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Background: Adoptive transfer of T-lymphocytes is a promising treatment 
for a variety of malignancies, but is often not feasible due to difficulties in 
generating T-cells reactive with the targeted antigen from patients. To 
facilitate rapid generation of cells for therapy, T-cells can be programmed with 
genes encoding for an antigen-specific T-cell receptor (TCR) or chimeric  
receptors. Objective: To discuss the molecular design and selected pitfalls of 
TCR gene modified T-cells and T-cells expressing chimeric receptors, so 
called T-bodies. Methods: A selected review of the recent literature. 
Conclusion: Clinical trials report so far only limited efficacy of adoptively 
transferred genetically modified T-cells. However, the recent progress in engi-
neering tumor-reactive T cells is providing a promising basis to further explore 
this treatment modality.
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1.	 Introduction

The application of molecular technologies to identify proteins differentially 
expressed by transformed cells is providing large numbers of candidate antigens 
that can potentially be targeted to selectively eliminate tumor cells by cancer 
immunotherapy  [1,2]. Efforts to vaccinate patients against such antigens have 
yielded some provocative results, but only a small subset of patients have demon-
strated therapeutic responses, probably reflecting the many in vivo obstacles to 
generating potent responses to these proteins, particularly in patients with an 
established malignancy  [3]. An alternative approach of isolating and expanding 
reactive T-cells ex vivo followed by adoptive transfer into the patient circumvents 
many of these in vivo obstacles. Although this adoptive therapy approach has 
demonstrated significant clinical promise  [4], generating the large numbers of 
T-cells required for adoptive therapy of cancer patients is often not feasible. 
Molecular technologies have now provided a means to more broadly capture the 
therapeutic potential of this treatment strategy (Figure 1). Genes encoding the α 
and β chains of a T-cell receptor (TCR) can be isolated from a T-cell reactive to 
the antigen of interest and restricted to a defined HLA allele, inserted into a 
shuttle expression vector, and then introduced into large numbers of T-cells of 
individual patients sharing the restricting allele and the targeted protein  [5,6]. 
Alternatively a T-body approach is pursued, which combines benefits of the high 
tumor specificity of antibodies and the effector function and the homing abilities 
of T-cells. The chimeric receptor recognition unit is derived from the variable 
chain of an antibody recognizing proteins ideally selectively expressed at the cell 
surface of a cancer cell and the intracellular domain is usually composed of signaling 
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and co-signaling moieties of a T-cell receptor  [7]. This review 
focuses on selected challenges and pitfalls of these strategies 
and published or ongoing clinical trials.

2.	 TCR	gene	transfer

Multiple virus- and tumor-reactive TCR-genes have already 
been successfully isolated and re-expressed in T-cells, including 
TCR-genes with specificity for HLA*0201 (HLA-A2)- 
restricted epitopes from melanoma antigens  [8,9] and HLA-A2 
and HLA*2402-restricted WT1-derived epitopes  [5,10] However, 
to design broadly tumor-reactive TCRs for the next generation 
of clinical TCR gene therapy efforts, several aspects have  
to be taken into account. The TCR should target a protein 
that is widely expressed in tumors of any origin and cover a 
range of frequent HLA types. Furthermore, the targeted protein 
should be inherently involved in tumor transformation  
and selectively expressed by tumors and not by normal tissue. 
The TCR must be chosen for appropriate affinity for its 
ligand, be expressed strongly in T-cells after transfer and conse-
quently allow reprogramming of CD4+ helper/effector and 
CD8+ effector T-cells. The design of introduced TCR chains 
must prevent pairing of introduced TCR chains with endoge-
nous ones. This minimizes the generation of new potentially 
auto-reactive TCR specificities and simultaneously increases 
T-cell avidity by increasing the amount of functional TCR 
chains at the cell surface.

