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ABSTRACT
Objectives: Residual confounding can be present in
epidemiological studies because information on confounding
factors was not collected. A Bayesian framework, which
has the advantage over frequentist methods that the
uncertainty in the association between the confounding
factor and exposure and disease can be reflected in the
credible intervals of the risk parameter, is proposed to
assess the magnitude and direction of this bias.
Methods: To illustrate this method, bias from smoking as
an unmeasured confounder in a cohort study of lung
cancer risk in the European asphalt industry was
assessed. A Poisson disease model was specified to
assess lung cancer risk associated with career average,
cumulative and lagged bitumen fume exposure. Prior
distributions for the exposure strata, as well as for other
covariates, were specified as uninformative normal
distributions. The priors on smoking habits were specified
as Dirichlet distributions based on smoking prevalence
estimates available for a sub-cohort and assumptions
about precision of these estimates.
Results: Median bias in this example was estimated at
13%, and suggested an attenuating effect on the original
exposure–disease associations. Nonetheless, the results
still implied an increased lung cancer risk, especially for
average exposure.
Conclusions: This Bayesian framework provides a
method to assess the bias from an unmeasured
confounding factor taking into account the uncertainty
surrounding the estimate and from random sampling
error. Specifically for this example, the bias arising from
unmeasured smoking history in this asphalt workers’
cohort is unlikely to explain the increased lung cancer risk
associated with average bitumen fume exposure found in
the original study.

Even though in epidemiological studies as much
care as possible is normally taken to collect
information on factors that might potentially
confound the association between the exposure
of interest and the disease of interest,1–3 for various
reasons sometimes this information has not been
or could not have been collected.4 Specifically,
occupational cohort studies typically lack data on
risks that arise from an individual’s behaviour
which are not recorded in sources of information
normally used to construct the cohorts, such as
records kept by the employer or exposure measure-
ments. As a result, residual confounding may bias
exposure–disease associations reported in such
studies. Additionally, it has been shown that
residual confounding can still be present after
controlling for a confounder that is imprecisely

measured.5 Because the amount of bias from these
sources is unknown and bias is expected to be
directional, the frequentist confidence intervals
tend to underestimate the uncertainty about the
true effect6 and may even present biased estimates
of such uncertainty.

Several methods to estimate the sensitivity of
the risk estimates to unmeasured confounders have
been proposed,7–10 but they generally require
information on the prevalence of the unmeasured
confounder, its association with the exposure and
its effect on the outcome11 to ‘‘externally adjust’’
the original risk estimate. Conventional sensitivity
analyses are also difficult to summarise as the
number of parameters determining the bias
increases and does not provide a full range for
likely bias in the results, and can further be
misleading since the probability of the presented
scenarios is usually not taken into account.6

A Bayesian framework can be applied to improve
sensitivity analyses by incorporating uncertainty
regarding bias in the results,6 12–14 which has the
advantage over ordinary sensitivity analyses that
the uncertainty regarding the relationship of the
confounding variable to exposure and disease can
be reflected in credible intervals of the distribution
of true values of the risk parameter,6 12 especially
when some information is available on the
unmeasured confounding factor. In this paper we
adapt a Bayesian adjustment method proposed by
Steenland and Greenland,6 extending it to a full
Bayesian framework to produce a distribution of
risk parameters reflecting the uncertainty due to
both random sampling error and the uncertainty
about the unmeasured confounder.

To illustrate this extended method we will use it
to assess bias from smoking as an unmeasured
confounder in a cohort study of lung cancer risk
from bitumen fume exposure in the European
asphalt industry. The association between occupa-
tional exposure to bitumen fume during road
paving and roofing and excess lung cancer risk
has been under discussion for a long time.15–22 One
reason for this is the uncertainty about the impact
of residual confounding on the results of the
published studies from co-exposures to other
potential carcinogens19 and lifestyle factors, includ-
ing smoking of tobacco products.17 We will assess
data from a multi-centre cohort study that
provided evidence that excess lung cancer risk is
associated with employment in the asphalt indus-
try20 and may in particular be associated in an
exposure-dependent manner with career average
exposure to bitumen fume.21 Unfortunately, it was
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not feasible in the original cohort to collect individual smoking
histories,20 21 even though smoking is considered the main cause
of lung cancer22 and thus has a potential for being an important
confounding factor in the study.17 18

