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Curvature dependence of the electrolytic liquid-liquid interfacial tension
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The interfacial tension of a liquid droplet surrounded by another liquid in the presence of
microscopic ions is studied as a function of the droplet radius. An analytical expression for the
interfacial tension is obtained within a linear Poisson-Boltzmann theory and compared with
numerical results from nonlinear Poisson—Boltzmann theory. The excess liquid-liquid interfacial
tension with respect to the pure salt-free liquid-liquid interfacial tension is found to decompose into
a curvature-independent part due to short-ranged interfacial effects and a curvature-dependent
electrostatic contribution. Several curvature-dependent regimes of different scalings of the
electrostatic excess interfacial tension are identified. Symmetry relations of the interfacial tension
upon swapping droplet and bulk liquid are found to hold in the low-curvature limit, which, e.g., lead
to a sign change of the excess Tolman length. For some systems a low-curvature expansion up to the
second order turns out to be applicable if and only if the droplet size exceeds the Debye screening
length in the droplet, independent of the Debye length in the bulk. © 2009 American Institute of

Physics. [DOI: 10.1063/1.3054372]

I. INTRODUCTION

Common wisdom in emulsion science tells that in order
to kinetically stabilize an emulsion of water and oil, say,
surfactants are needed in order to decrease the interfacial
tension thereby decreasing the thermodynamic force causing
droplet coalescence.' This picture has been upset by Leunis-
sen et al.>® who showed experimentally that, in certain
additive-free water-oil mixtures, micron-sized water droplets
in oil may be stabilized electrostatically by absorbing ions
present in the system. Several aspects of these experiments
such as the proposed charging of the water droplets due to an
unequal partitioning“f6 and the formation of a colloidal crys-
tal of water droplets7 can be understood theoretically within
a simple Poisson-Boltzmann model. However, the rather
unimodal size distribution of the water droplets in the above-
mentioned experiments has not been explained so far. A simi-
lar observation has been made by Sacanna et al.® who found
experimental indications of the existence of thermodynami-
cally favored droplet radii in certain emulsions stabilized by
nanosized colloids. A thermodynamically favored droplet ra-
dius requires a radius dependent water-oil interfacial tension
because otherwise the global minimum of the free energy
would be attained for one single macroscopic drop. One is
thereby led to the problem of analyzing the liquid-liquid in-
terfacial tension as a function of the droplet radius.

The study of the curvature dependence of liquid-vapor
surface tensions has been pioneered by Gibbs,9 Tolman,lO
and Kirkwood and Buff."" Tolman introduced a low-
curvature expansion of the form y(a)/y()=1/(1+26/a)
=1-26/a, where a denotes the radius of curvature, y(a) is
the surface tension of the curved surface, and () is its
planar value. The parameter &, which has the dimension of
length, is called the Tolman length and it can be identified
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with the spatial distance between the Gibbs dividing surface
and the surface of tension. In the past decades, the concept of
a curvature dependent liquid-vapor surface tension has been
taken up within various studies on critical phenomena,12 in-
terface elasticity,13 and nucleation.'*"

However, whereas in all these investigations the droplet
and the surrounding bulk were composed of the same sub-
stance, albeit in different phases, here a mixture of two dif-
ferent liquids and ions is studied. Moreover, only the excess
interfacial tension due to the electrolyte is of interest here
while the two liquids forming droplet and bulk merely act as
external fields onto the ions.

The present investigation is carried out within the spheri-
cal version of the model studied in Ref. 5 (Sec. II). As in Ref.
5, linearization of the Poisson-Boltzmann equation offers the
possibility of closed analytical expressions for the interfacial
tension (Sec. IIT). In Sec. IV, the approximative analytical
expressions for the interfacial tension will be shown to at
least qualitatively, in many realistic cases even quantita-
tively, agree with the numerical results obtained within the
full nonlinear theory. The main conclusion will be that it is
precisely the electrostatic contribution to the interfacial ten-
sion that brings about a curvature dependence, which, how-
ever, is usually insignificant to serve as an explanation for
unimodal radius distributions in the emulsions by Leunissen
et al>* mentioned above (Sec. V). On the other hand, the
curvature-dependent electrostatic contribution to the interfa-
cial tension can be expected to increase considerably in mag-
nitude if highly charged colloids instead of monovalent ions
are present. Under these conditions, however, the approxima-
tions made in the present work are not a priori justified, and
it is left for future studies to investigate the influence of
valency on the qualitative picture to be drawn here, which
corresponds to the low-valency limit.

