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a b s t r a c t

Social media data represent an important resource for behavioral analysis of the aging population.
This paper addresses the problem of age prediction from Twitter dataset, where the prediction issue
is viewed as a classification task. For this purpose, an innovative model based on Convolutional
Neural Network is devised. To this end, we rely on language-related features and social media specific
metadata. More specifically, we introduce two features that have not been previously considered in
the literature: the content of URLs and hashtags appearing in tweets. We also employ distributed
representations of words and phrases present in tweets, hashtags and URLs, pre-trained on appropriate
corpora in order to exploit their semantic information in age prediction. We show that our CNN-based
classifier, when compared with baseline models, yields an improvement of up to 12.3% for Dutch
dataset, 9.8% for English1 dataset, and 6.6% for English2 dataset in the micro-averaged F1 score.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the digital era, social media has become a ubiquitous part
of our daily life where users constantly interact with Facebook,
Twitter, Snapchat, among other social media platforms, sharing
their experiences and opinions on various topics. The availability
of many social media datasets (e.g., Twitter, public Facebook
pages and blogs) offers golden opportunities to social scientists
to study psychological and social questions at an unprecedented
scale [1]. For instance, social media has been employed in stock
market prediction [2], Oil price prediction [3], health monitor-
ing [4], disaster management [5], forecast box-office revenues
for movies [4], inferring national mood throughout the day [6],
measuring behavioral risk factors [7], among others.

On the other hand, the open access of many of social media
platforms has made it possible for people of every age to become
author and reader without any formal restriction. This created
an ideal environment for online predators to gain access to sen-
sible user related information, which render internet activities
of many vulnerable communities (e.g., kids, teenagers, females)
at risk. Therefore, automatic identification of age groups from
social media posts would offer an edge to crime prevention as
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well as many other activities – e.g., online tutoring, personalized
advertisement, content personalization, and (intelligent) plagia-
rism detection to identify for instance whether the homework
is performed by the student or another person. Besides, since
the last decade, several large scale corporations, e.g., Amazon
and Apple, have massively invested in human factors that com-
prehend consumer behaviors and predict consumer retention
based on user’s activity and registered profile [8,9], where age
group plays key role in inferring the community membership of
the user. Nevertheless in the absence of supporting biographical
information, as it is the case in many social media platforms,
inferring age attributes from textual posts only is rather challeng-
ing. Sociolinguistic theory advocates a strong connection between
language use and age, or more generally between discourse and
identity, where users employ language patterns to construct their
identity [10]. In this context, age is considered as a social and
fluid variable that is shaped depending on the societal context,
the culture, individual experiences and social roles [11].

In the area of computational linguistics, there is an inherent
interest in determining latent attributes of an author, which
include his categorical age, where a variety of published work
has been focused on linguistic analysis for author age in on- and
offline texts, much of which corresponds to lexical and contextual
clues, such as analyzing topic and genre or n-gram patterns. For
instance, [12] analyzed online behavior associated with blogs
(which are usually more comprehensive contents than tweets)
and found that behavior (number of friends, posts, time of posts,
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etc.) could effectively be used in binary age classifiers. [13] iden-
tified a set of writing and speech patterns, referred to as age-
grading, that changes over time as a person learns a language
and develops socially. This suggests that the assumption of text-
based age prediction is tenable, although no universally accepted
solution emerged. Especially, it is widely debatable whether age
patterns can be elicited from short social media related posts. [14]
argued that at least 10000 words per author is needed (in [15],
an estimate of 5000 words per author) in order to infer reason-
able age patterns. This order of magnitude is widely unavailable
in most of microblog posts, e.g., Twitter, Facebook messages
where high proportion of noisy terms is expected in order to
restrict the length of the message, which, in turn, challenges
standard natural language processing tools [16,17]. In an attempt
to tackle the above challenge, several works have investigated
fine-grained specialized natural language processing tools that
deal with microblog posts, construction of large scale corpora that
includes a variety of noisy terms/abbreviations, and, therefore,
devise a sound machine learning architectures for age categoriza-
tion and prediction. [18] developed pre-processing techniques to
normalize orthographic modifications as well as twitter-specific
elements (@-usernames and #hashtags) that translate the noisy
Twitter texts into standard English and found to work well in
classification problems. [19] used [18] and [20] pre-processing
techniques in order to identify types of creative lexical transfor-
mations resulting in OOV tokens in Twitter messages, which are
then employed to differentiate between users’ biographical at-
tributes. A multi-corpus based approach was investigated by [21]
that include transcribed telephone speech corpus and posts from
breast-cancer online forum. Next, a domain adaptation approach
was used to train a model on these corpora and separate the
global features from corpus-specific features that are associated
with age. [22] constructed a predictive lexica from a dataset of
Facebook users who agreed to share their status updates and
reported their age and gender. Age prediction has been widely
considered as a classification problem where machine learning
techniques were employed. For instance, [23] considered age as
a latent attribute of Twitter user and SVM classification were
employed to estimate the age class.

Moreover, computational linguistics competitions PAN 2013
and PAN 2014 of author profiling task [24,25] have seen a grow-
ing interest in the research community, where the participating
teams have proposed various methodologies that vary widely in
terms of pre-processing, choice of feature set and classification
methods. Especially, in PAN 2014, the age prediction task was
defined as a challenging multi-class prediction problem with five
classes (18–24, 25–34, 35–49, 50–64, 65+). Notable observations
of these works include the relative lack of predictive utility of n-
gram based models, as well as the high level of accuracy achieved
by a group using class similarity based features [26].

In summary, the preceding highlights two key findings. First,
the issue of eliciting age from author’s posts is tenable from both
sociological and computational linguistics perspectives. Second,
the issue of optimal configuration of generic estimation archi-
tecture remains widely open, which motivates further work on
this matter. Previous work [27–34] has identified several features
based on both language and social media specific meta-data
that are relevant for the age prediction task including bag-of-
words, linguistic features, stylometric features, profile features,
(e.g., background color, profile image), social network, and pref-
erences (e.g., liked tweets). Similarly, many approaches based
on multi-class classification have been proposed, such as SVMs
[23,35], logistic regression [12,27] and Naive Bayes [36].

As [28] pointed out, the problem of age estimation is very
challenging due to the inherent variability of human language
together with unstructured text in tweet messages, which raises

the question of finding appropriate cues that elicit categorical age
and the subsequent reasoning. The above studies revealed at least
three key limitations and challenges. First, the variety of contexts
and discourses poses serious challenges to inter-operability of
linguistic features from one study to another. For instance, the
application of the comprehensive WWBP linguistic database [29],
which is developed using Facebook dataset, to Twitter has shown
to be unsatisfactory. Second, although, many of these studies
acknowledge the importance of metadata in social media posts,
they do not explicitly make use of the content of this metadata.
Third, the variety of estimation architecture ranging from the type
of preprocessing, number and type of features employed, and
machine learning or estimation algorithms testifies of the need
for further research on the issue.

This motivates the current paper which focuses on Twitter
data and builds on previous work on age prediction by relying on
language related features and social media metadata to classify
users in age groups, considering thus age as a categorical variable.
Especially, the following contributions are highlighted.

1. Motivated by its sound theoretical convergence proper-
ties and good performance achievements in text-mining
related applications [37–40] a CNN-based model for classi-
fication is adopted that integrates heterogeneous features
for age-category classification.

2. New feature-set constituted of Hashtags and URLs content
analysis is introduced. To the best of our knowledge, there
is no previous work using the content of hashtags and URLs
for age prediction. Although they have been considered as
social media specific features (i.e. their number has been
included in [27,30], their content has not been considered.
We contend that hashtags and URLs in tweets are indicative
of user’s age since they reflect user’s interests and activities
[41]. We propose a novel method to derive relevant fea-
tures from hashtags and URLs and incorporate these into
our CNN-based classification model.