2.1	 Engineering	TCRs	with	high	affinity	against	
tumor	antigens
A major challenge of current TCR gene transfer strategies is 
to define means to improve the avidity of T-cells transduced 
with a potentially tumor-reactive TCR, particularly in the 
context of the generally low affinity of available tumor-reactive 
TCRs. Therefore it is desirable to select tumor-reactive TCRs 
with the highest identifiable affinity  [10-12] and explore strategies 
to increase TCR-affinity before transduction  [13,14] or the (func-
tional) avidity of the resulting TCR-transduced T-cells  [5,15-17]. 
In this context, ‘affinity’ will be defined as the strength of 
binding of one receptor with its ligand, ‘avidity’ as strength 
of binding between multiple receptors and their ligands, and 
‘functional avidity’ as the sensitivity of a T-cell response to a  
target cell expressing the relevant peptide-MHCs (pMHCs)  [18].

Several approaches have been reported to select TCRs 
with highest affinity from the human T-cell repertoire. For 
example, alpha 3 domain mutants of peptide/MHC class I 
multimers have been used to allow the selective isolation of 
high avidity tumor-reactive CD8+ T-cells  [19]. To overcome 
the TCR affinity threshold determined by thymic selection, 
tumor-antigen-specific HLA-A*0201-restricted T-cells have 
been generated from HLA-A*0201 negative patients  [11,20]. 
HLA-A*0201-transgenic mouse models  [12] can, due to the 
differences in protein sequences in mice and men, provide 
TCRs with such a high affinity that these TCRs can also 
activate T-cells in the absence of the co-stimulatory CD8 
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Figure	1.	Adoptive	transfer	of	genetically	modified	T	cells. T cells isolated from a patient are genetically modified by, for example, 
retro-/lentiviral transduction or electroporation to express a tumor-specific receptor. After in	vitro expansion cells are infused back into 
the patient.
CR: chimeric receptor; TCR: T cell receptor.
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molecule. However, expressing mouse TCRs in human 
T-cells might have a disadvantage as the expression of altered 
molecules results in a T-cell response against the transgene 
and rejection of transduced T-cells  [21].

Different strategies have been examined to further increase the 
affinity of cloned TCRs used for transduction. TCR-phage  [14] 
and -yeast  [13] displays have been used as formats to express 
TCR chains and to then generate mutants that can be 
screened ex vivo for increased affinity. With these approaches, 
a library of TCR chains can be created generally following 
random mutation of defined regions such as CDR3 known 
to be important in recognition; the library expressed on the 
surface of the phage or yeast; the expressed mutated TCR-
chains screened by tetramer-binding for increased affinity; 
and the cDNA encoding the highest affinity chains extracted, 
characterized and subsequently used for transduction. Con-
sequently, these display strategies can be very effective, but 
are cumbersome and must be individualized for each TCR. 
Furthermore, not every TCR can be successfully expressed 
and modified by these technically challenging display strate-
gies in non-mammalian systems, emphasizing the need for 
alternative techniques to increase TCR-affinity or functional 
avidity of a T-cell  [18].

The functional avidity of a T-cell, as reflected by respon-
siveness to antigen, is modulated by T-cell surface O-or  
N-glycosylation  [22,23]. Decreased glycosylation of surface 
proteins, has been reported to result in a decreased activation 
threshold. For example, decreased glycosylation of CD8 during 
thymic development is associated with increased affinity of 
CD8 with pMHC and subsequently improved signaling  [24]. 
Moreover, a general deficiency in β1,6 N-acetylglucosami-
nyltransferase V (Mgat5) in mice, an enzyme in the N-gly-
cosylation pathway, mediates increased T-cell activity in vitro 
and results in autoimmune disease in vivo  [25]. Although 
deficiency of this N-glycosylation pathway enzyme in mice 
resulted in reduced N-glycosylation of all proteins, the reduced 
N-glycosylation of the TCRs appeared to specifically result 
in increased TCR mobility at the cell surface, enhanced 
recruitment to the synapse (TCR-clustering), improved TCR-
engagement/downmodulation, and consequently enhanced 
functional avidity of T-cells. We demonstrated recently with 
several TCRs recognizing different antigens that the removal 
by point mutation of defined N-glycosylation motifs in the 
constant domains of TCR-chains can increase the functional 
avidity of T-cells transduced with these TCRs, and that this 
translates into enhanced recognition of tumor cells. Reducing 
N-glycosylation of TCRs might thereby directly enhance the 
interaction of TCRs with pMHCs and consequently increase 
T-cell activation  [18]. As these N-glycosylation sites in the 
constant domain are conserved in all TCRs, this strategy 
should be easily translated to TCRs with any specificity.

