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Abstract
Computing power continues to grow at an enormous rate. Simultaneously, more
and better data is increasingly available and Machine Learning methods have
seen significant breakthroughs in the recent past. All this pushes further the
boundary of what machines can do. Nowadays increasingly complex tasks are
automatable at a precision which seemed infeasible only few years ago. The
examples range from voice and image recognition, playing Go, to self-driving
vehicles. Machines are able to perform more and more manual and also cognitive
tasks that previously only humans could do. As a result of these developments,
some argue that large shares of jobs – e.g., about half of the US workforce – are
“at risk of automation,” spurring public fears of massive job-losses and techno-
logical unemployment.

This chapter discusses how new digital technologies might affect the labor
market in the near future. First, the chapter discusses estimates of automation
potentials, showing that many estimates are severely upward biased because they
ignore that workers in seemingly automatable occupations already take over hard-
to-automate tasks. Secondly, it highlights that these numbers only refer to what
theoretically could be automated and that this must not be equated with job-losses
or employment effects – a mistake that is done often in the public debate. Thirdly,
the chapter develops scenarios on how digitalization is likely to affect the German
labor market in the next 5 years and derives implications for policy makers on
how to shape the future of work. Germany is an interesting case to study, as it is a
developed country at the technological frontier. In particular, the main challenge
will not be the number, but the structure of jobs and the corresponding need for
supply side adjustments to meet the shift in demand both within and between
occupations and sectors.

Introduction

The past decades have been characterized by a tremendous rise of computing power.
Since 1945, computing power increased, on average, by 45 percent per year,
implying a drastic decline of the costs of computational tasks (Nordhaus 2007).
These rapid improvements have been accompanied by computer-controlled automa-
tion of so-called routine tasks. Routine tasks are tasks which follow well-defined
rules and can thus be automated based on rule-based algorithms, using rapidly
improving computers. As a consequence, labor demand for routine tasks has gener-
ally declined. As routine tasks were wide-spread among many middle-skilled,
medium-wage workers, such as bookkeepers, clerical assistants, or production
workers, this computerization has led to a polarization of the labor market in the
recent past with declining shares of middle- and rising shares of both high- and
low-wage workers (see Acemoglu and Autor 2011 for a review of the literature).

While computerization has replaced humans in many routine tasks, these tasks
have in common that they need to be well defined. However, people understand
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many tasks tacitly, without being able to clearly pin down the exact underlying rules,
limiting the scope of what can be automated based on software algorithms
(“Polany’s Paradox,” Autor 2015). More recently, these technological barriers are
reduced by Machine Learning (ML) methods, in particular by Deep Learning. Such
methods are based on the idea of training machines in performing tasks by providing
them with suitable data, instead of developing algorithms of well-defined rules. The
machines “learn” how to do the task by mimicking the observed behavior, which
implies that there is no more need for explicitly understanding the precise rules
underlying the observed patterns.

Deep Learning has been advocated already decades ago under different names. It
has been discussed as cybernetics in the 1940s–1960s, as connectionism in the
1980s–1990s, and as Deep Learning since about 2006 (Goodfellow et al. 2016).
However, it has increasingly been applied in real-world settings only recently (see
Brynjolfsson et al. 2017, for examples). This is due to the fact that these methods
require both high computing power and large amounts of training data, both of
which became increasingly available during the last years. Moreover, data collection
and availability have become ubiquitous, e.g., via smartphones or the internet.
Therefore, the range of problems that can be solved via ML has extended signifi-
cantly. This now allows for the automation of cognitive tasks that previously only
humans could do, sometimes even exceeding human precision (Brynjolfsson et al.
2017). These include also tasks typically requiring high-skilled workers, see, e.g.,
Brynjolfsson and McAfee (2016) or Pratt (2015).

Against this background, there exists a debate on how many tasks or occupations
might be automatable in the near future. A corresponding study which received
widespread attention in the public debate is Frey and Osborne (2017), who claim that
about half of the US workforce are “at risk of automation” in the next one to two
decades. While some authors and consultancy agencies make similar claims (e.g.,
Bowles 2014; Pajarinen and Rouvinen 2014; PWC 2018), other authors report much
lower figures (Arntz et al. 2016, 2017; Nedelkoska and Quintini 2018; Dengler and
Matthes 2018).

This debate is accompanied by widespread public fears of technological unem-
ployment. Historically, such fears are not new. In fact, it has been claimed many
times in history that technological change will lead to mass unemployment (see
Mokyr et al. 2015 for a discussion) or will even herald the “End of Work,” as, for
example, popularized by the eponymous book by Rifkin (1995). So far, these fears
have not come true, raising the question of why there still are so many jobs (Autor
2015).

In order to shed light on this question, this chapter discusses recent evidence on
automation potentials and how this might translate into actual employment effects,
see also Fig. 1. The chapter starts out by discussing how many and which kind of
jobs might be automatable in the near future (section “Automation Potentials”). The
focus lies on explaining the large differences in corresponding estimates. Secondly,
section “Automation and Employment” debates in what this might imply for
employment. The latter is important, as automation potentials only capture techno-
logical feasibility to automate jobs that must not be equated with actual employment
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effects, since the diffusion of new technologies in the labor market is a slow and
incomplete process (section “Technological Diffusion”), workers adapt (section
“Flexibility of Workers”), and potential job destruction effects might be compen-
sated by job creation effects (section “Compensatory Mechanisms”). This distinction
between automation potentials and actually resulting employment effects is often
ignored in the public debate. As large automation potentials already existed in the
past without resulting in mass unemployment, the chapter will also look back in time
to see why this has not been the case and what one can learn from the past for the
future of work. Thirdly, based on new and unique data on the use of digital
technologies in the German economy, section “Scenarios for Employment Effects”
presents first estimates of how automation via digitalization might affect the German
labor market in the next few years. Section “Summary” concludes.

Automation Potentials

How many and which jobs are susceptible to future automation? In order to address
this question, Frey and Osborne (2017) use the following approach: They ask experts
in ML what machines are able to do and extrapolate their assessments to the US
workforce. At first, they subjectively hand-label 70 occupations from the O�NET
database in a joint workshop with ML experts as either automatable or
non-automatable. The O�NET database provides the task and job descriptions for
each occupation. The question to be answered during the workshop was: “Can the
tasks of this job be sufficiently specified, conditional on the availability of big data,
to be performed by state of the art computer-controlled equipment” (Frey and
Osborne 2017, p. 263). Using this approach, the authors ultimately calculate the
technical possibility of automating a job, which this chapter refers to as automation

Automation Potentials (2)

Technological Diffusion (3.1)

Worker Adjustment (3.2)

Job Destruction and Creation (3.3)

Employment Effects

New Technologies
Fig. 1 From new
technologies to their
employment effects
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potential. Note that the automation potential does not capture the probability that a
job is actually automated, let alone the resulting employment effects of automation.

