
ARTICLE

Differential contributions of striatal dopamine D1 and D2
receptors to component processes of value-based decision
making
Jeroen P. H. Verharen 1,2, Roger A. H. Adan 1 and Louk J. M. J. Vanderschuren2

Dopamine has been implicated in value-based learning and decision making by signaling reward prediction errors and facilitating
cognitive flexibility, incentive motivation, and voluntary movement. Dopamine receptors can roughly be divided into the D1 and
D2 subtypes, and it has been hypothesized that these two types of receptors have an opposite function in facilitating reward-
related and aversion-related behaviors, respectively. Here, we tested the contribution of striatal dopamine D1 and D2 receptors to
processes underlying value-based learning and decision making in rats, employing a probabilistic reversal learning paradigm. Using
computational trial-by-trial analysis of task behavior after systemic or intracranial treatment with dopamine D1 and D2 receptor
agonists and antagonists, we show that negative feedback learning can be modulated through D2 receptor signaling and positive
feedback learning through D1 receptor signaling in the ventral striatum. Furthermore, stimulation of D2 receptors in the ventral or
dorsolateral (but not dorsomedial) striatum promoted explorative choice behavior, suggesting an additional function of dopamine
in these areas in value-based decision making. Finally, treatment with most dopaminergic drugs affected response latencies and
number of trials completed, which was also seen after infusion of D2, but not D1 receptor-acting drugs into the striatum. Together,
our data support the idea that dopamine D1 and D2 receptors have complementary functions in learning on the basis of
emotionally valenced feedback, and provide evidence that dopamine facilitates value-based and motivated behaviors through
distinct striatal regions.

Neuropsychopharmacology (2019) 44:2195–2204; https://doi.org/10.1038/s41386-019-0454-0

INTRODUCTION
Many decisions we make in everyday life are the result of a
process in which the expected gains and losses associated with
different courses of action are weighed and compared, and these
expectations are often based on the value of the outcomes of
similar actions taken in the past. The process by which these
action-outcome associations are acquired, stored, and updated to
guide behavior, thereby linking positive and negative experiences
to actions, is called reinforcement learning [1–3]. Deficits in this
process have been implicated in a wide variety of mental
disorders, including depression, mania, attention-deficit/hyperac-
tivity disorder, and addiction [4–11].
Dopamine (DA) is an important modulator of value-based

learning and decision making, and it does so by attributing
salience to relevant cues [12], facilitating the allocation of effort
[13, 14], guiding voluntary movement [15], and by signaling
reward prediction errors [16–18]. Especially this latter function of
DA is thought to be fundamental for value-based learning. Reward
prediction error theory posits that midbrain DA neurons signal a
discrepancy between anticipated and received reward or punish-
ment. Downstream dopaminoceptive brain areas can use these
signals to update future expectations of actions, in order to

optimally adapt to environmental changes. As such, DA has also
been implicated in cognitive flexibility, since manipulations of the
DA system disrupt performance in tasks such as reversal learning
and set shifting [19–22].
It has been proposed that the D1 and D2 subclass of DA

receptors mediate behaviors of opposing valence, so that
activation of DA D1 receptors stimulates the expression of
reward-related behaviors, and activation of DA D2 receptors
stimulates the expression of aversion-related behaviors [23–25].
Given that endogenous DA primarily stimulates D1-receptor
expressing neurons and inhibits D2-receptor expressing neurons
[24], it has been proposed that DA facilitates value-based behaviors
through opposing roles of DA D1 and D2-receptor expressing
neurons in adapting to positively and negatively valenced feed-
back [23, 26–29]. However, the striatum is heterogeneous in
function, morphology and connectivity, and distinct subregions of
the striatum and their DAergic innervation have been implicated in
distinct processes [30–33]. Accordingly, striatal subregion-specific
neuronal manipulations have differential effects in behavioral tasks
of value-based decision making, including reversal learning [34].
Importantly, aberrant value-based behavior may arise from