An undesirable effect of an increased avidity of a tumor-
antigen-specific T-cell might be the recognition of normal 
tissue either by aberrant recognition of self-antigens  [26] or 
recognition of the specifically targeted tumor antigen, such 

as Wilms tumor 1 (WT1)  [27], p53  [28], or murine double 
minute 2 homolog (MDM2)  [11], due to the physiological 
expression of the protein at lower levels in normal tissues. It has 
indeed been reported that increasing the TCR affinity above a 
certain threshold can result in the recognition of self peptide 
and therefore auto-reactivity  [26]. Therefore, high affinity TCRs 
need to be tested thoroughly for the ‘recognition of self ’  [18].

2.2	 TCR	matching	at	the	cell	surface
Even after selecting a TCR with the highest affinity, the 
introduced exogenous α and β chains can potentially assemble 
as pairs not only with each other but with the endogenous 
TCR α and β chains, thereby reducing the number of 
appropriately matched exogenous αβ TCR-pairs at the cell 
surface and decreasing the achievable functional T-cell avidity 
(Figure 2). Such mismatched pairing poses a second substantive 
problem for clinically pursuing this strategy – the generation 
of novel αβ TCR-pairs of undefined and potentially self-reactive 
specificity, as these TCRs have not been subjected to the 
normal rigors of negative selection. Mismatched pairing of 
αβ TCR-chains has been clearly demonstrated to occur in 
TCR double-transgenic mice  [29], in which all four of the 
expressed TCR-chains are known and can be followed. Since 
export of TCR-chains to the cell surface only occurs after for-
mation of complementary α and β subunits  [30], the potential 
for pairing of introduced TCR-chains with endogenous 
TCR-chains has also been demonstrated by introducing only 
single α or β TCR-chains into murine  [31] and human  [32] 
T-cells and detecting expression of the introduced chain  
on the cell surface. Unpublished data from different labora-
tories suggest that this can be indeed a substantial problem 
for adoptive immunotherapy.

To promote preferential pairing of introduced TCR-chains 
with each other, several strategies might be pursued (Figure 2). 
Recently, we  [11,33] and others  [15] have been using murine 
constant TCR-chain domains to enhance expression of human 
TCR-chains in human T-cells. However, murine constant 
domains might be immunogeneic in patients, thereby limiting 
the survival of transgene-transduced T-cells in patients  [34]. 
The intracellular TCR-chain domains can also be linked to 
a signaling domain and this has been reported to result in 
CD3-independent signaling of TCR transduced T-cells  [35]. 
However, as modulating the transmembrane domain might also 
result in unwanted effects such as an altered T-cell function  [36] 
alternative approaches are being explored. Interactions 
between the extracellular domains, which can contribute to the 
formation of individual TCR-dimers and CD3-complexes  [37,38], 
might be modified to facilitate inter-chain attraction. The 
interactions between exogenous domains of the TCR α and 
β chains are generally very weak  [39], and the unique naturally 
occurring inter-chain disulfide-bond that occurs between the 
constant TCR α and β chains does not appear to contribute 
significantly to heterodimer stability  [40]. However, disulfide-
bonds engineered in other sites in the extracellular constant 
domain of the TCR αβ-heterodimer may have the potential 
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to increase inter-chain affinity, as suggested by such disulfide-
bonds enhancing formation of soluble TCR-heterodimers  [41]. 
We found  [5] and others confirmed  [42] that such point 
mutations both promoted preferential pairing and increased 
expression of the introduced chains, resulting in greater avidity 
of the transduced primary CD8+ T-cells for WT1-expressing 
targets. Alternatively or additionally, a pair of amino acid 
residues in the crystal structure of a TCR that lie at the 
interface of associated TCR constant α and β domains can 
be mutated to invert the sense of this interaction analogous 
to a charged ‘hole-into-knob’ configuration  [43]. Finally, also 
structural features of the variable TCR regions might be 
used to promote preferential pairing either by selecting 
TCRs with variable chains that pair preferentially to each 
other  [44] or by introducing point mutations in the variable 
domain as reported for the expression of single-chain variable 
α and β fragments  [45]. Although not formally tested so far, 
a combination of these different strategies might provide the 
best results in terms of preventing mismatched pairing.

