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1 Introduction

This thesis relies on two crucial concepts that for the past four decades
have been the subject of intense research in condensed matter physics: the
electronic Berry curvature effects in crystals [1] and topological insulators [2].
These concepts are of course deeply connected, making their first combined
appearance in the description of the integer quantum Hall effect. Since
then, a new way of classifying phases of matter based on band topology
has emerged and a vast class of Berry curvature induced effects have been
observed in condensed matter systems.

Chapters 2, 3 and 4 are deeply reliant on the concept of anomalous veloc-
ity induced by the Berry curvature of the Bloch bands. Whereas, in Chap-
ters 5 and 6 we discuss, respectively, the transport properties of a quantum
spin Hall disk and the effect of inhomogeneous strain gradients in three-
dimensional topological insulators. The following introductory sections are
the basic building blocks to fully appreciate the subjects discussed in the
coming chapters.

1.1 Berry Phase

The concept of Berry phase, introduced by Michael Berry [3], is of fun-
damental importance in understanding a vast class of material properties
[1, 4], such as orbital magnetism, electronic polarization and different types
of Hall effects. However, the original paper where the Berry phase first made
its appearance had no apparent connection to condensed matter systems: it
described the adiabatic evolution of an eigenstate when the external param-
eters it depends upon are looped in parameter space. Take for instance a set
of time-dependent parameters R(t) = (R1(t), R2(t), ...) and a Hamiltonian
H(R(t)). We can study how the eigenstates of H change when the param-
eters R(t) evolve adiabatically in a path C in parameter space. This can
be done by introducing an instantaneous eigenbasis |n(R)〉 for each value of
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1 Introduction

R(t) such that,

H(R(t)) |n(R(t))〉 = ε(R(t)) |n(R(t))〉 . (1.1)

By making use of the quantum adiabatic theorem, a system which finds itself
in an eigenstate |n(R(0))〉 will stay in an instantaneous eigenstate |n(R(t))〉
during the adiabatic evolution. Hence the state |ψ(t)〉 at time t differs from
|n(R(t))〉 only in the phase picked up during the adiabatic process,

|ψn(t)〉 = eiγn(t)e−i
∫ t
0 dt
′ εn(R(t′)) |n(R(t))〉 . (1.2)

The second exponent is the known dynamical phase factor which depends
upon the time-evolution of the parameter dependent eigenenergy. By insert-
ing Eq. 1.2 into the time-dependent Schroedinger equation and multiplying
both sides by 〈n(R)|,

〈n(R(t))| i~∂t |ψn(t)〉 = 〈n(R(t))|H(R(t)) |ψn(t)〉 (1.3)

we can determine the phase factor γn(t) which is given by the line integral
in parameter space,

γn =

∫
C
dR · An(R). (1.4)

On top of the dynamical phase, the state at time t picks up an additional
phase γn during the adiabatic evolution. An(R) is known as the Berry
connection and is directly related to the eigenstates of H,

An(R) = i 〈n(R)| ∂R |n(R)〉 . (1.5)

In general γn is gauge dependent as can be easily seen by performing a
smooth gauge transformation to the instantaneous eigenstates,

|n(R)〉 → eiζ(R) |n(R)〉 . (1.6)

This transforms the Berry connection,

An(R)→ An(R)− ∂Rζ(R) (1.7)

2



1.1 Berry Phase

leading to an overall variation in γn given by ζ(R(0))− ζ(R(T )). Typically
one can always choose ζ(R) such that γn vanishes, as was already noticed
back in 1928 by Fock [5]. What was discovered only decades later was that
when the adiabatic evolution is cyclic, i.e. R(0) = R(T ), since the the gauge
transformation ζ(R) is required to be single-valued, one must have,

ζ(R(0))− ζ(R(T )) = 2πn n ∈ Z. (1.8)

This proves that when considering the adiabatic evolution of H(R) in a loop
in parameter space, the Berry phase γn =

∮
C dR·An(R) is a gauge-invariant,

hence physical, quantity that only depends on the geometry of the closed
path C.

In the following we will consider the parameter space to be at most three-
dimensional. By applying Stoke’s Theorem we can recast Eq. 1.4,

γn =

∫
C
dR · An(R) =

∫
S
dS ·Ωn(R). (1.9)

where Ωn(R) = ∇R ×An(R) is the gauge-invariant Berry curvature which
can be intuitively thought as a magnetic field in parameter space. The
Berry curvature is a local quantity encoding the geometric properties of the
wavefunctions that, as we will show, also has far reaching consequences in
the description of electronic dynamics in crystals [1].

The above derivation of the Berry phase and curvature relies on the ab-
sence of degeneracies in the energy spectrum during the adiabatic cycle. In
the case of degeneracies being present a non-Abelian description has to be
employed [6].

1.1.1 Berry Phase in a Two-Level System

It is particularly useful to study a two-level system since it uncovers various
important properties of the Berry phase and Berry curvature and how they
are related to a particular topological invariant. The Hamiltonian of a two-
level system takes the form,

H = h(R) · σσσ (1.10)

3



1 Introduction

where σσσ is a vector of Pauli matrices. We can employ spherical coordinates
and parametrize the vector h = h(sin θ cosφ, sin θ sinφ, cos θ). The eigen-
states with energies ±h are then given by,

|u−〉 =

(
sin θ

2e
iφ

− cos θ2

)
, |u+〉 =

(
cos θ2e

−iφ

sin θ
2

)
. (1.11)

Let us now consider the lowest energy level |u−〉 which for convenience we
will denote as |u〉 . From Eq. 1.5 the Berry connection is given by,

Aθ = 〈u|i∂θu〉 = 0 (1.12)

Aφ = 〈u|i∂φu〉 = sin2 θ

2
(1.13)

and the Berry curvature reads,

Ωθφ = ∂θAφ − ∂φAθ =
1

2
sin θ. (1.14)

The phase of |u−〉 is not well defined at the south pole where θ = π. In this
point the first component of |u−〉 is eiφ despite the fact that it cannot be
defined since both x and y coordinates are zero. We may choose a different
gauge and multiply |u−〉 by e−iφ to make it smooth. But once again |u−〉
will be well defined everywhere except for the north pole, at θ = 0. Under
this gauge Aθ = 0 and Aφ = − cos2 θ

2 while the Berry curvature remains
unchanged. This is not unexpected since, as explained in the previous sec-
tion, the Berry curvature is a gauge-invariant quantity whereas the Berry
connection is not. If h(R) depends on a set of parameters R we have,

ΩRi,Rj =
1

2

∂(φ, cos θ)

∂(Ri, Rj)
(1.15)

where ∂(φ, cos θ)/∂(Ri, Rj) is the jacobian of the transformation from R to
(θ, φ). By considering the case in which h = (x, y, z), since Ωi = εijkΩRi,Rj ,
we can write the Berry curvature in its vector form,

Ω =
1

2

h

h3
. (1.16)

4



1.1 Berry Phase

Eq. 1.16 is the field generated by a monopole of strength 1/2 (in parame-
ter space) at the degeneracy point h = 0. For the other energy level the
monopole will have opposite strength, −1/2. We have found that degener-
acy points in parameter space act as sources and drains of the Berry curva-
ture. Integrating the Berry curvature over a sphere containing the monopole
yields, ∫

S2
dθdφΩθφ = 2π. (1.17)

Note that when integrating on S2 the Hamiltonian is always gapped since
the degeneracy point is enclosed in the sphere. The integral of the Berry
curvature over a closed manifold is quantized in units of 2π and is equal
to the number of net monopoles inside. This number is a topological in-
variant called the Chern number, responsible for a number of quantization
effects, the prime example being the integer quantum Hall effect which we
will discuss later on.

1.1.2 Berry Phase in a Two-Dimensional Semiconductor Ring

As discussed above the Berry phase is a gauge-invariant, and hence physical,
quantity. It follows that it should be possible to observe it by exploiting
the wave-like nature of electronic quantum states such as electrons. In this
section we discuss how the Berry phase of the electronic spin can be measured
in a particular interferometric setup comprised of a quasi one-dimensional
semiconducting ring [7, 8]. The setup described here shares several common
features with the one we adopt in Chapter 5 where we study the transport
properties of a quantum spin-Hall disk.

The system we are interested in studying is a two-dimensional semicon-
ducting ring with Rashba spin-orbit coupling [9, 10]. The Rashba interaction
is a particular type of spin-orbit which appears in non-centrosymmetric ma-
terials and can be typically tuned by means of an external electric field E.
This kind of spin-orbit coupling locks the electronic spin and momentum
degrees of freedom together and is an essential tool in the field of spin-
orbitronics. As we will now show, it also plays a major role in the Berry
phase acquired by electrons in a semiconducting ring. By sending the width
of the ring to zero an effective one-dimensional Hamiltonian can be derived

5



1 Introduction

[11]. In polar coordinates it is given by,

H1D = −~ω0

2
∂2
φ+

~ωR
2

(cosφσx+ sinφσy)(−i∂φ)− i~ωR
4

(cosφσy− sinφσx)

(1.18)
where we defined the frequencies ω0 = ~

m∗r20
and ωR = 2αR

~r0 with m∗ the

effective electronic mass, r0 the ring radius and αR the Rashba spin-orbit
coupling constant. The last term in Eq. 1.18 is essential to ensure that H
is hermitian. By using the following ansatz for the eigenfunctions of the
system,

Ψs
n = einφ

(
e−i

φ
2 χs1

ei
φ
2 χs2

)
(1.19)

where n is a positive or negative half-integer number eigenvalue of the angu-
lar momentum operator Lφ = i∂φ. The eigenvalues of the system are then
given by, ( ~ω0

2 (n− 1
2)2 − ε ~ωR

2 (n+ 1
2)− ~ωR

4
~ωR

2 (n− 1
2) + ~ωR

4
~ω0

2 (n+ 1
2)2 − ε

)
(1.20)

leading to the quantized energies,

εsn =
~ω0

2
(n2 +

1

4
+ sn

√
1 +Q2

r). (1.21)

Here Qr = ωR
ω0

is the adiabatic parameter and s = ±1 represents the sign of
the spin projection along a certain quantization axis that changes with each
value of the angle φ. Indeed, the Rashba coupling can be thought of as an
effective radial magnetic field BSO ∝ E×p, with p the electron’s momentum
and E the electric field caused by the structural inversion asymmetry, to
which the spins tend to align (see Fig. 1.2a). At zero Rashba s is exactly
the eigenvalue of the Pauli matrix σz labelling up and down spin states.
The energies in Eq. 1.21 are given by two shifted parabolas (Fig. 1.1b),
signature of the Rashba spin-orbit coupling. At each allowed energy we find
four states, two having a positive band velocity (vs = dεsn

dn ) and opposite s,
moving clockwise along the ring while the other two are the time-reversed
pair with opposite spin, travelling counter-clockwise.

6



1.1 Berry Phase

Figure 1.1: (a) Sketch of of the interferometric setup based on a mesoscopic ring
with Rashba spin-orbit interaction. (b) Eigenvalues of the ring Hamil-
tonian of Eq. 1.18 plotted as a function of the quantum number n.
The two time-reversal channels I, II are indicated. (Adapted from
Ref. [12]).

Eigenstates of the system can be written as,

Ψ↑ = einφ

(
e−i

φ
2 cos θ2

−ei
φ
2 sin θ

2

)
Ψ↓ = einφ

(
e−i

φ
2 sin θ

2

ei
φ
2 cos θ2

)
(1.22)

where θ = tan−1Qr is the tilt angle of the electron spin relative to the
ẑ axis. For αR = 0 we recover the spin-up and spin-down eigenstates of
σz. It is important to note that in general the spin eigenstates are not
aligned with the effective magnetic field arising from the Rashba spin-orbit
coupling (Fig. 1.2a) and are instead characterized by a tilt angle θ. The total
geometric phase of the electron travelling across the ring is then given by the
solid angle subtended by the total magnetic field (Fig. 1.2b). A complete
alignment only happens in the adiabatic limit when Qr → ∞ and θ → π

2 .
To reproduce an interferometric setup (Fig. 1.1a) we can attach two infinite
and transparent leads at the two opposite ends of the ring. The electrons
injected at φ = 0 always come out at φ = π. Assuming that the size of the
ring is smaller than the mean free path of the electrons in the ring, then the
conductance of the system can be calculated by using the Landauer-Buttiker

7



1 Introduction

Figure 1.2: (a) The Rashba spin-orbit coupling induces an effective planar mag-
netic field orthogonal to the momentum of the electron traversing
the ring. (b) When transport is non-adiabatic the effective magnetic
field has an additional out-of-plane component proportional to ω0.
(Adapted from Ref. [8])

formalism [13],

G =
e2

h

∑
σ,σ′

T σ,σ
′

(1.23)

where the transmission coefficient T σ,σ
′

is given by the square of the scalar
product between the incoming state and the outgoing state, T σ,σ

′
= | 〈σ′|σout〉 |2.

The outgoing state is written as,

|σout〉 =
1

4

∑
s,λ

〈Ψs(0)|σ〉 |Ψs(λπ)〉 (1.24)

where λ = ± indicates if the state is a right or left mover and the factor
1/4 ensures the correct normalization. The idea behind |σout〉 is that an in-
coming spin σ entering the ring has a certain probability to be transported
to the other lead through one of the four available energy channels. These
probabilities which are the coefficients of the linear combination of the eigen-
functions calculated in π are given by the scalar product of |σ〉 with |Ψs(0)〉.
The unpolarized conductance can be written explicitly by summing on a

8



1.1 Berry Phase

complete set of incoming spin states (note that
∑

σ |σ〉 〈σ| = I),

G =
e2

4h

∑
s,s′,λ,λ′

〈
Ψs(0)|Ψs′(0)

〉 〈
Ψs′(λ′π)|Ψs(λπ)

〉
. (1.25)

This results in 16 inner products some of which are zero due to the orthog-
onality between opposite spin states. Finally the overall conductance reads,

G

e2/h
= 1 + cos[πQr sin θ − π(1− cos θ)]. (1.26)

The Rashba phase φR = πQr sin θ has an additional factor sin θ that accounts
for the fact that spinors aren’t generally aligned with the effective Rashba
field. The phase φAA = π(1 − cos θ) is the Aharonov-Anandan phase, a
non-adiabatic generalization of the Berry phase, related to the solid angle
accumulated by the change in spinor orientation during transport (Fig. 1.2).
In the adiabatic limit this tends to the π-Berry phase of the electronic spin
Qr →∞, φAA → π.

1.1.3 Berry Phase in Crystals

The Berry phase naturally appears in crystals where the electronic wave-
functions live in a Brillouin zone which is topologically equivalent to a torus.
Assuming negligible interaction effects, the Hamiltonian of a crystal is de-
scribed by,

H =
p̂2

2m
+ V (r) (1.27)

where V (r) = V (r+a) is the ionic potential which follows the same periodic
structure of the underlying lattice and a is a Bravais lattice vector. Bloch’s
theorem ensures that the eigenstates of the crystals can be labelled by a
discrete band index n and a crystal wave vector q which resides inside the
Brillouin zone. Moreover the wavefunctions of electrons in the crystal, or
Bloch waves, can be written as plane waves modulated by a periodic function,

ψn,q(r) = eiq·run,q(r) (1.28)

where un,q(r) satisfies the periodic boundary condition un,q(r) = un,q(r +
a). Considering the unitary transformation H(q) = e−iq·rHeiq·r we see

9



1 Introduction

that the Brillouin zone is the parameter space of H(q) and that the states
|un,q(r)〉 are its basis functions. The eigenvalues εn,q define the electronic
band structure of the crystal which typically consists of different energy
dispersions separated by forbidden energy ranges known as band gaps. If the
Fermi energy of the system lies in a band gap then the system is insulating
at zero temperature, whereas if the energy bands are only partially filled
then the system behaves as a metal.
Now it’s clear that if the momentum q can change in momentum space then
the Bloch state gathers a Berry phase (also known as Zak phase [14]),

γn =

∫
C
dq · 〈u(q)| i∂q |u(q)〉 (1.29)

where C has to be a loop in the Brillouin zone in order for γ to be gauge-
invariant. As usual one can also define a Berry curvature and rewrite the
line integral of Eq. 1.29 using Stoke’s theorem, γn =

∫
dS · Ωn(q)/(2π)d.

If the system is metallic, the energy bands are only partially filled. In this
case by applying an external magnetic and/or electric field the electrons on
the Fermi surface experience a change in momentum forcing them to loop
around the Fermi surface, thus acquiring a non-trivial Berry phase. As we
will discuss in the following Section, this Fermi liquid property, known as
the anomalous Hall effect [15] is rooted in the anomalous velocity of Bloch
electrons. If the system is an insulator, i.e. the Fermi energy lies in an
energy gap, the integral of the Berry curvature can be taken over the whole
Brillouin zone. As shown in Fig. 1.3, this is equivalent to integrating the
curvature over a torus, leading to the same quantization discussed in Section
1.1.1. In this case the effect is a property of the many body insulating state
given by the Slater determinant of the occupied bands.