impairments in value-based learning, so that animals fail to flexibly
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adapt to positive or negative outcomes, or by processes directly
related to value-based decision making, such as choice persevera-
tion. However, changes in overt behavior, as apparent from the
analysis of conventional task parameters, do not necessarily
inform about which of these component processes is altered. One
way to address this issue is by assessing trial-by-trial behavior
using computational reinforcement learning models. Here, we
therefore studied the role of DAergic neurotransmission in the
striatum in value-based learning and decision making in rats using
a probabilistic reversal learning paradigm [35–37]. By applying a
Q-learning model [2, 3, 37, 38] to the data, we tried to unravel how
DA D1 and D2 receptors in the ventral striatum (VS), dorsolateral
striatum (DLS), and dorsomedial striatum (DMS) contribute to four
core components of task performance: reward learning (adapting
behavior to reward delivery), punishment learning (adapting
behavior to reward omission), stickiness (a preference for the
previously chosen option, independent of trial outcome), and
choice stochasticity (the balance between exploration versus
exploitation)—alongside conventional task parameters. We pre-
dicted an important role of DA receptors in the VS in reward and
punishment learning, given its function in processing reward
prediction errors and facilitating motivation [14, 21, 30, 39], and of
DA receptors in the dorsal striatum in aspects of value-based
decision making, given its function in perseverative behavior
[40, 41] and balancing goal-directed versus habitual behaviors
[32, 33, 42].

MATERIALS AND METHODS
Animals
A total of 68 adult (>300 g) male Long-Evans rats (Janvier labs,
France) were used for the experiments. Rats were housed in pairs
(for systemic drug treatment) or singly (for intracranial infusions)
in a humidity- and temperature-controlled room and kept on a 12/
12 h reversed day/night cycle (lights off at 8 a.m.). All experiments
took place during the dark phase of the animals’ day/night cycle.
Animals were kept on food restriction (~4.5 g standard lab chow
per 100 g body weight per day) during the experiments. All
experiments were conducted in accordance with European
(Directive 2010/63/EU of the European Parliament and of the
Council of 22 September 2010 on the protection of animals used
for scientific purposes) and Dutch (Animal Testing Act (Act of
26 November 2014 amending the Animal Testing Act (1977) in
connection with implementation of Directive 2010/63 / EU)
legislation, and approved by the Dutch Central Animal Testing
Committee, and the Animal Ethics Committee and Animal Welfare
Body of Utrecht University.

Experimental procedures
Experimental procedures are described in the Supplementary
Materials and Methods.

Behavioral task
We used a probabilistic reversal learning task, previously described
by Verharen et al. [37]. In brief, animals could earn sucrose pellets
by responding on two levers that each differed in the probability
of being reinforced (Fig. 1a). At task initiation, one lever was
randomly assigned as the high-probability lever and pressing this
lever had a 80% chance of being reinforced (delivery of a sucrose
pellet) and 20% chance of not being reinforced (a 10 s time-out).
The other lever was assigned as the low-probability lever, which
gave 20% chance of being reinforced and 80% of not being
reinforced. Initial assignment of the left and right lever as high- or
low-probability was counterbalanced between animals. When the
animal made eight consecutive responses on the high-probability
lever, a reversal in reward contingencies occurred, so that the
previous high-probability lever became the low-probability lever
and vice versa. The task terminated after 90min.