2.3	 Improving	expansion	and	memory	formation	of	
TCR	transduced	T-cells
An antigen-specific T-cell expansion is one of the hallmarks 
for control of viral infections  [46] and tumor growth  [47]. 
Thus strategies that would allow to improve the expansion 
phase during an anti-tumor immune response would increase 

efficacy of immunotherapies. Therefore, the transgene should 
be incorporated into central memory T-cells in order to 
achieve a long term persistence of transduced T-cells  [48]. 
This can for example be achieved by transducing and expanding 
genetically modified T-cells in the presence of cytokines such 
as IL7 and IL15  [49]. Detectable expansion of EBV-reactive 
T cells is found uniformly after T cell transfer into lymphopenic 
patients after hematopoetic stem cell transplantation  [50], 
and consequently lymphodepletion has been successfully 
explored to improve T-cell expansion and clinical response 
rates following adoptive transfer of tumor-specific T-cells  [47]. 
Elimination of CD4+CD25+ regulatory T-cells has been pro-
posed as a key mechanism by which lymphodepletion aug-
ments adoptive T-cell-transfer-based immunotherapy  [51]. A 
recent report suggested also that lymphodepletion removes 
endogenous cellular elements that act as sinks for cytokines 
capable of augmenting the activity of self/tumor-reactive CD8+ 
T-cells  [52]. Nevertheless, an expansion of tumor-antigen-specific 
T-cells has been observed after adoptive transfer only  
in some patients following lymphodepletion  [4,53]. Thus, 
although current strategies help to increase T-cell expansion 
following adoptive T-cell transfer, improving the intrinsic capacity 
of a tumor-antigen-specific T-cell to expand more extensively 
following antigen-encounter would be further desirable.

An improved expansion of T-cells is a result of a reduced 
activation induced cell death (AICD) and/or an increased 
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Figure	2.	Improving	matched	TCR	αβ	chain	assembly	of	introduced	TCR	chains. Introduced and endogenous α and β TCR chains 
can pair with each other. This creates TCRs of unwanted specificity and reduces the total number of correctly matched TCR chains at 
the cell surface. To promote pairing of the introduced chains genetic modifications can be made, such as 1 – addition of an intracellular 
signaling domain derived from CD3ζ; 2 – addition of cysteines or mutations to gain the ‘hole-into-knob configuration’ in the extracellular 
constant domains; 3 – selection of naturally occurring variable chains that preferentially pair with each other or generation of preferentially 
paired variable TCR chains by mutagenesis; and 4 – murinization of the constant αβ TCR chains.
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cell division following antigen encounter. Two different TCR 
β chain alterations have been reported to impair Fas ligand 
(FasL) secretion while maintaining other effector functions, 
and thus should be candidates to reduce AICD and increase 
consequently T-cell expansion: A fusion of the transmembrane 
γ chain with a β chain (βIIIchim)  [54,55] and mutating the 
tyrosine155 (Y155) to leucine (L) in the trans-membrane domaine 
(βY155/L)  [56,57]. However, a potential drawback of such 
mutation could be that the T-cell memory formation might be 
impaired after extensive expansion and indeed, a recent 
report suggests that alterations in this transmembrane region 
of the β TCR chain reduces the ability of a T-cell to build up 
a memory T-cell pool  [36].

3.	 T-bodies

The T-body approach combines advantages of the high 
tumor specificity of antibodies and effector function and the 
homing abilities of T-cells by redirecting leukocytes with 
chimeric receptors whose recognition unit is derived from a 
variable chain of an antibody and the intracellular domain is 
composed from the signaling and co-signaling moiety of a 
TCR. Normally, a chimeric receptor is designed as a modular 
single chain molecule, with various structural and functional 
domains that allow to balance T-cell specificity and control 
the activation of a transduced T-cell (Figure 3)  [7].