Frey and Osborne (2017) then rely on a selective list of variables regarding
occupational tasks from the O�NET as well as the hand-labeled occupations from
the workshop, to train an ML algorithm that classifies occupations as automatable or
nonautomatable. In other words, they estimate a statistical model of automation
potentials using nine task indicators as explanatory variables. Finally, they use this
model to extrapolate job automation potentials for all 702 occupations that are
included in the O�NET task data. The model returns an estimate of the automation
potential. This number ranges between 0 and 100%. It is the likelihood that an
occupation is technically automatable or, strictly speaking, it is an estimate of the
probability that the experts would have classified a given occupation as automatable
during the workshop. Frey and Osborne (2017) then define an occupation as
automatable or as “at high risk,” if the ML algorithm returns at least an estimated
automation potential of 70%. Finally, they combine this with occupational employ-
ment data to compute that 47% of workers in the USA are currently working in “high
risk” or automatable occupations.

Several authors apply this approach to other countries by assigning the estimated
automation potential for an occupation from Frey and Osborne (2017) to the
country-specific occupational structure. Thereby, these studies assume that occupa-
tions are comparable across countries regarding their task structure. For example,
Bowles (2014) finds that on average, 54% of workers in the European Union are “at
high risk,” with estimates ranging from 47% in Sweden to 62% in Romania.
Pajarinen and Rouvinen (2014) argue that 36% of workers in Finland are
automatable.

A key drawback of the approach by Frey and Osborne (2017) is that they focus on
the occupational level, thus assuming all workers of the same occupation to conduct
exactly the same tasks as described in the O�NET data. This is a very strong
assumption as tasks do not only vary between workers of different occupations,
but also vary substantially between workers of the same occupation (Autor and
Handel 2013). Moreover, the overwhelming majority of the decline in routine tasks
in the context of computerization has been due to declining shares of routine tasks
within occupations instead of declining shares of routine occupations (Spitz-Oener
2006). Hence, to the extent that average occupational task structures do not suffi-
ciently represent the task heterogeneity within occupations, especially regarding
new, less automatable tasks, occupation-level approaches, such as Frey and Osborne
(2017), are likely to overestimate automation potentials.

For this reason, Arntz et al. (2016, 2017) instead follow a different approach by
focusing on what people actually do in their jobs rather than relying on occupational
descriptions of jobs. For this, they use individual-level survey data provided by
PIAAC (Programme for the International Assessment of Adult Competencies).
Based on a statistical model that links the estimated automation potential by Frey
and Osborne (2017) to the job-level characteristics of the workers in the PIAAC,
they then show that only 9% of all US workers are conducting automatable jobs (i.e.,
jobs with an estimated automation potential of at least 70%). Moreover, they
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calculate similar figures for other countries for which the survey is available and find
that automation potentials vary between 6% in South Korea and 12% in Germany
(see Fig. 2).

Further differentiating the results by educational attainment, they find that
low-skilled workers are particularly exposed to automation (Arntz et al. 2016).
The share of workers with high automation potentials is highest for unskilled
workers and strongly declines with educational attainment (see Fig. 3). Similarly,
low-income workers are exposed the most, whereas high-wage earners are least
exposed to being potentially automatable. Hence, even though new automation
technologies are increasingly capable to perform tasks of highly skilled and highly
paid workers, it is the low-skilled workers whose tasks are most exposed to being
potentially automatable. This resembles the skill-biased technological change before
the 1980s which favored higher skilled workers at the expense of lower skilled
workers (Acemoglu and Autor 2011) rather than the period from the mid-1980s until
the 2000s during which computer-based technologies mostly substituted for middle-
skilled routine-task-intensive workers.

Why do they find, on average, lower estimates compared to those of Frey and
Osborne (2017)? The differences could stem either from the different level of
analysis (occupation- vs. job-level) or from differences in data and methodology.
In order to test the different explanations, Arntz et al. (2017) use occupation-level
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Estonia
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Share of Workers with High Automation Potential
Source: Arntz et al. (2016)

Fig. 2 Automation potentials by country

6 M. Arntz et al.



median task structures from the PIAAC to predict the automation potentials based on
their estimated model. In this case, 38% of all US workers fall in the “high-risk”
group, implying that data and methodology can only explain a small part of the
differences between the occupation-level and job-level approach (see Fig. 4).
Instead, much of the difference is explained by the huge variation of workers’
tasks within occupations. Apparently, workers in seemingly automatable occupa-
tions specialize in different types of hard-to-automate tasks such that occupational
means do not represent the relevant task spectrum very well. As a result, occupation-
level approaches, such as Frey and Osborne (2017), overestimate automation
potentials.

A related study by Nedelkosta and Quintini (2018) also applies a job-level
approach by using the PIAAC. In contrast to the Arntz et al. (2016, 2017) studies,

0% 10% 20% 30% 40% 50% 60%

ISCED 1 or less

ISCED 2, ISCED 3C short

ISCED 3A-B, C long

ISCED 4A-B-C

ISCED 5B

ISCED 5A
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Share of Workers with High Automation Potential

Source: Arntz et al. (2016)

Fig. 3 Automation potentials by education
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Fig. 4 Automation potential estimates
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they have access to 440 detailed ISCO occupations. Whereas Arntz et al. (2016,
2017) rely on the estimated automation potentials of all 702 occupations, they only
use the expert evaluations of the 70 hand-labeled occupations from the workshop
and link them to selective task variables in the PIAAC. Their methodology thus is
closer to Frey and Osborne (2017). Nevertheless, using job-level information on the
tasks conducted, they find 10% of US workers to be in the “high-risk” group – as
compared to the 47% by Frey and Osborne (2017). Pouliakas (2018) adopts a very
similar approach, but instead uses another data set, the European Skills and Jobs
Survey (ESJS), and finds that 14% of workers in the European Union work in
automatable jobs. Hence, these studies confirm that differences between the results
by Arntz et al. (2016, 2017) and Frey and Osborne (2017) are not due to method-
ology or data, but are explained by the fact that occupation-level approaches severely
overestimate automation potentials.

