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ABSTRACT

One of the major phosphoproteins in synaptic plasma membranes
(SPM) is the neuron-specific protein B-50 (M, 48 kDa, IEP 4.5).
Addition of purified protein kinase C (PKC) to native SPM increa-
ses B-50 phosphorylation. Exogenous PKC also phosphorylates B-50
in heat—~inactivated SPM. Endogenous phosphorylation of B-50 in SPM
is enhanced in a concentration-dependent manner by the tumor-
promoting phorbol diesters 4B-phorbol 12-myristate,13-acetate, 4B~
phorbol 12,13-dibutyrate (PDB) and 4B—phorbq}6 12,13-d1ac§tate,
with an ECgp of 7 x 1078 M, 3 x 10-7 M and 1079 M, {esgeqt1ve1y.
This increase in the B-50 phosphorylation can be 1nh1b1?ed by
ACTHi_p4. PDB (1078 M) also stimulates B-50 phosphorylation by
exogenous PKC in native and heat—-inactivated SPM (204 and 712%,

respectively). .
’ The znilease in B-50 phosphorylation {nduced %% the addition
of PKC to SPM is accompanied by a decrease in the [°<P]-incorpora-
tion into phosphatidylinositol 4,5-bisphosphate (PIP2). t?ese dat?
support the hypothesis that in neurongl membranes the egrei $_
B-50 phosphorylation exerts a negative control on re:es oto
mediated hydrolysis of PIP2 in receptor systems couple

phospholipase C.
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INTRODUCTION

Protein kinase C (PKC) is a multi-functional regulatory
enzyme phosphorylating multiple substrates (for reviews see 1-3).
In neuronal systems the functional role of PKC and its substrate
proteins is poorly understood. Recent studies by several laborato-
ries indicate a role of PKC in neurotransmission (4-8), in
feedback systems in transmembrane signal transduction (2,9) and in
the regulation of ion ~channels (4,10-12). One of the major
substrates of PKC in neuronal membranes is the nervous tissue-
specific protein B-50 (M, 48 kDa, IEP 4.5; 13). The endogenous
kinase phosphorylating B-50 in synaptic plasma membranes (SPM) is
indistinguishable from PKC (14,15) and can be stimulated by tumor-
promoting phorbol diesters (16,17). Protein B-50 is a member of a
family of proteins which are rapidly expressed during neurite
outgrowth, i.e., the growth-associated proteins (GAPs; 18). The
B-50 protein appears to be identical to GAP43 (19,20), GAP48
(21,22), pp46 (23,24) and F1 (25).

Endogenous activation of PKC is thought to be elicited by

diacylglycerol formed upon receptor-activated hydrolysis of

phosphatidylinositol 4,5-bisphosphate (PIP2). Detailed phosphory-
lation studies have revealed that in SPM a reciprocal relationship
exists between the extent of B-50 phosphorylation and the degree

of PIPp labelling (for a recent review see 17). For instance,

specific reduction of the degree of B-50 phosphorylation by

treatment of SPM with affinity-purified anti-B-50 IgGs (26) or
ACTH (17,27) resulted in a concomitant

. increase in the [32P]-
incorporation into PIP,.

These findings have led us to propose
that the degree of B-50 phosphorylation exerts a regulatory effect
on the enzyme phosphatidylinositol

' 4-phosphate kinase (PIP-
kinase), the rate-

limiting enzyme in PIP3 synthesis (see 17).
; In this study we further characterize the phosphorylation of
=50 in SPM by PKC using phorbol diesters and ACTH. Furthermore,

W i i
de Provide new evidence for a reciprocal relationship between the
egree of B-50 phosphorylation and PIPp labelling in SPM.
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MATERIALS AND METHODS
Chemicals

4B-phorbol 12,13-dibutyrate (PDB), 4p-phorbol 12-myristate,
13~acetate (PMA), 4B-phorbol 12,13-diacetate (PDA), 4a-phorbol and
4a~phorbol 12,13-didecanocate (4a-PDD) were purchased from Sigma
(USA). ACTHy—p4 was a gift from Organon International BV (Oss,
NL). [ -32p]-ATP (spec.act. 3000 Ci/mmol) was obtained from
Amersham (UK).