3.1	 Specificity	of	T-bodies
The antibody-derived recognition unit is usually derived from 
the variable fragments (Fv) of the heavy and the light chains 
of a given antibody that are connected via a linker to form 
the single chain Fv (scFv). Such receptors allow the recognition 
of antigen in a MHC-independent manner and in the natural 
appearance of antigen at the cells surface. A wide variety of 
monoclonal antibodies against tumor-associated-antigens has 
been used to engineer T-bodies. For example, several groups 
used diverse antibodies against human EGF receptor 2 
(HER2)  [58-63], which is commonly overexpressed on breast-, 
prostate-, kidney-cancer, and many other tumors. Other 
popular antigens for T-bodies are B-cell markers, such as 
CD19  [64-66] and CD20  [67-69], which are associated with 
various B-cell-derived lymphomas. Optionally, using the 
modularity of the chimeric receptor, the recognition unit can 
get access to a ligand-binding domain of a heterologous 
receptor (linked to the TCR signaling moiety). One example 
is the extracellular domain of the CD4 molecule that binds 
gp120, an HIV envelope protein. Such T-bodies have been 
reported to be efficient against HIV-infected cells  [70,71].

3.2	 Modulating	signaling	in	T-bodies
The scFv is linked through an extracellular linker to the 
transmembrane and cytoplasmic domains of lymphocyte 
triggering moieties such as the TCR/CD3 complex-associated 
ζ chain or Fc receptor γ chain  [72-74]. Upon ligand binding, 
these domains signal via phosphorylation of immunoreceptor 

tyrosine-based activation motifs (ITAMs) and subsequently 
activate downstream kinases from the Src family. Alternatively, 
those down stream tyrosine kinases such as zeta-chain (TCR) 
associated protein kinase 70kDa (ZAP70) or spleen tyrosine 
kinase (Syk) can serve as a signaling moiety in the chimeric 
receptor and lead to an efficient and functional activation of 
T-cells  [75]. Signaling by the chimeric receptor with one of these 
signaling domains occurs most probably via similar cascades as 
does endogenous TCR activation and results in cytolytic activity 
and secretion of cytokines like IL2, IFN-γ and TNF-α.

Adding a co-stimulatory signal might provide an advantage 
for optimal and persistent functioning of T-cells, their devel-
opment into memory cells and re-activation, especially by 
targets lacking the ligands for co-stimulatory molecules such 
as tumor cells. For this matter, groups have designed tripar-
tite chimeric receptors made of scFv linked to the intracel-
lular part of co-stimulatory molecules such as CD28, OX40 
(CD134), inducible costimulator (ICOS), programmed cell 
death protein 1 (PD-1) and 4-1BB (CD137) in series with 
the signaling moiety from the TCR and, thus, could provide 
both stimulatory and co-stimulatory signals for T-cell activa-
tion. Interaction of these different co-stimulatory receptors 
with their corresponding ligands results in a distinct func-
tion, depending on the nature of the stimulus and the antigenic 
history of a T-cell on which the chimeric receptor is expressed. 
For example, efficient CD28 signaling is accompanied by the 
induction of ICOS, which, in turn, co-stimulates CD4+ 
T-cell activation  [76]. Activation of OX40 promotes the expres-
sion of B cell leukaemia/lymphoma like X (Bcl-XL) and B cell 
leukaemia/lymphoma 2 (Bcl-2), enhances the number and 
survival of antigen-specific effector T-cells and generates 
potent antigen-specific CD4+ T-cell memory  [77]. Studies 
which compare these co-stimulatory molecules in the con-
text of chimeric receptors showed notably enhanced cytokine 
release and killing when tripartite chimeric receptors were 
compared with chimeric receptors that did not contain any co-
stimulatory signaling  [78,79]. Finney et al. compared the effect 
of the co-stimulatory domains of CD28, ICOS, OX40 
(CD134) and 4-1BB (CD137) in the context of the CD33-
specific chimeric receptor in unstimulated human CD4+ and 
CD8+ T-cells. In this setting expression of domains derived 
from CD28 or ICOS were beneficial compared with domains 
derived from CD134 and CD137 in terms of mediating 
antigen-specific cytokine secretion and lysis of the target cells 
by T-bodies  [78]. The advantage may be tumor- (costimulation) 
specific, since there appears to be no advantage to the CD134 
domain when targeting e.g., B cell tumors which have cost-
imulatory molecules. In another study, the CD137 signaling 
domain was used as the co-stimulatory moiety in the tripar-
tite (anti-CD19 4-1BB-ζ) chimeric receptor and was found to 
elicit potent cytotoxicity of T-bodies against acute lympho-
blastic leukemia (ALL) cells in-vitro  [80]. Moreover, sequential 
addition of CD28 and CD134 together in the chimeric receptor 
specific to ganglioside GD2 gives an additional proliferative 
advantage of T-bodies in response to neuroblastoma cells  [81]. 
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Nevertheless, many groups have still chosen to selectively 
use CD28 as a costimulatory domain in chimeric receptors 
and showed that scFv-CD28-γ/ζ expressing T-cells efficiently 
kill tumors in different experimental settings in vitro as well as 
in vivo  [74,82]. Moreover, Fridmann-Morvinski et al showed 
that expression of the tripartite chimeric receptor but not the 
CD28-truncated chimeric receptor could rescue activated 
T-cells from antigen-induced cell death  [83]. In addition, 
recent findings showed that a CD28-domain-containing  
chimeric receptor enhances the resistance of the T-body to  
T regulatory cells  [66].