Other studies adopt different methodologies to estimate the share of automatable
jobs. For example, Dengler and Matthes (2018) hand-classify 8.000 different tasks
from the German BERUFENET database, an occupation-level database similar to
O�Net, as either automatable or non-automatable. They then calculate the share of
automatable tasks for 4.000 different occupations and find that 15% of all workers in
Germany are in the “high-risk” group, a finding that is quite comparable to the 12%
for Germany by Arntz et al. (2016). A potential explanation for the similar finding is
that they use such a disaggregated level of occupations that the corresponding
occupational descriptions come close to describing the actual job-level. Another
study by Arnold et al. (2016) conducts a survey among German employees, focusing
on workers’ subjective beliefs about their jobs’ automation potential. According to
their results, 13% of all respondents consider it likely or very likely that their job will
be replaced by new technologies in the next 10 years.

Overall, there now exists widespread evidence that occupation-level studies
overestimate automation potentials. Taking into account job-level variation of
tasks within occupations, the share of automatable jobs drops to about 9% for the
USA and to comparable figures in other countries. Nevertheless, the insights that can
be drawn from such estimates remain limited, as the estimated automation potentials
only capture whether a job – given its contemporaneous task structure – could
theoretically be done by a machine or not. They do not tell much about actual job
losses or employment effects in the next two decades.

Automation and Employment

There are three main reasons why the previously discussed automation potentials
must not be equated with actual or expected job losses or employment effects, see
also Arntz et al. (2016) for a discussion:

1. Technological diffusion, i.e., the gap between technological potential and its
actual implementation
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2. Worker flexibility, i.e., the ability of workers and jobs to adjust their tasks to new
requirements

3. Induced job creation, i.e., the job creation that technological change induces via
several channels

Taking all three aspects together, the actual net employment effect of new
technologies may surface with a time lag and may even be positive rather than
negative. This section discusses all three aspects in more detail.

Technological Diffusion

In 1987, Solow famously wrote that “[you] can see the computer age everywhere but
in the productivity statistics” (Solow 1987). This quote became famous as the
“Solow Paradox.” According to Brynjolfsson et al. (2017), we currently experience
a comparable paradox with Artificial Intelligence (AI). AI systems rapidly advance
and already surpass humans in selected tasks, but productivity slows down rather
than rises. While different explanations can be put forward, they argue that large lags
in AI implementation are the main contributor to the paradox. So far, AI adoption
severely lags behind its technological capabilities. In particular, Brynjolfsson et al.
(2017) explain the slow diffusion of AI by arguing that AI is a General Purpose
Technology (GPT). GPTs are technologies which are pervasive (i.e., they spread to
most sectors), they improve over time, and they enhance the possibilities to further
invent and produce new products and processes, such as electricity or information
technology (Jovanovic and Rousseau 2005).

GPT often require a long time to diffuse in the wider economy. For example,
computers took 25 years to reach their long-run plateau of 5% of nonresidential
equipment capital. About half of US manufacturing plants remained nonelectrified
30 years after the introduction of the polyphase system. These GPTs achieved
widespread productivity gains and adoption only once sufficient complementary
innovations and investments were made (Brynjolfsson et al. 2017). The rather low
speed of diffusion is evident also for the latest technological advances. For instance,
in the recent IAB-ZEW Labour Market 4.0 (LM4.0) firm survey, Arntz et al. (2019a)
collected information on the level of technology underlying the capital stock that is
used in German firms. In particular, they distinguish between manually controlled
technologies that correspond to technologies that are either functioning mechani-
cally or electrically, but are not IT supported, i.e., “1.0/2.0-technologies,” technol-
ogies that are supported by computers and software algorithms, i.e., “3.0-
technologies,” and “4.0-technologies” that correspond to technologies that are
IT-integrated, i.e., they allow for a direct and automated communication between
different parts of the value chain such that workers only need to intervene in case of
failures. In manufacturing, a production based on these highly automated, digital
technologies is often referred to as “Industry 4.0,” echoing the fact that the under-
lying technological advances have been considered to constitute a new, fourth
industrial revolution.

Digitization and the Future of Work: Macroeconomic Consequences 9



Figure 4 shows the technological structure of the capital stock used in German
firms in 2016 at the time of the survey, the retrospective structure as of 2011, and the
firms’ expected structure as of 2021, differentiated by production as well as office
and communication equipment. For both types of the capital stock, the shares of
capital based on 4.0-technologies roughly doubled in the 10-year period. However,
its share still remains small and, in fact, many firms are upgrading from 1.0/2.0 to 3.0
technologies rather than introducing the latest technologies. Thus, despite an ongo-
ing diffusion of 4.0-technologies at a notable speed, the capital stock will continue to
be dominated by older technologies in the near future. Or, in the words of
Brynjolfsson et al. (2017, p. 10), “it takes time to build the stock of the new
technology to a size sufficient enough to have an aggregate effect” (Fig. 5).

Several reasons can be put forward to why the speed of diffusion may actually be
lower than often expected. First of all, automation technologies will only be adopted
if they can execute a particular task at lower costs than a worker. This is highlighted
in the seminal framework on automation and jobs by Acemoglu and Restrepo
(2018a). This framework highlights that what matters for the labor market is not
how much could theoretically be automated, but how much of these technological
capabilities are actually profitable to be adopted. Hence, the speed of diffusion also
hinges on the costs of labor and thus on wage setting institutions such as minimum
wages or the role of collective wage bargaining. While low labor costs at the lower
end of the distribution may thus shield workers from being automated by machines
to some extent, more expensive workers in the middle of the wage distribution may
be more profitable to automate. At the same time, it is not clear when machines will
actually have a comparative advantage to perform the more complex tasks at the
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Fig. 5 Technological endowment of German firms
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upper end of the wage distribution. This will, of course, also depend on how much
the wage level decreases in response to an automation-induced decline in labor
demand, as the decline in wages improves worker’s employment prospects again.1

For this reason, technological capabilities do not necessarily translate into techno-
logical obsolescence of human labor (Acemoglu and Restrepo 2018a).

