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Immunoglobulin A (IgA) is the major secretory immunoglobulin isotype found at mucosal
surfaces, where it regulates microbial commensalism and excludes luminal factors from
contacting intestinal epithelial cells (IECs). IgA is induced by both T cell–dependent
and –independent (TI) pathways. However, little is known about TI regulation. We report
that IEC endoplasmic reticulum (ER) stress induces a polyreactive IgA response, which is
protective against enteric inflammation. IEC ER stress causes TI and microbiota-
independent expansion and activation of peritoneal B1b cells, which culminates in
increased lamina propria and luminal IgA. Increased numbers of IgA-producing plasma
cells were observed in healthy humans with defective autophagy, who are known to
exhibit IEC ER stress. Upon ER stress, IECs communicate signals to the peritoneum that
induce a barrier-protective TI IgA response.

T
he intestinal epithelium is continuously
confronted with potentially deleterious en-
vironmental stimuli (1). These exposures
and the underlying secretory burden of
intestinal epithelial cells (IECs) are chal-

lenging for this cell type. Thus, endoplasmic
reticulum (ER) stress and the accompanying
unfolded protein response (UPR) are commonly
observed in IECs under homeostasis (2) and
increased in inflammatory bowel disease (IBD)
(3, 4). In IBD, ER stress in the IEC can serve as
a nidus for spontaneous microbiota-dependent
ileitis. This can be seen in mice with an IEC-
restricted deletion of the important UPR effec-
tor molecule X-box binding protein 1 (Xbp1DIEC)
(3, 5). It is unknown, however, whether IEC-
associated ER stress can also elicit barrier-
protective immune responses.
We observed higher numbers of immuno-

globulin A–positive (IgA+) plasma cells (CD45+

CD3−IgA+B220−) in small-intestinal lamina
propria (SI LP) and higher concentrations
of ileal tissue IgA in Xbp1DIEC mice than in
littermate Xbp1fl/fl controls (Fig. 1, A and B,
and fig. S1). Secretory IgA (sIgA), which func-
tions to protect the mucosa by coating and en-
trapping commensal and colitogenic bacteria
(6) and excluding intraluminal factors from
IEC contact (7, 8), was also increased in the
lumen (Fig. 1C). This was associated with in-
creased circulating IgA concentrations as
early as 6 weeks of age (Fig. 1D), before the
emergence of spontaneous inflammation
in Xbp1DIEC mice. No other Ig isotypes were
increased in the SI (fig. S2A) or sera (fig. S2B)
of Xbp1DIEC mice. The increased number of IgA+

cells in Xbp1DIEC mice accumulated around SI
crypts (Fig. 1, E and F), where ER stress (5, 9)
and basal plasmacytosis, a feature of IBD (10),
frequently occur.

Xbp1 deletion in IECs results in UPR acti-
vation, including the ER-stress sensor inositol-
requiring enzyme 1 a (IRE1a) (11). Double
conditional knockout mice lacking both IRE1a
and XBP1 in IECs (Ern1/Xbp1DIEC) showed no
increase in SI IgA+ cell numbers compared
with Ern1/Xbp1fl/fl controls (fig. S3), indicating
that IRE1a is an important mediator of the IgA
response. We extended these observations to
an inducible IEC-specific knockout of the ER-
stress sensor glucose related protein 78 (GRP78)
(12). Grp78T-DIEC mice exhibited a rapid increase
in SI IgA+ plasma cells by 3 days after Grp78
deletion (Fig. 1G). Conversely, treatment of
Xbp1DIEC mice with the chemical chaperone
tauroursodeoxycholic acid (TUDCA) (13) reduced
IEC ER stress (fig. S4) and prevented the IgA re-
sponse in the SI LP (Fig. 1H) and plasma (Fig. 1I).
We next generated Igha−/−Xbp1DIEC mice and

Igha−/−Xbp1fl/fl controls, which lack IgA. Consist-
ent with previous studies (3), Xbp1DIEC mice
developed spontaneous ileitis, which was un-
changed under conditions of IgA deficiency
(Fig. 1J). However, inflammation in Igha−/−