1.2 Anomalous Velocity

To show why the Berry curvature is directly responsible for the anomalous
velocity of electrons in a crystal, it is first useful to introduce the problem
of a one-dimensional crystal subject to a slowly-varying time perturbation.
The instantaneous eigenstates of H(q, t) can still be written in the Bloch
form eiqx |un(q, t)〉 since translational symmetry is preserved. At first order

10



1.2 Anomalous Velocity

Figure 1.3: The two-dimensional Brillouin zone of a crystal is equivalent to a torus.
(Adapted from Ref. [16])

in time-dependent perturbation theory the wavefunction is given by,

|un〉 − i~
∑
n′ 6=n

|un′〉 〈un′ |∂tun〉
εn − ε′n

. (1.30)

The velocity operator can be written in momentum space as
v(q, t) = ∂H(q, t)/∂(~q). It follows from Eq. 1.30 that at first order the
electronic velocity of a state with momentum q given by,

vn(q) =
∂εn(q)

~∂q
− i

∑
n′ 6=n
{〈un| ∂qH |un

′〉 〈un′ |∂tun〉
εn − ε′n

− c.c.}. (1.31)

Since 〈un| ∂qH |un′〉 = (εn − ε′n) 〈∂qun|un′〉 and considering the identity∑
n′ |un′〉 〈un′ | = 1 we can recast Eq. 1.31 as,

vn(q) =
∂εn(q)

~∂q
− i(〈∂qun|∂tun〉 − 〈∂tun|∂qun〉). (1.32)

The second term is the Berry curvature Ωn(q, t) where the parameter space
is now generated by (q, t). The induced current by the time-dependent per-
turbation is found upon integration of vn(q) inside the Brillouin zone. Let us
consider an insulating system. As the first term disappears, we are left with
the integral of

∑
n

∫
BZ

dq
2π Ωn(q, t). If we consider the integration also over a
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1 Introduction

period of time T in which the Hamiltonian returns to itself, H(t) = H(t+T )
the parameter space upon which we are integrating is a torus. As previ-
ously mentioned, the integral of the Berry curvature over the Brillouin zone
of filled bands, and over the period T , i.e cn =

∑
n

∫ T
0

∫
BZ

dq
2πΩn(q, t), is a

quantized value known as the Chern number counting the number of elec-
trons transported from one end of the system to the other during the period
of time T. This phenomenon is known as adiabatic charge pumping [17] and
is the cornerstone to understanding the integer quantum Hall effect, opening
the door to the world of topological insulators.
Let us now consider a three-dimensional crystal subject to a weak external
electric field E. We introduce such field in the crystal Hamiltonian by using
Peierls substitution,

H(t) =
(p̂+ A(t))2

2m
+ V (r). (1.33)

Clearly, this is the same time-dependent problem discussed above. By defin-
ing the transformed Hamiltonian H(q, t) = H(q+e/~A(t)) we can introduce
the gauge-invariant crystal momentum k = q + (e/~)A(t) which we can use
to label the eigenstates of the system. The time derivative of k is then given
by k̇ = −(e/~)E. By using the identities ∂uα = ∂kα and ∂t = −(e/~)Eα∂kα
we can recast Eq. 1.32,

vn(k) =
∂εn(k)

~∂k
− e

~
E×Ωn(k) (1.34)

where the second term is known as the anomalous velocity. This addi-
tional contribution can be thought as the momentum space equivalent of
the Lorentz force, where the Berry curvature plays the role of the magnetic
field. As such it is always transverse to the electric field and is responsible for
different types (quantum/anomalous/spin/valley) of Hall responses in met-
als and insulators. In Chapter 3 we will show how the anomalous velocity
is responsible for a particular type of planar Hall effect in two-dimensional
trigonal crystals which has been overlooked so far.
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1.3 Non-Linear Hall Effect Induced by Berry
Curvature Dipole

Inversion and time-reversal symmetries constrain the Berry curvature to
behave respectively as an even and odd function of momentum. When time-
reversal symmetry is preserved the integral of the Berry curvature is forced
to vanish and hence there can be no Hall effects. However, in recent years
it was discovered [18] that when considering inversion-broken crystals Hall-
like currents appear as second order responses to the applied electric field.
This can be shown through a semiclassical picture of transport where the
current density is given by the integral of the electronic velocity weighed by
the distribution function:

ja = e

∫
k
f(k)ṙa (1.35)

with
∫
k =

∫
ddk/(2/π)d and ∂a = ∂ka . We will consider for simplicity a single

band system and fix ~ = 1. The velocity of the Bloch electrons subject to an
external electric field is given by Eq. 1.34. Let us now consider an AC electric
field Ec(t) = Re{Eceiωt} with Ec ∈ C. By making use of the relaxation time
approximation the Boltzmann equation for the distribution function of the
electrons reduces to,

eτEa∂af + τ∂tf = f0 − f (1.36)

where f0 is the equilibrium distribution function and τ is the relaxation time
which for simplicity is assumed to be a constant. The response at second
order in the electric field can be found by expanding f up to second order,
f = Re{f0 + f1 + f2} where fn is order En. Plugging the various fn in
Eq. 1.36 a recursive structure appears, yielding:

f1 = fω1

f2 = f0
2 + f2ω

2 e2iωt

f2ω
2 =

(eτ)2EaE∂abf0

2(1 + iωt)(1 + 2iωt)

fω1 = −eτEa∂af0

1 + iωt

f0
2 =

(eτ)2E∗aEb∂abf0

2(1 + iωt)

(1.37)
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(b)

Figure 1.4: Sketch of a conventional Hall response in the absence of time-reversal
symmetry (a) and of the non-linear Hall response (b) when time-
reversal is preserved.

The current density can then be written as the sum of a DC current, and a
second harmonic as ja = Re{j0

a + j2ω
a e2iωt}, where:

j0
a =

e2

2

∫
k
εabcΩbE∗c fω1 + e

∫
k
f0

2∂aε(k)

j2ω
a =

e2

2

∫
k
εabcΩbEcfω1 + e

∫
k
f2ω

2 ∂aε(k).

(1.38)

The second terms of Eq. 1.38 are the semiclassical ones and vanish when
assuming time-reversal symmetry and a constant τ . The Berry curvature-
induced quantum part of the non-linear planar Hall effect can instead be
written as j0

a = χabcEbE∗c and j2ω
a = χabcEbEc with,

χabc = εadc
e3τ

2(1 + iωτ)

∫
k
(∂bf0)Ωd. (1.39)

Hence, the non-linear Hall current appears as the response at zero and twice
the frequency of the applied electric field. The presence of the term ∂bf0

guarantees that only states near the Fermi surface contribute to the non-
linear current. Hence the response is purely a Fermi liquid property. Partial
integration of Eq. 1.39 uncovers the Berry curvature dipole that generates
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1.4 Topological Insulators

this quantum non-linear response,

χabc = −εadc
e3τ

2(1 + iωτ)

∫
k
f0(∂bΩd). (1.40)

The integral is the first moment of the Berry curvature, known as the Berry
curvature dipole:

Dbd =

∫
k
f0(∂bΩd). (1.41)

It is interesting to note that for ωτ >> 1 the prefactor of Eq. 1.40 becomes
independent of the scattering time. In this limit the non-linear response
is entirely determined by the Berry curvature dipole. In two-dimensional
crystals the Berry curvature is a pseudoscalar and hence the Berry curvature
dipole behaves as pseudovector. It follows that for the dipole to be non-
vanishing, the crystal may possess at most one residual mirror symmetry
and in this case the dipole will be orthogonal to the mirror line. In Chapter
2 we discuss how strain generates a finite Berry curvature dipole in both
monolayer and bilayer graphene due to the warping of the Fermi surface.
Moreover in Chapter 3 we show how even in time-reversal broken crystals
an anomalous kind of non-linear planar Hall effect can be observed when
mirror symmetries are present.

1.4 Topological Insulators

As mentioned in Section 1.1.3, insulators are characterized by an energy
gap which separates a filled valence band from an empty conduction band.
Exciting an electron from the valence to the conductance band costs a fi-
nite amount of energy, equal to the band gap at zero temperature, making
the system insulating by definition. Of course the size of the energy gap
compared to the thermal energy lets us distinguish between insulators and
semiconductors, however from a topological classification standpoint both
these phases of matter are equivalent to a trivial insulator since they can
be deformed into one another by smoothly tuning an external parameter
without closing the band gap.

The first non-trivial insulating phase discovered, meaning that it could
not be smoothly deformed into a trivial insulator, was the integer quantum
Hall state [19]. This exotic phase of matter emerges when applying a strong
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1 Introduction

transverse magnetic field to electrons confined in two-dimensions. The mag-
netic field generates quantized Landau levels with energies εn = ~ωc(n+1/2),
where ωc is the cyclotron frequency. If the Fermi energy lies in one of the
forbidden energy ranges, N Landau levels are filled and the system is by all
means an insulatora, When applying an electric field to such a system the cy-
clotron orbits start to drift and the transverse Hall conductance is quantized
to the number of filled Landau levels σxy/(e

2/h) = N . As to why the quan-
tum Hall state is not a trivial insulator, the reason is linked to the presence
of a non-trivial Chern invariant n ∈ Z. Indeed, this topological invariant
which distinguishes among different classes of insulators. The topological
aspect stems from the fact that an insulator with n = 0 cannot be smoothly
deformed (without closing the energy gap) into another one with a different
n. The Chern number of an occupied band m can be computed by taking
the integral of the Berry curvature over the Brillouin zone:

nm =

∫
BZ

d2k Ωm(k). (1.42)

The integral of the Berry curvature over a closed manifold is quantized much
in the same way as the integral of the gaussian curvature over a closed sur-
face is quantized to the genus of said surfaces, the latter is known as the
Gauss-Bonnet theorem. It turns out, however, that it is not necessary to
form Landau levels to obtain a quantum Hall state. The Haldane model re-
produces the integer quantum Hall effect by considering a honeycomb lattice
where time-reversal is broken by a periodic magnetic field that on average is
zero. Breaking time-reversal symmetry is sufficient to gap the system; it can
then be shown that the Berry curvature contribution of the two low-energy
Dirac cones produces a finite Chern number. This effect is known as the
quantum anomalous Hall effect. It may be puzzling to see why an insulator
exhibits a finite Hall conductance: typically insulators do not conduct. The
answer is found by considering what happens at the boundary of a topo-
logical insulator, where its interface touches the vacuum or perhaps another
trivial insulator (the two are topologically equivalent). It turns out that
at the edge of a topological insulator conducting channels appear. These
metallic states are the ones responsible for the quantized conductance. The

aIt is remarkable how the magnetic field completely modifies the physical properties of
what would only be a conventional two-dimensional electron gas.
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1.4 Topological Insulators

Figure 1.5: Sketch of a quantum spin-Hall insulator and helical edge states in a
quantum well. (Adapted from Ref. [22])

edge states are robust against external perturbations since they stem from
a topological invariant which is itself unchanged by smooth deformations of
H. This phenomenon is known as the bulk-boundary correspondence and its
potential technological applications have attracted much interest in various
research areas of condensed matter physics.

Since the discovery of the quantum Hall state many other invariants have
been uncovered. Depending on the internal and crystalline symmetries of the
material different kinds invariants are used for classification. The Z2 topolog-
ical insulator is among the most notable ones. In contrast with the quantum
Hall state, this topological class of insulators preserves time-reversal sym-
metry. It can be shown that when considering spin-orbit coupled systems
non-trivial topology emerges. In two-dimensions this kind of topological in-
sulator is known as the quantum spin-Hall insulator. A minimal model with
the necessary features to realize such an insulator was proposed by Kane and
Mele [20]. The peculiarity of the quantum spin-Hall insulator is that its edge
state are helical, meaning that opposite spins travel in opposite directions
along the edges. This phase of matter was later theoretically predicted [21]
and experimentally realized [22] in HgTe/CdTe quantum wells (Fig. 1.5). In
Chapter 5 we make use of the BHZ model to discuss the transport properties
of a quantum spin-Hall disk.
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In three dimensions the quantum spin-Hall insulator can be naturally gen-
eralized. By using four Z2 topological invariants a three-dimensional topo-
logical insulator can be defined [2, 23]. This class of insulators hosts single
Dirac cones on their surfaces, a three-dimensional generalization of the dis-
cussed bulk-boundary correspondence. However, the presence of an isolated
Dirac cone on a surface is an anomaly which at first glance appears to vio-
late the fermion doubling theorem. The solution to this paradox is found by
considering the opposite surface which hosts the partner Dirac cone. These
metallic surface states are not spin-degenerate and can be effectively thought
as half an ordinary metal. In Chapter 6 we discuss how the application of
inhomogeneous strain gradients to a three-dimensional topological insula-
tor can couple the metallic surface states and hybridize them, leading to
topological phase transitions.

1.5 Outline

The thesis is structured as follows:

� Chapter 2 contains a discussion on the appearance of non-linear Hall
currents in inversion broken monolayer and bilayer graphene when ap-
plying uniform uniaxial strain. We show that the appearance of a finite
dipole is rooted in the warping of the Fermi surface.

� In Chapter 3 we show how a previously overlooked anomalous planar
Hall effect arises in two-dimensional trigonal crystals as a consequence
of the anomalous velocity of the Bloch electrons. We also show that
when mirror symmetries constrain this effect to vanish a non-linear
counterpart can still be present due to the finite Berry curvature dipole
of the system.

� Chapter 4 contains a brief discussion on the anomalous planar Hall
effect in a Rashba two-dimensional electron gas. This minimal models
typically describes the low energy theory around the high symmetry
point Γ point of a different number of spin-orbit coupled materials.
Typically in time-reversal symmetric conditions the Berry curvature
of such model is assumed to be vanishing. However by considering the
presence of symmetry allowed warping terms we find that it becomes
finite leading to an anomalous planar Hall effect.
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1.5 Outline

� In Chapter 5 we study the transport properties of a quantum spin-Hall
insulator in a disk geometry. We show that the presence of topolog-
ically protected helical edge states allow for the control and manip-
ulation of injected polarized spin currents by controlling the Rashba
coupling.

� In Chapter 6 we show that the coupling of inhomogeneous strains to
the Dirac fermions of three-dimensional topological insulators in thin
film geometries results in the occurrence of phase transitions between
topologically distinct insulating phases. We find that the topological
phase transitions can lead a normal insulator to a topological phase
and vice-versa.
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2 Berry Curvature Dipole in Strained
Graphene: a Fermi Surface Warping Effect

Because of their deep relation to topology [2, 24] the family of Hall ef-
fects [1, 25], the most famous member of which is the quantization of the
Hall conductance in strong magnetic fields [17, 19, 26], have been intensively
scrutinized in recent years. A prerequisite for any Hall effect to appear is
time-reversal symmetry breaking. Therefore, either magnetic fields or mag-
netic dopants are required to have a non-vanishing Hall conductance. It
has been recently established, however, that a Hall-like current can still be
observed in non-centrosymmetric systems as a non-linear response to an ex-
ternal electric field [18, 27]. Such non-linear Hall current is closely related
to the Berry curvature dipole, which is essentially the first moment of the
Berry curvature in momentum space. As a result, this non-linear effect can
be used as a direct probe of the geometry of the Bloch states in time-reversal
invariant systems.

Single-layer transition metal dichalcogenides MX2 (M=Mo,W and X=S,
Se, Te) [28] have been theoretically predicted [29, 30] and experimentally ver-
ified [31–33] as material platforms supporting large Berry curvature dipoles.
These materials possess large spin-orbit coupling and lack of inversion sym-
metry in their Td structure. Furthermore, inversion symmetry breaking can
be also achieved with the aid of external electric fields in the topological
non-trivial 1T ′ phase. A non-linear Hall effect has been also predicted [34]
and experimentally observed in bilayer WTe2 [35]. Finally, different non-
centrosymmetric three-dimensional materials have been proposed to feature
sizable Berry curvature dipoles. These include the topological crystalline in-
sulator SnTe [36], which undergoes a ferroelectric distorsion at low temper-
atures [37], time-reversal symmetric Weyl semimetals in the TaAs materials
class [18], as well as the giant Rashba material BiTeI [38].

The common trait of all these materials is their strong spin-orbit coupling
and the presence of low-energy Dirac quasi-particles forming tilted Dirac
cones. In particular, the tilt of the Dirac cones does not change the Berry
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Figure 2.1: a) Top view of the uniformly strained Bernal-stacked bilayer graphene
lattice. Red and blue carbon atoms correspond to different layer and
are not equivalent due to the applied voltage that breaks inversion
symmetry. Black sites indicate the overlap between atoms of the two
different layers. By applying an electric field Ex parallel to the dipole
Dx, a non-linear Hall current JnlH is generated. b) Strain deformation
of the Brillouin zone. The warped low-energy dispersion is shown in
the vicinity of the two unstrained high symmetry points K and K ′.

curvature of the system but it is crucial to get a corresponding non-vanishing
first dipole moment. The aim of this work is to show that this topological
effect emerges even in the complete absence of spin-orbit coupling in two-
dimensional Dirac materials. In these systems, the non-vanishing Berry
curvature dipole does not stem from the presence of tilted Dirac cones but
it is due to the warping of the Fermi surface. We show indeed that a sizable
Berry curvature dipole arises in uniaxially strained single-layer and bilayer-
graphene where inversion symmetry is broken by the existence of a substrate
and an external electric field, respectively. In the absence of shear strains,
the non-vanishing dipole in these materials is generated along the zig-zag
direction, which is orthogonal to the armchair mirror line (Fig. 2.1a). Even
more importantly, the appearance of a finite dipole can only be captured
taking explicitly into account the terms accounting for the warping of the
Fermi surface (Fig. 2.1b) in the low-energy description of the system. The
warping-induced Berry dipole is strongly enhanced in Bernal-stacked bilayer
graphene and reaches the nanometer scale, which is comparable to the value
experimentally observed in bilayer WTe2 [35].
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2.1 Berry Curvature Dipole in Strained Monolayer
Graphene

We start out by recalling the relation between the non-linear Hall current
and the Berry curvature dipole as it can be derived using the semiclassi-
cal Boltzmann picture of transport [18]. In time-reversal invariant, non-
centrosymmetric crystals applying an AC electric field Ec = Re(Eceiωt) in-
duces a current ja = Re(j0

a + j2ω
a e2iωt). This non-linear current has two

Fourier components at zero and twice the frequency of the applied external
field, j0 = χabcEbE∗c and j2ω = χabcEbEc. The response function χabc, which
can be expressed as χabc = −εadce3τDbd/2(1 + iωτ), with εadc being the
Levi-Civita tensor and τ the scattering time, explicitly contains the Berry
curvature dipolea defined as:

Dbd =

∫
k
f0(∂bΩd) (2.1)

where ∂a = ∂ka ,
∫
k =

∫
ddk/(2π)d and f0 is the Fermi-Dirac distribution.

The Berry curvature Ω is defined, as usual, as the rotor of the Berry connec-
tion Aa = −i 〈uk|∂a|uk〉. Crystalline symmetries may constrain the dipole
to be zero: in a two-dimensional crystal, the Berry curvature is a pseu-
doscalar, and therefore the dipole behaves as a pseudovector contained in
the two-dimensional plane. As a result, for a Berry curvature dipole to be
non-vanishing the system must have at most one mirror symmetry left. If
one mirror is preserved the dipole will then be directed perpendicular to the
mirror line.

The wallpaper group of graphene is p6mm, generated by the point group
C6v and in-plane translations. The point group C6v is comprised of a three-
fold rotation C3, a two-fold rotation C2 and the mirror symmetry Mx [39].
The two-fold rotation C2, which coincides with inversion since spin-orbit cou-
pling can be effectively neglected, is immediately broken assuming a stag-
gered chemical potential between the two honeycomb sublattices (Semenoff
mass [40]). The latter can be engineered by placing the graphene sheet on
a substrate, for example lattice-matched h-BN [41, 42]. Breaking inversion

aAsymmetric defect scattering and other extrinsic mechanisms can also contribute to a
non-linear Hall current. These effects can be experimentally decoupled (see Ref.[35])
from the Berry curvature dipole contribution we discuss here.
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reduces the point group to C3v, gaps out the Dirac cones present at the
high symmetry points K and K ′ in the Brillouin zone, and allows for a
non-vanishing Berry curvature. To further lower the point group symmetry
to Cv we apply a uniform uniaxial strain to the honeycomb lattice along
one of the two main crystallographic directions. This uniaxial strain moves
the massive Dirac cones away from the the high symmetry points along the
ky = 0 line, as required by the combination of time-reversal Θ and mirror
symmetry Mx. The ky = 0 line is perpendicular to the mirror line and
parallel to the dipole. Although the existence of a Berry curvature dipole
is perfectly allowed from a symmetry perspective, the corresponding low-
energy theory does not immediately entail the system with a non-vanishing
Berry curvature dipole.