3. In order to tackle the lack of scalability and interoper-
ability, an enhanced semantics through pre-trained word
embeddings is introduced. Unsupervised learning of dis-
tributed representations (word embeddings) obviates the
need for careful feature engineering and such represen-
tations are richer in semantic information than standard
bag-of-words [42–44]. We propose to employ word em-
beddings for tweet texts, title text of the pages referred
to by the URLs in the tweets, and for most frequently co-
occurring words with each hashtag in the tweet. Further-
more, we pre-train word embeddings on different corpora
to take the context into account. More specifically, word
embedding vectors used for tweet texts and hashtags are
pre-trained on large collection of tweets, and those used
for URLs are pre-trained on blogs/news.

4. Comparison with some state-of-the-art estimation algo-
rithms (SVM, logistic regression, random forest) is car-
ried out in order to demonstrate the feasibility and good
performance of our proposal.

We employ three existing datasets from two different lan-
guages (i.e. English and Dutch) to test the validity of our novel
features and classification method against the versatile classifi-
cation models SVM, Logistic Regression, and Random Forest as a
baseline and show that our CNN-based model outperforms the
baseline significantly. While our approach is easily extendable to
include other demographic variables such as gender, ethnicity,
etc., it is also adaptable to solve other related problems in social
media mining ranging from online mental health surveillance,
to social spammer detection, and to assist recommendation sys-
tems to find similar users on the social media. The rest of the
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paper is organized as follows. In Section 2, we discuss related
work. Section 3 depicts our approach to extract features for age
prediction of Twitter users and describes our CNN-based model.
Section 4 explains our experimental setup and results compared
with baseline approaches. Finally, in Section 5, we present our
conclusions.

2. Related work

In the context of Twitter based age estimation/prediction, one
distinguishes at least two streams of research. The first one,
sometimes, referred to as age-annotation, deals with the con-
struction of dataset that genuinely relates author’s posts to his
categorical age. The second emphasizes the design and imple-
mentation of the software architecture that enables age estima-
tion from pre-processed dataset.

Indeed, labeled demographic data, including age data in par-
ticular, are not systematically collected by Twitter when users set
up new accounts. Even when very occasionally reported by the
users, the latter often do not assign the correct age, which stresses
on the need to use external resources or direct / indirect system
query-based approaches. For instance, [31] employed the Twitter
API to identify Twitter accounts that had tweets about birthdays
mentioning the person’s age (e.g., ‘‘Happy XX birthday YY ’’) or
individuals who sent birthday wishes (e.g.,‘‘Wishing @xxxxxx a
happy XX birthday’’). This ultimately enabled linking the under-
lined Twitter user with the mentioning age. [27] inferred age
estimate by adjoining LinkedIn profiles for youth who tweeted
about a particular grade level in school. [45] inferred age attribute
by looking at first names cross-referenced with baby name fre-
quency data from Social Security Administration. [46] advocated
the use of proxies and/or associated meta-data in order to derive
demographic information of Twitter users. [47] put forward a
distributed digital social research platform, referred to collabo-
rative online social media observatory (COSMOS) that provides
on-demand analytics including age attribute from Twitter stream
by correlating it with other dataset and events. Other alternative
work focused on the profile picture of the Twitter user, assuming
the picture is genuine and include a clear face portrait, [48] used
Face++, a free facial recognition service that can estimate a user’s
age within a 10-year span.

In the second stream of research related to software architec-
ture for age prediction, the developed approaches vary according
to type of pre-processing, input features, choice and number of
age categories, supervision versus non-supervision scheme, type
of supervision algorithm and validation strategy employed.

Pre-processing of Twitter messages allows to filter out the
abundant noise present in social media, and to normalize the
orthographic modifications as well as translate the various slang
and SMS-like vocabulary into semantically meaningful text. Input
features employed for age prediction vary from linguistic cues,
network (e.g., number of friends, ratio of followers to friends),
and user’s profile related information (e.g., background picture,
text color). Possibly due to difficulty in processing the network
information in real time, unreliability of profile information to-
gether with advances in linguistics that distinguish language use
of childhood, adolescence and adulthood, the quasi-majority of
reported works employ linguistic features. In this respect, one of
the most notable works was carried out as part of World Well-
Being Project (WWBP) [29] where an open vocabulary analysis
framework was advocated, whereby they link a series of indi-
vidual words, phrases, and topics that emerge from open text
context. Authors in [29] have shown clear distinctions across
four age grouping categories (ages 13–18, 19–22, 23–29, 30–65)
where they highlighted: (I) the greater use of emoticons and slang
among younger groups and, (II) the developmental progression

of individuals at different life stages (e.g., school, college, career,
marriage, children, family).

Social media content, including Twitter, also exhibits medium-
specific features (i.e. metadata) that show a different use wrt. age,
as is the case for sharing links and/or images and tagging/hashtag
use. [34] show that incoming communications from an individ-
ual’s strong ties are more revealing of the individual’s identity,
but that this relationship only holds for publicly visible aspects of
the identity. Authors in [49] have studied blog posts and showed
that there is no trend in image sharing, but there is a gentle
increase in usage of URLs in posts with respect to age: apart from
an inexplicable peak at the age of 24, link sharing increases with
age with users older than 35 posting the most. This result on URLs
is supported also by [50], [51], who have continued research on
blogging and found that the sharing of links increases with age.
On the other hand, work in [27] demonstrated that a sharp rise in
the use of links for Dutch Twitter users in their 20s, that stagnates
in their 30s. They associated this finding with information sharing
and impression management. [12] showed that the use of links
and images in their blog data varies across all ages. In the case of
hashtags, [27] found that hashtags are used more often by older
Twitter users: low usage in teens, a steep climb in the 20s, the
highest and continuous use through the years up until the oldest
participants category (over 60 years of age). According to these
authors, hashtags are, similarly to links, connected to the sharing
of information and older tweeters apparently are more concerned
with information sharing than younger users. Younger people
seem to display a certain kind of online identity, something older
people are less concerned with [52].

Computational work on age prediction has exploited these
differences in the use of URLs and hashtags across age groups,
but have not considered the content associated to them, that
also reflects an age related use. For example, [49] have re-
searched the behavior of two groups on Instagram: First, they
found that the adult group (25–39) displays a wider range of
interests in topics and are very diverse: arts/photos/design, loca-
tions, mood/emotion, nature, social/people. Second, the majority
of the teens’ (13–19) hashtags concern mood/emotion and fol-
low/like. [41] concluded that hashtags are an important feature to
discriminate age since older adults above 67 use mainly hashtags
related to politics and leisure in Twitter while people below 55,
use mainly hashtags in the context of work related activities and
technology.

Table 1 summarizes the key results in terms of age predic-
tion from online social media platforms (blogs, Facebook, and
Twitter), highlighting the main features, approach employed and
the level of accuracy obtained. It is evident from Table 1 that
all approaches in the previous research considered bag-of-words
(BoW) representation for features. Accuracy results on blogs are
typically higher than Twitter because of more data available per
user. The highest accuracy (94.13%) was reported by [56] on
ICWSM 2009 blog dataset utilizing Naive Bayes model trained
on content words, slang words and stylistic features. For Twitter
users, [27] report micro-averaged F1 score for three age cat-
egories classification of 86.32% on their own dataset of 2,494
users. These results were obtained by Logistic Regression trained
on unigram features. Table 2 presents a summary of previous
work on the use of Twitter metadata for demographic attribute
prediction. These approaches utilize Twitter metadata attributes
such as friends/followers ratio, profile image, background color,
etc. along with tweet content. However, only count values of
hashtags and URLs were included ignoring the content thereof.