Computational model
We used computational modeling [2, 3, 37, 38] to extract different
subcomponents of reward-based decision-making from the raw
behavioral data. Consistent with our previous findings [37], we
found, using Bayesian model selection [43], that an extension of
the classic Rescorla–Wagner model best described the behavior of
the rats (Supplementary Figure 1). The model assumes that on
every trial, the rat makes a choice based on a representation of the
value of each of these levers. In most cases, the animal chooses the
lever with the highest value Q on each trial t (Supplementary
Figure 2). The relationship between lever values Qleft and Qright, and
the probability that the rat chooses left or right (pleft,t, respectively
pright,t) lever in every trial is described by a softmax function:

pright;t ¼
exp β � Qright;t þ π � ϕright;t

� �

exp β � Qleft;t þ π � ϕleft;t

� �þ exp β � Qright;t þ π � ϕright;t

� �

(1)

and pleft;t ¼ 1� pright;t (2)

In this function, β is the Softmax’ inverse temperature, which
indicates how value-driven the animal’s choices are. If β becomes
very large, then the value function β∙Qs,t of the highest valued side
becomes dominant, and the probability that the rat chooses that
side approaches one. Is β zero, then pleft,t= pright,t= e0/(e0+ e0)=
0.5 (π not taken into account), so that choice behavior becomes
random. β is sometimes referred to as the explore/exploit parameter,
where a low β favors exploration (i.e., sampling of all options) and a
high β favors exploitation (i.e., choosing the option which has
proven to be beneficial). Therefore, a decrease in βmay reflect more
explorative choice behavior, although a large decrease in β could
also indicate a general disruption of behavior, i.e., that the animal
chooses more randomly.
Factor π is a stickiness parameter that indicates a preference for

the previously chosen (π > 0; perseveration) or previously uncho-
sen (π < 0; alternation) option. Here, ɸ is a boolean with ɸ= 1 if
that lever was chosen in the previous trial, and ɸ= 0 if not. This
adds a certain amount of the value of π to the value function of
the lever in trial t, in addition to the lever’s expected value Qs,t.
For the first trial, both lever values were initiated at 0.5. After

each trial, the value of the chosen lever was updated based on the
trial’s outcome according to a Q-learning rule:

Qs;t ¼
Qs;t�1 þ αþ � RPEt�1 for win trials

Qs;t�1 þ α� � RPEt�1 for lose trials

�
(3)

with RPEt�1 ¼ outcomet � Qs;t�1 (4)

so that RPEt�1 ¼
1� Qs;t�1 for win trials

0� Qs;t�1 for lose trials

�
(5)

in which Qs,t−1 is the value of the chosen lever. Here, α+ and α−

indicate the animal’s ability to learn from positive (reinforcement;
reward delivery), respectively negative (reward omission) feed-
back. The value of the unchosen side was not updated and thus
retained its previous value.

For each individual session, we used maximum a posteriori
estimation to determine the best-fit model parameters; fitting
procedures are described in the Supplementary Materials and
Methods. Supplementary Figure 3 shows the relationship between
different variables of the computational model and conventional
measures of task performance.

Code accessibility
MedPC script of the probabilistic reversal learning task is available
at https://github.com/jeroenphv/ReversalLearning.
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Fig. 1 Task setup and systemic treatment with DA receptor (ant)agonists). a Behavioral task. b Infusion sites included in the analysis. c Effects
of systemic treatment with the DA D1 receptor antagonist SCH23390 (0, 0.02 or 0.04 mg/kg) and agonist SKF82958 (0, 0.2 or 0.4 mg/kg) on
the behavioral measures of task performance. d Effects of systemic treatment with the DA D1 receptor antagonist SCH23390 (0, 0.02 or
0.04 mg/kg) and agonist SKF82958 (0, 0.2 or 0.4 mg/kg) on the computational modeling parameters. e Effects of systemic treatment with the
DA D2 receptor antagonist raclopride (0, 0.1 or 0.2 mg/kg) and agonist quinpirole (0, 0.02 or 0.08 mg/kg) on the behavioral measures of
task performance. f Effects of systemic treatment with the DA D2 receptor antagonist raclopride (0, 0.1 or 0.2 mg/kg) and agonist quinpirole
(0, 0.02 or 0.08 mg/kg) on the computational modeling parameters. The statistical range is denoted as: *P < 0.05, **P < 0.01, ***P < 0.001, and
****P < 0.0001. n = 24 rats for SCH23390, SKF82958, and quinpirole, and n = 18 rats for raclopride
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Statistics
Statistical tests were performed with Prism 6 (GraphPad Software
Inc.). For each systemically tested drug, a one-way repeated
measures analysis of variance (ANOVA) with Greenhouse-Geisser
correction was used to calculate significance. When the ANOVA
yielded significant results (P < 0.05), a post-hoc Bonferroni test was
used to compare the drug doses with vehicle. For the intracranial
infusion data, paired, two-tailed t-tests were performed in which
the tested drugs were compared against vehicle (saline). All
statistics are presented in Supplementary Table 1. In all figures, the
statistical significance was denoted as follows: *P < 0.05, **P < 0.01,
***P < 0.001, and ****P < 0.0001.

