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1
Introduction

When tidal currents flow over a sandy bottom, the bottom topography of the
channel influences the flow. And vice versa: the flow shapes the bottom topog-
raphy by eroding sediments and depositing them somewhere else. This thesis
discusses this nonlinear interaction between the bottom topography and the
water motion in straight tidal channels with a length similar to that of the
tidal wave.

1.1 Tides, bars, boats and birds in tidal channels

All around the globe one finds channels in which the hydrodynamics are driven
by tides. Examples are the Western Scheldt in the Netherlands, the Exe Es-
tuary in England, the Ord River Estuary in Australia and channels in the
Venice Lagoon in Italy. The bottom of such tidal channels is seldom flat. Of-
ten it consists of a combination of bedforms with different length scales: on
the centimeter scale one finds ripples, on the decimeter to decameter scale
dunes/megaripples and on the hectometer to kilometers scale one finds bars
(Dalrymple and Rhodes, 1995, Leuven et al., 2016). In this thesis the focus is
on the dynamics of the latter: tidal bars. Examples of these bars are shown
in Figure 1.1 and 1.5. These shallow, sometimes intertidal and/or vegetated,
areas have been quantitatively described by van Veen (1950), Ahnert (1960)
and Dalrymple and Choi (2007). They are important for the local ecosystem
(e.g., Bouma et al., 2005) and they protect the coast against extreme water
levels during storm surges by dissipating large amounts of wave and tidal en-
ergy. Besides the flora and fauna, one often finds intensive marine traffic in
tidal channels (see caption Figure 1.2). This is especially true in tidal channels

1
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2 Chapter 1. Introduction

Figure 1.1: Tidal bars (hashed regions) in a tidal channel, Exe Estuary (England).
The small white stripes in the deeper, dark areas are ships. Satellite image from
Google Earth.

connected to a river (estuaries) with a large harbour. The (cargo)ships that sail
trough the channels need to navigate around the tidal bars to avoid grounding
(Figure 1.2). To maintain such shipping routes, it is important to understand
the formation and evolution of such bars. For example, if one would consider
widening the navigation channel to allow more boats to pass, the tidal bar
pattern may react to this human intervention. The widening would defeat its
purpose if, because of the widening, a new tidal bar pops up in the middle of a
navigation channel. Furthermore, sea levels are changing due to the changing
climate (IPCC, 2019). This leads to changes in the mean depth, in the tides
and also in the bars in the channels (van der Wegen, 2013, Nnafie et al., 2018,
Talke and Jay, 2020). Only when one has a solid understanding of how these
bars form and how sensitive their dynamics is to changes in the system, proper
maintenance of both the ecosystem and the navigation channels is possible.

1.2 Hydrodynamics in tidal channels

Bottom patterns, such as tidal bars, result from convergence of the net (i.e.,
tidally averaged) transport of sediment. In tidal channels, this sediment is pri-
marily eroded from the bed and transported by tidal currents. So, before one
can understand the dynamics of bottom patterns in tidal channels, a thorough
understanding of the tides in such channels is needed. One of the simplest
models for the hydrodynamics at a certain location in a tidal channel result
in sinusoidal functions with the period of the dominant tidal constituent for
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3

Figure 1.2: Marine traffic in Western Scheldt (the Netherlands) on 6th of October
2020. The colors denote the density of the marine traffic. Areas of low density, away
from the coastlines, are tidal bars. Image from https://www.marinetraffic.com.

both the current velocity and the water level (with possibly a phase difference)
(e.g., Gerkema, 2019). In many places, for example, in the North Sea and the
Wadden Sea (Europe), this period would be half a lunar day. While this simple
model gives a first idea about when to expect the high and low waters in a tidal
channel or embayment, it fails to explain many other phenomena. For example,
the time between high water and low water is not always the same as the time
between low and high water (Figure 1.3). Similarly, the strength of maximum
ebb current may differ from the strength of the maximum flood current. A
simple formulation for sediment transport is the cube (or some other power)
of the current velocity (e.g., Bailard, 1981). A distorted sinusoidal tidal curve
(i.e., a graph of current speed or water level versus time), may then result in
sediment being transported mainly in one direction of the channel. Moreover,
spatial variations in, for example, channel depth or width lead to spatial varia-
tions in the currents. They in turn cause accumulation of sediments at certain
locations in the channel and consequently, bottom patterns form. Hence, the
distortions of tidal curves are important for net sediment transport (Aubrey,
1986, Boon and Byrne, 1981, van de Kreeke and Robaczewska, 1993). The
distortions of the sinusoidal tidal curves are due to nonlinear hydrodynamic
processes (Parker, 1991). Models, which are more complicated than those that
yield simple sinusoidal curves, but still mathematically tractable, provide in-
sight in the origin of these distortions (e.g., Friedrichs and Aubrey, 1988, 1994,
Ridderinkhof et al., 2014).

1.3 Tidal bar dynamics in tidal channels

In the studies mentioned above, the considered timescale (days) is short com-
pared to that of the dynamics of the bottom and hence the bottom evolution

https://www.marinetraffic.com


i
i

i
i

i
i

i
i

4 Chapter 1. Introduction

5 10 15 20

time [h]

0

1

2

3

w
a
te

r
le

v
el

[m
]

HW

LW

HW

LW

Figure 1.3: Water level with respect to Lowest Astronomical Tide (LAT) versus time
at Lauwersoog (the Netherlands) on 21st of October 2020. Data from Rijkswaterstaat
(waterinfo.rws.nl).

was not taken into account. On a longer time scale (years to decade) the bot-
tom will evolve. Seminara and Tubino (2001) developed a model consisting of
the 3D shallow water equations coupled with sediment transport equations and
an equation for the evolution of the bottom. Their model is a so-called local
model, meaning that they consider only a short section of long channel with
periodic (along-channel) boundary conditions. The section is short compared
to the tidal wavelength and the length scale on which variations in the channel
width occur. The channel itself is long such that at certain locations the effect
of the (along-channel) boundaries can be neglected. These assumptions have
two important advantages. The first is that the patterns are studied in absence
of the effects by closed landward or open seaward boundaries. Secondly, in such
a model set-up, a horizontally flat bottom with a spatially uniform tidal current
flowing over it can be shown to be a morphodynamic equilibrium. That is, it is
a bottom pattern that does not change over time. And since the bottom height
changes at locations where net sediment transport converges, this implies that
in an equilibrium state, the net sediment transport convergence vanishes.

However, a morphodynamic equilibrium is not necessarily stable. This can
be understood as follows. When a spatially uniform tidal current flows over a
flat sandy bed and either the hydrodynamics or the bottom height (or both)
are perturbed, the system may enter a positive feedback loop: the perturba-
tions grow. Seminara and Tubino (2001) demonstrated that the initial forma-
tion of tidal bars may be interpreted as the result of such a positive feedback
loop. They showed that, of all the possible perturbations of the flat bottom,
the ones that grow the fastest, form tidal bar patterns with wavelengths that
roughly correspond to observed wavelengths in the field. Later, Schramkowski
et al. (2002) and Garotta et al. (2006) showed that this is also possible in

waterinfo.rws.nl
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Figure 1.4: Residual currents (arrows) induced by alternating tidal bars, as found
with a local model that considers a stretch of a tidal channel that is short compared
to its total length. Note the convergence of residual along-channel currents above the
bars.

a depth-averaged model and that the three spatial dimensions considered by
Seminara and Tubino (2001) are not needed. Moreover, Schramkowski et al.
(2002) added the local inertial term in the momentum balance, which becomes
relevant when the channel width is of the same order of magnitude as the tidal
excursion length and friction does not dominate the flow. Garotta et al. (2006)
investigated the formation of tidal bars when the current is not forced by a per-
fectly sinusoidal pressure gradient force (as was done by Seminara and Tubino
(2001) and Schramkowski et al. (2002)). Instead, they consider a distorted one,
consisting of both a principle frequency and its first overtide. This asymmet-
ric forcing resulted in migrating tidal bars when the maximum current in one
direction was stronger than in the other direction. Together, these studies re-
vealed two key factors for the formation of tidal bars: depth-dependent bottom
friction and the advection of vorticity. Zimmerman (1981) already explained
how (in a variety of systems) the joint appearance of these factors results in
the generation of a residual circulation to which tidal bars owe their existence
(Figure 1.4).

The studies above discuss the ‘initial’ formation of tidal bars. The word
‘initial’ is a bit ambiguous, as it assumes that first there was a channel with
a flat bottom and then the bars emerged. However, it does explain why a
certain equilibrium, the flat bottom with an spatially uniform current flowing
over it, can be unstable. And since the fastest growing bottom perturbation
resembles to a certain extent observed patterns, studying the stability of this
rather trivial equilibrium was insightful. Moreover, these models are fast: the
fastest growing bottom perturbation is calculated in a fraction of seconds. This
allows for extensive sensitivity studies of model results to changes in the val-
ues of model parameters. A glance at a book filled with sediment transport
formulations (Soulsby, 1997), reveals that the answer to the question how does
sediment transport depends on tidal current, is not indefinitely answered. This,
in combination with the numerous simplifications and assumptions made in the
studies mentioned above, shows that sensitivity analyses are important to make
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6 Chapter 1. Introduction

sure that the conclusions do not disappear in the uncertainty. A major lim-
itation of models that are restricted to initial formation of bars is that they
assume the height of these bars to be very small with respect to water depth.
However, natural bars do not obey this condition.

Moreover, there are reasons to believe that, besides the flat bottom with
a spatially uniform tidal current flowing over it, other (less trivial) bottom
and flow patterns that result in a vanishing bottom evolution exist. These
equilibria are searched for and studied with numerical models that do not have
such restrictions on the bar height and they provide a global, rather than a
local description of the bars/tidal channel/system (Hibma et al., 2003, 2004,
van der Wegen and Roelvink, 2008, Tambroni et al., 2010, van der Wegen and
Roelvink, 2012, van der Wegen, 2013, Dam et al., 2016, Xie et al., 2017, Nnafie
et al., 2018, Olabarrieta et al., 2018). Their domains represent an entire channel
from an open boundary at the seaward side up to a closed landward boundary
(or river), with imposed tidal motion at the open boundary. Subsequently,
a numerical time integration (over centuries) is performed until the bottom
patterns hardly change. The latter correspond to states that are (potentially
close to) nontrivial equilibria (i.e., equilibria different from the flat bottom).
When choosing a realistic channel geometry, these numerical models simulate
bottom patterns that compare reasonably well with observed bottom patterns
(Figure 1.5). However, their complexity hinders a detailed analysis of the
dynamics, since many processes happen at the same time. In particular, due
their complexity and included processes that become important at long time
scales, the ‘equilibria’ found by the complex models are often still evolving,
albeit slowly. Moreover, there is no guarantee that if one were to continue
the simulation for a longer time, the pattern would not change in a possibly
completely different pattern.

Complementary to the models described above, tidal bars were also studied
in a laboratory by Tambroni et al. (2005) and Leuven and Kleinhans (2019).
Tambroni et al. (2005) report that the tidal bars that they simulated in their
laboratory have characteristics that are consistent with those predicted by the
theoretical model of Seminara and Tubino (2001), although the tidal bar wave-
length was slightly smaller than that expected from the latter study. The
channel of Tambroni et al. (2005) had one open end and one closed end. In
contrast, the set-up of Leuven and Kleinhans (2019) was as close as possible
to a local model, by using a periodically tilting flume with two open sides.
Besides a correspondence with the theory of Schramkowski et al. (2002) during
the initial formation of the bars, they reproduced the formation of so-called
sills. The latter are narrow straight ‘bridges’ between the alternating tidal
bars. Moreover, Leuven and Kleinhans (2019) attributed the differences be-
tween the initial formation and the long-term behavior to nonlinear processes
and highlighted the need of a further development of the theory of nonlinear
tidal bar dynamics to explain their observations.

There is one modelling study of nontrivial equilibria in a local model:
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Figure 1.5: Top panel: simulated bottom height by the complex numerical model of
Nnafie et al. (2018). The colors denote the channel depth in meters, the numbers
on the horizontal and vertical axes represent distance in kilometers. Bottom panel:
satellite image of tidal bars in the Western Scheldt (the Netherlands). Note the
correlations between areas where tidal bars occur and areas of low traffic density in
Figure 1.2. Satellite image from: NSO Satellietdataportaal c©21AT 2017, distribution
21AT, all rights reserved, https://satellietdataportaal.nl.

https://satellietdataportaal.nl
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8 Chapter 1. Introduction

Schramkowski et al. (2004). They studied the equilibria and stability of mature
tidal bars by projecting the governing equations on Fourier modes and perform-
ing a bifurcation analysis with the channel width and the friction parameter
as bifurcation parameters. Besides the simplicity due to the local nature of
the model, their bifurcation analysis poses several advantages over the numer-
ical models discussed above. In contrast to the numerical models that employ
a time integration methodology, Schramkowski et al. (2004) used a Newton
method to find stationary bottom patterns. Their model allowed them to ex-
plicitly calculate the stability of the morphodynamic equilibria. That is, they
performed a linear stability analysis of the equilibria. Moreover, in contrast to
time integration methods, their methodology allows one to find unstable equi-
libria, which are helpful in understanding the dynamics (of which the unstable
flat bottom is the proof). The resulting dynamical structure is rich: multi-
ple equilibria for the same parameter values and periodic solutions. However,
their model was limited to weak friction. To calculate equilibria with (real-
istically) large friction parameters, many (but unclear which) Fourier modes
were needed. This made the continuation to realistic values of bottom friction
unfeasible.

1.4 Knowledge gaps, objectives and approach

The above motivates the main goal of this thesis: contribute to a deeper under-
standing of the dynamics of tides and tidal bars in tidal channels. This goal is
met through four specific objectives. The first concerns the tides in a channel,
the second and third concerns the initial formation of tidal bars and the fourth
is about the long-term tidal bar dynamics.

1.4.1 Gap, objective and approach 1

Section 1.2 concluded that knowledge of nonlinear hydrodynamical processes
in tidal channels is needed. One of the nonlinear hydrodynamical process that
is not yet well understood is the momentum dissipation on tidal flats. When
the water level rises in a tidal channel consisting of a deep main channel and
shallow adjacent tidal flats, water flows from the channel onto the adjacent
tidal flats, carrying with it longitudinal momentum. The mass is temporarily
stored on the flats, until it flows back into the channel during the falling tide.
The momentum, on the other hand, dissipates rapidly due to high friction on
the tidal flats. That is, the flats act like mass storages and momentum sinks
(Dronkers and Schönfeld, 1959, Dronkers, 1964, Speer, 1984). The effect of the
mass storage on tidal characteristics, such as ebb-flood asymmetry, has been
investigated before (Speer and Aubrey, 1985, Friedrichs and Aubrey, 1994,
Ridderinkhof et al., 2014). However, the effect of the dissipation of momentum
on the tidal flats is less well understood. This is the first objective:
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9

1. Understand and quantify the sensitivity of tidal characteristics (such as
times of high and low water, tidal range, ratio between maximum flood
and ebb currents, etc.) to momentum dissipation on tidal flats.

This will be done by extending the cross-sectionally averaged shallow water
model of Speer and Aubrey (1985) to include the effects of the momentum
sink. Moreover, their model domain is generalized to a double inlet (i.e., a
channel that is open on two sides) rather than a semi-enclosed basin. In the
double inlet system the hydrodynamics are forced by the tides on both open
boundaries. An example of such an inlet is the Marsdiep-Vlie system in the
Wadden Sea. This model domain is a generalization of the one in Speer and
Aubrey (1985) in the sense that, when the tides at the two open boundaries
are identical, the dynamics in half the double inlet reduce to that in a semi-
enclosed basin. The model describes the hydrodynamics in a long tidal channel.
So, in contrast to the local morphodynamical models discussed earlier, here the
‘global’ dynamics is modelled and the bottom topography is fixed. The param-
eter regime considered is that where the Froude number, which measures the
degree of nonlinearities in the system, is small (≈ 0.1). By exploiting this small
parameter, a perturbation analysis provides a semi-analytical investigation of
the effect of the momentum sink on the tidal characteristics.

1.4.2 Gap, objective and approach 2

When analyzing the characteristics of tidal bars in the field and in laboratory
settings, the (wave)length of tidal bars seems to correlate with the channel
width (Dalrymple and Rhodes, 1995, Leuven et al., 2016). Moreover, results
obtained with numerical studies (e.g., Hibma et al., 2004, van der Wegen and
Roelvink, 2008, van de Lageweg and Feldman, 2018) revealed that the tidal
bar wavelength depends on the current velocity, channel depth and the channel
width. However, in the local model of Schramkowski et al. (2002), the modelled
tidal bar wavelength hardly depends on the channel width. Since this model
was fruitful in unraveling the mechanism of the initial tidal bar growth, it is
worth investigating what causes the inconsistency between Schramkowski et al.
(2002) on one hand and the observations and numerical studies on the other
hand. Solving this inconsistency is the second objective:

2. Extend the model of Schramkowski et al. (2002) such that the tidal bar
wavelength does depend on the channel width, while still roughly repro-
ducing natural (observed) tidal bar patterns, and understand what crucial
physics is added to resolve this inconsistency.

The approach is to extend the model of Schramkowski et al. (2002) by including
the effects of turbulent exchange of momentum and sediment in the horizontal
plane. This is motivated by the fact that these terms are present in numerical
models, while they are neglected in Schramkowski et al. (2002). Moreover, to
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10 Chapter 1. Introduction

ensure the conclusions are trustworthy and to gain additional insight in the
sensitivity of the tidal bar wavelength to the model parameters, a sensitivity
analysis is performed to the erosion parameter, background current velocity
amplitude, channel depth, channel width, bed slope effect, settling velocity,
horizontal eddy diffusivity and viscosity and the critical velocity for erosion.

1.4.3 Gap, objective and approach 3
Seminara and Tubino (2001) considered relatively narrow tidal channels (few
100 meters wide) with currents of approximately 1 m s−1 and at latitudes of
45◦ N, such as in the Venice Lagoon. These parameters result in a so-called
Rossby number much larger than one. As a result, the Coriolis effect is neg-
ligible. Schramkowski et al. (2002) considered wider channels and based their
model set-up on the Western Scheldt. This channel is at 51◦ N, has a width of
approximately 5 km, a depth of 10 m and currents with amplitudes of 1 m s−1.
In contrast to the parameter values representative for the tidal channels in the
Venice Lagoon, result these values in a Rossby number close to one. That is,
channel is not narrow anymore: the the dynamics are significantly influenced
by the Coriolis effect. So, even though the simulated patterns of Schramkowski
et al. (2002) resembled the observed patterns reasonably well, it is necessary to
retain the Coriolis effect. Or, at least one needs to be sure its effect is minimal
before neglecting it. In fact, the Coriolis effect has been shown to be relevant
for the hydro-morphodynamics in certain tidal channels (Valle-Levinson, 2008,
Winant, 2008, Xie et al., 2017, Olabarrieta et al., 2018). However, the role of
the Coriolis effect on the initial formation of tidal bars was never investigated.
This is the third objective:

3. Study the role of the Coriolis effect on the initial formation of bottom
patterns in a tidal channel.

The specific interest is in the spatial pattern and growth rate of the fastest
growing bottom pattern. After the analysis concerning the second objective,
it turned out that the sediment transport formula used in that chapter can be
further simplified. Using those simplifications, but adding the Coriolis effect,
the linear stability analysis is repeated to meet the third objective.

1.4.4 Gap, objective and approach 4
As stated above, when tidal bars mature and their heights are no longer small
compared to the water depth, their dynamics become nonlinear. The long-term
evolution of tidal bars is studied in laboratory settings and in numerical mod-
els. Only one of these numerical models is a local model, which was bound to
consider weak friction. To bridge the gap between the local models that study
the initial formation, the local model that is bound to weak friction and the
global numerical models that study the long-term dynamics, a local model that
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systematically finds nontrivial tidal bar equilibria in physically relevant param-
eter regimes is needed. Field observations suggest that the channel width is an
important parameter for the tidal bar dynamics, a finding that is also observed
in the available local models and complex numerical models (see earlier cita-
tions). Moreover, numerical studies (Xie et al., 2017, Olabarrieta et al., 2018)
show that there are physically relevant parameter regimes where the Coriolis
force significantly affects the initial growth of the spatial patterns of tidal bars.
The fourth objective is therefore:

4. Investigate the long-term dynamics of tidal bars, including the possible
presence of nontrivial morphodynamic equilibria in a local model, com-
pare the long-term dynamics with the initial formation and assess the
sensitivity of the results to the Coriolis parameter and channel width.

This is done by developing a model for bars in a tidal channel, which is a
modification of that of Yuan et al. (2016) to study tidal sand ridges on the
continental shelf. The new local model has the option to integrate in time,
such as the other (non local) numerical models. This allows one to study the
transient behavior of the tidal bars and compare this with the evolution of tidal
bars in a laboratory described by Leuven and Kleinhans (2019). Moreover, by
using a root-finding algorithm, the model finds morphodynamic equilibria and
their stability directly.

1.4.5 Overview of the following chapters
Chapters 2–5 focus on the objectives 1–4 of this thesis, respectively. The final
Chapter 6 presents a summary and outlook.
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Momentum dissipation on
tidal flats

T. M. Hepkema, H. E. de Swart, A. Zagaris and M. Duran–Matute.
Sensitivity of tidal characteristics in double inlet systems to momentum dissipation on tidal
flats: a perturbation analysis. Ocean Dynamics 68, 439–455 (2018). https://doi.org/10.
1007/s10236-018-1142-z
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14 Chapter 2. Momentum dissipation on tidal flats

Abstract

In a tidal channel with adjacent tidal flats along–channel momentum is dissi-
pated on the flats during rising tides. This leads to a sink of along–channel
momentum. Using a perturbative method, it is shown that the momentum
sink slightly reduces the M2 amplitude of both the sea surface elevation and
current velocity and favours flood dominant tides. These changes in tidal char-
acteristics (phase and amplitude of sea surface elevations and currents) are
noticeable if widths of tidal flats are at least of the same order as the channel
width, and amplitudes and gradients of along–channel velocity are large. The
M2 amplitudes are reduced because stagnant water flows from the flats into
the channel, thereby slowing down the current. The M4 amplitudes and phases
change because the momentum sink acts as an advective term during the fall
of the tide, such a term generates flood dominant currents. For a prototype
embayment that resembles the Marsdiep–Vlie double–inlet system of the West-
ern Wadden Sea, it is found that for both the sea surface elevation and current
velocity, including the momentum sink leads to a decrease of approximately 2%
in M2 amplitudes and an increase of approximately 25% in M4 amplitudes. As
a result, the net import of coarse sediment is increased by approximately 35%,
while the transport of fine sediment is hardly influenced by the momentum sink.
The impact of the momentum sink on tidal characteristics becomes larger with
increasing ratio of intertidal area and channel area, and is in a much lesser
extent sensitive to the slope of the flats, drag coefficient, embayment length
and the phase difference between incoming tidal waves at the boundary of the
embayment. For the Marsdiep–Vlie system, the M2 sea surface amplitude ob-
tained from the idealized model is similar to that computed with a realistic
three–dimensional numerical model whilst the comparison with regard to M4

improves if momentum sink is accounted for.
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2.1 Introduction

In shallow coastal seas, such as the Wadden Sea in Northern Europe, the tidal
motion is highly nonlinear, as is evident from the presence of residual and higher
harmonics in the primary tide (Buijsman and Ridderinkhof, 2007). Well-known
sources of these nonlinear tides are the advection of momentum, quadratic
bottom stress, depth dependent friction, divergence of excess mass (i.e. mass
stored between mean sea level and actual sea surface) and the hypsometry of
the embayment (e.g. Parker, 1991, Friedrichs and Aubrey, 1994, and references
therein). As a result, the sinusoidal shape of the curves of the sea surface height
and current velocity at a fixed location is distorted. This tidal asymmetry leads
to a net transport of fine and coarse sediment (Groen, 1967, Aubrey, 1986, Boon
and Byrne, 1981, van de Kreeke and Robaczewska, 1993).

In this study, the focus is on nonlinear tides by hypsometry and in particular
by dissipation of momentum on tidal flats. When the water level rises, water
flows from the channel onto the flats, carrying with it longitudinal momentum.
The mass is temporarily stored on the flats, until it flows back into the channel
during the falling tide. The momentum, on the other hand, dissipates rapidly
due to high friction on the tidal flats. That is, the flats act like mass storages
and momentum sinks (Dronkers and Schönfeld, 1959, Dronkers, 1964).

In contrast to mass storage, which has been extensively studied (Speer and
Aubrey, 1985, Friedrichs and Aubrey, 1994, Ridderinkhof et al., 2014), the role
of the momentum sink on tidal dynamics is less well understood. Numeri-
cal model studies (e.g. Brown and Davies, 2010) show that tidal asymmetry
strongly depends on the distribution of channels and flats, thereby suggest-
ing the importance of processes such as the momentum sink. De Swart et al.
(2011) and Alebregtse (2015) studied numerically the momentum sink in a
semi-enclosed embayment. They demonstrated that the amount by which the
momentum sink deforms tidal curves depends on the ratio of flat–to–channel
area, the shape of the tidal flats and the distribution of flats along the channel.
However, no details about the underlying processes were given.

The considerations above motivate further investigation of the generation of
overtides by a momentum sink, which is conducted here. Similar to Alebregtse
(2015), the model of Speer and Aubrey (1985) is extended with a momentum
sink term. The model of Speer and Aubrey (1985) has been successfully val-
idated against field data (see also Friedrichs and Aubrey, 1988, 1994). Here,
two main new aspects are introduced. First, the approach is analytic in na-
ture, and approximate solutions of the cross-sectionally averaged shallow water
equations are explicitly constructed using perturbation methods that exploit
the smallness of the Froude number. This enables the assessment of the impact
of the momentum sink and quantification of the difference between solutions
that do and do not account for it. Second, a double inlet system (rather than a
semi-enclosed bay) with an M2 tidal wave entering at both ends is considered.
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In particular, this permits investigating what happens in double inlet systems
when the two waves entering at opposite sides differ in amplitude or phase,
as typically occurs in nature. Examples of such embayments are the West-
ern Wadden Sea in the Netherlands, with the Marsdiep and Vlie inlets (e.g.
Ridderinkhof, 1988, also considered here), the Laguna de Términos in Méx-
ico (David and Kjerfve, 1998) and the Santa María La Reforma in California
(Serrano et al., 2013).

This study has two specific aims. The first is to assess changes in tidal char-
acteristics of sea surface elevation and current velocity due to the momentum
sink in double inlet systems with different parameter settings. The parame-
ters that will be varied are the width of the tidal flats and the channel width,
the drag coefficient, the slope of the flats, the phase difference between the
incoming tidal waves and the length of the embayment. The second aim is to
understand the mechanisms behind these changes in tidal characteristics.

This chapter is organized as follows. In Section 2.2, the model is presented.
In Section 2.3, a perturbation method is used to find approximate solutions
to the cross-sectionally averaged shallow water equations. The results are pre-
sented in Section 2.4, followed by a discussion in Section 2.5. Here, mechanisms
leading to the model results are explained together with a qualitative compari-
son with the model output of a complex numerical model. Section 2.6 contains
the conclusions.

2.2 Model formulation

2.2.1 Physical domain and geometry

The tidal embayment considered in this study consists of a channel of constant
width b∗c with adjacent tidal flats. The embayment is connected to an open
sea on both sides, has length L∗ and geometry symmetric with respect to the
centerline of the channel (see figure 2.1).

The along–channel coordinate is x∗, the lateral coordinate y∗, the vertical
coordinate z∗ and the time coordinate t∗. The origin is placed in the middle
of the embayment at the height of the undisturbed sea level. The undisturbed
water depth on the flats is d∗f and in the channel it is h∗c . The width of the
channel or of the flats henceforth refers to the width of the wetted part of the
channel or flats. The total width b∗ of the embayment is dependent on the sea
surface elevation ζ∗, and hence also on t∗ and x∗. The geometry of the cross
section is based on that of Speer and Aubrey (1985). It is assumed that the
lowest part of the flats are located at the level of low water. The total width
reads

b∗ = b∗max −
2d∗f

tanϕ

(
1− ζ∗

d∗f

)
, (2.2.1)
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y∗

z∗

−d∗f

d∗f

channeltidal flat tidal flat

b∗(t∗)

b∗c

b∗max

ζ∗

h∗c

h∗(y) ϕ

x∗

y∗

b∗maxb∗cb∗(t∗)

L∗

tidal flat

channel

tidal flat

x∗ = −L∗

2 x∗ = L∗

2

y∗ = b∗

2

y∗ = − b∗

2

Figure 2.1: Geometry of the open embayment (a: side view at any longitudinal
position, b: top view). Here, b∗max is the width of the embayment including the dry
parts of the flats, b∗(t∗) the width of the wetted part of the embayment and b∗c the
width of the channel. Furthermore, h∗ is the undisturbed depth (being h∗

c in the
channel and d∗f on the flats), ϕ the angle of inclination of the flats, L∗ the length of
the embayment and ζ∗ the sea surface elevation. The origin is at the intersection of
the dotted lines. In (a), the x∗ axis points into the paper. The blue area in (b) is the
wetted part.
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where d∗f is the water depth on the flats, b∗max is the width of the embayment
including the dry parts of the flats and ϕ the angle of inclination of the flats as
in figure 2.1. It follows from the figure that partly horizontal flats with a kink
are possible if

ϕ ≥ tan−1
(

4d∗f
b∗max − b∗c

)
.