To show this we first discuss the low-energy theory of strained graphene.
The application of strain to the lattice deforms the primitive cell and the
corresponding Brillouin zone (Fig. 2.1b ) but also produces a difference
between hopping amplitudes along the two main crystallographic directions.
To first order in strain and momentum, the low-energy description of the
system shows that the strain behaves effectively as a pseudo-gauge field [43]:
H1 = vF [(ξkx +Ax)σx + kyσy] + ∆σz/2, where vF is the Fermi velocity, σx,y
are the Pauli matrices, ξ is the valley degree of freedom, ∆ is the Semenoff
mass and Ax ∝ εxx − εyy is the pseudo-gauge field generated by the strain.
If a uniform uniaxial strain is applied to the system, the pure gauge term in
H1 can be reabsorbed by performing a momentum shift: this corresponds to
expanding the tight-binding Hamiltonian around the Dirac point for ∆ = 0.
However, as was shown in Ref. [44] both through a quantum field theory
and a tight-binding approach, the Fermi velocity becomes anisotropic when
considering the momentum-strain coupling. The corresponding low-energy
Hamiltonian which includes momentum-strain coupling terms is then of the
form, H2 = ξvxkxσx + vykyσy + ∆σz/2 where vx and vy are the two strain-
dependent Fermi velocities. The Hamiltonian H2 possesses a finite Berry
curvature but still produces a vanishing Berry curvature dipole unless an
extra term ∝ ξkxσ0 is added. This can be seen by performing the integral
in Eq. 2.1 as in Ref. [18].

We will now show that the warping of the Fermi surface generates a finite
Berry curvature dipole regardless of the presence of a tilt mechanism. By
taking into account the trigonal warping caused by the k2 terms the effective
Hamiltonian to second order in momentum and first order in strain is,
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Hwarped =ξvxkxσx + vykyσy +
∆

2
σz+

+ (λ1k
2
y − λ2k

2
x)σx + 2ξλ3kxkyσy (2.2)

where λ1,2,3 are the warping terms which in general are not equivalent
when considering strain-momentum coupling terms O(εk2). The Hamilto-
nian in Eq. 2.2 can be derived from a low-energy expansion of the tight-
binding model following similar steps to the ones in Ref. [44] and the Sup-
plemental Material. It is important to note that although Eq. 2.2 has
anisotropic warping terms, for a non zero-dipole to exist it is sufficient to
consider anisotropic velocities and a C3 symmetric warping. We will make
use of this result later on when discussing bilayer graphene.

As shown in Fig. 6.1, when applying strain the warped surface deforms
shifting the dipole moment from zero to a finite value leading to a Berry cur-
vature dipole running along the zig-zag direction. Therefore when applying
an electric field E along the dipole direction a non-linear Hall current O(E2)
is generated along the armchair direction. We have computed the Berry cur-
vature dipole generated by the two cones, which contribute equally to the
overall response, by continuously changing the carrier density n and different
values of strain. At 5% strain and for a Semenoff mass ∆ = 20 meV a dipole
Dx ≈ 10−3 nm is found at an electron density n ≈ 1010 cm−2. This order of
magnitude of Dx is comparable to the one predicted in Ref. [18] for TMDs.

2.2 Berry Curvature Dipole in Strained Bilayer
Graphene

Having established that uniaxially strained monolayer graphene possesses a
sizable Berry curvature dipole, we now show that the same effect persists
also in bilayer graphene in the (AB) Bernal-stacked structure. Importantly,
the Berry dipole in this material is boosted by over three order of magni-
tudes. Moreover, in bilayer graphene inversion symmetry breaking can be
achieved with the application of an external electric field perpendicular to
the layers. The electric field, in fact, generates a spectral gap ∆ and lowers
the point group symmetry from D3d to C3v [45]. Notice that this inversion
symmetry breaking mass can be experimentally tuned independent of the
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Figure 2.2: Berry curvature Ω and dipole density ∂kx
Ω of the conduction band

corresponding to the Hamiltonian of Eq. 2.2 for unstrained (a,c) and
strained (b,d) monolayer graphene. When strain is present the Fermi
surface is deformed shifting the dipole moment from zero to a finite
value. Momenta are measured in units of the inverse of the lattice
constant a; the Berry curvature in units of a2 while the dipole density
in units of a3.
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2.2 Berry Curvature Dipole in Strained Bilayer Graphene

carrier density [46]. The additional application of a uniaxial strain reduces
the point group to Cv and yields a vanishing Berry dipole perpendicular to
the mirror line. To prove the assertion above, we introduce a low-energy
effective Hamiltonian [47], valid for electron densities up to n ≈ 1013 cm−2

[48, 49], explicitly accounting for the effect of strain [50], reading:

Hb =

[
− 1

2m
(k2
x − k2

y) + ξv3kx + w

]
σx (2.3)

−
(

1

m
kxky + ξv3

)
σy +

∆

2
σz.

In the equation above, ξ = ±1 is the valley index, v3 is the Fermi velocity
related to the “skew” hopping between the layers, whereas m is an effective
mass directly dependent on the interlayer coupling. Finally, w = A3 − A0

is the strain term in the Hamiltonian which can be expressed in terms of
the two pseudo-gauge fields A0,3. In the presence of inversion symmetry
(∆ = 0), the strain-free (w = 0) system features a Lifshitz transition [48] at
energy εL = mv2

3/2 (≈ 1 meV) where the Fermi surface splits from a single
connected pocket into four different ones: the electronic dispersion consists
of one central Dirac cone with −π (π) Berry phase at the K (K ′) point
of the Brillouin zone and three “leg” Dirac cones, each of which carries a
π (−π) Berry phase. Notice that the distance between the different cones
defines a characteristic momentum κL = mv3/~ (≈ 0.035 nm−1). The
effect of the strain on the inversion symmetric system is twofold, as it moves
the Dirac cones away their unstrained positions and it promotes changes
in the topology of the Fermi surface by merging the cones together. For
−1 ≤ w/εL ≤ 3 there are always four Dirac points, two on the ky = 0 line and
the remaining two in a symmetric position with respect to it. At w = −εL
the Dirac cones on the invariant line merge and become gapped, giving rise
to a local minimum in the dispersion relation which survives until w ≥ −9εL,
after which it becomes a saddle point. For w > 3εL, instead, there are only
the cones on the ky = 0 line and no other local minima. However, unless
∆ 6= 0, the spectrum remains gapless and the Berry curvature is zero. As
mentioned above, these gapless spectra become gapped with an externally
applied electric field. Consequently, the Dirac points become local minima
of the dispersion.
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Figure 2.3: Berry curvature Ω and dipole density ∂kx
Ω of the conduction band

corresponding to the low-energy Hamiltonian of Eq. 2.3 for different
values of the strain: a) w = −5 εL, b) w = −1 εL, c) w = 0, d)
w = 1 εL, e) w = 5 εL. All plots are shown for the same carrier density
fixed by placing the Fermi energy EF at the Lifschitz transition in the
unstrained w = 0 and gapped case (panel c). Momenta are measured
in units of κL, the Berry curvature in units of 1/κ2L, and the dipole
density in units of 1/κ3L.
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2.2 Berry Curvature Dipole in Strained Bilayer Graphene

Figure 2.4: Berry curvature dipole, measured in units of 1/κL, in bilayer graphene
for ∆ = 10 meV and various strains w as a function of the electron
density n measured in units of κ2L where κL ' 0.035 nm−1. Densities
of this order of magnitude have been experimentally reported in Ref.s
[46, 51, 52].

The possible topologies of the Fermi surface induced by the strain are
visible in Fig. 2.3, where we plot the Berry curvature and the density of
Berry curvature dipole at different values of w and ∆ 6= 0. We notice that
the plots are symmetric for the exchange ky → −ky, as dictated by the
combination of time-reversal and mirror symmetry. The unstrained case is
shown in Fig. 2.3(c). The threefold C3 rotation symmetry constrains the
total Berry dipole to be zero in this case.

It is crucial to notice, however, that while the central gapped Dirac cone
has a vanishing Berry dipole, the three leg gapped Dirac cones have a non-
zero dipole when taken by themselves. This is because each of the leg gapped
Dirac cones can be described with an effective low-energy Hamiltonian of the
form of Eq. 2.2 with λ1 = λ2 = λ3. The perfect cancellation of these three
non-zero contributions due to the threefold rotation symmetry is lost in the
presence of uniaxial strain. Moreover, in the presence of finite strain also
the central gapped cone yields a non-zero contribution to the Berry dipole.
Figs. 2.3(a-b,d-e) actually suggest that when strain deforms the cones, a
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2 Berry Curvature Dipole in Strained Graphene: a Fermi Surface Warping Effect

net Berry curvature dipole is generated. In order to verify this, we have
computed the Berry dipole as a function of the electron density for different
values of w [see Fig.2.4]. The mass has been chosen as ∆ = 10εL.

The behavior of the total Berry dipole has a richer structure as compared
to the one for monolayer graphene: it indeed shows cusps and inflection
points that are a different consequence of the different Lifshitz transitions
and reflect the richer Fermiology of bilayer graphene. Furthermore, in this
material it is possible to tune the strain in such a way that the sign of the
dipole changes upon increasing the electron density with an external gating
[46], thus inverting the direction of the transverse current or even suppressing
it altogether. More importantly, at w = −5εL, which corresponds roughly
to a 1% strain [50], and for a gap ∆ = 10 meV, we find for n ≈ 1011 cm−2

[46] a maximum dipole strength of Dx ≈ 1 nm. This value is three-order
of magnitudes larger than that of single-layer graphene, and is comparable
to the Berry dipole experimentally found in bilayer WTe2 [35]. As shown
in the Supplemental Material, even higher values on the tens of nanometer
scale can be found by decreasing the inversion symmetry breaking mass.

2.3 Conclusions

To wrap up, we have shown that non-vanishing Berry curvature dipoles
can emerge even in the complete absence of spin-orbit coupling in two-
dimensional Dirac materials as a result of the warping of the Fermi sur-
face. We have in fact proved that, in the presence of substrate-induced
and gate-induced band gaps respectively, uniaxially strained monolayer and
Bernal-stacked bilayer graphene do possess sizeable Berry curvature dipoles.
In the bilayer structure, the Berry dipole is strongly enhanced and its value
is comparable to the one experimentally observed in bilayer WTe2. Since the
warping of the Fermi surface is ubiquitous, we expect that our results apply
to a large number of two-dimensional materials where strain engineering can
be used to achieve the minimum symmetry constraints for a non-vanishing
Berry curvature dipole. The corresponding non-linear Hall effect can thus
be used as a way to directly probe the geometric properties of Bloch states
in a large number of time-reversal invariant two-dimensional materials.
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2.A Appendix

2.A.1 Monolayer Graphene

Low Energy Hamiltonian

To derive the Hamiltonian Hwarped of Eq. 2 of the main text we start
by considering a spinless nearest-neighbour tight-binding Hamiltonian for
graphene,

Htb =
∑
k

ψ†kHtb(k)ψk (2.4)

where we defined the spinor ψk = (ak, bk) with ak and bk the two fermionic
annihilation operators that destroy an electron with momentum k on the
sublattice A and B respectively. We also introduced the Bloch Hamiltonian,

Htb(k) =

(
∆
2 f(k)

f∗(k) −∆
2

)
(2.5)

where f(k) = −
∑

n tne
ik·δn and ∆ is the Semenoff mass. The positions

δn of the three nearest B atoms relative to a given atom A are written
as δ1 = (0, a/

√
3), δ2 = (a/2,−a/2

√
3), δ3 = (a/2, a/2

√
3) where a is the

lattice constant. When applying strain to the system nearest-neighbour
hoppings are renormalized[44]: to first order in strain the hopping has the
form tn = t0(1 − β∆un), where ∆un is the change in distance between
two adjacent carbon atoms, β = |∂ log t/∂ log a| is a material dependent
parameter (in graphene[43] β ≈ 2) . The variation ∆un is expressed in
terms of the strain tensor εi,j as ∆un = 3δinεi,jδ

j
n/a2 with δin being the i-th

component of the n-th nearest-neighbour vector. A low energy description of
strained graphene can be obtained by expanding f(k) around one of the two
inequivalent valleys of the Brillouin zone K± = (±4π/3a, 0). To keep the
warping effects we expand up to second order in momentum and keep the
momentum-strain coupling terms up to O(εk2). The resulting low energy
Hamiltonian for q = k + K± is,
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H′(q) =vFAxσx + ξvxqxσx + vyqyσy+

+ (λ1q
2
y − λ2q

2
x)σx + 2ξqxqyλ3σy +

∆

2
σz

where we defined vF =
√

3t0a/2, Ax =
√

3β(εxx − εyy)/2a, vx = vF [1 −
β(3εxx + εyy)/4], vy = vF [1 − β(εxx + 3εyy)/4], λ0 = t0a

2/8, λ1 = λ0[1 −
β(3εxx + εyy)/4]), λ2 = λ0[1−β(5εyy − εxx)/4], λ3 = λ0[1−β(3εxx + εyy)/4].
To obtain Hwarped of Eq. 2 of the main text, it is sufficient to then perform
a momentum shift qx → q′x + Ax in H′. Moreover, in order to account for
all terms of the order O(εk2) also cubic terms should be added to expansion
since terms q2

x,yqy,x and q3
x will contribute when performing the shift.

Berry Curvature Dipole

The Berry curvature dipole has been computed at zero temperature such that
f0(ε) = θ(ε− εF ). In Fig. 2.5 we show Dx for various values of the Semenoff
mass ∆ and the strain εxx as a function of the electron density n taking into
account both the contributions from the two valleys and the two spin species.
The dipole changes sign when inverting εxx (which corresponds to dilating
or compressing the lattice along the main crystallographic directions) but is
not odd in strain.

2.A.2 Bilayer Graphene

Effective 2× 2 Hamiltonian

Strain effects in bilayer graphene can be monitored using the low-energy
effective k · p Hamiltonian,

H4×4 =


−∆

2 v0π
† +A0 0 v3π +A3

v0π +A0 −∆
2 γ1 0

0 γ1
∆
2 v0π

† +A0

v3π
† +A3 0 v0π +A0

∆
2

 (2.6)

where π = kx + iky, v0/3 are two strain independent parameters with the
dimension of a velocity and the strain appears as two gauge fields A0/3.
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Figure 2.5: Berry curvature dipole of strained monolayer graphene for different
values of the Semenoff mass ∆ and the strain εxx as a function of the
electron density n.
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The microscopic derivation of the above Hamiltonian starts from a 4 ×
4 tight binding model that includes the 2pz orbitals of the four atoms in
the unit cell [45] coupled by the intralayer, interlayer and ’skew’ hopping
amplitudes γ0, γ1 and γ3. As for single layer graphene, strain is incorporated
in the model up to the first order by modifying the hopping parameters
and deforming the primitive cell. The resulting Hamiltonian is then Taylor
expanded up to first order around the K point of the strained Brillouin zone
to give Eq. 2.6, with v0/3 =

√
3aγ0/3/2~ and A0/3 = 3

4γ0/3(εxx− εyy)β0/3. In

bilayer graphene the lattice constant is a =
√

3aCC = 0.246 nm, where aCC =
0.142 nm is the carbon-carbon distance. For energies near the Fermi level the
orbitals coupled by γ1 can be eliminated [48, 49] through a Schrieffer-Wolff
transformation [47] and the small momenta and small strain four band model
is replaced, after a gauge transformation kx → kx−A0, by the effective 2×2
Hamiltonian [50],

Hb =

[
− 1

2m
(k2
x − k2

y) + ξv3kx + w

]
σx (2.7)

−
(

1

m
kxky + ξv3

)
σy +

∆

2
σz.

Here m = γ1/2v
2
0 and w = 3

4γ3(εxx− εyy)(β3−β0). For w = 0 the dispersion
relation exhibits a Lifshitz transition of the Fermi surface at the energy[45]
εL = mv2

3/2 (≈ 1 meV). It is therefore natural to express the energies in
units of εL and the momenta in the related scale κL = mv3/~ (≈ 0.035
nm−1).

Berry Curvature Dipole

Here we show the Berry dipole in the BLG for different values of the gap.
As expected the maximum attainable dipole depends in nonmonotonous
manner from the gap. The Berry curvature dipole has been computed at
zero temperature such that f0(ε) = θ(ε − εF ). In Fig. 2.6 we show Dx for
various values of the Semenoff mass ∆ and the strain εxx as a function of
the electron density n taking into account both the contributions from the
two valleys and the two spin species.
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Figure 2.6: Berry curvature dipole of strained bilayer graphene for different values
of the gap ∆ and the strain w as a function of the electron density n.
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3 Anomalous Planar Hall Effect in
Two-Dimensional Trigonal Crystals

The Hall effect arises when the conduction electrons of a solid acquire a trans-
verse velocity either due to an externally applied magnetic field or an intrinsic
ordered magnetic structure. The associated Hall conductivity is encoded in
the antisymmetric dissipationless part of the conductivity tensor, which, for
a two-dimensional system, is given by the single scalar σH = (σxy − σyx)/2.
Onsager reciprocity relations force σH to vanish in time-reversal symmetric
conditions. In addition σH transforms as a pseudoscalar under a generic
spatial point-group symmetry operation. Hence to observe a Hall response
it is necessary to break, beside the time-reversal invariance, all mirror sym-
metries. These conditions are immediately met in the ordinary classical Hall
effect where an out-of-plane magnetic field is applied. In this configuration a
net Lorentz force grants the electron a transverse velocity and consequently
a finite Hall voltage. On the other hand, a magnetic field coplanar with the
driving electric field cannot generate a Lorentz force bending the electron tra-
jectories. Nevertheless, transverse currents can and do still exist in strongly
spin-orbit coupled systems displaying a sizable anisotropy in the magneto-
conductance. This magnetotransport phenomenon, known as planar Hall
effect (PHE), does not contribute to the dissipationless Hall conductivity
σH, but manifests itself in the symmetric contribution of the conductivity
tensor: it cannot be qualified as a genuine Hall effect. In the majority of
(quasi)-two-dimensional systems, the PHE has an entirely semiclassical ori-
gin and has been shown to arise in thin films of ferromagnetic semiconductors
[53–55] and two-dimensional electron gases formed at perovskite oxide inter-
faces [56, 57]. Band anisotropies have also been proposed as the source of
the PHE in thin films of antiferromagnetic semiconductors [58]. Moreover
the PHE plays a central role in the transport properties [59–61] of Weyl
semimetals [37, 62–70]. In these topological semimetals, the induced trans-
verse Hall voltage, the applied current, and the magnetic field all lie in the
same plane, precisely in a configuration in which the conventional Hall effect
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3 Anomalous Planar Hall Effect in Two-Dimensional Trigonal Crystals

vanishes. Even more importantly, the PHE in Weyl semimetals is a prime
physical consequence of the chiral anomaly of Weyl fermions [71–76]. The
conducting surfaces of three-dimensional topological insulators (3DTI) [2]
have also been recently shown to support a PHE [77, 78]. In these mate-
rials, an external planar magnetic field conspires with the spin-momentum
locking of the Dirac cones to produce a strongly directional dependent net
transverse current. All these studies established a paradigm for the planar
Hall effect: i) a sin 2θ angular dependence with θ representing the relative
angle between the applied electric and magnetic fields and ii) a magnitude
set precisely by the anisotropy in the longitudinal magnetoresistance. How-
ever, a PHE beyond this paradigm is in principle symmetry allowed. Beside
time-reversal invariance, a planar magnetic field can potentially break all
mirror symmetries present in the solid state structure. Therefore, a planar
magnetic field is entitled to generate a dissipationless Hall conductance.