It is evident from the literature review tables (ref. Tables 1
and 2) that, while the previous research has exploited rich set
of features such as linguistic, stylometric, and social network
features, attention to the following predictors of age attribute is
missing: (a) the content of hashtags and URLs embedded in posts
(especially, on Twitter), and (b) the use of richer semantic models
(such as word embeddings) instead of BoW representation.
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Table 1
Summary of previous work on age prediction from social media.
Research work Method used Features employed Size of dataset Accuracy

[31] SVM classification k-top ngrams
frequency statistics
followers/friends ratio

400 Twitter users 0.805∗

[27] Logistic regression unigrams 2,494 Twitter users 0.86+

[53] SVM classification, f-divergence unigrams 756 Twitter users 0.06%

[33] SVM classification unigrams, emoticons 324 Twitter users 0.77∗∗∗
[46] Pattern matching 1,471 Twitter users 1.0++
[54] Linear Regression Facebook likes 58,00 Facebook users 0.75
[48] Face++ Profile images,

User description
2,433 Twitter users 0.75++

[30] Logistic regression lexical features,
Twitter metadata features

3,184 Twitter users 0.74∗∗

[22] Linear regression unigrams 72,874 Facebookusers 0.831
[32] Logistic Regression unigrams 5000 Twitter users unspecified
[50] Multi-Class Real Winnow

(MCRW)
unigrams,
stylometric features

37,478 blogs 0.76+++

[55] SVM classification ngrams,
POS ngrams,
Wikipedia semantic

236,600 blogs 0.66+++

[56] Naive Bayes unigrams 75,558 blogs 0.95+++

[45] Bayesian generative model first names 1000 Twitter users 0.08$

[57] Decision tree unigrams,
stylometric features

307 users 0.4++++

[58] Bayesian Multinomial
Regression

unigrams,
stylometric features

19,320 blog authors 0.76+++++

[59] semi-supervised learning
Alternating Structure
Optimization

unigrams 2000 blog users 0.64∗∗∗∗∗

* For two classes: 18–23, and 25+.
** For three classes: 13–17, 18–24, 25+.
*** For two classes: 0–20, 20 plus.
**** For five classes, KL-divergence.
***** For five classes, 10s 20s 30s 40s 50s.
+ For three classes: 0–20, 20–40, 40+.
++ Manually verified.
+++ For three classes: 10s, 20s, 30s.
++++ For five classes 18–24, 25–34, 35–49, 50–64, 65+.
+++++ For three classes, 13–17, 23–27, 33–47.
% MSE for age class ratio prediction.
$ Pearson’s correlation.

Table 2
Summary of previous work on use of Twitter metadata for demographic attribute prediction.
Research work Meta-data Features Used Method Used No. of Users Application

[60] Count of hashtags, user mentions Multinomial Naive Bayes 10,000 Geolocation Prediction in Twitter
[61] Count of hashtags, user mentions SVM 956 Predicting political alignment in

Twitter
[62] Count of hashtags, user mentions,

URLs
Gaussian Processes 5,191 Income Prediction in Twitter

[30] Count of Hashtags, user mentions,
URLs

SVM, Logistic Regression, Random
Forest

3,184 Age Prediction in Twitter

[63] Background color, first name Naive Bayes, Decision Trees 180,000 Gender classification in Twitter
[64] User location, User name SVM 7,977 Gender, Race/Ethnicity prediction

in Twitter
[65] User name, profile image,

neighborhood info
SVM 1,495 Gender,Race/Ethnicity Prediction

in Twitter
[66] User name, profile image, account

creation date
Gradient-boosted Decision Trees 3,000 Race/Ethnicity Prediction in

Twitter

3. Materials and methods

3.1. Data

In order to classify a user into an age group we need a dataset
with (a) Twitter user id’s, and (b) corresponding ages. A major
problem for the age prediction task in Twitter is the limited
availability of validated data annotated with the age of users. We
use three datasets: two in English language, and one in Dutch.

[27] sampled Dutch Twitter users in the fall of 2012. They
employed external annotators to annotate the chronological age
using information available through tweets, the Twitter profile

and external social media profiles such as Facebook and LinkedIn.
In total, over 3000 Twitter users were annotated. However, not
all of these Twitter profiles are currently active, leaving us with
the profile information of 2150 users that we have included in
our Dutch dataset. For the English corpus, we used the datasets
from [30] and [46]. The dataset from [46] was created by applying
pattern matching rules to the profile descriptions of the Twitter
users. Through a process of iterative testing and refinement, they
derived three rules for age extraction using variations of the
following phrases:

1. I am X years old
2. Born in X
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Table 3
Dataset description.
Dutch Dataset English1 Dataset English2 Dataset
Age group No. of users Age group No. of users Age group No. of users

0–20 1134(52.7%) 13–17 259(24.11%) 13–17 472(26.3%)
20–40 689(32%) 18–40 761(70.8%) 18–24 1046(58.3%)
40 plus 327(15.2%) 40 plus 64(5.9%) 25 plus 276 (15.4%)
Total 2150 Total 1074 Total 1794

3. X years old

where X can be a (typically) two-digit number or a date of
the form DD/MM/YY or DD.MM.YYYY. Applying these three age-
extraction rules to each user description field in the order pre-
sented above, [46] had collected a dataset of 1470 users. However,
we could find 1074 of them still active.

The dataset from [30] was created by capturing self-reported
and congratulatory birthday announcements/wishings by using
the search parameters ‘‘Happy nth Birthday’’. Birthday tweets for
ages 13 to 50 were collected on August 22, 2014, September
29, 2014, April 2, 2015, and June 21, 2015. Each birthday tweet
was manually reviewed to determine whether a user could be
identified from the birthday message, to determine whether the
declared age seemed reasonable (rather than a joke exaggerating
the age of the user for comedic effect), and to exclude ‘‘celebrity’’
users whose content feed may be curated for promotional and
endorsement reasons. Out of the 3184 labeled users, we could
only find 1794 twitter profiles active at the time of writing this
paper.

More information about the three datasets can be found in Ta-
ble 3. Despite the availability of these three age-labeled
datasets from [27,46], and [30], a direct comparison of our results
with theirs on our re-created datasets is limited owing to: (a) the
differences in size due to some users’ data being not available be-
cause of account inactivation, privacy mode setting changes, etc.,
and (b) the unavailability of the actual tweets used by them since
the datasets have only published Twitter user-id and age. In the
rest of the paper, we refer to our re-created dataset from [27,46],
and [30] as Dutch, English1, and English2, respectively.

For each user, we collected his/her recent 200 tweets. Al-
though the Twitter API allows collection of up to 3200 most
recent tweets, prior studies have shown that examining more
than 100 to 200 posts per user provides minimal gain in model
performance when predicting user demographics [22,67].

Table 4 shows the distribution of numbers of hashtags, URLs,
and media in the tweets for each dataset in different age cate-
gories. It is evident from the table that people in the age cate-
gories of 20+ and 40+ frequently cite hashtags in their tweets.
More than half of the total tweets from these age categories
have at least one hashtag in them. Similarly, almost one third
of these users cite at least one URL in their tweets. With an
average length of 8.5 words per tweet in our dataset, it is evident
from the table that ignoring hashtags and URLs in tweets for age
prediction results in important information loss. Twitter allows
up to 4 media files to be included in a tweet (photos, videos, or
animated GIFs). However, while some users actively make use of
this feature, other users do not use media in their tweets. We
also notice that the age-group of a user is not correlated with the
number of media included in the tweet.