There is an opportunity to ‘‘externally’’ adjust the risk
estimates in the asphalt cohort that is the subject of this paper
for smoking, since individual smoking history was collected in
31% of the Dutch sub-cohort (n = 1138 workers) who under-
went routine medical examinations.16 Internal sensitivity
analyses by Hooiveld and colleagues16 that use an adjustment
method described by Axelson and Steenland,9 found little
potential for confounding in the Dutch sub-cohort. However,
these analyses suffered from simplistic assumptions about the
potential distribution of smoking habits and did not propagate
uncertainty about the (unknown) distribution of smoking
habits to estimates of exposure–disease associations. The
uncertainty about the extent to which observed smoking habits
reflect those of typical cohort members was not considered. To
address these limitations of previous work, we have conducted a
fully Bayesian sensitivity analysis of the confounding by latent
smoking habits of the association between bitumen fume and
lung cancer risk in the international cohort. We first describe the
cohort in greater detail and present the statistical model we
adopted. Finally, we present the result of Bayesian sensitivity
analysis for confounding and discuss the results.

METHODS
Cohort of European asphalt workers
The study population has been described in detail.20 21 In
summary, it included 79 822 male workers employed between
1913 and 1999 for at least 1 year in the asphalt industry in
Denmark, Finland, France, Germany, Israel, the Netherlands,
Sweden and Norway. Follow-up differed between countries and
started between 1953 and 1979 and ended between 1995 and
2000.

The Swedish sub-cohort was excluded from the analyses
presented here because individual employment histories were
absent. Quantitative exposure estimates were derived for cohort
members only employed in asphalt paving using a study-specific
exposure matrix,23 24 and as such these analyses included 12 367
male asphalt workers of whom 135 had died due to lung cancer
as the primary cause of death.

Subject-specific exposure estimates were separated into four
exposure groups in such a way as to ensure equal numbers of
lung cancer cases in each stratum.23 The lowest exposed group
was used as the reference group in the statistical models that
estimated relative risks.

Disease model
The frequentist method used to assess the association between
average bitumen fume exposure and lung cancer risk in the
original analyses21 applied multiple Poisson regression models to
adjust for potential confounding by country, calendar year, age,
duration of employment, and the use of coal tar. This disease
model did not take into account confounding by smoking:

log(mi) = a0+offsetln(personyears)i+zJ*bitumen fume exposurei+
d1–9*agei+d10–13*yeari+d14–17*duration of employmenti+

d18–23*countryi+d24*use of coaltari

where a0 is the intercept, j the exposure levels 1 to J, where J = 4
for unlagged exposures and J = 5 for lagged exposures. We

assume that the true disease model also includes a term for
tobacco smoking.

Latent confounder model
Steenland and Greenland6 proposed two methods to conduct
sensitivity analysis using information on the distribution of a
confounding factor from external sources: (a) a method based
on independent Monte Carlo sampling from scenarios based on
a prior distribution of the confounding factor in an external
population, and (b) a Bayesian method in which the prior
distribution is combined with observed data and sampling is
done from the combined posterior distribution. We adopted and
extended their Bayesian sensitivity analysis approach to assess
the amount of bias associated with a particular confounding
factor (smoking in their and our example), which relies on the
availability of an a priori estimate of the prevalence of this
confounding factor in the population under investigation.

The underlying model assumes that relative risks (RR)
comparing the exposure-smoking-specific group with referent
non-smokers within covariate strata, assuming that the rate-
ratios do not vary across covariate levels, can be described as:

where eZj is the RR relating exposure to disease risk within
specific levels of (bitumen fume) exposure, while ec1 and ec2 are
the RRs for the unmeasured confounding factor: current and
former smokers versus never smokers, respectively (represented
by dummy variables (1/0) m1 and m2). Subsequently, bias in the
jth exposure stratum can be estimated as (here we suppress
subscript j for simplicity):

where pnever,exp, pcurrent,exp, pformer,exp, pnever,nonexp, pcurrent,nonexp

and pformer,nonexp are the proportions of never, current and
former smokers in the exposed and referents, or in this example
in the different average bitumen fume exposure strata.
Assuming that bias is approximately constant across strata,
the confounder-adjusted RR for jth exposure is calculated by:

When there are a priori reasons to assume that the
proportions of smokers might differ between strata with
different exposure levels, this model can easily be extended by
incorporating strata-specific exposure-smoking-specific RRs,
which will also be illustrated in this example.