Xbp1DIEC mice significantly extended proximally
into the jejunum [Fig. 1K and fig. S5, histology
score and hematoxylin and eosin (H&E), respec-
tively], suggesting that IEC ER stress–induced
IgA+ plasma cells protect from inflammation.
Like humans with selective IgA deficiency (14),
Igha−/− mice exhibited a compensatory increase
of LP IgM+ plasma cell numbers that was further
increased with IEC ER stress (Igha−/−Xbp1DIEC,
Fig. 1L). We thus generated B cell–deficient
Xbp1DIEC mice (mMT Xbp1DIEC), which lack in-
testinal LP plasma cells [IgA immunohisto-
chemistry (IHC) images shown in fig. S6]. These
animals showed no significant worsening of
inflammation in either the jejunum or ileum
compared with Igha−/−Xbp1DIEC controls (Fig. 1K
and fig. S5, histology scores and H&E, respec-
tively), indicating that in mice, compensatory
IgM did not contribute to protection. This was
likely due to its relatively low concentrations
compared with those of IgA (fig. S7), a reduced
ability of IgM to bind several typical IgA targets
(15), and/or differences in secretory IgM (sIgM)
function in mice compared with that in humans
(16). Furthermore, the increased numbers of
IgA+ plasma cells in Xbp1DIEC mice were not due
to increased concentrations of interleukin-10
(IL-10), which can be produced by B cells (17).
SI tissue from mMT Xbp1DIEC and Xbp1DIEC mice
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Fig. 1. Intestinal epithelial ER stress induces a protective IgA
response. (A) Absolute counts of SI LP IgA+ plasma cells in Xbp1DIEC mice
and Xbp1fl/fl controls at 10 weeks of age (n =7 or 8). (B) Ileal tissue
IgA normalized by total soluble tissue protein (n = 8 to 10). (C) IgA
concentration in SI washes (n = 6 to 10). (D) Circulating IgA concentration
(n = 6 to 10 for each age). (E and F) Representative IHC images (E)
and quantification (F) of LP IgA+ cells (brown) along ≥50 ileal crypt-villus
axes (n = 6 or 7). Magnified area in (E) depicts basal plasmacytosis.
(G) Representative IHC images and quantification of SI LP IgA+

cells (red) in Grp78T-DIEC mice and Grp78fl/fl controls after 3 days of
tamoxifen treatment (n = 4). (H and I) Absolute counts of SI LP
IgA+ plasma cells (H) and circulating IgA concentrations (I) of the indicated
genotypes, treated with either TUDCA (2 mg/ml) in the drinking water
or plain water (control) for two weeks (n =7 or 8). (J and K) Enteritis
scores of ileal (J) and jejunal (K) sections of indicated genotypes (n = 4 to
26). (L) Representative plots, frequencies, and absolute counts of SI LP
IgM+ plasma cells (gated on CD45+CD3− lymphocytes) of the indicated
genotypes (n = 3 to 14). (M to O) Absolute flow cytometric counts of SI LP

IgA+ plasma cells (M), representative IHC images and quantification of
IgA+ cells in ileal sections (N), and enteritis scores (O) of Pigr−/−Xbp1DIEC

mice and Pigr−/−Xbp1fl/fl controls (n = 9 to 18). (P) Frequencies of IgA-
coated fecal bacteria from the indicated genotypes, as determined
by flow cytometry (n = 2 to 20). B6 indicates a C57BL/6J background.
Scale bars indicate 100 mm (low magnification) or 20 mm [magnified
view in (E)]. Symbols represent individual animals. Bars represent
arithmetic means [(B), (D), (F), (G), (N), and (P)], medians [(J), (K), and
(O)], or geometric means [(A), (C), (H), (L), and (M)]. Error bars indicate
SEM. Data are representative of three [(A) and (B)] independent
experiments or were compiled from two (M) or three [(L) and (P)]
experiments. P values were calculated by unpaired Student’s t test [(A) to
(D), (F), (G), (L) to (N), and (P)], Kruskal-Wallis test with Dunn’s
post-test [(J) and (K)], Mann-Whitney U rank sum test (O), or two-way
analysis of variance (ANOVA) with Fisher’s least-significant difference
(LSD) method and two-stage step-up method of Benjamini, Krieger,
and Yekutieli to control the false discovery rate [(H) and (I)]. *P < 0.05;
**P < 0.01; ***P < 0.001; ns, not significant.
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or Xbp1DIEC mice crossed with an IL-10–green
fluorescent protein (GFP) reporter line (Vert-X)
exhibited similar concentrations of IL-10 (fig.
S8A) and/or frequencies of reporter+ LP B cells
(fig. S8B) compared with those of their respec-
tive littermate controls.
We examined if luminal IgA secretion was

required for the protective role observed by
generating polymeric immunoglobulin receptor
(Pigr) and Xbp1 double-deficient mice (Pigr−/−