This motivates the introduction of a parameter q ≥ 1 defined as

q = tan(ϕ)
b∗max − b∗c

4d∗f
.

The total width of the embayment now reads

b∗ = b∗max −
b∗max − b∗c

2q

(
1− ζ∗

d∗f

)
. (2.2.2)

The parameter q ≥ 1 determines flat steepness; q = 1 means linear flats and
larger q-values imply steeper flats (in figure 2.1, q = 5).

2.2.2 Governing equations
The hydrodynamics in the embayment are modelled by the cross-sectionally
averaged shallow water equations. They read

b∗

b∗c

∂ζ∗

∂t∗
+
∂(ζ∗ + h∗c)u

∗

∂x∗
= 0, (2.2.3)

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ g∗

∂ζ∗

∂x∗
+

r∗u∗

ζ∗ + h∗c
= M∗, (2.2.4)

with
M∗ =

b∗ − b∗c
b∗c

u∗

ζ∗ + h∗c

∂ζ∗

∂t∗
H
(
−∂ζ

∗

∂t∗

)
. (2.2.5)

Here, u∗ (m s−1) is the current velocity averaged over the cross-section of the
channel (excluding the flats) in the along–channel (x∗) direction, ζ∗ (m) is the
sea surface elevation, g∗ (m s−2) is the gravitational acceleration, r∗ (m s−1)
is a friction parameter and H is the step or Heaviside function, which is one
(zero) when its argument is positive (negative). Further, M∗ is the momen-
tum sink term which is derived and put into context of previous studies in
Appendix 2.7.1.

In equations (2.2.3)–(2.2.5), it is assumed that the channel width b∗c is con-
stant, the water in the channel has a constant density, there is no effect of wind
or waves and the stresses that result from averaging nonlinear momentum fluxes
over the cross section can be ignored. On the tidal flats, the velocity in the
along–channel direction is assumed to be zero. Instead of a quadratic bottom
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stress τ∗b = ρ∗cd|u∗|u∗, with cd a drag coefficient and ρ∗ the water density, a
linear stress τ∗b = ρ∗r∗u∗ is used to allow for analytical approximations. The
friction parameter r∗ is determined by demanding that the energy dissipated
in one tidal cycle (averaged over the spatial domain) is to be the same in both
formulations (e.g. Lorentz, 1922, Terra et al., 2005). Thus,∫ L∗/2

−L∗/2
〈cd|u∗|u∗2〉 dx∗ =

∫ L∗/2

−L∗/2
〈r∗u∗2〉 dx∗, (2.2.6)

in which 〈·〉 denotes the average over one tidal cycle. As, a priori, u∗ is not
known, r∗ is determined iteratively.

The system of equations (2.2.1)–(2.2.5) will be considered in the weakly
nonlinear regime, i.e. magnitudes of nonlinear terms are small compared to
those of linear terms. In that case, as will be shown in Section 2.3, solutions
consist of waves that propagate in both the positive and negative x–direction.
The boundary conditions are that at both open sides of the embayment, a
prescribed T ∗–periodic tidal wave (where T ∗ = 2π/σ∗, with σ∗ the M2 tidal
frequency) propagates into the embayment and that waves may freely exit the
domain. This choice implies that boundary conditions are independent of the
dynamics inside the domain.

Furthermore, it is imposed that the average volume of water over one tidal
period is constant and that there is no net transport of water through the
embayment. The former poses a condition for the residual sea surface elevation
and the latter a condition for the residual current velocity.

2.3 Model analysis

Equations (2.2.3)–(2.2.5) are nonlinear and cannot be solved analytically, ne-
cessitating the derivation of approximate solutions, either numerical or pertur-
bative. The former have the advantage that they remain valid over extended
regions in parameter space, as they do not require nonlinear terms to be much
smaller than the linear ones. The benefit of perturbative methods is that they
result in closed form solutions that yield information about the effect of differ-
ent physical forcing terms on solutions. As mentioned in the Introduction, here
a perturbation analysis is made. For this, dimensionless equations containing
a small parameter are needed in which all variables are of order 1. Let

u =
u∗

U∗ , ζ =
ζ∗

Z∗ , x =
x∗

L∗ and t =
t∗

T ∗ (2.3.1)

be dimensionless variables, where

U∗ = Z∗
√
g∗

h∗c
, Z∗ = d∗f , L∗ =

√
g∗h∗c
σ∗

and T ∗ =
1

σ∗
. (2.3.2)
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The scales U∗ and Z∗ are typical values for the current velocity and the sea
surface elevation amplitude, respectively. The scales L∗ and T ∗ are typical
values for a frictionless tidal wave length and period of the principal constituent
(both divided by 2π), quantifying the length and time scale of the dominant
dynamics. The scaled versions of equations (2.2.3)–(2.2.4) are

(1 + β − βαε(1− ζ))
∂ζ

∂t
+

∂

∂x
[(1 + εζ)u] = 0, (2.3.3)

∂u

∂t
+ εu

∂u

∂x
+
∂ζ

∂x
+

ru

1 + εζ
− εβ u

1 + εζ

∂ζ

∂t
H
(
−∂ζ
∂t

)
= 0. (2.3.4)

The Froude number is denoted by ε:

ε =
Z∗
h∗c

=
U∗√
g∗h∗c

. (2.3.5)

In many tidal embayments (e.g., the Wadden Sea), ε is around 10−1 and here
assumed to be a small parameter. The dimensionless length of the channel is
L = L∗/L∗. Furthermore,

β =
b∗max − b∗c

b∗c
, αε =

1

2q
, and r =

r∗T ∗
h∗c

. (2.3.6)

The parameter β is the ratio of the tidal flat width to the main channel width,
the parameter α controls the steepness of the sides of the flats and r is the
dimensionless friction parameter. It is assumed that the area of the flats is of
the same order as the channel area, that the slope of the tidal flats is steep
and that friction is moderate. The consequence of these choices are that the
magnitude of the momentum sink and mass storage are comparable with that
of other nonlinear terms in the equations of motion, such as advection. Note
that Friedrichs and Aubrey (1994) and Speer and Aubrey (1985) assume β to
be small. However, inlet systems like those in the Wadden Sea are characterized
by β ≈ 2 (Dronkers, 2005). Thus, it is assumed that

β, α, r = O(1),

where the symbol O(1) denotes that they are of asymptotic order 1. Moreover,
O(ε) parts of the friction parameter r and the O(ε2) parts of the last term
in equation (2.3.4) are neglected. All dimensionless variables are assumed to
be of order 1, so the magnitude of the terms in the dimensionless equations is
determined by the parameters they involve.

The Lorentz linearization condition (2.2.6) in dimensionless variables reads

U∗h∗ccd
T ∗

∫ L/2

−L/2
〈|u|u2〉 dx = r

∫ L/2

−L/2
〈u2〉 dx, (2.3.7)
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with the additional assumption that

U∗h∗ccd
T ∗ = O(1).

Substituting the perturbation series,

u = u0 + εu1 +O(ε2) and ζ = ζ0 + εζ1 +O(ε2)

in equations (2.3.3)–(2.3.4) and collecting terms of order 1, one obtains the
so-called O(1) problem. Likewise, collecting terms of order ε yields the O(ε)
problem. The O(1) and O(ε) problem will be treated separately in the following
sections.

2.3.1 The O(1) problem
The O(1) problem is linear and reads

(1 + β)
∂ζ0
∂t

+
∂u0
∂x

= 0, (2.3.8)

∂u0
∂t

+
∂ζ0
∂x

+ ru0 = 0, (2.3.9)

hence it admits nontransient solutions of the form

(ζ0(x, t), u0(x, t)) = Re
{

(ζ̂0(x), û0(x))e−it
}
, (2.3.10)

with ζ̂0(x) and û0(x) complex amplitudes and Re {·} denoting the real part of
a complex number. Equation (2.3.10) describes the primary tidal wave in the
system. By eliminating u0 from Eqs. (2.3.8)–(2.3.9) and substituting ζ0 from
equation (2.3.10), an ordinary differential equation (ODE) for ζ̂0 is found:

∂2ζ̂0
∂x2

+ k2ζ̂0 = 0, (2.3.11)

with complex wave number k satisfying k2 = (1 + β)(1 + ir). This has the
general solution

ζ̂0(x) = Aeikx +Be−ikx, (2.3.12)

where A and B are complex–valued integration constants. When equation
(2.3.12) is substituted into equation (2.3.10), and choosing the root with posi-
tive real part (i.e, Re {k} > 0), it follows that the first term on the right hand
side of equation (2.3.12) describes the spatial structure of a right–propagating
wave, while the second term describes the structure of a left–propagating wave.
Equations (2.3.8)–(2.3.9) allow for solutions that consist of waves propagating
in opposite directions. Following the considerations in Section 2.2, conditions
at both the left (x = −L/2) and right (x = L/2) boundary are imposed on the



i
i

i
i

i
i

i
i

22 Chapter 2. Momentum dissipation on tidal flats

waves that enter the domain. At the left boundary, the incoming wave progress-
ing to the right has a sea surface elevation amplitude zl. At the right boundary
a left–propagating tidal wave enters with a sea surface elevation amplitude of
zr. The phase difference between the incoming tidal waves at the boundary is
θ. Hence, the sea surface variations corresponding to right–propagating wave
at x = −L/2 and the left–propagating wave at x = L/2 are, respectively,

zl cos(Re {k}x− t) and zr cos(Re {k}x+ t− θ).

Thus, high water related to the incoming wave at the left boundary occurs at
time t = −Re {k}L/2 and at the right boundary it occurs a time θ later. These
boundary conditions are met by choosing

A = zle
−Im{k}L2 and B = zre

−Im{k}L2 +iθ, (2.3.13)

with Im {·} denoting the imaginary part of a complex number. Note that, when
θ = 0 and zl = zr, the two incoming waves have equal phase and amplitude.
In that symmetric case, the velocity u0 vanishes in the middle of the channel
(at x = 0) and water motion in half the embayment (from x = −L/2 to x = 0)
behaves as if in a semi-enclosed embayment with the left–propagating wave
representing the wave reflected at the closed boundary. Once the sea surface
elevation ζ0 is known, the along–channel current velocity u0 follows from either
equation (2.3.8) or Eq. (2.3.9) using Eq. (2.3.10),

û0(x) =
ik

i− r
(
Aeikx −Be−ikx

)
. (2.3.14)

As mentioned in Section 2.2.2, the friction parameter r is determined from
the Lorentz linearization condition (2.3.7). First, u0 is calculated with equa-
tion (2.3.14)–(2.3.10), using an initial guess for r. Next, r is updated to satisfy
equation (2.3.7), with u = u0 and the integrals are calculated numerically. A
new value for u0 is calculated using this updated value for r, and the process is
iterated until the relative change in r between successive iterations is less than
0.0001%. This r–value is also used in the O(ε) problem below.

2.3.2 The O(ε) problem
The O(ε) problem reads

(1 + β)
∂ζ1
∂t

+
∂u1
∂x

= − ∂

∂x
(u0ζ0)︸ ︷︷ ︸
I

+βα(1− ζ0)
∂ζ0
∂t︸ ︷︷ ︸

II

, (2.3.15)

∂u1
∂t

+
∂ζ1
∂x

+ ru1 = −u0
∂u0
∂x︸ ︷︷ ︸

III

+ru0ζ0︸ ︷︷ ︸
IV

+βu0
∂ζ0
∂t
H
(
−∂ζ0
∂t

)
︸ ︷︷ ︸

V

. (2.3.16)
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Term Source

I divergence of excess mass
II mass storage
III advection of momentum
IV depth dependent bottom friction
V momentum sink

Table 2.1: Source of the forcing terms.

These equations have the same form as those of the O(1) problem, but with the
known O(1) solutions forcing the unknowns u1 and ζ1 through the inhomoge-
neous terms on the right hand side of equations (2.3.15)–(2.3.16). Every term
in the inhomogeneity originates from nonlinear terms in Eqs. (2.3.4)–(2.3.3).
In Table 2.1, the physical source of every nonlinear term is presented.

Since the inhomogeneities I, II, III and IV in the O(ε) problem consist
of products of the O(1) solutions, which themselves are M2 signals, they are
composed of M0 and M4 harmonics. Term V is different from terms I–IV in
the sense that it is not quadratic. Because of the presence of the discontinuous
step function H, that term consists of an infinite number of harmonics,

βu0
∂ζ0
∂t
H
(
−∂ζ0
∂t

)
=

∞∑
m=−∞

pme
−imt, (2.3.17)

where the complex coefficients pm are given in Appendix 2.7.2. Note that pm
depends in a nonlinear way on β through ζ0 and u0. The nontransient solution
of the O(ε) problem has the form

(ζ1(x, t), u1(x, t)) = (〈ζ1〉(x), 〈u1〉(x)) +

∞∑
m=1

Re
{

(ζ̂1,m(x), û1,m(x))e−imt
}
.

(2.3.18)
In the remainder of this section, 〈ζ1〉, 〈u1〉, ζ̂1,m and û1,m are calculated.

The residual current velocity 〈u1〉 is determined by averaging equation
(2.3.15) over a tidal cycle using the condition that there is no net transport of
water, 〈u(1 + εζ)〉 = 0. So, the residual current only compensates for Stokes
transport created by the tidal wave. This yields

〈u1〉 = −〈u0ζ0〉 = −1

2
|û0||ζ̂0| cos(φû0 − φζ̂0)︸ ︷︷ ︸

I

, (2.3.19)

where |û0| and φû0
are the amplitude and phase of the O(1) current velocity

û0. Likewise, |ζ̂0| and φζ̂0 are the amplitude and phase of the O(1) sea surface
elevation ζ̂0.
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The residual sea surface elevation 〈ζ1〉 results from the tidal average of Eq.
(2.3.16) and imposing the condition that the average volume of water over one
tidal period remains the same,

∫ L/2
−L/2〈ζ1〉 dx = 0,

〈ζ1〉 = − 1

L

∫ L/2

−L/2

∫ x

0

E(s) ds dx+

∫ x

0

E(s) ds (2.3.20)

with

E(x) = −1

4

∂|û0|2
∂x︸ ︷︷ ︸

III

+|û0||ζ̂0|
(
r cos(φû0 − φζ̂0)︸ ︷︷ ︸

IV

− β

4
sin(φû0 − φζ̂0)︸ ︷︷ ︸

V

)
. (2.3.21)

In equation (2.3.20), the variable s is used as a dummy variable for x. It
follows from equation (2.3.21) that advection of momentum (III), depth de-
pendent bottom friction (IV) and momentum sink (V) lead to residual sea
surface elevation.

In order to obtain solutions for ζ̂1,m, equation (2.3.18) is substituted into
equations (2.3.15)–(2.3.16). Subsequently, u1 is eliminated, which results in an
ODE for every ζ̂1,m,

∂2ζ̂1,m
∂x2

+ (km)2ζ̂1,m = fm(x), (2.3.22)

with (km)2 = (1 + β)m(m+ ri) and

f1 = 2βαζ̂0︸ ︷︷ ︸
II

+2
∂p1
∂x︸ ︷︷ ︸
V

, (2.3.23)

f2 = −i∂(û0ζ̂0)

∂x︸ ︷︷ ︸
I

−1

4

∂2û20
∂x2︸ ︷︷ ︸

III

+r
∂(û0ζ̂0)

∂x︸ ︷︷ ︸
IV

− 2βαζ̂20︸ ︷︷ ︸
II

+2
∂p2
∂x︸ ︷︷ ︸
V

, (2.3.24)

fm≥3 = 2
∂pm
∂x︸ ︷︷ ︸
V

. (2.3.25)

It follows from equations (2.3.23)–(2.3.25) that advection of momentum (III),
depth dependent bottom friction (IV) and divergence of excess mass (I) create
an M4 harmonic in the sea surface elevation. The mass storage on the tidal
flats (II) generates M2 and M4. The momentum sink (V) generates M2, M4,
M6, M10, M14, M18, . . . . The momentum sinks skips generation of M8, M12,
M16, . . . , because pm = 0 if m > 2 and even. Solutions of the ODEs in Eq.
(2.3.22) are obtained using variation of parameters,

ζ̂1,m = Cme
ikmx +Dme

−ikmx

+
eikmx

2ikm

∫ x

−L/2
e−ikmsfm(s) ds+

e−ikmx

2ikm

∫ L/2

x

eikmsfm(s) ds,
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in which Cm and Dm are complex–valued integration constants. The boundary
conditions for the O(ε) problem (2.3.15)–(2.3.16) are similar as those for the
O(1) problem. At x = −L/2, it is imposed that the M2m tidal wave that enters
the domain has sea surface amplitude zl,m. Similarly, at the right boundary
(x = L/2) a left–propagating M2m tidal wave enters with a given sea surface
amplitude zr,m and a phase shift θm with respect to the incoming wave at the
left boundary. These conditions are met when

Cm = zl,me
−Im{km}L2 and Dm = zr,me

−Im{km}L2 +iθm .

To study the overtides generated inside the domain by incoming M2 waves,
zl,m and zr,m are chosen to be zero, except when the comparison is made with
a complex numerical model in Section 2.5.3.

The complex amplitudes û1,m of the O(ε) current velocity u1 are found by
substituting Eq. (2.3.18) in Eq. (2.3.16). This yields

û1,2 =
1

2i− r
( 1

4

∂û20
∂x︸ ︷︷ ︸
III

+
∂ζ̂1,2
∂x
−r

2
û0ζ̂0︸ ︷︷ ︸
IV

− 2p2︸ ︷︷ ︸
V

)
, (2.3.26)

û1,m6=2 =
1

im− r
(∂ζ̂1,m

∂x
− 2pm︸︷︷︸

V

)
. (2.3.27)

It follows from these expressions that advection of momentum (III), depth
dependent bottom friction (IV) create M4 velocities and the momentum sink
(V) generates M2, M4, M6, M10, . . . velocities.

2.4 Results

In order to address the two objectives set out in Section 2.1, parameter values
will be chosen that are representative of a prototype double inlet system, viz.
the Marsdiep–Vlie system in the Western Wadden Sea. The embayment is
roughly 60 km long, 15 km wide and the channel has an averaged depth of
10 m. The primary tide is the semi–diurnal lunar tide M2 and its first overtide
M4 is clearly present (Buijsman and Ridderinkhof, 2007). The total tidal range
is around 1.4 m at the Marsdiep and 1.8 m at the Vlie and the moment of high
water at the Marsdiep differs by approximately 90 minutes from that at the Vlie
(Royal Netherlands Navy, Hydrographic Service, 2016). The default parameter
values used are listed in Table 2.2.

2.4.1 Impact of the momentum sink on tides in the de-
fault setting

In Figure 2.2, results are shown of the primary tide M2 and its first overtide M4

of the sea surface elevation and current velocity in the regime where all forcing
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Parameter dimensionless dimensional

L 2π
7.8 57 km

cd 0.0025
zl, zr 0.7 0.7 m
df 1 1 m
zl,m, zr,m 0 0 m
θ π

4 93 min
θm 0 0 min
hc 10 m
g 10 m s−1
σ 0.00014 s−1

ε = Z
hc

0.1

β = bmax−bc
bc

2

α = 1
2qε 1

Table 2.2: Default setting of parameters, representative of the Marsdiep–Vlie em-
bayment. Sources for these values are Dronkers (2005) and Royal Netherlands Navy,
Hydrographic Service (2016).

terms in equations (2.3.15)–(2.3.16) are taken into account and for the case
where the momentum sink is turned off (term V = 0). Panels (a) and (c) of
this figure reveal that including the momentum sink lowers the M2 amplitude
and increases the M4 amplitude of both the sea surface elevation and the current
velocity of the order of centimeters, respectively centimeters per second. For
the M2 amplitudes, that change is approximately 2%, for the M4 amplitudes,
approximately 25%. The increase in absolute value of the residual sea surface
elevation due to the momentum sink is of the order of 0.5 cm, corresponding to
a relative change of 30%. Note that in Figure 2.2a and 2.2c the M2 amplitude
of both the sea surface elevation and the current velocity at the left boundary
differs from that at the right boundary, even though the amplitudes of the
incoming tidal waves at the boundaries are equal.

Figures 2.2b and 2.2d reveal that the M2 phase of both the sea surface
elevation and the current velocity is hardly influenced. However, the phase of
the M4 component of the sea surface elevation is lowered by approximately 15
degrees. The phase of the M4 harmonic of the velocity is lowered by approx-
imately 10 degrees. Figure 2.2b illustrates that the M2 sea surface elevation
has the character of a propagating wave near the boundaries, but it turns into
a standing wave in the middle of the channel as the phase becomes constant
there. The M4 component of the sea surface elevation has the character of a
standing wave with a jump in phase around x∗ = −6 km. Both the M2 and M4

components of the current velocity have the character of standing waves with
jumps in phase around x∗ = 15 km.
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Figure 2.2: (a, b) Amplitude and phase of the sea surface elevation ζ∗ versus distance
x∗, for different harmonics M0, M2 and M4 and for the default parameter setting
(Table 2.2). The solid line represents the solution accounting for all the nonlinear
terms (I–V), including the momentum sink (term V). The dashed line represents the
solution with the momentum sink neglected. The shaded area marks the difference
between them. (c, d) As (a) and (b), but for the current velocity u∗.
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2.4.2 Impact of the momentum sink on sediment trans-
port

Changes in tidal harmonics as described above may lead to a difference in
sediment transport. The net sediment transport due to the primary tide and
its first overtide is calculated as in de Swart and Zimmerman (2009)1 (after
Groen, 1967),

〈S∗〉 =
ν∗

4γ∗
U∗2M2

U∗M4
cos(τ)

(
2

1 + a2
+

1

1 + 4a2

)
− a ν

∗

2γ∗
U∗2M2

U∗M4
sin(τ)

(
1

1 + a2
− 1

1 + 4a2

)
, (2.4.1)

with ν∗ (s m−1) an erosion parameter and γ∗ (s−1) a settling parameter
(1/γ∗ is the timescale in which sediment settles to the bed), a = σ∗/γ∗, τ =
arg(εû1,2) − 2 arg(û0 + εû1,1) the relative phase of the M2 and M4 harmonic,
and
U∗M2

= U|û0 + εû1,1| and U∗M4
= U|εû1,2| the M2 and M4 amplitude of the cur-

rent velocity. Coarse sediment is characterized by a small a ≈ 0.01, while
a ≈ 5 is representative for fine sediment. Figure 2.3 shows the tidally aver-
aged volumetric sediment transport per unit mass and width 〈S∗〉, divided by
ν∗/4γ∗, both for when the momentum sink is included and when it is not. The
purple lines shows the situation with coarse sediment and the red ones the sit-
uation with fine sediment. The arrows indicate the direction of the sediment
transport. The figure reveals that including the momentum sink increases the
absolute value of the transport of coarse sediment by approximately 35% and
has little impact on the transport of fine sediment. On the left (right) side of
the channel, the flood current is to the right (left). Hence, the momentum sink
increases transport of coarse sediment in the flood direction, that is, it leads
to an import of coarse sediment. Furthermore, Figure 2.3 shows that fine sed-
iment is transported through the embayment, from the right boundary to the
left boundary. Coarse sediment accumulates around x∗ = 5 km and suggests
the formation of a tidal watershed at this location.

2.4.3 Sensitivity study

In this section it is investigated how sensitive the results of the preceding section
are to changes in model parameters. The difference in amplitude due to the
momentum sink is henceforth denoted by ∆Ampl.

Figure 2.4 shows ∆Ampl in sea surface elevation for various harmonics as
a function of x∗ and for different values of flat–to–channel area ratio β, slope

1The second plus sign in (1/(1 + a2) + 1/(1 + 4a2)) is a typo in de Swart and Zim-
merman (2009), copied in Hepkema et al. (2018). Figure 2.3 is made with the corrected
equation (2.4.1); the difference is minimal.
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Figure 2.3: Tidally averaged sediment transport 〈S∗〉, divided by (ν/4γ), versus
distance x∗. The purple lines shows the transport of coarse sediment, a = 0.01 and
red the one of fine sediment, a = 5. The solid line represents the solution with
the momentum sink taken into account and the dashed line the solution where it is
not. The arrows illustrate the direction of the sediment transport and indicate the
formation of a shoal at x∗ = 5 km. Values of the remaining parameters are those in
Table 2.2.

parameter α and drag coefficient cd. Red colours denote an increase and blue
colours a decrease in amplitude. Figure 2.5 is similar to Figure 2.4, but for the
current velocity instead of the sea surface elevation. The difference in phase
due to the momentum sink is not shown since it remains close to zero for the M2

harmonic and close to 10–15 degrees for the M4 harmonic when the parameters
β, α and cd are varied. The M0 component of the current velocity is also left
out since equation (2.3.19) already shows that ∆Ampl = 0.

What stands out in Figs. 2.4–2.5 is that ∆Ampl in both the sea surface ele-
vation and current velocity is most sensitive to changes in flat–to–channel area
ratio β, and less to changes in slope parameter α and drag coefficient cd. Fig-
ure 2.4 reveals that the momentum sink lowers the M2 amplitude and increases
the M4 one for almost all β–values considered. Furthermore, it illustrates that
∆Ampl depends nonlinearly on β. In particular, the sensitivity of ∆Ampl to
β decreases, as β increases. Figure 2.5 shows that these conclusions also hold
for the current velocity.

Furthermore, Figure 2.4 reveals that, although ∆Ampl in M0 and M2 are
rather insensitive to changes in α, the response of the M4 harmonic of the sea
surface elevation on changing α–values is more interesting. On the right side of
the embayment, for small α the momentum sink increases (red colours) the M4

sea surface elevation amplitude while for larger values of α the M4 amplitude
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is decreased (blue colours). From the bottom panels of Figs. 2.4–2.5 it follows
that, for smaller values of the drag coefficient, the momentum sink leads to a
larger difference in sea surface elevation and current velocity amplitude.

The sensitivity of ∆Ampl in sea surface elevation and current velocity to the
embayment length L∗ and the phase difference θ between the incoming tidal
waves is presented in Figs. 2.6 and 2.7. For increasing θ–values, the spatial
pattern of ∆Ampl shifts towards the right, and the M2 and M4 sea surface
elevation amplitude and M4 current velocity amplitude decreases. Particularly
noticeable about the sensitivity of ∆Ampl on L∗ is that the M2 sea surface
elevation amplitude has a local maximum at L∗ ≈ 45 km.
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Figure 2.4: Contours of the momentum sink–induced amplitude difference ∆Ampl in
sea surface elevation versus flat–to–channel area ratio β (top row), slope parameter α
(middle row), drag coefficient cd (bottom row) and along–channel variable x∗ for the
M0 (left column), M2 (middle column) and M4 (right column) harmonics. The bold
values on the vertical axis represent the default setting, β = 2, α = 1 and cd = 0.0025.
The remaining parameters have the same value as in Table 2.2.
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Figure 2.5: Contours of the momentum sink–induced amplitude difference ∆Ampl
in current velocity versus flat–to–channel area ratio β (top row), slope parameter α
(middle row), drag coefficient cd (bottom row) and along–channel variable x∗ for the
M2 (left column) and M4 (right column) harmonics. The bold values on the vertical
axis represent the default setting, β = 2, α = 1 and cd = 0.0025. The remaining
parameters have the same value as in Table 2.2.
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Figure 2.6: (a) Contours of the momentum sink–induced amplitude difference ∆Ampl,
of the sea surface elevation versus the phase differences between the incoming tidal
waves θ and along–channel variable x∗ for the M0 (left panel), M2 (middle panel) and
M4 (right panel) harmonic. The bold value on the vertical axis represent the default
setting θ = π/4. The remaining parameters have the same value as in Table 2.2. (b)
As (a), but for the current velocity u∗.
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Figure 2.7: As Figure 2.6, but for different embayment lengths L∗. The bold value
on the vertical axis represent the default setting L∗ = 57 km.
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2.5 Discussion

2.5.1 Physical interpretation of the results
In this section, some results obtained in the preceding section are interpreted by
analyzing the expressions from Section 2.3. To that end, it is helpful to rewrite
term V in the O(ε) problem (2.3.16) using the continuity equation (2.3.8). That
term becomes:

βu0
∂ζ0
∂t
H
(
−∂ζ0
∂t

)
=
−β

1 + β
u0
∂u0
∂x
H
(
−∂ζ0
∂t

)
. (2.5.1)

This shows that the momentum sink is similar to the advection term when the
tide falls and, in particular, that the momentum sink term is always smaller
than the advection term, by virtue of β/(1 + β) = (b∗max − b∗c)/b∗max < 1.

The impact of the momentum sink on the residual sea surface elevation
becomes apparent by this similarity. In fact, since 〈H (−∂ζ0/∂t)〉 = 1/2, inte-
gration over one tidal period of the O(ε) momentum equation (2.3.16) using
equation (2.5.1) results in

∂〈ζ1〉
∂x

= −1

4

∂|û0|2
∂x

(
1︸︷︷︸
III

+
β

2(1 + β)︸ ︷︷ ︸
V

)
+ |û0||ζ̂0|r cos(φû0

− φζ̂0)︸ ︷︷ ︸
IV

. (2.5.2)

It follows from this expression that the momentum sink increases the absolute
value of the gradient of residual sea surface elevation. This clarifies the results
in Figure 2.2a.