3.2. Feature engineering

We identified two broad categories of features, namely, lan-
guage features, and Twitter-specific features to detect age. Many
of these features have individually been explored in the liter-
ature [27–34]. These features are mainly derived from tweet
contents (tweet text) and meta-information, such as Twitter user

profile, network, and activity. These features were used in con-
junction with a supervised machine learning framework to create
a model for age detection. Previous research has explored SVM,
Random Forest, and Logistic Regression methods with these fea-
tures. However, we show that our novel features engineered from
hashtags and URLs, and feature transformation to distributed
representations of words and phrases incorporated in our CNN-
based model produce better results on age prediction than the
state-of-the-art.

All proposed features are investigated (see Section 4.2) using
the features analysis technique to determine the best combi-
nation of features with the highest discriminative power. The
proposed features are discussed in detail in the following sub-
sections.

3.2.1. Language features
• Linguistic Features: part-of-speech (POS) n-grams.
• Stylometric Features: average sentence length, average

word length, ratio of the number of emoticons to the num-
ber of words, number of elongated words (and non-standard
spellings) used, ratio of the number of hashtags to the num-
ber of words, number of slang words, number of acronyms.
• Features from pre-trained lexica: Researchers in sociolin-

guistics have derived lexicons of words and phrases that
correlate with different age groups. We use two such re-
sources: EMNLP2014 [22], and WWBP [29]. We use logit
transformed values from these lexicons.
• Sentiment scores as features: average number of tweets

with positive/negative/neutral sentiment.

3.2.2. Twitter-specific features
• Tweet Features: earliest, latest, and average timestamp

from among all 200 tweets of a user, number of geo-
locatable tweets of a user, number of tweets favorited,
number of tweets which are in-reply-to, number of tweets
which are re-tweets, number of user mentions, number of
tweets with media (photo, video, or animated GIF), average
number of media files per tweet.
• Twitter user profile features: account creation date, listed-

count, verified or not, geo-enabled or not, status-count.
• Twitter social network features: number of friends, num-

ber of followers, ratio of the number of friends to the num-
ber of followers, number of friends or followers with di-
rected tweet exchanges, number of friends that are also
followers.
• Twitter hashtag features (new): most frequently co-

occurring words with the hashtags used in user’s tweets
(described in more details in Section 3.3).
• Twitter URL features (new): words from the titles of the

pages pointed to by the URLs in user’s tweets (described in
more details in Section 3.3)

3.3. Method to extract features from tweet text, hashtags, and URLs

Our approach to include the URL content and hashtag as novel
features makes use of innovative deep learning approach that
genuinely combines word embedding and convolution neural
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Table 4
Distribution of hashtags, URLs, media counts, and sentiment scores in tweets from Dutch, English1, and English2 datasets.

Dutch English1 English2

Total no. of users 2150 1074 1794
No. of tweets that have at least one hashtag 100,206 47,760 35,595
Avg no. of hashtags per tweet
(age: 0–20 (Dutch), 0–17 (English1), 0–17 (English2))

0.30 0.12 0.18

Avg no. of hashtags per tweet
(age: 21–40 (Dutch), 18–40 (English1), 28–24 (English2))

0.64 0.50 0.22

Avg no. of hashtags per tweet
(age: 40 plus(Dutch), 40+ (English1), 25+ (English2))

0.71 0.35 0.52

No. of tweets that have at least one URL 138,301 61,212 58,715
Avg no. of URLs per tweet
(age: 0–20 (Dutch), 0–18 (English1), 0–18 (English2))

0.21 0.1 0.13

Avg no. of URLs per tweet
(age: 21–40 (Dutch), 18–40 (English1), 28–24 (English2))

0.28 0.22 0.21

Avg no. of URLs per tweet
(age: 40 plus(Dutch), 40+ (English1), 25+ (English2))

0.38 0.25 0.38

No. of tweets that have at least one media (video, photo, or GIF) 34,099 33,600 42,641
Avg no. of media per tweet
(age: 0–20 (Dutch), 0–18 (English1), 0–18 (English2))

0.07 0.17 0.25

Avg no. of media per tweet
(age: 21–40 (Dutch), 18–40 (English1), 28–24 (English2))

0.08 0.19 0.23

Avg no. of media per tweet
(age: 40 plus(Dutch), 40+ (English1), 25+ (English2))

0.10 0.18 0.17

Tweets with positive sentiment
Avg no. of tweets with positive sentiment
(age: 0–20 (Dutch), 0–18 (English1), 0–18 (English2))

0.39 0.42 0.43

Avg no. of tweets with positive sentiment
(age: 21–40 (Dutch), 18–40 (English1), 28–24 (English2))

0.42 0.40 0.41

Avg no. of tweets with positive sentiment
(age: 40 plus(Dutch), 40+ (English1), 25+ (English2))

0.35 0.44 0.43

Tweets with negative sentiment
Avg no. of tweets with negative sentiment
(age: 0–20 (Dutch), 0–18 (English1), 0–18 (English2))

0.17 0.19 0.18

Avg no. of tweets with positive sentiment
(age: 21–40 (Dutch), 18–40 (English1), 28–24 (English2))

0.20 0.20 0.19

Avg no. of tweets with positive sentiment
(age: 40 plus(Dutch), 40+ (English1), 25+ (English2))

0.19 0.18 0.16

Fig. 1. Flowchart for feature extraction.

network architecture in order to extract useful patterns. A general
skeleton of the approach is described in Fig. 1. We hypothesize
that such features can play a role in the age detection task
from Twitter data since it includes semantic information that
reflects the interests of Twitter users that change with age. More
specifically:

1. We extract the 200 most recent tweets after discarding re-

tweets for each user to ensure a large enough dataset . We

name this set the TweetTextSet.

2. We expand all URLs and hashtags in the TweetTextSet as

follows:
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Table 5
Example of feature extraction process.
Twitter user profile information Tweet-specific features Instances of the recent 200

Tweets of the user

UserID: 123xxxyy ScreenName:
Location: Protected:
Friends_count: Followers_count:
Created_at:

created_at: 19.11.2017
in-reply-to-userid:
geo-coordinates: retweet_status:
retweet_count: reply_count:
media_count_and_type:
sentiment_score:

I am proud of you Google
leadership! Thanks @sundarpichai
and team for putting this in clear
black and white. https://www.blog.
google/topics/ai/ai-principles/ ..
Especially the ‘‘AI applications we
will not pursue’’.

__same_as_above__ It is time for #BikeToWork guys.
Let’s save the environment.

__same_as_above__ Summer has already started!
Wooohooo ...

__same_as_above__ Mother’s day yet to come, but I
cannot hold back.. Love you so
much Mumma! Always an
unwavering support #MothersDay

Hashtags: #MothersDay, #BikeToWork

URLs: https://www.blog.google/topics/ai/ai-principles/

• We fetch the title of each linked web page. We name
this set of titles the URLTitlesSet. We use a meta-
data_parser1 for fetching the titles of the web-pages
pointed to by the URLs in tweets.
• For each hashtag ht , we collect 1000 tweets contain-

ing this hashtag HTTweets(ht). Since hashtags have
different meanings at different times, we use a time
window of +/- 10 days, counting from the date of the
tweet mentioning the hashtag. The words/phrases in
this set HTTweets(ht) define the semantic context of
that hashtag ht . We then find and select the most fre-
quently co-occurring words/phrases with each hash-
tag and name these sets CoOccurrences(ht). We name
the union of all such sets CoOccurrences(ht) as the
set HashtagCooccurringSet which serves as a represen-
tative set of topics the user is interested in since it
covers all hashtags cited in her recent 200 tweets.