Xbp1DIEC), which are unable to transport IgA
and IgM across the IEC (18). Pigr−/−Xbp1DIEC

mice showed an increase of LP IgA+ plasma cells
similar to Xbp1DIEC animals (Fig. 1, M and N) but

still developed severe inflammation of the prox-
imal SI (Fig. 1O and fig. S5, histology scores and
H&E, respectively). This phenocopied Igha−/−

Xbp1DIEC and mMT Xbp1DIEC animals and indi-
cated a protective role for sIgA in this model. Al-
though Xbp1DIEC animals exhibited increased IgA
coating of fecal bacteria compared with Xbp1fl/fl

controls (Fig. 1P), IgA-SEQ (6) revealed no major
differences between Xbp1DIEC and Xbp1fl/fl mice in
the taxa-specific coating of commensal bacteria
with IgA, suggesting a specific IgA-targeted
microbe was not responsible (fig. S9).
Intestinal IgA+ plasma cells can differentiate

via T cell–dependent (TD) andT cell–independent

(TI) pathways (19, 20). Although we observed a
small increase in germinal center B cells (B220+

CD19+CD95+GL7+) in Peyer’s patches (PP) of
Xbp1DIEC mice compared with that in PP of
Xbp1fl/fl controls (Fig. 2A), TD pathways were
not involved in the IgA induction. First, T fol-
licular helper (TFH) cell percentages (CD3

+CD4+

ICOS+PD-1hiCXCL5hi) (7) in the PP and mesen-
teric lymph nodes (MLN) of Xbp1DIEC mice were
similar to those in Xbp1fl/fl controls (Fig. 2B).
Second, T cell receptor b–deficientTCRb−/−Xbp1DIEC

mice exhibited increased SI LP IgA+ plasma cell
numbers (Fig. 2C) without changes in LP gd
T cells (fig. S10) compared with TCRb−/−Xbp1fl/fl
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Fig. 2. ER stress–induced IgA is PP- and Tcell–independent
and involves recruitment of peritoneal B1b cells by a transmis-
sible factor. (A) Representative plots and percentages of germinal
center (GC) B cells (gated on CD19+ lymphocytes) in MLN and PP of
Xbp1DIEC mice and Xbp1fl/fl controls (n = 4 to 7). (B) Representative
plots and percentages of MLN and PP TFH cells (gated on CD3+CD4+

lymphocytes, n = 4 to 6). (C) Absolute counts of SI LP IgA+ plasma
cells (PCs) in TCRb−/−Xbp1DIEC mice and TCRb−/−Xbp1fl/fl controls
(n = 8 or 9). (D) Absolute counts of SI LP IgA+ plasma cells in
PP-deficient Xbp1DIEC mice and Xbp1fl/fl controls (n = 6 to 8).
(E and F) Representative plots, percentages, and absolute counts of
peritoneal B1a and B1b cells in Xbp1DIEC mice and Xbp1fl/fl controls
(n = 5 to 7). FSC, forward scatter. (G) Schematic representation
of the parabiosis experiment (n =7 or 8 pairs per genotype).
(H) Frequencies of CD45.1+ circulating lymphocytes and CD45.1+

peritoneal B1 cells 3 weeks after parabiotic surgery. The dotted line
indicates 50% chimerism. (I) Absolute numbers of CD45.1+ B1b
cells in peritoneal cavities of CD45.1 animals conjoined with either
Xbp1fl/fl or Xbp1DIEC mice. (J and K) Absolute numbers of SI LP
CD45.1+IgA+ plasma cells in parabiotic Xbp1fl/fl and Xbp1DIEC mice
(J) and in CD45.1 parabionts conjoined with either Xbp1fl/fl or Xbp1DIEC