RESULTS
Systemic administration
Treatment with the DA D1 receptor antagonist
SCH23390 significantly decreased the number of trials completed
(Fig. 1c) and increased the response latency. However, none of the
parameters of the reinforcement learning model were significantly
affected (Fig. 1d), which was reflected by the lack of effect on the
two general performance measures; number of reversals and
fraction of rewarded trials (Fig. 1c). Administration of the DA D1
receptor agonist SKF82958 reduced the number of completed
trials and increased the response latency (Fig. 1c). In addition, it
led to a numerically modest but significant decrease in reward
learning rate α+ (Fig. 1d), but this had no consequences for the
number of reversals made or the fraction of rewarded trials
(Fig. 1c). However, win–stay and lose–stay behavior at the high-
probability lever were significantly increased by SKF82958
(Supplementary Figure 4). No effects were observed on the value
estimates of punishment learning parameter α−, perseveration
parameter π, or explore/exploit parameter β (Fig. 1d).
Treatment with the DA D2 receptor antagonist raclopride

increased the response latency, without a significant effect on the
number of completed trials (Fig. 1e). Furthermore, neither of the
measures of task performance were affected (Fig. 1e), which was
reflected by the absence of effects on the computational model
parameters (Fig. 1f). Injection of the DA D2 receptor agonist
quinpirole decreased the number of completed trials and
increased response latencies (Fig. 1e). It also impaired task
performance, both in terms of the number of reversals and the
fraction of rewarded trials (Fig. 1e). Computational analysis
revealed that this was associated with a decrease in α+, which
was numerically modest, and a profound decrease in α− (Fig. 1f).
Moreover, β was significantly decreased, but π was not (Fig. 1f).

Ventral striatum drug administration
Infusion of SCH23390 into the VS did not affect the number of
trials completed or the response latencies (Fig. 2a). A significant
increase in the number of reversals was observed, but not in the
fraction of rewarded trials (Fig. 2a). This increase in the number of
reversals was associated by an increase in lose–stay behavior at
the high-probability lever (Supplementary Figure 5). However,
none of the computational modeling parameters were signifi-
cantly altered (Fig. 2b), although a trend towards an increase in
explore/exploit parameter β was observed (p= 0.07; see also
Supplementary Table 1). Intra-VS treatment with SKF82958 did not
significantly change the number of trials completed, the response
latency or the two measures of task performance (Fig. 2a).
However, a significant decrease was observed in the value
estimate of reward learning parameter α+, without effects on
punishment learning rate α−, stickiness parameter π or explore/
exploit parameter β.
Infusion of raclopride into the VS significantly increased the

animals’ response latency, but did not change the number of trials
completed (Fig. 2c), the two measures of task performance
(Fig. 2c) or any of the computational model parameters (Fig. 2d). In

contrast, intra-VS infusion of quinpirole affected different
measures of task behavior. First, it strongly decreased the number
of trials completed in the task and it increased the response
latency of the animals (Fig. 2c). It also reduced the number of
reversals achieved, but not the fraction of rewarded trials.
Furthermore, win–stay behavior was decreased at both the high-
probability and low-probability lever (Supplementary Figure 5).
This change in performance was associated with decreases in the
value estimates of α− and β, but not by changes in α+ or π
(Fig. 2d).

