈ qZ

(2) The power series a4(q) and a6(q) define holomorphic functions on the open unit
disk D.

(3) As power series in q, both a4(q), a6(q) have integer coefficients.
(4) The discriminant of Eq is given by

�(q) = q
∏
n≥1

(1 − qn)24 ∈ Z�q�.

(5) Every elliptic curve over C is isomorphic to Eq for some q with |q| < 1.
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Let Conv ⊂ Z((q)) be the subset of “convergent” Laurent series, i.e. those that
define meromorphic functions on D that are holomorphic away from 0; in particular,
a4, a6 ∈ Conv. As �(q) is non-vanishing for q �= 0 in D, it defines an invertible
element inConv and thuswe canuse theWeierstraß equation (A.17) to define an elliptic
curve Tate(q) over Conv. For our computations in Section 3 it will be convenient to
consider the analogously defined ring Convqn ⊂ Z((qn))with the Tate curve Tate(qn)
defined by a4(qn) and a6(qn) over it.

Let q0 ∈ D be a nonzero point and consider the morphism evq0 : Conv → C.
By the theorem above, we see that the analytic space associated with ev∗

q0 Tate(q)

is isomorphic to C
×/qZ0 . The invariant differential ηcan associated to the Weierstraß

equation corresponds under this isomorphism to du
u , as can be shown by elementary

manipulations using [28, Section V.1].
Next, we want to describe a group homomorphism ι : μn,Conv[ 1n ] → Tate(q)

Z[ 1n ]
for n ≥ 2. We first define a morphism ιζ : μn,Conv[ 1n ,ζn ] → Tate(q)

Z[ 1n ,ζn ]. As
μn is isomorphic to Z/n over Z[ 1n , ζn], it suffices to specify an n-torsion point in
Tate(q)(Conv[ 1n , ζn]) as the image of ζn ; we take (X(ζn, q),Y (ζn, q)). As X and
Y have integer coefficients, we see that for every ring automorphism σ of Z[ 1n , ζn],
we have ιζ (σ (ζn)) = σ(ιζ (ζn)). Thus, Galois descent implies that ιζ descends to a
morphism ι : μn,Conv[ 1n ] → Tate(q)

Z[ 1n ]. Note that we can check that this is indeed
a group homomorphism into the n-torsion by evaluating at infinitely many points in
D. For a nonzero q0 ∈ D, this ι corresponds under the isomorphism of ev∗

q0 Tate(q)

with C×/qZ0 exactly to the composite μn(C) → C
× → C

×/qZ0 . Note that ι defines a
�μ(n)-structure on Tate(q)

Z[ 1n ].
As a last point, we mention that for a subring R ⊂ C containg ζn , the n-torsion

Tate(qn)R[n] is isomorphic to (Z/n)2Convqn ,R
as it has rankn2 overConvR [54, Theorem

2.3.1] andwe can specify n2 points by (X(ζ an q
b, qn),Y (ζ an q

b, qn)), where 0 ≤ a, b ≤
n − 1.

A.4 q-expansions

Our goal in this subsection is to define the q-expansion both in the holomorphic and
in the algebraic context, to compare them and to obtain a q-expansion principle.

Consider a modular form f in MF(�1(n);C) for n ≥ 1. We recall that f factors
through a meromorphic function g : D → C on the open unit disk with only possible
pole in 0; more precisely, we have g(q) = f (z), where q = q(z) = e2π i z . Taylor
expansion of g at 0 yields the classical q-expansion

�hol : MFk(�1(n);C) → C((q)).

Let us fix for the whole subsection a Z[ 1n ]-subalgebra R0 ⊂ C. On the algebraic
side, we obtain a map

�μ,R0 : NatR0
k (Ell1�μ(n)(−), �(−)) → R0((q))
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by evaluating the natural transformation at the pullback to R0((q)) of the Tate curve
(Tate(q), ηcan, ι) from the last section.