3. We capture distributional semantics with word embed-
dings of words/phrases as follows:

• We pre-train a word2vec model on a large collection
of tweets and another word2vec model on Google-
News/blogs/forums.
• For each of the three sets TweetTextSet, URLTitles-

Set, and HashtagCooccurringSet, we look up in pre-
trained dictionaries to replace occurrences of words
and phrases with their corresponding vectors. We
ignore unknown words and phrases. For TweetTextSet
and HashtagCooccurringSet, we use word2vec model
trained on tweets, and for URLTitlesSet, we use the
model trained on GoogleNews/blogs/forums.

We use two different word2vec dictionaries to capture the
semantics of the relevant contexts: for words and phrases
in tweet texts, the model trained on tweets is found to be
better fit than a model trained on generic texts such as
blogs, news or forums. More specifically, in order to map
Dutch TweetTextSet to the corresponding word embedding
vectors, we pre-trained a word2vec model (200 dimen-
sions) from 4.3 million Dutch tweets using Gensim library.2
To map Dutch URLTitlesSet to the corresponding word
embedding vectors, we utilize a pre-trained model from

1 https://github.com/jvanasco/metadata_parser.
2 https://radimrehurek.com/gensim/index.html.

LREC2016 (320 dimensions).3 These vectors were trained
on Wikipedia, COW, Sonar500, and Roularta corpora. To
map English TweetTextSet to the corresponding word em-
bedding vectors, we use a Twitter word2vec model trained
on 400 million tweets.4 For mapping English URLTitles-
Set to the corresponding word embedding vectors, we
use pre-trained word2vec vectors (300 dimensions) on
GoogleNews.5

4. We calculate the min, max, and avg vectors of the hash-
tag word embeddings (HashtagCooccurringSet) where min
is the minimum value across all hashtag word embed-
ding vectors in each dimension of the vector, and max
and avg are maximum and average values, respectively.
Avoiding computationally expensive option to find ba-
sis vectors for the span of word embedding vectors of
HashtagCooccurringSet , we choose these three vectors as
capturing the semantic space associated with user’s hash-
tags which represents user’s interests and activities.

5. We fetch Twitter metadata (e.g. tweet timestamps, see
Section 3.2.2 for more details) for each user.

6. We extract additional features such as linguistic, stylomet-
ric, and Twitter-specific (see Section 3.2.2 for more details)
from the metadata and TweetTextSet. These include the
average number of media files in the users 200 most recent
tweets, and the average sentiment score of these tweets.
We create a normalized vector of these additional features.
For English tweets, we use the Carnegie Mellon’s TweetNLP
suite6 to tokenize the tweets and to assign Part-of-speech
tags. For Dutch tweets, we use Frog7 for tokenization and
POS tagging. For sentiment score evaluation per tweet, we
use NLTK’s8 implementation of VADER model [68].

7. We incorporate the word embeddings from TweetTextSet
and URLTitlesSet and the additional features vector, as de-
scribed above, into a Convolutional Neural Network based
model for classification (see Section 3.4 for further infor-
mation).

Our approach to include the URL content and hashtag as novel
features in combination with word embeddings is summarized in
Algorithms 13 and 2.

3 https://github.com/clips/dutchembeddings.
4 https://github.com/loretoparisi/word2vec-twitter.
5 https://code.google.com/archive/p/word2vec/.
6 http://www.cs.cmu.edu/~ark/TweetNLP.
7 http://languagemachines.github.io/frog/.
8 http://www.nltk.org.

https://www.blog.google/topics/ai/ai-principles/
https://www.blog.google/topics/ai/ai-principles/
https://www.blog.google/topics/ai/ai-principles/
https://github.com/jvanasco/metadata_parser
https://radimrehurek.com/gensim/index.html
https://github.com/clips/dutchembeddings
https://github.com/loretoparisi/word2vec-twitter
https://code.google.com/archive/p/word2vec/
http://www.cs.cmu.edu/~ark/TweetNLP
http://languagemachines.github.io/frog/
http://www.nltk.org
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Table 6
Some tweets for the hashtags #BikeToWork and #MothersDay.
Hashtag A sample of tweets collected for the hashtag

#MothersDay

So far my family’s had our 1st #Easter, 1st #MothersDay and now 1st #MemorialDay without Mom. Also
two family birthdays and a wedding anniversary. Just another day.
Spring has sprung! Are you ready? #handmadejewelry #style #fashion #mothersday #jewelryfashion
Piter @pawlicki777 on victory lap with his mum after yesterday’s match. In Poland we had #mothersday
this Sunday. Round of applause to Piter!
An event doesn’t have to be large to be a success. Mother’s Day outing to Kinky Boots. We only do events,
but we do them all!! Small, big, mainstream and outside the box. #events #eventplanner #mothersday
It’s Mother’s Day today in France - this is me apparently #MothersDay #France

#BikeToWork
Good morning! Did you know today is #BikeTOWork day? Biking to work can save money, promote
health, and is considered a good environmental option
SWEEEEET! kids got served tickets for wearing helmets #biketowork for ice cream (he’s tried to eat the
one -does not taste like ice cream)
The start of a new week..and not just any week, it’s bike to work week!! Get those bikes shined up and
hit the trails, road or whatever’s between you and the office! #takeonPG #princegeorgenow #cityofpg
#biketowork

URL resolution for the link: https://www.blog.google/topics/ai/ai-principles/

‘‘AI at Google: our principles’’

Algorithm 1: Extract features
Input: Labeled training set of Twitter Users and corresponding ages.
Output: Trained CNN model.
Data: TweetW2V: word vector embedding dictionary trained on a large number of tweets,

GenericW2V: word vector embedding dictionary trained on generic text such as GoogleNews, Blogs,
N: number of tweets to fetch for each hashtag,
M: number of most-frequently co-occurring words to extract from N tweets for hashtags.

1 ProfileMetadata← fetch metadata for each User from Twitter profile
2 Tweets← fetch 200 recent tweets for each User after removing re-tweets
3 TweetVec← getEmbeddingVectors(Tweets, TweetW2V)
4 URLs← extract URLs in Tweetsfor eachUser
5 Titles← fetch titles of URLs for each User
6 URLVec← getEmbeddingVectors(Titles, GenericW2V)
7 hashtags← extracthashtagsinTweetsforeachUser
8 HTTweets← fetchNtweetsforeachhashtaginhashtagsforeachUser
9 HTCoOcc← CoOccurrences(HTTweets, M) for each User

10 HTVec← embed(HTCoOcc, TweetW2V)
11 min, max, avg← min, max and avg of HTVec
12 xtrVec← extract additional features from Linguistic, Stylometric, Twitter profiles, ProfileMetadata, Average no. of media files,

Average sentiment score
13 CNN← TRAIN_CNNwithTweetVec, URLVec, HTVec, xtrVec

Algorithm 2: Select the words that co-occur most with hashtags mentioned by a User.
Input: HTTweets(ht) for each hashtag ht .
Output: A set of most-frequently co-occurring words with all hashtags ht .
Data: M: Number of words/phrases to select.

1 coOccMap← empty map of User to words
2 for all hashtags ht do
3 Bag(ht)← words and phrases from HTTweets(ht)
4 Sort the Bag(ht) by number of co-occurrences.
5 coOccMap← coOccMap ∪ select top X words in Bag(ht)

Example

In order to exemplify the process of feature construction set,
let us consider an example of Twitter Id 123xxxyy from one of the
datasets.