Dorsolateral striatum drug administration
Infusion of the SCH23390 or SKF82958 into the DLS had no effect
on any of the task measures (Fig. 3a, b). In contrast, infusion of the
DA D2 receptor antagonist raclopride significantly reduced the
number of completed trials and increased response latencies, but
did not affect the two measures of task performance (Fig. 3c).
Moreover, none of the computational modeling parameters were
significantly changed (Fig. 3d). Intra-DLS infusion of quinpirole
increased the animals’ response latency, but did not affect the
number of trials completed or the conventional performance
measures (Fig. 3c and Supplementary Figure 5). It did, however,
lead to a significant decrease in the value estimate of explore/
exploit parameter β, without any effects on the other computa-
tional model parameters (Fig. 3d).

Dorsomedial striatum drug administration
After infusion into the DMS, none of the drugs affected
performance in the task or changed the value estimates of the
computational model parameters (Fig. 4a-d). Moreover, intra-DMS
treatment with SCH23390 or SKF82958 did not affect the trials
completed in the task or response latencies (Fig. 4a). Infusion of
raclopride increased the response latency of the animals, but did
not change the number of trials completed (Fig. 4c). Conversely,
infusion of quinpirole decreased the number of trials completed in
the task without a significant effect on the animals’ response
latency (Fig. 4c).

DISCUSSION
In this study, we have used a computational reinforcement
learning model to assess how signaling through striatal DA D1 and
D2 receptors contributes to subcomponents of value-based
learning and decision making, using a probabilistic reversal
learning task in rats. This computational modeling approach
provides in-depth insights into the behavior of the animals
besides the conventional measures of task performance, and can
reveal changes in behavioral strategy that do not always become
apparent as overt alterations in behavior (e.g., the change in
explore/exploit balance after intra-DLS treatment with quinpirole).
Interestingly, conventional measures of task performance showed
modest, if any, direct correlations with the computational model
parameters (Supplementary Figure 3a). Rather, these parameters
seemed to interact in quite complicated ways. For example,
reward learning rate α+ correlated with the fraction of rewarded
trials, but only when explore/exploit parameter β was high (i.e., if
the animals showed exploitative choice behavior; Supplementary
Figure 3b). However, the number of reversals did directly correlate
to the value of the stickiness parameter π. This may not be
surprising given that the number of reversals depended on
perseverative responses (eight in a row) in the high-probability
nosepoke hole.
The most important findings of the present study were that