The costs of implementing new technologies are not limited to the acquisition of
these technologies. Instead, additional investments often are necessary to fully
utilize the new technologies and make them profitable. This is particularly true for
major innovations such as GPT. Complementary investments comprise, for example,
necessary organizational restructuring or the acquisition of the right skills via further
training and new hires (Brynjolfsson et al. 2017). Firms go through a process of
organizational redesign and substantially change their service and product mix to
raise service quality and gain efficiency (Bresnahan et al. 2002). In fact, the shortage
of qualified personnel that is able to handle new technologies may slow down its
implementation, as the introduction of new technologies likely requires the avail-
ability of complementary skills (Acemoglu 1998). In line with this, firms from the
German LM4.0 survey consider lack of qualified personnel to be a major risk for the
implementation of new technologies. Moreover, the 65% of German firms which did
not invest in 4.0-technologies between 2011 and 2016 particularly stress such risks
and downplay the chances compared to firms which already use these technologies
(Arntz et al. 2018). The barriers to the implementation of new technologies thus
seem to be severe for a large share of firms, notably the smaller, less knowledge-
intensive firms.

Apart from business-related reasons, there may also be ethical or legal obstacles
that slow down or limit the speed of technological adoption. As a prominent example
that has been discussed by Thierer and Hagemann (2015) and Bonnefon et al.
(2016), the autonomous car bears new legal challenges regarding, for instance, the
liability in case of an accident. Moreover, ethical questions emerge whenever an
autonomous car cannot prevent an accident and an algorithm has to decide, for
example, between crashing into a car or a truck. While some of these obstacles may
be resolved at some point, they clearly slow down the pace with which technologies
are introduced.

A final aspect that should be considered is that society may have strong prefer-
ences for the provision of certain tasks and services by humans as opposed to
machines. As an example, nursing or caring for the elderly may remain labor-
intensive sectors, even if service robots increasingly complement these professions
in the future. Hence, “some human services will probably continue to command a
premium compared to robotically produced one” (Pratt 2015, p. 58), meaning that
there is a societal value attached to humans performing certain tasks that tends to
preserve their comparative advantage.

1See Acemoglu and Restrepo (2018c) for a discussion of automation when workers have different
skills.
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Flexibility of Workers

Jobs are bundles of tasks, not all of which can be automated. Just because a certain
fraction of a job’s tasks can be automated, the job need not be automated as a whole
(see e.g. Brynjolfsson and Mitchell 2017; Autor 2015). For example, Arntz et al.
(2017) argue that workers in seemingly automatable occupations apparently special-
ize in nonautomatable niches within their profession. Thus, most jobs are unlikely to
be sufficiently well defined to be fully substitutable by machines. In line with this,
Pratt (2015, p. 52) states for the advances in robotics that “specialized robots will
improve at performing well-defined tasks, but in the real world, there are far more
problems yet to be solved than ways presently known to solve them.”

Therefore, when firms introduce new production technologies, the initial impact
of those machines on employment depends on whether workers are able to adjust to
the new demands. In particular, the new technologies typically substitute for certain
tasks and complement others. Whether automation technologies replace workers in a
given job thus hinges on workers’ ability to exchange tasks that are replaceable by
machines for new tasks that complement machines. For example, Automated Teller
Machines (ATM) directly took over the tasks that bank tellers previously did in
banks. Nevertheless, with the rapid increase in the number of ATMs, the number of
bank tellers increased instead of declined. While ATMs replaced bank tellers in some
tasks, bank tellers became more valuable in their remaining tasks, such as handling
small business customers (Bessen 2015).

Several studies suggest that this adjustment mechanism may actually be quite
effective. For instance, although there has been a decline in jobs with predominantly
routine and automatable tasks, the reduction of routine and automatable tasks in the
economy mainly takes place by adjusting the set of tasks within occupations (e.g.,
Autor et al. 2003; Spitz-Oener 2006). Workers seem to shift worktime from routine
and automatable tasks to tasks that complement machines. The computerization for
example has been associated with a strong decline in routine tasks. Spitz-Oener
(2006) finds that less than 1% of the decline in cognitive routine tasks between 1979
and 1999 in Germany occurred between occupations, i.e., due to declining shares of
cognitive-routine intensive occupation. Instead, almost all of the decline took place
within occupations – i.e., workers in cognitive-routine intense occupations switching
from cognitive-routine tasks to other tasks. More broadly, she finds the vast majority
of task changes to take place within rather than between occupations.

Typically, the adoption of new technologies comes along with a new division of
labor where workers increasingly perform tasks that complement machines (Autor
2015) some of which may actually be newly created tasks (Acemoglu and Restrepo
2018a). The tasks done by long-established occupations such as secretaries, for
instance, clearly changed dramatically across time as skill demands changed with
the introduction of new machines (e.g., typewriter, personal computer, workflow
systems).

The adoption of new technologies is likely to differently affect workers
depending on their abilities. Janssen and Mohrenweiser (2018), for example, inves-
tigate the introduction of the new computer-based control system (Computerized
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Numerical Control, CNC) in the field of cutting machine operation into the German
apprenticeship regulation. The subsequent adoption of this technology likely was
harmful for workers who graduated just before the change of the curriculum.
However, Janssen and Mohrenweiser (2018) find that only those workers who
were forced to switch their occupations experienced negative labor market effects,
suggesting that those who remained employed in the occupation learned to handle
the technology on the job, shielding themselves from potential negative conse-
quences. Cortes (2016) found that workers in routine occupations, who were
exposed to computerization, experienced a wage increase of 14–16% over
10 years if they were able to switch to higher-paid cognitive jobs compared to
those who stayed. These, however, potentially were the high-ability workers.
Hence, workers’ fate in phases of technological turmoil depends on workers’ ability
to learn the skills required in their new work environment, or on their ability to
upgrade their occupation.

Overall, new technologies are unlikely to fully automate workplaces or occupa-
tions on a large scale, but rather change workplaces and the tasks involved in certain
occupations. As long as workers are able to adjust to these new task demands,
machines need not crowd out workers. However, if the tasks that complement
machines become increasingly complex and demanding, the employment prospects
for workers lacking certain skills may deteriorate.

Compensatory Mechanisms

Despite the just described adjustment of tasks at the level of workers and individual
workplaces, the introduction of automation technologies to some extent replaces
workers who were previously employed to perform the automated tasks. Whether
this leads to an overall increase or decline of employment is ambiguous, as several
compensating mechanisms counteract the initial displacement effect. Acemoglu and
Restrepo (2018a, b) develop a framework to analyze under which conditions the
displacement effect of automation exceeds its compensating mechanisms. In partic-
ular, automation induces the following effects:

• Productivity effect. This effect captures the fact that technological innovations
make firms more productive, reducing costs and prices which raises demand and
production. In addition, automation may raise quality or enable new types of
products or services, increasing demand and production. Moreover, the economy
expands, raising the demand for labor also in sectors that do not adopt new
technologies due to a multiplier effect.