mice (K). Symbols represent individual animals. Bars represent
arithmetic means [(A), (B), (E), and (H)] or geometric means
[(C), (D), (F), and (I) to (K)]. Data are representative of three
experiments [(E) and (F)] or were pooled from two experiments
[(C), (D), and (G) to (K)]. P values were calculated by unpaired
Student’s t test. *P<0.05; **P<0.01; ***P<0.001; ns, not significant.
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Fig. 3. Epithelial ER stress–derived
IgA is microbiota- and inflammation-
independent and polyreactive in nature.
(A) Absolute counts of SI LP IgA+ plasma
cells in GF Xbp1DIEC mice and Xbp1fl/fl

controls (n =7 or 8). (B) Representative
immunofluorescence images and quantification
of LP IgA+ cells (green) along ≥50 ileal crypt-
villus axes (n=3 to 6). Nuclei are counter-
stained with 4′,6-diamidino-2-phenylindole
(DAPI) (blue). Arrows indicate basal plasmacy-
tosis. Scale bar, 100 mm. (C and D) Frequencies
(percentage of CD19+CD23−CD43+ cells)
(C) and absolute flow cytometric counts of
peritoneal B1a and B1b cells (D) (n=7 or 8).
(E) Representative plots (gated on
CD5−CD19+CD43+ lymphocytes) and frequen-
cies of IgA+ B1b-derived cells in SI LP of GF
Xbp1DIEC mice and GF Xbp1fl/fl controls
(n=7 or 8). (F) t-Distributed stochastic neigh-
bor embedding (t-SNE) plot depicting
unsupervised clustering of single-cell
transcriptomes (n= 11,104 cells) from perito-
neal lavages of Xbp1DIEC mice and Xbp1fl/fl

controls (aligned datasets). Numbers and
colors indicate clusters. (G) Expression levels of
canonical markers for macrophages (Csf1r),
B cells (Cd79a), T cells (Cd3e), and peritoneal
dendritic cells (Cd209a) in t-SNE plot.
(H) t-SNE plot as in (F) with cells colored by
genotype. Bar graph depicts the number of cells within each cluster by
genotype. (I) Volcano plot showing log2-transformed fold-change (log2FC) of
gene expression in B1b cells from GF Xbp1DIEC mice compared with that in B1b
cells from GF Xbp1fl/fl controls (n = 5 to 7). Differentially expressed genes
[log2FC≥ 1 or ≤−1; false discovery rate (FDR) <0.05] are highlighted in blue.
FDR values that are <10−5 are plotted at 10−5 (triangles). (J) GSEA
enrichment plots for selected gene sets. GO, gene ontology gene sets;
HM, hallmark gene sets; OXPHOS, oxidative phosphorylation;
NES, normalized enrichment score. (K) Circulating IgA concentrations
in GF Xbp1DIEC mice and Xbp1fl/fl controls (n= 12 or 13). (L) Representative
plots (gated on SYBRhi events) and frequencies of IgA coating on fecal

bacteria from mMTmice that were incubated with sera from GF Xbp1DIEC mice
or Xbp1fl/fl controls (n=4 or 5). (M) Polyreactivity enzyme-linked immuno-
sorbent assay optical density at 650 nm (OD650) values of serum IgA from
GF Xbp1DIEC mice or Xbp1fl/fl controls (n = 5 or 6) against the indicated
antigens. LPS, lipopolysaccharide; KLH, keyhole limpet hemocyanin; dsDNA,
double-stranded DNA. Symbols or lines represent individual animals. Bars
represent arithmetic means [(B), (C), and (E)] or geometric means [(A), (D),
and (K)]. Data are representative of at least two independent experiments
[(B) to (D), (L), and (M)] or were pooled from two experiments [(A), (E), and
(K)]. P values were calculated by unpaired Student’s t test. *P<0.05; **P<
0.01; ***P<0.001; ns, not significant.
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controls. Finally, PP-deficient (PPdef) Xbp1DIEC