In this study, we demonstrate that two-dimensional (2D) materials with
strong spin-orbit coupling and crystalline trigonal symmetry possess a pre-
viously overlooked anomalous planar Hall effect (APHE). This effect unique
to trigonal crystals, derives directly from the “bending” of the electron tra-
jectories encoded in the geometric properties of the electronic wavefunctions
[1] – the APHE stems from a Zeeman-induced non-trivial Berry curvature
profile. Besides possessing the antisymmetric properties of conventional Hall
conductivities, i.e. σxyρyx = −1, we show that the APHE is independent
of the relative direction between the driving electric field and the in-plane
magnetic field. Therefore, as shown in Fig. 3.1, these anomalous planar Hall
currents persist even when the two fields are collinear and the conventional
planar Hall currents vanish. We also show that when mirror symmetries
constrain the APHE to vanish (Fig. 3.1), transverse Hall currents are still
present: they arise in the non-linear response regime and manifest as a sec-
ond harmonic response to an oscillating electric field. In strict analogy with
the non-linear Hall effect of time-reversal invariant materials [18, 27, 29–
32, 34, 35, 38, 79, 80], we find that this non-linear APHE has a geometric
contribution that is directly related to the first moment of the Berry cur-
vature, the so-called Berry curvature dipole [18]. This clearly distinguishes
the non-linear response we discuss here with the one recently shown to exist
on the surface of 3DTIs [78].
We propose graphene and transition metal dichalcogenides (TMD) monolay-
ers [29, 81, 82], where transition metal and chalcogen atoms form trigonal
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Figure 3.1: Schematic illustration of the conventional and anomalous PHEs in a
two-dimensional trigonal crystal as a function of the relative angle θ
between the electric ( ~E) and magnetic ( ~B) fields and the crystallo-

graphic angle α determined by ~B and the mirror line M.
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3 Anomalous Planar Hall Effect in Two-Dimensional Trigonal Crystals

crystal structures, as possible material platforms that can host both the lin-
ear and non-linear APHEs in the presence of Rashba spin-orbit coupling [9].
In these systems, the absence of inversion symmetry results in massive Dirac
cones with a sizable Berry curvature. We find that the Berry curvature-
induced APHE vanishes only when the magnetic field is perpendicular to a
mirror line of the trigonal crystal. In this situation, however, the finite Berry
curvature dipole being still finite provides a non-linear anomalous PHE.

3.1 Anomalous Planar Hall Effect

Within the quasiclassical Boltzmann picture of transport, the transverse
conductivity σyx in the presence of coplanar electric and magnetic fields can
be written as [60] [see also the Supplemental Material]:

σyx = e2

∫
d3k

(2π)3
Dτ(−∂feq

∂ε
){[vy +

eB sin θ

~
(vk ·Ωk)]·

· [vx +
eB cos θ

~
(vk ·Ωk)]}+

e2

h

∫
d3k

(2π3)
Ωz
kfeq,

(3.1)

where feq is the equilibrium Fermi-Dirac distribution. In the equation
above one can distinguish three different contributions: there is a first
purely semiclassical term given by the weighted integral of the electronic
velocities vxvy that remains finite for strongly spin-orbit coupled and Zee-
man spin-split electronic bands. This term is responsible for the PHE ob-
served in (anti)ferromagnetic semiconductors and at oxide interfaces. The
remaining contributions come about due to the anomalous velocity of Bloch
electrons [83], and are therefore directly related to the Berry curvature
Ω(k). Specifically the terms containing the product Ω(k) · v(k) are re-
sponsible for the PHE in three-dimensional topological semimetals. Pre-
cisely as the classical contribution, the Berry curvature-induced PHE in
Dirac and Weyl semimetals is even in the applied planar magnetic field, i.e.
σxy(B) ≡ σxy(−B) and hence does not satisfy the antisymmetry property of
the conventional Hall conductivity. Finally, the last term given by the inte-
gral of the Berry curvature over the Fermi surface of the occupied states cor-
responds to the anomalous Hall effect characteristic of time-reversal broken
materials that can be singled out by taking measurements at B ≡ 0. In two-
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dimensional materials, since vk ⊥ Ω(k), the PHE is conventionally assumed
to not possess any Berry curvature-induced contribution. Put differently
the PHE of two-dimensional systems should not represent a “topological”
response function. However, as we will show below, this conventional wisdom
has to be re-evaluated in two-dimensional materials with a trigonal symme-
try. The crux of the story is that the Zeeman spin splitting of the electronic
bands induced by the planar magnetic field triggers a non-vanishing Berry
curvature and thus engenders a planar Hall voltage that is entirely of quan-
tum origin. In the linear response regime the consequence of this is twofold.
First, this transverse conductance does obey the antisymmetry property of
the conventional Hall conductance. Second, the transverse voltage is com-
pletely independent of the relative direction between the two coplanar fields.
We dub this topological response anomalous planar Hall effect: it can be
distinguished by the anomalous Hall effect by taking measurements at both
B 6= 0 and B ≡ 0, and it can be singled out from the conventional PHE
of two-dimensional systems by aligning the external magnetic and electric
fields, or taking measurements at both +B and −B.

As the Zeeman-induced Berry curvature obeys the symmetry properties
of the crystal, point group symmetries can force the APHE response to van-
ish. Consider, for instance, a two-dimensional system subject to a planar
magnetic field perpendicular to a mirror line of the crystal (α = 0 in Fig.
3.1), which, without loss of generality, we assume to map a point with coor-
dinates {x, y} to {−x, y}. Since the external planar magnetic field preserves
the mirror symmetryMx, the Berry curvature will obey the symmetry con-
straint Ωz(kx, ky) = −Ωz(−kx, ky) even when the Zeeman spin splitting of
the bands is fully taken into account. Furthermore, the Fermi surface must
be symmetric with respect to the mirror line, and therefore the integral of
the Berry curvature is forced to vanish. This, however, does not automati-
cally imply the absence of a transverse planar Hall current when the driving
electric field and the external magnetic field are collinear. The existence of
a single residual mirror line still allows for a finite Berry curvature dipole
defined by

Dbd =

∫
k
f0(∂bΩd), (3.2)

which will be directed perpendicular to the residual mirror line and thus
aligned with the magnetic and electric fields. In analogy with the quantum
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non-linear Hall effect in time-reversal symmetric conditions [18], a finite
Berry curvature dipole causes a two-dimensional crystal subject to an AC
driving electric field Ec = Re(Eceiωt) to develop an additional non-linear
current ja = Re(j0

a + j2ω
a e2iωt) characterized by two Fourier components at

zero and twice the frequency of the applied external field: j0
a = χabcEbE∗c and

j2ω
a = χabcEbEc. The response function χabc has a “quantum” origin in the

Berry curvature dipole and can be expressed as χabc = −εadce3τDbd/2(1 +
iωτ), εadc being the Levi-Civita tensor and τ the scattering time. This
quantum non-linear APHE coexists with a semiclassical second-order but
Berry-phase independent contribution to the transverse non-linear Hall con-
ductivity. The latter can be distinguished from the former since the Berry
curvature dipole contributes to the antisymmetric dissipationless part of
the non-linear Hall conductivity vector, defined as χc = εabχabc/2, while
the semiclassical contribution is contained in the symmetric part of the re-
sponse [84]. Finally, we emphasize that producing a non-vanishing dipole
does not require a crystalline symmetry content as low as the one required
in time-reversal symmetric conditions. This is because the externally applied
planar magnetic field breaks all rotational and additional mirror symmetries
thus partially relaxing the necessary conditions for a finite dipole. As a re-
sult, the non-linear Hall currents generated by the Berry curvature dipole
vanish when the external magnetic field is set to zero, thus showing that this
effect is a genuine Hall one.

3.2 Symmetry analysis

We now show that the (non)linear APHE naturally arises in strongly spin-
orbit coupled 2D crystals with C3v symmetry. First, we notice that a planar
magnetic field is invariant under the combined C2T symmetry, where C2 in-
dicates the twofold rotation around the axis perpendicular to the crystalline
plane and T is the internal time-reversal symmetry. The presence of C2T
symmetry then forces the Berry curvature to be identically zero: Ωz(k) ≡ 0.
As a result, only trigonal crystals, which do not contain a twofold rotation
symmetry, can display a planar magnetic-field induced non-trivial Berry cur-
vature. Another necessary condition for the appearance of a finite Berry cur-
vature dipole is the presence of a sizable spin-orbit coupling, which ensures
that the crystal Hamiltonian H0 and the Zeeman coupling term HZ = ~B · ~σ
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do not commute. This prevents the possibility of separating the Bloch eigen-
functions of the full Hamiltonian H = H0 +HZ into a spinorial part χs, reg-
ulated only by the Zeeman term, and an orbital wavefunction ψorb(kx, ky),
where all the momentum dependence is stored: for eigenstates of that form
the Berry curvature is indeed independent from the Zeeman coupling and
retains the trigonal symmetry of the pristine crystal also in presence of the
externally applied magnetic field. This forces the corresponding Berry curva-
ture dipole to vanish. Finally, we notice that the non-linear PHE can occur
only if the SU(2) spin symmetry in H0 is completely broken. A residual U(1)
spin symmetry – as ensured by a mirror plane symmetryMz – would in fact
imply that H0 commutes with the spin rotation Uα = eiασz/2. This operator
rotates the planar magnetic field by an angle α according to ~B′ = Rα( ~B),
but since Uα does not explicitly contain a momentum dependence, the two
Hamiltonians H( ~B) and H′ = U†αH( ~B)Uα ≡ H( ~B′) have the same Berry cur-
vature dipole. On the other hand, the dipole is forced to be parallel to the
external magnetic field when the latter is orthogonal to a mirror line [85].
If we choose ~B and ~B′ to be perpendicular to different mirror lines (any
two among the three of the C3v crystal), the only allowed vector compatible
with such constraint is the null one. Hence, the Berry curvature dipole must
vanish thereby proving that the non-linear planar Hall effect necessitates a
complete breaking of the spin-rotation symmetry.

Having established the occurrence of a quantum non-linear PHE when the
system is characterized by a residual mirror symmetry, we now consider the
situation in which the external planar magnetic field is not constrained to
be orthogonal to one of the three mirror lines of the C3v crystal. Since the
presence of the planar magnetic field reduces the point group to the trivial
group C1, the Berry curvature does not obey any constraint, and therefore
the net anomalous velocity is not forced to vanish. This consequently leads
to the possibility of a purely Zeeman-induced quantum PHE in the linear
response regime, which represents an antisymmetric contribution to the re-
sistivity tensor and therefore displays a 2π periodic angular dependence.
Furthermore, it is important to notice that for the integral of the Berry
curvature weighed by the equilibrium Fermi distribution function to be non
zero the spin-rotation symmetry needs to be completely broken – in a crystal
with a Mz mirror plane, the combined MzT symmetry, which is still pre-
served with a planar magnetic field, forces the Berry curvature to be an odd
function. Hence, as for its non-linear counterpart, also the quantum PHE
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in linear response can only occur in strongly spin-orbit coupled crystals. It
is thus expected to coexist with the conventional Berry-phase independent
contribution to the PHE, which, as stated above, represents instead a sym-
metric part of the resistivity tensor. These different symmetry properties of
the quantum and semiclassical contributions to the linear PHE imply that
the “semiclassical” linear contribution to the PHE can be isolated in exper-
iments by taking measurements with both positive and negative B. Instead,
since the quantum contribution is independent of the angle between the elec-
tric and magnetic field, in a configuration where they are parallel it is the
only term that survives.

3.3 Model

Next, we show that monolayer graphene with a (substrate-induced) inversion
symmetry breaking mass, as well as TMDs in their trigonal structure support
the existence of both the APHE and the non-linear APHE in the presence of
Rashba spin-orbit coupling. To show this, we consider a general microscopic
tight-binding model featuring massive Dirac cones on the honeycomb lattice

Hcry = −t
3∑
i=1

[cos(k · δi)τx + sin(k · δi)τy]⊗ σ0 +

∆

2
τz ⊗ σ0 +HR, (3.3)

where σ and τ refer to the spin and sublattice degrees of freedom respec-
tively, and {δ1, δ2, δ3} = {(0, a/

√
3), (a/2,−a/2

√
3), (−a/2,−a/2

√
3)} are

the nearest neighbours with a the honeycomb lattice constant. In the Hamil-
tonian of Eq. 3.3 the first term containing nearest neighbour spin-independent
hopping respects the C6v point group symmetry of the honeycomb lattice,
which is generated by the three-fold rotation symmetry C3v = τx ⊗ eiπσz/6,
the twofold rotation symmetry C2 = τx ⊗ eiπσz/2, and the mirror symme-
try Mx = τ0 ⊗ eiπσx/2. In order to reduce the crystalline symmetry to
be trigonal, we have introduced the C2 and inversion-symmetry breaking
mass ∝ ∆. In graphene, the latter term is naturally realized by placing
the graphene flake on lattice-matched substrates, such as hexagonal boron
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Figure 3.2: Berry curvature Ω (a,c) and dipole density ∂kx
Ω (b,d) of the conduc-

tion bands corresponding to the Hamiltonian of Eq. 3.3 in the absence
(a,b) and presence (c,d) of Rashba spin-orbit coupling (λR/t = 10−2).
The magnetic field (B/t = 10−3) has been placed along the zig-zag di-
rection, α = 0, preserving the mirror symmetry Mx. The two valleys
at K and K ′ are related byMx and hence contribute identically to the
Berry curvature dipole. The inversion breaking mass has been taken
to be ∆/t = 5× 10−2. In plots (b) and (d) light colors correspond to
positive values while darker colors correspond to negative ones.
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Figure 3.3: (a) Polar plot of the anomalous planar Hall conductivity as a func-
tion of the angle α between the planar magnetic field and the zig-zag
direction of the honeycomb lattice. The value of σPHE is normalized
to the maximum at α = π/2. The conductivities σ̃±APHE represent,
respectively, the positive and negative part of the full APHE conduc-
tivity and are normalized to the maximum α = π/2. Parameters used
for the plot are: ∆/t = 5 × 10−2, B/t = 10−2, λR/t = 10−2. (b)
Berry curvature dipole Dx as a function of the carrier density. Pa-
rameters used for the plot are: ∆/t = 5 × 10−2, α = 0, B/t = 10−3,
λR/t = 10−2.

nitride [41, 42]. Finally, the last term in Eq. 3.3 is a Rashba-like spin-orbit
coupling term that fully breaks the SU(2) spin symmetry and therefore al-
lows for a non-vanishing Berry curvature dipole when an external planar
magnetic field is applied. The Rashba term [86] can be written as HR =√

3λR
∑3

i=1[sin(k · δi)τx⊗ (σyδi,1−σxδi,2) + cos(k · δi)τy ⊗ (σyδi,1−σxδi,2)],
with the strength of the Rashba coupling λR that in graphene is controlled
by the strength of the perpendicular electric field, and the local curvature
of the graphene sheet [87].

We finally account for the external planar magnetic field introducing the
Zeeman coupling term HZ = B τ0⊗ (σx cosα+σy sinα) where α is the angle
from the zig-zag direction of the honeycomb lattice. For α = 2nπ/6 with
n ∈ N the magnetic field preserves one mirror symmetry thus allowing only
for a Berry curvature dipole. In the absence of spin-orbit interaction, i.e.
for λR ≡ 0, the Zeeman coupling leads to a closing of the half-filling gap at
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the critical strength Bc ≡ ∆/2, above which the system becomes a nodal
semimetal generated by the crossing of two bands belonging to different
spin sectors. A finite value of the Rashba spin-orbit coupling changes the
crossings into anticrossings, and thus the system has a finite half-filling gap
as long as the strength of the applied magnetic field is of the same order of
magnitude as the inversion-symmetry breaking mass ∆. For larger values
of the applied magnetic field B ' 2∆, the half-filling gap closes but we will
neglect this regime in the remainder.

More importantly, a finite value of λR changes the distribution of the
Berry curvature allowing for a non-zero Berry curvature dipole. This is ex-
plicitly demonstrated in Fig. 3.2 where we show the local Berry curvature,
computed using the method outlined in Ref. [88], both in the absence and in
the presence of the Rashba spin-orbit interaction. We find that effect of the
Rashba spin-orbit coupling is twofold. First, it boosts the Berry curvature
by reducing the splitting between the two conduction and valence bands.
Second, it shifts the dipole distribution away from being centred around the
high symmetry points K and K ′, hence allowing for an overall finite dipole.
Fig. 3.3b shows the behavior of the ensuing Berry curvature dipole as a func-
tion of the carrier density for various values of the external planar magnetic
field. We generally find that increasing the external magnetic field strength
boosts the amplitude of the dipole over a larger range of carrier density.
The dipole also displays a characteristic non-monotonous behavior, similar
to the one theoretically predicted and experimentally observed [31, 32, 35]
in the time-reversal non-linear Hall effect, with various sign reversals, which
implies that the quantum contribution to the transverse current changes di-
rection. We note that a similar non-monotonous behavior is also found in
the semiclassical symmetric contribution to the non-linear Hall conductance
as shown in the Supplemental Material.

Finally, we have computed the linear quantum contribution to the PHE
for α 6= 2πn/6. As shown in Fig. 3.3a, we find that the integral of the
Berry curvature weighed by the equilibrium Fermi distribution contributes
to the PHE with an angular dependence that only depends on the relative
direction between the magnetic field and the principal crystallographic di-
rection, and changes sign under a π rotation of the planar magnetic field,
in perfect agreement with our general analysis. This dependence is different
than the semiclassical contribution σxy = e2τ

∫
k vxvy(−∂f0/∂εk) [89], which

we find to depend exclusively on the angle between the coplanar electric and
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magnetic field [see the Supplemental Material] and follows the usual PHE
cos θ sin θ behavior, thus vanishing when the applied fields are aligned.