Phosphorylation Assay

SPM were prepared from male rats (140-150 g) of an inbred
Wistar strain (TNO, Zeist, NL) and assayed for endogenous phospho-
rylating activity as described earlier (29). The phosphorylation
reaction mixture contains 10 pg protein, 7.5 uM/2 uCi [ —32P]-ATP
in buffer A (20 mwM HEPES, pH 7.4, 10 mM Na*t-acetate, 10 mM
M92+-acetate, 80 mM KCl, 1 mM EGTA, 0.9 mM Ca2t-acetate). When
other buffer systems were used, their composition is given in the
appropriate figure legends. After a 5§ min preincubation at 30°c,
the phosphorylation reaction was started by addition of ATP.
ACTH{-p4 was added 15 s and phorbol diesters 75 s prior to the
ATP. In some experiments 0.24 pg (2 ul) purified PKC (30) was
added at the start of the preincubation. The final incubation
volume was 25 pl. Inactivation of endogenous enzymes was performed
by heating SPM proteins for 5 min at 100°C. The protein phospho-
rylation reaction was stopped after 15 s by addition of a $DS—de—
naturing solution (31) and lipid phosphorylation by addition of 2
ml ice-cold chloroform/methanol/12 N HCl (200:100:0.75; v/v; 27).

Quantitative and Qualitative Analysis of Phosphorylation

Proteins: denatured broteins were separated on SDS-polyacryl-
amide slab gels (acrylamide 11%, bisacrylamide 0.2%) as described
earlier (13). After protein staining with Fast Green, gels were
dried and subjected to autoradiography. [32p]-incorporation into
protein bands was determined by densitometric scanning of the

autoradiograms and by liquid scintillation counting after excision
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from the gel. Protein was determined as described by Lowry et al.
(31) using bovine serum albumin as standard.

Lipids: lipids were extracted from the reaction mixture and
quantitatively separated by TLC (27). Lipid spots on TLC plates
were visualized with iodine vapor and by autoradiography. The
[32p]-labelled spots were scraped from the plates and radioacti-
vity was measured by liquid scintillation counting.

RESULTS

After endogenous phosphorylation of SPM with [y-32P]—ATP under
our assay conditions, B-50 is one of the major phosphoproteins
(Fig. 1, lanes A). Addition of purified PKC to the SPM prior to
the endogenous phosphorylation results in a large increase in the

[32P]-incorporation into B-50 (Fig. 1, lanes B). Not only B-50

phosphorylation, but also that of other PKC substrates with

apparent molecular weights of 87, 20 and 18 kDa is increased.
Phosphorylation of heat-inactivated SPM proteins with purified PKC
results in the [32P]-labelling of B-50 and those same 3 major PKC
substrates (Fig. 1, lanes C). [32P]~incorporation into B-50 and

the other PKC substrates is highest after PKC-mediated phosphory=
lation of heat-inactivated SPM.

The degree of B-50 phosphorylation in SPM can also be
enhanced by addition of PDB (Fig. 2). In the presence of 1076 M

:DB endogenous B-50 phosphorylation increases by about 80%.
owever, this increase can only be found in phosphorylation buffer

A (Fig. 2), containing 80 mM K* and about 0.3 uM Ca2t, concentra-
t ) . . . ’
lons which approximate intracellular conditions. Thus, the

ot
potency of 4 phorbol esters to enhance endogenous B~50 phosphory=

lati i ; :
atlon in SPM is tested in buffer A (Fig. 3). The most potent
compound is PMA

» inducing 50% stimulation at about 7 x 10~8 M. PDB

ind ; .
(:.uces 50% stimulation. at about 3 x 1077 M and PDA at 1076 M
ig. 3).