In Section 2.4, it was found that the momentum sink reduces the amplitude
of the M2 harmonic for most parameter values. To understand why, note that
term M∗ in equation (2.2.5) (which arises as term V in the O(ε) momentum
equation) represents a force per mass unit, as it appears on the right hand side
in the dimensional momentum equation (2.2.4). During the falling tide, this
force acts against the direction of the current (as shown in equation (2.5.1),
term V and u0 have opposite signs when ∂ζ0/∂t < 0), whilst during the rising
of the tide it is inactive (term V is zero). In other words, when the water level
drops, stagnant water enters the channel from the flats, thereby slowing the
channel current. During the rising of the tide, water flows from the channel
onto the flats, which leaves the channel current unaffected. All in all, this
implies that term V reduces the current of the principal tidal component. The
continuity equation (2.3.8) implies, in turn, that the same holds for the sea
surface elevation.

In a system resembling the Marsdiep–Vlie system, the momentum sink in-
creases the M4 amplitudes (Figure 2.2). This can also be explained using
equation (2.5.1). This equation expresses that the momentum sink term is the
product of a constant, the advection term and the step function. The advection
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term consists of an M0 and M4 harmonic and the step function consists of a
M0 and odd harmonics. The M4 component of the momentum sink is therefore
the product of the M4 harmonic of the advection term and the M0 harmonic
of the step function. That is, the momentum sink generates an M4 harmonic
with the same phase as the M4 generated by advection (see Appendix 2.7.2 for
details). Ridderinkhof et al. (2014) showed that advection leads to stronger and
shorter flood currents (flood dominance). The momentum sink therefore also
favours flood dominance. Since Figure 2.3 shows that the transport of coarse
sediment is in the flood direction, it implies that the current is flood dominant.
Thus, the M4 generated by the momentum sink increases the total M4 current
velocity amplitude.

Figure 2.4 showed that, when the slopes of the flats are small (large α), the
M4 amplitude of the sea surface elevation is decreased by the momentum sink
while it is increased for the default value of α. The reason for this is similar
to the above. When α is large, the mass storage is the dominant mechanism
producing the M4 overtide in the sea surface elevation. Since this term gener-
ates M4 that is out of phase with the M4 generated by the momentum sink,
including the momentum sink reduces the total M4 amplitude of the sea surface
elevation.

Figure 2.2 revealed that the amplitudes of the sea surface elevation (and the
current velocity) are different at the two boundaries. In these experiments, the
amplitudes of the incoming tidal waves are equal, so even then, the resulting
amplitudes at the boundaries differ. This is already included in the linear
dynamics. The O(1) solution (2.3.12)–(2.3.14) of the linearized problem yields,
if zl = zr, that

|ζ̂0(−L/2)|2 − |ζ̂0(L/2)|2 = 4z2l e
−Im{k}L sin(θ) sin(Re {k}L). (2.5.3)

Hence, for equal amplitudes of incoming waves, the amplitude at the bound-
aries differ when θ and Re {k(r, β)}L are not a multiple of π, with the difference
depending on the phase difference θ, the friction parameter r, the length of the
channel L and the flat–to–channel area ratio β. Furthermore, it follows from
equation (2.5.3) that, in a longer embayment, the difference in amplitude due
to the phase difference of the incoming tidal waves, becomes smaller. Physi-
cally, this makes sense, since in a longer embayment, a wave needs more time
to propagate from one side to the other. All this time it is subject to fric-
tion. Hence, for large L, ζ̂0(±L/2) is mainly determined by the incoming wave.
Figure 2.8 qualifies the difference |ζ̂0(−L/2)| − |ζ̂0(L/2)| between the O(1) sea
surface elevation amplitude at the left and right boundary for different flat–
to–channel area ratios β and phase differences θ between the incoming tidal
waves. The difference varies between +10 and −50 cm and is largest for small
β– and large θ–values (blue area).
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Figure 2.8: The difference between the O(1) sea surface elevation amplitude at the
left (x = −L/2) and right (x = L/2) boundary versus flat–to–channel area ratio β
and phase difference θ between the tidal waves entering the embayment at the left
and right boundary. The remaining parameters have the same value as in Table 2.2.
In particular, the amplitudes zl and zr of the incoming tidal waves are equal. The
red dot denotes the default value of β and θ.

2.5.2 Model limitations

In this study, the bottom stress is linearized to obtain analytically tractable
(linear) O(1) and O(ε) problems. When the M2 tide is dominant, nonlinear bot-
tom stress is known to especially generate odd overtides M6, M10,. . . (Parker,
1984). It is possible to include an approximation of the M6 generated by the
nonlinear bottom stress. However, as stated in Friedrichs and Aubrey (1994),
one–dimensional numerical models, even with nonlinear bottom stress, simu-
late observed M6 variations rather poorly. The authors remark that this might
be due to the invalid assumption of a constant drag coefficient cd. Therefore,
as in Friedrichs and Aubrey (1994), the focus of this study is on the primary
tide and its first overtide.

In natural tidal embayments, along–channel velocity u is strongly reduced
on the flats, but does not vanish completely. The choice of vanishing u on
the flats is made to consider the extreme case. As is shown in Section 2.4
there are (physically relevant) parameter regimes in which the momentum sink
generates noticeably overtides. It would be interesting to relax this assumption
in a future study.

The trapezoidal cross section is chosen to approximate concave–up tidal
flats which typically occur in nature (Friedrichs, 2011). The approximation is
such that the partly linear flat is tangential to the convex bed at y∗ = ±b∗max/2
and y∗ = ±b∗c/2 (see Figure 2.9). In this study, steep slopes and wide flats
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y∗

z∗

b∗max/2−b∗max/2

−b∗c/2 b∗c/2

Figure 2.9: The trapezoidal cross section considered in the idealized model (solid
line), which is an approximation of the concave–up flats (dashed line).

are chosen to obtain a system in which all nonlinear terms, and in particular
both the momentum sink and the mass storage, are O(ε), i.e., β = O(1) and
q = O(1/ε). Other choices are possible. For example, Speer and Aubrey (1985)
considered moderate slopes and narrow flats, i.e., β = O(ε) and q = O(1). In
that case, the momentum sink term is O(ε2) and the mass storage is O(ε).

Furthermore, for simplicity, an embayment with a constant depth and width
is chosen. Also, effects of wind, waves, density differences and radiation damp-
ing (as in Roos and Schuttelaars, 2015) are ignored. These are possible exten-
sions of the model.

2.5.3 Comparison with results of a complex numerical
model

In this section, the results of Sect. 2.4 are compared with hydrodynamics
simulations of the Dutch Wadden Sea performed using the General Estuar-
ine Transport Model (GETM). GETM is a three–dimensional finite difference
model solving the primitive equations and includes a drying and flooding al-
gorithm of the tidal flats. The resolution was 200 m horizontally, there were
30 vertical layers and a realistic bathymetry and forcing (see Duran-Matute
et al. (2014) for further details and an extensive comparison with several tidal
gauges).

A transect across the Western Wadden Sea is chosen (see Figure 2.10a)
across which the tidal channels connect the Marsdiep and Vlie inlet (similar
as in Ridderinkhof, 1988). In Figure 2.10b the M2 and M4 amplitude of the
sea surface elevation in April 2009 (a calm month in terms of wind) along
this transect are depicted together with the ones from the idealized model (as
in Figure 2.2). The magnitude and spatial distribution of the M2 harmonic
of the sea surface elevation as calculated by the idealized model and that of
GETM roughly agree. The M4 amplitude calculated by GETM is approxi-
mately four times larger as that calculated by the idealized model. However,
when the momentum sink is accounted for, the error becomes smaller (reduc-
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(a)
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Figure 2.10: (a) Transect across the Marsdiep–Vlie inlet systems located in the West-
ern Wadden Sea. Colours indicate the bathymetry used in GETM. (b) The M2 and
M4 amplitudes of the sea surface elevation calculated by GETM on this transect
(dotted lines). The solid lines are the M2 and M4 as in Figure 2.2 (including the
momentum sink). The dashed-dotted line represents the M4 harmonic calculated
by the idealized model when an external M4 tidal wave is included in the boundary
conditions. The point x∗ = 0 is located by the red dot in panel (a).

tion of approximately 7%). A possible explanation for this difference is that,
in the idealized model, there is no M4 harmonic in the tidal wave entering the
domain. In GETM, the M4 amplitude of the sea surface elevation 14 km north-
west of Texel is approximately 0.082 m. The dashed-dotted line in Figure 2.10b
represents the M4 harmonic of the sea surface elevation when such an M4 tidal
wave entering at the boundaries is imposed. That is, the sea surface elevation
of the right–propagating wave at x = −L/2 and the left–propagating wave at
x = L/2 are chosen to be, respectively,

zl cos(Re {k}x− t) + εzl,2 cos(Re {k}x− t) and
zr cos(Re {k}x+ t− θ) + εzr,2 cos(Re {k}x+ t− θm),

with zl = zr = zl,2 = zr,2 = 0.7 and θ2 = 0. In that case, the difference between
the M4 amplitude of the idealized model and that of GETM decreases at the
boundaries, but increases in the middle of the channel.

Figure 2.2 suggests that the amplitude of the sea surface elevation at the
Vlie will be higher than at the Marsdiep. This agrees with data presented in
the Royal Netherlands Navy, Hydrographic Service (2016) and the results of
GETM also demonstrate this behavior (Figure 2.10b). In Section 2.5.1 it was
shown that this amplitude difference is also possible without a difference in the
external forcing.
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2.6 Conclusions

The first objective of this study was to assess changes in tidal characteristics of
sea surface elevation and current velocity due to the momentum sink in double
inlet systems. It is found that the momentum sink decreases the M2 amplitude
of both the current velocity and the sea surface elevation and favours flood
dominant tides. In a prototype system, viz. the Marsdiep–Vlie system in the
Western Wadden Sea, it implies a decrease of M2 amplitudes of approximately
2% and an increase of both M4 amplitudes by 25%. The absolute value of
the residual sea surface elevation increased by 30% due to the momentum sink,
whereas the residual current velocity was unaffected. The phases of the M2 tidal
harmonic of both sea surface elevation and current velocity were not influenced
by the momentum sink; only the M4 phases were lowered by approximately
10–15 degrees. In total, this amounts to an increase of net import of coarse
sediment by approximately 35%. Accumulation of coarse sediment was found
inside the domain, indicating the formation of a tidal watershed. The transport
of fine sediment was hardly influenced.

It is found that the changes in tidal characteristics are most sensitive to the
flat–to–channel area ratio. The change in amplitude depends nonlinearly on
that ratio; the sensitivity is smaller for larger values of the ratio. Furthermore,
it is found that the momentum sinks affects the tidal harmonics of the sea
surface elevation and current velocity more strongly when the drag coefficient
is small and when the slope of the tidal flats decreases, at the right side of the
channel (0 < x < L/2), the sea surface elevation M4 amplitude does the same.
A phase difference between the incoming tidal waves leads to spatial shifts of
the curves that show amplitudes and phases versus along–chanel distance and
to a small decrease of the M2 and M4 amplitudes. Finally, it is found that the
difference in M2 sea surface elevation amplitude due to the momentum sink
has a local maximum for a length of the embayment at approximately 45 km.

The second objective was to understand the mechanisms behind the changes
in tidal characteristics due to the momentum sink. The reduction of the M2

harmonic amplitude of the sea surface elevation and current velocity by the
momentum sink is attributable to that, during the fall of the tide, still water
enters the channel and slows down the current. The increase in M4 amplitude
of the sea surface elevation and current velocity is explained by noting that the
momentum sink acts as an advective term during the fall of the tide, but with
a smaller amplitude. Since advection is known to favour flood currents (e.g.
Friedrichs and Aubrey, 1988, Ridderinkhof et al., 2014), the momentum sink
does so as well and increases the M4 amplitude in a flood dominant system.

A comparison with the complex numerical model GETM showed that the
two models produce similar M2 amplitudes of the sea surface elevation. When
the momentum sink is accounted for and an M4 harmonic is added to the
incoming tidal waves, the amplitude of the M4 harmonic of the sea surface
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elevation shows a closer resemblance to the one modelled by GETM.

2.7 Appendix

2.7.1 Derivation of term M∗ in equation (2.2.4)
In this section, the expression for the momentum sink term M∗ in equa-
tion (2.2.4) is derived. The derivation only concerns dimensional equations
and the asterisks are omitted to keep notation as simple as possible. Equa-
tions (2.2.3)–(2.2.4) follow from integrating the depth averaged shallow water
equations over the channel width. The latter equations read

∂ζ

∂t
+
∂(ζ + h)ū

∂x
+
∂(ζ + h)v̄

∂y
= 0, (2.7.1)

∂(ζ + h)ū

∂t
+
∂(ζ + h)ūū

∂x
+
∂(ζ + h)ūv̄

∂y
= −g(ζ + h)

∂ζ

∂x
− τ̄b
ρ
, (2.7.2)

where, ū (m s−1) is the depth averaged longitudinal velocity, v̄ (m s−1) the
depth averaged lateral velocity and τ̄b (N m−2) the bottom stress. Note that
ζ does not depend on y.

Integration of equation (2.7.2) over the width of the channel [−bc/2, bc/2],
using the continuity equation (2.2.3) and neglecting the stresses (ū− u)(ū− u)
arising from averaging over the width, yields

bc(ζ + hc)
∂u

∂t
+ bcu

∂ζ

∂t︸ ︷︷ ︸
A

−ub∂ζ
∂t︸ ︷︷ ︸
B

+bc(ζ + hc)u
∂u

∂x

+

∫ bc/2

−bc/2

∂(ζ + h)ūv̄

∂y
dy︸ ︷︷ ︸

C

+bcg(ζ + hc)
∂ζ

∂x
+ bc

τb
ρ

= 0, (2.7.3)

in which u (without the bar) represents the cross-sectionally averaged veloc-
ity. Term A arises from integration of the first term in equation (2.7.2) over
the width of the channel and term B from integrating the second term in
equation (2.7.2) and subsequently substituting the continuity equation (2.2.3).
Term C represents the lateral exchange of longitudinal momentum between the
channel and the flats, and it equals

C = (ζ + h)v̄ū|y=bc/2 − (ζ + h)v̄ū|y=−bc/2 . (2.7.4)

This expression is subsequently rewritten in terms of cross-sectionally averaged
velocities. Integration of the continuity equation (2.7.1) over the right and left
flats yields the volume transport (per unit length) through the boundary of the
main channel,

(ζ + h)v̄|y=±bc/2 = ±b− bc
2

∂ζ

∂t
. (2.7.5)
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During the rising of the water level, v̄ is positive at y = bc/2 and along–channel
momentum is transferred towards the flats. When the water level falls, water
moves from the flats to the main channel. Since the momentum is dissipated on
the flats, no along–channel momentum returns to the channel. This motivates
the choice

ū|y=±bc/2 = uH
(
∂ζ

∂t

)
. (2.7.6)

Substitution of equations (2.7.5)–(2.7.6) in (2.7.4) yields

C = (b− bc)uH
(
∂ζ

∂t

)
∂ζ

∂t
. (2.7.7)

The momentum sink termM as in the main text is now obtained by combining
terms A, B and C, using 1−H(x) = H(−x) and dividing by bc(ζ + hc), which
yields

M =
A+B + C

bc(ζ + hc)
=
b− bc
bc

ū

ζ + hc
H
(
−∂ζ
∂t

)
∂ζ

∂t
.

If the momentum sink is neglected ( ū|y=±bc/2 = u), then A + B = −C and
hence M = 0.

To frame equations (2.2.3)–(2.2.5) in context of previous studies, note that
Dronkers (1964) suggested that

M = j1
b− bc
bc

u

ζ + hc

∂ζ

∂t
,

where j1 = 0 when the water level rises and otherwise depends on the velocities
on the flats. Speer and Aubrey (1985) and Friedrichs and Aubrey (1988) as-
sumed the term (b− bc)/bc to be small, and M was therefore neglected. Speer
(1984) also considered the case with j1 = 1. In that case the tidal flats act as
momentum storage regions. The choice made in Alebregtse (2015), de Swart
et al. (2011) and the current study is j1 = H

(
−∂ζ∂t

)
.

2.7.2 Fourier coefficients of momentum sink term

In the main text term V is written as

βu0
∂ζ0
∂t
H
(
−∂ζ0
∂t

)
=

∞∑
m=−∞

pme
−imt.

The Fourier coefficients pm are

pm =
iβ

4

(
c∗2+mû

∗
0ζ̂
∗
0 − c2−mû0ζ̂0

)
− β

2
c∗m|û0||ζ̂0| sin(φû0 − φζ̂0),
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where (in this appendix) ·∗ denotes the complex conjugate and

cm =


1

2
if m = 0

0 if m 6= 0 and even
−i
mπ

e−imφζ̂0 if m odd,

such that

H
(
−∂ζ0
∂t

)
=

∞∑
m=−∞

cme
imt. (2.7.8)

In order to see that the phase of the M4 harmonic of term V equals that
of the advection term, note that term V can be written as a product of a
constant, the advection term and the step function as in equation (2.5.1). From
equations (2.3.10)–(2.3.14) it follows that the advection term consists of an M0

and M4 harmonic,

u0
∂u0
∂x

= AM0
+ Re

{
AM4

e−2it
}
, (2.7.9)

where AM0 is a real number and AM4 a complex number. Since the even
Fourier coefficients of the step function cm are zero, multiplying (2.7.9) and
(2.7.8) yields that the M4 harmonic of the product equals

c0Re
{
AM4e

−2it} .
Hence, the phase of the M4 harmonic of term V equals arg(AM4) and thus the
phase of the M4 harmonic of the advection term.
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Abstract

Tidal bars are repetitive estuarine bedforms with heights of several meters
and wavelengths in the order 1–15 km. Understanding their formation and
sensitivity to changes in channel characteristics is important as they hamper
marine traffic and play a crucial role in the local ecosystem. Recent observations
suggest that the local width of the channel is dominant in determining the
tidal bar wavelength. However, theoretical studies could not reproduce the
sensitivity of the tidal bar wavelength to channel width. This discrepancy
between theory and observations suggests that a mechanism is missing. In
this study, one of the theoretical models is extended and results in tidal bar
wavelengths, lateral mode numbers and growth rates that agree fairly well with
those of natural tidal bars, including the wavelengths dependency on estuary
width. An important extension of the model concerns the bed slope induced
diffusive suspended load transport of sediments. With this, it is explained why
previously the modelled tidal bar wavelengths depend only weakly on estuary
width and why in the extended model it does. This has, from a modelling
point of view, general implications for morphological models using a total load
sediment transport formulation with a so-called bed slope parameter.



i
i

i
i

i
i

i
i

47

3.1 Introduction

Many tidal channels have a rhythmic bottom topography consisting of so-called
tidal bars. Examples are the Ord River estuary in Australia, the Exe estuary in
England, the Netarts bay in the USA and the Western Scheldt in the Nether-
lands (see Figure 3.1 and Leuven et al. (2016) for many more examples). These
bars have wavelengths of 1–15 km and heights of several meters. As tidal bars
hamper marine traffic and provide rich feeding grounds for many living or-
ganisms, it is important to understand their formation and sensitivity to tidal
channel characteristics (i.e., channel width, depth, currents, etc.). These char-
acteristics may change due to e.g., dredging, sea level rise or land reclamation.
The sensitivity of the tidal bars to changes in channel characteristics was previ-
ously investigated by measurements, laboratory experiments, idealized models
and complex numerical models.

By analyzing data of 25 tidal bars in creeks in South Carolina and in the
Salmon River estuary, Dalrymple and Rhodes (1995) found that the tidal bar
wavelength is typically six times the channel width. Also, Leuven et al. (2016)
found that the tidal bar wavelength correlates the strongest with channel width,
compared to other channel characteristics such as depth and current velocity.
They came to this conclusion by measuring the wavelength of 190 tidal bars
in Google Earth. Furthermore, Tambroni et al. (2005) investigated morphody-
namic equilibria in tidal channels and inlets in a laboratory. Their tidal bars
formed after 50 tidal cycles with wavelengths of approximately three times the
channel width.

To gain fundamental understanding about tidal bars, Seminara and Tubino
(2001) analysed a 3D idealized model. In their model the section of the chan-
nel, in which the tidal bars are studied, is assumed to be short with respect
to the tidal wavelength, width variations and depth variations. This setting
differs from, for example, Schuttelaars and de Swart (1999) and ter Brake and
Schuttelaars (2011), where the formation of tidal bars in a short semi-enclosed
channel was investigated. Seminara and Tubino (2001) demonstrated that tidal
bars can form as a free instability of an equilibrium state that describes a hor-
izontally uniform tidal current over a horizontal bed. They found that the
wavelengths of their modelled bars are comparable with those of observed bars.
It further follows from their results that the ratio of channel width over wave-
length of the bars scales close to linearly with the width-to-depth ratio. This
implies that for a constant depth, the wavelength hardly depends on channel
width. Schramkowski et al. (2002) showed that a depth-averaged model is able
to model characteristics of tidal bars and that a 3D model is not needed. They
included the local inertia terms in the momentum balance and showed that
the current velocity and the water depth are also important in determining the
tidal bar wavelength. This model also yields a tidal bar wavelength that only
depends weakly on channel width (Leuven et al., 2016). Garotta et al. (2006)



i
i

i
i

i
i

i
i

48 Chapter 3. Sensitivity of tidal bar wavelength to channel width

confirmed that a 2D model is sufficient and moreover showed that forcing by
a tidal current that is either ebb or flood dominant leads to a net migration of
bars.

Thus, the idealized models are not able to reproduce the observed sensitivity
of tidal bar length on channel width. This could be a consequence of the many
assumptions made in these models. To clarify this, numerical models, which
contain less constraints, are helpful. Such a study was carried out by Hibma
et al. (2004). Their numerical experiments were designed such that comparison
with the idealized studies was possible. They found tidal bar wavelengths that
are comparable with those found by Schramkowski et al. (2002). However, de-
spite expectations after the work of Schramkowski et al. (2002), the wavelength
was, besides sensitive to current velocity and channel depth, also sensitive to
channel width. Yet, they did not investigate this further. Also, van der Wegen
and Roelvink (2008) found that the wavelength depends on both the estuary
width, depth and the current velocity. In addition, van de Lageweg and Feld-
man (2018) found that, in a strongly convergent estuary, an increase in basin
width results in longer bars.

The considerations above show in particular that the idealized models are
not able to explain the observed (and numerically reproduced) dependence of
tidal bar length on channel width. A likely explanation for this discrepancy is
that one or more essential physical processes are missing in these models. Com-
pared with numerical model formulations, it turns out that the idealized models
do not account for the effects of turbulent exchange of momentum and sediment
in the horizontal plane. The intensities of these processes are measured by a
horizontal eddy viscosity coefficient and a horizontal eddy diffusion coefficient,
respectively. Therefore, in the present study the model of Schramkowski et al.
(2002) is extended with terms that describe horizontal turbulent exchange pro-
cesses. Moreover, a critical current velocity for sediment erosion is added to
achieve consistency with all other models.

The first aim of this work is to show that the extended model can mimic
the pattern of observed tidal bars. The second aim is to show that the model
can reproduce the sensitivity of tidal bar wavelength to channel width. The
first and second aim are treated in Section 3.3. Finally, we aim at explaining
why the incorporation of the new processes results in a dependence of the tidal
bar wavelength to channel width (Section 3.4).

3.2 Model and method

3.2.1 Governing equations

The formation of tidal bars is modelled in a section of a tidal channel which is
short compared to both the tidal wavelength and the e-folding length scale of
channel width convergence. The model domain under consideration therefore
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consists of a 2D rectangular channel of fixed width B, mean depth H and
infinite length (Figure 3.2). Note that by channel width B the total width of the
channel is meant (see also Figure 3.1). The hydrodynamics is modelled by the
depth-averaged shallow water equations including horizontal eddy viscosity and
assuming the rigid-lid approximation. The latter constitutes to only retaining
the free surface elevation in the pressure gradient. Coriolis effects are not
considered and the bed shear stress and internal stresses are linearized. The
depth-integrated sediment concentration is modelled by an advection-diffusion
equation based on ter Brake and Schuttelaars (2010) and extended by including
a critical velocity for erosion. The bed evolution (Exner) equation follows from
the conservation of sediment mass. Since the convergence of sediment transport
is almost periodic (with a period equal to the principal tidal constituent), the
subtidal convergence is small compared to the instantaneous convergence of
sediment transport. Therefore, the patterns evolve on a much larger time scale
than the tidal period and is determined by the tidally averaged convergence of
sediment transport (see Krol (1991) for a discussion on the errors introduced
by this approximation). The differences with the model of Schramkowski et al.
(2002) are the critical velocity for erosion, the horizontal eddy viscosity and

Western Scheldt (NL) Ord River estuary (AU)

Exe estuary (UK) Netarts bay (USA)

Figure 3.1: Measured tidal bar wavelength and channel width of four tidal channels
in Google Earth.
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(a)

ζ

h

H
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z

(b)
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z

Figure 3.2: (a) Along-channel section in (x, z)-plane. (b) Cross-channel section in
(y, z)-plane. H denotes the undisturbed depth, ζ the free surface elevation, h the
bottom height and B the channel width. The arrows with x, y and z denote the
direction of the spatial coordinates.

horizontal eddy diffusivity. The resulting governing equations read

∇ · ((H − h)u) = 0, (3.2.1)
∂u

∂t
+ (u · ∇)u +

ru

H − h − ν∇
2u = Fp, (3.2.2)

∂C

∂t
+∇ · (uC)−∇ ·

(
µ∇C + µ

ws
κv
βbC∇h

)
= E −D, (3.2.3)

(1− p̂)∂h
∂t

+∇ · 〈qs + qb〉 = 0. (3.2.4)

The space and time coordinates are x = (x, y) [m] and t [s], respectively. Fur-
thermore, u(t,x) = (u, v) [m s−1] is the depth-averaged flow velocity vector,
C(t,x) [m3 m−2] the depth-integrated volumetric sediment concentration and
h(t,x) [m] the height of the bottom with respect to a flat undisturbed bot-
tom (see Fig. 3.2). H [m] is the undisturbed water depth, r [m s−1] a friction
coefficient and ν [m2 s−1] the horizontal eddy viscosity coefficient. Moreover,
µ [m2 s−1] is the horizontal eddy diffusion coefficient, ws [m s−1] the sediment
settling velocity, κv [m2 s−1] the vertical eddy diffusivity coefficient, βb a deposi-
tion parameter and p̂ the porosity parameter. The prescribed pressure gradient
force per mass unit Fp = −g∇ζ [m s−2], with g [m s−2] the gravitational accel-
eration and ζ(t,x) [m] the free surface elevation, drives a tidal current in the
channel of which the dominant constituent has radian frequency σ [s−1] and a
typical amplitude U . Furthermore, 〈·〉 is the average over one tidal cycle with
period 2π/σ. Erosion E and deposition D are defined as

E = αH
(
‖u‖2 − u2c

) (
‖u‖2 − u2c

)
and D = γC,

with H the Heaviside function, which is zero (one) when its argument is (not)
negative and ‖ ·‖ denotes the Euclidean norm of a vector. In these expressions,
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α [sm−1] is an erosion parameter, uc [m s−1] the critical velocity for erosion
and γ [s−1] a deposition parameter. Lastly, qs [m2 s−1] is the transport of
suspended sediment and qb [m2 s−1] the transport of sediment as bed load. In
Schramkowski et al. (2002) it is argued that the bed load transport is much
smaller than the suspended load transport but that the bed slope contribution
to the bed load transport should be maintained. Here, the suspended load
transport is extended by a diffusivity term based on ter Brake and Schuttelaars
(2010). The sediment transport formulations read

qs = uC − µ
(
∇C +

ws
κv
βbC∇h

)
and qb = −ŝκ?‖u‖3∇h,

where ŝ [s2 m−1] is a bed load transport constant and κ? a bed slope parameter.
The bottom friction coefficient r = 8/(3π)cdU is chosen to scale with a

typical current velocity amplitude. The horizontal eddy diffusivity coefficients
ν = cuhUB and µ = cchUB scale with current velocity and the channel width.
The vertical eddy diffusivity κv = cvUH scales with current velocity and the
undisturbed channel depth. Here, cch, c

u
h, cv are constants and U is a typically

velocity, which will be specified in the next section. All parameters are sum-
marized in Table 3.1. The bed load transport formulation and constants ŝ and
κ? are taken from Schramkowski et al. (2002) and based on Bailard (1981).
The value of the erosion parameter α is also taken from Schramkowski et al.
(2002) and based on Smith and McLean (1977), the deposition parameters γ
and βb are based on the derivation in ter Brake and Schuttelaars (2010) and
the settling velocity ws corresponds to sediment with a median grain diameter
d50 = 0.15 mm. For the reasoning behind the values of the sediment parameters
we refer to the books of Dyer (1986) and Soulsby (1997).