• Reinstatement effect. This effect evolves either because these new tasks are
complementary to the new technologies or because the displacement effect
increases the amount of labor that is available to perform new, more productive
tasks. More workers are required to perform the new tasks, raising demand for
labor.
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The net effect of automation on employment is ambiguous and ultimately remains
an empirical question. There exists a huge empirical literature that analyzes the
aggregate employment effects of new technologies and innovations, as, for example,
surveyed by Feldman (2013), Pianta (2009), or Vivarelli (2007). However, this
chapter focuses on technologies that aim at substituting for workers via automation.
This chapter solely discusses the empirical literature that explicitly addresses auto-
mation technologies, and particularly focuses on more recent technologies.

Studies on the employment effect of automation technologies can be roughly
categorized into firm-, sector-, and regional-level studies. Firm-level studies analyze
how the adoption of automation technologies affects employment in the firms that
invest in them. Cortes and Salvatori (2019), for example, do not find a decline of
routine occupations in firms which invested in new technologies, contrary to what
one would expect given that computerization potentially substitutes for routine tasks.
Instead, they find that most of the decline in routine occupations is linked to
declining shares of firms with initially larger shares of routine occupations. Simi-
larly, in ongoing work Arntz et al. (2019a) show that firms’ technology investments
did not reduce their net employment, because displacement effects are offset by
technology-induced firm-growth in Germany. While the net effects at the firm level
thus seem to be small, Bessen et al. (2019) show that automation in firms raises the
separation rates of their workers, reducing their days in employment and wage
income over the next 5 years. While firm-level studies are informative about the
processes taking place within the firms, they remain rather silent about adjustment
processes that occur between firms. In particular, if firms automate, they potentially
become more competitive and crowd out firms that do not automate. The firm-level
results therefore cannot be transferred to aggregate employment effects, as potential
positive employment effects in automating firms could be offset by employment
losses in competing firms.

Sector-level studies take into account this reallocation of workers between less
and more innovative firms. A recent study by Graetz and Michaels (2018) for
17 OECD countries, for example, shows that the additional use of robots between
1993 and 2007 raised both labor productivity and value added at the sectoral level by
about 0.36 and 0.37 percentage points, respectively, as suggested by the productivity
effect. At the same time, they find no significant effects on total hours worked,
although they report negative effects for low-skilled workers. Similar to firm-level
studies, sector-level studies are only suggestive for the aggregate employment
effects as they typically do not take into account the technology-induced reallocation
between innovative- and noninnovative sectors.

Other studies rely on regions as small economies to study economy-wide effects
of technological change. Dauth et al. (2017) find net neutral effects of robots in
German local labor markets between 1994 and 2014. This is accompanied by a loss
of about 2.12 jobs in manufacturing per additional robot, which is fully compensated
by rising service employment. Hence, local labor markets with a higher exposure to
robots did not experience net employment losses. Acemoglu and Restrepo (2017), to
the contrary, document negative overall effects of robots in US local labor markets
between 1993 and 2007. According to them, an additional robot per 1000 workers
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reduces the employment-to-population ratio by 0.2 percentage points and thus has
only limited effects on the US labor market.

Hence, productivity and reinstatement effects of robots apparently are strong
enough to compensate their displacement effects in Germany, but are somewhat
weaker in the USA. There exist several potential reasons for this divergence. In
Germany, labor protection legislation is stricter than in the USA, meaning that it is
more costly for German firms to lay off workers, raising firms’ incentives to train
workers to take over new tasks, rather than laying them off. In addition, the strong
vocational education in Germany likely ensures that workers are higher skilled and
better able to take over new tasks, compared to US workers. Finally, the higher
formal education of the German workers exposed to robots in manufacturing likely
implies that they might rank higher in the German wage distribution than compara-
ble workers in the US wage distribution. In this case, the productivity gains from
automation via robots are higher in Germany than in the USA, such that the
compensating mechanisms might be stronger in Germany compared to the USA.

Acemoglu and Restrepo (2017) highlight that employment effects of robots seem
to strongly differ from that of computerization more broadly. Gregory et al. (2018)
instead study the employment effects of computerization. In contrast to the other two
studies, they adopt a structural approach, by which they are able to explicitly
disentangle the job destruction effects of computerization from the compensating
mechanisms. They find that computerization indeed had strong displacement effects,
reducing employment by 1.64 million jobs between 1999 and 2010 in the European
Union. However, computerization created more additional jobs via induced produc-
tivity effects, resulting in a net employment increase of 1.79 million jobs (see Fig. 6).
Other results by Autor and Dorn (2013) indicate no net negative employment effects
of computerization in the USA. Differences in the effects of computerization in the
European Union and in the USA might result from the same reasons, as with robots
above.
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Fig. 6 Employment effects of computerization in the European Union, 1999–2010

Digitization and the Future of Work: Macroeconomic Consequences 15



Evidence from recent automation phases thus suggests that there have been no
negative employment effect of computerization in the USA and even positive effects
in the European Union. Robots instead, a technology that is more focused on
replacing human tasks, do not, on net, destroy jobs in Germany, while they do
reduce employment in the USA, although to a limited extend only. According to this,
previous automation technologies indeed did displace many workers, but had no or
only limited negative employment effects due to large compensating mechanisms.
Obviously, past phases of technological change so far did not lead to mass unem-
ployment due to countervailing effects (Autor 2015). It is therefore misleading to
simply focus on automation potentials when one aims to understand how automation
technologies affect the labor market.

Scenarios for Employment Effects

The previous sections highlight that automation potentials are not informative about
the impact of automation on the labor market, as they ignore slow and incomplete
technology adoption, worker level adjustment, and job creation effects. Several
recent studies overcome these problems by directly studying the link between past
automation and its employment effects. However, these studies focus on past
automation technologies and do not capture the more recent technological innova-
tions in the field of artificial intelligence. To overcome this shortcoming, Arntz et al.
(2018) exploit a more recent period of technological upgrading in the German labor
market (2011–2016) in order to simulate scenarios for the next few years
(2016–2021) regarding the effects so-called 4.0 technologies on employment and
its various compensation mechanisms. In contrast to previous studies, they are able
to take into account cutting-edge automation technologies. This section first outlines
the methodology, before presenting the results for the baseline and alternative
scenarios and deriving implications.