Posterior
Given the statistical model and adjustment factor for smoking
as an unmeasured confounder, the posterior summarisation can
be described, given p[.] as the probability density function of a
random variable, Z as the vector of the Poisson regression
parameters (zj) of log-relative risks due to bitumen fume
exposure before adjustment for the unmeasured confounder, h
as the vector of log-relative risks adjusted for unmeasured
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confounder, G is the matrix defining membership in a bitumen
fume exposed group, Y is the Poisson-distributed count of lung
cancers in each strata, D is the vector of the Poisson regression
parameters (d) for measured confounders (including intercept
a0), C is the vector of constants in c1 and c2 used in the
calculation of bias due to unmeasured confounder, and p is the
vector of prevalence of unmeasured confounder (smoking) for
different exposure groups, as:

Priors
Prior distributions for effect of current (c1) and former (c2)
smoking on risk of lung cancer were specified as normal
distributions with means and variance based on the odds ratios
(OR) for current cigarette smoking (OR 23.9, 95% confidence
interval 19.7 to 29.0) and former cigarette smoking (OR 7.5 (6.2
to 9.1)) among European men,25 which were obtained from a
study combining data from 10 case–control studies from six
European countries and included 7609 cases of lung cancer and
10 431 controls. The priors for the intercept (a0), the estimated
effects of exposure (zj) and the measured confounders (d1–4)
were specified as non-informative Gaussian distributions with
mean 0 and variance 10 000.

The proportions of never, former and current smokers in the
exposed (21%, 32% and 47%, respectively) and referent
populations (28%, 32% and 40%, respectively) in this cohort
were obtained from the data for the Dutch sub-cohort,16 the
assumption being that the sub-cohort has a similar control
population and similar demographics as the complete cohort.
Furthermore, we make a rather anti-conservative assumption
that the prevalence of smoking in the low exposed stratum is
similar to that in a non-exposed referent population, whereas in
fact the difference in smoking habits among them and highly
exposed asphalt pavers is thereby exaggerated, possibly leading
to over-correction for the unmeasured confounder. We assume
informative priors for these proportions based on a Dirichlet
distribution. Steenland and Greenland6 discussed the Dirichlet
distribution as the valid distribution to be used in these
situations but used a more familiar bivariate normal distribu-
tion as an approximation to the logit of the Dirichlet
distribution instead. However, with the currently available
software the use of this distribution does not pose problems
anymore and hence we advocate its use. The Dirichlet
distribution can be regarded as the multivariate generalisation
of the beta distribution and has been described by Connor and
Mosimann.26 As an example for readers not familiar with this
distribution, it has been described on http://en.wikipedia.org/
wiki/Dirichlet_distribution as ‘‘one example use of the Dirichlet
distribution is if one wanted to cut strings (each of initial length
1.0) into K pieces with different lengths, where each piece had,
on average, a designated average length, but allowing some
variation in the relative sizes of the pieces. The a/a0 values
specify the mean lengths of the cut pieces of string resulting
from the distribution. The variance around this mean varies
inversely with a0’’. Therefore, given that current, former and
never-smokers at any point in time form mutually exclusive
categories, it is natural to imagine these three proportions
follow the Dirichlet distribution.