PMA s ao.
2t oone . and PDB significantly enhance B-50 phosphorylation
entrations as low as 10~8 M. A phorbol derivative known to

be inactive wi
with respect to PKC activation, 4a-phorbol, does not

affect B- : .
50 phosphorylation in concentrations up to 107° M (Fig.
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Fig. 1. Autoradiogram showing phosphorylated SPM proteins after
separation on 11% SDS gels. SPM proteins (10 ug) were phosphoryla-
ted with [Y-32P]-ATP in acetate buffer (pH 6.5, 10 mM Nat-acetate,
10 mM M92+;acetate and 0.1 mM Ca2t-acetate) in the absence (lanes
A) or presence of 2 ul purified PKC (lanes B) or with purified PKC
after heat inactivation (lanes C). The position of the molecular
weight markers is indicated on the left.

3). Similar results are obtained with the inactive phorbol diester

4a-PDD (results not shown). The increase in B-50 phosphorylation
by PDB is inhibited by ACTHi-24 (Fig. 4). ACTHi.24 (3 X 1075 M)
inhibits endogenous B-50 phosphorylation by 46% and PDB-stimulated
phosphorylation by 48%.
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Fig. 2. Effect -6
SPM. SPM protei?\fs 1(010 M PDB on endogenous B-50 phosphorylation in
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32P J-incorporatigh. pors o7 the 11% SDS gel and analyzed
Protein t SEM, * &4 ﬁ‘f'..‘.,,..‘ata are expressed as fmol P/ug SPM
gnificdntly different from control (p < 0.001)
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Fig. 3. Dose-response curves of the effect of PMA (m ), PDB'(o?,
PDA (@) and 4a-phorbol ([0 ) on endogenous B-50 phosphgry}a'gmn in
SPM. Data are expressed as ¥ of control + SEM. * Significantly
different from control (p < 0.001, n = 9).

Phorbol diesters not only stimulate endogenous B-50 phospho-
rylation in SPM (Figs. 3 and 5A), but also when purified PKC is
added to native SPM (Fig. 5B) or when heat-inactivated SPM is
phosphorylated by purified PKC (Fig. 5C). The addition of 1077 M
PDB to these 3 systems (A, B and C) results in an increase in
B-50 phosphorylation of 37, 57 and 72%, respectively (Fig. 5). At
10-6 M PDB the increase in B-50 phosphorylation is 71, 204 and
712%, respectively.

The addition of PKC (without PDB) to native SPM in buffer A
(HEPES, pH 7.4, 0.3 uM ca2t, 80 mM K*) results in an increase in

[32p]-incorporation into B-50 of 48% (Fig. 5). Phosphorylation of
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Fig. 4. ACTHj-p4~induced inhibition of endogenous and PDB-stimula-

ted B-50 phosphorylation in SPM. SPM proteins were phosphorylated
with and without 3 x 10~5

M ACTH{_24 in the presence or absence of
1076 M pDB (for details see Materials and Methods). Data are
expressed as ¥ of control * SEM (n =6), * Significantly different
from control A (p < 0.001), ** significantly different from A and
B (p < 0.001), **=* significantly different from C (p < 0.001) and
from A (p < 0.05).

B-50 by PKC in heat-inactivated SPM is 183% higher than in native

SPM (Fig. 5). In acetate buffer (pH 6.5, 0.1 mM Ca2*) the addition
of PKC to native SPM induces a 173% increase in B-50 phosphoryla~
tion (Table 1),

This acetate buffer is not suitable for the
stimulation of endogenous B-50

Phosphorylation by phorbol diesters
(Fig. 2, Table 1), but has bee

n used in studies on [32P]-incorpo-
ration into PIPg,

because in buffer A PIP, labelling is virtually
absent (P.N.E. pe Graan, unpublished).
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Fig. 5. Effect of PDB on B-50 phosphorylation in §PM i'n the
absence (A) or presence of purified PKC (B) or in heat-inactivated
SPM phosphorylated with purified PKC (C). (for details see
Materials and Methods). Data are expressed as fmol P/pg protein I
SEM (n = 12). * significantly different from control (p < 0.001).