Methodology

The basic idea of the methodology by Arntz et al. (2018) is to first estimate how
technology investments have affected employment in the investing firms and the
wider economy and to then study the likely consequences of more investments into
cutting-edge technologies in the future. To do this, they first develop a task-based
framework which captures mechanisms that are similar to mechanisms in the
framework by Acemoglu and Restrepo (2018a) and empirically estimate its param-
eters (see Arntz et al. 2019b for details). In particular, their model covers the
following mechanisms:

1. Substitution and complementarity: Technologies both substitute for some
workers while complementing others. They substitute for workers, as the auto-
mation technologies replace workers in tasks they previously performed
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(displacement effect). They simultaneously complement other workers, since they
require more input of other types of workers who do tasks complementary to the
machines. These could be, for example, new tasks, in which this effect is similar
to the reinstatement effect, above. Given a certain output level, firms’ investments
thus reduce demand for the former workers, while raising demand for the latter.
Arntz et al. (2018) estimate the net effect of substitution and complementarity.

2. Product demand: (a) Technology investments affect firms’ competitiveness,
which reduces prices and increases output, thereby raising labor demand and
employment. (b) In addition, technological capital has to be produced, which
implies that any change in firms’ investment decisions affects employment via
capital production. (c) Finally, the expanding technological frontier implies that
the economy can produce more as a whole and becomes richer, which raises
consumption, production, and employment. These effects are similar to the
productivity effect, discussed above.

3. Labor supply: Changes in the demand for labor affect unemployment which
induces wage responses. Both, in turn, triggers worker mobility from declining
labor market segments to growing labor market segments. The resulting effects
are ambiguous: On the one hand, occupations and industries with declining
demand will experience falling wages, thereby reducing the cost incentives for
automation and thus limiting the employment consequences. At the same time,
workers will try to leave these segments, which reduces the increase in the
segments’ unemployment rate, hence limiting the described wage response.
Labor supply responses may thus either limit or amplify the employment conse-
quences of technology-induced labor demand shocks.

Arntz et al. (2019b) estimate the parameters of this model using the previously
mentioned novel LM4.0 firm survey, employment data from social security records,
international trade data, and official statistics. That is, they exploit the fact that the
LM4.0 survey covers firms that already invested in cutting-edge technologies
between 2011 and 2016 in order to study how the economy and the labor market
respond to the adoption of new technologies. Arntz et al. (2018) then feed this model
with firms’ investment plans for the next 5 years to study how these investment plans
are likely to affect the German labor market until 2021.

Baseline Scenario

This section discusses the likely consequences of firms’ investment plans for
employment and wages in Germany in the next 5 years. The model allows to
empirically disentangle three mechanisms by which firms’ technology investments
affect employment, as outlined above. Figure 7 presents the main results from the
baseline simulation. Overall, firms’ future plans for technology investments are
expected to increase employment by 1.8% over 5 years. Thus, contrary to public
fears, new technologies might actually raise rather than reduce employment.
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Figure 7 plots the effects of firms’ investments into all technology types on
employment via the different mechanisms. That is the calculations take into account
investments into all technology types, both recent and older technologies, and at first
do not disentangle the effects by the different generations of technologies. Intui-
tively, one would expect the substitution effect to dominate the complementarity
effect when automation technologies are introduced. Quite unexpectedly, the oppo-
site holds true. The introduction of the new technologies seems to require more
additional labor input in complementary occupations than it can substitute in
replaceable occupations. The new technologies require more rather than less
workers. The overall net positive employment effect therefore does not stem from
positive product demand effects but rather from the fact that new technologies seem
to be complementary rather than substitutable to work. Quite the opposite, the
product demand effect is actually negative indicating that firms cannot gain from
lower costs and demand expansions. This suggests that firms currently invest in the
adoption of the new technologies which requires more workers than can be replaced
by machines and where high investment costs at least temporarily imply that firms
cannot gain from lower costs and demand expansions. However, a positive effect on
employment remains, which puts upward pressure on wages. The resulting wage
increase limits the employment expansion – this is reflected in a negative contribu-
tion of the labor supply effect to overall employment.

Next, Fig. 8 differentiates by type of technology in order to disentangle how these
types differently affect workers. The types of technologies are explained in section
“Technological Diffusion.” The pattern for older, more mature technologies strik-
ingly differ from cutting edge 4.0-technologies. While for technologies up to
technology-level 3.0 substitution effects dominate complementary effects, the oppo-
site is true for 4.0-technologies. Investments in older technologies initially replace
more workers than they require, but induce positive product demand effects as firms
get more productive. This limits negative net employment effects. In contrast, the
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complementarity effects of most recent technologies clearly dominate their substi-
tution potential and induce negative rather than positive product demand effects.
This suggests that firms currently hire workers to adopt these technologies without
being able to substitute for lots of workers, so far. Therefore, firms which invest into
these technologies cannot yet achieve large efficiency gains, such that they lose
competitive advantages in the short run, resulting in lower output and less employ-
ment. Yet, the net effect on employment of the newest technologies remains positive.

These patterns observed for 4.0 technologies match the description of
Brynjolfsson et al. (2017) of such technologies being a GPT that first requires
complementary investments before unfolding its productivity potentials in the longer
run (see section “Technological Diffusion”). This would also suggest that the
employment effects of 4.0 technologies are likely to change once they start to
mature. Hence, to the contrary of widespread beliefs, it is currently not the invest-
ments in the newest technologies that substitute for workers, but rather investments
in older technologies that are less likely to go along with the creation of new tasks.
Moreover, these findings support the view that the productivity puzzle, i.e., the
stagnant labor productivity despite high investments in new technologies, may
actually reflect that we are experiencing an investment period whose returns also
in terms of rising labor productivity likely still need time to unfold. While the results
from this section support this explanation for the productivity puzzle, they do not
rule out competing explanations. Others, for example, argue that these technologies
actually do not have large productivity effects (e.g., Gordon 2014, 2015), that
innovation and technological progress are slowing down (e.g., Cowen 2011;
Bloom et al. 2017), that the focus of technological change has shifted towards
automation that has little productivity effects (e.g., Acemoglu and Restrepo 2019),
or that measurement errors prevent observing the productivity effects (e.g., Mokyr
2014).
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Despite the fact that the model predicts no net employment losses of technology
investments, it does predict strong structural changes on the labor market such as a
reallocation of employment across occupations and sectors. To demonstrate this,
Fig. 9 reports the joint employment effects of investments in all types of technology
by type of occupation. As expected, the effects are particularly positive for workers
in occupations with a focus on analytical and interactive tasks. These are tasks that
are unlikely to be substituted by new technologies, but which instead are comple-
mentary to these. The picture is very different for workers in occupations that
demand high shares of cognitive routine-tasks. These tasks are most exposed to
automation via new technologies and also unlikely to benefit from newly created
tasks. As a consequence, workers focusing on such tasks suffer from technological
change. Interestingly, the effects on mainly manual occupations are rather small,
emphasizing that current technological advances mainly affect cognitive tasks.