To illustrate this method, we conducted two series of
analyses, assuming 5% (pexposed,Dirichlet(a[2.52, 3.84, 5.64])

and preferent,Dirichlet (a[3.36, 3.84, 4.80]) and 10% variance
(pexposed,Dirichlet(a[1.13, 1.70, 2.49]) and preferent,Dirichlet
(a[1.57, 1.79, 2.24]) in the estimated proportions of never,
former and current smokers in the exposed and referent
populations. These variance estimates have been chosen as
plausible values since the variance of the proportions of smokers
in the Dutch cohort were not reported in the original
publication.16 The 5% and 10% have been chosen such that
they reflect our a priori uncertainty about the Dutch subsample
being a true random sample from the full cohort, while a higher
uncertainty does not provide interpretable results due to overly
wide credible intervals in the sample from the posterior (not
shown). These Dirichlet input values can be calculated using
equations 6–9:

Additionally, a second a priori hypothesis was assessed in
which we not only assumed an association between smoking
prevalence exposure (similar to the previous example) but also
assumed that this association increased with increased average
exposure to bitumen fume. Although this association has been
discussed anecdotally, there is at present no evidence to support
this and these simulations as such are for illustrative purposes.
This was done by extending the Bayesian framework by
calculating three bias factors for the proportions of current
and never smokers in the low (42% and 26%), medium (47%
and 21%) and high (52% and 16%) exposed strata, while these
proportions in the referent stratum remained 40% and 28%,
respectively, which was based on an a priori defined 5% decrease
in smoking prevalence in the lowest exposed group and a 5%
increase in smoking prevalence in the highest exposed group
compared to the original estimates.16

SAMPLING FROM THE POSTERIOR
Following standard Bayesian methods, numerical results are
based on 50 000 samples from the posterior after a 5000 sample
‘‘burn in’’, using WINBUGS 1.4.3.27 The model syntax is
described in Appendix A. The marginal posterior distributions
were generated using Gibb’s sampling with the Metropolis
Markov chain Monte Carlo (MCMC) algorithm, tuned to
obtain an acceptance rate between 20% and 40%. Three MCMC
chains were obtained simultaneously, using different initial
starting values, obtained from the mean and 95% confidence
limits from the frequentist Poisson regression model, to test
convergence. Convergence was acceptable when Monte Carlo
(MC) errors were smaller than 5% and residual correlation in
the MCMC chains was absent. We computed 95% credible
intervals (2.5th to 97.5th percentile of the posterior distribu-
tion) of bias and smoking-adjusted relative risk. Bias, unadjusted
relative risks (RRs) and RRs adjusted for confounding by
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smoking were estimated at every iteration and summarised over
all 50 000 samples using means and 95% credible intervals.

In sampling from the posterior, at each MCMC iteration we
drew (a) a sample of risk parameter not adjusted for smoking
using non-informative priors on covariates and cohort data in
the Poisson disease model, (b) a sample of distributions of
smoking habits from the Dirichlet prior on smoking habits, (c) a
sample of effects of smoking habits on risk of lung cancer from
respective prior distributions, and finally combined the values
obtained in steps (a) to (c) in calculating bias-adjusted RR
according to equations 2–4. This is different from the method of
Steenland and Greenland6 in which only sampling steps (b) and
(c) were repeated for a fixed value of risk parameter.
Consequently, in our method credible intervals reflect uncer-
tainly due to both random error in the disease (Poisson) model
and the uncertainly in the distribution and effect of the
confounder. This constitutes a major methodological advance
and makes our method, unlike that of Steenland and
Greenland,6 particularly suitable for internal risk comparisons
within cohorts.

RESULTS
The results of the sensitivity analyses are reported in tables 1, 2
and 3. Estimated mean bias differs from median bias depending on
the level of uncertainty we a priori assigned to the posterior
distribution of smoking prevalence in the population.
Nonetheless, although mean bias has been estimated at 19–20%
(5% variance) and 27–28% (10% variance), median bias was
13–14% for both simulations, attenuating the exposure–disease
associations for average, cumulative and lagged exposure to
bitumen fume. However, the 95% credible intervals for bias
factors included negative values, implying the possibility of
correction away from the null due to some constellations of the
distribution of smoking habits in the cohort.