© 2009 American Institute of Physics

Downloaded 19 Feb 2010 to 131.211.104.120. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1063/1.3054372
http://dx.doi.org/10.1063/1.3054372

024703-2 Bier et al.

Il. MODEL AND FORMALISM

In the following, dimensionless quantities are expressed
in units of the thermal energy kzT, the elementary charge e,
and the vacuum Bjerrum length €=e?/4me,,kgT, with the
permeability of the vacuum as &,,.. Dimensionful quantities
are denoted by the same symbol as the corresponding dimen-
sionless quantities.

Consider a liquid spherical droplet of radius a and rela-
tive dielectric constant &, surrounded by bulk liquid of rela-
tive dielectric constant g;,. Due to the spherical symmetry of
the setting, the only relevant positional variable is the dis-
tance r € [0,%) from the droplet center. Monovalent cations
(+ ions) and anions (- ions) are distributed in both liquids.
The difference in solvation free energy of a = ion in the
droplet with respect to the bulk liquid is denoted by f.,
which, within the Born approximation,16 can be estimated by
f+=(1/2a+)(1/g,—1/g;) with the ion radius a-. As derived
in detail in Ref. 5, all interfacial effects due to, e.g., smooth
interfaces, finite ion size, van der Waals forces, and image
charges, which are short ranged as compared to the electro-
static potential, are accounted for by introducing solvent-
induced ion potentials V.(r)=f.-0O(a+s—r) with ® as the
Heaviside function. Note that the parameter s, which de-
scribes the radial offset of the discontinuity of the solvent
induced ion potentials V. with respect to the dielectric inter-
face at r=a and which is expected to be of the order of the
size of a molecule or ion,” can be positive or negative, de-
pending on whether the net effect of the abovementioned
interfacial effects gives rise to a preference of the fluid struc-
ture in the droplet or in the bulk, respectively. More detailed
representations of the interfacial effects are possible at the
expense of more phenomenological parameterle19 but for
the sake of convenience and because handy analytical ex-
pressions are desired, the present most simple choice is made
here.

A convenient approach to calculate the interfacial ten-
sion of the system under consideration is to first determine
the equilibrium ion number density profiles ¢ by means of
the density functional theoryzo_22 and then to infer the inter-
facial tension from inserting these equilibrium profiles into
the grand potential density functional. The Poisson—
Boltzmann theory corresponds to the mean-field grand po-
tential density functional

Qo.]=4m2 f dr 170,(r)
a=* J0

X <ln(9a(r)) — 1=+ Vo(r) + gqﬁ(r,[éh])) ,

(1)

with u, as the chemical potential of « ions and ¢(r,[0~]) as
the electrostatic potential functional at radius », which fulfills
the Poisson equation

SOPP (o)) =473 ag 0, 2)

subject to the boundary conditions ¢'(r=0)=0 and ¢@(r
=o0)=0, where a prime denotes a derivative with respect to r
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and &(r) :=g,0(a—r)+&,0(r—a). The electrostatic potential
is a continuous function of r and, at the dielectric interface
(r=a), the radial component of the dielectric displacement is
continuous, g,¢'(r /a)=g, ¢’ (r’ \ a).

