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The evolved functions of CD1 during infection
Anne Kasmar1, Ildiko Van Rhijn2 and D Branch Moody1
CD1 proteins display lipid antigens to T cell receptors. Studies

using CD1d tetramers and CD1d-deficient mice provide

important insight into the immunological functions of invariant

NK T cells (iNKT) during viral and bacterial infections. However,

the mouse CD1 locus is atypical because it encodes only

CD1d, whereas most mammalian species have retained many

CD1 genes. Viewed from the perspective that CD1 is a diverse

gene family that activates several of classes of T cells, new

insights into lipid loading and infection response are emerging.
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CD1 antigen presentation was discovered using human T

cells that recognize CD1a, CD1b, or CD1c proteins [1,2].

Separately, a distinct population of CD3+ cells that persist

in MHC knockout mice were designated ‘invariant NK T

cells’ (iNKT) based on their (nearly) invariant TCR Va14

chains and Vb chains, as well as natural killer (NK) locus

encoded markers [3,4]. Later, mouse iNKT cells were

found to recognize CD1d, so that the previously separate

fields of CD1 and NKT cells merged [5]. Human T cells

with Va24 TCRs were found to have the same molecular

recognition properties as Va14 mouse iNKT cells [6,7]

as well as a shared lineage-specific transcription factor,

promyelocytic leukemia zinc finger (PLZF) [8��]. In

addition, certain mouse and human T cells recognizing

CD1d were found to lack the conserved TCRs [9] and

antigen reactivity [10,11], that normally characterize

iNKT, so that the NKT definition was expanded to

include also ‘diverse’ NK T cells.

Here, we review recent advances in understanding the

role of these various populations of CD1-reactive T cells
www.sciencedirect.com
during infection. Increasingly, differences in the cellular

expression patterns, subcellular trafficking, antigen-bind-

ing grooves, and phenotypes of the responding T cells

make the case that CD1a, CD1b, CD1c, CD1d, and

CD1e proteins have distinct functions. Further, new

insights into nonhuman CD1 genes show that CD1 gene

families are large and vary from species to species. These

studies emphasize that CD1-restricted T cells and NK

T cells are not synonymous, and make the case that

understanding the functions of CD1 involves looking

at and beyond NKT.

CD1 presents lipids to the TCR
Many crystal structures of CD1 proteins bound to lipid

antigens show that the alkyl chains are inserted into a

hydrophobic groove, allowing presentation of carbo-

hydrate, peptidic, or inorganic components of amphi-

pathic antigens [12]. Recent studies of ternary

complexes show how the T cell receptor a and b chains

of iNKT contact the CD1–glycolipid complex to form a

binding footprint [13��,14]. The NKT footprint is quite

different from that of TCRs contacting peptide-MHC

[15]. The iNKT TCRs are rotated and pushed laterally so

that the a chain binds near the center of CD1d, and the

TCR b chain makes limited contact at the margin of

CD1d.

These new crystal structures explain in detail why certain

Va and Vb chains are conserved in natural iNKT popu-

lations. The CDR3a loop plays the dominant role in

binding to the CD1d platform, and the direct contacts

with the protruding galactose unit are mediated by Ja18

residues. On the basis of mutational studies [16], mol-

ecular models [14], and other data [17], the global orien-

tation of the TCR and other aspects of the recognition

event visualized in these crystal structures are also likely

conserved for natural a-linked glycolipid antigens

(Figure 1) [17–19]. Whether this rotated and laterally

displaced footprint is used by diverse TCRs that recog-

nize the glycolipid, lipid, and lipopeptide antigens pre-

sented by CD1a, CD1b, CD1c, or CD1d, remains to be

seen.