Figure 10 plots the employment effects by the initial average daily wage for each
segment of the labor market. There are in total 60 labor market segments, resulting
from 5 occupational groups and 12 industry aggregates. Cells with high initial
average daily wages benefit most from technology investments and expand, whereas
low- and particularly medium-payed occupations and industries face stagnating or
even declining employment. Firms’ planned technology investments thus are
expected to induce rising inequality and a (weak) employment polarization.

Moderating Factors

In order to study how wage setting frictions and workers’ mobility moderate the
effect of technological change on the labor market, Arntz et al. (2018) develop two
scenarios. In the mobility scenario, they simulate employment and wage responses
to technological change assuming the mobility elasticity to be twice as high as in the
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baseline model. In the rigid wages scenario, they conduct a similar analyzes
assuming the wage elasticity to be half as high as in the baseline model.

The main employment effects of these additional scenarios can be depicted from
Fig. 11. Obviously, when solely changing elasticities which enter the labor supply
part of the framework while leaving labor and product demand unchanged, only the
labor supply effect changes. In the mobility scenario, hardly any change in the labor
supply effect is visible. This is due to the fact that the size of the overall workforce is
fixed in the model. Workers now move faster between labor market segments thus
changing the allocation of workers across occupations and sectors, but this hardly
affects the overall net labor supply effect. In the rigid wages scenario, the negative
labor supply effect is smaller instead. As wages are rigid, they do not rise as fast in
the expanding labor market segments, such that the expansion of employment in
these segments is less limited by wage increases. Overall, rigid wages amplify any
effects that technologies have on employment. In the present case, rigid wages thus
result in larger positive effects of technology on net employment, since a smaller part
of the net positive labor demand shock accrues to wages and a larger part accrues to
employment.

The flipside of rigid wages thus is slower wage growth compared to the baseline
scenario, as outlined in Fig. 12. This holds across all occupations. Nevertheless, the
fast expanding analytical and interactive occupations still face higher wage growth.
In the mobility scenario, differences in wage growth between occupations are less
pronounced. This is due to the fact that workers are more mobile between occupa-
tions and switch faster to the expanding occupations, thereby limiting wage growth
in these occupations. Simultaneously, labor supply becomes scarcer in the declining
occupations, raising wages in these occupations compared to the baseline scenario.
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Hence, the higher worker mobility rates not only help the mobile workers to achieve
higher wages in other occupations, but they also benefit those workers who remain in
the declining occupations by reducing the competition between them. Thus, even if
higher mobility of workers has hardly any effect on overall employment, it helps a
larger share of workers to reap the benefits of technological change and, hence, also
reduces wage and employment inequality and polarization.
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Implications

The results from these simulations provide five key results for the likely effects of
automation and digitalization on the German labor market in the next 5 years:

1. Firms’ plans to invest in automation and digitalization technologies likely have
small positive effects on employment in Germany. In the baseline scenario, these
investments raise overall employment by 1.8% in 5 years. Mass technological
unemployment thus remains unlikely, a finding that is in line with the impact of
technological change in earlier decades (see section “Compensatory Mecha-
nisms“). However, these net positive employment effects do not imply an absence
of job losses. In the scenarios, automation does destroy jobs in specific occupa-
tions and industries, as automation technologies replace workers. However, these
negative effects are more than compensated by job creation effects of automation,
resulting in overall net positive employment effects.

2. The small net positive employment effects are accompanied by large structural
shifts between occupations and industries in 5-year scenario. Hence, the key
challenge of automation and digitalization does not relate to the number of
jobs, but to the job structure. In line with much of the literature, cognitive routine
jobs continue to decline, as they are replaced by machines. Jobs with high shares
of abstract or interactive tasks, on the other hand, are on the rise, as these are
typically complementary to the new technologies. Workers who are able to switch
to these jobs therefore are likely to gain from the adoption of new technologies,
whereas workers who lack such skills will likely suffer from automation and
digitalization.

3. The expanding abstract and interactive task intensive occupations typically are
high-wage occupations, whereas the stagnating occupations are located in the
middle and at the lower end of the wage distribution. This implies that mostly
high-skilled and well-paid workers profit the most from digitalization, whereas
middle- and lower-skilled workers fall further behind. Digitalization and auto-
mation, therefore, likely raise inequality in Germany. The results point to a
continued employment polarization, as the jobs in the middle seem to grow
even slower than those at the lower tail, although rising inequality dominates.
There exists a similar pattern of weak wage polarization accompanied by mark-
edly rising wage inequality in response to technological change. Hence, in line
with results from studies on automation potentials (see section “Automation
Potentials”), technological change is likely to raise inequality on the German
labor market in the next 5 years by favoring high-skilled workers.

4. The simulations further highlight that raising worker mobility, e.g., via training
and further education, can help to mitigate rising inequality and to ensure that a
larger fraction of workers profits from technological change. While the simula-
tions suggest that rising mobility has hardly any effect on overall employment or
unemployment, it is still beneficial to many workers by either enabling them to
take up better-paid jobs in expanding occupations, or by reducing the pressure in
declining occupations.
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5. Finally, the simulations strongly suggest that automation and digitalization at
least currently is a costly investment for many firms. In particular, firms that
invest in cutting-edge technologies face a rising demand for certain types of
workers, while so far not being able to replace workers on a large scale. In
addition, there appears to be no or only little expansion in the output of those
firms. All this suggests that firms currently incur high investment costs to adopt
new technologies, while not being able to reap related benefits in terms of higher
productivity and lower costs, yet. Once this investment phase is completed, the
new technologies may unfold their productivity advantages. This phase may then
be accompanied by larger technology-induced job-separations, as one actually
observes for investments into older, more mature technologies. However, the
related productivity gains simultaneously induce an increasing product demand
and likely result in the generation of new jobs.