Minimizing the density functional in Eq. (1) gives rise to
the Euler-Lagrange equations,

Qalr) = exp(pq = Volr) — ad(r[e-]). 3)

Due to the local charge neutrality in the bulk liquid far away
from the droplet (@,(r=»)=p_(r=x)), one infers u,
=u_=:u. Upon introducing the reference densities er
=exp(u) and %= @ exp(=(f,+f_)/2), the sharp-kink
reference density profile ©™(r,x):= Qrbef@)(r—x) + Qiff(@(x
—r) with the discontinuity located at radius x, and the shifted
electrostatic potential ¢(r):= ¢(r)— PppO(a+s—r) with the
Donnan potential ¢p,:=(f_—f,)/2, the Euler-Lagrange equa-
tion [Eq. (3)] can be rewritten as

04(r) = @"!(r,a + s)exp(= ayd(r)). (4)

Inserting Eq. (4) into the Poisson equation [Eq. (2)] leads to
the Poisson—Boltzmann equation,

J'(r) = k(r)? sinh((r)), r+# a,a+s, (5)

with «(r):= \/ 87" (r,a+s)/e(r) as the Debye screening
factor. Given a solution ¢, the interfacial tension with respect
to the dielectric interface at r=a in excess to the pure salt-
free liquid-liquid interfacial tension between the droplet and
the bulk liquid is, after inserting Eq. (4) into Eq. (1), deter-
mined by

_ 0l0.]-0[0"(.0)]

2

,);x

d7a

=—%2 f Car rz(ea(r)—ere%r,a)
a =+ Jo

+ geamqs(r,[et])). ©)

As solutions of the nonlinear Poisson—-Boltzmann [Eq. (5)] in
the spherical geometry can be obtained only numerically, the
same holds for the excess interfacial tension y** in Eq. (6).
However, upon linearizing the Euler-Lagrange equation [Eq.
(4)] and the Poisson-Boltzmann equation [Eq. (5)] one ob-
tains analytical expressions for the excess interfacial tension
¥, which will be derived in the next section.

lll. LINEARIZED THEORY

For a sufficiently small Donnan potential |¢p|<1, the
Euler-Lagrange equation [Eq. (4)] and the Poisson—
Boltzmann equation [Eq. (5)] can be linearized, leading to

0.(r) = 0™ (r.a+s)(1 - ay(r)) (7)
and
W' (r) = k(r)*ydr),

respectively. Inserting both expressions into Eq. (6), one ob-
tains

r#a,a+s, (8)
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2 2
Y= 2s(grelc relc(1+ +;(s>> ¢D<1+ )O'(a+s),

2
)
with

e(r)¢'(r)

o(r) = - i

(10)
as the charge enclosed by a sphere of radius r around the
origin per sphere surface area.

The linear Poisson-Boltzmann equation [Eq. (8)] is ana-
Iytically soluble, which gives rise to an expression of the
form

Y

n(p—n) (2)2 ( 13)( n(p+n)
np + - +exp| — 2y np +
y n
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ref
o 5\ bzeb F(s/a,kpa,n,p), (11)
[1+3)
a

where «,:= \87Q[ T/ g,, n:=\e, /e, and pi=\ 05/ ). The

full scaling function F, which is recorded in the Appendix,
appears somewhat lengthy but is straightforward to obtain in
principle.

However, since the effective interfacial width parameter
s is usually very much smaller than the droplet radius and the
)~!, the first argument of the
scaling function F' can, within an excellent approximation, be
set to zero. Inserting x=0 into Egs. (A1) and (A2) leads to

ola+s) =

F(0,y,n,p) = =2

l+np+

At this level of approximation Egs. (9) and (11) reduce to

¥ = 25051 - ) - 2Lota (13)

bQZef
o(a) = ¢p F(0,xpa,n,p), (14)

respectively. According to Eq. (14), the droplet charge per
droplet surface area o(a) is (almost) independent of the in-
terfacial width s. On the other hand, the excess interfacial
tension ¥** in Eq. (13) comprises a contribution describing
the ion exclusion due to the short-ranged interfacial effects,

Y= 2505 (1 - p?), (15)

which is (essentially) linear in s and (almost) independent of
the droplet radius a, as well as an electrostatic contribution,

== Lota) (16)

and

which is (almost) independent of the effective interfacial
width s.