3.4 Conclusions

In short, we have shown that two-dimensional trigonal crystals with sizable
spin-orbit coupling subject to planar magnetic fields display a previously
unknown planar Hall effect that contributes to the dissipationless Hall con-
ductance. We dubbed this contribution anomalous planar Hall effect. This
effect is rooted in the geometric properties of the Bloch states encoded in the
Berry curvature and appears whenever the planar magnetic field does not
leave any residual mirror line. It can be effectively decoupled from the con-
ventional PHE since it survives even when the driving electric field and the
planar magnetic field are aligned. Moreover we have found that in a configu-
ration in which the coplanar fields are aligned and perpendicular to one of the
mirror lines of the crystal, transverse Hall currents still exist and appear at
second order in the driving electric field. The resulting non-linear anomalous
planar Hall effect has a quantum origin arising from the first moment of the
Berry curvature, the Berry curvature dipole. Finally, we propose monolayer
graphene on commensurate hexagonal boron nitride substrates as well as
transition metal dichalcognides with trigonal structure as possible material
platform where the (non-)linear APHE can be experimentally observed.
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3.A Appendix

3.A.1 Linear Planar Hall Effects in 2D and 3D

In this section we discuss the difference between the planar Hall effect in two-
and three-dimensional systems using a semiclassical Boltzmann framework.
We assume to apply an electric field E = Ex̂ along the x̂ axis and rotate
the magnetic field in the x − y plane. Thus we write the magnetic field
as B = B(cos θx̂ + sin θŷ). The semiclassical equations of motions in the
presence of a non-zero Berry curvature read

ṙ = D(B,Ωk)[vk +
e

~
(E×Ωk) +

e

~
(vk ·Ωk)B] (3.4)

~k̇ = D(B,Ωk)[eE +
e

~
(vk ×B) +

e2

~
(E ·B)Ωk] (3.5)

where D(B,Ωk) = [1 + (e/~)(B ·Ωk)]−1 , Ωk is the Berry curvature and
vk is the group velocity. Solving the Boltzmann equation for the electron
distribution function f(k) within the relaxation time approximation allows
to compute the charge current J = e

∫
(dDk/(2π)D)ṙf(k)D−1 that accounts

for the modified phase space factor D. In linear response theory the charge
current obeys the relation Ja = σabEb, where σab are the components of the
conductivity tensor and Eb the external electric field. Following Ref. [60],
the planar Hall conductivity, after discarding higher order contributions, is
given by

σyx = e2

∫
d3k

(2π)3
Dτ(−∂feq

∂ε
){[vy +

eB sin θ

~
(vk ·Ωk)]·

· [vx +
eB cos θ

~
(vk ·Ωk)]}+

e2

h

∫
d3k

(2π3)
Ωz
kfeq,

(3.6)

where feq is the equilibrium Fermi-Dirac distribution. Eq. 3.6 contains all
transverse linear responses in the presence of coplanar electric and magnetic
fields in both two- and three-dimensional systems. In three-dimensional
topological Dirac and type-I Weyl semimetals, the Berry-curvature induced
planar Hall effect stems from the term ∝ B2 sin θ cos θ(vk ·Ωk)2. The last
term instead represents the usual anomalous Hall contribution that can be
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singled out by taking measurements at B = 0.
In two-dimensional systems, vk ⊥ Ωk, that would therefore imply the

generic absence of any Berry-curvature induced planar Hall effect in non-
magnetic systems. As shown in the main part of the manuscript, however,
in two-dimensional trigonal crystals a non-vanishing contribution to the last
term of Eq. 3.6 appears once the Zeeman interaction is explicitly taken into
account, and exists even though the anomalous Hall effect vanishes. This
also implies that, contrary to three-dimensional topological semimetals, the
Berry-curvature related quantum planar Hall effect of two-dimensional sys-
tems does not explicitly depend on the relative angle between the electric and
magnetic field but only on the angle between the planar magnetic field and
the principal crystallographic directions. This, in turns, allows to directly
observe the quantum planar Hall effect when the electric and magnetic fields
are perfectly aligned since in this configuration the classical contribution of
Eq. 3.6, containing the vxvy term, vanishes as discussed in the main part of
the manuscript.

3.A.2 Phase Behavior of the Model Hamiltonian

Figure 3.4: Phase behavior of the energy gap of the model Hamiltonian as a func-
tion of the strength of the Rashba spin-orbit coupling and the magnetic
field.

The energy gap of the Hamiltonian introduced in Section 3 of the main
manuscript can be closed depending on the relative strength between the
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Figure 3.5: σxy of Eq. 3.7 as a function of the relative angle θ between the applied
electric and magnetic fields. Parameters used for the plot are: ∆/t =
5 × 10−2 and λR/t = 10−2. The conductivity is normalized to the
invariant trace Tr[σ] = σxx(θ) + σyy(θ) of the conductivity tensor.

Rashba coupling λR and the Zeeman strength B. As shown in Fig. 3.4 at
zero Rashba the magnetic field closes the gap at the critical value Bc = ∆.
Adding the Rashba coupling reopens the gap since band crossings become
anti-crossings. For sufficiently strong magnetic fields however the gap can
once again be closed. By tuning the magnetic field it is thus possible to tune
the strength of the Berry curvature and the its first moment.

3.A.3 Semiclassical Linear Planar Hall Effect

The semiclassical contribution to the linear planar Hall currents is given by,

σxy = e2τ

∫
k
vxvy(−∂f0/∂εk) (3.7)

where vi = ∂iεi with i = (x, y), τ is the relaxation time and f0 the equilib-
rium Fermi-Dirac distribution. As can be seen in Fig. 3.5 this contribution
is π periodic and doesn’t flip sign when the magnetic field changes sign. Fur-
thermore the σxy vanishes when the magnetic and electric field are collinear
or perpendicular.
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Figure 3.6: Non-linear aniostropic magnetoresistance as a function of the Fermi
energy. Parameters used for the plot are: ∆/t = 5 × 10−2, λR/t =
10−2, B/t = 5× 10−3 in (red) and B/t = 10−2 in (blue).

3.A.4 Semiclassical Non-Linear Planar Hall Effect

The semiclassical contributions to the non-linear planar Hall current are
given by the second terms of Eq. 1.38. Assuming a magnetic field along the
zig-zag direction the non-linear transverse current then only runs along the
armchair and is maximized when electric and magnetic field are collinear.
In this case assuming the zig-zag is along the x coordinate, the non-linear
contribution to the transverse conductivity is given by:

σnl
xy =

e3τ2

2(1 + iωτ)

∫
k
∂yεk∂

2
xf0 (3.8)

This contribution scales like τ2 in the DC limit of ω → 0 whereas for
ωτ >> 1 it scales like τ . The dipole contribution of Eq. 1.38 on the other
hand scales like τ in the former case and becomes scattering independent
for the latter case. Eq. 3.8 is plotted in Fig. 3.6 as a function of the Fermi
energy. The kinks in the non-linear conductivity occur when the second
conduction band starts being filled.
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4 Anomalous Planar Hall Effect in a Rashba
Two-Dimensional Electron Gas

Two-dimensional electron gasses (2DEG) with Rashba spin-orbit coupling
(SOC) [9] are found in a variety of non-centrosymmetric materials. The spin-
momentum locking caused by the Rashba SOC is a key ingredient in many
fields of physics and materials science, ranging from the spin-Hall effect all
the way to Majorana Fermions [10]. In connection with Chapter 3 we discuss
the occurrence of an anomalous planar Hall effect (APHE) in a Rashba
2DEG. We consider the minimal two band Hamiltonian and show that the
Berry curvature stems from higher order momentum terms that are invariant
under threefold rotations. This simple model shares the same symmetries
of the honeycomb model discussed in Chapter 3 with the main difference
that the Rashba 2DEG describes the low energy properties of materials
around the high symmetry point Γ and is host to a very different kind of
physics compared to a Dirac cone. The occurrence of the anomalous planar
Hall effect (APHE) in a conventional Rashba 2DEG widens the horizon of
material candidates in which the effect can be observed.

4.1 Model Hamiltonian

The minimal Hamiltonian describing a Rashba 2DEG is typically an effective
two-band model derived using k ·p theory around the high symmetry point
Γ. We write the Hamiltonian in the basis of a spin-1/2 electron |ψ↑↓〉 such
that the anti-unitary time reversal operator has the representation T = iσyK
while the mirror symmetry is M = iσx. At linear order in the momentum
k the Rashba Hamiltonian reads,

HR(k) =
k2

2m
− αR σσσ · k× ẑ (4.1)

where σσσ is a vector of Pauli matrices, αR is the Rashba coupling strength
and m is the electronic mass. The Hamiltonian in Eq. 4.1 preserves time-
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4 Anomalous Planar Hall Effect in a Rashba Two-Dimensional Electron Gas

reversal symmetry and is rotationally invariant. However, the Berry cur-
vature associated to this minimal model is simply zero. As discussed in
Chapter 3 the anomalous planar Hall effect can only appear in trigonal crys-
tals without C2T symmetry. Moreover, effective theories can also account
for warping effects which comply with the underlying crystalline symmetries.
For this reason one can include higher order momentum terms which make
the model C3 symmetric. In the basis |ψ↑↓〉 the threefold rotation operator
takes the form C3 = e−iσzπ/3. Under the operation of C3 andM, momentum
and spin transform as follows,

C3 : k± → e±i2π/3k±, σ± → e±i2π/3σ±, σz → σz

M : k+ → −k− σx → σx, σy,z → −σy,z

where k± = kx±iky and σ± = σx±iσy. The Hamiltonian must also be in-
variant under time reversal which adds the constraintH(k) = T H(−k)T −1 =
σyH∗(−k)σy. The first symmetry allowed term is third order in momentum
and takes the form,

Hw(k) =
λ

2
(k3

+ + k3
−)σz (4.2)

The warping Hamiltonian of Eq. 4.3 is proportional to the Pauli matrix σz,
which is crucial to obtain a non-zero Berry curvature. It is also important to
note that since the full Hamiltonian is invariant under the mirror symmetry
M, Hw(k) is forced to vanish along the mirror line. The eigenvalues of
H = HR +Hw in polar coordinates are given by,

ε±(k, θ) =
k2

2m
±
√
α2
Rk

2 + λ2k6 cos2(3θ) (4.3)

The Rashba coupling lifts the spin-degeneracy and splits the two bands
(Fig. 4.2a). At k = 0 a Kramer’s degeneracy is present. The two bands
ε± display opposite spin textures (one moving clockwise, the other counter-
clockwise), this can be seen by taking the expectation values of 〈σσσ〉± (the
behaviour is qualitatively the same as the one shown in Fig. 4.1). From
Eq. 4.3 we see that the Fermi surfaces displays an hexagonal warping: this
is due to the combined presence of C3 and T symmetry. This hexagonal
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4.1 Model Hamiltonian

Figure 4.1: Texture of the normalized d-vector in momentum space.

warping effect has been observed in the surface states of Bi2Te3 topological
insulators and a similar Hamiltonian has been used to explain the ARPES
measurements [90]. It is important to note however, that in this case the
Hamiltonian was used in a different parameter range allowing for the descrip-
tion of the anomalous Dirac cones present on the surface of 3DTIs. We are
interested in what happens to the Berry curvature when considering such a
threefold symmetric term. Remarkably, by adding the warping term a non-
trivial Berry curvature emerges for the Rashba 2DEG. In a two band model
the Berry curvature can be simply calculated by rewriting the Hamiltonian
using the d-vector, such that H(k) = d(k) ·σσσ. We can then use the fact that
Ω±z (k) = ±d̂ · (∂kxd̂× ∂ky d̂)/2 to find,

Ωz
±(k, θ) = ±

2
√

2λ cos(3θ)α2
R(

λ2k4(cos(6θ) + 1) + 2α2
R

)
3/2

(4.4)

The non-trivial behaviour of the d-vector in momentum space is shown
in Fig. 4.1. The Berry curvature is well defined in each point except the
origin where the bands are degenerate and the abelian description breaks
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k y

Figure 4.2: Energy contours and 3D dispersions of the warped Rashba Hamilto-
nian with Zeeman coupling.
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down. The constraints set by time reversal symmetry and the three-fold
rotational symmetry are satisfied as can be verified upon a closer inspection
of Eq. 4.4. Moreover Ωz

±(k, θ) vanishes along the mirror lines, in accordance
with Eq. 4.2. Unfortunately, observing the Berry curvature of such a system
is a nearly impossible task since the two bands contribute to exactly opposite
curvatures (Fig. 4.3a). Since the largest source of Berry curvature is found
in the vicinities of the degeneracy point, for Fermi energies that cross both
bands (which is typically what is found for experimental density regimes) it
is reasonable to expect a complete suppression of any type of Berry curvature
effect due to the exact cancellation between the two bands. This is no longer
the case when applying a planar magnetic field. Indeed, such a magnetic
field generates a Zeeman coupling term HB = B(σx cosφ + σy sinφ), that
breaks C3, T and the remaining mirrorMx. For φ = 2πm/6 with m ∈ N, one
mirror symmetry is preserved. The energy dispersion and Berry curvature
of the Zeeman-split Hamiltonian are given by,

εB±(k, θ) =
k2

2m
±√

2B2 + 2αRk (2B sin(φ− θ)αRk) + λ2k6 cos(6θ) + λ2k6

2

(4.5)

Ωz,B
± (k, θ) =

±
√

2λαRk
2 (3B sin(2θ + φ) + 2αRk cos(3θ))

(2B2 + 2αRk (2B sin(φ− θ) + αRk) + λ2k6 cos(6θ) + λ2k6)3/2

(4.6)

In general, as shown in Fig. 4.2c, adding a magnetic field breaks the
Kramer’s degeneracy and completely splits the two bands. However, when a
mirror is preserved so is the degeneracy point (Fig. 4.2b), which shifts from
the origin along the mirror line at (k, θ) = (|B|/αR, φ + sgn(B)π/2). By
varying the Fermi energy it is then possible to probe this source of Berry
curvature since it is no longer confined at k = 0 (Fig. 4.3b). Moreover, a
Lifschitz transition (a change in topology in the Fermi surface, in this case
going from one closed Fermi line to two) appears since the Zeeman coupling
shifts the minima of the two bands (Fig. 4.2b,c). The energy for which the
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upper band is completely depleted is given by εL = B2/(2mα2
R) if B < mα2

R

otherwise εL = B −mα2
R/2 if B > mα2

R.

4.2 Anomalous Planar Hall Effect

Given that the Zeeman splitting satisfies all the symmetry constraints nec-
essary for a finite APHE we can compute the APHE conductance,

σAPHE =
∑
n=±

∫
k

d2k

(2π)2
Ωz,B
n (k)f0(εBn (k)) (4.7)

As shown in Fig. 4.4a the angular dependence of the APHE follows the
three-fold symmetry of the underlying model in a similar manner to what
was shown in Chapter 3.

The magnetic field dependence at fixed density shown in Fig. 4.4b can be
understood by considering how the Fermi energy of the system is modified
when varying B. At zero field, the Fermi energy is taken to occupy both spin
bands. We notice that by sufficiently increasing B the conductance starts to
increase, this occurs when the field dependent Fermi energy (which has to
vary in order to keep the carrier density fixed) starts approaching the band
touching point where the peak of the σAPHE occurs. Further increasing the
magnetic field leads to a decline of the effect which becomes vanishing once
the Lifschitz transition occurs. As expected the appearance of the APHE
occurs when the Fermi energy crosses the point in which the two energy
bands are the closest, coinciding with the largest source of Berry curvature
in momentum space.

As discussed above, in the mirror symmetric case the Berry curvature is
odd with respect to the mirror line forcing its integral to be vanishing. The
Berry curvature dipole, on the other hand, is expected to be non-zero. Since
the mirror symmetry implies the presence of a band touching point, the
dipole density, ∂kαΩz

±(k), is divergent in the neighbourhood of the degener-
acy boosting the value of the dipole, and hence the non-linear response. If,
for example, the magnetic field is placed along x̂ (φ = 0), the dipole den-
sity diverges as ∂kxΩz

±(k) ∼ ±sign(ky)/k
2
y where ky is centered around the

degeneracy point along the mirror line. This divergence, of course, is never
really achieved in a real material where scattering effects should attenuate
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4.2 Anomalous Planar Hall Effect

Figure 4.3: Total Berry curvature of the of the warped Rashba Hamiltonian with
Zeeman coupling at fixed Fermi energy.
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this behaviour.
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(b)

Figure 4.4: (a)Angular dependence of the σAPHE for different values of the mag-
netic field B. (b) Magnetic field dependence of the σAPHE at fixed
carrier density n for φ = π/2.
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5 Spin Field-Effect Transistor in a Quantum
Spin-Hall Device

Spintronics [91] is the field dedicated to studying how to actively control
and manipulate the electronic spin degree of freedom in solid-state systems.
When spin-orbit coupling (SOC) is present, the electron’s spin and mo-
mentum are locked to each other allowing to study the interplay between
charge and spin degrees of freedom. This interplay is of central interest
since it opens the possibility to manipulate electric currents by controlling
the electronic spin and viceversa, paving the way to the development of
new devices of technological relevance. The first proposal of a spintronic
device with electrical spin manipulation was the spin field-effect transistor,
brought forward by Datta and Das [92]. Since then, spin transistors have
been the subject of intense research and, to date, are still a central problem
in the field of spintronics. In recent years, much attention has been drawn
to exploit spin interference effects on the electronic transport properties of
mesoscopic devices with loop geometries, such as semiconducting quantum
rings [7, 8, 93–97]. In the presence of electromagnetic potentials, the con-
ductance of a semiconductor ring exhibits signs of quantum interference due
to the Aharonov-Bohm [98] (A-B) and Aharonov-Casher [99](A-C) effects.
Being manifestations of the Berry phase, these interference effects have been
exploited to detect in the laboratory the spin geometric phase [8, 100].

An alternative setup for the detection of the π-Berry phase was proposed
in Ref. [101], with the interferometer based on a quantum spin-Hall (QSH)
insulator. The QSH insulator [21] is a time-reversal symmetric topological
state of matter which possesses in gap helical edge states: at each edge of the
system there are two counter-propagating states with opposite spin projec-
tions. The realization of QSH insulators in HgTe [22] and InAs/GaSb/AlSb
[102] quantum wells has since opened the possibility to engineer new types of
spin transistors. A notable example has been discussed in Ref. [103] where
by combining the helical nature of the QSH edge states with the A-B effect,
a setup that behaves as a spin transistor has been proposed. One of the
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5 Spin Field-Effect Transistor in a Quantum Spin-Hall Device

main advantages of using a QSH insulator lies in the fact that transport in
the system is ballistic in nature and takes place along the edges, making
it effectively a one-dimensional (1D) system. In this work we consider an
alternative QSH-based setup exploiting the effect of the Rashba spin-orbit
coupling (SOC), originating from structural inversion asymmetry. The pres-
ence of Rashba SOC [104] breaks the axial spin symmetry of the helical edge
states, tilting their spin projection in the QSH plane. Consequently, in a
disk geometry the Rashba SOC yields a local rotation of the spin projection
of the helical edge states along the disk. By further controlling the Rashba
strength through an additional external gate voltage it is possible to both
modulate electric currents which pass through the QSH insulator and ma-
nipulate the spin projection of single incoming electrons, similarly to the
A-B based setup of Ref. [103]. By studying the transport properties of the
QSH insulator in the presence of Rashba SOC we will indeed show how such
a system can be used as an all-electric spin transistor. It is interesting to
note that since there are only two counter-propagating modes at the edge,
the QSH insulator can be seen as a faithful implementation of the original
Datta-Das transistor: the original device introduced in Ref. [92] drew in-
spiration from an electro-optic modulator in which polarized light was split
into two beams that suffered different phase shifts. In this sense the QSH is
a true electronic analog of the electro-optic modulator.