For average exposure the adjusted RRs in the exposed strata
ranged from 1.78 (95% credible interval 0.75 to 3.55) in the low
exposed group to 2.61 (1.02 to 5.44) in the highest exposed
group, respectively, when we are fairly sure about the
prevalence estimates (5% variance), and ranged from 1.88
(0.56 to 4.61) to 2.76 (0.79 to 6.95) with larger uncertainty
(10% variance). For the other exposure metrics exposure–
response associations were found with an RR of 2.22 (5%
variance) and 2.35 (10% variance) in the stratum with highest

cumulative exposure and RRs of 1.80 (5% variance) and 1.91
(10% variance) and 1.34 (5% variance) and 1.42 (10% variance)
in the highest 15-year lagged average and cumulative exposure
strata, respectively, with 95% credible intervals of these
estimates including unity.

Table 3 shows the results, for average bitumen fume
exposure only, when assuming a positive association between
level of exposure and smoking prevalence, and shows that
median bias ranges from 3.5% (258.5% to 116.4%) to 3.3%
(258.5% to 116.4%) in the low exposed group to 22.1%
(232.0% to 132.3%) and 22.7% (245.9% to 145.1%) in the
highest exposed stratum. As expected this further attenuates
the exposure–effect association to RRs of 2.39 and 2.52 in the
highest exposed groups, depending on the level of uncertainty
in the smoking prevalence, with the 95% credible intervals
now including unity.

DISCUSSION
These analyses suggest that although confounding from
smoking, caused by the diversity of smoking habits in the
asphalt industry, could have been present in the cohort, the data
still support, albeit with reduced certainty, an exposure–
response association between average bitumen fume exposure
and increased lung cancer risk.

Although estimated average and median bias differed by
approximately 5–15%, depending on the level of uncertainty,
the ratio of the crude and adjusted risk estimates suggested that
median bias estimate is a more appropriate summary measure of
the central tendency of bias. This can be attributed to the fact
that mean bias compared to median bias is vulnerable to
extreme samples from the Dirichlet distribution in the sampling
procedure. As such, confounding by smoking was estimated at
about 13%, which is somewhat higher than when using the
Axelson and Steenland method9 used by Hooiveld et al16 (range
9–12%, calculated from the manuscript), and suggests similar
exposure–response associations as shown in the original
publications.21 Similarly, assuming a correlation between smok-
ing habits and average bitumen fume exposure, which results
from longer breaks during tasks and hence more opportunity for
smoking breaks or from ignoring side effects from smoking
given the working circumstances during the highest exposed
tasks, shows comparable trends with reduced levels of certainty
(wider credible intervals).

Table 1 Relative risks for lung cancer due to lifetime bitumen fume exposure (RR), 95% confidence interval (CI) and 95% credible intervals (CL),
estimated from a frequentist Poisson regression model, a Bayesian Poisson model and an adjusted Bayesian Poisson model

Frequentist model, Bayesian model,
Bayesian adjusted
model (5% variance),

Bayesian adjusted
model (10% variance),

RRunadj (95% CI) RRunadj (95% CL) RR (95% CL) RR (95% CL)

Average exposure (mg/m3)

,0.97 1 (–) 1 (–) 1 (–) 1 (–)

0.97–1.24 1.87 (1.17 to 3.00) 1.93 (1.16 to 2.99) 1.78 (0.75 to 3.55) 1.88 (0.56 to 4.61)

1.24–1.39 2.35 (1.32 to 4.18) 2.45 (1.30 to 4.17) 2.26 (0.88 to 4.78) 2.40 (0.67 to 6.09)

.1.39 2.73 (1.56 to 4.78) 2.82 (1.53 to 4.73) 2.61 (1.02 to 5.44) 2.76 (0.79 to 6.95)

Mean bias 19.4% (238.5% to 164.0%) 27.7% (255.5% to 198.4%)

Median bias 13.0% (238.5% to 164.0%) 13.1% (255.5% to 198.4%)

Cumulative exposure (years-mg/m3)

,0.76 1 (–) 1 (–) 1 (–) 1 (–)

0.76–2.98 1.10 (0.51–2.35) 1.25 (0.55 to 2.59) 1.13 (0.37 to 2.73) 1.20 (0.30 to 3.33)

2.98–9.03 1.27 (0.48–3.36) 1.54 (0.52 to 3.78) 1.39 (0.37 to 3.76) 1.48 (0.30 to 4.56)