In order to understand the involved dependence of the
scaling function F(0,y,n,p) on y it is useful to investigate
the asymptotic behavior for large and small values of y. If
y>ylX :=n/p, the terms in Eq. (12) proportional to the expo-
nentials may be neglected such that

np
F(0,y > y{,n,p) = EG(y,n,p), (17)

with

22 (3]
y y
1_n2> . (12)
y
[
- )+
1-—— | 1+-
G(y,n,p) := %- (18)
1

Ll
(1+np)y

Defining y; := (|1-n%|);(1+np) and y; :=1 and noting that
(1-n);(1+np) €[-y;,y5], one infers from Eq. (17) the
leading order asymptotic behavior,

.
np %
, Dy >

1 +np ( )y V3
F(0,y > yi',n,p) = 4 y My, <y <yy

1+np

np

o (y<yg

\
(19)

The three cases considered in Eq. (19) are exhaustive and
mutually exclusive for y>y[* because y; =max(y;,y;). If
y<y7, Eq. (12) leads to

2

F(0.y <y.np) ="y (20)
Figure 1 displays F(0,y,n,p) for the case y; <y; <yJ,
where all four asymptotic regimes I-IV of Egs. (19) and (20)
are apparent. If y;' <y <yJ, however, regime III in Fig. 1
is absent, and a crossover between regimes Il and IV takes
place at y=yf<. Moreover, if le> y3X, regime II is also ab-
sent, and F(0,y,n,p) exhibits a single crossover at y=y;
between regimes I and IV.

According to y=kpa [see Egs. (11) and (14)] the cross-
over values in,i e{1,2,3} correspond to crossover droplet
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FIG. 1. Scaling function F(0,y,n,p) as a function of y for the relation y;
<y; <y3 of the crossover positions (see main text) in a log-log plot. The
asymptotic regimes I-IV corresponding to Egs. (19) and (20) are apparent.
For y;*>y5, regime III is absent, and for y; >y regime II is also absent.

radii aiX ,ie{1,2,3}, i.e., regimes I-IV can be understood in
terms of length scales of the system. Obviously a?:x;l and
a;'=«;" = k;'n/p equal the Debye lengths in the bulk and in
the droplet, respectively. Finally a5 =|e,—g,|/ (g,k,+&4K,) is
a length scale that accounts for the dielectric contrast be-
tween bulk and droplet.

It will turn out in the next section that the analytical
expressions based on the linearized theory derived in the
present section agree qualitatively, in typical cases even
quantitatively, with numerically calculated interfacial ten-
sions within the nonlinear theory.

IV. DISCUSSION

Here the closed analytical expressions obtained within
the linearized Poisson—Boltzmann theory of the previous sec-
tion are discussed and compared with numerical results ob-
tained within the nonlinear theory based on Egs. (4)—(6).
Some of the numerical data presented here have already been
considered in Ref. 7. Throughout this section, one of the
liquids is water with a dielectric constant of &,=80. More-
over, the largely arbitrary but representative choice of ion
radii a,=0.36 nm and a_=0.30 nm is made throughout.
Given the dielectric constant of the second liquid, called
“oil,” the parameters n, p, and ¢p, are known within the Born
approximation (see Sec. II). The cases of an oil droplet in
water (O/W) and of a water droplet in oil (W/O) will be
distinguished.

Figure 2 displays the electrostatic contribution to the ex-
cess interfacial tension y., [see Eq. (16)] of oil droplets in
water (O/W, ascending curves) and water droplets in oil
(W/O, descending curves) for an ionic strength in water I,
=1 mM, where I,,:= @} for O/W and I,,:= 0’5" for W/O, as a
function of the droplet radius a. The analytical expression
Eq. (16) within the linearized Poisson-Boltzmann theory
(thin solid curves) is compared with numerical results of the
nonlinear Poisson-Boltzmann theory (thick dotted curves).
The slight quantitative differences are due to the linearization
approximation and they are already present in the planar sys-
tem (a~'=0). The quantities n, p, and ¢p, as well as the
crossover values y;* and y, corresponding to the curves in
Fig. 2, are displayed in Table I. According to Sec. III, regime
IIT is expected to be absent for the W/O systems because