negative feedback learning depends on DA D2 receptor signaling,
whereas learning from positive feedback depends on DA D1
receptor signaling in the VS. Furthermore, DA D2 receptor function
in the VS and DLS is important for the balance between
exploitative and explorative choice behavior.
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Fig. 2 Ventral striatum infusions. a Effects of intra-VS infusion of the DA D1 receptor antagonist SCH23390 (1 µg/side) and agonist SKF82958
(5 µg/side) on the behavioral measures of task performance. b Effects of intra-VS infusion of the DA D1 receptor antagonist SCH23390 (1 µg/
side) and agonist SKF82958 (5 µg/side) on the computational modeling parameters. c Effects of intra-VS infusion of the DA D2 receptor
antagonist raclopride (7.5 µg/side) and agonist quinpirole (5 µg/side) on the behavioral measures of task performance. d Effects of intra-VS
infusion of the DA D2 receptor antagonist raclopride (7.5 µg/side) and agonist quinpirole (5 µg/side) on the computational modeling
parameters. The statistical range is denoted as: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. n = 11 rats for D1 receptor experiments,
n = 16 rats for D2 receptor experiments
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Fig. 3 Dorsolateral striatum infusions. a Effects of intra-DLS infusion of the DA D1 receptor antagonist SCH23390 (1 µg/side) and agonist
SKF82958 (5 µg/side) on the behavioral measures of task performance. b Effects of intra-DLS infusion of the DA D1 receptor antagonist
SCH23390 (1 µg/side) and agonist SKF82958 (5 µg/side) on the computational modeling parameters. c Effects of intra-DLS infusion of the DA
D2 receptor antagonist raclopride (7.5 µg/side) and agonist quinpirole (5 µg/side) on the behavioral measures of task performance. d Effects of
intra-DLS infusion of the DA D2 receptor antagonist raclopride (7.5 µg/side) and agonist quinpirole (5 µg/side) on the computational modeling
parameters. The statistical range is denoted as: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. n = 11 rats
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Fig. 4 Dorsomedial striatum infusions. a Effects of intra-DMS infusion of the DA D1 receptor antagonist SCH23390 (1 µg/side) and agonist
SKF82958 (5 µg/side) on the behavioral measures of task performance. b Effects of intra-DMS infusion of the DA D1 receptor antagonist
SCH23390 (1 µg/side) and agonist SKF82958 (5 µg/side) on the computational modeling parameters. c Effects of intra-DMS infusion of the DA
D2 receptor antagonist raclopride (7.5 µg/side) and agonist quinpirole (5 µg/side) on the behavioral measures of task performance. d Effects of
intra-DMS infusion of the DA D2 receptor antagonist raclopride (7.5 µg/side) and agonist quinpirole (5 µg/side) on the computational
modeling parameters. The statistical range is denoted as: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. n = 8 rats
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Effects of systemic treatment with DA drugs
After systemic drug treatment (see Table 1), we found a reduction
in reward learning after systemic activation of DA D1 and D2
receptors, but not after treatment with their respective antago-
nists. Punishment learning was solely dependent on the DA D2
receptor, as treatment with the agonist quinpirole decreased this
parameter. Furthermore, treatment with quinpirole decreased
explore/exploit parameter β, indicating that animals shifted
towards a decision-making strategy of exploration, rather than
exploitation. No effects were observed on the value estimate of
stickiness parameter π, suggesting that choice perseveration is not
dependent on DA neurotransmission.
With the exception of quinpirole, which reduced both general

performance parameters, treatment with none of the drugs
affected the number of reversals or the fraction of rewarded
trials. In line with these findings is the notion that the DA D2
receptor has been most strongly implicated in reversal learning,
although some studies have also observed reversal deficits
following treatment with a D1 receptor agonist [34]. Indeed, the
effect of systemic treatment with the DA D1 receptor agonist
SKF82958 on reward learning was numerically modest, and did
not lead to significant changes in conventional performance
measures.
Considering the effects observed after treatment with DA D1

and D2 receptor agonists, it is surprising that no changes in
performance or learning rates were observed after treatment with
the DA D1 receptor antagonist SCH23390 or the D2 receptor
antagonist raclopride, even though we used doses with which
effects on cognition have been observed in the past [44, 45]. In
fact, the animals became disengaged from the task after systemic
treatment with doses higher than 0.04 mg/kg SCH23390 or
0.2 mg/kg raclopride, thereby not completing enough trials to
draw reliable conclusions about task performance (data not
shown). Importantly, the fact that infusion of these antagonists
into the striatum did also not affect reversal learning performance,
indicates that baseline DAergic signaling through a single class of
DA receptors can support the value-based decision making
processes underlying probabilistic reversal learning. In other
words, the effects of blockade of one subclass of receptors can
be compensated for by functional activity in the other class of
receptors. Agonist treatment may, we speculate, more profoundly

disrupt signaling in the neural circuit, leading to more obvious
changes in behavior.
In addition to the effects on the conventional performance

measures and the reinforcement learning parameters, all drugs
made the animals’ responses significantly slower (i.e., increased
response latency). Furthermore, all drugs, except for raclopride,
decreased the number of trials completed in the task, indicative of
psychomotor slowing or reduced attention [44, 46]. The finding
that the pattern of effects on response latency and trials
completed was symmetrical for the antagonists and agonists
(Fig. 1c, e), suggests that DA signaling normally acts at an optimal
level, and that deviations from that optimum impair behavior.