New bacterial targets
Unlike CD1a, CD1b, and CD1c, the CD1d protein is

expressed in the liver and on certain gastrointestinal

epithelia. Recent studies implicate CD1d and iNKT

cells in controlling bacterial colonization of the gastro-

intestinal tract of mice [20]. Small intestinal colonization

with both Gram-negative and Gram-positive organisms

was increased in CD1d knockout mice, and organisms

translocated across the intestinal epithelium. NKT cells
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Figure 1

Structural homologies among CD1 ligands. Invariant NKT cells recognize structurally related glycolipid antigens that differ in the composition of their

lipid anchors, but shared an a-linked galactose unit. Three types of mycobacterial mycolate antigens are recognized by CD1b-restricted T cells. These

foreign molecules have lipid anchors (C72–86) that are much larger than most self diacylglycerols or sphingolipids. CD1b is the only CD1 protein that is

known to have a groove large enough to accept this type of antigen.
triggered CD1d-expressing Paneth cells to secrete anti-

microbial peptides [20].

Invariant NKT cells respond to Borrelia burgdorferi, the

causative agent of Lyme disease. Mice that are usually

resistant to infection become more susceptible when the

CD1d gene is deleted [21], and levels of protective Borre-
lia-specific IgM are reduced [22]. An antigenic target of the

response was identified as the B. burgdorferi glycolipid II

(BbGL-II), an a-galactosyl diacylglycerol that constitutes

12% of lipid in this pathogen [17]. This antigen has obvious

structural homology to a-galactosyl ceramide (Figure 1),

and BbGL-II loaded CD1d tetramers stain liver NKT cells

during infection, indicating that the molecular mechanism

of activation involves CD1–glycolipid–TCR contact.

Infection of Ja18-deficient mice with B. burgdorferi
resulted in prolonged arthritis and bacterial persistence,

raising the possibility that lipid recognition by iNKT is

relevant to a chronic syndrome [23]. Lastly, the recognition

of Borrelia antigens by mouse NKT cells may be relevant

to human Lyme disease because human NKT cells recog-

nize a variant of BbGL-II [17], and unpublished studies

have identified CD1 gene expression in human skin

affected by acute borrelial infection (Yakimchuk and

Moody, unpublished).

For CD1a, CD1b, and CD1c proteins, the most extensively

studied bacterial pathogens are Mycobacterium tuberculosis
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and Mycobacterium leprae. Following the discovery of free

mycolic acid [24] and glucose monomycolate antigens [25],

glycerol monomycolate isolated from Mycobacterium bovis
was recently found to stimulate a human CD4+ T cell clone

(Figure 1) [26�]. Additionally, polyclonal mononuclear

cells from humans latently infected with M. tuberculosis
produced IFN-g in response to glycerol monomycolate at a

higher frequency than cells from noninfected controls or

actively infected tuberculosis patients. Along with studies

of mannosyl phosphomycoketides, mycolic acids, glucose

monomycolates, and sulfated trehalose lipids [27–29], this

patient study supports the hypothesis that tuberculosis

infection promotes expansion of human lipid reactive T

cells in vivo. However, whether or not such responses are

durable and subject to recall, such that vaccination might

provide protection from infection, remains unknown.

CD1 responses to viruses
NKT cells respond to viral infections involving HIV [30]

HSV [31], and influenza [32]. These new observations

raise the question of whether the mechanism of virus

recognition involves cognate recognition of a virally pro-

duced antigen by the TCR, indirect recognition of cel-

lular changes induced by viruses, or both. To date, no

virally derived CD1 ligands have been identified. How-

ever, new evidence shows that CD1c presents an N-

terminally acylated lipopeptide similar in sequence to

HIV nuclear envelope factor (Nef) [33�]. This finding
www.sciencedirect.com
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supports the hypothesis that cellular lipidation of viral

proteins may generate antigens presented by CD1 [34].

In addition, viruses trigger Toll-receptors and cause other

cellular changes in ways that can activate NKT cells

indirectly via IL-12, altered CD1d expression, or

increased production of endogenous sphingolipids

[18,35,36]. For example, TLR ligation affects glycosphin-

golipid biosynthesis by dendritic cells and is associated

with increased IFN-g release by NKT cells [37,38].