Taken all together, the T-body approach demonstrates 
that antibody specificity, TCR signaling and co-signaling 
can be combined in one recombinant receptor, which can 
efficiently activate anti-tumor responses both in vitro and 
in vivo. However, it remains to be elucidated whether such an 
artificial signaling results in a physiological T-cell activation as 
minor changes in amino acid sequences in, for example, the TCR 
domain can alter memory T-cell formation  [36]. Furthermore, 
these fusion proteins are potentially immunogenic  [21].

4.	 Clinical	trials

Table 1 summarizes most of the clinical trials using genetically 
modified T-cells in cancer patients that have been reported 
to date. Most of these trials were recently initiated and are 
still recruiting patients and therefore only some groups have 

published their observations so far. The main goal of these 
studies is to test feasibility and safety and to provide a 
‘proof-of-concept’. A completed Phase I study by Kershaw 
and colleagues  [84] showed that adoptive administration of 
large numbers of T-bodies against α-folate receptor (FR) to 
ovarian cancer patients is safe, but these cells did not persist for 
a long time and did not localize to the tumor. Furthermore, 
half of the tested patients developed an inhibitory factor in 
their sera that significantly reduced reactivity of gene-modified 
T-cells to respond against FR-positive targets. This inhibitory 
activity was neutralized by protein G, suggesting that the inhib-
itor is most probably a human anti-mouse antibody. Another 
trial reported the development of human anti-mouse antibodies 
in patients with metastatic renal cell carcinoma that received 
infusions of T-bodies specific to carboxy-anhydrase-IX (CAIX)  [85]. 
These results support the general idea that such anti-idiotypic 
responses can alter the therapeutic effect of genetically modified 
T-cells and strongly suggest considering the usage of human 
derived domains in the design of chimeric receptors. Though, 
the main problem of the last study was the development of 
grade 2 to 4 liver enzyme disturbances after four to five infu-
sions of genetically modified T-cells. Liver biopsies from 
these patients revealed T-cells infiltrating around the bile ducts 
and CAIX expression on the bile duct epithelial cells, thus 
suggested an autoimmune-reaction of adoptively transferred 
T-cells. The trial was sustained and the protocol was modified 
to inject a low dose of a cG250 antibody to saturate liver tissue 
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and therefore to protect bile ducts from the damaging effects 
of scFv (G250)-positive T-cells. Even though, the liver toxicity 
was not beneficial for treated patients, these observations 
suggest that injected T-bodies are functional and can react 
against proteins expressed at the cell surface. Yet, it once 
again shows the importance of carefully choosing tumor- 
associated targets for T-cell-mediated immunotherapy and 
incorporating, for example, suicide genes into adoptively 
transferred transduced T-cells in order to dampen potential 
autoimmune responses  [48]. In another study using a T-body 
specific to CD171, an adhesion molecule that is overexpressed 
in the metastatic neuroblastoma tumors in children, no 
treatment-associated toxicity was observed  [86]. Persistence of 
genetically-modified T-cells was short in patients with bulky 
disease, but in patients with limited disease T-cells were 
detectable for a significantly longer time. However, only one 
patient experienced prolonged survival following the treat-
ment. A ‘proof-of-concept’ trial in patients with relapsed or 
refractory indolent B cell non-Hodgkin’s lymphoma and 
mantle cell lymphoma employed T-bodies against CD20  [87]. 
Also in this trial T-body administration was well tolerated 
and not toxic. In patients that received T-cell infusions together 
with subcutaneous IL2 for 14 days, T-bodies showed a pro-
longed persistence, compared with T-body administration 
without IL2. This is in line with the observation that persis-
tence of genetically unmodified T-cell clones can also be 
improved by the application of IL2  [88] Moreover, six patients 
received cytoreductive treatment prior to adoptive transfer of 
T-cells that lead to complete clinical response in two patients 
and that response was preserved following T-body adminis-
tration. These observations support the therapeutic potential 
of genetically modified T-cells for cancer therapy, yet, leaving a 
big window for improving clinical outcomes.