• We present in Table 5, the profile information, some of
the user’s 200 most recent tweets, and their tweet-specific
metadata we fetch using the Twitter API. In this exam-
ple, we show only 4 of the user’s 200 most recent tweets
which have 2 hashtags and 1 URL altogether: #BikeToWork,

#MothersDay, and URL: https://www.blog.google/topics/ai/
ai-principles/.
• Next, for each of these 2 hashtags, we collect 1000 tweets

from a time-window of [9.11.2017 – 29.11.2017]. Table 6
shows some of these tweets.
• Following the process in Algorithm 2, we find the most-

frequently co-occurring terms with these hashtags in
tweets. These are shown in bold-face letters in Table 6.
For the hashtag #MothersDay, most-frequently occurring
terms are: {another, mother’s day, event, mum, mom}. And

https://www.blog.google/topics/ai/ai-principles/
https://www.blog.google/topics/ai/ai-principles/
https://www.blog.google/topics/ai/ai-principles/
https://www.blog.google/topics/ai/ai-principles/
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Fig. 2. Our CNN Model for age-category classification.

for the hashtag #BikeToWork, they are: {health, work, kids,
week, bike, office}. Together, for the two hashtags, the set
{mom, event, work, office} represents the most-frequently
co-occurring terms.
• Next, we look-up these terms in a pre-trained word-

embedding model trained on Twitter dataset.9 and obtain
a set of vectors H1...M and min, max, and avg vectors are
computed as outlined in Section 3.3(4).
• We fetch the title of the page pointed to by the URL https:

//www.blog.google/topics/ai/ai-principles as ‘‘AI at Google:
our principles’’. We look-up these terms in a pre-trained
word-embedding model trained on GoogleNews10 and ob-
tain a set of vectors U1...L.
• For each of the 200 recent tweets, after pre-processing and

normalizing the length of a tweet to 30 terms, we look up
the terms in a pre-trained word-embedding model trained

9 https://github.com/loretoparisi/word2vec-twitter.
10 https://code.google.com/archive/p/word2vec/.

on Twitter dataset. Together, word embedding vectors from
200 tweets form a set T1...6000.

3.4. Convolutional neural network model

Inspired by [37,69], Fig. 2 illustrates our model based on con-
volutional neural network (CNN) for predicting the age category
of a Twitter user. Our model is innovative in two aspects:

• Two separate input channels receive inputs from word em-
beddings of TweetTextsSet and URLTitlesSet and separate
convolution filters of various sizes were used. This innova-
tive design is proposed to prevent learning false associations
between tweet words and words from the titles of web-
pages. The output of convolutional layer is passed through
a non-linear activation function ReLU . Pooling layer ag-
gregates vector elements by taking the maximum from
each element of the convolutional feature map. Thus, these
two output vectors after max-pooling represent features
extracted from tweet texts and URLs for age-category pre-
diction.

https://www.blog.google/topics/ai/ai-principles
https://www.blog.google/topics/ai/ai-principles
https://www.blog.google/topics/ai/ai-principles
https://github.com/loretoparisi/word2vec-twitter
https://code.google.com/archive/p/word2vec/
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• Since CNNs require fixed-sized homogeneous data sources,
in order to utilize additional features, we propose another
design innovation: the two vectors described above are con-
catenated with (a) a vector representing the additional fea-
tures (Section 3.2.2), (b) the three vectors min, max, and avg
calculated from word embeddings of HashtagCooccurringSet,
and (c) a vector of features from pre-created lexicons after
normalizing values to logits (-1 to +1). This concatenated
vector is then fully connected with the output layer in
soft-max setup. Since this vector is huge, we use drop-out
method for regularization.

The details of the layers of the CNN architecture are as follows:

1. Tweet sentences CNN (Model 1):

(a) Tweet Sentences Matrix (Input)
All 200 recent tweets of a given user are represented
by horizontal concatenation of d-dimensional word
embeddings of its n constituent tokens. These word
embeddings are pre-trained on a large twitter corpus
from a given language (English, and Dutch). This
generates a matrix S ∈ Rd×n which is inputted to the
convolutional neural network model.

(b) Convolutional Layer
Convolution layer comprises of multiple filters of
fixed length which are convolved with the input
sentence matrix to extract discriminative word se-
quence patterns useful for classification. The convo-
lution operation is defined as:

ci =
∑
k,j

(S[i:i+h])k,j · Fm
k,j (1)

where S is input sentence matrix, h is filter width,
and Fm

k,j are mth filter’s coefficients. ci is the value
of the learned feature. The entire convolution of the
mth filter with the input tweet produces n − h + 1
values which are concatenated together to produce a
vector c ∈ Rn−h+1. The vectors c are then aggregated
over all m filters into a feature map matrix C ∈
Rm×(n−h+1).

(c) Max Pooling
The output of the convolutional layer is passed
through a non-linear activation function such as
hardTanh or sigmoid or ReLU . Pooling layer aggre-
gates vector elements by taking the maximum from
each element of the convolutional feature map. The
resulting vector is Cpooled ∈ Rm×1.

2. URL titles sentences CNN (Model 2):

(a) URL Titles Sentences Matrix (Input)
All title sentences of URLs in all of a given user’s
tweet are represented by horizontal concatenation of
k-dimensional word embeddings of its n constituent
tokens. These word embeddings are pre-trained on a
large corpus of blogs, news-posts, and generic text in
a given language (English, and Dutch). This generates
a matrix S ∈ Rk×n which is input to the convolutional
neural network model.

(b) Convolutional Layer and Max Pooling layers identical
to Tweet sentences.

3. Hashtag vectors
From the HashtagCoocurringSet comprising of most fre-
quently co-occurring words with all hashtags of from the
recent 200 tweets of a given user, we choose three embed-
ding vectors min, max, and avg from the pre-trained word

embedding model on generic text (English, and Dutch)
as explained in Section 3.3. This generates three vectors
V1, V2, and V3 ∈ Rk which is input to the concatenation
layer (merge layer of keras11).

4. Concatenation Layer and Dropout
Output of max pooling from (i) Tweet Sentence CNN and
URL titles CNN, (ii) three hashtag vectors, and (iii) other
features (stylometric, social network features, etc.) are con-
catenated. Since this vector is huge, in order to avoid over-
fitting, we use the dropout method proposed by [70]. Each
dimension is randomly set to 0 using a Bernoulli distri-
bution B(p) where p is a hyper-parameter. In addition,
we complement this method of regularization with L2-
Regularization of softmax parameters. After dropout, the
vector is passed onto the softmax layer.

5. Softmax Output from the concatenation layer Cconcat ∈ Rm

is used for softmax regression which returns the class ŷ ∈
{1, K } with largest probability. i.e.,

ŷ = argmax
j

P(y = j | x,w, a) (2)

q = argmax
j

e(Cconcatwj+aj)∑K
k=1 e

(Cconcatwj+aj)
(3)

where wj denotes the weights vector of class j and aj the
bias of class j.

3.4.1. CNN training details
In order to train the above model, for each dataset, data was

split into 85% training and 15% for validation sample. Batch size
for training CNN was kept at 200 tweets. Since tweets differ in
length, we limited each tweet to a maximum of 30 words (ex-
cluding emoticons, hashtags, and URLs). Tweets with shorter than
3 words or longer than 30 words were discarded from further
processing. While the average length of a tweet in our datasets
was small, some users have availed the newly-introduced (in
November 2017) feature of Twitter supporting longer tweets (up
to 280 characters). Since the limit of 30 words covers 100% of
our collected tweets, we normalize the length of each tweet to
be 30 words. Tweets shorter than 30 words were padded with a
special PAD token. Since each tweet is different in content from
others even by the same user, we carefully adjusted the sizes of
kernel masks in order not to learn spurious features. In this way,
we ensured that the convolution kernel masks did not move over
different tweets. We limited URL title words to 25. If a URL title
was shorter, we again padded the title with a special PAD token. If
a title was longer than 25 words, we ignored the rest of the words.
Since search engines typically display the first 50–60 characters of
the titles, most web pages do not have titles exceeding the length
of 25 words. Also, in our two datasets, we found that 93% titles
are of shorter length than 25 words. Similarly, we found only
0.8%, 1.2%, and 2.5% words from tweets and URLs not available in
pre-trained dictionaries for English1, English2 and Dutch datasets,
respectively. We found that for Dutch dataset, the number of
words not available in pre-trained word embedding resource was
almost double than that for English datasets. This is indicative of
lack of adequately sized resources for Dutch. The following choice
of hyper-parameters was made: for both datasets, we use ReLU
as non-linear activation function, filter windows of sizes 3, 4, 5, 6
with 128 feature maps each, and mini-batch size of 200. The loss
is minimized using the Adam optimizer [71]. For regularization,
we use the dropout method proposed by [70] after the max pool-
ing layer with p = 0.5. In addition, we complement this method
of regularization with L2-Regularization of softmax parameters.