Microbes upregulate CD1 expression
CD1d is constitutively expressed on thymocytes, B cells,

monocytes, macrophages, and myeloid dendritic cells

(DC) at various stages of maturation. In contrast,

CD1a, CD1b, and CD1c proteins are absent on blood

monocytes in the circulation, and two new studies help

explain why. Serum immunoglobulin (Ig) and activators

of the peroxisome proliferator activator receptor-g

(PPAR-g) are present in the serum and tonically inhibit

CD1a, CD1b, and CD1c on human monocytes [39,40]. A

human patient with common variable immunoglobulin

deficiency expressed CD1a, CD1b, and CD1c, and this

expression was downregulated after restoring immuno-

globulin (Ig) to physiologic levels. Thus seems to be Ig

necessary and sufficient for control of CD1 expression on

circulating monocytes [39].

When monocytes exit the circulation, they are presum-

ably released from inhibitory signals found at high con-

centrations in the serum, and they also encounter stimuli

that increase CD1a, CD1b, or CD1c gene expression

when present in tissues, as seen in patients with auto-

immune disease [41] or infection [42]. The localized

upregulation of CD1a, CD1b, and CD1c proteins on

maturing myeloid DCs at sites of inflammation may allow

CD1-expressing DCs and CD1-restricted T cells to gen-

erate proinflammatory positive feedback loops [43].

These CD1-inducing signals involve GM-CSF, IL-4,

Toll-like receptor (TLR) 2, and TLR 5 [44,45]. Myco-

bacteria produce both ligands for CD1 proteins and

signals that induce CD1, so they might provide dual

signals to promote CD1-restricted T cell activation at

the site of infection [46].

Microbes downregulate CD1 expression
Several studies of monocyte derived DCs have found that

CD1a-expressing, CD1b-expressing, and CD1c-expres-

sing cells decline in number after exposure to mycobac-

teria in culture [47–50]. These in vitro studies led to the

speculation that drastic losses of CD1 expression might

occur at the site of mycobacterial infection in vivo and

might represent a physiological means of immune eva-

sion. However, other in vitro studies failed to confirm

CD1 downregulation [44,51]. More importantly, studies

of CD1 expression in the lungs, lymphoid tissues, and

skin of humans with tuberculosis and leprosy do not

support the immune evasion hypothesis because
www.sciencedirect.com
CD1a-expressing, CD1b-expressing, and CD1c-expres-

sing cells are found at high levels at sites of infection

[42,45,52]. Although mycobacteria do not prevent CD1

expression in a general way in all humans, a subset of

humans with the lepromatous form of leprosy have

reduced levels of CD1 expression at the site of infection

[42,53].

Viral infection also downregulates cell surface expression

of CD1. The HIV peptide Nef interacts with human

CD1d, leading to decreased expression on the cell sur-

face and diminished activation of CD1d-restricted NKT

cells [54]. Kaposi sarcoma-associated herpesvirus and

herpes simplex virus 1 downregulate CD1 surface

expression using distinct mechanisms involving ubiqui-

tination and lysosomal targeting, respectively [31,55].

The detailed molecular mechanisms of rerouting ident-

ified here, as well as the precedent of virally mediated

MHC class I immunoevasion, now provide a rationale to

examine CD1d expression during in vivo infection with

viruses.

CD1 beyond NKT cells
T cells recognizing human CD1a, CD1b, and CD1c or

their mammalian orthologs do not fall under historical or

modern definitions of NKT cells because they are not

known to commonly express NK receptors or invariant

TCRs, and they do not recognize CD1d (Figure 2).

Lacking a catchy jargon term like iNKT, they are desig-

nated according to a simple, descriptive, and accurate

naming convention: CD1x-restricted T cells, where x is

the identifying CD1 gene (Figure 2). Many CD1-

restricted T cells have functions that are distinct from

iNKT cells because they express diverse TCRs, present

chemically diverse antigens and recognize different types

of cells (Figure 2). Also, the study of gene induction

patterns on myeloid DCs makes clear that CD1a,

CD1b, CD1c, and CD1e are linked to one another,

whereas CD1d is different [44,56].