We want to show that�hol and�μ,C correspond to each other under βμ. Both have
actually image in ConvR0 ⊂ C((q)). Thus we can check the agreement of �holβμ

with�μ,C after postcomposing these twomaps with evq0 : ConvR0 → C for infinitely
many q0 ∈ D\{0}.

To that purpose, choose h ∈ NatR0
k (Ell1�μ(n)(−), �(−)) and τ0 ∈ H with e2π iτ0 =

q0. The exponential defines an isomorphism

(
C/(Z + τ0Z), dz, ζn �→ 1

n

)
∼=

(
C

×/qZ0 ,
du

u
, ιcan

)
,

of elliptic curves with invariant differential and arithmetic level structure, where ιcan

denotes the composition μn(C) → C
× → C

×/qZ0 . This implies

evq0 �holβμ(h) = h

(
C

×/qZ0 ,
du

u
, ιcan

)
.

On the other hand, evq0 �μ,C(h) is by definition the evaluation of h at

(ev∗
q0 Tate(q), ev∗

q0 ηcan, ev∗
q0 ι)

and we have seen in the last section that this triple is isomorphic to (C×/qZ0 , du
u , ιcan).

Thus, the following triangle commutes indeed:

NatR0
k (Ell1�μ(n)(−), �(−)) C((q))

MFk(�1(n),C)

�μ,C

βμ
�hol

We obtain the q-expansion morphism

�1,R0 : NatR0
k (Ell1�1(n)(−), �(−)) → ConvR0

as the composition �μ,R0α(ϕ∗)−1α−1, where ϕ is as in Sect. A.2.2.

Lemma A.18 Assume that R0 ⊂ C and let q0 �= 0 be a point in the open unit disk.
Evaluating at q0 yields a morphism evq0 : ConvR0 → C. Then

evq0 �1,R0(h) = h

(
C

×/qnZ0 ,
du

u
, q0

)
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for every h ∈ NatR0
k (Ell1�1(n)(−), �(−)) and thus�1,R0(h) is the Taylor expansion of

q �→ h

(
C

×/qnZ,
du

u
, q

)

at 0.

Proof It suffices to show that

ϕ

(
C

×/qnZ0 ,
du

u
, q0

)
=

(
C

×/qZ0 ,
du

u
, ιcan

)
.

This follows from Example A.14. �
Note that these discussions show that β1 and βμ actually have target in the ring

MF(�1(n); R0), i.e. that the classical q-expansion of β1 of a modular form over R0
actually has coefficients in R0 and similarly for βμ.

Theorem A.19 (q-expansion principle) Let R0 be a subring of C. The morphisms

βμ : NatR0
k (Ell1�μ(n)(−), �(−)) → MF(�1(n); R0)

and

β1 : NatR0
k (Ell1�1(n)(−), �(−)) → MF(�1(n); R0)

are isomorphisms. In other words: If the coefficients of the q-expansion of a complex
modular form are in R0, it is actually already defined over R0.

Proof By the considerations above, it suffices to show the first statement. For R0 = C,
thiswas discussed inSect.A.2.3. The general case follows by theq-expansion principle
as stated in [26, Theorem 12.3.4]. �

A.5 Summary

Let R be any Z[ 1n ]-algebra. We can define holomorphic modular forms for �1(n)

of weight k over R as H0(M1(n)R;ω⊗ k) and meromorphic modular forms as
H0(M1(n)R;ω⊗ k). We have a morphism SpecC → M1(n) classifying the elliptic
curve C/Z + nτZ with chosen point τ of order n. Pulling f ∈ H0(M1(n);ω⊗ k)

back to SpecC and using the trivialization ω⊗ k induced by the choice of differential
dz, defines a holomorphic function of τ ∈ H that is a meromorphic modular form for
�1(n) in the classical sense. This defines isomorphisms

β1 : H0(M1(n)C;ω⊗ k) → MFk(�1(n);C)

and

β1 : H0(M1(n)C;ω⊗ k) → mfk(�1(n);C).
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The q-expansion of β1( f ) lies in R ⊂ C if and only if f is in the image of the injection

H0(M1(n)R;ω⊗ k) → H0(M1(n)C;ω⊗ k).