In a number of paradigms we have shown that there is an
inverse relationship between the degree of B-50 phosphorylation
and the labelling of PIP, in SPM (reviewed in 17). For instance
ACTH{_o4 inhibits endogenous B-50 phosphorylation by 62.5% and
concomitantly induces a 69% increase in PIPz labelling (Table 1).
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Table 1. Effects of purified PKC (2 ul), PDB (10'6 M) anq ACTH1-24
(3 x 1075 M) on B-50 phosphorylation and PPI metabolism in SPM.

[32P]-incorporation (fmol P/ug SPM protein)

Addition

PIP2 PIP PA B-50
None 4.2 £ 0.4 8.9 £ 0.9 1.8 £ 0.2 5.6 * 0.1
PKC 2.0 £ 0.3* 12.4 £ 1.2 0.5 £ 0.1% 15.3 t 0.2*
PKC + PDB 1.8 * 0.2* 11.9 ¢ 1.4 0.6 * 0.1* 22,7 ¢ 0.3*
PDB 3.9 £ 0.2 8.0 £ 1.4 1.9 £ 0.3 6.1 0.1
ACTHi-24 7.1 % 0.6* 8.4 £ 0.7 2.2 0.3 2.1 ¢ 0.1*

Data are expressed as fmol P/ug SPM protein
different from control (p £ 0.001, n = 6).

(5.3

SEM. * Significantly

Therefore, we investigated whether such an inverse relationship
exists in SPM between the PKC-induced increase in B-50 phosphory=
lation and the degree of PIP» labelling (Table 1). Indeed, the
173% increase in B-50 phosphorylation induced by PKC is accompa-
nied by a 53% reduction in the PIP2 labelling'(Table 1). Addition
of 106 M pDB and PKC further enhances the degree of B-50 label-
ling, but does not further decrease PIPp labelling (Table 1)
Addition of 1076 M ppg (without PKC) to native SPM does not
stimulate B-50 phosphorylation in this acetate buffer and has no
effect on PIPy labelling either (Table 1). PIP labelling is not
significantly affected by the addition of PKC and/or PDB, whereas
PA labelling is significantly decreased by the addition of PKC in
the presence or absence of PDB, but not by PDB alone (Table 1).

DISCUSSION

The endogenous kinase phosphorylating the neuron-specific
Protein B-50 in SPM is PKC. The evidence for this conclusion can
?e summarized as follows: (a) The endogenous B-50 phosphorylation
1s'Ca2+ dependent and cyclic nucleotide independent (17); (b) the
major biochemical characteristics (including IEP, peptide map,
phospholipid dependency) of the

isolated B-50 kinase resemble
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those of purified PKC (14,15); (c) B-50 is a major substrate of
exogenous PKC in native and heat-inactivated SPM (this paper); (d)
B-50 phosphorylation by endogenous and exogenous PKC is enhanced
by phorbol diesters (this paper) and by the short chain diacylgly-
cerol, 1,2-dioctanoylglycerol (16); (e) purified B-50 is a
substrate to PKC (14,15); (f) treatment of intact neuronal tissue
with phorbol diesters enhances B-50 phosphorylation (5,32,33).