The lateral boundary conditions imposed are

v = 0,
∂C

∂y
= 0,

∂h

∂y
= 0 and

∂u

∂y
= 0 at y = 0, B. (3.2.5)

This means that there is neither transport of water nor sediment through the
solid boundaries of the channel. Furthermore, all variables are assumed periodic
in the longitudinal direction. Further details and underlying assumptions of the
model are given in Schramkowski et al. (2002).

3.2.2 Linear stability analysis
Similar to the system in Schramkowski et al. (2002), the system (3.2.1)–(3.2.4)
admits a spatially uniform equilibrium solution ((Fp)eq,ueq, Ceq, heq), which is
here chosen to be an M2 tidal flow

ueq = (ueq, veq) = (U cos(σt), 0)

over a flat bottom heq = 0, with U [m s−1] the constant amplitude of the
longitudinal equilibrium velocity ueq. The corresponding pressure gradient
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Parameter value(s) units name

H 1.2 – 10 m undisturbed water depth
B 800 – 7000 m channel width
U 0.6 – 1 m s−1 amplitude equilibrium velocity
r = 8

3π
cdU ms−1 friction coefficient

κv = cvUH m2 s−1 vertical eddy diffusivity coefficient
ν = cuhUB m2 s−1 horizontal eddy viscosity coefficient
µ = cchUB m2 s−1 horizontal eddy diffusion coefficient
U = U ms−1 typical current velocity

γ =
w2
s

κv
βb s−1 deposition parameter

Λ = κ?ŝ〈|u3eq |〉 m2 s−1 bed load bed slope parameter

βb =

(
1− e

−ws
κv

H
)

)−1

deposition parameter

g 9.81 ms−2 gravitational acceleration
σ 1.4 · 10−4 s−1 M2 tidal frequency
ws 0.013 ms−1 settling velocity
α 5 · 10−6 sm−1 erosion parameter
uc 0 – 0.3 m s−1 critical velocity for erosion
ŝ 3 · 10−4 s2 m−1 bed load transport constant
p̂ 0.4 porosity parameter
cd 0.0025 drag coefficient
κ? 2 bed load bed slope parameter
cv 0.001 vertical diffusivity constant
cch 0 – 0.0035 horizontal diffusivity constant
cuh 0 – 0.001 horizontal viscosity constant

Table 3.1: Parameters and their value (range) after ter Brake and Schuttelaars (2010)
and Schramkowski et al. (2002).

(Fp)eq = −g∇ζeq and sediment concentration Ceq are given in Appendix 3.6.1.
The typical current velocity scale U is chosen to be the amplitude of the equi-
librium velocity U . Other harmonic compositions can be added to ueq, but are
not considered here.

Tidal bars form as an instability on this spatially uniform equilibrium,

((Fp)eq,ueq, Ceq, heq).

Perturbations in the bottom heq+h′, result in perturbations in the flow ueq+u′,
the pressure gradient −g(∇ζeq+∇ζ ′) and the sediment concentration Ceq+C ′.
These perturbations in turn, result in positive or negative feedbacks resulting in
growth or decay of the bottom perturbations h′. The pattern with the largest
growth overtakes the others and yields the length and time scale of the pattern
that is formed initially (Dodd et al., 2003).

Substituting ζ = ζeq + ζ ′, u = ueq + u′, v = veq + v′, C = Ceq + C ′

and h = heq + h′, in equations (3.2.1)–(3.2.4) and linearizing the resulting
equations, yields a system of linear partial differential equations in the primed
variables, which are perturbations on the equilibrium variables. The linearized
equations are given in Appendix 3.6.2. This system of equations, together
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with the boundary conditions (3.2.5) in terms of the primed variables allow for
solutions, which are linear combinations of

ζ ′

u′

v′

C ′

h′

 = Re




ζ̂(t) cos(lny)
û(t) cos(lny)
v̂(t) sin(lny)

Ĉ(t) cos(lny)

ĥ(t) cos(lny)

 eikx

 , (3.2.6)

for every natural number n and real number k > 0. Here, ln = nπ/B and
ζ̂, û, v̂, Ĉ and ĥ are complex valued functions of time. The number n is hence-
forth referred to as the mode number and is related to the number of bars and
troughs in the lateral direction of the channel. For example, a pattern with
mode number n = 1 corresponds to an alternating bar pattern and the pattern
with n = 2 has one bar or a trough in the middle of the channel.

Since the perturbations in the bottom vary on a time scale that is much
longer than the time scale on which perturbations of the other variables vary,
the bottom is assumed to be constant during one tidal cycle. That is, ĥ only
depends on a long morphodynamic time scale while ζ̂, û, v̂, Ĉ depend on the
short hydrodynamical time scale. This allows for calculating the fast variables
ζ̂, û, v̂ and Ĉ, assuming a fixed bottom. The so-called ‘flow over topography
problem’ is solved during one tidal cycle.

Substituting equation (3.2.6) in the linearized continuity, momentum and
concentration equation for a constant ĥ, results in a system of ordinary dif-
ferential equations for ζ̂, û, v̂ and Ĉ. The solution to this system of equations
is approximated by a truncated Fourier series. This Fourier series contains
the residual component and overtides with frequencies pσ, with p an integer.
Because the equations are linear and inhomogeneous, the resulting ζ̂, û, v̂ and
Ĉ will be linear in the amplitude of the bed perturbations ĥ. Taking this into
account, the amplitudes are approximated by choosing a large enough natural
number N and substituting

(ζ̂, û, v̂, Ĉ) = ĥ

N∑
p=−N

(ζ̃p, ũp, ṽp, C̃p)e
ipσt (3.2.7)

in the ordinary differential equations. Here, ζ̃p, ũp, ṽp and C̃p for p = −N, . . . , N
are complex amplitudes, independent of ĥ. This results in a system of 4(2N+1)
algebraic equations in ζ̃p, ũp, ṽp and C̃p, which can be solved numerically. Re-
call that, since the resulting velocity and concentration field is solved for a
fixed h′, the coefficients ζ̃p, ũp, ṽp and C̃p depend on n and k. That is to say,
the obtained (ζ ′, u′, v′, C ′) describe how the flow, the pressure gradient and the
concentration react to the bottom perturbations h′ = Re{ĥ cos(lny)eikx}.

The next step is to determine the bed evolution. The linearized Exner
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equation reads

(1− p̂)∂h
′

∂t
+∇ · 〈q′s + q′b〉 = 0, (3.2.8)

with

q′s = u′Ceq +ueqC
′−µ

(
∇C ′ + ws

κv
βbCeq∇h′

)
and q′b = −Λ∇h′, (3.2.9)

where Λ = ŝκ?〈|u3eq|〉. Since ζ ′, u′, v′, C ′ are explicitly calculated in terms of
h′, substituting these expressions in equation (3.2.8) results in a single equation
for h′ and hence for ĥ,

∂ĥ

∂t
= ωĥ, (3.2.10)

with complex growth rate

ω =
−1

1− p̂

(
ikU

2
(C̃1 + C̃−1) + µ(k2 + l2n)C̃0 + µ

ws
κv
βbC̃eq,0(k2 + l2n)

+ Λ(k2 + l2n)

)
, (3.2.11)

in which the variables with the tildes are defined in equation (3.2.7) and C̃eq,0
in Appendix 3.6.1. The real part of the complex growth rate represents the
actual growth rate of the bottom perturbation and −Im {ω} /k its migration
speed. Here, ω turns out to be real because ueq consists of one tidal constituent.

The preferred wavenumber and mode number kpref and npref are defined as
those for which the growth rate ω is maximal,

ω(kpref , npref) = max
k, n
{ω(k, n)}.

The preferred growth rate ωpref = ω(kpref , npref) and the preferred wavelength
λpref = 2π/kpref is the wavelength that can be compared to the distance be-
tween natural tidal bars. The preferred wavenumber, mode number and growth
rate are found using the optimization method ‘Brent’ (Press et al., 2007).

3.3 Results

3.3.1 Verification

The first objective is to verify that the model produces preferred wavelengths
λpref , mode numbers npref and e-folding growth time 1/ωpref that resemble
those of bars that are observed in nature. For this we selected four natural tidal
channels. These four are chosen because they differ in width, depth and current
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velocities and roughly satisfy the model assumptions. Table 3.2 summarizes the
geometric and current characteristics of these channels, as well as the observed
wavelength λMpref and mode number nMpref of the tidal bars. The wavelength,
mode number and channel width are obtained from Google Earth (Figure 3.1).
This is done by identifying the pattern of the form cos(nπy/B) cos(kx) (as in
equation (3.2.6)), which represent the observed channels in Google Earth most
accurately. The wavelength λMpref is measured as the distance between successive
crests. The uncertainty in the wavelength results from the uncertainty of the
location of the crests of the bars. An alternating bar pattern (nMpref = 1)
represents the patterns in the Exe estuary and the Netarts bay best. The
patterns in the Ord and the Western Scheldt are described by patterns with
a mode number close to three. The width of the pattern that fits best is as
illustrated in Figure 3.1.

The currents and undisturbed depths of the Western Scheldt, Ord River
estuary, Exe estuary and Netarts bay are based on Cancino and Neves (1999),
Wolanski et al. (2001), Herrmann and Hübner (1982) and Glanzmann et al.
(1971), respectively. Furthermore, these papers report that the considered
channels are vertically well-mixed (i.e., small vertical salinity gradients) and
the tides predominantly semi-diurnal with free surface elevation amplitudes
of 1–2 m. The sediment properties are assumed to be similar in all channels
(following Leuven et al., 2016). Typical time scales at which these bars evolve
are of the order of decades.

The left column of Figure 3.3 shows the growth curves (i.e., graphs of
ω(k, n)) for the four different channels. The red vertical line represents the mea-
sured wavenumber and the red area the measurement uncertainty. The right
column shows the bottom pattern corresponding to the preferred wavenumber
and mode number on which the residual current is shown with arrows. The fig-
ure reveals that, using realistic parameter values, the model yields wavelengths
of tidal bars that are of the same order of magnitude as those of bars observed
in nature. Also, the preferred mode numbers npref are in the right order of
magnitude. They agree for the Exe estuary and the Netarts bay and for the
Western Scheldt and the Ord River estuary the difference is one. Note that
for the Ord River estuary, the maximal growth rates for the different mode
numbers n = 1, n = 2 and n = 3 are similar. Lastly, the e-folding growth time
is in the order of decades.

3.3.2 Sensitivity of tidal bar wavelength to channel width

The second objective is to show that the extended model reproduces the sen-
sitivity of the preferred wavelength to channel width. The lower lines in the
top panels of Figure 3.4 (indicated by cch = 0) show the relation between the
preferred wavelength λpref and the channel width B for the four channels when
the horizontal eddy diffusivity µ, horizontal eddy viscosity ν and the critical
velocity for erosion uc are all zero. This case corresponds to the original model
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Figure 3.3: Left: Growth rate ω versus wavenumber k for different mode numbers
n and four different channels (rows). The red vertical lines denote the measured
wavenumber kMpref = 2π/λMpref as in Table 3.2 and the red area the measurement
uncertainty. Right: The preferred bottom pattern versus space for each channel.
The arrows denote the residual current. Parameters are as in Table 3.1 and 3.2 with
cuh = cch = 0.001 and uc = 0.3 ms−1.

B [km] H [m] U [m s−1] λMpref [km] nMpref

Western Scheldt 7.0 10.0 1.0 12.7± 2.8 3
Ord River estuary 3.8 4.0 0.6 6.7± 1.4 3
Exe estuary 1.0 2.6 0.6 3.1± 0.3 1
Netarts bay 0.8 1.2 0.6 1.9± 0.2 1

Table 3.2: Measured wavelength λMpref , mode number nMpref , width B, undisturbed
depth H and M2 current amplitude U .
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Figure 3.4: Top row: Preferred bar wavelength λpref versus channel width B for
the four different channels and two values of the eddy diffusivity parameter cch. The
colors indicate the preferred mode number npref . Middle row: Preferred mode
number npref versus channel width B and eddy diffusivity parameter cch for the four
different channels. Bottom row: As middle row, but the preferred wavelength λpref

versus channel width B and eddy diffusivity parameter cch. The lines in the top row
are two sections of the middle and bottom row (dashed lines). The white areas in
the middle and bottom panels denote that for these parameters there does not exists
a pair (k, n) for which ω(k, n) > 0 (no bottom perturbation pattern grows). The
parameters are as in Table 3.1 and 3.2 with cuh = 0 and uc = 0 ms−1.

of Schramkowski et al. (2002), where the preferred wavelength, as Leuven et al.
(2016) noted, remains of the same order of magnitude over the whole range of
channel widths. Small increases in channel width result in slight increases of
the wavelength λpref . However, when the width B is increased even more, a
pattern with a larger mode number n but with a smaller λpref has the largest
growth rate. That is, the preferred mode number jumps to a higher one.

The upper lines in the top panels of Figure 3.4 show the preferred wave-
length versus channel width for the same parameter values, but with a non
zero horizontal eddy diffusivity. They reveal that, for all four channels, when
horizontal eddy diffusivity µ = cchUB, is non zero, the relative change of the
preferred wavelength λpref over the considered range of channel widths is larger
than when the horizontal eddy diffusivity is neglected. That is, when µ 6= 0 the
preferred wavelength λpref is more dependent on channel width B than when
µ = 0. The jumps in mode number occur later than in the case when horizontal
eddy diffusivity is neglected. In fact, the middle (and top) row shows that the
preferred mode number npref decreases when the eddy diffusivity is taken into
account. That is, the addition of horizontal eddy diffusivity reduces the growth
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of patterns with large gradients (high mode numbers and wavenumbers).
The addition of eddy viscosity or a critical velocity of erosion does not

strongly alter the relation between the preferred wavelength and channel width.
This is shown in Figure 3.5 for the Western Scheldt case. The right panels show
the preferred wavelength versus channel width when eddy viscosity is taken into
account. The left panels show the same when the critical velocity for erosion is
non zero. The eddy diffusivity is neglected in the top panels while it is taken
into account in the lower panels. The difference between the lines in the top
panels is minimal compared to the lower line in the top left panel of Fig 3.4,
where both the eddy viscosity and the critical velocity for erosion are zero.
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Figure 3.5: Preferred wavelength λpref versus channel width B. In the left panels a
critical erosion velocity is included and in the right panels eddy viscosity is included.
In the top panels the eddy diffusivity is neglected while the lower panels it is not.
The remaining parameters are as in Table 3.1 and 3.2 for the Western Scheldt.

3.3.3 Different contributions to the growth rate ω

The third objective is to explain why the incorporation of the horizontal eddy
diffusivity results in a dependence of the preferred wavelength λpref on channel
width B. To facilitate the subsequent discussion in which the third objective
is met, we analyse the different terms of the growth rate ω in more depth.To
simplify expressions, the critical velocity of erosion uc and the horizontal eddy
viscosity ν are henceforth neglected, since in the previous section it is shown
they do not significantly alter the relation between channel width and tidal bar
wavelength.
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Figure 3.6: The four different parts of the growth rate ω vs wavenumber k with
n = npref = 2. Parameters are as in Table 3.1 and 3.2 for the Western Scheldt case
and cuh = 0 and uc = 0 ms−1.

The growth rate consists of four terms,

ω =
−1

1− p̂

(
ikU

2
(C̃1 + C̃−1)︸ ︷︷ ︸
ωadv

+µ(k2 + l2n)C̃0︸ ︷︷ ︸
ωdiff depth-int

+µ
ws
κv
βbC̃eq,0(k2 + l2n)︸ ︷︷ ︸
ωdiff bed slope

+ Λ(k2 + l2n)︸ ︷︷ ︸
ωbl bed slope

)
, (3.3.1)

where the factor −1/(1 − p̂) is understood to be part of the different terms.
The first term ωadv, results from advective sediment transport. The second
and third term, ωdiff depth-int and ωdiff bed slope, are due to diffusive sediment
transport and the fourth term ωbd bedslope originates from the effect of bed
slopes on bed load sediment transport. Figure 3.6 shows the contribution of
the different mechanisms to the growth rate versus wavenumber k for parameter
values representative for the Western Scheldt. Next, we discuss the physics of
the different terms of the growth rate ω.

The first term in equation (3.3.1) is the advective part of the growth rate
ωadv and relates to convergence of tidally averaged advective sediment trans-
port, i.e.,

−〈∇ · (u′Ceq + ueqC
′)〉.

To analyze ωadv, consider the p-th Fourier mode of the linearized concentration
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Figure 3.7: The absolute value of each term in one of the M2 (p = 1) concentration
equations (3.3.2). Parameters are as in Table 3.1 and 3.2 for the Western Scheldt
case and cuh = 0, uc = 0 ms−1 and n = npref = 2. The blue curve (inertia) lies
below the yellow line (diffusion). When horizontal eddy diffusivity is neglected (as in
Schramkowski et al., 2002), the main balance remains between erosion and deposition
for k ≈ kpref , but npref = 3 and kpref is larger.
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Figure 3.8: Generation of tidal residual vorticity cells for bottom pattern with mode
number n = 1. (a) Situation during flood (ueq > 0). (b) Situation during ebb (ueq <
0). Friction (thin red arrows) experienced by water column is larger on the crests
than on the troughs and generates tidal vorticity (red circles). Both during ebb and
flood, positive vorticity is transported into the dashed box and the negative vorticity
is transported out, resulting in the build-up of positive vorticity (black circle).

equation (3.2.3) with uc = 0,

ipσC̃p︸ ︷︷ ︸
inertia

+
ikU

2

(
(C̃p+1 + C̃p−1) +

C̃eq,p+1 + C̃eq,p−1
H

)
︸ ︷︷ ︸

advection

+ µ(k2 + l2n)

(
C̃p +

ws
κv
βbC̃eq,p

)
︸ ︷︷ ︸

diffusion

= αU(ũp+1 + ũp−1)︸ ︷︷ ︸
erosion

− γC̃p.︸︷︷︸
deposition

(3.3.2)
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The dominant balance in the M2 concentration equation for k ≈ kpref is be-
tween erosion and deposition in all four considered cases. For the Western
Scheldt this is shown in Figure 3.7. Then, neglecting the M4 components in
the perturbed current u′ (as they are small compared to the M2 components),
the M2 components of the perturbed concentration reads

C̃±1 ≈
αU

γ
ũ0. (3.3.3)

Substituting the latter in ωadv shows that the contribution of the advective
transport scales with the magnitude of the residual current ũ0:

ωadv ≈
−1

1− p̂
αikU2

γ
ũ0. (3.3.4)

The physical mechanism can now be understood by analyzing the residual cur-
rent u0 via vorticity arguments that follow from Zimmerman (1981). For this,
consider a longitudinal tidal current that moves over a bottom that consists
of bars and troughs as illustrated in Figure 3.8 (here the n = 1 pattern is as-
sumed). The lateral depth variations result in frictional torques that generate
tidal vorticity, as is indicated by the red circles. This vorticity is subsequently
transported by the unperturbed tidal flow. As a result, both during ebb and
flood there is an influx of vorticity of the same sign into a region between crests
and troughs. Thus, residual vorticity builds up in these areas (black circles in
the figure), which is balanced by dissipation due to bottom friction. The re-
sulting residual currents turn out to be directed from the troughs to the crests
in the longitudinal direction and from the crest to the troughs in the lateral
direction (see also right column in Figure 3.3). To understand why this leads to
growth of bars and deepening of troughs, consider the convergence of the tidally
averaged advective sediment transport (see equation (3.2.8) and (3.2.9)). This
reads, using that the equilibrium velocity ueq and the equilibrium sediment
concentration Ceq are spatially uniform,

−〈Ceq∇ · u′〉 − 〈ueq · ∇C ′〉 = −〈Cequeq〉
1

H

∂h′

∂x
− 〈ueq

∂C ′

∂x
〉 = −〈ueq

∂C ′

∂x
〉,

(3.3.5)
where for the first equality sign, the perturbed continuity equation is used
and for the second one the fact that 〈ueqCeq〉 = 0. Equation (3.3.5) shows
that convergence of sediments occurs when ueq and ∂C ′/∂x are negatively
correlated. From equation (3.3.3) it follows that the perturbed concentration
reads

C ′ ≈ 2α

γ
u0ueq.

Since u0 is directed towards the bars, this implies that both during ebb and
flood the perturbed concentration C ′ is positive upstream from a bar and neg-
ative downstream. On the other hand, C ′ is negative upstream a trough and
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y

z

Figure 3.9: Consider a uniform depth-integrated concentration over a sloping bottom.
On the left, the water column is shallower than on the right. Hence, the concentration
C3(t, x, y, z) is larger on the left than on the right. As a result, sediments diffuse from
left to right even though the depth-integrated concentrations are equal. In this case,
it is the gradient in bed level that induces diffusive sediment transport instead of a
gradient in depth-integrated sediment concentration.

positive downstream of it. Hence, the convergence of advective transport causes
bars to grow and troughs to deepen for patterns with wavenumber k and mode
number n close to the preferred ones. Figure 3.6 reveals that for larger k, ωadv
is negative. The reason is that for these patterns the dominant balance in
the concentration equation is not between erosion and deposition but that the
advection term also becomes significant (Figure 3.7).

The second term in equation (3.3.1) is ωdiff depth-int. It originates from the
fact that when at one location the depth-integrated concentration C is larger
than at another, a transport occurs from high to low C. Figure 3.6 reveals
that ωdiff depth-int is slightly positive for small k and negative for larger k and
close to zero for wavenumbers close to the preferred wavenumber kpref . That
is, for patterns with large wavenumbers, the depth-integrated concentration is
larger above the troughs than above the crests, while the opposite is the case
for patterns with small wavenumbers. Therefore, the depth-integrated diffusive
transport results in a small contribution of the growth of patterns with large
wavenumbers and slightly causes decay of patterns with small wavenumbers.

The third term in equation (3.3.1) ωdiff bed slope, relates to a suspended load
bed slope effect. It arises in the derivation of the depth-integrated concentration
equation (3.2.3) from the 3D concentration equation when the diffusion term
is integrated over depth,∫ H

h(x)

∇ · (µ∇C3) dz =∇ · (µ∇C) +∇ · (µcb∇h), (3.3.6)

where C3 is the ‘3D concentration’ depending on x, y and z, and cb the con-
centration at the reference level above the bottom z = h(x). When a balance
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is assumed between vertical turbulent mixing (with vertical eddy diffusivity
κv constant over the vertical) and downward settling, the concentration at the
bottom reads cb = (ws/κv)βbC (ter Brake and Schuttelaars, 2010). The first
term in equation (3.3.6) results in ωdiff depth-int and the second in ωdiff bed slope.
The physics behind the second term becomes apparent when considering for
example, a sloping bed and a uniform depth-integrated concentration. Then,
the first term ∇ · (µ∇C), is zero. However, in the shallow region the con-
centration C3 is higher than in the deep region, leading to sediment transport
from the shallow to the deep region (Figure 3.9). The second term models the
convergence of this transport. As the magnitude of sediment transport from
crests to troughs scales with the slope, ωdiff bed slope is negative and becomes
increasingly more negative if bottom gradients increase.

The last term of equation (3.3.1), ωbl bed slope, relates to bottom slope effects
on bed load transport: sediment moves easier downslope than upslope. There-
fore contributes ωbl bed slope, like the third term, to convergence of sediments
in the troughs and divergence of sediments on the crests. Hence, it dampens
the growth of the pattern. That is, ωbl bed slope < 0 and is stronger negative
for larger bottom slopes. In contrast to ωdiff bed slope, results this contribution
from bed load transport processes. Figure 3.6 reveals that ωbl bed slope is much
smaller than ωdiff bed slope, which, based on the values from Table 3.1, directly
follows from the fact that

µwsβbC̃eq,0/κv
Λ

≈ 5.

The above gives a physical argument for using a larger bed load bottom slope
parameter Λ than suggested by literature (Baar et al., 2018), when a total load
formula is used. It then also represents the suspended load bed slope effect
when this is not explicitly taken into account.

3.4 Discussion

3.4.1 Mechanism behind sensitivity of tidal bar wave-
length to channel width

Here, we address the third objective by discussing three important aspects of
Figure 3.4, which shows tidal bar wavelength λpref versus channel width B.

A1. In the range of channel widths with constant npref , λpref increases with
increasing B.

A2. While increasing B, the preferred wavelength λpref decreases when npref
jumps to a higher mode number.
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A3. The range of channel widths for which npref is the same is wider when
horizontal eddy diffusivity µ in the sediment mass balance is taken into
account.

Together, this shows that the wavelength depends on channel width when hor-
izontal eddy diffusivity is taken into account and why the wavelength remains
of the same order of magnitude for a large range of channel widths when the
horizontal eddy diffusivity is neglected.

To analyse the three aspects above, the growth rate is first approximated
as

ω̃ ≈ ωadv + ωeff bed slope. (3.4.1)

Here, the two bed slope effects ωdiff bed slope and ωbl bed slope are combined into
an effective bed slope term

ωeff bed slope =
−1

1− p̂Λeff(k2 + l2n), with Λeff = Λ + µ
ws
κv
βbC̃eq,0, (3.4.2)

and ωdiff depth-int is neglected.
The first two aspects (A1 and A2) follow from the fact that, for a fixed mode

number, the growth rate is sensitive to changes in channel width. For a fixed
mode number n, the wavelength λ̃ for which ω̃ is maximal is approximately
(see Appendix 3.6.3)

λ̃(n) = 23/4
(
πB

n

)1/2 (
L−2f + L−2t

)−1/4
, (3.4.3)

where
Lf =

H

8/(3π)cd
and Lt =

U

σ
. (3.4.4)

Here, Lf is a friction length scale and Lt the tidal excursion length. When n =
npref in equation (3.4.3), λ̃(npref) is a first order approximation for the preferred
wavelength λpref (A higher order approximation is given in Appendix 3.6.3).
Equation (3.4.3) therefore yields an approximate relation between the preferred
wavelength and three internal length scales of the system: the channel width B,
the friction length scale Lf and the tidal excursion length Lt. In its derivation
the approximate balance between erosion and deposition, see equation (3.3.3),
is used and ν and uc are assumed to be zero, since including horizontal eddy
viscosity ν in the momentum balance or critical erosion velocity uc was shown
to be important for the dependence on channel width. The first aspect (A1) is
revealed by equation (3.4.3); in wider channels with the same mode number,
ω̃ is maximal for larger wavelengths λ̃. The second aspect (A2) also becomes
apparent from equation (3.4.3). It shows that the preferred wavelength of
patterns with higher mode number is smaller and hence λpref decreases when
the preferred mode number npref jumps to a higher mode number.
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The third aspect (A3) boils down to the statement that for a fixed channel
width B, the preferred mode number npref is lower when µ 6= 0 than when
µ = 0. This follows from a competition between the two mechanisms related to
the first and second term in equation (3.4.1). The first term increases while the
second term decreases with increasing mode number n. That is, the advective
term ‘promotes’ strong lateral gradients in the bed, while the bed slope term
does the opposite. As a result, if Λeff increases, npref decreases. In fact, as
shown in Schramkowski et al. (2002), if Λeff = 0, the preferred mode number
npref tends to infinity, but when Λeff 6= 0, the preferred mode number is finite.
The essential difference between the situation where µ 6= 0 compared to the
case where µ = 0 is that Λeff is larger in the former case and thereby a lower
preferred mode npref is selected. Hence, the range of channel widths for which
npref is the same is wider when horizontal eddy diffusivity µ in the sediment
mass balance is taken into account.

Van der Wegen and Roelvink (2008) found a wavelength of bar patterns
that, besides its dependence on current velocity and depth, scales with the
square root of the channel width. In their model, the sediment transport
is governed by a total load formulation (after Engelund and Hansen, 1967),
where the total transport is adjusted for bed slope effects. They state that the
bed slope effect is overestimated in order to obtain realistic bottom patterns.
Hence, their findings correspond to the ones above, where the dependence of the
wavelength to channel width is only found if the bed slope effects are relatively
strong. Furthermore, equation (3.4.3) suggests that the preferred wavelength
scales with the square root of channel width. Hibma et al. (2004) used a con-
centration equation with the bed slope effect induced by the horizontal eddy
diffusivity present in their formulation. They also found tidal bar wavelength
to increase with channel width.

3.4.2 Sensitivity of fluvial bar wavelength to river width

Leuven et al. (2016) analysed the fluvial bar model of Crosato and Mosselman
(2009), based on Struiksma et al. (1985). They showed that, like in the tidal
bar case, the number of fluvial bars and channels in the lateral direction of
the channel increases with increasing river width. Furthermore, the model of
Crosato and Mosselman (2009) reveals that, for a constant mode number, the
increase of bar wavelength with increasing river width and also the drop in
bar wavelength when the mode number increases. Moreover, when their bed
slope parameter is increased, the mode number decreases. This suggests that
in rivers where suspended sediment transport is significant, the horizontal eddy
diffusivity will increase the sensitivity of fluvial bar wavelength to river width
by the same mechanism as described above. Note there are differences: fluvial
bars migrate, whilst tidal bars can be steady (as is the case in this study with
a symmetric equilibrium current).
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Figure 3.10: The preferred wavelength λpref , mode number npref and e-folding growth
time 1/ωpref versus different parameter values for modelled tidal bars in four different
tidal channels. The colors indicate the factor with which the default parameter value is
multiplied, with the red squares representing the default setting for that channel. The
red lines denote the measured wavelength λMpref and mode number nMpref as in Table 3.2
and the red area the measurement uncertainty (as in Figure 3.3). Parameter α affects
the erosion, U the amplitude of the basic state tidal velocity, H the undisturbed
depth, B the channel width, κ? the bed load bed slope term, ws the settling velocity,
cch the horizontal eddy diffusivity, cuh the horizontal eddy viscosity and uc the critical
erosion. The parameters values are as in Table 3.1 and 3.2 with cuh = cch = 0.001 and
uc = 0.3 ms−1.