J. Chem. Phys. 130, 024703 (2009)
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FIG. 2. Electrostatic contribution to the excess interfacial tension %, in
mixtures of oil (g, €{5,7.5,10}) and water (&,,=80) as a function of the
radius a of an oil droplet in water (O/W, ascending curves) and a water
droplet in oil (W/O, descending curves) with ion radii a,=0.36 nm and
a_=0.30 nm, as well as an ionic strength in water /,=1 mM. The thin solid
curves are calculated by means of the analytical expressions within the
linear theory of Sec. III, whereas the thick dotted curves are obtained by
numerically solving the nonlinear Poisson-Boltzmann equation [Eq. (5)].
Upon swapping oil and water (O/W < W/O) the slope of the curves at
a~'=0 (planar system) changes its sign.

y5 >y} >y5, whereas regimes II and III are absent for the
O/W systems because y]X > y; > y2X (see also the discussion
of Fig. 5 at the end of this section).

Due to Eq. (16) the relative change in the electrostatic
excess interfacial tension y5i(a) and the droplet charge per
droplet surface area o(a) with respect to their planar values
Yax() and (o), respectively, are equal, and they exhibit the
low-curvature asymptotic behavior [see Egs. (14) and (17)],

¥ia)  ofa)

—— = G(kpa,n,p),

> X

where G is as defined in Eq. (18). Upon rewriting Eq. (18)
one recognizes the asymptotic behavior,

n(p +n)? I
——
n(l-p> _,  p(l+np)?
G(y>y§,n,p)=1—p(1+np)y - =
1+s.ign(1—n)y—2
y
n(l-p) , nlp+n)* _
- y - 2)’ 2, (22)
p(1+np) p(1+np)

which equals the expansion in y~' up to the second order.
Hence, the low-curvature expansion up to the second order
in a~! obtained by combining Egs. (21) and (22) is expected
to be accurate if x,a>y,y5. Traditionally, empirically mo-
tivated expansions in a~' have been used to represent the
curvature dependence of the interfacial tension without
knowing their applicability a priori. However, it has been
argued by Konig et al.,”> on the basis of a morphometrical
approach, that the deviation of intensive thermodynamic
quantities from their planar values are linear combinations of
the mean and the Gaussian curvature provided the geometri-
cal length scales are much larger than any correlation length,
ie.,a> K}l , K;l or equivalently r,a>y| ,y?. This condition
is only sufficient but not necessary for the validity of the
above low-curvature expansion because it already implies
k,a>y; due to y; =max(y;,y;). For n,p>1, the low-
curvature expansion is valid if k;a> 1, independent of the
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TABLE 1. Quantities n, p, and ¢, as well as the crossover values y; and y? (see Secs. II and III), within the
Born approximation for (a) O/W and (b) W/O systems with the oil dielectric constant €, € {5,7.5,10} and ion

radii @,=0.36 nm and a_=0.30 nm.

g, n p b yr v,

5 0.25 0.000 285 1.48 876 0.937
7.5 0.306 0.005 20 0.956 58.9 0.905
10 0.354 0.0222 0.692 15.9 0.868

g, n p ép N vy

5 4 3500 -1.48 0.001 14 0.001 07
7.5 3.27 192 —-0.956 0.0170 0.0154
10 2.83 45.1 —-0.692 0.0627 0.0545

bulk Debye length ', because in this case y; ~y ‘. This is
the case, e.g., for the W/O systems considered in Table 1.
From Eq. (18) one straightforwardly recognizes the sym-
metry G(py/n,1/n,1/p)=G(-y,n,p), which means that
swapping droplet and bulk liquid, i.e., p—~>1/p, n—>1/n, and
K> kg, wWhile keeping the droplet radius a fixed has numeri-
cally the same effect on function G as inverting the sign of
the droplet radius. Due to this symmetry one concludes for
the coefficients of an expansion in inverse powers of a, as in
Eq. (22) for y=kya, that, upon swapping droplet and bulk
liquid, the odd-order coefficients merely invert their sign,
whereas the even-order coefficients do not change. This phe-
nomenon can be observed in Fig. 2, where the slope close to
the planar limit (a~'=0), which is proportional to the excess
Tolman length due to the presence of ions, simply changes
its sign upon swapping oil and water (O/W < W/O).
Figure 3 exhibits the electrostatic contribution to the ex-
cess interfacial tension i, as a function of the dielectric
constant g, of the oil for the ionic strength in water I,
=1 mM and for various droplet radii a
e{50,100,250,500,1000 nm,%}. As in Fig. 2, the thin