11 https://keras.io.

https://keras.io
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Table 7
Feature correlation analysis on Dutch, English1, and English2 datasets.
Features Dutch dataset English1 dataset English2 dataset

0–20 21–40 40 plus 13–17 18–40 40 plus 13–17 18–24 25 plus
Linguistic features:
Count of the term ‘‘family’’ 0.13(+) 0.23(+) 0.16(+)
Count of the term ‘‘college’’ 0.22(+) 0.17(+)
Count of the term ‘‘lol’’ 0.18(+) 0.08(-)
Stylometric features:
Ratio of emoticons to words 0.09(+) 0.11(-) 0.18(+)
Number of non-standard spellings 0.19(-) 0.14(+)
Tweet features:
No. of tweets favorited
No. of user mentions 0.14(+) 0.21(+)
Twitter user profile features:
Age of Twitter account 0.31(-) 0.13(+) 0.27(-) 0.19(+) 0.24(-) 0.11(+)
Statuses count 0.10(+)
Twitter social network features:
Ratio of friends to followers 0.19(+) 0.24(+) 0.09(+)
No. of friends that are also followers 0.12(+)
Hashtag words
Count of the term ‘‘music’’ 0.23(+) 0.11(+) 0.13(+)
Count of the term ‘‘love’’ 0.12(+) 0.08(+)
URL title words
Count of the term ‘‘news’’ 0.19(+) 0.1(+)
Count of the term ‘‘gadget’’ 0.16(+)
Media Count
Value of average count of media files in tweets 0.01(+)
Average sentiment score
Value of average sentiment score

4. Experiments and results

In order to show the effectiveness of our novel features, we
conduct both regression and classification (into pre-defined age
category bins) experiments. Below we define various combina-
tions of features as baseline features to compare performance of
regression and classification models on the datasets. The feature
representation for tweet text, URL titles, and HashtagCoocurringSet
in the baseline setting is bag-of-ngrams. While we show the
improvement in results using these features, further improve-
ment is yielded by using distributed representations of words
incorporated in our 2-channel novel CNN model.

4.1. Baseline features

• B1: Lexical (Bag-of-words(BoW)) features: Unigrams, bi-
grams, and trigrams extracted from only tweet texts.
• B2: B1 and BoW representation of most frequently co-

occurring words with hashtags in user’s tweets (Hashtag-
CooccurringSet)
• B3: B1 and BoW representation of words from titles of the

URLs in user’s tweets (URLTitlesSet)
• B4: B1 and Linguistic, Stylometric, Twitter-specific features
• B5: all features from B1, B2, B3, B4
• B6: B5 and features derived from external pre-trained age-

specific lexica

4.2. Feature analysis

Following [30], we use Cohen’s d measure to show the effec-
tiveness of our features in classification of age-groups of Twitter
users. We first convert Chi-square values into correlation coef-

ficient r by using the formula r =
√

X2

N . This value was then
converted into a Cohen’s d effect size per the formula 2r

1−r2
. p-

value was chosen as 0.001. Table 7 shows the top predictive
features for each age category in all three datasets. The plus sign
(+) shows the direction of association.

Table 8
Ridge regression results with Baseline features on Dutch, English1, English2
datasets.

Dutch Dataset English1 English2

B1 0.53 0.58 0.64
B2 0.56 0.61 0.67
B3 0.58 0.62 0.69
B4 0.55 0.67 0.70
B5 0.64 0.67 0.77
B6 0.65 0.69 0.81

4.3. Linear regression (ridge) with baseline features

We use ridge regression for predicting age as a continuous
variable with different feature sets (see baseline features above).
Feature sets B1 and B2 include the content of hashtags and
URLs respectively in their bag-of-ngrams representation. Since
the features as discussed above are very high dimensional, we
used principal component analysis (PCA) to reduce the number
of features. With using 10% of data as validating sample, we set
the regularization parameter for ridge regression. As goodness-
of-fit statistics, we have used R-squared (R2) statistic. The results
of regression are shown in Table 8.

4.4. Classification results

In order to evaluate the performance of novel 2-channel CNN
model with the new features proposed on the above datasets,
we compare the results with those obtained from (a)Support
Vector Machines (SVM) classifier (with linear kernel), (b) Logistic
regression, and (c) Random forest, using various combinations of
features. We also use the additional language and social media
specific features that have been utilized in the previous works.
While the feature representation for SVM, Random Forest, and Lo-
gistic Regression is bag-of-ngrams, for CNN, we used distributed
representations to capture semantic correlations between words
in a dense semantic vector space induced by word embedding
models. Feature sets used in our CNN model are:
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• W1: word embeddings (pre-trained on tweets) of words/
phrases from TweetTextSet
• W2: W1 to the input layer of CNN and min, max, and avg

vectors derived from word embeddings of HashtagCooccur-
ringSet concatenated with the max-pooled vector before
soft-max
• W3: W1 to one branch of the input layer of CNN and word

embeddings of URLTitlesSet to the other branch of input
layer
• W4: W1 to the input layer of CNN and a vector constructed

from Linguistic, Stylometric, and Twitter-specific features
concatenated with the max-pooled vector before soft-max
• W5: W3 to the input layer of CNN, and all other features

including min, max, and avg from HashtagCooccurringSet
concatenated with the max-pooled vector before soft-max
• W6: same setup as W5 but with additional features derived

from external pre-trained age-specific lexica concatenated
with the max-pooled vectors

Tables 9–11 collect results on Dutch and English datasets, re-
spectively. Included are the precision, recall, and micro-averaged
F1 scores obtained with SVM, Logistic Regression, and Random
Forest classification with various feature combinations. Because
of the significant differences in the number of samples in each
age-group, micro-averaged F1 score serves as a better indicator
of classification accuracy. Micro-averaged precision and recall are
defined as:

Precisionµ =

∑
ag∈AgeGroups TPag∑

ag∈AgeGroups TPag +
∑

ag∈AgeGroups FPag
(4)

Recallµ =

∑
ag∈AgeGroups TPag∑

ag∈AgeGroups TPag +
∑

ag∈AgeGroups FNag
(5)

where TPag , FPag , and FNag are the true positives, false positives,
and false negatives for age group class ag , respectively. Micro-
averaged F1 score is defined as the harmonic mean of Precisionµ

and Recallµ:

F1µ =
2× Precisionµ × Recallµ
Precisionµ + Recallµ

(6)

4.5. Discussion

It is evident from Table 7 that lexical features from tweet text,
most frequently co-occurring words with hashtags, and words
from URL titles indeed are discriminative for age-group classifi-
cation. For example, number of occurrences of the word ‘‘family’’
is much higher among the older age-groups than among the
younger. Similarly, slang words (such as, ‘‘lol’’) are more fre-
quently observed in tweets of younger age-group. Number of
words with non-standard spellings was found to be negatively
correlated with age among the older age-group of Twitter users
while it was positively correlated in the younger group. For
the millennials (ages between 18 and 40), the number of user
mentions in the tweets was observed much higher than among
other groups suggesting that this generation practices engaging
online social communication. This is further evidenced by noting
their friends to followers ratio: higher values of the ratio indi-
cating their proclivity to be a part of a social network. Use of
hashtags and URLs is prevalent across all age categories (ref. Ta-
ble 4), but the ‘topics’ as indicated by the hashtags or URLs differ
among different age groups. For example, the frequency of the
word ‘music’ was more pronounced in the HashtagCooccurringSet
of younger users; whereas the word ‘news’ was found more
prominent among the older groups.