.9.03 2.00 (0.68–5.87) 2.46 (0.71 to 6.46) 2.22 (0.52 to 6.33) 2.35 (0.42 to 7.61)

Mean bias 19.5% (238.7% to 115.1%) 27.6% (255.0% to 196.5%)

Median bias 13.1% (238.7% to 115.1%) 13.2% (255.0% to 196.5%)
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The estimation of the bias factor depended on the assump-
tions regarding prevalence of smokers, ex-smokers and never
smokers in the exposed and referent populations in the cohort,
which were extrapolated from a Dutch sub-cohort and need not
necessarily be valid for the complete multi-centre cohort. This
has been reflected in a priori selecting two different levels of
variance for the Dirichlet distribution. However, smoking data
were also collected specifically for bitumen exposed and non-
exposed workers in the Finnish sub-cohort,28 and showed that
the percentages of ever and never smokers in the bitumen
exposed workers (77% and 23%, respectively) and non-exposed
workers (68% and 32%) were similar to those in the
Netherlands (79% and 21% for exposed and 72% and 28% for
non-exposed, respectively). As such, a 5% variance in priors on
prevalence of smoking habits might be more appropriate than a
10% variance.

The use of a Dirichlet distribution to estimate the prevalence
of current, former and ex-smokers has the advantage over a
multivariate normal distribution that scenarios with a negative
probability do not occur, and hence no posterior assessment of
values and subsequent discarding of scenarios with negative
probabilities is needed.6 However, the variability in estimated

bias in different scenarios is highly dependent on the variance of
the probabilities, which were defined a priori in these
simulations. As such, there is a large difference between the
estimated mean of the bias and the median, which in our
example leads to unrealistic mean bias factors of 92% (median is
12%) when variance is a priori set to 30% (data not shown). We
argue that that such uninformative prior distributions should be
avoided, since the usefulness of this method is based on
improving the risk estimates based on data from other sources
as a basis for the prior distributions. Nonetheless, reporting the
median bias factor instead of the mean in future studies seems
more appropriate since the median is less sensitive to outliers.

Finally, this method assumes that the unmeasured confoun-
der (ie, smoking status) is not associated with the observed
confounders (country, age, year, duration of employment and
use of coal tar) in the model. This is a common assumption in
similar Bayesian work.29

Despite these limitations, taken together with sensitivity
analyses to assess the method of exposure assessment and
lagging of exposure, as well as residual confounding from coal
tar use in the original cohort,30 our current results suggest that
the exposure–response association in the original analyses could

Table 2 Relative risks (RR), 95% confidence interval (CI) and 95% credible intervals (CL), estimated from a frequentist Poisson regression model and
the Bayesian Poisson model, and Bayesian adjusted relative risks for the 15-year lagged model

Frequentist model, Bayesian model,
Bayesian adjusted
model (5% variance),

Bayesian adjusted
model (10% variance),

RRunadj (95% CI) RRunadj (95% CL) RR (95% CL) RR (95% CL)

15-year lagged average exposure
(years-mg/m3)

Non-exposed 1 (–) 1 (–) 1 (–) 1 (–)

,1.11 0.38 (0.21 to 0.70) 0.39 (0.20 to 0.68) 0.36 (0.14 to 0.78) 0.39 (0.11 to 0.99)

1.11–1.32 0.72 (0.40 to 1.31) 0.75 (0.39 to 1.28) 0.69 (0.26 to 1.47) 0.73 (0.20 to 1.88)

1.32–1.48 1.23 (0.68 to 2.23) 1.27 (0.66 to 2.19) 1.18 (0.45 to 2.50) 1.25 (0.35 to 3.21)

.1.48 1.89 (0.96 to 3.70) 1.94 (0.91 to 3.54) 1.80 (0.63 to 3.96) 1.91 (0.50 to 5.06)

Mean bias 19.6% (238.2% to 116.0%) 27.3% (255.2% to 195.4%)

Median bias 13.1% (238.2% to 116.0%) 13.0% (255.2% to 195.4%)

15-year lagged cumulative exposure
(years-mg/m3)