mice (21) continued to exhibit increased SI LP
IgA+ plasma cells (Fig. 2D) without proximal
extension of SI inflammation (fig. S11) compared
with PPdefXbp1fl/fl littermate controls.
By contrast, we observed increased percentages

and numbers of B1b (CD5−CD19+CD23−CD43+),
but not B1a (CD5+CD19+CD23−CD43+), cells in
the peritoneal cavities of Xbp1DIEC mice compared
with those in Xbp1fl/fl littermate controls (Fig. 2, E
and F). B1 cells associated with TI pathways
emerge and migrate from there to the intes-
tine, giving rise to polyreactive IgA-producing
plasma cells in the SI (19, 22, 23). As this sug-
gested a transmissible factor, we conducted
parabiosis experiments in which CD45.1+ wild-
type (WT) mice were joined to CD45.2+ Xbp1DIEC

mice or Xbp1fl/fl controls (Fig. 2G). Three weeks
after parabiosis, we observed ~50% chimerism
of blood T and B cells (Fig. 2H). Consistent
with their tissue-resident phenotype, perito-
neal B1 cells exhibited ~20% chimerism (Fig.
2H). The peritoneal B1 cell compartments of
WT CD45.1 mice showed increased numbers
of CD45.1+ B1b cells in animals joined to CD45.2+

Xbp1DIEC mice compared with those joined to
CD45.2+ Xbp1fl/fl controls (Fig. 2I and gating
strategy in fig. S12). There were also more
CD45.1+IgA+ plasma cells in the SI LP of CD45.2+

Xbp1DIEC mice than in that of CD45.2+ Xbp1fl/fl

controls, which lacked ER stress in their intesti-
nal epithelium (Fig. 2J). By contrast, CD45.1+IgA+

plasma cells in the LP of CD45.1+ animals were
not increased (Fig. 2K). Notably, there were no
significant changes in SI Tnfsf13 (April), Tnfsf13b
(Baff), Ccl25, Ccl28, and Cxcl13 expression (fig.
S13A) or thymic stromal lymphopoietin protein
levels (fig. S13B), which have been implicated in
TI IgA class switching and/or plasma-cell
recruitment (24).
Germ-free (GF) Xbp1DIEC mice, compared with

GF Xbp1fl/fl controls, also exhibited increased
numbers of SI IgA+ plasma cells (Fig. 3, A
and B), basal plasmacytosis (Fig. 3B), higher
frequencies and numbers of peritoneal B1b cells
(Fig. 3, C and D), and an increased proportion
of IgA+ cells within the SI LP B1b-like cell com-
partment (CD5−CD19+CD43+) (Fig. 3E). They also
showed heightened IECER stress (fig. S14, A to C)
without spontaneous enteritis (5) and few SI
epithelial apoptotic events compared with spe-
cific pathogen–free (SPF) Xbp1DIEC mice (fig.
S14D). GF Xbp1DIEC mouse colons also showed
increased numbers of IgA+ plasma cells (fig. S15A)
and higher concentrations of tissue IgA (fig. S15B)
than colons of littermate controls. However, co-
lonic IgA+ plasma cell numbers and IgA tissue
concentrations in SPF Xbp1DIEC and Xbp1fl/fl mice

were similar (fig. S15, A and B), suggesting that
high levels of TD IgA production in the colon
mask the TI ER stress–induced IgA response
under SPF conditions (25).
Thus, the increase in IgA+ plasma cells was

not restricted to the SI nor dependent on ap-
optosis, microbiota, or a proinflammatory milieu
but, rather, was due to IEC ER stress–driven re-
cruitment of TI peritoneal B1b cells. Indeed,
although single-cell RNA sequencing of the
peritoneal lavage of GF Xbp1DIEC mice and
Xbp1fl/fl controls identified heterogeneous popu-
lations of peritoneal myeloid, B cell, and T cell
subsets (Fig. 3, F to H, and fig. S16, A and B),
the only peritoneal cell type demonstrating a
major expansion in the context of IEC ER stress
was a cluster containing a B1b-like transcrip-
tional signature (cluster 2; Fig. 3, F to H, and
fig. S16, A and B). Flow cytometry confirmed the
absence of peritoneal myeloid or T cell alter-
ations (fig. S17) or changes in SI LP myeloid
cell populations (fig. S18). Peritoneal B1b cells
from GF Xbp1DIEC mice were also transcription-
ally distinct. Differential expression (Fig. 3I) and
gene set enrichment analysis (GSEA; Fig. 3J)
of purified B1b cells from GF Xbp1DIEC mice
showed the up-regulation of genes involved
in protein biosynthesis, oxidative phosphoryl-
ation, and Myc signaling—which is critical for
B cell activation (26)—compared with B1b cells
of GF littermate controls. By contrast, cell ad-
hesion gene sets were down-regulated in line
with the increased ability of these B1b cells to
egress from the peritoneal cavity and home to
ER-stressed SI epithelium (Fig. 3J).
Taking advantage of the increased circulat-