The chapter is organized as follows: in Section 5.1 we study the Bernevig-
Hughes-Zhang [21] (BHZ) Hamiltonian with the addition of a linear Rashba
SOC term. We find the in gap eigenstates and eigenvalues of the system in
a disk geometry and show how the Rashba coupling is responsible for the
tilting of the spin projection of the two helical edge states. In Section 5.2 we
study an effective 1D model of the QSH disk and calculate the conductance
of the system through the Landauer approach. We show that the QSH disk
behaves as a spin field-effect transistor. Finally in Section 5.3, by using the
microscopic tight-binding BHZ model, we validate our findings through a
numerical calculation of the conductance.

5.1 In Gap States of the BHZ Hamiltonian

We begin by studying the properties of the helical edge states of a QSH
insulator disk in the presence of Rashba SOC [105–107]. It is well known
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[22] that the QSH phase occurs in the “inverted” regime of HgTe/CdTe
semiconductor quantum wells, which is achieved by tuning the thickness of
the HgTe well above a critical thickness dc ' 6 nm. The occurrence of this
topological phase transition can be captured using conventional k ·p theory.
Starting from the 6-band Kane model [108] and using perturbation theory
near the Γ point one can obtain an effective four band model (

∣∣E1, jz = ±1
2

〉
,∣∣H1, jz = ±3

2

〉
) for the subbands of the quantum well structure [21]. The∣∣E1, jz = ±1

2

〉
subbands are a linear combination of s-like

∣∣Γ6, jz = ±1
2

〉
and

the light hole
∣∣Γ8, jz = ±1

2

〉
bands while the

∣∣H1, jz = ±3
2

〉
come about from

the
∣∣Γ8, jz = ±3

2

〉
heavy hole bands. The electronic structure is then de-

scribed by the effective BHZ Hamiltonian,

HBHZ =

(
εk+Mk Ak+ 0 0
Ak− εk−Mk 0 0

0 0 εk+Mk −Ak−
0 0 −Ak+ εk−Mk

)
. (5.1)

Eq. 5.1 is written in the basis
∣∣E1, jz = +1

2

〉
,
∣∣H1, jz = +3

2

〉
,
∣∣E1, jz = −1

2

〉
and

∣∣H1, jz = −3
2

〉
. We have defined εk = C − D(k2

x + k2
y), Mk = M −

B(k2
x + k2

y) and A, B, C, D and M are model parameters. We have also
introduced k± = kx ± iky with kx,y = −i∂x,y. For simplicity, we set C =
D = 0. The Hamiltonian above preserves time-reversal symmetry, with
the time reversal symmetry operator defined as Θ = −i(σy ⊗ σ0)K, where
K stands for complex conjugation and σα are the Pauli matrices. When
sign(B) = sign(M) the system is in the QSH phase and is characterized by
a non-trivial Z2 topological invariant. The presence of structural inversion
asymmetry gives rise to Rashba terms [104] which couple the two spin blocks
in Eq. 5.1 and break the axial spin symmetry. At linear order in k the Rashba
Hamiltonian only couples the

∣∣E1, jz = ±1
2

〉
bands,

HR =


0 0 −iαRk− 0
0 0 0 0

iαRk+ 0 0 0
0 0 0 0

 . (5.2)

It easy to see that unlike HBHZ , HR breaks the effective two-dimensional
inversion symmetry, HR(k) 6= I2DHR(−k) I2D, where I2D = σz ⊗ σ0 is the
inversion operator.

To find the helical edge states dispersion of the full Hamiltonian H =

63



5 Spin Field-Effect Transistor in a Quantum Spin-Hall Device

Figure 5.1: Energy dispersion of the two in-gap helical edge states of a QSH in-
sulator in a disk geometry as a function of the half-integer eigenvalue
m of the operator Σz. E± indicate respectively clockwise movers and
counter-clockwise movers. The dashed lines represent the bulk bands.
The value of the Rashba strength is set to αR = |A|/2. The maximum
value of the Rashba strength compatible with the presence of a full
bulk band gap is αmax

R = 2|A|. Energies have been measured in units
of |A2/B|.
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5.1 In Gap States of the BHZ Hamiltonian

HBHZ +HR in a disk geometry, we write H in polar coordinates (r, φ):

H =

(
BΠ+M −iAΛ+ −αR Λ− 0
−iAΛ− −BΠ−M 0 0
αR Λ+ 0 BΠ+M iAΛ−

0 0 iAΛ+ −BΠ−M

)
, (5.3)

where

Π = (∂2
r +

1

r
∂r +

1

r2
∂2
φ),

Λ+ = eiφ(∂r +
i

r
∂φ),

Λ− = e−iφ(∂r −
i

r
∂φ).

We are now interested in solving the Schrödinger equationHψ(r, φ) = Eψ(r, φ)
for energies inside the insulating bulk gap. In order to diagonalize the Hamil-
tonian of Eq. 5.3 we first show that the problem is separable in the two
variables r and φ. The total electronic angular momentum is given by the
composition of the spin angular momentum with the orbital angular mo-
mentum, J = L + S, plus the angular momentum Lφ due to the rotation
around the disk. Its projection along the ẑ axis is given by the operator
Σz = Lφ + Jz, with Lφ = −i∂φ and Jz = diag[1

2 ,
3
2 ,−

1
2 ,−

3
2 ]. It is straight-

forward to show that [H,Σz] = 0, and hence our wave functions can be
written as eigenvectors of Σz. The in gap solutions for Eq. 5.3 take the
form,

ψξm(r, φ) =


ei(m−

1
2

)φc1(ξ)Im− 1
2
(ξr)

ei(m−
3
2

)φc2(ξ)Im− 3
2
(ξr)

ei(m+ 1
2

)φc3(ξ)Im+ 1
2
(ξr)

ei(m+ 3
2

)φc4(ξ)Im+ 3
2
(ξr)

 (5.4)

where m is the half-integer eigenvalue of the operator Σz ensuring the 2π
periodicity of the wavefunctions, whereas Im(r) are the modified Bessel func-
tions of the first kind, necessary to have a normalizable solution. Finally, c
and ξ are constants which depend on the system’s parameters and energy.
For a given in gap energy E we find four values of ξ for which the wave-
functions ψξm are linearly independent: the total wave function can then be
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5 Spin Field-Effect Transistor in a Quantum Spin-Hall Device

Figure 5.2: Local expectation value of Sx for different counter-clockwise moving
states as a function of the Rashba strength αR. The spin projection is
measured at two opposite points of the disk, φ = 0 and φ = π, where
the only non-zero in-plane spin component is given by Sx. The values
of 〈Sx〉 have been computed numerically and are represented by dots
in the above graph; lines joining the dots are present only as a guide
for the eye.

written as a linear combination,

Φm(r, φ) =

4∑
i=1

ai ψ
ξi
m(r, φ). (5.5)

To find the in gap eigenvalues we impose fixed boundary conditions at the
edge of the disk: Φm(r = r0, φ) = 0. Fig. 5.1 shows the energy dispersion
of the helical edge states in the QSH phase. Away from the energy bulk the
dispersion is practically linear as conventionally found in ribbon geometries
[106, 109]. The presence of the Rashba SOC breaks the axial spin symmetry
of the BHZ Hamiltonian and tilts the electronic spin towards the QSH plane.
This can be seen by computing the out-of-plane spin component Sz = 1

2σ0⊗
σz: the local expectation value 〈Sz〉 decrease monotonically by increasing
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the Rashba strength. Moreover, in the current disk geometry, the in-plane
spin component is reversed under a π rotation. For instance, at φ = 0 and
φ = π the only in-plane component corresponds to Sx = 1

2σ0 ⊗ σx and as
shown in Fig. 5.2 it is completely reversed after half a turn.

We are now interested in using this spin-tilt effect to study the electronic
transport through the disk when the Fermi energy is in the bulk band gap.
In this case the QSH behaves effectively as a 1D single mode ballistic con-
ductor with only two counter-propagating states at the edge. For this rea-
son it is inherently different from a quasi-1D semiconductor ring [7]. In
the latter, for all Fermi energies, there are two clockwise movers and two
counter-clockwise movers (neglecting transverse modes). As we will show,
the difference in number of propagating channels between the two systems
will result in distinct transport properties.

A qualitative understanding of electronic transport through the QSH can
be achieved by considering an effective 1D model that retains the helical
nature of the edge states and the spin-tilting mechanism of the Rashba SOC.

5.2 Effective 1D Model

5.2.1 1D Hamiltonian

In order to have two counter-propagating helical modes which mimic the
QSH edge states and a Rashba spin-tilting mechanism we study the following
effective 1D Hamiltonian,

Heff = − i~
2
{ωzσz + ωRσr , ∂φ} (5.6)

where { , } is the anticommutator, necessary to have an hermitian Hamilto-
nian [11, 110]. In Eq. 5.6 we have defined the two characteristic frequencies
ωz = vF

r0
(with vF Fermi velocity of the edge states and r0 disk radius) and

ωR = 2αR
~r0 . The radial Pauli matrix is defined as σr = cosφσx+sinφσy. The

eigenvalues of Eq. 5.6 are,

E±(m) = ~ωz

−1

2
±m

√
1 +

(
ωR
ωz

)2
 . (5.7)
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The spectrum, much like the one in Fig. 5.1, is linear in m and obeys time-
reversal symmetry: at each energy E there are two corresponding eigenstates
with opposite spin projections and opposite velocities. The eigenstates of
Eq. 5.6 are,

ψ+
m(φ) = eimφ

(
e−i

φ
2 cos γ2

ei
φ
2 sin γ

2

)
(5.8)

ψ−m(φ) = eimφ

(
− e−i

φ
2 sin γ

2

ei
φ
2 cos γ2

)
(5.9)

where m is the half-integer eigenvalue of the operator Σeff
z = −i∂φ +

σz
2 . The angle γ = arctan(ωRωz ) measures the spin tilt with respect to the

quantization axis ẑ: at zero Rashba (γ = 0) the spinors in Eqs. 5.8 and 5.9
simply reduce to |↑, ↓〉 eigenstates of σz. This is in agreement with the zero
Rashba behaviour of the BHZ Hamiltonian of Eq. 5.1, where the edge states
are eigenstates of Sz = 1

2σ0 ⊗ σz. In the following we will take into account
eigenstates which lie far from the bulk bands, close to zero energy, where the
dispersion is mostly linear. For these states the spin tilting effect is larger,
as shown in Fig. 5.2. Under these assumptions we can safely describe the
BHZ helical edge states with the effective 1D Hamiltonian of Eq. 5.6.

5.2.2 Scattering Matrix Approach

The transport properties of the system at zero temperature are studied by
coupling symmetrically the QSH disk to two semi-infinite ballistic leads.
By applying a low bias we calculate the unpolarized conductance using the
Landauer formula [13],

G =
e2

h

∑
σ,σ′

Tσσ′ (5.10)

where e is the electron charge, h is the Planck constant and Tσσ′ denotes the
transmission probability between incoming σ and outgoing σ′ states in the
leads. Following closely the setup of Ref. [103], we consider ferromagnetic
leads with in-plane magnetization in order to inject polarized spins in the left
lead and detect spins polarized along the polar angle θ̂ in the right lead. A
schematic picture of the setup is shown in Fig. 5.3. The Hamiltonian of the
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Figure 5.3: a) QSH spin field effect transistor setup. The two semi-infinite fer-
romagnetic leads are coupled symmetrically at φ = 0 and φ = π.
Magnetizations in the left and right leads are given by the direction
of M . Inside the disk, the electron spin is tilted by an angle γ in the
direction of the Rashba field. (b) Schematic energy dispersion of HFM

and Heff .
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5 Spin Field-Effect Transistor in a Quantum Spin-Hall Device

Figure 5.4: Schematic representation of the incoming and outgoing modes in the
left junction of the system.

ferromagnetic leads, HFM = p2

2mσ0 + M(θ) · σσσ, contains a Zeeman-splitting
term proportional to the magnetization vector M(θ) = M(cos θ, sin θ, 0)
and a vector of Pauli matrices σσσ. Eigenstates in the left lead have the form
|x〉± = eikx√

2
(1,±1)T , while in the right lead |θ〉± = eikx√

2
(e−iθ,±1)T . The

QSH region is described by Eq. 5.6, where in the open geometry setup the
quantum number m labelling the eigenstates in Eqs. 5.8 and 5.9 will no
longer be quantized. The scattering matrix of the system can be obtained
from the knowledge of the scattering matrices at the QSH-injector interface
SL, and at the QSH-detector interface SR. To calculate them we first notice
that if both the spin majority and spin minority bands are occupied there
are two right-moving states and two left-moving states in the ferromagnetic
leads. The same number of propagating states are found in the QSH disk:
each arm of the disk has one clockwise mover and one counter-clockwise
mover with opposite spin projections. (Fig. 5.4). Hence SL and SR are 4×4
matrices whose elements can be calculated imposing current conservation for

70



5.2 Effective 1D Model

each scattering state at the interface. This condition leads to 16 equations
for the 16 elements of SL,R. For example the scattering ansatz for a right-
moving state in the left junction can then be written as,


φλFM,R(x) =

χλFM,R√
|vλFM |

eikλx +
∑

λ′ rλ,λ′
χλ
′
FM,L√
|vλ′FM |

e−ikλ′x

φλQSH,R(x) =
∑

λ′ tλ,λ′
χλ
′
QSH,R√
|vλ′QSH |

eikλ′x

where λ = ± labels the two possible modes, which in general will have
different spinorial parts χλ (see Eqs. 5.8 and 5.9) and velocities vλ. The
indicesR,L discriminate between right-moving and left-moving states. Since
the lead and the disk are parametrized by two different coordinate systems
we choose to label the eigenstates with their wave number k, which can be
simply written as the ratio between the angular momentum m and the disk
radius r0. The coefficients rλ,λ′ and tλ,λ′ are the probability amplitudes that
a state λ will be reflected or transmitted in a state λ′. Each propagating
state is normalized to unit flux in order to obtain a unitary S-matrix. A
similar ansatz holds for the right junction.

Once both S-matrices are calculated, they can be combined to obtain the
full scattering matrix of the device,(

bLi
bRi

)
=

(
r t′

t r′

)(
aLi
aRi

)

where bL,Ri and aL,Ri (i = 1, 2) are respectively the wave amplitudes of the
two outgoing and ingoing states in the left L and right R lead. We define r
and t as the 2×2 matrices whose elements are the spin-dependent reflection
and transmission amplitudes. The transmission coefficients in Eq. 5.10 are
just the modulus square of the elements of t. The unpolarized conductance
from left to right lead can be then simply expressed as [13] G = e2

h tr(tt
†).

At zero Rashba, γ = 0, and with both ferromagnets aligned we find perfect
transmission, T = diag[1, 1], when the momenta of the states in the QSH
disk satisfy the condition kr0 = Z

2 , with Z an integer. This resonance effect
can be understood by noticing that for m = Z

2 the state inside the QSH
disk is also an eigenstate of the closed system, as shown in Section 5.2.1.
In the remainder, we will fix the Fermi energy of the system to fulfil the
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resonance condition in the disk. We emphasize that for a sufficiently large
disk radius the in gap eigenstates of Eq. 5.7 are close enough that resonance
is achieved for almost any value of the Fermi energy. Calculating G under
this assumption yields the density plot in Fig. 5.5, where the unpolarized
conductance is modulated as a function of the Rashba strength γ and the
relative magnetization θ between the two leads. Here the Fermi energy has
been fixed close to the bottom of the upper band in the leads, in order
to have a large modulation of the unpolarized conductance. If we were to
raise the Fermi energy in the leads such that the wave numbers of the two
spin-polarized injected electrons were comparable, then the modulation of
the conductance would be largely suppressed, and the ballistic conductance,
independent of the Rashba strength and the relative magnetization between
injector and detector, would be quantized to 2e2/h.

The density plot of the unpolarized conductance shows that when the
ferromagnetic leads have opposite magnetizations (θ = π), the maximum
conductance is reached as the Rashba field is strong enough to completely flip
the spin of the incoming electrons, that is for γ → π

2 . Hence for sufficiently
large Rashba couplings the electron spin is reversed: this effect is due to
the phase accumulated after half a turn by the two eigenstates in the QSH.
From the elements of the t matrix we can also compute the contribution
to the conductance of an injected spin polarized current. This polarized
conductance turns out to be half the value of the unpolarized one, regardless
of the sign of the spin of the injected carrier. This suggests that at the
resonance condition the conductance modulation is dominated by the spin
texture of the helical edge states inside the QSH: at resonance the injected
electrons always enter the QSH, but they can only transfer to the right lead
if their spin projections can match the ones of the detector. By making use
of these observations we can now calculate analytically the spin-polarized
conductance.

5.2.3 Spin-Polarized Conductance

Having established that at resonance carriers with opposite spin polarization
contribute equally to the conductance, we can restrict ourselves to investi-
gate the modulation of the spin polarized conductance, and assume that
only the lowest Zeeman band is occupied. Since at resonance injected elec-
trons enter the QSH unimpeded, transmission is then determined by the spin
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Figure 5.5: Density plot of the unpolarized conductance as a function of the spin
tilt γ and the magnetization angle θ of the right ferromagnetic lead.
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projection of electrons upon exiting the disk at φ = π. Hence, the conduc-
tance modulation is controlled solely by the spin structure of the helical edge
states, greatly simplifying the description of the transmission coefficient and
leading to a clear analytic understanding of the physics of the system.

To calculate the transmission coefficient Tσσ′ we follow the steps of Ref.
[7]. The spin eigenstates |x〉 incoming from the left lead propagate coherently
in the disk, through the helical edge states, and leave the disk in a mixed spin
state |σout〉 =

∑
λ=± 〈ψλm(0)| |x〉 |ψλm(λπ)〉. The transmission coefficient can

then be obtained from the overlap between |σout〉 and the outgoing eigenstate
|θ〉 in the right lead, Txθ = |〈θ|σout〉|2. The polarized conductance takes the
form,

Gxθ(γ, θ) =
e2

2h
(1 + cos 2γ cos θ). (5.11)

The above conductance has the same modulation pattern of the one found in
Fig 5.5. As expected at strong Rashba SOC, γ → π

2 , the incoming electron
spin is completely reversed.