3.4.3 Sensitivity bar wavelength to other parameters

In concurrence with findings of Hibma et al. (2004), Leuven et al. (2016) and
van der Wegen and Roelvink (2008), it follows from equation (3.4.3) that the
preferred wavelength is, besides the channel width, sensitive to changes in cur-
rent velocity and channel depth. It is therefore relevant to assess the sensitivity
of the modelled λpref to these other parameters. Figure 3.10 shows the preferred
wavelength λpref , the preferred mode number npref and the e-folding time scale
1/ωpref for the four tidal channels that were introduced in Section 3.3 (see also
Figure 3.1). The red squares denote the results using the default parameter
values for that channel (corresponding to Figure 3.3). In Figure 3.10, each
default value is multiplied by factors between 0.5 and 1.5 to illustrate the sen-
sitivity of λpref , npref and 1/ωpref to these parameters. The figure reveals that,
in particular for the Western Scheldt and Ord river estuary, λpref is sensitive to
both current velocity U , depth H and channel width B. In the Exe estuary and
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Netarts bay, the current has less influence on the preferred wavelength than in
the other two channels. The jumps in λpref in the top panels correspond to
jumps in mode number npref . The growth rate is most sensitive to current
velocity and settling velocity.

To further analyse the sensitivity of the preferred wavelength to the current
velocity and the depth, differentiate the wavelength λ̃ with respect to the length
scales B, Lt and Lf to obtain, respectively,

∂λ̃

∂B
= 2−1/4

√
π

nB

(
L−2t + L−2f

)−1/4
,

∂λ̃

∂Lt
= 2−1/4

√
πB

n

1

L3
t

(
L−2t + L−2f

)−5/4
,

∂λ̃

∂Lf
= 2−1/4

√
πB

n

1

L3
f

(
L−2t + L−2f

)−5/4
.

The first expression approximates the slopes of the lines in the upper panels
of Figure 3.4 for a fixed npref . It shows that when one of the length scales B,
Lt and Lf is very small (large), the sensitivity of λ̃ to that length scale is large
(small) compared to the others. The bottom lines in the top row of Figure 3.4
also show this behavior; the slope of the lines decreases with increasing width
B. This was also observed by Leuven et al. (2016), who found that for estuaries
where the current velocity is large, the bar length hardly depends on the current
velocity. Also, it agrees with the results of Dalrymple and Rhodes (1995),
who found that the wavelength correlates strongly with channel width when
considering channels of only a few hundred meters wide.

3.4.4 Formulation of horizontal eddy diffusivity

The horizontal eddy diffusivity µ is chosen to scale with the product of a velocity
scale (equilibrium current velocity U) and a length scale (channel width B) such
that its order of magnitude is 10 m2 s−1 (Deltares, 2019). One observation from
Figure 3.4 was that the relative change of the tidal bar wavelength over the
considered range of channel widths is larger when horizontal eddy diffusivity
µ was taken into account. Figure 3.11 reveals that is also the case when the
parameterization of µ is independent of channel width B.

3.5 Conclusions

The model of Schramkowski et al. (2002) for tidal bars in channels is extended
to include horizontal eddy diffusivity, horizontal eddy viscosity and a criti-
cal velocity for erosion. It is shown that this model is able to mimic tidal
bar patterns with length scales and growth times that are of the same order
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Figure 3.11: Preferred bar wavelength λpref versus channel width B for two values of
eddy diffusivity µ (independent of channel width B). The colors denote the preferred
mode number npref . Parameters are as in Table 3.1 and 3.2 for the Western Scheldt
case and cuh = 0 and uc = 0 ms−1.

of magnitude as those of observed bars, including the sensitivity of tidal bar
wavelength to channel width. In particular, the observed sensitivity of tidal
bar wavelength to channel width was reproduced by taking the eddy diffusivity
into account. The inclusion of horizontal eddy viscosity and critical erosion ve-
locity did not significantly alter the relation between the tidal bar wavelength
and the channel width.

The reason the extended model shows a clear dependence of tidal bar wave-
length on channel width, whilst in the original model of Schramkowski et al.
(2002) this dependence was weak, is the following. First of all, in wider chan-
nels, the pattern with the largest growth rate (the preferred tidal bar pattern)
has more bars in the lateral direction. That is, it has a higher preferred mode
number. Second, in the range of channel widths with constant preferred mode
number, the preferred wavelength increases with increasing channel width.
However, at the width where the preferred mode number changes (it increases
by one), the preferred wavelength decreases. In the model of Schramkowski
et al. (2002), the range of channel widths with constant preferred mode num-
ber is relatively short. This means that, with increasing channel width, before
the preferred wavelength can increase significantly, the preferred mode number
increases and with that, the wavelength decreases again. As a result, the tidal
bar wavelength remains of the same order of magnitude for different values of
channel width. In the present study, the effects of horizontal eddy diffusivity
are added to the model. As a result, the effective bed slope effect is stronger.
Since bed slope effects decrease the growth rate of bottom patterns with large
gradients, the bottom pattern with the largest growth rate has a smaller mode
number. This implies that the preferred mode number remains the same for a
wider range of channel widths than in the model of Schramkowski et al. (2002).
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The width dependence now follows from the fact that, in this range, the tidal
bar wavelength increases with increasing channel width and that this increase
is stronger for smaller mode numbers.

3.6 Appendix

3.6.1 Equilibrium pressure gradient and concentration

The equilibrium pressure gradient and sediment concentration are

(Fp)eq =

(
∂ueq
∂t

+
rueq
H − h, 0

)
and Ceq =

∞∑
p=−∞

C̃eq,pe
ipσt,

with

C̃eq,p =
α

ipσ + γ

[
U2

4

(
H̃p−2 + 2H̃p + H̃p+2

)
− H̃pu2c

]
.

In this expression

H
(
‖ueq‖2 − u2c

)
=

∞∑
p=−∞

H̃peipσt,

with

H̃p =

{
i

2πp

([
e−ipσt

]t3
−π/σ +

[
e−ipσt

]t1
t2

+
[
e−ipσt

]π/σ
t4

)
p 6= 0,

σ
2π

(
t3 + π

σ + t1 − t2 + π
σ − t4

)
p = 0,

and

t1 =
1

2σ
cos−1

(
2
(uc
U

)2
− 1

)
, t2 = −t1, t3 = t1 −

π

σ
, t4 = −t3.

3.6.2 Linearized equations

The system of partial differential equations in the perturbed variables reads

H(∇ · u′)− ueq · ∇h′ = 0, (3.6.1)
∂u′

∂t
+ (ueq · ∇)u′ − ν∇2u′ + F ′r + g∇ζ ′ = 0, (3.6.2)

∂C ′

∂t
+ Ceq(∇ · u′) + ueq · ∇C ′ − µ

(
∇2C ′ +

ws
κv
βbCeq∇2h′

)
− (E′ −D′) = 0, (3.6.3)

(1− p̂)∂h
′

∂t
+∇ · 〈q′s + q′b〉 = 0, (3.6.4)
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with

F ′r =

(
rueqh

′

H2
+
ru′

H
,
rv′

H

)
, E′ = 2αuequ

′H
(
‖ueq‖2 − uc

)
, D′ = γC ′,

and

q′s = u′Ceq + ueqC
′ − µ

(
∇C ′ + ws

κv
βbCeq∇h′

)
and q′b = −Λ∇h′.

The boundary conditions are

v′ = 0,
∂C ′

∂y
= 0,

∂h′

∂y
= 0 and

∂u′

∂y
= 0 at y = 0, B. (3.6.5)

As variables u, Fp and C are assumed bounded, this must also hold for their
primed parts.

3.6.3 Approximation of preferred wavelength

In this appendix, we approximate the wavelength for which

ω̃ = ωadv + ωbed slope (3.6.6)

is maximal for a fixed mode number n. For this, an approximate expression is
derived for

ωadv =
−1

1− p̂
ikU

2
(C̃1 + C̃−1).

Assume that µ = 0 and ueq = U cos(σt). In the main text it is shown that
around kpref the main balance in the concentration equation is between erosion
and deposition so that, with equation (3.3.3),

ωadv ≈
−1

1− p̂
αikU2

γ
ũ0.

Next, we will approximate ũ0 via the residual vorticity. Denote the perturbed
vorticity by

Ω′ =
∂v′

∂x
− ∂u′

∂y
= Re

{
ĥ

∞∑
p=−∞

Ω̃p sin(lny)ei(kx+pσt)

}
,

where Ω̃p = ikṽp + lnũp. From the tidally averaged continuity equation ∇ ·
〈u′〉 = 0, it follows that the residual velocity ũ0 reads, in terms of the residual
vorticity Ω̃0,

ũ0 =
ln

k2 + l2n
Ω̃0. (3.6.7)
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To approximate the residual vorticity Ω̃0 consider the vorticity equation,

∂Ω′

∂t
+ ueq

∂Ω′

∂x
+

r

H
Ω′ =

rueq
H2

∂h′

∂y
.

It shows that vorticity is advected by the current ueq, dissipated by friction and
generated by the flow which experiences friction and lateral depth variations.
For every integer p, the Fourier coefficients Ω̃p then satisfy

ipσΩ̃p +
ikU

2

(
Ω̃p+1 + Ω̃p−1

)
+

r

H
Ω̃p = − rln

H2
(ũeq)p, (3.6.8)

where (ũeq)p denotes the p-th Fourier component of ueq. Since (ũeq)p 6= 0
only for p = ±1, the lateral depth gradients only generate vorticity at the
M2 frequency. However, via the advective terms, vorticity is transported from
the M2 components to the residual component (as described in Figure 3.8).
Neglecting the M4 components Ω±2, for p = 0 and p = ±1, equation (3.6.8)
yields

Ω̃0 = − ikUH
2r

(
Ω̃−1 + Ω̃1

)
and Ω̃±1 ≈

−U
2
(
r
H ± iσ

) ( rln
H2

+ ikΩ̃0

)
.

Plugging the latter in the former and solving for Ω̃0 results in

Ω̃0 ≈
rlnik

H2(k2 + τ2)
.

where τ2 = 2
(
L−2f + L−2t

)
with Lf = H/(8/(3π)cd) and Lt = U/σ. Combining

this with equation (3.6.7) results in

ũ0 ≈
rl2nik

H2(k2 + l2n)(k2 + τ2)
. (3.6.9)

Hence,

ωadv ≈
−1

1− p̂
αikU2

γ
ũ0 ≈

αU2k2l2nr

(1− p̂)γH2(k2 + l2n)(k2 + τ2)
. (3.6.10)

Plugging this in equation (3.6.6) together with the expression for ωbed slope in
equation (3.4.2) yields

ω̃ ≈ a k2l2n
(k2 + l2n)(k2 + τ2)

− Λeff(k2 + l2n), (3.6.11)

where

a =
αU2r

(1− p̂)γH2
and Λeff = Λ + µ

ws
κv
βbC̃eq,0.
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To asymptotically approximate the wavenumber for which ω̃ is maximal, scale
k, ln and τ with the tidal excursion length Lt,

k∗ = kLt, l∗n = lnLt and τ∗ = τLt.

Substituting these in equation (3.6.11) and divide by a results in

ω∗ ≈ k∗2l∗n
2

(k∗2 + l∗n
2)(k∗2 + τ∗2)

− ε(k∗2 + l∗n
2), (3.6.12)

where ω∗ = ω̃/a and ε = Λeff/(aL2
t ), which is much smaller than one. To find

the k∗ for which ω∗ is maximal, differentiate ω∗ with respect to k∗ and equate
with zero to obtain

l∗n
2(l∗n

2τ∗2 − k∗4)− ε(k∗2 + l∗n
2)2(k∗2 + τ∗2)2 = 0. (3.6.13)

Here, we divided by 2k∗, thereby excluding the pattern that is uniform in
the longitudinal direction (k∗ = 0), since ω∗ obtains a local minimum there.
Plugging the asymptotic expansion k∗ = k∗0 + εk∗1 +O(ε2) in equation (3.6.13)
and equate terms of O(1) yields, l∗n

2((l∗nτ
∗)2 − k∗04) = 0. Therefore, looking

only for real and positive wavenumbers,

k∗0 =
√
l∗nτ∗.

The corresponding dimensional wavelength λ̃ = Lt2π/k∗0 reads

λ̃ =
2π√
lnτ

= 23/4
(
πB

n

)1/2 (
L−2f + L−2t

)−1/4
,

which is the same as equation (3.4.3) in the main text. For a higher order
approximation, equate the O(ε) terms of equation (3.6.13) to obtain

2(l∗nk
∗
1k
∗
0)2 + (k∗0

2 + l∗n
2)2(k∗0

2 + τ∗2)2 = 0

and hence,

k∗1 = −(l∗n + τ∗)2
√
τ∗

4l∗n
.

Thus, the wavelength λ∗ = 2π/k∗ for which ω∗ is maximal is

λ∗ =
2π

k∗0 + εk∗1 +O(ε2)
=

2π

k∗0

(
1− εk

∗
1

k∗0
+O(ε2)

)
,

which reads in dimensional form

Ltλ∗ =
2π√
lnτ

+
Λeff

a

(ln + τ)2

2ln
.
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Oblique sand ridges in
confined tidal channels
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Oblique sand ridges in confined tidal channels due to Coriolis and frictional torques. Ocean
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Abstract

The role of the Coriolis effect in the initial formation of bottom patterns in a
tidal channel is studied by means of a linear stability analysis. The key finding
is that the mechanism generating oblique tidal sand ridges on the continental
shelf is also present in confined tidal channels. As a result, the Coriolis effect
causes the fastest growing pattern to be a combination of tidal bars and oblique
tidal sand ridges. Similar as on the continental shelf, the Coriolis-induced
torques cause anticyclonic residual circulations around the ridges, which lead
to the accumulation of sand above the ridges. Furthermore, an asymptotic
analysis indicates that the maximum growth rate of the bottom perturbation
is slightly increased by the Coriolis effect, while its preferred wavelength is
hardly influenced.
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Figure 4.1: Bottom perturbation patterns obtained after approximately 15 years of
morphodynamic simulation in a section of a semi-enclosed channel. In the left panel
the Coriolis effect is neglected, whereas it is taken into account in the right panel.
The simulations are done with the numerical model Delft3D in its depth-averaged
mode (see online supplementary information).

4.1 Introduction

Tidal bars are rhythmic bottom patterns that occur in many tidal channels
(e.g., the Western Scheldt in the Netherlands, the Exe Estuary in England, the
Ord River Estuary in Australia and the Venice Lagoon in Italy). These bars are
several meters high and have wavelengths of 1–15 km. Their characteristics are
determined by channel properties (depth, width, tidal amplitude, etc.), which
may change due to, for example, dredging, sea level rise and land reclamation.
Tidal bars are invaluable for many organisms that feed on their rich grounds,
but they also may hamper marine traffic. For proper management of tidal
channels, it is therefore important to understand their behavior.

Seminara and Tubino (2001), Schramkowski et al. (2002) and Chapter 3,
among others, studied the physical mechanism that causes tidal bars to form, as
well as the sensitivity of their wavelength to channel properties. They explained
that the initial formation of tidal bars can be understood by analyzing the
residual currents generated by the topography (using arguments similar to those
by Zimmerman (1981)). Hibma et al. (2004) showed that the results of the
linear stability analysis of Schramkowski et al. (2002) compare well with results
of a numerical morphodynamic model, Delft3D.

In these linear stability studies and in the study by Hibma et al. (2004),
the Coriolis effect was neglected. However, tidal bars occur in natural systems
(e.g. Western Scheldt) where the Coriolis force is a first order term in the mo-
mentum balance. The importance of Coriolis on the hydro-morphodynamics
in tidal channels is supported by several other studies, e.g., Valle-Levinson
(2008), Winant (2008), Xie et al. (2017) and Olabarrieta et al. (2018). Fur-
thermore, 2D morphological simulations similar (but now with and without
the Coriolis effect) to those performed by Hibma et al. (2004) show clear dif-
ferences between the initial formation of bottom patterns with and without
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Figure 4.2: Model domain of semi-analytical model. Along-channel view (left). Cross-
channel view (right). Here, H∗ is the undisturbed depth, ζ∗ the free surface elevation,
h∗ the bottom height and B∗ the channel width. The x∗, y∗ and z∗ arrows denote
the direction of the coordinate axes (x∗ is along-channel and y∗ cross-channel).

the Coriolis effect taken into account (see Figure 4.1 and online supplementary
information). In the left panel of Figure 4.1, perturbations have a braided tidal
bar pattern, whereas a ridge-like pattern emerges when the Coriolis effect is
neglected (right panel).

This motivates an investigation into the physical mechanisms that explain
how the initial formation of bottom patterns in a tidal channel is affected by the
Coriolis effect. To this end, a semi-analytical model is developed in Section 4.2
and investigated by means of a linear stability analysis. In Section 4.3 the
results of the linear stability analysis are presented and further analyzed with an
asymptotic expansion considering a weak Coriolis force. Section 4.3 is followed
by a discussion (Section 4.4) and the conclusions (Section 4.5).

4.2 Model

4.2.1 Governing equations

The semi-analytical model developed in this section is similar to those used by
Schramkowski et al. (2002) and Chapter 3, which successfully explained the
emergence of tidal bars in confined channels. The main extension here is that
the Coriolis effect is taken into account.

The domain shape consists of an open section of a straight channel distant
from the seaward and landward boundaries. The channel has a uniform width
B∗, depth H∗ and a length which is small compared to the tidal wavelength
and the length scale of channel width variations (Figure 4.2). These choices
imply that we consider a local model, ignoring sloping background topography
and apply the rigid-lid approximation (sea surface elevation only appears in the
pressure gradient force). The hydrodynamics is governed by the depth-averaged
shallow water equations, including the Coriolis effect. The flow is driven by
a spatially uniform pressure gradient that oscillates with the principal tidal
frequency σ∗. The dimensional (henceforth denoted with an asterisk) continuity
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and momentum equations read

∇∗ · ((H∗ − h∗)u∗) = 0, (4.2.1)
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ +

r∗u∗

H∗ − h∗ + F∗u∗ = −g∗∇ζ∗. (4.2.2)

Here, t∗ and x∗ = (x∗, y∗) are the time and space coordinate. Furthermore,
∇∗ = (∂/∂x∗, ∂/∂y∗), u∗ = (u∗, v∗) is the depth-averaged current velocity,
ζ∗ the free surface elevation and h∗ the bottom elevation (with respect to the
undisturbed bed). In equation (4.2.2), the bottom stress is linearized (see e.g.,
Zimmerman, 1982, Terra et al., 2005), i.e., it is modelled as ρ∗r∗u∗, where ρ∗
is the water density and r∗ = cdU

∗8/(3π), with cd the drag coefficient and U∗
a typical amplitude of the tidal current in the along channel direction. The
parameter g∗ is the gravitational acceleration and

F∗ = f∗
(

0 −1
1 0

)
,

with f∗ the Coriolis parameter (here assumed constant).
The bed elevation h∗ evolves due to the divergence of volumetric sediment

transport q∗,

(1− p?)
∂h∗

∂t∗
= −∇∗ · q∗. (4.2.3)

Here, p? is a porosity parameter and

q∗ = s∗1‖u∗‖b1u∗ − s∗2‖u∗‖b2∇h∗, (4.2.4)

where ‖u∗‖2 = u∗2 + v∗2 and s∗1, s∗2, b1 and b2 are positive real numbers. The
first term in equation (4.2.4) represents the advective transport of sediment and
the second term accounts for bed slope effects. Equation (4.2.4) corresponds,
with different choices for s∗1, s∗2, b1 and b2, to most bed load and total load
sediment transport formulations (Soulsby, 1997).

The boundary conditions imposed at the sides of the channel are

v∗ = 0 and
∂h∗

∂y∗
= 0 at y∗ = 0, B∗. (4.2.5)

Equations (4.2.1)–(4.2.4) are made dimensionless (no asterisk) by first scal-
ing time t∗ and space x∗ as

t = σ∗t∗ and x =
x∗

B∗
.

Subsequently, the depth-averaged velocity u∗ = (u∗, v∗), the free surface ele-
vation ζ∗ and the bottom elevation h∗ are scaled as

u =
u∗

U∗
, ζ =

g∗

U∗2
ζ∗ and h =

h∗

H∗
.
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The dimensionless continuity and momentum equations read

∇ · ((1− h)u) = 0, (4.2.6)

σ
∂u

∂t
+ (u · ∇)u +

ru

1− h + Fu +∇ζ = 0, (4.2.7)

where ∇ = (∂/∂x, ∂/∂y), σ = σ∗B∗/U∗,
r = r∗B∗/(U∗H∗) and

F =
B∗

U∗
F∗ =

1

Ro

(
0 −1
1 0

)
,

with Ro = U∗/(f∗B∗) the Rossby number.
The dimensionless bed elevation equation reads

∂h

∂t
= −ε∇ ·

(
‖u‖b1u− Λ̃‖u‖b2∇h

)
.

Here, Λ̃ = s∗2U
∗b2−(b1+1)H∗/(s∗1B

∗) is a bed slope parameter and ε the ratio
of the tidal time scale 1/σ∗ and the morphological time scale (1−p?)H∗B∗/Q∗,
with Q∗ = s∗1U

∗b1+1 a typical volumetric sediment transport magnitude. Given
that the bed evolves slowly and that the sediment transport varies almost
periodically (with the tidal frequency), the bed evolution is approximated by
the tidal average of the divergence of the sediment transport,

∂h

∂τ
= −〈∇ · q〉 with q = ‖u‖b1u− Λ̃‖u‖b2∇h, (4.2.8)

where τ = εt and 〈·〉 denotes the average over one dimensionless tidal period
2π.

The dimensionless boundary conditions read

v =
∂h

∂y
= 0 at y = 0, 1. (4.2.9)

4.2.2 Linear stability analysis
The bottom pattern that initially forms when a tidal current flows over a hor-
izontal sandy bed, is analysed with a linear stability analysis. An equilibrium
solution (u0, v0, ζ0, h0) to the system of equations (4.2.6)–(4.2.9), is described
by a spatially uniform symmetrical tidal current u0 = (u0, v0) = (cos(t), 0),
driven by a spatially uniform pressure gradient

−∇ζ0 = σ
∂u0

∂t
+ ru0 + Fu0,

over a horizontal bed h0 = 0.
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Small perturbations on the flat bed result in perturbations of the flow vari-
ables and vice versa. Let ξ be small and substitute

h = h0 + ξh1 +O(ξ2),

u = u0 + ξu1 +O(ξ2),

ζ = ζ0 + ξζ1 +O(ξ2)

in equations (4.2.6)–(4.2.8). At O(ξ) this results in a linear system of partial
differential equations,

∂u1
∂x

+
∂v1
∂y
− u0

∂h1
∂x

= 0, (4.2.10)

σ
∂u1
∂t

+ u0
∂u1
∂x

+ r(u1 + u0h1)− v1
Ro

+
∂ζ1
∂x

= 0, (4.2.11)

σ
∂v1
∂t

+ u0
∂v1
∂x

+ rv1 +
u1
Ro

+
∂ζ1
∂y

= 0, (4.2.12)

∂h1
∂τ

+ b1〈|u0|b1
∂u1
∂x
〉 − Λ∇2h1 = 0. (4.2.13)

Here, Λ = Λ̃〈|u0|b2〉 is a bed slope parameter and u1 and v1 are the com-
ponents of u1 = (u1, v1). In the derivation of equation (4.2.13) the continu-
ity equation (4.2.10) and 〈|u0|b1u0〉 = 0 are used to simplify the expression.
Combining the continuity and momentum equations (substituting (4.2.10) in
∂/∂x(4.2.12)− ∂/∂y(4.2.11)) eliminates ζ1 and yields an equation for the vor-
ticity Ω1:

σ
∂Ω1

∂t
+ u0

∂Ω1

∂x
+ rΩ1 = u0

(
r
∂h1
∂y
− 1

Ro
∂h1
∂x

)
, (4.2.14)

with

Ω1 =
∂v1
∂x
− ∂u1

∂y
. (4.2.15)

The first term on the right hand side of equation (4.2.14) is the torque due to
bottom friction. The second term on the right hand side is the Coriolis torque.
The terms on the left hand side of equation (4.2.14) describe the vorticity’s
inertia, its advection by the equilibrium current u0 and its dissipation due to
bottom friction, respectively.

Equations (4.2.10), (4.2.13), (4.2.14) and (4.2.15), together with the bound-
ary conditions, allow for solutions of the form

(u1, v1,Ω1, h1) = (û, v̂, Ω̂, ĥ)eikx + c.c.. (4.2.16)

Here, c.c. stands for complex conjugate, û(t, y, k), v̂(t, y, k), Ω̂(t, y, k), ĥ(τ, y, k)
are complex valued functions and k is a dimensionless along-channel wavenum-
ber, which relates to a dimensional wavenumber k∗ = k/B∗. Substituting
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(4.2.16) in the continuity equation (4.2.10) and the vorticity equation (4.2.14)
yields

ikû+
∂v̂

∂y
= u0ikĥ, (4.2.17)

σ

r

∂Ω̂

∂t
+

(
u0ik

r
+ 1

)
Ω̂ = u0

(
∂ĥ

∂y
− γikĥ

)
. (4.2.18)

The parameter γ = (rRo)−1 denotes the relative importance of the vorticity
producing torque due to the Coriolis effect and the torque due to the bottom
friction. Thus, when the Coriolis effect is neglected, γ = 0 and only the torque
due to bottom friction produces vorticity. Substituting (4.2.16) in the bottom
evolution equation (4.2.13) results in

∂ĥ

∂τ
= −b1ik〈|u0|b1 û〉+ Λ

(
∂2ĥ

∂y2
− k2ĥ

)
. (4.2.19)

Inspired by the boundary conditions and the fact that without the Coriolis
effect, ĥ ∼ cos(nπy) with n a natural number (Schramkowski et al., 2002), we
write ĥ as a cosine series,

ĥ =

∞∑
n=0

h̃n cos(nπy), (4.2.20)

with h̃n(τ, k) complex valued functions for every natural number n. In ap-
pendix 4.6.1, the current û is expressed in terms of the bottom elevation ĥ by
solving (4.2.17)–(4.2.18). Furthermore, it is shown in the appendix that sub-
stituting the cosine series (4.2.20) into the bottom evolution equation (4.2.19)
and truncating the summation at N results in

∂h̃

∂τ
= (D + γA) h̃. (4.2.21)

Here, h̃ = (h̃0, . . . , h̃N ), D = diag(ω0
0 , . . . , ω

0
N ) is a diagonal matrix and A is a

matrix with elements amn, where

ω0
m = α

(mπ)2

k2 + (mπ)2
− Λ

(
(mπ)2 + k2

)
, (4.2.22)

amn =

{
0 if m+ n is even,

4αikm2

(m2−n2)((mπ)2+k2) otherwise,
(4.2.23)

with α = b1ik〈|u0|b1ϕ〉 a positive real number, where ϕ(t) is the time-dependent
part of Ω̂ (see Appendix 4.6.1). Equation (4.2.21) admits solutions of the form

h̃ = eωτh, (4.2.24)
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parameter value definition description

σ 0.7 σ∗B∗/U∗ relative importance of inertia to advection
r 1 r∗B∗/(U∗H∗) relative importance of friction to advection
Ro−1 0.5 f∗B∗/U∗ relative importance of Coriolis to advection
Λ 0.005 Λ̃〈|u0|b2 〉 bed slope parameter
b1 2 advective sediment transport parameter
b2 2 bed slope effect parameter
N + 1 10 number of terms in cosine series of ĥ

Table 4.1: Model parameters and their default values. These values are representative
for the Western Scheldt (values for the dimensional parameters are given in the text).

with ω an eigenvalue of D + γA and h the corresponding eigenvector. The
superscript zero of the elements in the diagonal matrix D represents the fact
that these are the eigenvalues when γ = 0 (no Coriolis effect).

For every wavenumber k, we calculate the eigenvector hj(k) corresponding
to the j-th eigenvalue ωj(k). The eigenvalues and corresponding eigenvectors
are sorted such that ω0 ≥ · · · ≥ ωN . The wavenumber k for which the largest
growth rate ω0(k) is attained, is called the preferred wavenumber kpref . The
corresponding eigenvector h0(kpref) = (p0, . . . , pN ), sets the spatial structure
of the fastest growing bottom pattern:

hpref =

N∑
n=0

pn cos(nπy)eikprefx + c.c. (4.2.25)

The second and third largest eigenvalues are denoted by ω1 and ω2, respectively.
The dimensionless growth rates ω relate to dimensional ones by ω∗ = ωεσ∗

(since τ = εt = εσ∗t∗).