ing IgA concentrations present in GF Xbp1DIEC

mice compared with those in GF Xbp1fl/fl mice
(Fig. 3K), we functionally confirmed the B1 ori-
gin of the IgA response by showing that the IgA
derived from these animals efficiently coated fe-
cal microbiota obtained from mMT mice lacking
immunoglobulins (Fig. 3L) and exhibited broad
reactivity to endogenous and exogenous antigens
(Fig. 3M) as expected (23, 25). Furthermore,
analysis of variable-region usage andCDR3 clono-
type sequences from the proximal and distal in-
testinal segments of GF animals demonstrated
the existence of a similar IgA+ cell polyclonal
repertoire (fig. S19, A to C) containing a limited
CDR3 regionmutational load (fig. S19D) regard-
less of genotype.
Lastly, mice with a conditional deletion of

autophagy related 16-like 1 in IECs (Atg16l1DIEC)
exhibit SI IEC ER stress without histopathologic
signs of inflammation (5, 11). These animals
exhibited increased numbers of SI LP IgA+ cells
(Fig. 4A) and a specific increase in peritoneal
B1b cells (Fig. 4B). Similarly, SI biopsies of
healthy human subjects homozygous for the
hypomorphic ATG16L1T300A variant, who are
known to exhibit increased ER stress (27), showed
higher numbers of LP IgA+ cells than both non-
carriers and heterozygous subjects (Fig. 4C).
Thus, the secretion of IgA into the lumen

and resultant innate-like polyreactive responses
protect ER-stressed mucosa in a pathway under
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Fig. 4. Defective ATG16L1-dependent autophagy results in a peritoneal B1b response in mice
and IgA induction in both mice and humans. (A) Representative IHC images and quantification
of LP IgA+ cells (brown) along ≥50 ileal crypt-villus axes of Atg16l1DIEC mice and Atg16l1fl/fl controls
(n = 8). (B) Absolute counts of peritoneal B1a and B1b cells in Atg16l1DIEC mice and Atg16l1fl/fl

controls (n =7 to 12). (C) Representative IHC images and quantification of IgA+ cells (brown) in
ileal biopsies of healthy human subjects, shown by ATG16L1 genotype as indicated by AA, AG, and
GG (n = 8 to 16). Scale bars, 100 mm. HPF, high-power field. Symbols represent individual animals
or human subjects. Bars represent arithmetic means [(A) and (C)] or geometric means (B). Data in
(B) were pooled from two experiments. P values were calculated by unpaired Student’s t test
[(A) and (B)] or one-way ANOVA with Holm-Šídák test (C). *P < 0.05; ns, not significant.
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the control of IEC ER stress. This occurs in-
dependently of either microbes or inflamma-
tion, making it a self-contained, host-derived
response. This response is TI, peritoneal B1b
cell–derived, and under the control of an un-
known transmissible factor that emerges from
ER stress in the IEC and is communicated to
the peritoneal cavity, revealing a tight link be-
tween these two anatomic sites. In the absence
of IgA or its secretion, spontaneous enteritis
emerges. We propose that this homeostatic
function of epithelial ER stress is a beneficial
“eustress” response that is functionally opposed
to its well-described involvement in proinflam-
matory pathways.
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surfaces in the body, including the gastrointestinal (GI) tract. IgA is polyreactive and can coat and restrain both 
Immunoglobulin A (IgA) is the most abundantly expressed antibody isotype and can be found at various mucosal
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