-100

/nJm~2

~eX

les

-200

W/O, a =50nm

20 10 60 80
€o

-300

FIG. 3. Electrostatic contribution to the excess interfacial tension in mix-
tures of oil and water (g,,=80) as a function of the dielectric constant &, of
the oil for droplet radii a € {50,100,250,500,1000 nm,%} of an oil droplet
in water (O/W) and a water droplet in oil (W/O) with ion radii a,
=036 nm and a_=0.30 nm as well as the ionic strength in water /,
=1 mM. The thin solid curves are calculated by means of the analytical
expressions within the linear theory of Sec. III, whereas the thick dotted
curves are obtained by numerically solving the nonlinear Poisson—
Boltzmann equation [Eq. (5)]. There is quantitative agreement between the
linear and the nonlinear theory for the ranges of a and &, considered here.

solid curves correspond to the analytic linear theory of Sec.
III, whereas the thick dotted curves are the numerical results
of the nonlinear scheme. Quantitative agreement is observed,
even in the low-g, range where the Donnan potential ¢p, is
not small and the linearization approximation is not a priori
justified. From the linearized theory of Sec. III, one can de-
rive the asymptotic behavior yX=O(-(g,-¢,)?) for e,
—g,, as well as Y =O(-exp(-const/¢,)) for an O/W sys-
tem and y5=0(-1/¢,) for a W/O system as &,— 0. This
behavior is apparent in Fig. 3, too.

The total excess interfacial tension y** comprises not
only the electrostatic part y5y but also the contribution X
due to the interfacial effects [see Eq. (15)]. It is readily seen
that y'=*+O(s(e,,—¢,)) for e,— ¢, and yo=*0O(s) for
g,—0, where the upper (+) and the lower (—) signs corre-
spond to an O/W and a W/O system, respectively. Hence, if
s # 0, the interfacial effects will dominate over the electro-
static effects in the limits €,—0 for O/W systems and g,
— g, for arbitrary systems. Figure 4 displays the total excess
interfacial tension corresponding to the parameters used in
Fig. 3 and an interfacial width parameter s with |[s]
=0.33 nm on the water side of the interface, i.e., s>0 for
O/W and s <0 for W/O.

According to the results of Sec. III, the electrostatic ex-

1800 -

O/W, a = 50nm
a= 00

L1200}

|

=

=

~

8 W/O, a = 50nm

¢ 600

0 L L

FIG. 4. Total excess interfacial tension in mixtures of oil and water (g,
=80) as a function of the dielectric constant &, of the oil for droplet radii
a €{50,100,250,500,1000 nm,} of an oil droplet in water (O/W) and a
water droplet in oil (W/O), with ion radii a,=0.36 nm and a_=0.30 nm,
interfacial width parameter |s|=0.33 nm, as well as the ionic strength in
water /,,=1 mM.
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(2] /ndm2

L - — a=1pum
''''' ” ——---a=0.1pm
1077 10° 10° 0.1 10
L/M

FIG. 5. Electrostatic excess interfacial tension in mixtures of oil (g,=5) and
water (g,,=80) as a function of the ionic strength in oil (1,) or water (1,,) for
droplet radii a € {0.1,1 wm} of an oil droplet in water (O/W) and a water
droplet in oil (W/O) with ion radii a,=0.36 nm and a_=0.30 nm. The O/W
system exhibits only regimes I and IV (see main text and Fig. 1), whereas
for the W/O system, regimes I, II, and IV are present. Upon changing the

droplet size a, the crossover ionic strengths shift by a factor of a2

cess interfacial tension 35 as a function of the bulk ionic
ref )

strength /,:= 0, can be asymptotically described by

r
> (& NP yp X X
— — 5", (DI,>1,,,1
¢D 81 +np ()b b1°1p3

2 & Np
P (1+np)a’

n=y =
— g P <1, <1
87l —n

(DL, Ly <1, < Ly

2
P
- by g als, (IV)I, < I,

\
(23)

with the crossover bulk ionic strengths Iy := &,(y;)?/8ma?,
k e{1,2,3} where the ykx,k e{1,2,3} are defined in Sec. III.
For a planar system (a=) the crossovers are at zero ionic
strength, hence only the high-ionic strength regime I in Fig.
1 (I,>1,,1};) is present, which coincides exactly with the
electrostatic contribution to the excess interfacial tension in
Ref. 5.