One possibility for improving anti-tumor activity is to 
introduce a tumor specific receptor into virus-specific T-cells 
as e.g., cytomegalovirus (CMV) or Epstein–Barr virus (EBV)-
specific T-cells in order to improve long term persistence of 
adoptively transferred T-cells. This is based on the assumption 
that survival of genetically modified T-cells will be sup-
ported by triggering through the endogenous receptor, which 
is repetitively activated in order to control the CMV or EBV 
infection. A clinical trial performed in patients suffering from 
neuroblastoma compared the therapeutic activity of activated 
T-cells versus EBV-specific T-cells that were transduced with 
GD2-specific scFv-CD3ζ CR  [89]. Indeed, EBV-specific 
T-bodies demonstrated superior persistence in patients when 
compared with T-bodies without virus specificity. Adminis-
tration of such virus-specific T-bodies was safe and associated 
with tumor regression or necrosis in half of the patients tested. 
These results suggest that combination of tumor-specific 
receptors and endogenous virus-reactive TCRs improves survival 
of transferred T-cells and clinical outcome. However, whether 
the chronic antigen-stimulation can also result in a down-
modulation of the introduced receptor  [90] or whether 
chronic antigen-stimulation results in exhaustion or deletion 

of transferred T-cells  [91] remains to be elucidated. However, 
the observation that gene-marked EBV-specific T cells have been 
detected for up to 38 months after infusion  [92], suggests 
that at least EBV-specific T cells do not rapidly become deleted.

One clinical trial has been published so far that transferred 
TCR-gene-modified T-cells into patients  [53]. This clinical 
proof-of-concept study demonstrates for the first time the 
safety and feasibility of administering large numbers of 
TCR-transduced T-cells to cancer patients. Using a strategy 
developed by this group to take advantage of the host pro-
viding homeostatic proliferative signals to transferred cells 
following lymphodepletion  [47,93], the authors demonstrated 
remarkable long-term in vivo persistence of TCR-transduced 
T-cells as well as sporadic clinical responses. However, the 
response rate was well below the expected response rate antici-
pated from the administration of tumor infiltating lymphocytes 
(TILs) as reported by this group in similar situations  [47,93] 
and there was no compelling correlation between early/late 
engraftment of TCR-transduced T-cells and the observed 
clinical responses.

5.	 Expert	opinion

Although first clinical trials demonstrated the feasibility of 
the transfer of gene-modified T-cells and provide suggestive 
evidence for efficacy, multiple ongoing and new clinical trials 
are needed to improve this treatment option. This includes 
questioning the choice of antigen and the optimal design of the 
antigen-specific TCR or chimeric receptor in order to improve 
safety and efficacy of this treatment approach. The ultimate 
goal remains not only to treat an existing tumor burden but 
to implement a ‘guardian against cancer’, the tumor-specific 
memory T-cell, in order to prevent relapse. In this context which 
T-cell population should be transduced in order to guarantee 
memory T-cell formation and whether a large ex vivo expan-
sion of transduced T-cells is necessary prior to application needs 
to be explored. Furthermore, persistence of genetically modified 
T-cells could be improved by vaccination strategies.