As a last point, we consider theGm-torsorM1
1(n) → M1(n) that is the relative Spec

of the quasi-coherent algebra
⊕

k∈Z ω⊗ k . By construction,

H0(M1
1(n)R;OM1

1(n)
) ∼=

⊕
k∈Z

H0(M1(n)R;ω⊗ k) ∼=
⊕
k∈Z

mfk(�1(n); R).

Appendix B: The invertible summand in Tmf0(7) (joint with Martin
Olbermann)

We recall from Theorem 8.6 that Tmf0(7)(3) splits as a Tmf-module as

Tmf(3) ⊕�4 Tmf1(2)(3) ⊕ �8 Tmf1(2)(3) ⊕ L,

where L ∈ Pic(Tmf(3)). The goal of this appendix is to determine L . The necessary
computations of π∗ Tmf0(7) were obtained by Martin Olbermann. It turns out that for
the purposes of this article, we need only a small part of these computations, which
the authors of the main part of this article extracted from Olbermann’s computations.

We recall from [13] that Pic(Tmf(3)) ∼= Z⊕Z/3.More precisely, their computation
shows that the morphisms

Z/72 → Pic(TMF(3)), [k] �→ �k TMF

and

Z → Pic(TmfQ), k �→ �k TmfQ

are isomorphisms and moreover that

Pic(Tmf(3)) → Z/72 ×Z/24 Z ⊂ Pic(TMF(3)) × Pic(TmfQ)

is an isomorphism as well. (While this last fact is not explicitly stated in [13], it is
clearly visible in the proof of their Theorem B.)

As described in Theorem 8.6, we obtain L as the global sections of an invertible
Otop-module L on Mell,(3) with π0L ∼= ω⊗(−6). As π0�

12Otop ∼= ω⊗(−6) as well
and global sections define an equivalence

� : QCoh(Mell,(3),Otop) → Tmf(3) −mod

of ∞-categories [14], we see that the image of L in Pic(TmfQ) is �12 TmfQ. We will
show:
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Proposition B.1 The image L[�−1] of L in Pic(TMF(3)) is �36 TMF(3) and hence
L � �36�(J ⊗(−1)) in the notation from [13, Construction 8.4.2].

In the following, we will leave the localization at 3 for the moduli stacks, rings
of modular forms and variants of TMF implicit to avoid clutter in the notation. We
already know from the discussion above that L[�−1] � �k TMF for k = 12, 36 or 60.
Moreover, the descent spectral sequence for L[�−1] embeds into that of TMF0(7) as a
summand. Recall that the latter has E2-term H∗(M0(7);ω⊗∗). SinceM0(7) has the
(Z/7)×-Galois cover M1(7), we use the definition of Čech cohomology to identify
this E2-term with H∗((Z/7)×;MF1(7)), where MF1(7) is used as our abbreviation
for MF(�1(7);Z[ 17 ]). Actually, as

Otop(M1(7)
×M0(7)k) �

∏

((Z/7)×)×k

TMF1(7)

and M1(7) is affine, we obtain even an identification of the cosimplicial objects
defining the descent spectral sequence for TMF0(7) and the homotopy fixed point
spectral sequence for TMF1(7)h(Z/7)× � TMF0(7), and hence an isomorphism of
these spectral sequences.

Moreover, the descent spectral sequence for L[�−1] has E2-term isomorphic to
H0(Mell;ω⊗(∗−6)). Under these identifications, the embedding of descent spectral
sequences sends 1 ∈ H0(Mell;ω⊗(6−6)) to σ 2

3 ∈ H0((Z/7)×;MF1(7)6). This fol-
lows after identification of source and target with the primitive elements in the ( Ã, �̃)

comodules Ã and SÃ from Proposition 7.6. As d5(�) = αβ2 and d5(�2) = −�αβ2,
while d5(1) = 0 in the descent spectral sequence for TMF itself [46], it suffices to
show the following lemma.