4.3 Results

In the following experiments, we chose model parameters based on the Western
Scheldt. The dimensionless model parameters are summarized in Table 4.1.
They correspond to a channel width of B∗ = 5 km, channel depth of H∗ =
10 m and with a typical current velocity with amplitude U∗ = 1 ms−1 and
radian frequency σ∗ = 1.4 · 10−4 s−1 (M2 tide). The gravitational constant is
g∗ = 10 ms−2, the friction parameter r∗ = 2 · 10−3 ms−1 and the (default)
Coriolis parameter f∗ = 10−4 s−1. The sediment transport parameters are
(following Schramkowski et al. (2002) and Chapter 3), s∗1 = 3 · 10−4 m1−b1 sb1 ,
s∗2 = 1.5 · 10−3 m2−b2 sb2−1, b1 = b2 = 2 (see Section 4.4.2) and porosity
p? = 0.4.
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Figure 4.3: Top row: dimensionless growth rates of the three fastest growing modes,
ω0, ω1 and ω2, versus dimensionless along-channel wavenumber k for different values
of the inverse Rossby number Ro−1. The dots in the top panels indicate the maximum
growth rate and corresponds to the figures in the rows below. Second row: fastest
growing bottom pattern for different values of Ro−1. Third row: residual currents
over the bottom pattern in the second row. Bottom row: amplitudes and arguments
of cosine series coefficients that correspond to the the bottom patterns in the second
and third row (see equation (4.2.25)). A value Ro−1 = 0.5 is representative for the
Western Scheldt. A dimensionless growth rate ω = 0.5 corresponds to a dimensional
growth rate of approximately 0.16 yr−1 and a dimensionless wavelength 2π/k = 3
corresponds to a dimensional wavelength of 15 km.
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4.3.1 Sensitivity to Rossby number

To investigate the role of the Coriolis effect in the initial formation of bars,
the inverse Rossby number Ro−1 is varied. All other parameters are kept fixed
such that varying Ro−1 corresponds to varying the Coriolis parameter f∗. The
results are summarized in Figure 4.3. The top panels of the figure show the
first three growth curves (i.e., ω0, ω1 and ω2 versus wavenumber k) for different
values of the inverse Rossby number Ro−1. The figure reveals that the growth
rate of the fastest growing pattern slightly increases with increasing Ro−1.
The wavenumber kpref for which the growth rate attains its maximum value is
hardly influenced by the Coriolis effect.

The panels in the two middle rows in Figure 4.3 illustrate the patterns and
the residual current that correspond to the fastest growing patterns for different
values of the inverse Rossby number. When the Coriolis effect is neglected
(Ro−1 = 0), the patterns have a tidal bar structure of cos(nπy) cos(kx), with
n a natural number and k the wavenumber. However, the pattern significantly
changes when the Coriolis effect is considered. In that case, the fastest growing
pattern seems a combination of tidal bars and oblique tidal ridges. Moreover,
when the Coriolis effect is neglected or very weak, the cells of residual current
are in between troughs and bars, whereas the residual currents go around the
bars and troughs when the Coriolis effect is taken into account.

The bottom row of panels in Figure 4.3 shows, for different values of the
inverse Rossby number Ro−1, the components pn of the eigenvector h0(kpref).
The figure reveals that the spectrum widens with increasing Ro−1. Moreover,
looking at the phases of the components pn, it appears that in all cases consid-
ered, the patterns are to a good approximation of the form

hpref ≈ 2|p1| cos(πy) sin(kprefx)

+ 2|p2| cos(2πy) cos(kprefx)

− 2|p3| cos(3πy) sin(kprefx).

The fact that only a narrow part of the spectrum is involved follows from ex-
pression (4.2.23). Since the coefficients amn decrease when (m2−n2) increases,
the equation of ∂h̃m/∂τ is mostly dependent on the coefficients h̃n for which n
is close to m.

4.3.2 Asymptotic analysis for weak Coriolis force

Above, it was shown that when the Coriolis effect is considered, the maximum
growth rate slightly increases and the fastest growing pattern changes signif-
icantly. An explanation for this is sought by analyzing the system for small
values of γ (while fixing r), which corresponds to small values of the inverse
Rossby number Ro−1 (i.e., weak Coriolis force).
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y

Figure 4.4: The O(1) (as γ ↓ 0) bottom pattern (colors). The white contour lines
denote the O(γ) correction due to the Coriolis effect. Solid lines denote positive values
(bar) and dashed lines negative ones (troughs).

Let, as before, ωj and hj for j = 0, . . . N be eigenvalues and eigenvectors of
the (perturbed) eigenvalue problem

ωh = (D + γA)h (4.3.1)

and expand these eigenvalues and eigenvectors in powers of γ:

ωj = ω0
j + γω1

j + γ2ω2
j +O(γ3),

hj = h0
j + γh1

j + γ2h2
j +O(γ3),

for j = 0, . . . , N . The eigenvectors of the O(1) eigenvalue problem are h0
j = ej

with ej the standard basis vectors of RN+1 (i.e., the j-th entry of ej equals
one and the others zero). The eigenvalues ω0

j are given in (4.2.22).
At O(γ), equation (4.3.1) reads

ω0
jh

1
j + ω1

jej = Dh1
j +Aej . (4.3.2)

The O(γ) correction to the eigenvalues is now computed by taking the standard
inner product of (4.3.2) with ej , resulting in

ω1
j = ajj .

Here, it is used that ω0
jh

1
j · ej = Dh1

j · ej . Given that ajj = 0, it follows
that there is no O(γ) correction to the eigenvalues. However, there is an O(γ)
correction to the eigenvectors. To see this, take the inner product of (4.3.2)
with em (m 6= j) to obtain the m-th component of h1

j ,

h1
j · em =

amj
ω0
j − ω0

m

.

Figure 4.4 shows that the the superposition of the tidal bar pattern (colors) and
the perturbation induced by the Coriolis effect (white contour lines) results in
the tidal sand ridges by connecting the bars and troughs. Since the perturbation
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Figure 4.5: The effect of bottom perturbations in the form of tidal bars (top panels)
and of tidal sand ridges (bottom panels) on the tidal current. The left panel depicts
the situation during flood (fat green arrow) and the right panel the one during ebb
(fat orange arrow). The green arrows and orange round arrows denote the vorticity
at the principle tidal frequency M2. The light blue arrows depicts the residual tidal
vorticity. (After Zimmerman (1981) and Chapter 3).

due to the Coriolis effect is anti-symmetric with respect to the channel axes,
it breaks the reflective symmetry of the tidal bar pattern (with respect to the
middle of the channel).

Lastly, we show that the correction to the largest eigenvalue is positive by
considering the O(γ2) problem,

ω0
jh

2
j + ω1

jh
1
j + ω2

jej = Dh2
j +Ah1

j . (4.3.3)

Taking the inner product with ej and substituting ω1
j = 0 results in

ω2
j = Ah1

j · ej =

N∑
m=1

(h1
j · em)(Aem · ej)

=

N∑
m=1

amjajm
ω0
j − ω0

m

,

where again, it is used that ω0
jh

2
j · ej = Dh2

j · ej . For all m, amjajm > 0

and if ω0
j is the largest eigenvalue of the unperturbed system, ω0

j − ω0
m > 0.

Hence, a weak Coriolis effect increases the maximum growth rate of the bottom
perturbations, which is consistent with the findings in Figure 4.3.

4.4 Discussion

4.4.1 Oblique tidal ridges versus tidal bars
The differences in patterns when the Coriolis effect is taken into account or not,
follow from the additional torque exerted by the Coriolis effect on water mo-
tion over the longitudinally sloping bed. When the Coriolis effect is neglected
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and only the frictional torque due to lateral bottom slopes is considered, the
fastest growing bottom patterns consist of tidal bar patterns, identical to those
obtained by Seminara and Tubino (2001), among others. An elaborate expla-
nation of the physical mechanism of the formation of tidal bars is given in
Chapter 3. When the Coriolis torque is taken into account, the joint action
of the two torques results in the formation of oblique tidal sand ridges. This
mechanism is the same as the one responsible for the initial formation of off-
shore tidal sand ridges, as explained by Huthnance (1982). For completeness,
we summarize the two mechanisms below.

Both the morphodynamic instability leading to tidal bars as the instability
leading to tidal sand ridges result from the fact that perturbations of the flat
bottom in the form of tidal bars or tidal sand ridges alter the tidal currents
flowing over them (or vice versa). This tide-topography interaction results in
residual currents, such that both during the ebb and flood phase, the cur-
rents become stronger upstream of the bars/ridges, whereas they are weakened
downstream of the bars/ridges (and vice versa for the troughs) (Zimmerman,
1981). This results in sediment transport converging at the bars or ridges and
diverging at the troughs, hence, the instability.

Figure 4.5 illustrates the tide-topography interaction. In the top panels a
tidal bar pattern is considered with a tidal current flowing over it. Due to
lateral gradients in the bottom, a frictional torque generates vorticity at the
principal tidal frequency, between the bars and troughs (green round arrows
in the figure). The M2 vorticity is transported by the background M2 current,
resulting in a residual tidal vorticity as indicated by the light blue arrows in
the figure. Adding the background current to the residual current results in
higher velocities upstream of a bar and lower velocities downstream of the bar
(and vice versa for the troughs).

In the bottom panels of Figure 4.5 a tidal sand ridge pattern is shown with
the same background current. Also here, due to lateral bottom slopes, a fric-
tional torque generates vorticity at the M2 frequency. Now, in addition, the
longitudinal bottom slopes result in a Coriolis torque. On the Northern Hemi-
sphere, the Coriolis and frictional torque are in the same direction when the
ridges are rotated anti-clockwise with respect to the background current. Also
in this case, the background M2 current transports the M2 vorticity, resulting
in residual vorticity as indicated by the light blue arrows in the figure. Again,
when the residual current is added to the background current the velocities are
higher upstream of the ridge than downstream and vice versa for the troughs.

An essential difference between the residual currents due to tidal bars and
those due to tidal ridges, is that in the later case the residual currents are
around the crests, whereas in the former case they are directed towards the
crests. Note that pure tidal ridges as in the figure can not form in a confined
channel, because they violate the lateral boundary conditions, but a similar
pattern is possible.
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Figure 4.6: Dimensionless growth rates of the fastest growing mode ω0, versus dimen-
sionless along-channel wavenumber k for different values of the sediment transport
parameters b1 and b2. Here, Ro−1 = 0.5 and the values of s∗1 and s∗2 are their default
values ±10% (shaded area).

4.4.2 Sediment transport formulation

In the sediment transport formulation q in equation (4.2.8) we chose b1 = b2 =
2. This corresponds to advective bed load transport as in Bailard (1981) and a
bed slope effect due to eddy diffusivity, which is larger than the bed load bed
slope effect as in the Bailard formulation (see Chapter 3). Following the later
study, the bed slope parameter s∗2 is calculated as

s∗2 =
µ∗w∗sα

∗

κ∗vγ∗

(
1− e−

w∗
s

κ∗vH∗
)−1

≈ 0.0015 s,

where µ∗ (≈ 5 m2 s−1) is the horizontal eddy diffusion coefficient, w∗s (≈
0.013 ms−1) the sediment settling velocity, κ∗v (≈ 0.01 m2 s−1) the vertical
eddy diffusivity coefficient, α∗ (≈ 4 · 10−6 sm−1) an erosion parameter and γ∗
(≈ 0.017 s−1) a deposition parameter.

When b1 = 2 and b2 = 3, the transport is the same as for the Bailard
formulation for bed load sediment transport (Bailard, 1981). When b1 = 4,
advective transport is similar to the Engelund Hansen parametrization for total
load transport (Engelund and Hansen, 1967).

The magnitude of the dimensionless growth rate depends on the choice of b1
and b2 (see Figure 4.6), but the shape of the fastest growing patterns is hardly
affected by this choice (see supplementary information). When b1 = 4 the
growth rates increase. When b2 = 3 the differences are minimal for k ≈ kpref .
For larger wavenumbers the growth rate is smaller when b2 = 3 compared to
b2 = 2, due to an increased bed slope effect. However, for those wavenumbers
advection of suspended sediment becomes relevant and the total load sediment
transport formulation (4.2.4) is no longer valid (see Chapter 3).
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4.4.3 Comparison with a numerical model

The results of Section 4.3, obtained with the semi-analytical model, correspond
qualitatively with those of the numerical model that has a similar set-up as the
one from Hibma et al. (2004), but includes the Coriolis effect (see online SI).
When the Coriolis effect is taken into account, oblique sand ridges also form
in this numerical model. Moreover, their growth rate is larger than that of the
tidal bars that form in the absence of Coriolis (see the color bars in Figure 4.1),
whilst their wavelength is hardly affected.

The wavelengths of the tidal bars in Figure 4.1 produced with the numerical
model are approximately 5–7 km. The average depth in the area considered
is 6.5 m and the current velocities amplitudes are close to 1.0 ms−1. In the
semi-analytical model, when H∗ = 6.5 m and U∗ = 1 ms−1, the preferred
wavenumber is kpref ≈ 3.6, corresponding to dimensional wavelengths of ap-
proximately 8.7 km. Hence, the wavelength of the semi-analytical model is
slightly larger, but in the same order of magnitude as those simulated by the
numerical model. The similarities between the two different models confirm
robustness of the discussed mechanism.

4.5 Conclusions

To study the role of the Coriolis effect in the initial formation of bottom pat-
terns in a tidal channel, a semi-analytical model is extended to include the Cori-
olis effect. It was shown that the Coriolis effect breaks the (anti-)symmetry of
the bottom pattern that initially forms. The fastest growing bed perturbation
can be characterized as a combination of tidal bars and oblique ridges, unlike
the case without Coriolis effect where only tidal bars form. The Coriolis ef-
fect also modifies the residual current so that it drives anticyclonic circulations
around the ridges. The mechanism behind these modifications is the same as
the one causing the formation of oblique tidal sand ridges on the continental
shelf. Compared to the case where the Coriolis effect is neglected, the preferred
wavenumber is similar, while the maximum growth rate slightly increases.

4.6 Appendix

4.6.1 Derivation of bed evolution equation

The current û in equation (4.2.19) is eliminated by first solving the vorticity
equation (4.2.18). Homogeneous solutions decay due to the bottom friction.
Therefore, a nontransient particular solution reads

Ω̂ = ikv̂ − ∂û

∂y
= ϕ

(
∂ĥ

∂y
− γikĥ

)
. (4.6.1)
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Here, ϕ(t) is the time dependent part of Ω̂, which is found by solving

σ

r

∂ϕ

∂t
+

(
u0ik

r
+ 1

)
ϕ = u0

for each harmonic component by means of a truncated Fourier series. Multi-
plying equation (4.6.1) by ik and adding it to the ∂/∂y of equation (4.2.17)
results in a differential equation for v̂,

∂2v̂

∂y2
− k2v̂ = ik

(
(ϕ+ u0)

∂ĥ

∂y
− γϕikĥ

)
︸ ︷︷ ︸

F

, (4.6.2)

with boundary conditions v̂ = 0 at y = 0 and y = 1. Variation of parameters
yields a solution for v̂ and ∂v̂/∂y,

v̂ =

∫ 1

0

G(y, s)F (t, s) ds and
∂v̂

∂y
=

∫ 1

0

∂G

∂y
(y, s)F (t, s) ds,

with F (t, y) the right hand side of (4.6.2) and Green’s function

G(y, s) =

{− sinh(k(1−y)) sinh(ks)
k sinh(k) if s < y,

− sinh(ky) sinh(k(1−s))
k sinh(k) if s > y.

The current û in terms of ĥ, now follows from the continuity equation (4.2.17).
Multiplying û by |u0|b1 , taking the tidal average and substituting this in equa-
tion (4.2.19), results in the bed evolution equation

∂ĥ

∂τ
= α

∫ 1

0

∂G

∂y

(
∂ĥ

∂s
− γikĥ

)
ds+ Λ

(
∂ĥ

∂y2
− k2ĥ

)
, (4.6.3)

with α = b1ik〈|u0|b1ϕ〉. Substituting the cosine series (4.2.20) for ĥ results
in ∫ 1

0

∂G

∂y

∂ĥ

∂s
ds =

∞∑
n=1

P 1
n h̃n and

∫ 1

0

∂G

∂y
ĥds =

∞∑
n=1

P 2
n h̃n,

with

P 1
n =

(nπ)2 cos(nπy)

(nπ)2 + k2
,

P 2
n =

k((−1)n − cos(k)) cosh(ky)
sinh(k) + k sinh(ky) + nπ sin(nπy)

(nπ)2 + k2
.
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The inner products of P 1
n and P 2

n with 2 cos(mπy) read∫ 1

0

2 cos(mπy)P 1
n dy =

{
(mπ)2

(mπ)2+k2 if m = n,

0 otherwise,∫ 1

0

2 cos(mπy)P 2
n dy =

{
0 if m+ n is even,

−4m2

(m2−n2)((mπ)2+k2) otherwise.

Therefore, substituting the cosine series in the bed evolution equation and
taking the inner product with 2 cos(mπy) yields

∂h̃m
∂τ

= ω0
mh̃m + γ

∞∑
n=1

amnh̃n,

with ω0
m and amn as in (4.2.22)–(4.2.23). Truncating the sums at N results in

equation (4.2.21).
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Abstract

The long-term dynamics of tidal bars in a confined tidal channel is studied
by a new numerical model of intermediate complexity. The simplicity of the
model allows a comparison of its results with those obtained from a linear
stability analysis of a flat bottom. The aim of this chapter is to study the
sensitivity of the tidal bar evolution and possible equilibria to channel width
and the Coriolis parameter. For this a configuration that crudely mimics the
Exe estuary is chosen. The model simulates tidal bars that extend beyond the
middle axis of the channel, as is also observed in nature and in a laboratory.
The simulations suggest that while the Coriolis effect strongly alters the initial
growth of tidal bars, its impact on the equilibrium patterns is smaller. In one
simulation (in which the channel is twice as wide as in the default setting) the
bars seem to have reached a morphodynamic equilibrium after approximately a
century, but changed to a drastically different pattern after approximately two
and a half centuries. The pattern after a century was strongly influenced by the
Coriolis effect, however, the pattern after 2.5 centuries was not. This highlights
the problem of studying the long-term evolution using time integrations: it is
unclear when and if a pattern corresponds to a morphodynamic equilibrium.
To overcome this problem, equilibrium patterns and their stability are analysed
by means of Newton’s method. This results in morphodynamic equilibria for
different channel widths. For increasing widths, the bars extend further over
the channel axes and the maximum bottom height of the patterns moves away
from the channel boundary.
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5.1 Introduction

In the preceding chapters, only the initial formation of tidal bars was studied.
In that stage of their formation the heights of the bars are assumed to be small
compared to the water depth. To gain insight in the evolution of bars after
this initial stage, various approaches can be taken. One such approach employs
high-complexity numerical models. In this approach, typically an entire channel
from the sea (an open boundary) up to the landward boundary (closed or
river) is considered. Usually, an initially sloping bottom topography is imposed
and a tidal wave enters the channel from the open boundary. This approach
is followed in, for example, Hibma et al. (2003, 2004), van der Wegen and
Roelvink (2008), Tambroni et al. (2010), Xie et al. (2017) and Olabarrieta et al.
(2018). However, the complexity of such models hinders a detailed analysis of
the dynamics that are responsible for the observed bottom patterns and their
sensitivity to model parameters.

The models described in the paragraph above are global models. So-called
local models can be employed, typically in an idealized setting, when aiming at
gaining a more fundamental understanding about the dynamics of tidal bars. In
these models, only a short section of a long channel, with a constant width and
depth is considered. The water motion in this domain is driven by a spatially
uniform pressure gradient and periodic boundary conditions are imposed. This
allows one to study the formation of tidal bars without considering the effects
of the open and closed boundaries or the morphodynamic adjustment of the
sloping bottom topography. Such local models were successful in unraveling the
physical mechanism of the initial growth of tidal bars (Seminara and Tubino,
2001, Schramkowski et al., 2002, see also Chapters 3 and 4).

When tidal bars mature, their heights are no longer small compared to the
water depth and their dynamics become nonlinear. Nonlinear dynamics can
result in complex phenomena, such as multiple equilibria, limit cycles (i.e.,
bottom patterns that evolve periodically in time) and/or chaos. Schramkowski
et al. (2004) investigated whether such phenomena occur in the dynamics of
tidal bars. In contrast to most studies on nonlinear bars, they did this by us-
ing a local, mathematically tractable model in which the governing equations
were projected on Fourier modes. Next, they considered the possible morpho-
dynamic equilibria and their stability properties by performing a bifurcation
analysis in two bifurcation parameters, the bottom friction coefficient and the
channel width. The starting point of this analysis was the trivial morphody-
namic equilibria that describes a uniform tide over a flat horizontal bottom.
They found that, depending on the channel width, the flat bottom equilibrium
becomes linearly unstable through a critical or subcritical pitchfork bifurcation
when increasing the friction parameter beyond a critical value. The manifes-
tation of a subcritical bifurcation implies the existence of multiple equilibria.
Further increasing the friction parameter resulted in a Hopf bifurcation that
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leads to time periodic solutions. However, their model approach was limited to
weak friction; it turned out that for (realistically) large friction parameter val-
ues, too many (and unclear which) Fourier modes were needed. This made the
continuation to realistic values of bottom friction computationally unfeasible.

In this chapter, we build a numerical local model, which is not limited to
weak bottom friction. This model allows us to explore the long-term evolu-
tion and, if existent, nontrivial morphodynamic equilibria that represent tidal
bars, where the search for morphodynamic equilibria is restricted to steady
states. The study of Schramkowski et al. (2004) motivates the first question
that we aim to answer in this chapter: 1) In the new model, do nontrivial
tidal bar equilibria exist in the parameter regime with realistic values of the
friction parameter? The second question concerns the sensitivity of the long-
term dynamics to model parameters. Field observations of Dalrymple and
Rhodes (1995) and Leuven et al. (2016) suggest that the channel width is an
important parameter for the tidal bar dynamics. This finding is also observed
in the available local models and complex numerical models (see earlier cita-
tions). Moreover, numerical studies (Xie et al., 2017, Olabarrieta et al., 2018)
and the results of Chapter 4 show that there are physically relevant parameter
regimes (for moderate to small values of the Rossby number) where the Coriolis
force significantly affects the initial growth of the spatial patterns of tidal bars.
This motivates the second question: 2) How does the long-term evolution and
possibly equilibria patterns depend on channel width and the Coriolis parame-
ter? Lastly, in the linear stability analyses of Seminara and Tubino (2001) and
Schramkowski et al. (2002) (see also Chapters 3 and 4) the fastest growing bot-
tom perturbation of a flat bottom was studied, because this pattern dominates
the spatial structure of the pattern that initially forms. This raises the third
question: 3) To what extend do bottom patterns on the long-term resemble
the fastest growing patterns found with the linear stability analysis of the flat
bottom?

This chapter is organized as follows. In Section 5.2, the model and the
numerical implementation is described. This section is followed by a description
of the numerical experiments and their results. It starts with verifying that the
model reproduces results of Chapter 3. Subsequently, the output of four time
integration simulations of the long-term evolution with different channel width
and latitude values is presented. The results of the time integration runs are
followed by the (preliminary) results obtained using a numerical continuation
approach. Here, the sensitivity of the morphodynamic equilibria to channel
width is systematically investigated. In Section 5.4, a comparison of the model
results with observed tidal bars is discussed together with the extent to which
the long-term evolution and possibly equilibria patterns resemble the fastest
growing patterns found with the linear stability analysis of the flat bottom.
Section 5.4 ends with discussing limitations of the model and it is followed by
the conclusions in Section 5.5.
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Figure 5.1: Model domain viewed from an along-channel cross-section (top-left panel),
a lateral cross-section (top-right panel) and from the top (bottom panel). Here, x, y
and z are the along-channel, lateral and vertical coordinate, L denotes the length, B
the width and H the undisturbed channel depth. The bottom height is denoted by
h, the sea surface elevation by ζ. Lastly, Fp = (Fpx, Fpy) denotes the imposed tidal
pressure gradient force.

5.2 Methods

5.2.1 Model

The local numerical morphodynamic model is based on the Morfo55 model,
described in Yuan et al. (2016) (originally developed by Caballeria et al., 2002,
Garnier et al., 2006). Here, we present a new model, adopted from the Morfo55
model, to study the dynamics of bottom patterns in a section of a confined
tidal channel. Because the original Morfo55 model was designed to study
bottom patterns at the coast or on the continental shelf (in a periodic domain),
a second closed boundary condition had to be added to allow for a channel
geometry. Furthermore, other formulations for sediment transport are added
for consistency with the previous two chapters.

The model domain consists of a short section of a long channel. The section
has length L, width B and undisturbed water depth H (see Figure 5.1). The
the domain length is assumed to be short compared to the tidal wavelength and
the length scale on which the channel width varies. Moreover, the shallow water
approximation is used, the tidal amplitude is assumed to be small compared
to the undisturbed depth and the bottom is assumed to evolve on a timescale
much longer than the tidal period. Finally, the sediment is assumed to be
uniform and the water motion is forced by an imposed spatially uniform tidal
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pressure gradient force.
Let x = (x, y) denote the spatial coordinate, with x the along-channel

coordinate and y the lateral coordinate of the domain [0, L] × [0, B] and let t
denote the time coordinate. The evolution of the bottom height h(t,x), with
respect to the mean bed level z = −H, is governed by

∂h

∂t
= − 1

1− p∇ · 〈qb + qs〉. (5.2.1)

Here, ∇ = (∂/∂x, ∂/∂y), p is the porosity parameter and 〈·〉 denotes the aver-
age over one tidal period 2π/σ with σ the principal frequency of the imposed
tidal pressure gradient force Fp. The right-hand side of the bottom evolution
equation (5.2.1) contains the tidally-averaged convergence of the bedload sed-
iment transport qb = (qbx, qby) and the suspended load sediment transport
qs = (qsx, qsy).

The formulation of the bedload sediment transport is based on the formula-
tion from Bagnold (1963) with a bed slope term adopted from Bailard (1981),
and reads

qb = αbH(u2e − u2c)(u2e − u2c) (u− Λue∇h) , (5.2.2)

where αb is a bed load constant, H the Heaviside function (which is one when
its argument is positive and zero otherwise), uc the critical velocity for erosion
and Λ is a bed slope constant. Furthermore, ue is the effective velocity given
by (Roos et al., 2004),

u2e = ‖u‖2 +
1

2

(
uwH

H + ζ − h

)2

,

with u(t,x) = (u, v) the depth-averaged current velocity, uw the near-bed wave
orbital velocity amplitude (taken constant here) and ζ(t,x) the free surface ele-
vation induced by the bottom perturbations. The second term crudely accounts
for the effect of wave stirring on sediment transport.

The suspended load sediment transport and concentration is calculated fol-
lowing (the appendix of) ter Brake and Schuttelaars (2010). The suspended
load transport reads

qs = uC − µ (∇C + cb∇h+ ct∇ζ) . (5.2.3)

Here, C(t,x) is the depth-integrated volumetric sediment concentration. The
last three terms in equation (5.2.3) represent horizontal diffusion of sediment
and result from assuming an approximate balance between the vertical turbu-
lent mixing and downward settling which fixes the vertical distribution of sed-
iment concentration. Furthermore, µ is the horizontal eddy diffusivity (taken
constant here) and cb and ct are the sediment concentration at the surface and
at the bottom, respectively. The latter two are given by

cb =
wsC

κv

(
1− e−ws

κv
(H+ζ−h)

)−1
and ct =

wsC

κv

(
e
ws
κv

(H+ζ−h) − 1
)−1

,
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with ws the settling speed and κv the vertical eddy diffusivity (also taken con-
stant). The concentration C is calculated using an advection-diffusion equation,

∂C

∂t
+∇ · qs = αsH(u2e − u2c)(u2e − u2c)− wscb, (5.2.4)

where the first term on the right hand side models the erosion of sediment from
the bed, with αs an erosion parameter. The second term models the deposition
of suspended sediment.

To obtain the sediment transport, the tidal current u and sea surface eleva-
tion ζ are needed. These are calculated by solving the depth-averaged shallow
water equations, which consist of the continuity and momentum equations,

∂ζ

∂t
+∇ · ((H + ζ − h)u) = 0, (5.2.5)

∂u

∂t
+ (u · ∇)u +

cd‖u‖u
H + ζ − h + g∇ζ + fEu = Fp. (5.2.6)

Here, cd is a drag coefficient, g the gravitational acceleration, Fp(t) = (Fpx, Fpy)
an externally prescribed pressure gradient force that drives the tidal flow and
f = 2Ω sin(ϕ) the Coriolis parameter, where Ω the rotation rate of the Earth
and ϕ the latitude (both taken as constant within the domain). The matrix E
reads

E =

(
0 −1
1 0

)
.

Following Yuan et al. (2016), the external pressure gradient force per unit mass
is given by

Fp =
∂u0

∂t
+
cd‖u0‖u0

H
+ fEu0, (5.2.7)

with u0 = (U sin(σt), 0) the current with amplitude U and frequency σ induced
by the external pressure gradient in the absence of bottom patterns. That is,
Fp is chosen such that when h = 0 the current u(t,x) = u0(t).