Tumor-promoting phorbol diesters increase endogenous B-50
phosphorylation in SPM presumably through direct activation of PKC
(35). The order of potency, PMA > PDB > PDA, is similar to that
found in many systems. Interestihgly, phorbol ester stimulation of
B-50 phosphorylation in SPM requires 80 mM K¥, indicating that
intracellular ionic conditions are essential. In a crude mitochon-
drial/synaptosomal fraction phorbol esters have been shown to
stimulate F1 phosphorylation in the presence of detergent (35). It
is .not clear what the mechanism of activation of endogenous PKC
is. Poss1b1y phorbol esters lower the Ca?t requirement for PKC
act1vat1on or improve the B-50 SPM interaction for instance by a
tighter binding of PKC to the membrane (36). Phorbol diesters also
stimulate B-50 phosphorylation by exogenous PKC, presumably by
inducing the translocation of PKC to the SPM (37). Such in vitro
translocation of PKC has been shown in inside-out erythrocyte
vesicles and in lysed synaptosomes (38). It remains to be shown
Whether endogenous and exogenous PKC phosphorylate B-50 at the
same phosphorylation site. The fact that heat inactivation of SPM
does not impair the effect of phorbol diesters suggests that
membrane proteins are not essential for PKC binding or that PKC
binding proteins are heat stable, like B-50 (26).

The function of the B-50 protein in neuronal membranes has
not yet been resolved. In fetal rat brain and regenerating
Peripheral neurons B-50 has been implicated in the mechanism of

neurite outgrowth (17, 19-24). In the central nervous system F1
related to the

sted that

(B-50) may be involved in membrane processes
Phenomenon of long-term potentiation (38). We have sugge
B~50 is involved in the modulation of receptor-mediated PPI
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Fig. 6. Model describing the regulatory role of B-50 phosphoryla-
tion in receptor-mediated hydrolysis of PIP>. DG, diacylglycerol;
PLC, phospholipase C; N-protein, nucleotide binding protein; IP3,
inositol trisphosphate. For other abbreviations see text.

hydrolysis (see 17; Fig. 6). This hypothesis is based on the

inverse relationship between the degree of B-50 phosphorylation

and the [32P]-incorporation found in a number of experimental

approaches and can be summarized as follows: (a) pre-phosphoryla~

tion of B-50 in a partially purified B~50 preparation and SPM
results in a decrease in PIPp labelling (27,39); b) inhibition of
B~50 phosphorylation by ACTH1-24 induces a concomitant increase in
PIP2 labelling, while the rate of loss of PIP, labelling is
unaffected by ACTH (27); (¢) affinity-purified anti-B-50 IgGs
added to SPM specifically inhibit

B-50 phosphorylation and
simultaneously enhance [32p]_

incorporation into PIPy (26; (d)
treatment of intact rat hippocampal slices w

ith dopamine results
in a decrease in the

Bost hoc phosphorylation of B-50 and an
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increase in PIPp labelling (40); (e) exogenous PKC enhances B-50
phosphorylation and inhibits PIPp labelling in SPM (this paper).
We have proposed that the molecular mechanism underlying this
inverse relationship is a direct modulatory effect of the degree
of B-50 phosphorylation on the rate-limiting enzyme in PIPp
synthesis, PIP-kinase, rather than a direct effect of PKC on other
steps in the Ca2*-mobilizing signal transduction pathway, for
instance at the level of the receptor, the G-protein or the PLC.
This suggestion is based on the fact that (i) mono-specific IgGs
against B-50 specifically inhibit B-50 phosphorylation (no other
PKC substrates are affected) and concomitantly enhance PIPp
labelling in SPM, (ii) the inverse relationsip exists in a
partially purified B-50 preparation, still containing the PIP-
kinase and PKC, but no other PKC substrates (39), and (iii) in a
semi-purified PIP-kinase system phospho-B-50 inhibits PIP-kinase,
whereas dephospho-B-50 has no significant effect (41). Although we
have shown in hippocampal slices that modulation of B-50 phospho-
rylation affects [3H]-inositol phosphate production (42), more
direct evidence for a feedback role of B-50 in physiological
Systems is required.

In search for the physiological function of B-50 we focus our
research on biochemical parameters in the presynaptic terminal as
B-50 has a presynaptic localization (43). Hence, we are interested
in presynaptic receptor systems linked to Ca2* mobilization and
activation of PKC, possibly involved in presynaptic modulation of

neurotransmitter release and/or long-term potentiation.
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