To calculate the unpolarized conductance one must sum over all possible
spin polarizations in the left and right leads. The calculation yields a con-
ductance G = 2e2

h , which is simply the inverse contact resistance of a single
mode conductor. Since the wave numbers of the injected and detected elec-
trons do not play a role in this calculation, this result follows only from the
helical nature of the two propagating edge modes: the two modes are orthog-
onal and cannot interfere with each other. Contrary to a conventional 1D
semiconductor ring, an interference pattern is therefore absent. This is due
to the fact that in each arm of the semiconductor ring there are double the
movers than the ones in the QSH. When the two arms of the ring recombine
at φ = π, electrons coming from different arms, with same spin projection,
can interfere leading to a modulation of G. We point out that, as mentioned
earlier, this result is in agreement with the scattering matrix approach anal-
ysis assuming the Fermi energy in the leads is such that the wave numbers
of the incoming electrons are comparable. We now validate numerically our
results by studying a microscopic tight-binding model corresponding to a
regularized version of Eq. 5.1.
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5.3 2D Tight-Binding Model

To corroborate our findings we perform a numerical calculation of the trans-
port properties of our device. The QSH disk is described using the BHZ
tight-binding model on a square lattice,

Htb =
∑
i, j

c†i, jci, j V̂ +
∑
i, j

c†i+1, jci, j T̂x

+
∑
i, j

c†i, j+1ci, j T̂y + h.c.

where,

V̂ = µ I4×4 + (M − 4B

a2
)σz ⊗ σ0,

T̂x =


B
a2

− iA
2a −αR

2a 0

− iA
2a − B

a2
0 0

αR
2a 0 B

a2
iA
2a

0 0 iA
2a − B

a2

 ,

T̂y =


B
a2

A
2a

iαR
2a 0

− A
2a − B

a2
0 0

iαR
2a 0 B

a2
A
2a

0 0 − A
2a − B

a2

 .

Here, µ is the chemical potential and a is the lattice spacing. The operators
c†i,j and ci,j create and annihilate an electron in the lattice site (i, j).

The ferromagnetic leads are similarly modelled by HtbBHZ with A = 0 and
αR = 0 in order to decouple

∣∣E1,mj = ±1
2

〉
and

∣∣H1,mj = ±3
2

〉
bands. The

ferromagnetic properties of the leads are captured by including a Zeeman
splitting term V̂Z [104],

V̂Z = H0


0 0 e−iθ 0
0 0 0 0
eiθ 0 0 0
0 0 0 0
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Figure 5.6: Rashba modulated conductance when θ = π in the right lead. In order
to inject spin polarized electrons we consider an in-plane magnetic field
H0. The plot shows different modulations of the conductance when
varying the chemical potential (µ ∈ [µ1, µ2]) in the leads. All energies
are normalized to |A2/B|.

where H0 is the strength of the magnetic field and θ is the relative in-plane
magnetization angle between the two ferromagnetic leads. The magnetic
field only couples to the

∣∣E1,mj = ±1
2

〉
bands, and hence we can tune H0

and the chemical potential in the leads in such a way to only occupy a major-
ity of

∣∣E1,mj = +1
2

〉
bands. In this way, even if both spin polarized carriers

are injected, we produce effectively a spin polarized current.
The conductance of the system has been calculated by using the Kwant

code [111]. In Fig. 5.6 we plot the conductance as a function of the Rashba
strength, when the two ferromagnetic leads have opposite magnetizations.
For chemical potentials µ ∼ µ1, the occupied energy bands contain mostly
one type of spin polarized carriers. This causes a larger suppression of the
conductance for small values of αR, in agreement with the modulation found
in Section 5.2.2. For sufficiently large couplings the conductance is again 2e2

h
signalling that the incoming electronic spin is being reversed. The spin-
tilting of the edge states studied in Section 5.1 reflects directly onto the
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transport properties of the system. As expected, we observe the same en-
hancement of the conductance as the one found along the cut at θ = π in
the density plot in Fig. 5.5. Indeed this numerical modulation of the con-
ductance matches perfectly with the results obtained in Sections 5.2.2 and
5.2.3.

5.4 Conclusions

In this work we have shown how a QSH insulator with Rashba SOC can
be used to modulate an electric current and manipulate the spin of injected
electrons. The setup we propose allows for an all-electric control of the
outgoing spin current making it an interesting possibility for a spin field-
effect transistor. It is important to stress that system geometry and size
are not particularly relevant as long as the two paths are symmetric and
shorter than the phase relaxation length. Moreover, since the QSH edge
states are topologically protected, transport is not affected by (weak) non-
magnetic disorder. Electrons will always fully transmit across the QSH and
the conductance will only depend on the scattering at the interface between
the QSH disk and the leads.

77





6 Tuning topology in thin films of topological
insulators by strain gradients

In condensed matter systems characterized by low-energy Dirac or Weyl
quasiparticles, the coupling between electronic and lattice degrees of free-
dom leads to remarkable effects. In graphene [112], for instance, elastic
deformations of the lattice due to strains couple to the Dirac fermions as
a pseudomagnetic vector potential [43, 113, 114]. Spatially inhomogeneous
strains then typically result in a pseudomagnetic field, which, in its simplest
form, gives rise to a pseudo-Landau level spectrum at low energies [43].
Such strain-induced pseudo-Landau levels have been observed using scan-
ning tunneling microscopy techniques both in graphene [115] and in artificial
graphene [116]. When the pseudomagnetic fields are spatially nonuniform
and periodically modulated [117], electron-electron interactions can trigger
an integer quantum Hall effect without any external time-reversal-breaking
field and thus similar in nature to the Haldane phase [118].

In three-dimensional topological semimetals with Weyl quasiparticles [70]
instead, pseudomagnetic fields due to inhomogeneous strains [119] have been
predicted to yield an enhancement of the bulk conductivity due to an under-
lying chiral pseudomagnetic effect [120]. Moreover, time-dependent mechan-
ical deformations due to, e.g., acoustic waves create a related pseudoelectric
field [121]. The concomitant presence of pseudoelectric and pseudomagnetic
fields can also lead to a pseudo-Landau level collapse [122], which generalizes
the Landau level collapse that occurs when perpendicular ordinary electric
and magnetic fields are present.

Low-energy Dirac quasiparticles are also naturally realized at the bound-
aries of time-reversal invariant strong three-dimensional topological insula-
tors (3DTIs) [24, 123]. Contrary to the Dirac states of graphene, however,
these surface states are anomalous: on each separate surface they violate
the fermion doubling theorem [124] and thus form half an ordinary two-
dimensional (semi)metal. This apparent paradox is resolved by considering
that the Dirac states appearing at the opposite surface cancel the anomaly
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6 Tuning topology in thin films of topological insulators by strain gradients

and hence regularize the system.

A 3DTI thin film then can be thought of as forming a graphene ana-
log but where the Dirac quasiparticles are separated in real space rather
than momentum space, and acquire a thickness-dependent mass due to
the symmetry-allowed tunneling effect between opposite surfaces. More-
over, these geometries represent the ideal playground where inhomogeneous
strain effects become pervasive. Thin films are much more flexible than bulk
crystals and can bend easily [125, 126]. In conventional semiconducting
systems, substantial bending strain effects have been both theoretically pre-
dicted [127] and experimentally observed [128]. Additionally, in thin films
grown on a substrate a lattice mismatch at the interface yields a strain that
gradually relaxes away from the interface thus providing yet another source
of non uniform strains.

Starting out from these observations, in this chapter we show that already
in their simplest form inhomogeneous strains couple to the Dirac fermions of
3DTI thin films in an entirely different manner as compared to graphene and
topological semimetals. Bending strains trigger indeed a phase transition
between two topologically distinct insulating phases. In materials with large
bulk band gaps, strain gradients result in a structure inversion asymmetry
term driving a topological phase transition from a quantum spin-Hall (QSH)
phase to a conventional band insulator [129]. Remarkably, we find that in
materials with strongly reduced bulk band gaps inhomogeneous strains have
an opposite effect, and promote a topologically non-trivial QSH phase thanks
to a strain-gradient analog of the quantum-confined Stark effect [130].

6.1 Strained TI thin films

In order to analyze the influence of inhomogeneous strains in thin films of
strong 3DTIs, we start out by introducing the effective bulk k · p Hamilto-
nian close to the Γ point of the Brillouin zone (BZ) for the Bi2Se3 family
of materials. It can be derived using the theory of invariants which ac-
counts for the essential point group symmetries of the R3̄m (No. 166) space
group, namely the inversion symmetry I and the three-fold rotation sym-
metry along the z-axis C3z, with the addition of time-reversal symmetry
T . Using as basis states the Γ-point spin-orbit coupled parity eigenstates
|P1+

z ,
1
2〉 , |P2−z ,

1
2〉 , |P1+

z ,−1
2〉 , |P2−z ,−1

2〉, which are derived from the hy-
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6.1 Strained TI thin films

bridized pz orbitals of Bi and Se, the three symmetries can be represented
as T = i(σ2⊗ τ0)K, I = σ0⊗ τ3 and C3z = exp(i(π/3)σ3⊗ τ0), with K being
the complex conjugation, and σ and τ the Pauli matrices acting in the spin
and orbital space, respectively. With this, the low-energy continuum bulk
Hamiltonian [131] can be cast in the following form

H3DTI(k) = ε0(k)σ0 ⊗ τ0 + (−M +B1k
2
z +B2k

2
‖)σ0 ⊗ τ3

+A1kzσ3 ⊗ τ1 +A2kxσ1 ⊗ τ1 +A2kyσ2 ⊗ τ1, (6.1)

where ε0(k) = D1k
2
z +D2k

2
‖ and k2

‖ = k2
x + k2

y. In addition, A1,2, B1,2, D1,2

and M are material-dependent parameters. In the Hamiltonian above we
have neglected, without loss of generality, the momentum independent term
proportional to the identity σ0 ⊗ τ0 since it corresponds to a rigid shift of
all energies. In the MB1,2 > 0 inverted band regime, this model predicts
the appearance of an idealized single surface Dirac cones thus verifying the
Z2 = 1 non-trivial value of the strong topological index [132]. Since the
bulk band gap M in the stoichiometric materials is much larger than the
energy scale of room temperature, external perturbations such as strain or
pressure are expected to change the topology of the system only above a
critical threshold: for Bi2Se3 it has been predicted that a topological phase
transition from a strong 3D TI to a normal band insulator [133, 134] occurs at
a critical uniaxial strain ' 7%. This is different from the case of, for instance,
HgTe where a change from tensile to compressive strain drives a topological
phase transition from a strong 3DTI to a Weyl semimetal phase [135].

However, the situation can be drastically different in a thin film where the
surface Dirac cones located at opposite surfaces start to hybridize with each
other. This hybridization, in fact, yields a surface energy gap δm ∝Me−w/ls

where w is the thin film thickness, while ls is the decay length of the topo-
logically protected surface states [136]. Whenever the surface energy gap is
larger than a (low-temperature) thermal energy, the thin film then realizes a
two-dimensional time-reversal invariant insulating state, which can be char-
acterized by the so-called Fu-Kane-Mele Z2 topological invariant [20, 137].
Furthermore, since the band gap is narrow, strain effects can and do lead to
a change in the topology of the system. To prove the assertion above, we
explicitly include strain effects in the effective bulk continuum Hamiltonian
Eq. 6.1. Making use of the usual Bir-Pikus scheme [138], and neglecting
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6 Tuning topology in thin films of topological insulators by strain gradients

the possible presence of shear strains, the Hamiltonian for a generic biaxial
strain takes the following form

Hstrain = [C1εzz + C2(εxx + εyy)]σ0 ⊗ τ0+

+ [M1εzz +M2(εxx + εyy)]σ0 ⊗ τ3, (6.2)

where C1,2 and M1,2 are the deformation potentials of the material at hand.

Although generally breaking the three-fold rotation symmetry C3v, homo-
geneous strains have a negligible effect even in thin film structures. This is
immediately apparent considering the fact that besides a trivial rigid shift
of the energy, a generic homogeneous strain merely renormalizes the bulk
energy gap M and consequently the thin film surface band gap δm without
affecting the topology of the system. However, and this is key, this does not
hold true for inhomogeneous strains.

Let us consider for instance the strain pattern due to a mechanical bend-
ing of the thin film. Such a mechanical deformation has been very re-
cently achieved by placing single-crystalline Bi2Se3 nanowires over deep
trenches [139]. It can be also realized by external force loading using an
atomic force microscope as recently employed to induce large flexoelectric
effects in strontium titanate single crystals [140]. As schematically shown in
Fig. 6.1, in a mechanically bent thin film the top (bottom) surface is dilated
while the bottom (top) surface is compressed. This, in turn, implies a struc-
tural inversion asymmetry that, as we show below, is decisive in tailoring
the topological properties of the 3DTI thin film.

6.2 Strain gradient-induced topological phase
transitions

To simplify our treatment, we will consider in the remainder an idealized
bending with the local curvatures of the mechanical neutral plane [see Sup-
plemental Material] that are constant. This produces a strain pattern εxx =
εyy = −αz with α constant and z measured from the mechanical neutral
plane, whereas εzz = −ν εxx/(1 − ν) with ν the Poisson ratio. Hence, the
strain Hamiltonian Eq. 6.2 simply becomes

Hstrain(z) = u0
z

w
σ0 ⊗ τ0 + u3

z

w
σ0 ⊗ τ3, (6.3)

82



6.2 Strain gradient-induced topological phase transitions

Figure 6.1: (color online) Sketch of the surface band structure of a bent 3DTI thin
film. a) In the strain-free configuration the top and bottom surface
Dirac cones acquire an hybridization gap at the Dirac point. b) At a
critical bending radius the two gapped Dirac cones are pulled toward
each other and touch on a nodal line |k| = kc. c) For even larger
bending radii the surface band gap is reopened with the system that
then corresponds to a conventional band insulator. d) Correspond-
ing topological phase diagram in terms of the strain-gradient induced
structure inversion parameter V and the ratio between the hybridiza-
tion surface gap δm and surface effective mass δβ.
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6 Tuning topology in thin films of topological insulators by strain gradients

Figure 6.2: (color online) Behavior of the surface Dirac cones hybridization gap
δm (a) and the effective mass parameter δβ (b) as a function of the
3DTI thin film thickness w. We have used the k · p parameters of
Bi2Se3 of Ref. [131]. For 2.5 nm. w . 5 nm the unstrained thin film
realizes a QSH insulator.

where we have introduced the two parameters u0,3 that depend on the de-
formation potentials, the ratio between the bending radius and the thin-film
thickness, and the Poisson ratio. To analyze the effect of such inhomoge-
neous strain, we first solve the unstrained Hamiltonian Eq. 6.1 with open
boundary conditions at the projected Γ̄ point of the surface BZ. We therefore
obtain two low-energy Kramers pairs |E↑ ↓+ 〉 and |E↑ ↓− 〉 with opposite parity,

whose energy m± = 〈E↑ ↓± |H3DTI(0, 0,−i∂z) |E↑ ↓± 〉 originates from the hy-
bridization of the surface Dirac cones located at opposite surfaces. As the
thin-film thickness is varied [see the Supplemental Material] these states un-
dergo multiple crossings, which is consistent with the oscillatory crossover
from 2DTI to 3DTI predicted in Ref. [141]. The inhomogeneous strain term
couples equal spin states of opposite parity since, as mentioned above, it
yields a structural inversion asymmetry. It thus generates a nonvanishing
coupling V = 〈E↑ ↓+ |Hstrain(z) |E↑ ↓− 〉. This coupling, in turn, enhances the

splitting of the low-energy states at the Γ̄ point to 2
√
m2 + V 2. However,

it does not preclude the possibility of band-gap closing and reopening at
different points of the surface BZ.
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6.2 Strain gradient-induced topological phase transitions

To account for this, we next obtain the effective k · p surface Hamilto-
nian in the |E↑ ↓+,−〉 subspace. It can be obtained by noticing that the parity
eigenstates at the Γ̄ point can be written as the bonding and anti-bonding
states of the two surface Dirac states appearing in semi-infinite geometries,
i.e. |E↑ ↓+,−〉 = (|t↑ ↓〉 ± |b↑ ↓〉)/

√
2. In the |t↑ ↓〉 , |b↑ ↓〉 basis the surface Hamil-

tonian reads

H2D(k) = ε(k) +


V −ivk+ m(k) 0
ivk− V 0 m(k)
m(k) 0 −V ivk−

0 m(k) −ivk+ −V

 (6.4)

where k± = kx±iky and we introduced the momentum dependent hybridiza-
tion m(k) = δm/2+ |δβ| (k2

x+k2
y)/2, with δm = (m+−m−), δβ = (β+−β−)

and β± = B2 〈E↑ ↓± |σ0 ⊗ τ3 |E↑↓± 〉. The particle-hole breaking term is defined
as ε(k) = (m+ + m−)/2 + (β+ + β−)(k2

x + k2
y)/2 while the Fermi velocity

v = A2

∣∣∣〈E↑ ↓± |σ1 ⊗ τ1 |E↓↑∓ 〉
∣∣∣. For very thick films δm ' 0, we then recover

two surface Dirac cones which, however, are pushed (pulled) to higher (lower)
energies by the bending strain. This finding is perfectly compatible with
low-temperature magnetotransport measurements of bent Bi2Se3 nanowires,
which indeed show an opposite shift of the surface Dirac cones at opposite
surfaces [139]. More importantly, when expressed in the original E↑ ↓+,− ba-
sis the surface k · p Hamiltonian corresponds to the well-known Bernevig-
Hughes-Zhang (BHZ) continuum model for HgTe quantum wells [21] but
with the addition of a strain-gradient induced structure-inversion-asymmetry
term ∝ V . The evolution of the band structure while continuously increasing
the structure inversion asymmetry term V is shown in Fig. 6.1 in the inverted
band regime. For V < Vc = v

√
−δm/ |δβ| the system is adiabatically con-

nected to a QSH insulator with a full surface band gap. By increasing the
bending strain, a topological phase transition occurs at V = Vc with the
system that for V > Vc becomes a conventional band insulator. Note that
in the non-inverted regime the bending strain term V does not lead to any
band-gap closing and reopening points, which implies that inhomogeneous
strains only act as trivializers of the system. In order to verify this physical
picture, we have numerically computed [see Fig. 6.2] the hybridization gap
δm and the effective mass parameters δβ for thin films of varying thickness
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6 Tuning topology in thin films of topological insulators by strain gradients

w using the k · p parameters for Bi2Se3 as obtained from density functional
theory calculations [131]. Using that v ' A2 ' 4 eV Å, we find that thin
films of 2.6 nm thickness can be driven via the topological phase transition
for a strain-gradient induced coupling of V ' 55 meV. By considering that
strain-induced shift of Dirac cones of V ' 30 meV have been achieved with
a maximal strain at the top (bottom) surface of ' ±0.1% [139], one can
therefore expect that the strain-gradient induced topological phase transi-
tion would require a maximal strain� 1%, or equivalently a bending radius
of � 260 nm. A critical bending radius of the same order of magnitude can
be expected for Sb2Te3 thin films [see the Supplemental Material for the
behavior of the hybridization gap δm and δβ for this material]. Signature of
this topological phase transition can be then obtained by performing longitu-
dinal resistance measurements similar to those performed in HgTe quantum
wells [22]. For bending radii larger than the critical one, the topological na-
ture of the QSH state would result in a residual conductance of 2e2/h when
the chemical potential is in the thin-film gap. Increasing bending beyond
the critical radius, instead, the residual conductance should be exponentially
small precisely as in a conventional band insulator.