Average number of media files per tweet of a user was not
found to be discriminative for age-category classification (ref.
Table 7. Very few users availed the feature of attaching media to
their tweets and such users are from all age groups rather than
being restricted to a particular age group (ref. Table 4. Similarly,
we found that average sentiment score of all 200 tweets of a
given user does not help in classification. Distribution of number
of tweets with positive, negative, and neutral sentiment is almost
similar across all age groups (ref. Table 4. Sentiment scores were
evaluated for each tweet and while the average of sentiment
score across all 200 recent tweets of a user may give insight into
the personality of that user, does not characterize the behavior of
his/her group.

Encouraged by the findings of feature importance evaluation,
we carried out ridge regression experiments (ref. Table 8). While
the results indicate performance improvement by including Hash-
tagCooccurringSet and URLTitlesSet, the final results of including all
features (after PCA) are far from desirable. This shows that the
underlying assumption of multivariate Gaussian distribution of
lexical features is not accurate for tweets and regression model
trained on reduced feature set fails to achieve the desired fine-
grained age prediction. In order to capture non-linear correlations
between semantic dimensions of different words in a princi-
pled manner, we propose to use our CNN model trained with
distributed representations (word embedding vectors) of words.

Tables 9–11, show experiments with SVM, Logistic Regres-
sion, Random Forest, and our model. Each table shows results
of these four experiments on each of the three datasets: Dutch
[27], English1 [46], and English2 [30]. We show the effective-
ness of various features in each of these models. It is observed
that all approaches yield higher performance on English1 dataset
which can be attributed to its much smaller size (almost half)
compared to the other two datasets. Further, there are differences
in the method of data collection: English1 dataset relied on self-
declared age value in profile descriptions which was manually
verified, while English2 dataset was created by applying pattern-
matching rules on congratulatory tweets, and Dutch dataset cre-
ation relied on external sources such as Facebook or LinkedIn.
Also, the dataset creation of Dutch users may introduce a sam-
pling bias since they select the users who are in the same social
subnetwork.

From Tables 9–11 it is observed that older age groups across
all three datasets yield lower accuracy. On the other hand, better
performance results are noticed for the 0–20 age group (Dutch
dataset), 18–40 age group (English 1 data), and 18–24 age group
(English 2 data). Clearly, our supervised machine learning ap-
proach yields better results when the amount of training data
is higher: Table 3 shows that these age groups represent the
largest proportions in the respective datasets; whereas for older
age groups, the number of data samples is much smaller across
all datasets.

As can be seen from the experimental results utilizing baseline
features (Section 4.1) from the tables (A,B, and C in Tables 9–11),
including the most frequently co-occurring words with hashtags
in the user’s tweets into the bag-of-words model (column 2)
actually degrades the performance of age-prediction. Hashtags
are used to index keywords or topics so as to categorize tweets
and to allow people to easily follow the topics they are interested
in. In this experiment, we attempt to capture the topics a user
is interested in by finding hashtag-relevant words from other
tweets that include the same hashtag. In order to overcome the
problem of topic drift, we only use tweets in a window of −10
to +10 days from the tweet containing the hashtag. Based on the
hypothesis that a person’s age is correlated with the topics he
is interested in, we expect to see improvement in the accuracy.
However, we notice that by bringing in hashtag-relevant words
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Table 9
Results on Dutch dataset. B1–B6 and W1–W6 are explained in the text.

Table 10
Results on English1 dataset. B1–B6 and W1–W6 are explained in the text.

for all hashtags from all 200 recent tweets introduce too much
noise: while false negatives decrease resulting in improved re-
call, false positives increase resulting in poorer precision. Similar
observation is made about including words from the URL titles
(column 3). Utilizing linguistic, stylometric, and Twitter-specific
features along with 1- to −3-grams from tweet texts improve the
precision and recall over the basic BoW model. This confirms the
sociolinguistic hypothesis that linguistic and stylometric features
serve as indicators of person’s age. Finally, exploiting predictive
lexica which are pre-trained for age, such as EMNLP2014 [22]
and WWBP [29] help in improving the accuracy slightly. Despite
such pre-created lexica having potential to improve the accuracy

for age prediction, we observe that because such lexica were
trained on Facebook and our data is from Twitter, they fail to
achieve higher accuracy as expected (since there is a difference
in discourse styles of Facebook and Twitter).

(D) in Tables 9–11 show results of our experiments based on
the use of CNN as our classification model in combination with
word embeddings for tweet words/phrases. We find that utilizing
word embeddings into our CNN model improves on the baseline
of using BoW (compare column 1 of A, B, and C with that of D
in each of the tables) since CNN learns complex features associ-
ating different dimensions of word embedding vectors of a tweet
word sequence. In the case of URL titles, replacing them with a
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Table 11
Results on English2 dataset. B1–B6 and W1–W6 are explained in the text.

sequence of corresponding word embedding vectors and selecting
features using convolutional filters improve the performance of
the system (compare column 3 of A, B, and C with that of D in
each of the tables). We also notice that instead of directly us-
ing HashtagCooccurringSet words for classification, utilizing three
vectors min, max, and avg derived from word embeddings of
HashtagCooccurringSet yields improvement in precision and recall
both (compare column 2 of A,B, and C with that of D in each
of the tables). Since much less noise is included as opposed to
the method of including all words, both false positives and false
negatives decrease resulting in improvement in precision and
recall. Finally, similar to SVM baseline model, including linguistic,
stylometric, Twitter-specific features and using external lexica
help to improve the accuracy further.

Overall, using our CNN-based architecture along with novel
features improves the micro-F1 score by 12.3%, 9.8% and 6.6% for
Dutch, English1 and English2 datasets, respectively when com-
pared against the best results of SVM, Random Forest, and Logistic
Regression models employing bag-of-ngrams representation of
baseline features.

5. Conclusion

In this paper, we proposed a novel way to include features
derived from hashtags and URLs from tweets for age prediction
of Twitter users. We show that using distributed representations
incorporated into convolutional neural network improve the ac-
curacy over the baseline bag-of-words model. Augmenting these
features with features derived from URLs and hashtags further
improves the precision and recall. We examined the effect of
adding novel features incrementally and conclude that our model
outperforms the baseline by 12.3%, 9.8% and 6.6% for Dutch [27],
English1 [46], and English2 [30] datasets, respectively.

Present-day social media platforms facilitate effective social
communication by offering several meta-data features that users
may avail to make their messages more meaningful. The pro-
posed method presents a way to include information from URLs
and Hashtags for analytics of social media messages. While the
evaluation of accuracy of our approach is limited by the amount
of the labeled data available for age demographics, as a future

work, we plan to utilize this approach for prediction of other
demographical information such as gender, ethnicity, etc. Another
limitation of the proposed work is in its partial reliance on the use
of language to identify the age. Research has shown that since
public messaging in social media may reveal significant informa-
tion about a person, some users modulate their communication
strategies to preserve privacy [72]. However, language can still
reveal the identify of the users when they engage in one-to-one
communication on a public forum; for example, when talking
with a close friend [73], or parents’ messages to/about their
children violating their privacy [74]. Our approach to discard re-
tweets but to preserve the reply-to messages helps capturing the
linguistic signature of an individual. Further, we capture interest
profile of an individual as manifested by hashtags and URLs in
his/her tweets.
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