Emerging pictures of isoform-specific
function
Further, each of the five CD1 human proteins is emerging

to have a distinct personality (Figure 2). Such gene-

specific functions can be most readily understood for

CD1e. After exiting the endoplasmic reticulum to the

golgi apparatus, CD1e is diverted directly to endosomes

without evidence of expression at the surface, suggesting

that CD1e does not display antigens at the cell surface

[57]. Recent studies show that unlike other CD1 proteins,

CD1e is released into the lumen by proteolytic cleavage

[58], where it can float freely and promote the molecular

trimming of phosphatidylinositol antigens and their sub-

sequent presentation by CD1b [59,60].

CD1b is emerging as the CD1 isoform that focuses on

presenting large, exogenous foreign antigens that are
Current Opinion in Immunology 2009, 21:397–403
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Figure 2

Humans, cows, and mice reflect differing patterns of CD1 gene conservation among mammalian species. Among CD1-restricted T cells, humans have

NKT and non-NKT cells, whereas mice have only NKT cells, and cows have only non-NKT cells. Recent data suggest that the average number of CD1

genes in mammalian species is higher than in humans, so the mouse and other muroid rodents are distinctly atypical. CD1d1 and CD1d2 are highly

homologous, but the three bovine genes that belong to the CD1b group have differing cytoplasmic tail sequences and differences in a1 and a2

domains that likely affect groove structure. This figure does not show the two bovine CD1b pseudogenes and the two bovine CD1d pseudogenes

because they are predicted not to be translated into proteins.
taken up into lysosomes. With an interior volume of

approximately 2300 cubic angstroms, the CD1b groove

is much larger than that in CD1d and nearly twice the

volume of the CD1a groove [61]. Correspondingly, the

polyacylated trehaloses and mycolates, including

the new glycerol monomycolate antigen, are lipids in

the size range of C70–80, much larger than the C18–48

lipids presented by other CD1 isoforms. In fact, the

longest C84–86 mycobacterial mycolates exceed the

predicted volume of the CD1b groove and may pro-

trude through a small opening at the bottom of the

groove in the C0 pocket [62]. The insertion of such large

lipids into CD1b may be more dependent on lipid

transfer proteins and acid-mediated steric changes than

seen for other CD1 proteins [59,63,64]. CD1a and

CD1c proteins show fewer requirements for acid-

mediated loading and less prominently accumulate in

the most acidic lysosomal compartments [65,66]. These

biophysical properties of CD1b suggest that it is

specialized to capture exogenous long chain foreign

lipids in preference to shorter self-phosphodiacylgly-

cerols, sphingolipids, and other self-lipids that comprise

mammalian membranes (Figure 2). Correspondingly, T

cells autoreactive to CD1b have been less frequently

observed than those directly recognizing CD1a or CD1c

[1,41,67,68].
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Surprising patterns of CD1 evolution
The discovery of an avian CD1 gene [69,70] and new

evidence that it folds to form an antigen-binding pocket

[71] proves that the CD1 system predates the emergence

of mammals. However, unlike classical MHC class I

molecules, which are present in all jawed vertebrates

including fish, CD1 has not been identified in fish [72].

Also, recent studies suggest that CD1d proteins and NKT

cells are apparently lacking in ruminants [73,74]. Figure 2

illustrates how modern species have survived while lack-

ing any one of the five CD1 gene types. However most

mammalian species have preserved large gene families,

with up to 12 CD1 genes. Also, no mammalian species

lacking all CD1 proteins has been identified since the

discovery of the CD1 locus more than 20 years ago,

implying that CD1 has an indispensable role in the

mammalian immune system [75].

Thus, it appears CD1d and NKT cells per se are not

universally conserved, but instead that the CD1 family is

represented in some form in all amniote species. If all

mammalian species express at least one CD1 protein, this

implies that CD1 proteins have important immunological

functions that were positively selected by evolutionary

forces. Because one of the main functions of CD1 proteins

is to present lipid antigens from pathogens, we speculate
www.sciencedirect.com
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that the size and composition of CD1 genes present in any

given species reflects the results of pathogen exposure

and selection pressure on an evolutionary time scale.
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