Non-exposed 1 (–) 1 (–) 1 (–) 1 (–)

,0.90 0.72 (0.36 to 1.44) 0.73 (0.33 to 1.37) 0.68 (0.23 to 1.52) 0.72 (0.18 to 1.91)

0.90–2.83 0.82 (0.48 to 1.41) 0.84 (0.47 to 1.39) 0.77 (0.31 to 1.60) 0.82 (0.24 to 2.05)

2.83–8.96 0.74 (0.41 to 1.33) 0.76 (0.40 to 1.31) 0.70 (0.27 to 1.50) 0.74 (0.21 to 1.91)

.8.96 1.37 (0.61 to 3.10) 1.45 (0.58 to 3.00) 1.34 (0.41 to 3.24) 1.42 (0.33 to 3.99)

Mean bias 19.4% (238.5% to 158.0) 27.8% (255.5% to 198.4%)

Median bias 12.9% (238.5% to 158.0%) 13.5% (255.5% to 198.4%)

Table 3. Relative risks (RR) and 95% credible intervals (CL) from the adjusted Bayesian Poisson model,
assuming a positive association between average bitumen fume exposure and smoking prevalence

Average exposure
(mg/m3) Bias (mean) Bias (median) 95% CL

Bayesian adjusted
model (5% variance),
RR (95% CL)

,1.04 – 1

1.04–1.24 9.6% 3.5% (245.9% to 99.8%) 1.96 (0.80 to 4.00)

1.24–1.39 19.6% 13.1% (238.4% to 116.0%) 2.26 (0.86 to 4.78)

.1.39 29.2% 22.1% (232.0% to 132.3%) 2.39 (0.94 to 4.94)

Average exposure
(mg/m3) Bias (mean) Bias (median) 95% CL

Bayesian adjusted
model (10% variance),
RR (95% CL)

,1.04 – 1

1.04–1.24 9.6% 3.3% (258.5% to 116.4%) 2.09 (0.75 to 5.01)

1.24–1.39 19.6% 12.9% (251.5% to 131.3%) 2.39 (0.83 to 5.70)

.1.39 29.3% 22.7% (245.9% to 145.1%) 2.52 (0.91 to 5.89)
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not be completely attributed to confounding by smoking or
other confounding factors. Although Mundt and colleagues17

also used a method similar to that described here to adjust the
results of the asphalt cohort for confounding by smoking, the
fact that their conclusions differ from ours can be attributed to
different specification of the prior distributions. Their con-
founded risk estimates were mainly based on cohort studies
comparing lung cancer rates in asphalt workers/roofers with
smoking rates among construction workers, which both have a
higher smoking prevalence than the general population,31 and
they used smoking prevalence rates in the general population
obtained from the United States National Health Interview
Survey (NHIS)32 as a comparison. Thus, although half of the
cohort studies Mundt et al examined were conducted in Europe,
they used smoking rates for the US that are generally considered
to be lower than those in Europe. As such, these assumptions
are likely to inflate the bias factor. Similarly, a meta-analysis by
Fayerweather33 addressing residual confounding by coal tar use
also depended on the unrealistic assumptions about the
exposure distributions as discussed in detail by Burstyn and
Kromhout.34 This indicates that great care must be taken in
defending assumptions used in sensitivity analysis, but it must
be said in defence of quantitative sensitivity analyses that the
transparent nature of assumptions they entail elevates the
discussion of latent confounding from the realm of speculation
to numerical analysis.

In summary, we describe the application of a fully Bayesian
adjustment method to account for an unmeasured confounding