For an oil dielectric constant £,=5 and a droplet radius
a=1 um the crossover bulk ionic strengths are Iy
~71 mM, IszzSZ nM, 1?3293 nM for an O/W system,
where [,=I, is the ionic strength in water, and IbX]
=7.6 tM, 1,?2%6.6 ™, 1,,X3z5.8 nM for a W/O system,
where I,=1, is the ionic strength in oil (see Table I). Here,
ionic strengths in oil /, and in water [, are related to each
other by 1,/1,,~8.1X 1078, Figure 5 displays ¥ as a func-
tion of the ionic strength in the physical range I,
e[1077M,10M] for the droplet radii a=1 um and a
=0.1 wm. The crossover ionic strengths of the latter droplet
size are larger by a factor of 100 as compared to the former
because I, ~a~2. By inspection of the values of the cross-
over bulk ionic strengths, one expects only regimes I and IV
of Fig. 1 to be present for the O/W system, whereas regimes
I, II, and IV are expected for the W/O system. The occur-
rence of regimes I and IV for the O/W system and I, II, and
IV for the W/O system can be inferred from Fig. 5 in con-
junction with Eq. (23).

J. Chem. Phys. 130, 024703 (2009)

V. CONCLUSIONS AND SUMMARY

It turned out in the previous section that the analytical
theory of Sec. III based on a linearized Poisson—Boltzmann
theory is in good (at least) qualitative agreement with the
results from the full nonlinear theory. It can therefore be
expected that the general conclusions drawn from that linear
theory apply to more elaborate models'™" too.

According to Egs. (13), (15), and (16), the excess liquid-
liquid interfacial tension is Y=+ + 5, where the curva-
ture dependence is essentially only due to the electrostatic
part s, and not due to the contribution of the short-ranged
interfacial effects .. While ¥ can indeed be negative,
thereby decreasing the total interfacial tension, the largest
magnitude |y*| is attained at high ionic strengths where
Y* =, i.e., where ¥ is essentially curvature independent.
One has to conclude that the unimodal droplet size distribu-
tion of W/O emulsions observed by Leunissen et al.* can-
not be explained by the curvature dependence of the interfa-
cial tension due to electrostatic effects alone. However, this
conclusion does not apply to the experiments by Sacanna et
al..} where highly charged colloids instead of monovalent
ions are present, as the linearized theory of Sec. III is not a
priori justified for multivalent ions or highly charged col-
loids. Instead it is an interesting open question to be ad-
dressed in future studies as to what extent the qualitative
low-valency picture drawn here is valid for the presence of
high-valency particles.

In summary, the curvature dependence of the electrolytic
liquid-liquid interfacial tension within a simple linear
Poisson—Boltzmann model in the spherical geometry has
been calculated analytically. This linear theory turned out to
be at least qualitatively reliable as has been checked by nu-
merically solving the corresponding nonlinear Poisson—
Boltzmann model. Novel low ionic strength regimes, which
are not present for a planar liquid-liquid interface, have been
identified. Low and high curvature asymptotics of the inter-
facial tension have been discussed. In particular, it has been
found that in systems where the ionic strength and the dielec-
tric constant in the droplet are much larger than in the bulk
the range of validity of low-curvature expansions up to the
second order in the inverse radius of curvature is indepen-
dent of the bulk Debye length.
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APPENDIX: SCALING FUNCTION F

Upon solving the linearized Poisson—-Boltzmann equa-
tion [Eq. (8)] one obtains analytical solutions for the shifted
electrostatic potential , which, via Eq. (10), determines the
scaling function F introduced in Eq. (11),
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Note that F(x,y,n,p) is continuous at x=0.
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