To solve the system of equations (5.2.1)–(5.2.6), periodic boundary condi-
tions are imposed in the along-channel direction with period L for all variables
h, ζ, u and C. Furthermore, there is no transport of water and sediment
through the channel walls, resulting in the lateral boundary conditions

v = 0 and qsy = qby = 0 at y = 0, B.

5.2.2 Numerical implementation

While Morfo55 was implemented in Fortran, the current model is implemented
in the Julia programming language (Bezanson et al., 2017). As a result, com-
pared to the Fortran code, the model is easier to read, less prone to errors and it
integrates well with existing scientific computing Julia software. Following the
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Figure 5.2: Top view of the discretized model domain. The shaded blue area denotes
the physical domain. The points outside the shaded area are the ghost points to
implement the periodic boundary condition. To that end, the values at the end and
beginning of the physical domain are copied to the ghost points (represented by the
gray arrows).



i
i

i
i

i
i

i
i

99

Morfo55 model, the equations are discretized in space by second-order finite
difference methods on a regular, rectangular staggered Arakawa C-grid with
resolution ∆x by ∆y in the along-channel and lateral direction, respectively.
This grid consists of three subgrids, the U -, V - and C-grid, which are shifted
with respect to each other (see Figure 5.2). The along-channel current u and
the sediment transports qsx and qbx, are calculated at the U -grid. The lateral
current v and sediment transports qsy and qby are calculated at the V -grid.
The concentration C, the free surface elevation ζ and the bottom height h are
calculated at the C-grid. The U - and C-grid have N = (nx − 2)(ny − 1) grid
points in the physical domain (denoted with shaded blue in the figure), while
the V -grid contains Nv = (nx − 2)ny grid points.

Apart from the grid points in the physical domain, so-called ghost points
are defined. These ghost points are used to implement the periodic boundary
conditions (in the x-direction). That is, the values at (x2, yj) are copied to
(xnx , yj) for all j, as well as the values at (xnx−1, yj) to (x1, yj) (depicted in
Figure 5.2 by the gray arrows). The lateral boundaries are imposed at the
V -grid (i.e., the grid where the lateral velocity v and the lateral sediment
transports qsy and qby are calculated) by requiring: v = 0, qsy = 0 and qby = 0.

In the bed evolution equation (5.2.1) the convergence of sediment transport
is averaged over one tidal cycle (see Chapter 3 or 4 for a discussion). This
separates the long morphodynamical timescale from the short hydrodynami-
cal timescale and allows us to calculate the convergence of sediment transport
during one tidal cycle in which the bottom height is held fixed. Let Ψh(t)
be a (3N + Nv)-dimensional vector consisting of the free surface elevation ζ,
along-channel current velocity u, lateral velocity v and the suspended sediment
concentration C at time t at every grid point (xi, yj) in the physical domain.
The subscript of Ψh refers to an N -dimensional vector h containing the bot-
tom height h at every grid point (xi, yj) in the physical domain. It denotes
that Ψh is calculated given fixed values of the elements of h. The discretized
hydrodynamic equations (5.2.5)–(5.2.6) and the concentration equation (5.2.4),
read

∂Ψh

∂t
= gh(Ψh), (5.2.8)

with gh : R3N+Nv → R3N+Nv a nonlinear function, where the subscript again
denotes the fixed values of the bottom height. Solving equation (5.2.8) can be
thought of as writing ζ, u and C in terms of h, which allows us to write the
the full system of discretized equations as one system of ordinary differential
equations (ODEs),

∂h

∂t
= f(h), (5.2.9)

with f : RN → RN a nonlinear function representing the convergence of tidally
averaged sediment transport at every grid point.
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5.2.3 Time integration

To solve Ψh(t) for a fixed bottom height h, the ODEs in (5.2.8) are integrated
over one tidal cycle with the Runge-Kutta 4 method (RK4) with fixed time
steps of ∆t (Shampine, 2005, Rackauckas and Nie, 2017). Knowing Ψh(t)
over a complete tidal cycle allows the calculation of the convergence of the
tidally averaged sediment transport ∇ · 〈qs + qb〉, resulting in f(h). After a
certain number of spin-up cycles of equation (5.2.8) (for realistic values of model
parameters, this is typically 2), equation (5.2.9) is subsequently integrated in
time by the Euler Forward method with time steps of ∆τ .

5.2.4 Continuation

To systematically investigate the dependency of morphodynamic equilibria
and their stability to model parameters, such as channel width and latitude,
a predictor-corrector continuation technique is used (e.g., Kuznetsov, 2004).
Given a parameter setting P and a morphodynamic equilibrium h, the predic-
tor predicts a new equilibrium h′ for the parameter setting P ′ in which the
parameters are slightly changed. That is, it transforms the equilibrium h, of
parameter setting P to a pattern h′ for which f(P ′,h) is close to zero. The
corrector, in turn, corrects this pattern such that it is in fact an equilibrium
and satisfies

f(P ′,h′) = 0. (5.2.10)

Using the continuation methodology, equation (5.2.9) is replaced by equa-
tion (5.2.10). Hence, only the time integration of equation (5.2.8) is still nec-
essary. When the channel width is varied, not only a parameter, but also the
grid changes. The predictor in that case consists of stretching or squeezing
the previous solution by ∆y, followed by an interpolation onto the numerical
C-grid. The corrector step is done with the Newton method implemented in
BifurcationKit.jl (Veltz, 2020).

The boundary conditions are such that the total amount of sediment is not
allowed to change. When using Newton’s method, this restriction is not nec-
essarily satisfied. Moreover, the phase of the bottom pattern is not uniquely
determined: if h(x, y) is an equilibrium, also h(x + c, y), with c a constant
real number, will result in a zero right hand side of equation (5.2.1) since the
problem is translational invariant. The nonuniqueness of solutions to equa-
tion (5.2.10) hinders the Newton method. To remedy this, f is adapted in
two ways. Denote the adapted f with a tilde: f̃ . The i-th component of
h, f and f̃ are denoted by hi, fi and f̃i, respectively for i = 1, . . . , N . For
i = 2, . . . , N − 1, the components of f and f̃ are the same, fi = f̃i. The first
adaptation of f is that its first component is replaced by a Dirichlet condition
that determines the phase of the pattern: f̃1(h) = h1. This results in equilib-
ria where h1 = h(0, 0) = 0. The second adaptation assures mass conservation
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by imposing a zero mean bottom height: f̃N (h) =
∑
i hi. That is, the last

equation in (5.2.10) is replaced by an integral condition.
To find equilibria with the Newton method, the Jacobian matrix of f̃ is

needed. This matrix, evaluated at a bottom pattern h, reads

J̃(h) =


∂f̃1

∂h1
(h) · · · ∂f̃1

∂hN
(h)

...
. . .

...
∂f̃N
∂h1

(h) · · · ∂f̃N
∂hN

(h)

 .

Since f̃ contains a time integral, calculating J̃ by hand is complicated. Options
to calculate the Jacobian are the use of symbolic software or by employing finite
differences (Dijkstra et al., 2014). Here, we opt for the (forward) automatic
differentiation method (see e.g., Griewank and Walther, 2008). This boils down
to using the chain rule consistently and smart bookkeeping. The idea is to
save both the result and the derivative after every elementary operation of
the code that calculates f̃(h) (e.g., addition, multiplication, etc.). When f̃ is
differentiable at h, this results in the calculation of the Jacobian matrix J̃(h)
without making truncation errors. The automatic differentiation is done with
the ForwardDiff.jl package (Revels et al., 2016).

The stability of an equilibrium h follows from the spectral decomposition of
the Jacobian matrix J(h) (no tilde). This matrix is calculated in the same way
as J̃(h) but by taking the derivative of f rather than f̃ . That is, without the
integral and Dirichlet condition. The eigenvalue problem to be solved reads

J(h)v = ωv, (5.2.11)

with v 6= 0 the normalized eigenvectors and ω the corresponding eigenvalues.
The eigenvalues are sorted by their real part: Re {ω1} ≥ · · · ≥ Re {ωN}. If the
real part of ω1 is negative, the equilibrium h is linearly stable. The correspond-
ing eigenvector v1 is in the direction in which perturbations of the equilibrium
dampens the slowest. On the other hand, when there are eigenvalues with
positive real part, the equilibrium is linearly unstable. The eigenvector v1,
corresponding to the eigenvalue with the largest real part ω1, points in the
direction in which perturbations grow the fastest.

For f̃ and f to be differentiable with respect to h, two modifications to
the governing equations are made. The first is that the Heaviside function
H in equation (5.2.4) and (5.2.2) is replaced by a hyperbolic tangent in the
continuation code,

H(u2e − u2c) ≈
1 + tanh(δ1(u2e − u2c))

2
,

where δ1 = 10 s2 m−2 tunes the steepness of the smoothed jump. The second
is that ‖u‖ in the quadratic friction term is replaced by (u2 + v2 + δ2)1/2 with
δ2 = 10−5 m2 s−2. These two modifications are only made for the continuation
runs, because especially the first is computationally expensive.
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5.2.5 Analysis of model output

In Section 5.3, the results are analysed by calculating the root-mean square
height at time t, which is a measure of the kinetic energy of the bottom pattern
and defined as

hrms(t) =
‖h(t)‖√

N
≈
(

1

LB

∫ L

0

∫ B

0

h(t, x, y)2 dxdy

)1/2

,

where ‖ ‖ denotes the Euclidean norm. Moreover, the patterns are analysed
with respect to an appropriate Fourier basis. That is, the bottom height at
time t is written as

h(t, x, y) =

∞∑
m,n=−∞

hm,n(t)e2πi(
n
2B y+

m
L x),

with hm,n a complex number for every integer m and n. This allows one to
analyse the time evolution of the different Fourier coefficients hm,n in both the
initial formation and the long-term evolution of the bottom patterns.

5.2.6 Design of experiments

In Section 5.3, three types of model experiments will be performed. The setup
of each type is discussed below. We base the channel characteristics on those
of the Exe estuary in England. That is, the channel is of the order of 3 m
deep, about 1 km wide and the tidal currents are in the order of 0.5 ms−1. A
complete description of the default parameter values is listed in Table 5.1. The
sections below contain the differences from the default setting for each type of
experiment.

Verification

We verify that the model reproduces results of Chapter 3 in three different
manners. First, the growth rates calculated in Chapter 3 are compared with
the eigenvalues of the Jacobian matrix J(0). Second, the eigenvectors of this
Jacobian are compared with the eigenfunctions in Chapter 3. The former are
supposed to be finite dimensional (i.e., discretized) representations of the latter.
Third, the morphodynamic time integration is tested by projecting the bottom
height resulting from a time integration run onto the eigenvector of the Jacobian
J(0) with the largest growth rate. The time series of the amplitude of this
pattern is compared with the time series of the exponential growth of the
corresponding eigenvalue. The morphodynamic time integration is initialized
with a random bottom perturbations between −10 and 10 cm (with mean zero
and satisfying the boundary conditions).
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Parameter Value Unit Description

B 1 km channel width
H 3 m undisturbed channel depth
L 10 km domain length
∆y 50 m lateral grid space
∆x 100 m longitudinal grid space
∆t 5 s hydrodynamical time step
∆τ 1 week morphological time step
U 0.5 m s−1 background current amplitude
σ 2π/44700 s−1 M2 tidal frequency
g 9.81 ms−2 gravitational acceleration
cd 0.0025 drag coefficient
Ω 7.29 · 10−5 s−1 angular speed of Earth rotation
ϕ 50 ◦ N latitude
uc 0.3 m s−1 critical erosion velocity
ws 0.013 m s−1 settling velocity
µ 10 m2 s−1 horizontal eddy diffusivity
κv 0.01 m2 s−1 vertical eddy diffusivity
αs 5 · 10−6 sm−1 erosion suspended sediment parameter
αb 3 · 10−4 sm−1 bedload parameter
uw 0.25 m s−1 near-bed wave orbital velocity amplitude
Λ 2 bed slope parameter
p 0.4 porosity

Table 5.1: Model parameters. Their values are based on the Exe estuary (see Chap-
ter 3 and references therein). The value of the near-bed wave orbital velocity ampli-
tude uw is the same as in Yuan et al. (2016) and Roos et al. (2004).
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To compare the model output of the nonlinear model with that of the linear
model of Chapter 3, a number of simplifications are made to the current model.
First of all, the Coriolis effect is neglected, the quadratic bottom shear stress
replaced by a linear one,

cd‖u‖u
H + ζ − h →

8cdUu

3π(H + ζ − h)

and only the bed slope (diffusive) part in the bedload transport is considered:

qb = −αbΛ‖u‖3∇h.

Furthermore, the last term in the suspended sediment transport (5.2.3) is ne-
glected, ct = 0, and in the expression for cb, the depth H + ζ − h is replaced
by the constant undisturbed channel depth H. Moreover, the critical current
velocity for sediment movement and the near-bed wave orbital velocity are set
to zero, uc = 0 and uw = 0, the channel depth is H = 5 m, the background
current velocity amplitude is U = 1 ms−1, the eddy diffusivity µ = 1 m2 s−1
and the latitude ϕ = 0◦. Note that a difference between the two model for-
mulations remains, namely the sea surface elevation ζ induced by the bottom
topography.

Time integration

To compare the fastest growing patterns obtained from the linear stability
analysis with the long-term evolution and to study the (transient) long-term
evolution of tidal bars for different values of the channel width B and the
Coriolis parameter, four time integration runs are performed. The channel
width is chosen to be equal to B = 1 km or B = 2 km and the latitude
ϕ = 0◦ or ϕ = 50◦ N. The bottom height is again initialized with random
values between −10 and 10 cm with mean zero and satisfying the boundary
conditions. In contrast to the verification experiments, the full model is used,
with parameter values as in Table 5.1. The length L of the domain is 10 km.
This value is chosen such that multiple bars in the along-channel direction can
form. However, its choice remains somewhat arbitrary and the sensitivity of
the model results to this choice will be discussed in Section 5.4.

Continuation

To systematically investigate the effect of channel width on the spatial pattern
of the morphodynamic equilibria, a numerical continuation is performed. To
speed up the calculations, a slightly simplified model setting is used for this:
uc = 0, uw = 0, ϕ = 0◦, ct = 0 and the depth H − h + ζ in cb is replaced by
the undisturbed depth H. The stability of the equilibria is calculated using the
Jacobian matrix J̃, which was calculated during the Newton iteration. That
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Figure 5.3: Growth rate of perturbations of the trivial equilibrium h = 0 versus along-
channel wavenumber k. The different colors denote different lateral mode numbers.
The solid lines are calculated with the model in Chapter 3. The colored dots are
the eigenvalues of the Jacobian J(0) at the trivial equilibrium h = 0 calculated by
the model described in this chapter. The parameters values are as in Table 5.1 with
U = 1 m/s, H = 5 m, uc = 0, uw = 0, µ = 1 m2 s−1, ϕ = 0◦, ct = 0, the depth
H − h + ζ in cb is replaced by the undisturbed depth H, the bottom stress is linear
in u and the only the bed slope part in the bedload transport is considered.

is, instead of computing J and solving the eigenvalue problem (5.2.11), the
stability is determined by solving the generalized eigenvalue problem J̃(h)v =
ωMv, where M = diag(0, 1, . . . , 1, 0) is a singular diagonal matrix with zeros
at the first and last element of the diagonal and ones elsewhere. In the future
this could be redone by using J, as described in Section 5.2.4.

5.3 Results

5.3.1 Verification
Using the the model setting discussed in Section 5.2.6, the eigenvalues of the
Jacobian are plotted in Figure 5.3, together with the growth rates calculated
with the model discussed in Chapter 3 for various along-channel wavenumbers
k. The figure shows that the correspondence is good. Since the Coriolis effect
is neglected, the eigenvectors of J(0) are discretized versions of

cos (k(x− φ))) cos
(nπ
B
y
)
,

with k and φ real numbers and n an integer (see Chapter 3). In Figure 5.4 the
eigenvectors obtained with the numerical model are plotted. Figure 5.4 shows
that that the patterns can be associated with a real number k and integer
n. Moreover, the presence of two independent eigenvectors per eigenvalue,
show that the patterns are translational invariant and that the value of φ is
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Figure 5.4: Contour-color plots of eigenvectors of the Jacobian J(0) at the trivial
equilibrium h = 0 corresponding to the largest (in real part) eigenvalues for lateral
mode number n = 1 and n = 2. The parameters values are as in Table 5.1 with
U = 1 m/s, H = 5 m, uc = 0, uw = 0, µ = 1 m2 s−1, ϕ = 0◦, ct = 0, the depth
H − h + ζ in cb is replaced by the undisturbed depth H, the bottom stress is linear
in u and the only the bed slope part in the bedload transport is considered.
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Figure 5.5: The solid black line is the bottom height h(t) projected onto the first
eigenvector v1 versus time t: v1 · h(t) (i.e., the amplitude of the fastest growing
bottom pattern versus time). The dashed red line shows the exponential function
(v1 · h(0))eω1t (red dashed line), where ω1 is the eigenvalue corresponding to v1.
The parameters values are as in Table 5.1 with U = 1 m/s, H = 5 m, uc = 0,
uw = 0, µ = 1 m2 s−1, ϕ = 0◦, ct = 0, the depth H − h + ζ in cb is replaced by the
undisturbed depth H, the bottom stress is linear in u and the only the bed slope part
in the bedload transport is considered.

arbitrary. To test the morphodynamic time integration, the flat bottom profile
is perturbed with random disturbances and integrated in time. The solid black
line in Figure 5.5 shows the time evolution of the bottom height vector h(t),
projected onto the first eigenvector (top left panel in Figure 5.4). This evolution
compares well with the exponential growth of the eigenvector corresponding to
the largest eigenvalue of the Jacobian (dashed red line).

5.3.2 Time integration
Figure 5.6 shows the time evolution of the root-mean square height of the four
simulations described in Section 5.2.6. In the first two simulations, indicated
by the solid black and red lines in the figure, the channel width B is 1 km, while
in the third and fourth simulations, indicated by the blue and cyan line, the
channel is 2 km wide. In the first and third simulation the Coriolis parameter
is zero (i.e., latitude ϕ = 0◦), whereas in the second and fourth simulation the
latitude is ϕ = 50◦ N. After an initial growth, the root-mean square height of
the pattern becomes approximately constant in time. This period is longer for
the wider channels. The root-mean square height of patterns after 1000 years in
the wider channels are larger than those in the narrow channels. Moreover, in
the 1 km wide channels the root-mean square height after 1000 years is slightly
larger if the Coriolis effect is included compared to the case where it is not,
while the opposite holds for the 2 km wide channels.
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Figure 5.6: Root-mean square height hrms versus time t for four different simulations.
The vertical lines denote the moments in time at which the patterns are shown in
Figures 5.7–5.10. Parameter values used are as in Table 5.1.
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Figure 5.7: Bottom height versus space after t = 10 years for four different simula-
tions. In the top two panels the channel width B = 1 km and in the bottom two the
channel width is B = 2 km. In the first and third panel the latitude ϕ = 0◦, while in
the second and bottom panel the latitude ϕ = 50◦. Parameters values used are as in
Table 5.1.
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Figure 5.8: As Figure 5.7 but after t = 30 years. From top to bottom panel:
(B,ϕ) = (1 km, 0◦), (1 km, 50◦), (2 km, 0◦) and (2 km, 50◦).
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Figure 5.9: As Figure 5.7 but after t = 150 years. From top to bottom panel:
(B,ϕ) = (1 km, 0◦), (1 km, 50◦), (2 km, 0◦) and (2 km, 50◦).
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Figure 5.10: As Figure 5.7 but after t = 325 years. From top to bottom panel:
(B,ϕ) = (1 km, 0◦), (1 km, 50◦), (2 km, 0◦) and (2 km, 50◦).
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Figure 5.7–5.10 show snapshots of the bottom patterns of the four simu-
lations at four different moments in time: t = 10, 30, 150 and 325 yr. After
10 years (Figure 5.7), the patterns resemble the patterns of the eigenvectors
of the Jacobian at the flat bottom corresponding to the largest eigenvalue (see
Chapter 4). When the Coriolis effect is neglected (φ = 0◦), in the narrow chan-
nels (B = 1 km), an alternating bar pattern forms, while in the wider channels
(B = 2 km), a braided pattern with one bar/trough in the middle forms. As
suggested by the results of Chapter 4, in the simulations where the Coriolis
effect is included (φ = 50◦ N), the pattern is a combination of bars and oblique
ridges which are rotated anticlockwise with respect to the main channel axis.
The ridges are more pronounced in the wider channel.

After 30 years (Figure 5.8), the narrow channels are close to equilibrium (see
Figure 5.6). The wider channels are still in their transient phase. During that
phase, the bars in the middle connect to those at the sides. In the simulation
with the Coriolis effect included, the bars on the right and left side of the
channel are connected, thereby forming meandering ridges.

After 150 years (Figure 5.9), all patterns seem to be stationary (see Fig-
ure 5.6). In the first simulations (B = 1 km, ϕ = 0◦), a pattern forms with
bars extends over the middle axis of the channel. In the second simulation
(B = 1 km, ϕ = 50◦ N), the pattern is fairly similar to that in the first simu-
lation, but the Coriolis effect skews the pattern slightly. The latter results in
the formation of a shallow sill between the alternating bars on one side and a
deeper channel on the other side of the bars. In the third simulation (B = 2 km,
ϕ = 0◦), the bars in the middle fully merged with those on the side. Compared
to the first simulation, the bars are wider at the closed boundaries and form
somewhat triangular bars opposed to the thin finger shaped bars in the narrow
channels. In the fourth simulation (B = 2 km, ϕ = 50◦ N) the pattern remains
in the shape of meandering ridges. They are not completely static, but their
evolution is very slow. This period of slow evolution is followed by a quick
adjustment after 2.5 centuries (see Figure 5.6). At that time, the ridges break
into separate bars and form a pattern similar to the pattern observed in the
third simulation in which the Coriolis effect is neglected. The main difference
is that in the fourth simulation the pattern is slightly skewed (Figure 5.10).

Figure 5.11 shows the amplitudes of the Fourier coefficients hm,n versus
time. The colored lines are the four coefficients with the largest amplitude
after 500 years. Their along-channel and lateral wavenumbers are shown in the
top panel of the figure. The gray lines are the amplitudes of the remaining
coefficients. The figure reveals that in the narrow channel (B = 1 km) the
Fourier mode that initially grows the fastest (red line) remains dominant over
time. However, in the wider channel this is not the case. Moreover, the bottom
panels show the initial difference and eventual similarity between the Fourier
spectrum of the 2 km wide channel with and without the Coriolis effect taken
into account.
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Figure 5.11: Bottom four panels: amplitude of Fourier coefficient hm,n versus time
t for the four simulations. The four Fourier modes that have the largest amplitude
after 500 years are colored. The corresponding modenumbers m and n are shown in
the top panel. Parameter values used are as in Table 5.1.
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5.3.3 Continuation

The top panel of Figure 5.12 shows the root-mean square height hrms of mor-
phodynamic equilibria as a function of channel width B. The white dots are
unstable equilibria and the gray dots are stable ones. For this parameter set-
ting, the critical channel width at which the flat bottom loses its stability is
between B = 0.8 and B = 0.85 km. The bottom panels of Figure 5.12 show
the morphodynamic equilibria for channel widths of B = 0.5, 0.85, 1, 1.5 and
1.8 km (indicated by the stars in the top panel of the figure). The first mor-
phodynamic equilibrium is a flat bottom, which is linearly stable for these
parameter values. For B = 0.85 km, the equilibrium bathymetry is nontrivial,
with the bars slightly extending over the mid-channel axis. For wider chan-
nels, the bars are further extended over the channel axes. Moreover, whereas
the bars attain their maximum height on the side of the channel for B = 0.85
and B = 1 km, the location of maximum bottom height is detached from the
channel boundary for larger channel widths. The second panel in Figure 5.12
shows the amplitudes of the Fourier coefficients |hm,n| (> 0.25 m) as a function
of channel width B. The colors correspond to those in Figure 5.11. The four
Fourier modes with the largest amplitude after 500 years in the first time inte-
gration run (B = 1 km and ϕ = 0◦, see Figure 5.11) are the same as the ones
that form the morphodynamic equilibria for 850 ≤ B ≤ 1800 m. Furthermore,
Figure 5.12 reveals that the number of relevant Fourier modes increases for
increasing channel width.

5.4 Discussion

5.4.1 Results of LSA of flat bottom as indicators for long-
term behavior

The linear stability analyses (LSA) (Seminara and Tubino, 2001, Schramkowski
et al., 2002, Chapters 3 and 4) have provided fundamental knowledge about
the mechanisms that explain the initial formation of tidal bars as perturbations
of a flat bed. The time evolutions in the previous section allow us to assess
the predictive capability of long-term tidal bar patterns by the LSA of the flat
bottom. When we compare the pattern that initial forms and the final patterns
in the time integration simulations, we observe that in the narrow (1 km wide)
channels the wavelength and number of bars in the lateral direction do not
change over time. That is, the Fourier mode that initially grows the fastest
remains the dominant one in the spectrum in the long-term. So in these cases,
the fastest growing pattern from the LSA resembles the final pattern of the
time integration reasonably well, although the other Fourier modes are not
negligible. However, in the wider channels (2 km), the dominant tidal bar
wavelength in the initial formation (Figure 5.7) is smaller than that in the final
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Figure 5.12: Top panel: root-mean square height hrms of morphodynamic equilibria
versus channel width B. The gray dots denote stable equilibria, while the white dots
represent unstable ones. The patterns corresponding to the dots with a white star are
shown in the bottom panels: B = 0.5, 0.85, 1, 1.5, 1.8 km. The middle panel shows
the amplitudes of the Fourier coefficients of the nontrivial patterns for B ≥ 850 m.
The parameter values used are uc = 0, uw = 0, ϕ = 0◦, ct = 0 and the depth
H − h+ ζ in cb is replaced by the undisturbed depth H. Other parameter values are
as in Table 5.1.
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pattern (Figure 5.10). Furthermore, the bottom has a braided pattern during
the initial formation, while in the final pattern bars have merged to form an
alternating tidal bar pattern. The difference between the long-term bottom
patterns and the fastest growing pattern following from the LSA studies is the
largest in the simulation with B = 2 km and ϕ = 50◦ N. Here, the the oblique
tidal sand ridges that initially form hardly resemble the final bed forms that
show an alternating pattern.

5.4.2 Comparison with field observations and numerical
studies

Van Veen (1950) described bottom patterns in tidal channels with ebb and
flood channels around the bars (see also van den Berg et al., 1996). In the ebb
channels the maximum ebb current is stronger than the maximum flood current
and vice versa. Such channels were also identified in the numerical results of
Hibma et al. (2003). However, the current study seems to lack the mechanism
responsible for the formation of such channels. Figure 5.13 shows the locations
where the along-channel current is ebb- or flood-dominant at the end of the time
integration (after 1000 years). That is, where |maxt(u)| − |mint(u)| is positive
(warmer colors) or negative (colder colors). Furthermore, it shows the pattern
of the residual currents (arrows). The figure reveals that on the negative x-side
of the bar the current is flood dominant (red), while at the positive x-side it is
ebb dominant (blue). So, rather than having ebb or flood dominated channels,
the channels are divided in a flood and ebb dominant part. Even though the
ebb and flood channels are not present, the structure of the residual current
is in agreement with the schematic diagram of estuarine meanders in Ahnert
(1960) (Figure 3 in the latter study and Figure 5b of Hibma et al., 2003). In
this diagram only at some locations there is a submerged bar between the ebb
and flood current trajectories. They attribute the occurrence of the ebb and
flood channels to the phase difference between the free surface elevation and
the current velocity. In particular, at the locations where the ebb and flood
channels occur, there is an overlap in water levels present at high ebb and flood
currents (see Figures 6 in both Ahnert (1960) and Hibma et al. (2003)). Due
to the local nature (with the rigid-lid assumption) of the current model, this
overlap is always there. However, to study the effect of variations in the phase
difference between the currents and the free surface elevation, a global model
is needed.

The tidal bars simulated in the laboratory by Leuven and Kleinhans (2019)
and those observed in the Exe estuary (Figure 1.1), extend over the middle axis
of the channel. This corresponds to the results above. Moreover, the laboratory
bars in Leuven and Kleinhans (2019) resemble the triangular shape of the bars
obtained with our model in 2 km wide channels (Figure 5.10). However, in the
laboratory they do not seem to form by merging two bars on the side and one in
the middle of the channel, as observed in the result of the time integration with
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Figure 5.13: Black contour lines denote the bottom height as in Figure 5.9, but for
only 0 ≤ x ≤ 5 km. Dashed lines denote a negative bottom height, while solid
lines denote a positive bottom height. The colors denote the (absolute) maximum
value of the along-channel current velocity minus the absolute value of its minimum
over a tidal cycle. Red colors denote stronger maximum flood currents, while blue
colors denote stronger maximum ebb currents. The white arrows depict the spatial
distribution of the residual current.
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Figure 5.14: Root-mean square height hrms versus time t for different channel widths
B and domain lengths L (top left panel). The dark blue curves (L = 10 km) corre-
spond with those (cyan and red) in Figure 5.6. The top right and bottom panels show
the bottom pattern after 500 years for domain lengths of L = 5 km and L = 15 km,
respectively. Parameters are as in Table 5.1.