Striatal subregion-specific effects
The striatal infusion experiments suggested that the effect of the
DA D1 receptor agonist SKF82958 on reward learning was exerted
in the VS (Table 1), and the effects of systemic quinpirole on the
computational model parameters were mostly reproduced in the
intra-striatal infusion experiments. First, the decrease in punish-
ment learning was also observed after infusion of quinpirole into
the VS. Second, the decreased value estimate of explore/exploit
parameter β was seen after infusion of quinpirole into the VS and
DLS. However, the effect of systemic quinpirole treatment on
reward learning was not observed after intra-striatal infusion of
this agonist, suggesting that this effect required simultaneous
stimulation of DA D2 receptors in multiple (striatal) regions, or that
it was driven by DA D2 receptor stimulation elsewhere in the
brain, for example through D2 autoreceptors on midbrain DA
neurons. Stimulation of these latter receptors inhibits the activity
of DA neurons [47, 48], thus preventing a peak in DA release
during positive reward prediction errors, which may explain the
decrease in reward learning after systemic quinpirole treatment.
Furthermore, the effects of systemic treatment with DA D2
receptor-acting drugs on the response latency and trials
completed were also seen after infusion of these drugs into the
different parts of the striatum. This is consistent with previously
reported effects of intra-VS infusion of DA D2 receptor (ant)
agonists on attention and task engagement [49, 50], although the
involvement of dorsal striatal D2 receptors in these processes is
less clear [51]. However, effects on trials completed and response
latency were not seen after intra-striatal treatment with DA D1

Table 1. Effects of DA receptor (ant)agonists on the computational model (black) and motivational and motoric task parameters (gray)

Systemic VS DLS DMS

DA D1 
antagonist

SCH23390  Trials completed
   Response latency

DA D1 agonist SKF82958    Reward learning 

 Trials completed 
 Response latency

   Reward learning

DA D2 
antagonist

Raclopride
 Response latency  Response latency

 Trials completed
 Response latency    Response latency

DA D2 agonist Quinpirole    Reward learning 
 Punishment learning 

   Exploration 

 Trials completed 
 Response latency

 Punishment learning 
 Exploration 

 Trials completed 
 Response latency

   Exploration 

 Response latency
   Trials completed

One arrow denotes significance at a P < 0.05 level, two arrows denote significance at a P < 0.01 level.
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receptor-acting drugs, suggesting that the effects of these drugs
on these parameters were the result of the combined effects of
these drugs in the striatal subregions [49, 50], or that the effects
arose from other dopaminoceptive brain areas. Finally, the effects
of systemic treatment with the D2 agonist quinpirole on the
number of reversals was seen after infusion of this drug into the
VS, but the effect on the fraction of rewarded trials was not
replicated in the local infusion experiments. Interestingly, an
apparent increase was observed in the number of reversals
obtained after infusion of D1 antagonist SCH23390 into the VS,
which needs to be interpreted with caution given that no effects
were observed on the computational model parameters, and that
this effect was not seen after systemic treatment with SCH23390.
The effects of DA D2 receptor stimulation with quinpirole on

explore/exploit parameter β were driven by action of this drug in
the VS and DLS. A decrease in the value of β indicates that the
choices of the animals were more explorative by nature, thus
being less driven by the value of the two levers. As such, the
amount of exploration versus exploitation is a descriptor of
behavior that is related to value-based decision making, rather
than value-based learning. Although relatively little is known
about the neural basis of this aspect of decision making [52], it has
been shown that in humans, fMRI bold responses in the striatum
(as well as in the ventromedial prefrontal cortex) are related to
exploitative decisions (i.e., choosing the highest valued option)
[53]. Furthermore, it has recently been shown that the balance
between exploration and exploitation in human subjects is related
to two genes linked to DAergic function [54].
Our study supports previous notions that DA facilitates reward-