Lemma B.2 In the descent spectral sequence for TMF0(7), the class �σ 2
3 ∈

H0(M0(7);ω⊗(−6)) has a trivial d5-differential.

Proof Our first tool is the map of descent spectral sequences from that for T MF to
that for T MF0(7), which on the 0-line of the E2-term is a map

H0(Mell;ω⊗∗) → H0(M0(7);ω⊗∗). (B.3)

Recall from above that H0(M0(7);ω⊗∗) ∼= H0((Z/7)×;MF1(7)). Proposition 2.7
implies that we can express every element in the invariants as a polynomial in σ1, σ3
and p = z21z2 + z22z3 + z23z1. As every element in H0(Mell;ω⊗∗) is a polynomial in
the ai , Proposition 3.5 and Theorem 3.13 give us a concrete way to calculate the map
(B.3). In particular, we obtain

� �→ −σ 3
3 p − 8σ 4

3 .

By the splitting fromTheorem1.5 and the knowndifferentials from the descent spectral
sequence of TMF, we see that there are no differentials shorter than a d5 in the descent
spectral sequence for TMF0(7). In particular, we obtain that� is a di -cycle for i < 5 in
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the descent spectral sequence for TMF0(7), but d5(�) = αβ2 (where we use the same
notation for the images of � and αβ2 in the descent spectral sequence for TMF0(7)
as in that for TMF).

Our second tool is the transfer

Tr : MF1(7) = H0({e};MF1(7)) → H0((Z/7)×;MF1(7)), x �→
∑

g∈(Z/7)×
gx .

WehaveTr(x)y = Tr(x res(y)) = 0 for all x ∈ MF1(7) and y ∈ H∗((Z/7)×,MF1(7))
with ∗ > 0 by [58, Formula V.3.8]. In particular, these elements act trivially on
H∗((Z/7)×,MF1(7)) for ∗ > 0. As 3 is in the image of Tr, we see in particular that
H∗((Z/7)×,MF1(7)) for ∗ > 0 is 3-torsion.

Moreover we claim that all elements in the image of the transfer Tr are permanent
cycles in the homotopy fixed point spectral sequence (or, equivalently, the descent
spectral sequence) converging to π∗ TMF0(7) = π∗ TMF1(7)h(Z/7)× . Indeed: Con-
sider the (Z/7)×-equivariant map a : (Z/7)×+ ∧ TMF1(7) → TMF1(7) induced by
idTMF1(7), where the action on the source is only on (Z/7)×+. On homotopy groups,
this induces the map (xg)g∈(Z/7)× �→ ∑

g∈(Z/7)× gxg . Thus, the map that a induces
on homotopy fixed point spectral sequences agrees in the 0-line exactly with the trans-
fer Tr under the identification MF1(7) ∼= H0((Z/7)×;⊕

(Z/7)× π∗ TMF1(7)). As the

homotopy fixed point spectral sequence for (Z/7)×+ ∧TMF1(7) is concentrated in the
0-line, this implies that every element in the image of Tr is a permanent cycle. In

particular, σ3 p = Tr(
z31z

2
2z3
2 ) implies that d5(σ3 p) = 0.

Taken together, these tools imply the following computation:

αβ2 = d5(�)

= d5(−σ 3
3 p − 8σ 4

3 )

= −σ 2
3 d5(σ3 p + 8σ 2

3 ) − d5(σ
2
3 )(σ3 p + 8σ 2

3 )

= −8σ 2
3 d5(σ

2
3 ) − 8σ 2

3 d5(σ
2
3 )

= −σ 2
3 d5(σ

2
3 ).

In total, we obtain σ 2
3 d5(σ

2
3 ) = −αβ2 and deduce

d5(�σ 2
3 ) = αβ2σ 2

3 + �d5(σ
2
3 )

= αβ2σ 2
3 − 8σ 4

3 d5(σ
2
3 )

= 9αβ2σ 2
3 = 0. �
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