However, even then, αβ T-cell based immune-interventions 
are still hampered by the limited knowledge of antigens/pro-
teins selectively expressed by cancer cells and in particular 
TCR based strategies are hampered by HLA-restrictions and 
tumor-escape mechanisms such as HLA-downmodulation, 
transporter associated with antigen presentation (TAP)-defi-
ciency, or point mutations in the targeted epitope. T-bodies 
provide an alternative source of receptors to redirect a T-cell 
in a HLA-independent fashion against cancer cells but provide, 
due to the genetic engineering of fusion proteins, neo-antigens 
which can promote rejection of transduced T-cells. Furthermore, 
it is not clear whether a T-body is a functional fully competent 
T-cell. Therefore, our laboratory got interested in the ability 
of γδ T-cells and their receptors to mediate a broad tumor-
reactivity. γδ T-cells have not been subjected to the normal 
rigors of negative selection. The recent elucidation of recognition 
of universal MHC-like stress-induced self-antigens such as 
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MHC class I polypeptide-related sequence A (MICA)  [94], 
and mevalonate metabolites (phosphoantigens)  [95] on tumor 
cells by γδ T-cells through the γδ TCR allows now a rational 
design of γδ T-cell or γδ TCR-based immunotherapies. The 
potential of γδ T-cells and their receptors to lyse tumor cells 
in vitro has been extensively demonstrated (for review 
see  [96,97]). However an in vivo or ex vivo activation and 
expansion of cancer-reactive γδ T-cells in cancer patients  
is frequently not feasible as only a subset of patients  
harbors a fully cancer-reactive γδT-cell repertoire that can be 
expanded  [98]. A similar situation has also been described for 
patients suffering from HIV or Mycobacterium tuberculosis 
infection  [99]. Thus, the availability and capacity to activate 
and expand antigen-reactive γδ T-cells in vivo is essential for 
antigen-clearance but frequently impaired in diseases  [98,99].

To overcome limitations of αβ and γδ T-cell based strate-
gies, we propose to introduce defined cancer-reactive γδ TCR 
into αβ T-cells in order to redirect T-cells against cancer 
cells. It has been demonstrated that the transfer of an anti-
gen-reactive γδ T-cell receptor into a Jurkat-cell line could 
transfer non-MHC restricted antigen-specificity  [100,101]. 
Thus, the transfer of γδ TCR into αβ T-cells could be used 
for reprogramming non-tumor-reactive αβ T-cells from 
patients who are devoid of a suitable tumor-reactive T-cell 
repertoire. This strategy takes advantage of a universal-tumor 
reactive receptor from a γδ T-cell and the proliferation 
potential of αβ T-cells which is, in contrast to the proliferation 
capacity of γδ T-cells  [98], still preserved in advanced diseases  [53]. 
This concept would have further advantages: First, in contrast 

to αβ TCRs [5] γδ TCR do not pair with endogenous αβ 
TCR chains  [102], thus this strategy prevents generation of 
unwanted specificities. Second, these genetically modified 
cells should be not immunogeneic as they do not harbor 
fusion or non-self-proteins as has been reported for multiple 
genetically modified T-cells  [21]. Third, γδ T-cells and their 
receptors do not substantially mediate graft-versus-host disease 
(GvHD)  [103] and fourth, the transfer of a γδ TCR into 
CMV-reactive T-cells or the transfer of a γδ TCR with 
shared reactivity against tumor and CMV infected cells would 
allow redirection of a T-cell against tumor cells and infection, 
which is appealing for patients following allogeneic stem cell 
transplantation  [104]. However, it remains to be elucidated 
whether γδ TCR transduced αβ T-cells are immunologically 
fully competent T-cells in terms of effector, homing and 
memory function. The other major obstacle to this strategy 
is that ligands of γδ TCRs and the exact recognition mechanism 
need to be better defined.
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