related and aversion-related behaviors through action of the D1-
versus D2-receptors, respectively. One earlier study that delivered
evidence for this notion used real-time place preference and
intracranial self-stimulation paradigms to show that optogenetic
activation of D1- versus D2-receptor expressing medium spiny
neurons in the striatum is experienced as rewarding and aversive
by mice, respectively [23]. In line with these findings, it had been
shown that intrastriatal infusion of DA D1 and D2 receptor (ant)
agonists has dissociable effects on tasks that study cognitive
flexibility. For example, intra-VS blockade of D1 or activation of D2
receptors evokes perseverative behavior in a set shifting task, and
treatment with a D2, but not a D1 receptor agonist impairs
deterministic reversal learning [27]. Furthermore, it has been
suggested that VS D1 receptors guide initial acquisition of a visual
cue-guided reward-learning task, while D2 receptors mediate
flexible switching to a new strategy in this same task [28]. Indeed,
endogenous DA primarily stimulates D1- and inhibits D2-receptor
expressing neurons [24], and one of the most influential theories
about the role of DA in cognition is that it facilitates learning
through increases and decreases in release from the midbrain in
response to unexpected reward and punishment, respectively
[16, 18]. These findings were the basis for neurocomputational
models of the basal ganglia that implicate striatal D1 receptor-
expressing neurons (through the “direct Go-pathway”) in learning
from reward, and striatal D2 receptor-expressing neurons (through
the “indirect NoGo-pathway”) in learning from punishment
[24, 25, 55, 56], and thus made a specific prediction of the
mechanism through which DA D1 and D2 receptors guide reward
versus aversion-related behaviors. Here, we provide further
evidence to support the notion that the DA D1 and D2 receptors
may serve functions of opposing emotional valence, and that, in
accordance with these neurocomputational models, this happens
by mediating learning on the basis of positive versus negative
feedback, rather than value-based decision making. That said, the
fact that effects were only seen after treatment with DA receptor
agonists, but not with antagonists, indicates that such claims
should be interpreted with caution.
The observed effects of DA D1 and D2 receptors on learning on

the basis of positively and negatively valenced feedback support

several other observations that have recently been made. For
example, our lab has recently shown that an abundance of DA in
the VS evokes behavioral changes characterized by insensitivity to
loss and punishment, leading to increased risk taking [21]. Here,
we provide evidence that this phenomenon is driven by
overstimulation of VS DA D2 receptors. In line with this, it has
been shown that treatment with a DA D2, but not D1 receptor
agonist attenuates risk-taking behavior in rats [57]. Moreover, risky
choice behavior has been shown to be mediated by striatal D2
receptor-expressing neurons, likely due to the function of these
cells signaling “prior unfavorable outcomes” (i.e., negative feed-
back) [29].
Finally, although our work provides some important insights

into the behavioral topography of the striatum, it is important to
note that this structure is highly heterogeneous, with a functional
and anatomical gradient along all of its axes [31–33]. One
limitation of our study is that our infusions were targeted at the
anterior parts of the striatum, and did not distinguish between
subregions of the VS. Follow-up studies using contemporary viral
vector-based techniques are necessary to further anatomically
specify our findings. Another limitation of our work is that we only
tested a single dose of the drugs in the intracranial infusion
experiments, so that the possibility that a lower or higher dose
would have differential effects on behavior cannot fully be
excluded.

CONCLUDING REMARKS
Learning and decision making on the basis of emotionally
valenced information are fundamental abilities for an organism
to thrive and survive in a changeable environment, and DA has
been widely implicated in these processes. Here, we used a
pharmacological and computational approach to investigate how
DA D1 and D2 receptors contribute to four important building
blocks of value-based learning and decision making: reward
learning, punishment learning, choice perseveration, and explora-
tion versus exploitation. Our research confirms previous notions of
a role for the DA D2 receptor in aversion-related behavior and
the D1 receptor in reward-related behavior, and show that this
may be driven by mediating fundamental value-based learning
processes.
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