These key results entail three main implications for policy makers.
Promoting new technologies: Overall, technological change contributes to

employment growth. In the case of investments in “3.0 technologies,” this is mainly
the case due to the strongly positive productivity effects, whereas cutting-edge “4.0
technologies” currently seem to complement rather than replace workers due to their
investment character. Corresponding investments thus require significantly more
skilled workers for the implementation of these technologies. An accelerated diffu-
sion of both 3.0 and 4.0 technologies into companies therefore may be a desirable
goal as, on net, both technologies raise employment. Policy measures to support the
adoption of new technologies (e.g., broadband expansion, data protection laws)
could thus help to increase related gains. In particular, the results based on the
LM4.0 Survey indicate that the technological latecomers seem to lack information to
better assess the opportunities and risks related to these technologies. Targeted
information campaigns, e.g., at the level of industry associations and regionally
organized networks, may help to reduce information deficits.

Addressing shortages of skilled workers: In the medium term, new digital
technologies are strongly complementary to analytical and interactive activities.
The growth potential resulting from the new technologies thus depends strongly
on the availability of suitably skilled workers. Here, appropriate educational policies
help to ensure that the skills in demand are trained both in schools and in the area of
vocational and university education. In addition, the number of skilled workers may
also be increased by further training measures. However, which measures are most
likely to ease occupational transitions can hardly be derived at the aggregate level,
but requires further analysis at the individual level.

Increasing mobility: The results on labor supply show that mobility between
labor segments is currently relatively high and that increased labor mobility has little
impact on the net employment effects. However, increased mobility between shrink-
ing and growing labor market segments contributes to counteracting employment
and wage inequality. Accelerated mobility from shrinking segments to growing
segments leads to an alignment of employment opportunities and wage develop-
ments in the segments. Training and qualification measures thus seem natural
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recommendations to raise mobility. Nevertheless, in order to make more targeted
recommendations on how mobility between different occupational and sector seg-
ments can be increased, further analyses at the individual level are needed, to
analyze, for example, the influence of further training and qualification measures.

Summary

The past decades have been characterized by a tremendous rise in computing power,
reducing the costs of automating so-called routine tasks which follow clear, explicit
rules, and can thus be put into computer code. This has led to a polarization of labor
markets in advanced economies with declining shares of middle-paid, routine-
intensive occupations and rising shares of both, high- and low-paid jobs.

While this computerization has not led to employment declines, the question
whether this holds true for the effects of further technological advances in the near
future remains open. Whereas previous automation methods were limited to prob-
lems that are sufficiently well understood to be put into algorithms of well-defined
steps, now even less structured problems appear automatable using big data and
machine learning. Continued increases in computing power, the growing availability
of big data, and significant advances in Machine Learning methods are shifting the
boundaries of what can be automated by machines. Against this background, some
studies predict that about half of the US workforce is “at risk of automation,” which
has spurred public fears of technology-induced mass unemployment.

This chapter contrasts such fears with the scientific debate. The first main
contribution is to show that many estimates of automation potentials are severely
upward biased, as they often are conducted at the occupational level, ignoring the
huge heterogeneity of what people actually do at work. As many workers in
seemingly automatable occupations already adjust their task schedules to
non-automatable tasks, they often face much lower exposure to automation. This
chapter finds that the share of workers in automatable jobs is more in the order of 9%
in the USA, and similarly in other countries.

These numbers, however, only refer to technological potentials and must not be
equated with actual job losses or employment effects as is often done in the public
debate. The second main contribution of this chapter is to explain why this is the
case. In particular, there are three main reasons for this: (1) The diffusion of new
technologies into the economy is a rather slow process, leaving workers time to
adjust. Diffusion is slow due to high costs, uncertainty, the need to undergo organi-
zational change for implementing the technologies, and the need for acquiring
workers with suitable skills. (2) Workers are flexible and adjust. In fact, much of
the adjustment to automation is not made by making seemingly replaceable occu-
pations redundant, but by workers doing other tasks in the same occupations. Being
in an occupation that is “at risk” thus does not necessarily imply that the worker is
about to lose his or her job, but that the worker has to adapt by switching to the right
tasks and learning the right skills. (3) Finally, while automation indeed does displace
jobs, it simultaneously creates new jobs. The overall effect on the number of jobs
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(employment) has been actually positive, not negative. It is thus ambiguous, whether
the wave of new automation technologies will reduce or actually raise labor demand.

Whether the next wave of digitalization and automation thus leads to less or more
jobs is an open question. The third contribution of this chapter is to present scenarios
for the potential impact of digitalization and automation via cutting-edge technolo-
gies on the German labor market, exploiting a recent survey on the adoption of new
digital technologies and a new framework to estimate and simulate the effects. The
results suggest that the net effect remains small and is actually positive in the next
5 years. However, there appear large structural shifts between occupations and
industries, which are accompanied by rising inequality and, weakly, by employment
polarization. The main challenge for the future thus is not mass unemployment, but
structural change. In addition, the simulations strongly suggest that we currently
experience an investment phase, where firms first have to incur high investment costs
and need to acquire the right skilled workers, before being able to reap large
productivity gains. Hence, the effects of these cutting-edge technologies may change
in the medium to long-run, when the technologies mature. Nevertheless, this does
not imply that they reduce employment in the longer run, as, once they mature, they
simultaneously create productivity effects that also raise demand for labor. It remains
to be seen whether the job-creating effects dominate the job-destruction effects in the
longer run.

These results entail three main policy implications. Firstly, promoting the adop-
tion of new technologies seems to be a reasonable policy goal, as these technologies
apparently raise employment and production. The focus should be on medium and
small firms who currently seem to fall behind. Secondly, the introduction of these
technologies requires workers with the right skills. The lack of such workers seems
to partly hinder the introduction of new technologies. The second recommendation
thus is to address skill shortages by education, qualification, and further training.
Finally, the coming wave of technological change seems to be associated with a
further rise in inequality, as high-skilled, high-wage occupations are on the rise,
whereas low- and medium-paid jobs further fall behind. In order to prevent further
rising inequality, targeted training and qualification measures may help workers to
switch to the expanding occupations, thus helping them to participate in the
technology-induced benefits, while lowering the losses of those who cannot change
their skills and jobs and thus remain in shrinking occupations and sectors.
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