B = 2 km and ϕ = 0◦. Moreover, the sills connecting the bars, as observed in
the laboratory, are not reproduced in the current numerical simulations. Only
when the Coriolis effect was taken into account sills formed, but only on one
side of the bars.

In the four time integration simulations, the value of the Coriolis parameter
seems to be mostly affecting the transient behavior and to a much lesser extent
the equilibrium patterns. This is in good correspondence with the fact that
the bathymetries both in the numerical studies of, on one hand van der Wegen
and Roelvink (2012), who ignore Coriolis, and on the other hand Dam et al.
(2016) and Nnafie et al. (2018), who include Coriolis, reproduced the observed
bottom topography in the Western Scheldt reasonably well. No clear signature
of the Coriolis effect was observed.

5.4.3 Model limitations

The first important limitation of the model in this study is that it does not
allow for intertidal areas, while natural tidal bars often are only submerge
during a part of the tidal cycle. The second limitation is that the contribution
of the free surface elevation due to the external pressure gradient on the water
depth is in many systems significant, whereas in this model only the free surface
elevation as a result of the bottom height is considered. These two choices are
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numerically rather than physically motivated and therefore deserve additional
attention. A third limitation is the dependency of the model results on the
choice of the domain length L. When L is too long, the assumption of along-
channel uniformity is violated. However, when the domain length L is too
short, the number of along-channel Fourier modes is strongly restricted thereby
limiting the dynamics. Figure 5.14 shows the root-mean square height and the
bottom pattern after 500 years for a channel domain of L = 5 and L = 15 km
(±50% of the default channel length). The channels are 1 and 2 km wide
and the latitude ϕ = 50◦ N. The comparison of the result in Figure 5.10
with those in Figure 5.14 reveals that the results in a 5, 10 or 15 km long
channel agree quantitatively with those obtained in the 1 km wide channel.
Quantitatively, the root-mean square height and the along-channel wavelength
are slightly different. In the 2 km wide channel, the results show a stronger
sensitivity to the choice of channel length. When the channel length is halved
(L = 5 km), the time interval in which the root-mean square height temporary
stopped changing, as in the simulation with L = 10 km (between 100 and
200 years), is not present anymore. When the channel length is increased by
50% (L = 15 km), the rapid adjustment, as observed around 250 years in the
simulation of L = 10 km, is not found in the first 500 years of simulation. In
fact, the pattern after 500 years in the long channel (15 km) resembles that of
the original simulation (L = 10 km) after 150 years (bottom panel Figure 5.9. It
is unclear whether this pattern will eventually also change to a pattern similar
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Figure 5.15: Top panel shows the root-mean square height hrms versus time t. The
bottom panels show the bottom height versus space after 50 and 250 years, corre-
sponding to the vertical gray lines in the top panel. The solid black line in Figure 5.15
corresponds with the black line in the top panel. The simplified model, as described
in the validation section of 5.2.6, is used with parameters values as in Table 5.1 with
B = 1000 m, U = 1 m/s, H = 5 m, uc = 0, uw = 0, µ = 1 m2 s−1 and ϕ = 0◦.
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to the one in the L = 10 km simulation (bottom panel in Figure 5.10) if the
simulation time would be increased.

A further systematic sensitivity analysis to model parameters is needed be-
fore robust conclusions can be made about timescales at which patterns settle in
a morphodynamical equilibrium and their associated final heights. Figure 5.15
reveals that in different regions of the parameter space, the dynamics can be
vastly different. The top panel shows the time evolution of the root-mean
square height of the bottom for the simulation used in Figure 5.5 (i.e., the
simplified model as discribed in the verification section in 5.2.6). The bottom
panels show the patterns after 50 and 250 years. As in the simulation with
B = 2 km and ϕ = 50◦, the bottom height is almost constant after an initial
adjustment (in this case after a few decades), but then (after a few centuries)
changes drastically again. After 350 years the model crashed (likely due to
a numerical instability). The pattern after 250 years is characterized by an
asymmetric distribution of sediments with respect to the channel axis; most
sediments are deposited on left side of the channel (viewed in the positive x-
direction). This is another example where the system seems to have found an
equilibrium (twice), but then quickly evolves after some time. Other possible
extensions of the model are to consider multiple tidal constituents in the tidal
forcing and to include the role of river runoff, wind waves, vegetation, sand-mud
mixtures and stratification on the hydro- and morphodynamics.

5.5 Conclusions

The long-term dynamics of tidal bars in a confined tidal channel is studied with
a numerical model of intermediate complexity. Its formulation allows a com-
parison of the bottom evolution with that predicted by linear stability analyses
of a flat bottom. The evolution of the bathymetry starting from a randomly
perturbed flat bottom is simulated over a few centuries for tidal channels of dif-
ferent widths and at different latitudes. Eventually, in all simulations the tidal
bars stopped evolving after a certain amount of time. Also, in all simulations
the tidal bars extended over the middle axis of the channel; a characteristic
also observed in nature and in the laboratory. The differences between the
simulations yields a first insight in the sensitivity of the tidal bar dynamics to
channel width and the Coriolis effect. In the 1 km wide channels, the initially
forming patterns are only slightly adjusted over time (by extending over the
middle axis). The Coriolis effect only slightly skews this pattern, thereby form-
ing shallow sills between the bars. In the 2 km wide channels the dynamics is
richer. The initially braiding pattern evolves in an alternating bar pattern by
merging tidal bars in the middle of the channel with those on the side, thereby
also increasing the tidal bar wavelength. Moreover, in the 2 km wide channel
located at a latitude of 50◦ N, the bars seem to reach a morphodynamic equi-
librium after a century, but rapidly change, after approximately 2.5 centuries,
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into a drastically different pattern. The pattern observed after a century is very
different from the pattern in the 2 km wide channel when the Coriolis effect
was neglected. However, the pattern after 2.5 centuries is, like the one observed
in the 1 km wide channel merely a skewed version of the case with the channel
located at latitude 0◦. This highlights one of the the difficulties of studying
equilibrium tidal bar patterns by means of a time integration; it is unclear when
and if a pattern is in morphodynamic equilibrium. A numerical continuation
shows the morphodynamic equilibria for different channel widths. For increas-
ing widths, the bars extend further over the channel axes and the maximum
bottom height of the patterns moves away from the channel boundary.
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6
Summary and outlook

The overarching goal of the thesis is to contribute to the understanding of
the dynamics of tides and tidal bars in tidal channels. Below, a summary is
presented in which the main findings of the preceding chapters and suggestions
for future research are given.

6.1 Summary

6.1.1 Objective 1

The aim of Chapter 2 was to understand the sensitivity of tidal characteristics
(such as times of high and low water, tidal range, ratio between maximum flood
and ebb currents, etc.) to momentum dissipation on tidal flats. When the tide
rises, water flows from the channel onto the adjacent tidal flats, carrying with
it longitudinal momentum. Some hours later, when the tides falls, water flows
back into the channel. However, its longitudinal momentum is by then largely
dissipated due to high friction on the tidal flats. A model was developed and
analysed that describes tides in an open channel with tidal flats along its sides.
The water motion is forced by M2 tidal elevations at both open ends. By
assuming these elevations to be small compared to the water depth and the
width of flats of the same order as the width of the main channel, approximate
solutions of the model could be constructed by means of a perturbation analysis.
It was found that this so-called momentum sink decreases the M2 amplitude
of both the current velocity and the sea surface elevation and favours flood
dominant tides. The decrease of the M2 amplitudes is caused by the fact that,
during the fall of the tide, still water enters the channel and slows down the
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current. The finding that the momentum sink favors flood-dominant tides is
explained by noting that the momentum sink acts as an advective term during
the fall of the tide, which is known to favour flood currents. As a result,
the momentum sink increases the M4 amplitudes in a flood-dominant system.
The impact of the momentum sink on tidal characteristics becomes larger with
increasing ratio of intertidal area and channel area. Moreover it is, to a much
lesser extent, sensitive to the slope of the flats, drag coefficient, embayment
length and the phase difference between incoming tidal waves at the boundary
of the embayment.

6.1.2 Objective 2

After the discussion about the dissipation of momentum on tidal flats, the at-
tention turned to the initial formation of tidal bars. In literature, there was
an inconsistency about the possible dependence of the tidal bar wavelength
on channel width. Observations and numerical models showed this depen-
dency. However, Leuven et al. (2016) showed that the semi-analytical models
of Schramkowski et al. (2002) and Seminara and Tubino (2001), which were
intended to explain the initial formation of tidal bars, could not reproduce
this dependency. The aim of Chapter 3 was therefore to extend the model of
Schramkowski et al. (2002) such that the tidal bar wavelength of the fastest
growing pattern (the preferred wavelength) does depend on channel width,
while still roughly reproducing natural (observed) tidal bar patterns.

The key extension was to include the effects of horizontal eddy diffusivity
and in particular the resulting bed slope effect. The reason the extended model
shows a clear dependence of tidal bar wavelength on channel width, whilst in
the original model of Schramkowski et al. (2002) this dependence was weak,
is the following. First of all, in wider channels, the pattern with the largest
growth rate (the preferred tidal bar pattern) has more bars in the lateral di-
rection. That is, it has a higher preferred mode number. Second, in the range
of channel widths with constant preferred mode number, the preferred wave-
length increases with increasing channel width. However, at the width where
the preferred mode number changes (it increases by one), the preferred wave-
length decreases. In the model of Schramkowski et al. (2002), the range of
channel widths with constant preferred mode number is relatively short. This
means that, with increasing channel width, before the preferred wavelength
can increase significantly, the preferred mode number increases and with that,
the wavelength decreases again. As a result, the tidal bar wavelength remains
of the same order of magnitude for different values of channel width. In the
present study, the effects of horizontal eddy diffusivity are added to the model.
As a result, the effective bed slope effect is stronger. Since bed slope effects
decrease the growth rate of bottom patterns with large gradients, the bottom
pattern with the largest growth rate has a smaller mode number. This implies
that the preferred mode number remains the same for a wider range of channel
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widths than in the model of Schramkowski et al. (2002). The width depen-
dence now follows from the fact that, in this range, the tidal bar wavelength
increases with increasing channel width and that this increase is stronger for
smaller mode numbers.

A sensitivity analysis confirmed the finding of earlier studies that the tidal
bar wavelength depends on the current velocity, the channel depth and the
channel width. Moreover, an approximate expression of the tidal bar wave-
length, in terms of three internal length scales (channel width, tidal excursion
length, friction length scale), revealed that when one of the length scales is very
small (large), the sensitivity of the tidal bar wavelength to that length scale is
large (small) compared to the others.

6.1.3 Objective 3

Besides the effects of horizontal turbulent exchange of sediments, also the role
of the Coriolis effect on the initial formation of tidal bars was not studied previ-
ously. However, tidal bars are present in systems for which the Rossby number
is close to one, implying that the Coriolis effect should be taken into account.
Moreover, results of a numerical model showed that the initial formation of
tidal bars is sensitive to the value of the Coriolis parameter. The aim of Chap-
ter 4 was to study the role of the Coriolis effect on the initial formation of
bottom patterns in a tidal channel. Using the insights gained in the study to
the channel width dependence, a new model was formulated that accounts for
the Coriolis effect on the hydrodynamics. The key finding is that the mecha-
nism generating oblique tidal sand ridges on the continental shelf is also present
in confined tidal channels. When the inverse Rossby number exceeds values of
approximately 0.5, this causes the fastest growing pattern to be a combination
of tidal bars and oblique tidal sand ridges. Moreover, it causes the pattern to
grow faster, without significantly altering the preferred wavelength.

6.1.4 Objective 4

After the two studies of the initial formation of tidal bars, the aim of Chap-
ter 5 concerned the long-term evolution of tidal bars. This long-term evolution
was previously studied in laboratory settings and in numerical models. Most
of the numerical models are so-called global models; they simulate an entire
channel from sea to the landward (or river) boundary. In contrast to global
models, simulate local models only a short section of a long channel, which
makes them easier to analyse. Only one of the available numerical models was
a local model. However, this local model was restricted to small friction pa-
rameters. This motivated the fourth objective, which was to investigate the
long-term dynamics of tidal bars in realistic parameter regimes with a local
model. In particular, the presence of nontrivial morphodynamic equilibria was
studied, the long-term patterns compared with those that initially form and
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the sensitivity of the results to the Coriolis parameter and channel width was
assessed. To this end, a new numerical model of intermediate complexity was
developed. This model aimed to bridge the gap between the local models that
study the initial formation, the local model that was restricted to weak fric-
tion and the global numerical models that study the long-term dynamics. The
model domain is periodic in the along-channel direction and represents a sec-
tion of a tidal channel of approximately 3 m deep, 1 – 2 km wide and with
currents of approximately 0.5 m s−1 (roughly representing the Exe estuary).

Four time integration runs showed that, for the parameter values considered
(including realistic values of the friction parameter), the bottom height seems
to stop evolving after a certain time. These final patterns showed similarities
with the results of global numerical studies, observations in nature and bars
simulated in a laboratory. In particular, the matured bars exceed the middle
axis of the channel. The Coriolis effect only moderately affects these long-
term patterns. However, the transient dynamics is sometimes vastly altered
by the Coriolis effect. Moreover, the results reveal that for some parameter
settings (in particular, a channel width of 1 km), the initial formation, as
predicted by the linear stability analyses in the previous chapters, resembles the
long-term patterns reasonably well, while in other cases the long-term pattern
differs strongly from the one that forms initially (in the 2 km wide channels).
Furthermore, the results highlight difficulties with studying morphodynamic
equilibria by means of a time integration methodology: it is unclear when and
if a pattern is converged to a morphodynamic equilibrium. As an alternative, a
root-finding algorithm was used to find morphodynamic equilibria for different
channel widths. For increasing channel widths, the bars extend further over
the channel axes and the maximum bottom height of the patterns moves away
from the channel boundary. The results are preliminary, but serve as a proof of
concept to further systematically investigate the tidal bar dynamics in different
parameter regimes.

6.2 Outlook

Below, a few options for further research are suggested.
In Chapter 2, the model domain was chosen such that the depth and width

of the main channel were constant. There are many natural channels where
this is not a realistic assumption. An extension could therefore be to consider a
channel geometry that includes depth and width variations in the along-channel
direction. Moreover, the effect of different tidal constituents at the boundary
could be included and different scaling choices could be explored. The latter
could be done, for example, by making different choices about the size and
shape of the tidal flats. Furthermore, it would be interesting to compare the
results with those of the 2D model by Boelens et al. (2018).

In Chapter 3–5, tidal channels are considered in which stratification due
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to vertical differences in water density is negligible. Olabarrieta et al. (2018)
showed that in stratified channels, the bottom patterns are strongly affected
by the density-driven dynamics. It would be interesting to see if this could be
further investigated in a mathematically tractable model. For this a 3D model is
needed, because the density-driven dynamics requires a vertical dimension and
the bottom patterns discussed in this thesis require two horizontal dimensions.
Moreover, in the models presented in Chapter 3–5, the sides of the channel
are not erodible. However, many natural channels have sides that are erodible
and it is known that the evolution of bottom patterns and of erodible sides
(meandering) becomes coupled (Solari et al., 2002). After Chapter 4, it would
be interesting to study the role of the Coriolis force in such a system. To account
for transverse circulations induced by channel curvature and the Coriolis effect,
also in this case, a 3D model is needed. In addition to modelling studies,
laboratory experiments, such as those performed by Leuven and Kleinhans
(2019), in a meandering channel could also be insightful.

The results in Chapter 5 were preliminary and suggest multiple options to
further research. First of all, the model settings in the time integration runs
and the continuation runs should be made consistent. A second option is to
perform more numerical continuation experiments of morphodynamic equilibria
for different bifurcation parameters. Here, only the channel width was varied
and only up to 1.8 km. However, the results of the time integration runs of a
channel width of 2 km (Figure 5.10) suggest that the pattern as in the bottom
panel of Figure 5.12 becomes unstable when the channel width exceeds a certain
value. The methodology described in Chapter 5 allows one to perform a linear
stability analysis of the unstable equilibrium. This could explain why the finger
shaped tidal bar patterns as shown in Figure 5.12 would change to the more
triangular shaped patterns in Figure 5.10.

Moreover, in the discussion of Chapter 5 (Section 5.4) the effect of the
domain length L on the results is briefly discussed. Since, the choice of the do-
main length is rather arbitrary, this deserves more attention. This could also
be done by means of a continuation. Furthermore, the effect of other model
parameters (that do not change the numerical grid) on the spatial patterns
of morphodynamic equilibria could be investigated by means of a pseudo-arc
length continuation (e.g, using BifurcationKit.jl). Examples of possibly inter-
esting parameters to vary are the latitude ϕ, the drag coefficient cd and the
critical velocity for erosion uc. Concerning the latitude ϕ, one could aim to an-
swer the question why the signature of the Coriolis effect present in the initial
formation, disappears after a while. Is there another mechanism that overtakes
the one responsible for the ridge like structure?

Numerically there is also possibly room for improvement. The current code
integrates the hydrodynamics in time by means of a Runge-Kutta 4 scheme
with fixed time steps of 5 seconds. This is computationally the most expensive
part of the code. Perhaps, other time integration methods can speed up these
calculations. To experiment with implicit time integrators (implemented in
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DifferentialEquations.jl), the automatic differentiation package ForwardDiff.jl
could also be used here. Another option would be to solve the (spatially dis-
cretized) continuity, momentum and concentration equation(s) by means of
spectral methods (here ApproxFun.jl could potentially be useful). Lastly, the
Julia language makes the investment to adapt the model to run on GPUs or
in parallel relatively cheap, so perhaps this could also be a fruitful thing to
try. Once such a model is fast enough, it would be interesting to extent it to a
global (rather than local) model which is still capable of performing a numerical
bifurcation analysis.
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Nederlandse samenvatting

Het onderzoek dat heeft geleid tot dit proefschrift had tot doel om bij te dragen
aan het begrip van de dynamica van getij en zandbanken in getijdengeulen.

Hoofdstuk 2 beschrijft hoe het verlies van impuls op wadplaten de karak-
teristieken van het getij in de geul beïnvloedt. Voorbeelden hiervan zijn de
tijdstippen van hoog- en laagwater, het verval en de verhouding tussen de
maximale stroomsnelheid van de eb en de vloed. Bij opkomend water stroomt
er water (met impuls) van de diepe geulen naar de ondiepe platen. Een aan-
tal uur later, bij afgaand tij, stroomt het water weer terug de geulen in. Een
groot deel van het impuls in de langsgeulrichting is dan echter verloren gegaan
door bodemwrijving op de platen. Om dit te analyseren is een semi-analytisch
model ontwikkeld dat de getijbeweging simuleert van een geul die aan beide
uiteinden is verbonden met open zee en aan de zijkanten ondiepe platen heeft.
De waterbeweging werd geforceerd door een tweemaaldaagsgetij (M2-getij) aan
beide open uiteinden. Door aan te nemen dat het verval klein is ten opzichte
van de waterdiepte en dat de breedte van de geul vergelijkbaar is met die van
de platen aan de zijkant, kon de waterbeweging bij benaderding opgelost wor-
den met behulp van een perturbatieve analyse. De resultaten laten zien dat
het impulsverlies in de geul leidt tot een afname van de M2-amplitudes van
zowel de stroomsnelheid als de waterhoogte en dat de verhouding tussen de
maximale vloed- en ebstromingen toeneemt. De afname van de M2-amplitudes
komt doordat het water dat de geul instroomt tijdens het afgaand tij nog nau-
welijks stroomt in de langsrichting van de geul. Dit remt de stroming in de
geul af. Het feit dat de verhouding tussen de maximale eb- en vloedstromingen
toeneemt, kan worden verklaard door de term die het impulsverlies beschrijft
om te schrijven tot een term die gedurende het afgaand tij advectie van impuls
beschrijft. Van de laatste is het bekend dat die de verhouding als dusdanig
beïnvloedt. Het gevolg hiervan is dat, wanneer het getij vloeddominant is, de
M4-amplitude toeneemt door het impulsverlies op de platen. Het effect van het
impulsverlies is groter wanneer de verhouding van de breedte van de platen en
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die van de geul groter is. Het effect is minder gevoelig voor de helling van de
platen, de bodemwrijvingscoëfficiënt, de lengte van de geul en het faseverschil
tussen de twee inkomende getijgolven aan de open uiteinden.

Het onderzoek naar het impulsverlies op wadplaten in hoofdstuk 2 wordt
in hoofdstuk 3 gevolgd door een studie naar de initiële vorming van getijden-
zandbanken in geulen. In de literatuur was er tot nog toe inconsistentie over
de mogelijke afhankelijkheid van de zandbankgolflengte en de geulbreedte. Ob-
servaties en numerieke modellen toonden deze afhankelijkheid wel aan, maar
Leuven et al. (2016) lieten zien dat de semi-analytische modellen van Schram-
kowski et al. (2002) en Seminara and Tubino (2001), die bedoeld waren om
de initiële vorming van zandbanken te verklaren, deze afhankelijkheid niet kon
reproduceren. Het doel van hoofdstuk 3 was daarom om het model van Schram-
kowski et al. (2002) zodanig uit te breiden dat de zandbankgolflengte van het
snelst groeiende patroon (de voorkeursgolflengte) afhangt van de geulbreedte
en nog steeds patronen reproduceert die grofweg overeenkomen met natuurlijke
(waargenomen) zandbankpatronen.

De belangrijkste uitbreiding van het model van Schramkowski et al. (2002)
betreft het meenemen van de effecten van horizontale turbulente uitwisseling
van sediment en in het bijzonder het resulterende bodemhellingseffect. De re-
den dat het uitgebreide model, in tegenstelling tot het model van Schramkow-
ski et al. (2002), een duidelijke afhankelijkheid tussen de zandbankgolflengte
en de geulbreedte laat zien, is als volgt. Ten eerste heeft het patroon met de
grootste groeisnelheid (het voorkeurspatroon) in bredere geulen meer banken in
de laterale richting. Dat wil zeggen dat dit patroon een hoger preferent aantal
dwarsoscillaties heeft. Ten tweede neemt, in het interval van geulbreedtes waar-
voor het preferente aantal dwarsoscillaties constant is, de voorkeursgolflengte
toe met toenemende breedte. Wanneer het preferente aantal dwarsoscillaties
echter verandert (met 1 toeneemt), neemt de voorkeursgolflengte weer af. In
het model van Schramkowski et al. (2002) is het interval van breedtes met een
constant preferent aantal dwarsoscillaties relatief klein. Dat wil zeggen dat met
toenemende breedte, voordat de voorkeursgolflengte significant kan toenemen,
het preferente aantal dwarsoscillaties stijgt en daarmee de voorkeursgolflengte
weer afneemt. Het gevolg hiervan is dat de voorkeursgolflengte vrijwel gelijk
blijft bij een toenemende geulbreedte. In het huidige model is de horizontale
turbulente uitwisseling van sediment toegevoegd met als gevolg een sterker
bodemhellingseffect. Aangezien bodemhellingseffecten de groeisnelheden van
patronen met sterke gradiënten verlagen, heeft het voorkeurspatroon in het
huidige model een lager preferent aantal dwarsoscillaties. Dit betekent ook dat
het preferente aantal dwarsoscillaties constant blijft over een groter interval
van geulbreedtes dan in het model van Schramkowski et al. (2002). De breedte-
afhankelijkheid volgt nu uit het feit dat in dit interval de voorkeursgolflengte
toeneemt met toenemende breedte en dat de voorkeursgolflengte bovendien
sterker toeneemt voor lagere preferent aantal dwarsoscillaties.

Een gevoeligheidsanalyse bevestigt de bevindingen van eerdere studies die
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lieten zien dat de zandbankgolflengte afhangt van de stroomsnelheid, de wa-
terdiepte en de geulbreedte. Verder laat een benadering voor de voorkeurs-
golflengte in termen van drie interne lengteschalen (geulbreedte, getijexcursie-
lengte, wrijvingslengteschaal) zien dat wanneer een van deze lengteschalen klein
is, de gevoeligheid voor de desbetreffende lengteschaal groot is (en andersom)
vergeleken met de andere twee lengteschalen.

Naast het effect van horizontale turbulente uitwisseling van sediment was
ook de rol van het Corioliseffect op de initiële vorming van zandbanken tot nog
toe nog niet bestudeerd. Zandbanken zijn echter ook te vinden in systemen
waar het Rossbygetal dichtbij één ligt. Dit impliceert dat het Corioliseffect
niet verwaarloosd kan worden. Bovendien lieten numerieke modellen zien dat
de initiële vorming van zandbanken gevoelig is voor de waarde van de Coriolis-
parameter. Het doel van hoofdstuk 4 was daarom de rol van het Corioliseffect
op de initiële vorming van zandbanken in een getijdengeul zichtbaar te maken.
Met behulp van de inzichten verkregen in hoofdstuk 3, is een nieuw model ont-
wikkeld waar het Corioliseffect in meegenomen wordt. Het belangrijkste inzicht
dat hieruit naar voren komt, is dat het mechanisme dat verantwoordelijk is voor
het ontstaan van cyclonaal gedraaide zandbanken op de continentale plaat ook
aanwezig is in getijdengeulen. Wanneer het inverse Rossbygetal groter is dan
ongeveer een half, zorgt dit ervoor dat het snelst groeiende patroon een com-
binatie is van de zandbankpatronen uit hoofdstuk 3 en cyclonaal gedraaide
zandbanken. Ten slotte verhoogt het Corioliseffect de initiële groeisnelheid
zonder de voorkeursgolflengte significant te beïnvloeden.

Volgend op de twee studies over de initiële vorming van getijdenzandbanken
behandelt hoofdstuk 5 de langetermijndynamica van de zandbanken. Deze lan-
getermijndynamica is eerder bestudeerd in een laboratorium en in numerieke
modellen. De meeste van de numerieke modellen waren zogenaamde globale
modellen en simuleerden een volledige geul van de zee tot aan een gesloten
uiteinde (of rivier). In tegenstelling tot globale modellen, beschrijven lokale
modellen alleen een kort stukje van de geul. Dit maakt een diepere analyse
mogelijk. In slechts één van de eerdere studies over dit specifieke onderwerp
met numerieke modellen was sprake van een dergelijk lokaal model. Dit model
beperkte zich echter tot (vaak onrealistisch) kleine waarden van de wrijvingspa-
rameter. Het doel van hoofdstuk 5 was om de langetermijndynamica van zand-
banken in een getijdengeul in realistische parameterregimes bloot te leggen. In
het bijzonder werd bekeken of niet-triviale morfodynamische evenwichten be-
stonden, werd de langetermijndynamica vergeleken met de initiële dynamica
en de gevoeligheid voor geulbreedte en de Coriolisparameter bestudeerd. Hier-
voor is een nieuw lokaal numeriek model ontwikkeld. Dit model heeft tot doel
een brug te slaan tussen de modellen die de initiële vorming bestuderen, het
lokale numerieke model met kleine wrijving en de globale numerieke modellen
die de langetermijndynamica bestuderen. Het modeldomein is periodiek in de
langsgeulrichting en representeert een deel van een getijdengeul die ongeveer
3 meter diep en 1-2 kilometer breed is en stromingen vertoont van ongeveer
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0.5 m/s (grofweg representatief voor het Exe estuarium).
Vier tijdsintegratiesimulaties laten zien dat voor de gekozen parameterwaar-

den (inclusief een realistische bodemwrijvingsparameter) de bodemhoogte na
verloop van tijd zo goed als ophoudt te veranderen. Deze uiteindelijke patronen
vertonen overeenkomsten met de resultaten van globale numerieke modellen,
observaties in de natuur en de banken in het laboratorium. In het bijzonder
groeien de gemodelleerde zandbanken over het midden van de geul. In de vier
tijdsintegratiesimulaties heeft het Corioliseffect maar geringe invloed op deze
langetermijnspatronen, maar de manier waarop het patroon tot deze uiteinde-
lijke patronen komt is wel sterk beïnvloed door het Corioliseffect. In sommige
gevallen – in het bijzonder in een geul van 1 kilometer breedte – komen de pa-
tronen die initieel vormen, zoals voorspeld door de lineaire stabiliteitsanalyses
in de voorgaande hoofdstukken, overeen met langetermijnspatronen. In andere
gevallen – in het bijzonder in een geul van 2 kilometer breedte - is dit niet het
geval. Verder laten de resultaten zien dat het bestuderen van morfodynamische
evenwichten met behulp van tijdsintegratoren problematisch is: het is onduide-
lijk of en wanneer een patroon is geconvergeerd naar een stabiel evenwicht. Als
alternatief is hiertoe een nulpuntzoeker gebruikt om morfodynamische even-
wichten te vinden voor verschillende geulbreedtes. Voor toenemende breedtes
kruisen de banken in toenemende mate het midden van de geul en beweegt de
maximumhoogte van de bank weg van de rand van de geul. Deze voorlopige
resultaten moeten worden beschouwd als proof-of-concept om de langetermijn-
dynamica van zandbanken systematisch verder te onderzoeken.
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