factor and its uncertainty, as well as the uncertainty due to
random sampling error in the disease model. Applying this
method to the question of residual confounding by smoking in a
European asphalt workers’ cohort study assessing average,
cumulative and 15-year lagged exposure to bitumen fume and
increased lung cancer risk, demonstrated that the bias arising
from smoking habits is relatively small and is unlikely to explain
the association between increased lung cancer risk and career
average bitumen fume exposure found in the original study.
However, external adjustments, even with the most defensible
assumptions about the relevant distributions, always require a
leap of faith and therefore cannot replace internal adjustments
by actual assessment of the smoking history for the cohort
participants.
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APPENDIX A
# Specification of the Bayesian Poisson model with external adjustment for
confounder (smoking)
Model {
for(i in 1:N){
y[i], dpois(mu[i])
log(mu[i]),- int+offset[i]+g1[i]+g2[i]+g3[i]+g4[i] +g5[i]
g1[i],- b1*exph[i]+b2*expm[i]+b3*expl[i]+b4*age10[i]+b5*age9[i]
g2[i],-b6*age8[i]+b7*age7[i]+b8*age6[i]+b9*age5[i]+b10*age4[i]
g3[i],- b11*age3[i]+b12*age2[i] +b13*cal5[i] +b14*cal4[i] +b15*cal3[i]
g4[i],- b16*cal2[i]+b17*alljc7[i] +b18*alljc6[i] +b19*alljc5[i] +b20*alljc4[i]
g5[i],- b21*c8[i] +b22*c7[i] +b23*c6[i] +b24*c5[i] +b25*c4[i] +b26*c2[i]
+b27*coaltar[i]
}
# Specification of the prior distributions
int,dnorm(0,0.0001)

b1,dnorm(0,0.0001)
…
b27,dnorm(0,0.0001)
betacur,dnorm(3.17,10.14)
betaform,dnorm(2.01,10.30)
# Estimation of tobacco smoking prevalence in the exposed strata
psmkexp[1:3],ddirch(alphaexp[])
psmknonexp[1:3] , ddirch(alphanonexp[])
pnev1,-psmkexp1

pnev0,-psmknonexp1

pcur1,-psmkexp3

pcur0,-psmknonexp3

pform1,-psmkexp2

pform0,-psmknonexp2

# Estimation of variance of tobacco smoking prevalence in the exposed strata
a0_exp,-pnev1+pcur1+pform1
a0_nonexp,-pnev0+pcur0+pform0
var_pnev1,-(pnev1*(a0_exp-pnev1))/((a0_exp*a0_exp)*(a0_exp+1))
var_pnev0,-(pnev0*(a0_nonexp-pnev0))/((a0_nonexp*a0_nonexp)*(a0_nonexp+1))
var_pcur1,-(pcur1*(a0_exp-pcur1))/((a0_exp*a0_exp)*(a0_exp+1))
var_pcur0,-(pcur0*(a0_nonexp-pcur0))/((a0_nonexp*a0_nonexp)*(a0_nonexp+1))
var_pform1,-(pform1*(a0_exp-pform1))/((a0_exp*a0_exp)*(a0_exp+1))
var_pform0,-(pform0*(a0_nonexp-pform0))/((a0_nonexp*a0_nonexp)*(a0_no-
nexp+1))
# Estimation of unknown bias factor
bias,-(pnev1+exp(betacur)*(pcur1)+exp(betaform)*(pform1))/(pnev0+exp(beta-
cur)*(pcur0)+exp(betaform)*(pform0))
# Estimate of Relative risks uncorrected for confounding by smoking
RR.high,-exp(b1)
RR.med,-exp(b2)
RR.low,-exp(b3)
# Estimate of Relative risk adjusted for smoking
RR.high.adj,-RR.high/bias
RR.med.adj,-RR.med/bias
RR.low.adj,-RR.low/bias
}
#specification of initial MCMC starting values based on means, 2.5%Confidence Limit,
and 97.5%Confidence Limit of the frequentist poisson model
#data
#set-up Dirchelet prior: illustrated values are for 10% variance assuming no
# increase in prevalence of smoking with increase in exposure
# (tables 1 and 2 in text)
list(alphaexp = c(1.113, 1.696, 2.491), alphanonexp = c(1.568,1.792,2.240), …
# where:
# N = number of observations in the cohort
# int = model intercept (a)
# betacur = model parameter estimate (b) for current tobacco smokers
# betaform = model parameter estimate (b) for former tobacco smokers
# pnev = proportion of never smokers among the exposed (1) and unexposed (0)
# pcur = proportion of current smokers among the exposed (1) and unexposed (0)
# pform = proportion of former smokers among the exposed (1) and unexposed (0)
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