The tunability of the topology in 3DTI thin films by means of inhomoge-
neous strains is similar in nature to the one achievable by means of externally
applied electric fields, since they also provide a source of structure inversion
asymmetry. It is thus natural to expect that when considering Cr-doped
and V-doped Bi2Te3 thin films – in the inverted band regime they gain con-
siderable spin susceptibility through the van Vleck paramagnetism thereby
developing long-range magnetic order with a quantized anomalous Hall ef-
fect [142] – mechanical deformations will yield an analog of the Stark effect
induced magnetic quantum phase transition theoretically predicted [143] and
experimentally verified [144] in these materials.

6.3 Narrow band-gap materials

Having established the occurrence of strain-gradient induced topological
phase transitions in materials where there is a large separation between the
surface energy gap δm and the bulk gap M , we next turn our attention to
strong 3DTI that in their bulk are at the verge of a topological phase transi-
tion to a normal band insulator. In the Bi2Se3 material class, a substantial
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6.3 Narrow band-gap materials

Figure 6.3: (color online) a) Evolution of the Γ̄ point energy levels for a narrow
band gap 3DTI thin film with A1 = 0 as the strain coupling term
u = u0 is increased. The ratio between the strain coupling terms has
been fixed to u0/u3 = 0.2. (b) Topological phase diagram in the A1 vs
strain plane. (c) Evolution of the band structure across the topological
phase transition for A1 = 2.2 evÅ.
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6 Tuning topology in thin films of topological insulators by strain gradients

decrease in the bulk band gap can be obtained [145] by increasing the Se
content in Cr-doped Bi2(SexTe1−x)3. Similarly, density functional theory
calculations [146] predict a topological phase transition in Sb2(Te1−xSex)3.
Thin film structures of these alloys realize conventional band insulators due
to a strong hybridization of the surface Dirac cones, in much the same way
as ultra-thin films of Bi2Se3 but with thicknesses that can reach the tens
of nanometers scale. In this case, however, the transversal subbands are
very close to each other, which hence requires to go beyond the simple low-
energy picture used so far. We have therefore numerically diagonalized the
full Hamiltonian H3DTI(k) +Hstrain(z) for a 15 nm thick film considering a
substantial decrease of the bulk gap to M = 2.8 meV while starting from
the special case A1 ≡ 0. Fig. 6.3(a) shows the evolution of the Γ̄ point
spin-degenerate subbands while increasing the strain couplings terms. The
electron |En〉 and hole |Hn〉 subbands are not coupled by the strain gradi-
ents terms. Moreover, in each of the sectors the strain gradients realize an
analog of the quantum-confined Stark effect [130] and thus push the electron
(hole) levels downwards (upwards). Hence, at a critical strain coupling uc
there is a crossing between the |E1〉 and |H1〉 subbands, which corresponds
to a topological phase transition to a QSH phase. In fact, by projecting the
full Hamiltonian onto these low-energy states, one finds that the effective
Hamiltonian corresponds to the BHZ model with preserved two-dimensional
k‖ → −k‖ inversion symmetry.

Next we consider the effect of turning on the A1 term. Since the crossing
between |En〉 and |Hn〉 at the Γ̄ are not protected by parity, they are changed
to anticrossings for finite A1 values [see the Supplemental Material]. How-
ever, by invoking the principle of adiabatic continuity the full band struc-
ture must still exhibit bandgap closing and reopening points which coincide
with topological phase transitions. The ensuing topological phase diagram
is shown in Fig. 6.3(b). Note that the band-gap closing reopening points
occurs in this case on a nodal line k‖ = kc as can be seen from the evolution
of the band structure in Fig. 6.3(c). We finally note that this strain-gradient
induced phase transition from normal insulator to QSH insulators can be
also assisted via the application of an external electric field analogously to
the electrical-induced topological transitions predicted to occur in few-layer
phosphorene [147].
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6.4 Conclusions

To sum up, we have shown that bending strains couple to the massive Dirac
quasiparticles of 3DTI thin films in such a way to trigger phase transitions
between topologically distinct insulating phases. Bending strains have been
already proposed as a mean to control the spin transport properties of quan-
tum spin Hall insulators [148]. We have shown that in thin films, instead,
they can change the topology of the system itself. In stoichiometric materials
with large bulk band gaps, the strain-induced structure inversion asymme-
try generically endangers the parent QSH phase thus driving a topological
phase transition to a normal band insulator. In alloys with small bulk band
gaps instead bending strains have a completely opposite effect, and can pro-
mote a topologically non-trivial phase as a result of the existence of a strain
gradient analog of the quantum-confined Stark effect. The strain-gradient
induced topological phase transition discussed in this work can also trigger
magnetic quantum phase transitions in magnetic topological insulator thin
films [143, 144]. This strain gradient tunability of magnetism could be em-
ployed in proposals for strain-assisted transistor devices as well as magnetic
random access memories.
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6.A Appendix

6.A.1 Derivation of the inhomogeneous strain k · p Hamiltonian

We first derive the strain pattern due to a mechanical bending of the 3DTI
thin film and recall that the strain tensor u determines how an element of
length dl changes after the system is deformed. It is well known that for
small deformations the components of u can be expressed as,

uij =
1

2
(
∂ui
∂uj

+
∂uj
∂ui

) (6.5)

where ui is the displacement of a point in space due to the deformation.
When a plate is bent, one surface of the system is compressed while the
opposite is dilated. In the middle of the plate there exists a neutral surface
that is neither compressed nor dilated and in the following we will take our
coordinate system to be centered on said neutral surface. By considering
the thickness of the plate to be smaller than the deformations along the two
other directions, we can write the components of the strain tensor along the
three principal axes in the form:

uxx = −z ∂
2ζ
∂x2

uyy = −z ∂
2ζ
∂y2

uzz = z σ
1−σ ( ∂

2ζ
∂x2

+ ∂2ζ
∂y2

)

(6.6)

In the above definitions we have introduced the vertical displacement ζ(x, y)
(see Fig. 6.4) of a point on the neutral surface and denoted with σ ∈ (0, 1/2)
the Poisson ratio. We consider the deformation to be isotropic along the
two in plane directions x and y, hence ∂2ζ/∂x2 = ∂2ζ/∂y2. For the sake of
simplicity we define the quantities,

u0 = C1w
σ

1− σ
(
∂2ζ

∂x2
+
∂2ζ

∂y2
)− C2w(

∂2ζ

∂x2
+
∂2ζ

∂y2
) (6.7)

u3 = M1w
σ

1− σ
(
∂2ζ

∂x2
+
∂2ζ

∂y2
)−M2w(

∂2ζ

∂x2
+
∂2ζ

∂y2
) (6.8)

Assuming a constant bending radius, i.e. ∂2ζ/∂x2 = ∂2ζ/∂y2 = const., the
quantities defined above and the expressions for the strain components, the
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6.A Appendix

Figure 6.4: Vertcal displacement ζ(x) of a point on a neutral line of the bent plate.

strain k · p Hamiltonian reported in Eq. 6.2 of the main text can be written
in the following form:

Hstrain(z) = u0
z

w
σ0 ⊗ τ0 + u3

z

w
σ0 ⊗ τ3 (6.9)
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6.A.2 Sb2Te3 Thin films

Figure 6.5: Behavior of the surface Dirac cones hybridization gap δm (a) and
the effective mass parameter δβ (b) as a function of the 3DTI thin
film thickness w. We have used the k · p parameters of Sb2Te3 of
Ref. [136]. For 2.5 nm. w . 5 nm the unstrained thin film realizes a
QSH insulator.
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6.A.3 Supplemental Figures

Figure 6.6: The evolution of the Γ̄ energy levels of a Bi2Se3 thin films as the thick-
ness is varied. The crossing between the low-energy levels correspond
to topological phase transitions.

Figure 6.7: Evolution of the Γ̄ energy levels for a narrow band gap TI thin film
with thickness w = 15 nm and A1 6= 0. The crossings encountered at
A1 = 0 [see Fig. 3 of the main text] are changed into anticrossings.
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7 Conclusions

This thesis has two main themes. The first one, discussed in Chapters 2-4,
is the study of various Berry curvature effects present in two-dimensional
systems. We have first shown how strained bilayer graphene hosts a finite
Berry curvature dipole and linked its presence to the warping of the Fermi
surface. In the following chapter we uncovered a Berry curvature-induced
anomalous planar Hall effect appearing in trigonal crystals with spin-orbit
coupling. This effect is expected to be present not only in crystals with a
honeycomb structure hosting Dirac cones, but also in materials with low
energy theories described by a Rashba 2DEG.

The second main theme is based on the study of the peculiar properties of
two and three-dimensional topological insulators (Chapters 5,6). We have
shown that, by tuning the Rashba coupling, a quantum spin-Hall disk acts
as an all electric spin-transistor when coupled symmetrically to two ballistic
leads. We then moved on to discuss how strain gradients can alter the
topology of three-dimensional topological insulators leading to topological
phase transitions.

7.1 Summary and Results

In Chapter 2 we have shown how the non-linear Hall effect can arise in
time-reversal symmetric materials without spin-orbit coupling or tilted Dirac
cones. We have found that by applying uniaxial strain to monolayer and bi-
layer graphene a non-vanishing Berry curvature dipole appears. The warp-
ing of the Fermi surface is the triggering mechanism needed to explain such
effect.

In Chapter 3 we have unveiled the presence of an anomalous type of pla-
nar Hall effect (PHE) in two-dimensional trigonal crystals. The PHE is
the appearance of an in-plane transverse voltage in the presence of coplanar
electric and magnetic fields. Its hallmark is a characteristic π-periodic, i.e.
even under a magnetic field reversal, angular dependence with the trans-
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verse voltage that exactly vanishes when the electric and magnetic fields are
aligned. Here we have demonstrated that in two-dimensional trigonal crys-
tals Zeeman-induced non-trivial Berry curvature effects yield a previously
unknown anomalous PHE that is odd in the magnetic field and independent
of the relative angle with the driving electric field. Moreover, we have shown
that when an additional mirror symmetry forces the transverse voltage to
vanish in the linear response regime, the anomalous PHE can occur as a
second-order response at both zero and twice the frequency of the applied
electric field. This non-linear PHE possesses an antisymmetric quantum
contribution that originates from a Zeeman-induced Berry curvature dipole.

In Chapter 4 we have studied the presence of the anomalous PHE in
a Rashba 2DEG by employing an effective 2 × 2 model, typically used to
describe the low energy properties of materials around the high symmetry
point Γ. We have then found that when including higher order warping
terms with threefold rotational symmetry, the Berry curvature of the model
becomes non-trivial and the anomalous PHE appears.

In Chapter 5 we have discussed the transport properties of a quantum spin-
Hall insulator with sizeable Rashba spin-orbit coupling in a disk geometry.
We have found that the presence of topologically protected helical edge states
allows for the control and manipulation of spin polarized currents: when
ferromagnetic leads are coupled to the quantum spin-Hall device, the ballistic
conductance is modulated by the Rashba strength. We have then showed
that, by tuning the Rashba interaction via an all-electric gating, it is possible
to control the spin polarization of injected electrons.

In Chapter 6 we have theoretically shown that the coupling of inhomoge-
neous strains to the Dirac fermions of three-dimensional topological insula-
tors (3DTI) in thin film geometries results in the occurrence of phase transi-
tions between topologically distinct insulating phases. By means of minimal
k · p models for strong 3DTI in the Bi2Se3 materials class, we have found
that in thin films of stoichiometric materials a strain-gradient induced struc-
ture inversion asymmetry drives a phase transition from a quantum spin-Hall
phase to a topologically trivial insulating phase. Interestingly, we have dis-
covered that in alloys with strongly reduced bulk band gaps, strain gradients
have an opposite effect and promote a topologically non-trivial phase from
a parent normal band insulator. These strain-gradient assisted switchings
between topologically distinct phases are expected to yield a strain gradient
tunability of magnetism in magnetic topological insulator thin films.
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English Summary

Topology is the branch of mathematics that studies how the properties of an
object are preserved under ‘smooth’ deformations. In a topological sense a
donut and a coffee mug are very much similar, since the two have the same
number of holes, they can be transformed into one another by applying some
some ‘smooth’ transformation. In the same way a sphere is not topologically
equivalent to any of the previous examples: deforming a sphere into a donut
would require us to tear a hole into it, a deformation which is by no means
smooth. It turns out that the number of holes of an object is a topological
invariant, a discrete number that can only change by some integer quantity
(there are is no such thing as a fractional hole). Objects that are classified
with the same invariant are said to be topologically equivalent.

However, this thesis is about condensed matter physics, with a specific
focus on the electronic properties of crystals. This naturally leads to the
question: how does topology, an abstract field of mathematics, have anything
to do with condensed matter physics, a field of physics that typically is
concerned with the physical properties of matter?

In 1980 the physicist von Klitzing discovered that by placing an electron
gas under a strong perpendicular magnetic field the Hall resistance (the re-
sistance that develops in the direction perpendicular to the applied current)
became quantized. Meaning that when changing the value of the applied
magnetic field, provided the field was strong enough, the resistance would
only change by some finite amount. This amount is known as the von Klitz-
ing constant and it is equal to the ratio h/e2, where h is Planck’s constant
and e is the electron’s charge. This discovery sparked great interest and it
was soon understood that topology was playing a role in the quantization
effect.

It turns out that also insulators can be classified through different topo-
logical invariants. In this case the topological properties are encoded in the
band structure and smooth deformations are all the deformations that do
not close the band gap or break the symmetries of the system. In the specific
case of the quantum Hall effect the topological invariant that classifies the
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system is an integer known as the Chern number. The quantization steps
observed in the experiments correspond to different values of said number.
What makes topological insulators extremely interesting is the fact the while
the bulk of these systems is insulating, the edges are on the other hand con-
ducting. Electrons moving on the edges move in a chiral manner and cannot
backscatter with impurities. These edge states are said to be robust to
external perturbations since the topology of the insulator is robust.

An essential quantity that encodes the topological properties is the Berry
curvature. It can be derived from the band structure of the system and
can be thought of as a magnetic field in the electron’s momentum space.
Its integral is equal to the Chern number when considering an insulator,
whereas for metals it is responsible for an ‘anomalous’ type of Hall effect.

The first three chapters of the thesis are dedicated to studying how the
Berry curvature determines the transport properties of two-dimensional met-
als. We discuss the appearance of a Berry curvature-related quantity, its
dipole moment, in strained graphene systems. We also show how a previ-
ously overlooked kind of planar Hall effect can appear in trigonal crystals.
This effect is also rooted in the Berry curvature of the electronic band struc-
ture.

The last two chapters investigate the peculiar properties of topological
insulators. We discuss how the quantum spin Hall insulator can behave as a
spin transistor and later study the possibility of strain induced topological
phase transitions in three dimensional topological insulators.
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Topologie is de tak van de wiskunde die zich bezighoudt met de eigen-
schappen van een object die onveranderd blijven onder ‘gladde’ deformaties.
Topologisch gezien zijn een donut en een koffiemok gelijk omdat ze beiden
één gat hebben, en ze kunnen in elkaar vervormd worden door een ’gladde’
transformatie. Op dezelfde wijze is een bol niet gelijk aan deze voorgaande
voorbeelden: een bol transformeren naar een donut vereist dat we een gat
prikken in de bol, een deformatie die we moeilijk ’glad’ kunnen noemen. Het
blijkt dat het aantal gaten in een object een topologische invariant is, een
discreet getal dat alleen met een geheel getal kan veranderen (er is niet zoiets
als een fractioneel gat). Objecten die door dezelfde invariant geclassificeerd
worden zijn topologisch equivalent.

Echter, deze scriptie gaat over gecondenseerde materie natuurkunde, met
een specifieke focus op de electronische eigenschappen van kristallen. Dit
leidt tot de vraag: wat heeft topologie, een abstracte tak van wiskunde,
te maken met gecondenseerde materie natuurkunde, een onderdeel van de
natuurkunde dat zich bezighoud met de fysische eigenschappen van materi-
alen?

In 1980 ontdekte de natuurkundige von Klitzing dat door een electron-
gas in een sterk loodrecht magnetisch veld te plaatsen de Hall weerstand
(de weerstand loodrecht op de richting van een toegepaste stroom), gequan-
tiseerd werd. Dit betekent dat wanneer de sterkte van het toegepaste mag-
netisch veld verandert, gegeven dat het veld sterk genoeg is, de weerstand
alleen verandert met discrete stappen. De grootte van deze stappen staat
bekend als de von Klitzing constante en is gelijk aan de ratio h/e2, waar h de
Planck constante is en e het elementaire ladingskwantum. Deze ontdekking
wekte grote belangstelling, en men realiseerde zich al snel dat topologie een
rol speelde in het quantisatie effect.

Het blijkt dat ook isolatoren geclassificeerd kunnen worden aan de hand
van verschillende topologische invarianten. In dit geval zijn de topologische
eigenschappen gecodeerd in de bandenstructuur, en gladde deformaties zijn
deformaties die niet leiden tot het sluiten van de bandkloof of het breken
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van de symmetrieën van het systeem. In het specifieke geval van het kwan-
tum Hall effect is de topologische invariant die het systeem classificeert een
geheel getal dat bekend staat als het Chern getal. De quantisatie stappen
die worden waargenomen in experimenten corresponderen met verschillende
waardes van het Chern getal. Wat topologische isolatoren extreem interes-
sant maakt is het feit dat terwijl het interieur van deze materialen isolerend
is, de randen wel geleiden. Electronen op de rand van het materiaal bewegen
op een chirale manier, en kunnen niet verstrooien tegen onzuiverheden in het
materiaal. Deze randtoestanden zijn dus robuust onder externe perturbaties
omdat de topologie van de isolator robuust is.

Een essentiële kwantiteit die topologische eigenschappen codeert, is de
Berry kromming. Deze kan worden afgeleid uit de bandenstructuur van het
systeem en kan worden gezien als een magnetisch veld in de impulsruimte
van het elektron. De integraal van de Berry kromming is voor een isolator
gelijk aan het Chern getal, terwijl het voor metalen verantwoordelijk is voor
een ’anomaal’ type Hall effect.

De eerste drie hoofstukken van deze scriptie zijn gewijd aan het bestud-
eren hoe de Berry kromming de transport eigenschappen bepaalt in twee-
dimensionale metalen. We bediscussiëren het verschijnen van de aan de
Berry kromming geraleteerde eenheid, zijn dipool-moment, in grafeen syste-
men onder strain. We laten ook zien hoe een eerder over het hoofd gezien
type planair Hall effect kan ontstaan in triogonale kristallen. Dit effect is
ook geworteld in de Berry kromming van de elektronische bandenstructuur.

De laatste twee hoofdstukken onderzoeken de eigenaardige eigenschappen
van topologische isolatoren. We bediscussiëren hoe de kwantum spin Hall
isolator zich kan gedragen als een spin transistor en onderzoeken de mogeli-
jkheid fase transities te induceren doormiddel van strain in drie-dimensionale
topologische isolatoren.
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